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ABSTRACT:

Multi-view camera systems are used more and more frequently for applications in close-range photogrammetry, engineering
geodesy and autonomous navigation, since they can cover a large portion of the environment and are considerably cheaper than
alternative sensors such as laser scanners. In many cases, the cameras do not have overlapping fields of view. In this paper, we
report on the development of such a system mounted on a rigid aluminium platform, and focus on its geometric system calibration.
We present an approach for estimating the exterior orientation of such a multi-camera system based on bundle adjustment. We use a
static environment with ground control points, which are related to the platform via a laser tracker. In the experimental part, the pre-
cision and partly accuracy that can be achieved in different scenarios is investigated. While we show that the accuracy potential of
the platform is very high, the mounting calibration parameters are not necessarily precise enough to be used as constant values after
calibration. However, this disadvantage can be mitigated by using those parameters as observations and refining them on-the-job.

1. INTRODUCTION

1.1 Motivation and Goal

In many fields, such as autonomous driving or crash tests, a
large field of view is necessary for cameras observing the envir-
onment, which can be achieved by using a multi-view camera
system. Often, it is not possible to guarantee overlapping views
due to cost, energy or physical capacity reasons. In order to
be able to capture accurate and reliable measurements using a
multi-sensor system (MSS), a calibration of the whole system
is needed as a first step. Assuming a rigid platform, this exterior
sensor calibration is achieved by geometrically referencing and
synchronizing the sensors with respect to each other. In other
words, the 6 degrees of freedom (6DoF) transformation, con-
sisting of three translations and three rotations, and information
about time synchronization for all sensors with respect to each
other must be determined.

For the calibration, we define a so called platform coordinate
system (CS) and find the 6DoF of the sensors with respect to
this CS. A least squares estimation of the unknowns is per-
formed based on a Gauß-Markov model (GMM). The adjust-
ment model for various scenarios is described in detail and is
tested in a set of experiments. Specifically, we study the preci-
sion of the results in terms of the variance-covariance matrix of
the unknowns, when varying the number of cameras, the num-
ber of different positions of the platform in the lab (we call those
positions ”stations” in this paper), and the effect of considering
the platform CS in the adjustment.

1.2 Multi-Sensor System

Our MSS comprises two cameras, a laser scanner and a GPS/IMU
positioning system; it is installed on a rigid aluminium platform
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to be mounted on a hexacopter UAV (unmanned aerial vehicle)
for surveying applications. It is advantageous to carry out the
calibration with the platform being attached to the gimbal of
the UAV due to complicated installing and un-installing proced-
ures. In this paper, we are only concerned with the geometric
calibration of the cameras. However, a similar procedure can be
applied to laser scanners as well, e.g. (Hartmann et al., 2017).

Figure 1. The multi-sensor platform attached to the gimbal.; the
laser scanner and IMU are not used in this paper.

Fig. 1 shows the sensor platform. Note that the two cameras
are attached with viewing directions differing by approximately
100◦, which results in a very narrow overlap between the two
viewing cones only. We use Basler acA2500− 60uc cameras
with a sensor having 2592 x 2048 pixels and a pixel size of
4.8 µm x 4.8 µm. The lens has a focal length of 6 mm. The
interior orientation of the cameras is determined in a separate
pre-processing step and is considered to be constant.

In this multi-sensor system, time synchronization is achieved
using a hardware trigger based on the GPS time signal, which is
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then multiplied and provided for the cameras with a frequency
of 10 Hz. This, however, is not a criterion to be fulfilled in the
calibration procedure described here, because the calibration is
performed in a static environment and therefore does not require
time-synchronized data between different sensors.

2. RELATED WORK

There exist numerous approaches in the literature to determ-
ine the mounting calibration of multi-camera systems with non-
overlapping fields of view. Xia et al. (2018) summarize several
of these methods and divide them into different categories. The
most important ones are discussed in the following paragraphs.

One category uses measuring devices with superior accuracy
such as a laser tracker or theodolite. Kitahara et al. (2001)
performed a large-scale space camera calibration. In order to
realize a large calibration board, a small calibration checker-
board was scanned at various locations in the room using a
laser scanner. Ortega et al. (2009) calibrated an outdoor distrib-
uted camera network using a laser range finder (LRF). Firstly,
by registering the LRF data to an aerial image of the site, the
coarse location, orientation and field of view (fov) of the cam-
eras were estimated. Also, having the camera fov, the corres-
ponding LRF data is found and a plane segmentation is done.
Then, 3D lines are computed as intersections of perpendicular
planes. In a second step the initial camera parameters were re-
fined in a semi-automatic way by matching 2D and 3D features
in a non-linear optimization.

The second category uses large-scale calibration targets. In (Liu
et al., 2011a), the calibration field is divided into sub-targets for
the non-overlapping views. The 6DoF between the sub-targets
need not be known as long as the whole system is rigid. A
minimum of four images of the target are acquired from differ-
ent angles and the transformation parameters between the cam-
eras and the global coordinate system are estimated, where the
global coordinate system is based on one camera being selec-
ted as the reference sensor. In (Liu et al., 2011b), a calibration
method applicable in a large area or narrow space based on 1D
targets is proposed. In this work, each camera is paired with a
neighboring camera and their relative rotations are calculated.
Then, based on the feature point distances on the 1D target, the
translation vector is determined. Strauss et al. (2014) present
an approach which combines the calibration of interior and ex-
terior orientation parameters of the cameras using coded targets
and image sequences. Non-linear least squares optimization is
used in the estimation procedure.

In the third category planar mirrors are employed. In this way
Lébraly et al. (2010b) create overlap between different camera
views. Sturm and Bonfort (2006) use a planar mirror to com-
pute the position and orientation of one camera without direct
view of the target placed side by side to the camera. Xu et al.
(2015) use a similar approach by setting up one or more mirrors
and calibrating cameras by solving the transformations between
the cameras, including the mirrored virtual camera.

The fourth category is based on motion models. It uses im-
age sequences to track movements and establish correspond-
ing relationships for different fields of view. As these meth-
ods do not need any external devices, they are more cost effi-
cient and flexible. Caspi and Irani (2002) calibrate a set of two
non-overlapping cameras with a short baseline installed rigidly
with respect to each other. The two sets of image sequences are

then aligned using the assumption of similar changes over time
within the two sequences. It is assumed that the cameras share
the same center of projection, which restricts the achievable ac-
curacy. Esquivel et al. (2007) process image sequences of non-
overlapping cameras by a structure from motion (SfM; called
structure and motion, SAM, in that paper) algorithm, which es-
timates the positions and orientations of the cameras. The cam-
era rig is again assumed to be rigid; however, a more general
case is solved, not requiring the cameras to share a common
projection center. The authors calculate the orientation, posi-
tion and scale of each camera separately in an iterative adjust-
ment procedure. In a different and mobile application, Pagel
(2012) uses an approach to solve challenges of hand-eye cal-
ibration. Lébraly et al. (2010a) propose a calibration method
for non-overlapping cameras aboard a vehicle observing a static
scene and determine all unknowns using a bundle adjustment.
Micusik (2011) proposes a solution to the relative 6DoF prob-
lem of non-overlapping surveillance cameras observing a mov-
ing object (person). The lack of conjugate points between two
images is compensated by assumptions that the person is mov-
ing linearly and to a known gravity vector for both cameras.
Then gravity vector can be estimated e.g. by an inertial sensor.
These assumptions lead to a quadratic eigenvalue problem that
is solved to obtain the unknown parameters.

The other categories are based on laser projection, e.g. (Liu et
al., 2012, 2013), and visual measuring instruments, e.g. (Dong
et al., 2016; Birdal et al., 2016; Gong et al., 2017). Further
literature can also be found on the subject. A SLAM-based
automatic exterior calibration technique is presented by Carrera
et al. (2011) in a two and four camera configuration, where the
camera rig is fixed. A final relevant paper is (Borkar et al.,
2011), which presents a method to find the positions and angles
of two cameras relative to a reference point by transforming
images using Inverse Perspective Mapping (IPM) and acquiring
bird-eye views.

In our work we take advantage of an accurate external meas-
uring device, namely a laser tracker, and a static environment,
thus our method falls into category 1. As the calibration of the
platform is part of the pre-processing stage of our research, for
which a high accuracy is desired, it is established in a lab envir-
onment. While this paper deals only with the cameras, a joint
system calibration of the cameras and laser scanner of our MSS
is planned as one of the next steps, initially again in a controlled
environment.

3. CALIBRATION PROCEDURE

In our work, the exterior calibration of the multi-sensor sys-
tem, i.e. a 6DoF transformation for each sensor with respect
to a common 3D platform CS, is estimated via non-linear least
squares adjustment. The six parameters are also called mount-
ing calibration parameters, or mounting calibration for short.
In this paper, we restrict ourselves to estimating the mount-
ing calibration of the two cameras of our system, for which the
interior orientation (calibrated focal length, image coordinates
of the principal point and lens distortion parameters) are as-
sumed to be known. Considering the cameras separately, the
task amounts to a spatial resection with respect to the platform
CS. As mentioned before, the cameras only have a very small
common field of view, therefore stereo models do not exist.

The platform CS is realized via three signalized points at three
corners of the rigid platform. One point serves as origin of the
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platform CS, the second point determines the direction of one
of the coordinate axes (here x). A plane is then defined con-
taining this coordinate axis and the third point (and thus also
the second axis (y), which is perpendicular to the first axis),
finally the plane normal points into the direction of the third co-
ordinate axis. In order to determine the mounting calibration,
we position the platform in a lab, where the cameras can see a
number of targets placed in different heights on the lab walls.
These targets, which were measured by the laser tracker, serve
as ground control points (GCPs), cf. fig. 2.

3.1 Relationship between Coordinate Systems

The relationship between the coordinate systems used in the
calibration is described in the following.

1. Placing a laser tracker in the lab, we can determine the co-
ordinates of the GCPs and the three platform points (P1,P2,
P3) in the CS of the laser tracker, which we call the object
CS. As a result, the coordinates of all GCPs and of the
three points are available in this system. Fig. 2 shows the
GCPs, the three points on the platform, as well as the ob-
ject, platform and camera coordinate systems.

Figure 2. Platform and GCPs in the object (XO, YO, ZO),
platform (XP , YP , ZP ) and camera coordinate systems

(XCi , YCi , ZCi with i ∈ {1, 2}).

2. Using the three points on the platform as identical points
in object and platform coordinate systems, the parameters
of a 6DoF transformation between the two systems can be
computed, and the object coordinates of the GCPs can be
transformed into the platform CS as shown in eq. 1.

Xplatform = RT
0P(Xobject −X0P) (1)

where
Xobject = (XO, YO, ZO)T : 3D coordinate vector of a point
in the object CS
Xplatform = (XP , YP , ZP )T : 3D coordinate vector of a
point in the platform CS
R0P: Rotation matrix to rotate from the platform CS into
the object CS
X0P: 3D translation vector between the origins of the ob-
ject and platform CS.

3. As mentioned earlier, the mounting calibration (exterior
orientation of the cameras in the platform CS) can be de-
termined via spatial resection, based on the GCP coordin-
ates in the platform system. In order to do so, we can use

another 6DoF transformation and the standard collinearity
equations, see eqs. 2 and 3. Here, the camera system is a
right-handed system, where the y-axis points downwards
and the z-axis in the viewing direction.

Xcamera = RT
PM(Xplatform −XPM) (2)

where
Xcamera = (XC , YC , ZC)T : 3D coordinate vector of a
point in the camera CS
RPM: Rotation matrix to rotate from the camera CS into
the platform CS (camera viewing direction, part of the
mounting calibration)
XPM: 3D translation vector between platform and cam-
era CS (camera projection centre, part of mounting calib-
ration).

x = x0 − c
XC

ZC
+ ∆x = f1(Xcamera)

y = y0 − c
YC

ZC
+ ∆y = f2(Xcamera)

(3)

where
x, y: Image coordinates of a point
XC , YC , ZC : Point coordinates in the camera CS
x0, y0, c: Parameters of interior orientation of the camera
(principal point and calibrated focal length)
∆x = f∆x(x, y, k1, k2, k3, p1, p2)
∆y = f∆y(x, y, k1, k2, k3, p1, p2)
∆x and ∆y are the lens distortion corrections, k1, k2, k3

are radial distortion parameters, and p1, p2 are tangential
distortion parameters of the camera. The distortion model
of OpenCV is used in this context1.

For R0P the angles ω, φ, κwere used according to the rep-
resentation of rotations often found in photogrammetry,
however, in the rotation RPM of the mounting calibra-
tion, in order to avoid a possible gimbal lock the angles
α, ζ, κ are used to represent the rotation from the platform
to the camera CS. Here, α is the rotation around the Z
axis, ζ around the (rotated) Y axis and κ is a second rota-
tion around the (rotated) Z axis. These three angles define
the camera viewing direction (α, ζ) and rotation around
the viewing direction (κ) with respect to the platform CS.

Pixel coordinates of all visible GCPs are observed in the
images. To ensure a geometrically stable solution, the tar-
gets should be well-distributed in the images. To determ-
ine initial values for the mounting parameters used in the
subsequent adjustment, one can first determine approxim-
ate values for the pixel coordinates of four targets, prefer-
ably lying on the four corners of the image, either manu-
ally or automatically. In our case, due to the small number
of points needed, this step was carried out manually. Spa-
tial resection can then be carried out based on the Müller-
Killian algorithm, discussed in (Müller, 1925) and (Kil-
lian, 1955).

Having thus determined initial mounting parameters for
the camera and the 3D coordinates of all targets in the
platform CS, their initial pixel coordinates can be determ-
ined by projecting the 3D coordinates into image space.
Pixel positions can then be refined using any method for
precise corner point location (we use the one described in
(Förstner and Gülch, 1987)). Subsequently, a least squares

1https://docs.opencv.org/4.5.2/d9/d0c/group calib3d.html
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adjustment is carried out to estimate the mounting para-
meters (see section 3.2 for details of the used functional
model).

4. Obviously, the whole procedure can be repeated various
times by moving the platform to another station in the lab.
Such additional measurements offer a means to check the
computed mounting calibration and to increase the preci-
sion and reliability of the unknowns. We have carried out
measurements from two different stations and have pro-
cessed the data separately as well as simultaneously (see
section 4 for details).

3.2 Adjustment Approach

The determination of the mounting parameters is based on an
extended bundle adjustment in the form of a GMM. Non-linear
observation equations are derived by introducing eq. 1 into eq.
2, and the result into eq. 3, giving eq. 4.

x = f1(Xcamera) = f1(RT
PM(Xplatform −XPM))

= f1(RT
PM(RT

0P(Xobject −X0P)−XPM))

y = f2(Xcamera) = f2(RT
PM(Xplatform −XPM))

= f2(RT
PM(RT

0P(Xobject −X0P)−XPM))

(4)

We use direct observations for the GCP coordinates in the ob-
ject CS and for the object coordinates of the three points on the
platform. For the latter, we also introduce their coordinates in
the platform system in order to be able to position the platform
CS with respect to the object CS. In order not to have to define
the platform coordinates with superior precision, we select the
weights for the observations of the three platform points in the
platform CS to allow for a determination of the transformation
without constraints: the three coordinates of Point P1 obtain
very high weights, the Y and Z coordinates of P2 and the Z co-
ordinate of P3 also, whereas the other coordinates obtain low
weights. In this way the six transformation parameters can be
determined and the other coordinates of these points do not af-
fect the parameters in a negative way.

The resulting non-linear observation equations are shown in eq.
5 for the image coordinates, eqs. 6 and 7 for the 3D coordinates
of the GCPs and the three platform points in the object CS,
and eq. 8 for the points on the platform in the platform CS
respectively. v denotes the residuals and k is the number of
GCPs which are visible in the images.

v̂x = f1(R̂T
PM(R̂T

0P(X̂object − X̂0P))− X̂PM)− x

v̂y = f2(R̂T
PM(R̂T

0P(X̂object − X̂0P))− X̂PM)− y
(5)

v̂GCPj,object = X̂GCPj,object−XGCPj,object; j ∈ {1, ..., k}
(6)

v̂Pi,object = X̂Pi,object −XPi,object; i ∈ {1, 2, 3} (7)

v̂Pi,platform = R̂T
0P(X̂Pi,object − X̂0P)−XPi,platform

; i ∈ {1, 2, 3}
(8)

We thus use the following observations:

• Image coordinates (x, y) of GCPs

• 3D coordinates of GCP targets in the object CS
(XGCPj ,object, YGCPj ,object, ZGCPj ,object); j ∈ {1, ..., k}

• 3D coordinates of platform points Pi in the object CS
(XPi,object, YPi,object, ZPi,object); i ∈ {1, 2, 3}

• 3D coordinates of platform points Pi in the platform CS
(XPi,platform, YPi,platform, ZPi,platform); i ∈ {1, 2, 3}

to determine the following unknowns:

• Camera mounting calibration (X0, Y0, Z0, α, ζ, κ)
as elements of XPM and RPM for each camera (see eq.
2)

• 6 parameters for the transformation between the object and
the platform CS contained in X0P and R0P for each sta-
tion (see eq. 1)

• 3D coordinates of GCP targets in the object CS
(XGCPj ,object, YGCPj ,object,ZGCPj ,object); j ∈ {1, ..., k}

• 3D coordinates of platform points Pi in the object CS for
each station (XPi,object, YPi,object,ZPi,object); i ∈ {1, 2, 3}

In the stochastic model, the variance-covariance matrix is as-
sumed to be diagonal. For all observations, appropriate vari-
ances, and thus weights, are selected (numerical values are given
in Section 4). The solution is based on the well known formu-
lae of GMM in the nonlinear case, see eq. 9. Here, ∆̂x is
the difference between the vector of estimated unknowns in the
last two iterations, ∆l is the difference between the observation
vector and the observations which are acquired by the initial as-
sumptions of the parameters. The Jacobi matrix A contains the
derivatives of the observation equations with respect to the un-
knowns.

v̂ = A∆̂x−∆l (9)

The adjustment is carried out iteratively according to the stand-
ard formulae. The stopping criterion is based on the relative
change rate of the sum of the weighted squared residuals Ω
between the previous and the current iteration:

Ωprev −Ωcurr

Ωprev + Ωcurr
< 1e− 4 (10)
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4. EXPERIMENTS

4.1 Goals

In this section, we report the precision of the adjustment res-
ults, and in particular of the mounting calibration parameters,
in different scenarios. Specifically, we vary the number of cam-
eras, the number of stations, and the effect of introducing the
platform CS into the adjustment.

The background of this study is the fact that the platform must
be small to be flown on a UAV, and thus the three points de-
fining the platform CS are located within a few centimeters of
each other (10 - 15 cm). For the transformation between the
object and the platform CS, these three points serve as identical
points. While the platform coordinates of these points can be
defined as mentioned above, the object coordinates are determ-
ined using a laser tracker from a distance of several meters. As
a result, the elements of the rotation matrix R0P between ob-
ject and platform system can only be determined with a limited
precision.

4.2 Data Acquisition

Data acquisition for the exterior calibration was done in a lab
with reference targets on the walls and ceiling which serve as
GCPs. The object coordinates of these targets as well as those
of the three platform points were accurately measured using
a laser tracker. Initial values for the transformation paramet-
ers between object and platform CS were determined using the
commercial software SpatialAnalyzer2. The platform coordin-
ates of the three points on the platform are shown in table 1; the
six coordinates relevant for defining the 6DoF of the platform
system are all set to zero, the other coordinates are derived from
distances computed from the object coordinates.

XP [m] YP [m] ZP [m]

P1 0.000 0.000 0.000

P2 0.149 0.000 0.000

P3 0.024 0.127 0.000

Table 1. Platform coordinates of the three platform points.

The UAV platform was placed in the middle of the room with
the two cameras tilted about 30◦ upwards. The focal length of
6 mm and the relatively long distance to the targets allow for
a wide field of view and a minimum of 10 targets to be seen
in each image (two of which appear in both cameras). After
capturing two images of the scene in station 1, the platform
was slightly rotated and moved (approximately 20◦ and 15 cm,
respectively) and another two images were taken. The images
can be seen in Fig. 3 for the left camera and in figure 4 for the
right camera.

One pixel in an average distance for camera to objects of 5 m
covers an area of 4x4 mm2 in object space. The actual distance
of the cameras to the targets varied from 3 to 6 m. Targets
closer to the platform cover an area of up to 90x90 px, while
the (few) targets further away were depicted in slanted view and
with as few as 20x30 px. In addition, a number of targets were
also viewed from a slanted direction, which might increase the
standard deviation of the corresponding image coordinates.

2https://www.hexagonmi.com/en-GB/products/software/spatialanalyzer

Figure 3. Images of the left camera in station 1 (left) and 2
(right).

Figure 4. Images of the right camera in station 1 (left) and 2
(right).

4.3 Assumptions about the Stochastic Model

Uncorrelated observations and a priori standard deviations for
each observation type are assumed as follows.

σxy = 0.8 px
σ(X,Y,Z)GCPj,object

= 0.3 mm

σ(X,Y,Z)Pi,object
= 0.3 mm

For the platform coordinates of the three platform points, this
high weight was only used for the six coordinates defining the
transformation between the object and platform CS (i.e., those
with a value of 0.000 in table 1, while a very low weight was
chosen for the other three coordinates. Furthermore, the a priori
standard deviation of the weight unit is set to 1.

4.4 Results

As mentioned before, we compare the precision of the adjust-
ment obtained in different scenarios:

1. Cases 1a and 1b: the images of one camera only, but of
both stations are used (1a refers to the left camera, 1b to
right camera);

2. Case 2: the images of both cameras and both stations are
employed simultaneously in one adjustment;

3. Case 3: same as case 2, but the transformation from the
object to the platform system is assumed to be constant and
error-free. For this experiment we transformed the object
GCP coordinates to the platform CS using the parameters
determined via SpatialAnalyser, and then considered the
platform CS to be the object CS. Consequently, the three
points on the platform were not needed any longer, and we
dropped equations 7 and 8 from the adjustment.

4. Case 4: a special variant of case 2, where only one station
is used.

5. Case 5: a special variant of case 3, where only one station
is used. In other words, case 5 is similar to case 4, with the
difference that the object CS is the platform CS.
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Case
RMS val.
of unit
weight

RMS value of reprojection error per image [px] Max.
residual
[px]

Precision of 3D coordinates [mm]

Station 1 (x, y) Station 2 (x, y) σX σY σZ

1a 0.30 0.48 0.30 0.20 0.35 1.45 0.08 0.08 0.08

1b 0.83 1.00 0.72 1.23 0.89 2.32 0.22 0.21 0.23

2 0.63
0.51 0.32 0.19 0.41

2.26 0.15 0.14 0.15
1.00 0.73 1.23 0.89

3 1.08
0.64 0.55 0.59 0.72

2.39 0.32 0.32 0.32
0.87 0.85 1.19 0.81

4 0.55
0.42 0.37 - -

2.16 0.13 0.13 0.13
0.97 0.66 - -

5 0.91
0.41 0.36 - -

2.15 0.27 0.27 0.27
0.97 0.65 - -

Table 2. Adjustment results. The first columns show the image-based data, namely the unit weight error of the adjustment
(
√

Ωcurr/(n− u) ; where n is the number of observations and u the number of unknowns), the reprojection errors, for each image
separately and for all targets, gathered as one value by the root mean square (RMS), and the maximum residual (highest reprojection
error in image plane) seen in the adjustment (in x or y, however not specified in table for each case). Upper values in the reprojection

errors of different stations for cases 2 to 5 show results of the left camera, whereas lower values denote those of the right camera.
The last three columns represent the 3D coordinate precisions of the GCPs and platform points as RMS of their uncertainties.

Left camera Right camera

XPM/YPM/ZPM [m] α/ζ/κ[grad] XPM/YPM/ZPM [m] α/ζ/κ[grad]

Case 1

0.180±0.000 -164.000±0.041 0.156±0.001 145.003±0.114

0.112±0.001 99.948±0.048 -0.046±0.001 99.397±0.097

-0.015±0.000 99.713±0.036 -0.019±0.001 99.744±0.136

Case 2

0.180±0.001 -163.998±0.087 0.155±0.001 145.005±0.086

0.112±0.001 99.947±0.101 -0.046±0.001 99.396±0.074

-0.015±0.001 99.710±0.075 -0.019±0.001 99.744±0.103

Case 3

0.183±0.002 -163.941±0.034 0.156±0.002 144.984±0.026

0.109±0.002 99.921±0.024 -0.045±0.001 99.385±0.029

-0.015±0.002 99.680±0.016 -0.018±0.002 99.737±0.017

Case 4

0.181±0.001 -163.955±0.108 0.155±0.001 144.996±0.108

0.111±0.001 99.908±0.127 -0.044±0.001 99.356±0.093

-0.014±0.001 99.676±0.094 -0.018±0.001 99.781±0.129

Case 5

0.181±0.002 -163.955±0.035 0.155±0.002 144.996±0.035

0.111±0.002 99.908±0.025 -0.044±0.001 99.356±0.037

-0.014±0.002 99.676±0.017 -0.018±0.002 99.781±0.025

Table 3. Computed mounting calibration parameters and related precision.

The results are presented in tables 2 and 3, in which the preci-
sion values are determined on the basis of the estimated RMS
error of the unit weight and the inverse of the normal equation
matrix. They can be interpreted as follows:

1. The a posteriori RMS value of unit weight is smaller than
1 in all cases except case 3, where it is 1.08. Thus, the
introduced standard deviations (see section 4.3) are some-
what too large. However, the results shown in table 2 are
acceptable, and fine-tuning these standard deviations, e.g.

via variance-covariance estimation, is beyond the scope of
this paper.

2. A similar behavior is found in the RMS values of the re-
projection errors, which in most cases are smaller than
the assumed value of 0.8 pixel. The general range of the
reprojection errors is not surprising considering the em-
ployed tool for image coordinate determination; a better
precision can be reached with dedicated measurement al-
gorithms. The values for the left camera (case 1a and upper
line in cases 2 - 5) are smaller than those for the right one

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-1-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-1-2021-97-2021 | © Author(s) 2021. CC BY 4.0 License.

 
102



(case 1b and lower line in cases 2-5). A possible reason
is that the interior orientation parameters of the right cam-
eras might have changed slightly between interior calib-
ration and mounting calibration procedures. The reported
values are rather consistent across the different cases, per-
haps with the exception of case 3, for which the left camera
has slightly larger values. This can partly be explained by
the fact that any inconsistencies of the adjustment can no
longer be absorbed by the transformation parameters from
object to platform CS, and are thus more visible in the im-
age coordinates.

3. The maximum residuals amount to a little more than 2
pixels. The maximum residual is located, in all cases ex-
cept case 1a, in the right image and belongs to the small,
slanted target, which is not surprising.
As the values discussed so far are image-based, major dif-
ferences between the different cases were not expected,
and are not visible in the results.

4. The estimated precision of the 3D coordinates varies (last
column of table 2), but this variation is mainly due to the
change of the variance factor of the unit weight. The largest
part of it can be explained by a pure scaling of the inverse
of the normal equation matrix by the RMS value of unit
weight due to the high accuracy of the laser tracker meas-
urements in comparison to the camera measurements in
object space.

5. The estimated values of the mounting calibration paramet-
ers are nearly all consistent in all cases, taking into account
their precision.

6. While the standard deviations for the components of the
translation vector between platform and camera are nearly
identical in all cases, differences can be found in the an-
gular values. The difference of the standard deviations in
case 1 between the left and right camera can be explained
again by the difference of the RMS value of the unit weight
(see also point 4). Comparing case 1 to case 2 we find
contradictory results: for the right camera, case 2 delivers
more precise results, which is expected, as the redundancy
for the mounting calibration parameters is higher, the in-
verse is true for the left camera. At this stage the reason
is not clear, but a comparison with table 2 suggests that,
perhaps, the results of case 1a are a little too optimistic.

7. The potential of the MSS can be seen when looking at the
precision for the rotation angles of case 3. Here, com-
pared to cases 1 and 2, the achieved standard deviations are
smaller by a factor of 3 to 5, demonstrating the high accur-
acy potential of the developed system. As a consequence,
when using the system for high accuracy applications, the
rotation angles of the mounting calibration should not be
considered as constant values, but as observations with the
precision obtained in the calibration phase, similar to a
self-calibration scenario. Consequently, some scene in-
formation must be available to improve the precision of
these mounting angles.

8. Case 4, where only a single station was used, shows a
somewhat higher standard deviation compared to case 2;
which is a consequence of having fewer observations and
therefore a lower redundancy. However, the differences
are not significant; therefore introducing more than two
stations is not expected to yield much improvement in terms

of precision; however, in that case, detection of blunders
can be improved and the setup will be more reliable.

In general, case 5 shows the same behavior to case 4 as
case 3 does to case 2, which is expected.

5. CONCLUSIONS AND OUTLOOK

In this paper, we have presented an approach to determine the
mounting calibration of an MSS with a focus on two cameras
with non-overlapping fields of view. To do so, we have em-
ployed a static lab environment with GCPs and have computed
the mounting calibration relative to a platform assumed to be
rigid. Hence, the 6DoF of one sensor relative to another can be
calculated easily, as long as it remains constant over time.

Being based on single camera resection, this approach works
with any number of cameras. If cameras have a common field of
view, the resulting ray intersections are automatically taken into
account, as the approach is based on photogrammetric bundle
adjustment.

The results show that while image coordinate determination
still has a potential for improvement, the calibration proced-
ure works well, and the obtained precision for the calibration
parameters have reached the expected values. However, as they
are determined indirectly using a laser tracker, additional object
space information should be available for the mounting angles
in order to be able to exploit the full accuracy potential of the
multi-sensor system. A general benefit of using a laser tracker
is the high accuracy with a validation of the results by reprojec-
tion. It can therefore be assumed that the estimated precision is
close to the accuracy of the calibration.

Future work will address the common calibration of the cam-
eras and the laser scanner in both, static and dynamic environ-
ments. Also, we will carry out georeferencing experiments of
the platform based on building models similar to (Unger, 2020),
but with input from the cameras and the laser scanner.
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