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Abstract
In multi-body systems, flexible components as well as couplings between them can
be subject to large displacements and rotations. This contribution presents a gen-
eral objective and geometrically exact node-to-node coupling element pursuing
two innovations. Firstly, the coupling element represents a consistent contribu-
tion to an existing nonlinear mechanical framework. The coupling element intends
to preserve its attributes of objectivity, path-independence, and adherence to
the energy-conserving or energy-dissipative time integration method. Secondly,
besides elasticity also inertia and damping properties are considered. For this
purpose, a director-based formulation is employed within a total Lagrangian de-
scription. The avoidance of an angle-based representation, along with the additive
update of state variables, results not only in path-independence but also in the
avoidance of accumulating errors during extended simulations. An objective de-
formation measure is chosen based on the Green-Lagrange strain tensor. The
inertia forces are considered by an arbitrarily shaped continuum located at the
centre of the coupled nodes. Damping is considered by two different objective first
order dissipation functions, which further ensure energy conservation or dissipa-
tion. We successfully demonstrate the coupling element within the mechanical
framework on exemplary applications. Firstly, the geometrically exact behaviour
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is shown compared to a linear deformation measure. Secondly, we numerically
indicate the path-independence of the formulation. The dynamic behaviour is
demonstrated in a transient analysis of a damped structure. Finally, the modal
analysis of a wind turbine shows the application of the coupling element to model
the soil-structure interaction.

Keywords: director-based kinematics, node-to-node coupling element, objectivity,
geometrically exact deformation

1 Introduction
Flexible couplings between components in multi-body systems (MBSs) and structural
systems can exhibit complex mechanical behaviour. The investigation of the detailed
properties is a challenging task, necessitating sophisticated models or experiments. To
achieve a balance between computational efficiency and accurate global behaviour ap-
proximation, the properties derived from detailed investigations can be incorporated
into a coupling element. This can then be used to model MBS and structural systems.
Especially when examining the nonlinear behaviour of mechanical models, it is crucial
to also consider the geometrically nonlinear characteristics of its flexible couplings.
The motivation of this work is twofold. First, there is a need for a mechanical
framework that can represent the nonlinear behaviour of structures. Second, the devel-
opment of a general coupling element that equally models the geometric nonlinearity
of connections without violating the consistency of the mechanical framework is nec-
essary.
Geometric nonlinearities of complex mechanical systems consisting of slender struc-
tures can be modelled with appropriate nonlinear MBS. Such structures are for
example slender and elastic aircraft wings, in which the occurring geometrical non-
linearity significantly affects the dynamic behaviour of the wing and thus the aircraft
itself [1]. Another example is provided by energy converter turbines, in which turbine
blades are being developed to be ever more slender due to increasing rotor sizes. Here,
nonlinear geometric behaviour also has to be taken into account [2].
Moreover, couplings in these MBS can undergo large displacements and rotations, as
well. To model their mechanical behaviour, geometrically nonlinearities again have to
be considered. An example of couplings undergoing nonlinear geometrical deformation
are adhesive lap-joints discussed by Andruet et al. [3]. These are subject to impor-
tant geometric nonlinear effects due to eccentrically applied forces. Dispersyn et al.
[4] investigate adhesive point fixings in structural glass facades, considering nonlinear
geometric deformations and material nonlinearities. Similarly, in [5], a study of adhe-
sively bonded composites and their thermal effects reveals that small strains and large
displacements accurately represent the joint behaviour. Geometric nonlinearities also
arise in the deformation of rubber bushings in automotive suspensions, as outlined
in [6]. In MBS frameworks that analyse structural behaviour, these examples can be
simplified into a coupling element with the appropriate properties.
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In recent decades, MBS approaches were developed to consider nonlinear mechani-
cal behaviour. The commonly used wind-turbine-specific codes [7–9] use angle-based
geometrically exact beams to model slender components. This formulation, in com-
bination with an updated Lagrangian description, does not maintain objectivity and
path-independence. Borri et al. [10] present an invariant-preserving approach that
maintains objectivity. This consists of rigid bodies, geometrically exact beams, shell
elements and kinematic joints, and is formulated angle-based. Betsch et al. [11] and
Romero et al. [12] introduce director-based geometrically exact beam formulations in
a total Lagrangian description. Their formulations are objective and preserve the to-
tal energy of the system. Furthermore, the director-based formulation, in combination
with additive updating of the rotation, leads to path-independence. Gebhardt et al.
developed an MBS formulation, consisting of the three canonical models’ rigid bodies,
geometrically exact beams, and solid-degenerate shells [13–18]. Also, director-based
kinematics in a total Lagrangian formulation are used to maintain objectivity and
path-independence. The total energy of a mechanical system is preserved or dissipated
using a time integration scheme, based on the midpoint rule and the average-vector-
field method [19]. Singularities that might occur in the stiffness matrices formulated
in [11] and [12] are avoided, allowing buckling analyses [20]. The presented coupling
element is developed as a consistent contribution to this mechanical MBS framework.
Coupling elements are implemented in commonly used MBSs and finite element (FE)
codes. For instance, the well-established FE code ABAQUS [21] allows the use of
linear translational and rotational spring elements (*SPRING, *JOINTC ) to model
node-to-node connections or to couple one node with the surrounding environment.
Similarly, the multi-body dynamics software MSC ADAMS [22] provides integration
options for BUSHING and FIELD elements, which calculate forces and moments on
connected nodes based on a linear deformation measure. These coupling elements as-
sume small deformations.
To address the limitations of linear deformation measures and enable the modeling
of large displacements and rotations, Masarati and Morandini [23] developed a for-
mulation that represents constitutive relations for lumped deformable components
experiencing finite deformations. They found that nonlinear constitutive laws must
be considered when strains are not small. However, large relative displacements and
geometric nonlinear behaviour do not necessarily imply large strains. Bauchau [24]
introduces a family of finite deformation measures suitable for characterising moder-
ate deformations of flexible joints using angle-based kinematics. He demonstrates that
combining tensorial deformation measures with linear constitutive laws accurately
predict moderate deformations. An extensive derivation of an objective angle-based
formulation is presented.
The newly developed coupling element described in this paper has the following two
main innovations. First, the coupling element is a consistent extension of the presented
mechanical MBS and FE framework. It is objective under rigid body motion, main-
tains path-independence and preserves linear and angular momentum as well as the
total energy of the overall system. Fully nonlinear static and dynamic analyses can be
carried out. Second, the element considers mass and damping without compromising
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the desired properties. To the best of our knowledge, there is no literature on a gen-
eral coupling element that considers elasticity, mass and damping in a single element.
Masses that cause inertia forces are modelled as an arbitrary continuum between the
nodes concerned. The objective strain/stress-dependent damping formulation derived
by Armero and Romero [25] and Gebhardt et al. [19] is introduced. Additionally, we
demonstrate the possibility of using dissipation functions tailored to specific physical
problems, such as obtaining a strain-rate/stress-rate dependent damping.
The work is structured as follows: in section 2 the main ideas behind the mechanical
framework are presented. The equations incorporating the stiffness, mass, and damp-
ing properties of the coupling element are derived in section 3. In section 4, application
examples are given to illustrate the behaviour of the coupling element. Finally, a sum-
mary of the work together with limiting aspects and an outlook on future work is
given in section 5.

2 Mechanical framework
The general coupling element presented in this work is a consistent extension of the
mechanical MBS framework developed by Gebhardt et al. [13–20]. The framework
uses a mixed displacement-velocity-strain-based formulation and director-based kine-
matics in a total Lagrangian description. It comprises three canonical models: rigid
bodies, geometrically exact beams, and solid-degenerate shells. Beams and shells are
discretised using the FE method. The subsequent section describes the fundamental
equations and main ideas of the framework and briefly shows the spatial and temporal
discretisations. For more details, we refer the reader to the aforementioned literature.

2.1 Continuous governing equation
Based on the primal-dual variational principle, for a material body B0 ⊆ R3, the
continuous governing equation of the constrained system is determined by

δS =

∫
B0

(
⟨δv, l(v, t)− l(ẋ, t)⟩+ ⟨δλ,h(x, t)⟩

+ ⟨δx, l̇(v, t) + f int(x, t)− f ext(t) +H(x, t)Tλ(t)⟩
)
dV = 0.

(1)

Herein ⟨·, ·⟩ denotes a scalar product and δ(·) the admissible variation of a given quan-
tity. The positions and velocities of a material point are denoted by x(θi, t) = Θ · q
and v(θi, t) = Θ · s, respectively. These specifically depend on the canonical model.
θi, with i = 1, 2, 3, specifying the coordinates of a material point in the director co-
ordinate system of a reference point of a canonical model. Θ is the vector of the
director coordinates θi. q and s are vectors of the generalised coordinates and veloc-
ities, considering the kinematics. As a mixed formulation is used, the equivalence of
the displacement-based and velocity-based momentum densities is incorporated into
equation 1 by using l(ẋ, t) and l(v, t), respectively. Inertia terms are taken into ac-
count by the time derivative of the velocity-based momentum density l̇(v, t). f int(x, t)
and f ext(t) are the internal and external force densities, respectively. h(x, t) represents
a set of kinematic restrictions and λ(t) a vector of Lagrange-multipliers. H(x, t) is the
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Jacobian of the holonomic constraints.
A three-director formulation is chosen, with the directors denoted by di and i = 1, 2, 3.
The additive update of the rotation in the total Lagrangian description ensures the
path-independence. With the outer product · ⊗ · and the standard euclidean basis ei,
the rotational tensor R is represented by

R = d1 ⊗ e1 + d2 ⊗ e2 + d3 ⊗ e3. (2)

As we will refer to the kinetic and elastic strain energy later, they are subsequently
introduced. The mass density per unit volume ρ and the constant symmetric mass
matrix M lead to the kinetic energy T :

T =
1

2

∫
B0

ρ⟨v(θi, t),v(θi, t)⟩dV (3)

The elastic strain energy W of the mechanical system is given by:

W =

∫
B0

⟨δx, f int(x, t)⟩dV =

∫
B0

⟨δE(x),S⟩dV. (4)

Herein E denotes the Green-Lagrange strain tensor and S the corresponding work-
conjugated stress tensor, here the second Piola-Kirchhoff stress tensor. The Green-
Lagrange strain tensor is defined as (see [26]):

E =
1

2
(F(t)TF(t)− F(0)TF(0)), (5)

with F being the tangent map (also referred to as deformation gradient). Of course,
no elastic energy is stored in rigid bodies. For a more detailed discussion of the strain
tensor in terms of the geometrically exact beam analysis we refer to [27] and [28].

2.2 Discretisation of the governing equation in space and time
To spatially and temporally discretise equation 1, we first have to substitute the co-
ordinates and velocities x and v by a set of generalised coordinates and velocities q
and s. Here, the kinematics of the respective canonical model are taken into account,
see [28].
Equation 1 is spatially discretised using the FE method. We use two-node elements
and linear Lagrange-type shape functions. The solid-degenerate shell elements use bi-
linear shape functions and two-point Gaussian quadrature in thickness direction. In
order to maintain the orthogonality as well as the initial length ||di(0)|| = 1 of the
director triad in each node a set of internal constraints is applied, see [14].
The framework employs an implicit time integration scheme. It is based on the mid-
point rule and the average-vector-field method and preserves the linear and angular
momentum as well as the total energy of the system in order to ensure physical cor-
rectness and robustness. For a detailed description of the temporal discretisation, see
[14], where this method is discussed extensively.
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Following the mid-point rule, the configuration and the generalised velocities are ap-
proximated in between two time steps tn+ 1

2
= 1

2 (tn+1− tn), with the time steps n and
n+ 1 and the time step size ∆t = tn+1 − tn as

qt
n+1

2

≈
qtn + qtn+1

2
, st

n+1
2

≈
stn + stn+1

2
. (6)

The evaluation of the governing equation, using equation 6, leads to its spatially
and temporally discrete form, denoted in equation 7. The superscript (·)d indicates a
spatially discrete quantity.

δSd
tn+1

=
(
⟨δsdtn+1

, ld(sdtn+1
, sdtn)− ld(q̇d

tn+1
, q̇d

tn)⟩+ ⟨δλd
tn+1

,hd(qtn+1 ,q
d
tn)⟩

+ ⟨δqd
t
n+1

2

, l̇d(sdtn+1
, sdtn) + f int,d(qd

tn+1
,qd

tn)− f ext,d(qd
tn+1

,qd
tn)

+HdT
(qd

tn+1
,qd

tn)λ
d
t
n+1

2

⟩
)
= 0,

(7)

see also [14]. In the discretised form we consider non-conservative forces in the dis-
crete vector of internal forces f int,d(qd

tn+1
,qd

tn) and in the velocity-based momentum
ld(sdtn+1

, sdtn) as strain/stress and velocity dependent energy dissipation can be added
to the geometrically exact beams and the solid-degenerate shells [19]. Equation 7,
in its discrete form can also contain non-conservative forces in f ext,d(qd

tn+1
,qd

tn). Al-
though it is theoretically possible to consider higher order dissipation functions, we
restrict ourselves to first-order dissipation functions. As we handle from now on ex-
clusively spatially and temporally discrete quantities, the superscript (·)d is omitted
again. Equation 7 has to be true for arbitrary variations which leads to the nonlinear
spatially and temporally discrete governing equation of the mechanical framework

g(qtn+1
, stn+1

,λtn+1
) =

 f int(q)− f ext(q) + l̇(s) +HT(q)λ
l(s)− l(q)

h(q)


tn+1

= 0. (8)

2.3 Solving algorithm
The unknown state variables in the nonlinear governing equation 8 are the generalised
coordinates qtn+1

, the generalised velocities stn+1
and the Lagrange-multipliers λtn+1

,
each at the next time step tn+1. This nonlinear governing equation is solved iteratively
using Newton’s method. We solve for the unknown relative increments ∆q, ∆s and
∆λ at the iteration step k

g(qtn+1
, stn+1

,λtn+1
)k+1 =g(qtn+1

, stn+1
,λtn+1

)k

+∆Gg(qtn+1 , stn+1 ,λtn+1)
k = 0. (9)

Here ∆G(·) = ∂(·)
∂q ∆kq + ∂(·)

∂s ∆ks + ∂(·)
∂λ ∆kλ is the Gâteaux-derivative. The term

∆Gg(qtn+1
, stn+1

,λtn+1
)k is consequently the incremental form of the nonlinear gov-

erning equation g(qtn+1
, stn+1

,λtn+1
)k at the time instant tn+1 and the iteration step
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k, following Newton’s method. Substituting the governing equation 8 into the Newton’s
method 9, we obtain the following matrix formulation 0

0
0

 =

 f int(q)− f ext(q) + l̇(s) +HT (q)λ
l(s)− l(q)

h(q)

k

tn+1

+

Kint(q)−Kext(q) +Kλλ(q) Kqs HT(q)
Ksq Kss(s) 0
H(q) 0 0

k

tn+1

·

∆kq
∆ks
∆kλ

 .

(10)

The iteration matrix is composed as follows:

Kint(q) =
∂f int(q)

∂q
, Kext(q) =

∂f ext(q)

∂q
, Kqs =

∂ l̇(s)

∂s
,

Kλλ(q) =
∂HT(q)

∂q
, HT(q) =

∂HT(q)λ

∂λ
, Ksq =

∂l(q)

∂q
, (11)

Kss(s) =
∂l(s)

∂s
, H(q) =

∂h(q)

∂q
.

∆k(·) = (·)k+1
tn+1

− (·)ktn+1
denotes the change of a respective quantity between two

iteration steps . If terms in the governing equation are added, this must of course be
taken into account by adjusting its derivatives in the iteration matrix to preserve the
robust quadratic convergence rate of the solving algorithm [29].

3 Derivation of the geometrically exact coupling
element

In this section we derive the element equations according to equations 8 and 9, i.e., all
element forces and moments of the general node-to-node coupling element, including
stiffness, mass and damping. The same element can also be utilised to couple a node
with the surrounding environment. As stated previously, the mechanical equations for
the coupling element provide a consistent extension of the mechanical framework de-
scribed in [13–20] and briefly introduced in section 2. It allows the geometrically exact
consideration of flexible joints, such as the adhesive bonding of two mechanical com-
ponents with large displacements and rotations [3] or bushing elements in automotive
suspensions [6]. Objectivity and path-independence are maintained. Due to the geo-
metrically exact formulation, stability analyses can be performed taking into account
the flexible connection. Due to the considered inertia terms, the coupling element can
be taken into account in modal analyses. In this work we focus on the coupling of
nodes with three-directors. Consequently, rigid bodies and geometrically exact beams
can be coupled. An extension for nodes with one director, e.g., solid-degenerate shells
can be easily performed.
Figure 1 illustrates schematically the coupling element applied between two nodes A
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and B. The Euclidean standard basis ei and the position vectors xA, xB and the di-
rector triads dA

i and dB
i are shown. Due to the director-based formulation, generalised

Fig. 1 Schematic representation of the coupling element connecting two nodes

coordinates and generalised velocities are used. The generalised coordinates consist of
a vector to a reference point x belonging to the respective canonical model and the
orthonormal directors di at that reference position

q(t) = [x(t),d1(t),d2(t),d3(t)]
T ∈ R12×1. (12)

The velocity of the reference point is given by v. The velocity of the director triad is
denoted wi leading to the vector of generalised velocities.

s(t) = [v(t),w1(t),w2(t),w3(t)]
T ∈ R12×1. (13)

3.1 Derivation and linearisation of the internal forces
In this contribution, we introduce a coupling element with a formulation that is con-
sistent with that of the geometrically exact beam. This ensures objectivity and allows
geometrically exact kinematics to be mapped.
We propose an objective strain measure inspired by the Green-Lagrange strain tensor.
It is important to note that other deformation measures can also be used, provided
that they satisfy the necessary properties. As discussed in [27, 28, 30, 31], the Green-
Lagrange strain tensor can be decomposed into two work-conjugate strain vectors of
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axial strains and curvatures. This is also applied to the deformation measure of the
coupling element, leading to

Γi = ⟨A(di(t)),D(x(t))⟩ − ⟨A(di(t0)),D(x(t0))⟩, (14)

Ωi =
1

2
εijk[⟨A(dk(t)),D(dj(t))⟩ − ⟨A(dk(t0)),D(dj(t0))⟩]. (15)

Here Γi denote the axial strains, Ωi denote the curvatures and t0 = t(0). εijk is the
permutation symbol. A(·) and D(·) symbolize an average and a discrete differential
operator, respectively, defined as

A(di) =
dA
i + dB

i

2
, D(x) =

xB − xA

η
. (16)

The superscripts (·)A and (·)B indicate the nodes, between which the coupling element
is implemented. η is a parameter with the dimension of a length. If one substitutes
the relations denoted in equation 16 into equations 14 and 15, we obtain

Γ =
1

2η

 ⟨xB,t − xA,t,dA,t
1 + dB,t

1 ⟩ − ⟨xB,0 − xA,0,dA,0
1 + dB,0

1 ⟩
⟨xB,t − xA,t,dA,t

2 + dB,t
2 ⟩ − ⟨xB,0 − xA,0,dA,0

2 + dB,0
2 ⟩

⟨xB,t − xA,t,dA,t
3 + dB,t

3 ⟩ − ⟨xB,0 − xA,0,dA,0
3 + dB,0

3 ⟩

 , (17)

Ω =
1

2η

 ⟨dA,t
2 ,dB,t

3 ⟩ − ⟨dA,t
3 ,dB,t

2 ⟩ − ⟨dA,0
2 ,dB,0

3 ⟩+ ⟨dA,0
3 ,dB,0

2 ⟩
⟨dA,t

3 ,dB,t
1 ⟩ − ⟨dA,t

1 ,dB,t
3 ⟩ − ⟨dA,0

3 ,dB,0
1 ⟩+ ⟨dA,0

1 ,dB,0
3 ⟩

⟨dA,t
1 ,dB,t

2 ⟩ − ⟨dA,t
2 ,dB,t

1 ⟩ − ⟨dA,0
1 ,dB,0

2 ⟩+ ⟨dA,0
2 ,dB,0

1 ⟩

 . (18)

The subscripts (·)t and (·)0 indicate the time instant t or the initial time t = t0,
respectively. Summarized in a deformation vector U, defined as

U =

[
Γ
Ω

]
∈ R6×1. (19)

As these are work-conjugate strain components the axial and transverse shear forces
F ∈ R3×1 as well as the torsional and bending moments M ∈ R3×1 can be obtained
by deriving the elastic potential W (Γ,Ω) with respect to the strain components

F =
∂Wint

∂Γ
and M =

∂Wint

∂Ω
, (20)

providing such exists. Note that F refers here and following to the force components
and not to the tangent map.
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The coupling element allows to employ a fully populated elasticity matrix C

C =


c11 c12 c13 c14 c15 c16
c21 c22 c23 c24 c25 c26
c31 c32 c33 c34 c35 c36
c41 c42 c43 c44 c45 c46
c51 c52 c53 c54 c55 c56
c61 c62 c63 c64 c65 c66

 =

[
CΓΓ CΓΩ

CT
ΓΩ CΩΩ

]
. (21)

The subscripts Γ and Ω indicate the axial and transverse shear forces and the tor-
sional and bending moments affected by the entries, respectively. CΓΓ and CΩΩ are
symmetric about their diagonal, CΓΩ = CT

ΩΓ are skew-symmetric matrices.
We subsequently derive the internal forces and moments caused by the elasticity of the
coupling element. Therefore, we consider the variation of the strain energy, according
to the principle of virtual work, as

δWint =
〈
δΓT,F

〉
+
〈
δΩT,M

〉
(22)

with the admissible variation δ(·). This leads to

δWint = δqT
[
(∂Γ∂q )

T (∂Ω∂q )
T
] [

F
M

]
= δqTBTN. (23)

BT ∈ R24×6 is a differential operator, N ∈ R6×1 is the combined vector of forces and
moments

N = CU = C(BTq). (24)

Carrying out the derivations introduced by the variation in equation 23, for the
differential operator BT follows

BT =
1

2η



−(dA
1 + dB

1 ) −(dA
2 + dB

2 ) −(dA
3 + dB

3 ) 0 0 0
(xB − xA) 0 0 0 −dB

3 dB
2

0 (xB − xA) 0 dB
3 0 −dB

1

0 0 (xB − xA) −dB
2 dB

1 0
(dA

1 + dB
1 ) (dA

2 + dB
2 ) (dA

3 + dB
3 ) 0 0 0

(xB − xA) 0 0 0 dA
3 −dA

2

0 (xB − xA) 0 −dA
3 0 dA

1

0 0 (xB − xA) dA
2 −dA

1 0


. (25)

According to the time integration scheme presented in section 2, equation 25 is evalu-
ated at the temporal midpoint. The discrete elastic force vector f int ∈ R24×1 is given
as

f int = BTN. (26)

10



The term of discrete internal forces of the coupling element is added to the discrete
internal forces of the overall system in equation 8. To apply Newton’s method in order
to solve the nonlinear governing equation, we have to linearise the added discrete
elastic forces, according to equation 9. Respecting the product rule, we obtain

∆GδW = ∆G(δq
TBTN) = δqT∆G(f

int). (27)

As BT(q) and N(q) depend on the generalized coordinates q, again the product rule
is applied

∆G(f
int) = ∆G(B

TN) =

(
∂

∂q
(BTCBTq)︸ ︷︷ ︸

I

∣∣∣∣∣∣∣∣
q=const.

+
∂

∂q
(BTN)︸ ︷︷ ︸

II

∣∣∣∣∣∣∣∣
N=const.

)
∆kq.

(28)

Following the two terms are linearised separately. The linearisation of the first term
yields

∆GN =
∂

∂q

(
CBTq

)
∆kq =

(
∂

∂q

(
CBTq

)∣∣∣∣
q=const.

+CBT

)
∆kq

=
(
CBT

)
∆kq, (29)

with the given elasticity matrix C ∈ R6×6 in Voigt notation of the coupling element.
The linarisation of the second term of equation 28 leads to

∂

∂q
(BTN)

∣∣∣∣
N=const.

∆q = Kstress∆kq, (30)

with

Kstress =
1

2η



0 −F1I −F2I −F3I 0 −F1I −F2I −F3I
−F1I 0 0 0 F1I 0 M3I −M2I
−F2I 0 0 0 F2I −M3I 0 M1I
−F3I 0 0 0 F3I M2I −M1I 0
0 F1I F2I F3I 0 F1I F2I F3I

−F1I 0 −M3I M2I F1I 0 0 0
−F2I M3I 0 −M1I F2I 0 0 0
−F3I −M2I M1I 0 F3I 0 0 0


. (31)

If one substitutes the results of the derivation back into equation 27 we obtain

∆GδW = Kint = δq
(
BTCB︸ ︷︷ ︸

Km

+Kstress
)
∆kq
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= δq
(
Km +Kstress

)
∆kq. (32)

Here Kstress represents the stress dependent stiffness contribution and Km the material
stiffness contribution.

3.2 Derivation of the inertia forces
To introduce mass properties into the coupling element, we have chosen a formulation
equivalent to an arbitrarily shaped continuum modelled as a lumped element. This
formulation is not equivalent to adding masses to the coupled nodes or elements. There
are two reasons for this. Firstly, the location of the added masses would be different
from the location of the coupling element mass and therefore the dynamic behaviour
would be affected. Secondly, the mass distribution in the coupling is not taken into
account. The mass matrix of an arbitrarily shaped continuum can be derived as follows.
The kinetic energy is denoted as

Tac =
1

2

∫
θ3

∫
θ2

∫
θ1

〈
ρvT

ac,vac
〉
dθ1dθ2dθ3. (33)

We write the velocity in matrix notation

vac =
[
1 θ1 θ2 θ3

] 
v
w1

w2

w3

 = Θsac (34)

and obtain the constant mass matrix of the continuous element

Mac =

∫
θ3

∫
θ2

∫
θ1

ΘTρΘdθ1dθ2dθ3 =

∫
B0

ΘTρΘdV. (35)

This mass is assumed to be located between the connected nodes A and B, as shown
schematically in figure 1. It remains at the centre of the concerned nodes at all times
and is not weighted along the length of the element.
To derive the inertia forces acting on the connected nodes, we need the mass matrix
of the coupling element with equivalent properties as just shown for the arbitrarily
shaped continuum. It can be obtained by writing down the kinetic energy of the
coupling element. All quantities without subscripts refer to the coupling element.

T =
1

2

〈
sAB ,Macs

AB
〉
. (36)

sAB denotes the velocity of the midpoint between the nodes. Consequently, it is
determined as follows:

sAB =
sA + sB

2
, (37)
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with the generalised velocities of sA and sB of the respective nodes. Substituting the
velocity sAB in equation 36, allows to determine the mass matrix Mce of the coupling
element.

T =
1

2

〈(sA + sB

2

)
,Mac

(sA + sB

2

)〉
=

1

2

〈[
sA

T
sB

T
]
,Mce

[
sA

sB

]〉
, (38)

with

Mce =
1

4

[
Mac Mac
Mac Mac

]
. (39)

The acceleration of the nodes in equation 7 are determined using the discrete time
derivative of the nodes’ generalised velocities

ṡAt
n+1

2

≈
sAtn+1

− sAtn
∆t

, ṡBt
n+1

2

≈
sBtn+1

− sBtn
∆t

. (40)

For the time derivative of the momentum, the inertia forces acing on the two connected
nodes, respectively, follows

l̇(st
n+1

2

) = Mceṡ
AB
t
n+1

2

= Mce

[
ṡAt

n+1
2

ṡBt
n+1

2

]
. (41)

The mixed formulation and the use of the velocity in the inertia term make it necessary
to establish the linear equilibrium of momentum to ensure that q̇ = s at any time
instant.

l(q)− l(s) = Mce
(qAB

tn+1
− qAB

tn

∆t
−

sAB
tn+1

+ sAB
tn

2

)
(42)

Analogous to the internal forces due to the elasticity of the coupling element, the
inertia forces related to the mass are also linearised. The derivative of l̇(s) with respect
to q becomes zero.

∂

∂qAB
tn+1

(
Mceṡ

AB
t
n+1

2

)
= 0. (43)

Because the term depends on the generalised velocities as the acceleration ṡAB
t
n+1

2

≈
sAB
tn+1

−sAB
tn

∆t , linearisation with respect to the generalised velocity is needed. This term
reads

Kqs =
∂

∂sAB
tn+1

(
Mceṡ

AB
t
n+1

2

)
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=
∂

∂sAB
tn+1

(
Mce

(sAB
tn+1

− sAB
tn

∆t

))
=

1

∆t
Mce. (44)

The equivalence of momentum is derived accordingly with respect to q and s

Ksq =
∂

∂qAB
tn+1

(
Mce

(qAB
tn+1

− qAB
tn+

∆t
−

sAB
tn+1

+ sAB
tn

2

))
=

1

∆t
Mce, (45)

Kss =
∂

∂sAB
tn+1

(
Mce

(qAB
tn+1

− qAB
tn

∆t
−

sAB
tn+1

+ sAB
tn

2

))
= −1

2
Mce. (46)

3.3 Derivation of the damping forces
It remains to introduce a damping formulation into the coupling element in order
to dissipate numerically nonphysical high frequencies and to model physical damping
properties of flexible couplings. We chose a damping formalism according to [19, 28].
The formulation chosen in the spatially and temporally discrete governing equation (7)
allows the use of first order dissipation functions. Higher order dissipation functions
are possible but are beyond the scope of this paper. To demonstrate that different
first order dissipation functions can be used, we implement two different dissipation
functions. In future work, these dissipation functions can be adapted to other physical
problems that need to be addressed, such as specific material damping properties.
The applied stress/strain dependent damping is added as a non-conservative term to
the internal forces

f int = f int
conservative + f int

non-conservative. (47)

3.3.1 First order dissipation scheme

The dissipation function proposed by Armero et al. [28] is applied. Gebhardt et al. [19]
also developed a similar kind of damping algorithm but followed a derivation strat-
egy based on the average-vector-field. They added perturbations to the discretised
equation of motion, which lead to conservation or dissipation properties. They pro-
posed both a stress/strain-based damping algorithm and a velocity-based algorithm.
In the present work we focus on the stress/strain-based damping forces and moments
and in a second step modify the equation to demonstrate the possibility of imple-
menting different dissipation functions using the example of a strain-rate/stress-rate
dependent dissipation function.
Without diving into particulars, we refer to the aforementioned literature for the
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derivation of the correlation between deformation and damping forces and moments.
This formulation maintains the framework’s objectivity naturally. The forces and
moments are determined as follows

Fdiss =
DΓ

∥Γtn+1
− Γtn∥CΓ

·
CΓ(Γtn+1

− Γtn)

∥Γtn+1
− Γtn∥CΓ

, (48)

Mdiss =
DΩ

∥Ωtn+1 −Ωtn∥CΩ

·
CΩ(Ωtn+1

−Ωtn)

∥Ωtn+1 −Ωtn∥CΩ

. (49)

∥ . . . ∥C =
√

⟨(. . . )T,C · (. . . )⟩ denotes the weighted vector norm. CΓ and CΩ are
the elasticity matrices according to the deformations Γ and Ω, respectively. Analog
to the conservative forces and moments, we summarize the the dissipative forces and
moments in the vector Ndiss

Ndiss =

[
Fdiss
Mdiss

]
. (50)

It remains to define the scalar dissipation functions DΓ and DΩ. They are proposed as

DΓ =
1

2
χΓ∥Γtn+1 − Γtn∥2CΓ

, (51)

DΩ =
1

2
χΩ∥Ωtn+1 −Ωtn∥2CΩ

. (52)

The dimensionless parameters χΓ and χΩ allow to determine the scale of the dissipation
forces and moments. They can be adapted by the user according to the model. This
leads to the implemented terms for the discrete damping force and moment

Fdiss =
1

2
χΓCΓ(Γtn+1 − Γtn), (53)

Mdiss =
1

2
χΩCΩ(Ωtn+1

−Ωtn). (54)

3.3.2 Modified first order dissipation scheme

We demonstrate in the following that the formulation briefly summarised in section
3.3.1, can encompass various dissipation functions. The parameters χΓ and χΩ can
be chosen arbitrarily to adapt the damping magnitude to the specific application.
Therefore, it is appropriate to choose χΓ = αΓ

∆t and χΩ = αΩ

∆t , which implies that the
damping forces and moments are dependent on the deformation rate rather than the
absolute deformation. αΓ and αΩ are again parametrisation factors without dimension.
This inspires the conversion of the numerical derivatives into analytical derivatives of
the deformation measure.

Fdiss = lim
∆t→0

1

2
αΓCΓ

Γtn+1
− Γtn

∆t
→ F̃diss =

1

2
αΓCΓΓ̇t

n+1
2

(55)
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Mdiss = lim
∆t→0

1

2
αΩCΩ

Ωtn+1
−Ωtn

∆t
→ M̃diss =

1

2
αΩCΩΩ̇t

n+1
2

(56)

For the sake of completeness, a scalar dissipation function can also be identified for
this in accordance with the derivation from [19]. A minimum dissipative force is sought
that satisfies the relationship (analogously for Ω) denoted in equation 58

1

2
∥Fdiss∥2C → min, (57)

⟨Fdiss,Γtn+1
− Γtn⟩ − D(Γtn+1

,Γtn) = 0. (58)

We modify this derivation so that the dissipation force depends on the deformation
rate instead on the absolute deformation

1

2
∥Fdiss∥2C → min, (59)

⟨Fdiss, Γ̇t
n+1

2

⟩ − D(Γ̇t
n+1

2

) = 0. (60)

Without repeating the derivation this leads to the strain-rate dependent dissipation
functions

D̃Γ =
1

2
αΓ̇

〈
CΓ̇t

n+1
2

, Γ̇t
n+1

2

〉
, (61)

D̃Ω =
1

2
αΩ̇

〈
CΩ̇t

n+1
2

, Ω̇t
n+1

2

〉
. (62)

The analytical time derivative of the deformation measure u is determined as

u̇ =
∂

∂t
u =

[
Γ̇

Ω̇

]
(63)

=
1

2η

[
xB(ḋA

i + ḋB
i )) + ẋB(dA

i + dB
i ))− xA(ḋA

i + ḋB
i ))− ẋA(dA

i + dB
i )

εijk(ḋ
A
j d

B
k + ḋB

k d
A
j − ḋA

k d
B
j − ḋB

j d
A
k )

]
, (64)

with εijk, the permutation symbol and i, j, k = 1, 2, 3. Again, to maintain the readabil-
ity we omitted indicating the time instants. The deformation components are evaluated
at the mid-point as

u = ut
n+1

2

≈
utn+1 + utn

2
, u̇ = u̇t

n+1
2

≈
u̇tn+1 + u̇tn

2
. (65)

Note that derivations of objective quantities defined in local coordinate systems may
not necessarily be objective. As the selected deformation measure comprises quantities
defined in the global coordinate system, their time derivatives are also objective.
The damping forces and moments for the first order dissipation scheme are summarised
in a vector

Ndiss =
1

2
χCu =

1

2
χC(BTq), (66)
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with

χ =

[
χΓI 0
0 χΩI

]
∈ R6×6. (67)

I ∈ R3×3 denotes the identity matrix. For the linearisation follows consequently

Kint,diss =
∂Ndiss

∂q
=

1

2
χCBT. (68)

The same entries in the iteration matrix can be used in the modified first order
dissipation scheme for sufficiently small ∆t as the expressions are equal for ∆t → 0.

4 Applications
In this section some application and benchmark examples are shown to illustrate the
behaviour of the coupling element. The nonlinear mechanical model of the in-house
multi-physical simulation software DeSiO is used. It is briefly presented in section 2.
This framework has lately been developed in the context of wind energy, especially to
tackle the nonlinear behaviour of large offshore wind turbines.
In section 4.1 a check of the coupling elements formulation’s plausibility is shown.
In section 4.2 we illustrate the geometrically exact behaviour, a verification against
ABAQUS for small displacements as well as a numerical indication of path-
independence. Since no geometrically exact spring elements can be used in ABAQUS,
we verify the static behaviour of the coupling element on small displacements. Here, lin-
ear (ABAQUS) and non-linear (coupling element) deformation measure show the same
load-deformation behaviour. A transient and modal analysis is presented in section 4.3
to illustrate the dissipation of high frequencies and the reduction of the total energy.
Finally, in section 4.4, we qualitatively demonstrate how the coupling element can be
used to model the soil-structure interaction of a wind turbine. We show the influence
of the flexible support on the natural frequencies of the complex structure.

4.1 Plausibility check of the coupling element formulation in a
transient analysis

The deformation measure of the coupling element is based on the Green-Lagrange
strain tensor given in equation 5. As shown in equations 17 and 18 the strain tensor
can be parameterised by the choice of η. To proof that the formulations is transfer-
able to the geometrically exact beam, we use this parameter to obtain an equivalent
formulation. Furthermore, we model an exemplary application with the coupling ele-
ment or the geometrically exact beam.
The parameter is η = 1 m for the coupling element. To obtain the geometrically exact
beam formulation, we need to choose η = l, where l is the length of the beam element,
i.e. the distance between the connected nodes resulting from the FE discretisation.
The resulting modification of the nonlinear governing equation is taken into account
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Fig. 2 Beam/coupling element configuration to compare the resulting iteration matrix

in the iteration matrix as follows:

Kqq =
1

2

(
K1 +K2 +Km

)
→ Kqq,mod = j · w ·Kqq, (69)

with the Jacobian j = l/2 and the weight w = 2, resulting from the Gaussian-
quadrature as part of the FE formulation. Again, we refer to the description of the
geometricaly exact beam theory in the literature, e.g., [27].
The example is schematically illustrated in figure 2. As a benchmark example we chose
a horizontally orientated geometrically exact beam, with a length L = 3.0 m. The
beam is discretised into three elements, with l = 1.0 m, using four nodes (1) to (4).
The cross-section properties of the beam are equal to a steel beam with a rectangular
geometry (0.02 m×0.02 m), with a mass density ρsteel = 7580 kg

m3 , a Young’s modulus
Esteel = 210 MPa and a Poisson’s ratio νsteel = 0.3. Node (1) of the beam is clamped.
A vertical force of F = 50.0 kN is applied to the tip of the beam, node (4). The force
is linearly increased within in the time interval t = [0.0, 2.0] s.
In a second model, the beam element between nodes (2) and (3) is removed. Instead,
the coupling element replaces the geometrically exact beam element. It is parame-
terised η = l as described above to obtain the exact same formulation as the beam
element. The material parameters are the same as for the beam element. The load-
ing scenario is also identical. To compare the formulations, a transient analysis of the
systems is performed. The total simulation time is T = 5.0 s with a time step size of
∆t = 1.0 · 10−2 s. Since the linearly applied forces are removed after t = 2.0 s, the
systems can oscillate freely. The following boundary and constraint conditions were
applied: the clamping of node (1) is realised by preventing all displacements and ro-
tations of the node. An internal constraint is used for each node (2), (3) and (4).
This ensures that the directors remain an orthonormal basis with constant length. No
internal constraint is required for node (1), since the prevention of rotations and dis-
placements is redundant.
As the formulations of the beam element and the coupling element are aligned through
the parameterisation of the deformation measure of the coupling element, we expect
that the iteration matrices are also identical when solving the nonlinear governing
equations. Figure 3 shows the iteration matrix for the system consisting of geometri-
cally exact beam elements exclusively 3 (a) and the system where a beam element has
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been replaced by the coupling element 3 (b) of time step 500, corresponding to the
last simulated time step at T = 5 s. In figure 3 (a) and 3 (b), each dot represents a
non-zero entry in the respective iteration matrix. The value is indicated by its colour.
Labels are added to the matrices to indicate which terms are contained within the
fields bounded by the dotted lines. Additionally, coloured squares are drawn within
these fields. The orange fields indicate that the entries originate from the beam for-
mulation. The blue squares in figure 3 (b) indicate which fields are derived from the
coupling element formulation. Terms from the boundary and constraint conditions are
marked in yellow. The entries labelled “I” arise from the boundary condition that pro-
vides fixed support. Entries labelled “II” are the result of the internal constraints. Of
course, the chosen beam/coupling element formulation does not affect the boundary
and constraint conditions of the model.
As the visual comparison of the two matrices suggests, the values are identical. This

Fig. 3 (a) Iteration matrix for nel = 3 beam elements at time T = 5.0 s, orange:
terms related to beam elements, yellow: terms related to boundary and constraint
conditions; (b) Iteration matrix for nel = 2 beam elements + nce = 1 coupling element
at time T = 5.0 s, orange: terms related to beam elements, blue: terms related to the
coupling element, yellow: terms related to boundary and constraint conditions

demonstrates that the formulation of the coupling element can be transformed into
the formulation of the geometrically exact beam. Furthermore, this example serves as
a plausibility check to ensure the correctness of the implementation.
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4.2 Static analyses
The coupling element employs a nonlinear deformation measure with geometrically
exact behaviour. As discussed, it is therefore suited to model large displacements and
rotations of a coupling. For small displacements and rotations the geometric nonlin-
earity can be neglected. Consequently, it is possible to verify the coupling element’s
behaviour against an implementation of a linear deformation measure if the occurring
displacements and rotations remain small. We consider a simple example of a beam,
which is flexibly supported by the coupling element. A load at the tip of the beam
induces a moment acting on the coupling element. On that example we first show the
transition of linear to geometrically nonlinear behaviour in section 4.2.1. In section
4.2.2 we implement the same beam structure in ABAQUS where a set of linear spring
elements are used to model the flexible mounting. The ABAQUS model is used to
verify the behaviour for small rotations. In 4.2.3 we indicate the path-independence
numerically.
The system under consideration is schematically illustrated in figure 4. The beam has

Fig. 4 Schematic representation of a statically loaded beam, flexibly mounted to the
environment

a length of l = 10 m. Its cross-section is square with a width of 0.01 m. The material
used is steel with ρsteel = 7580 kg

m3 , Esteel = 210 MPa and νsteel = 0.3. The geometri-
cally exact beam is discretised with nel = 20 elements. A diagonal elasticity matrix is
used for the coupling element (c11 = c22 = c33 = 2·106 N

m , c44 = c55 = c66 = 5·104 Nm
rad ),

see equation 21. The subsequently discussed static analyses without self-weight are
performed.

4.2.1 Illustration of the geometrically exact mechanical behaviour

To illustrate the geometrically exact behaviour we perform a static analysis with a
force F located at the tip of the beam, see figure 4. The force is applied in increments
of ∆F = 0.52 N per load step. A load step size of ∆t = 1.0 · 10−3 is chosen. The force
is increased until a structural problem occurs. Depending on this increasing force, we
evaluate the rotation ϕce of the node to which the coupling element is attached. The
result is plotted in figure 5. The dashed blue straight line ϕlin represents the linear
relationship between moment and rotation as would occur with a linear deformation
measure. It can be seen that for the given scenario the resulting rotation is approx-
imately the same for small angles up to ϕ ≈ 5◦. For larger angles, the geometrically
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Fig. 5 Rotation of the coupling element, depending of the moment. Comparison be-
tween a linear deformation measure and the implemented objective, geometrically
exact deformation measure

exact deformation measure behaves increasingly softer. This behaviour is plausible and
physically more exact than the linear relation between rotation and load. The repre-
sentation allows to perform stability analyses of whole MBS including couplings that
are prone to large deformations. In the linear case the stability problem is not visible.
In an engineering application this would lead to a more conservative assessment of a
component.

4.2.2 Verification of the formulation for small deformations

The model illustrated in figure 4 is used to verify the coupling element formulation
for small displacements and rotations against commercial software. In section 4.2.1 it
is shown that for small rotation angles of the flexible beam a similar behaviour of the
geometrically exact and a linear deformation measure can be expected.
We compare the maximum tip deflection of the loaded system against ABAQUS/CAE
2019.HF4 for the fixed and the flexibly supported case. The diagonal elasticity matrix
(c11 = c22 = c33 = 2 · 106 N

m , c44 = c55 = c66 = 5 · 104 Nm
rad ) remains unchanged.

In ABAQUS, three translational and three rotational spring elements are used with
the same elasticity as in the coupling element. ABAQUS applies a linear deformation
measure. A simulation time of T = 2.0 s was performed with a constant load step of
∆F = 0.15 N. The maximum force applied to the tip equals Fmax = 300 N. Self-weight
is again not considered. We also determine the results for the fixed case as in ABAQUS
no geometrically exact beam is available, instead the nonlinear Timoshenko beam
theory is used. By showing that the difference of the tip deflection is small for both
clamped beams, we can exclude the beam kinematics as well as the FE discretisation as
an influence on the result of the flexibly supported beam. Table 1 contains the results
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of both cases. As can be seen here, there are only minor differences, for the clamped

Support DeSiO ABAQUS Deviation [%]

Fixed [mm] 57.110 57.147 0.0647
Rotation angle [°] - - -

Flexible [mm] 658.377 656.697 0.2558
Rotation angle [°] 3.4460 3.4343 0.3407

Table 1: Comparison of the displacement of the loaded
tip of the beam, the rotation of the supporting spring/-
coupling element and the relative deviation for rigid and
flexible soil; determined with DeSiO and ABAQUS

beam (0.0647 %). The flexible support also shows no significant differences (0.2558 %)
for the small rotation of the coupling, and spring elements, respectively. Additionally,
table 1 includes the rotation angles of the rotational spring and the coupling element
respectively. The rotation of the coupling element is 3.4460◦. The rotation is thus
within the range of small angles shown in figure 5, where a similar moment/rotation
ratio is to be expected.

4.2.3 Numerical indication of path-independence

To numerically demonstrate the path-independence of the formulation, again the ex-
ample described in figure 4 is used. A set of three forces (F1 = F2 = F3 = 1 kN) are
linearly applied in all three spacial directions simultaneously. The forces are then lin-
early decreased so that the structure should return to its original position.
Table 2 contains the displacements of the beam tip u1, u2 and u3 depending on the

F [kN] u1 [m] u2 [m] u3 [m]

[0.0 0.0 0.0] 0.00000000 0.00000000 0.00000000
[0.2 0.2 0.2] 0.43966617 0.43966617 -0.01917738
[0.4 0.4 0.4] 0.88453386 0.88453386 -0.07826113
[0.6 0.6 0.6] 1.33870986 1.33870986 -0.18050220
[0.8 0.8 0.8] 1.80751081 1.80751081 -0.33187553
[1.0 1.0 1.0] 2.29869293 2.29869293 -0.54284693
[0.8 0.8 0.8] 1.80751081 1.80751081 -0.33187553
[0.6 0.6 0.6] 1.33870986 1.33870986 -0.18050220
[0.4 0.4 0.4] 0.88453386 0.88453386 -078261130
[0.2 0.2 0.2] 0.43966617 0.43966617 -0.01917738
[0.0 0.0 0.0] 0.00000000 0.00000000 0.00000000

Table 2: Displacement of the beam tip, depending
on the load path

load. After removing the forces, the calculated deflection is zero again. There is also
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no remaining rotation in the coupling element, as this would cause a deflection of the
tip, too. This example numerically indicates the path-independence of the formulation.
The analytical prove is outside the scope of this paper.

4.3 Transient and modal analysis of an oscillating structure
To demonstrate the influence of the coupling element in a transient analysis, we choose
a structure that resembles a satellite, as shown in figure 6. The structural parame-
ters are chosen freely on order to model an oscillating system illustrating the dynamic
behaviour as well as the influence of the damping. We chose a dissipation parame-
ter α = 0.5, that reduces non-physical high frequencies as well as linear and angular
momentum, and the total energy of the system. Furthermore, we use a Fast Fourier
Transformation (FFT) to show that the low natural frequencies are not affected by
the chosen dissipation parameter.
To model the satellite structure, a rigid body is coupled to two geometrically ex-

Fig. 6 Schematic representation of the MBS resembling a satellite structure

act beams. The geometrically exact beams have the properties of a 15.0 m long and
30.0 mm × 30.0 mm wide titanium body (ρTi = 4500 kg

m3 , ETi = 120 MPa, νTi = 0.3).
We have chosen a discretisation of nel = 30 elements per beam. The properties of the
rigid body correspond to an aluminium sphere with ρAl = 2700 kg

m3 and a radius of
r = 150.0 mm and thus a mass of mrb = 38.88 kg. It represents the bus of the satellite
structure. The properties of the coupling element are chosen such as the connection
undergoes significant deformation under the loading of the structure. A diagonal stiff-
ness matrix (c11 = c22 = c33 = 3 · 108 N

m , c44 = c55 = c66 = 3 · 104 Nm
rad ), see equation

21, is applied. For the mass we choose the equivalent of an aluminium sphere with a
radius rce = 50.0 mm, resulting in a weight of mce = 1.414 kg.
Bending is evoked by applying two moments M = 500.0 Nm in opposite directions
acting on the tip nodes of the respective beams. The moments are linearly increased
over a period of 1.0 s and then abruptly removed, allowing the system to oscillate
freely. The oscillatory motion is superposed by a transverse rigid-body motion caused
by the force F = 50.0 N on the rigid body. It is also increased linearly over the period
of 1.0 s and then removed. No gravity has been applied. The total simulation time is
T = 180.0 s with a constant time step of ∆t = 10−2 s.
In a first scenario, there is no dissipation. Consequently, there are no damping forces
and moments to reduce the internal strain energy of the system. In a second sce-
nario, we applied the strain-rate/stress-rate dependent modified first order dissipation
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scheme, see section 3.3.1. The dissipation factor α = αΓ = αΩ is set to α = 0.5, see
equations 55 and 56, such that non-physical high frequencies are dissipated. Also, the
total energy of the system is reduced without affecting the low natural frequencies.
The resulting development of the potential, the kinetic and the total energy of the
respective system is shown in figure 8. As no gravity is applied in this example, the
potential energy consists only of the internal strain energy, stored in the geometrically
exact beams as well as in the coupling elements. The total energy of the system with-
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Fig. 7 Time history of the energy of the satellite structure with dissipation parameter
α = 0.0
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Fig. 8 Time history of the energy of the satellite structure with dissipation parameter
α = 0.5

out damping is constant for t > 1.0 s due to the presented time integration scheme,
see section 2. If damping is employed the total energy is reduced as the flapping move-
ment of the satellite structure diminishes. It tends towards a constant value, which
is the result of the rigid body movement caused by the force and elastic energy. The
remaining elastic energy is caused by the oscillation of natural frequencies which do
not affect the displacement of the coupling element.
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The system without damping is subject to vibrations of non-physical high frequen-
cies. Figure 9 (a) shows a zoom into figure 7 in the time interval between 60.0 s and
70.0 s. The comparison of the same time interval in the damped system, shown in
figure 9 (b) shows that the high frequency components were dissipated from the os-
cillation. To prove that the dissipation only reduces the strain energy, we perform
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Fig. 9 Time history of the energy in the interval between 60.0 s and 70.0 s; (a)
α = 0.0, zoom into figure 7; (b) α = 0.5, zoom into figure 8

another energy analysis after a simulation time of t = 400.0 s. In addition, we intro-
duce a small amount strain-dependent damping to the geometrically exact beams, with
χ = χΓ = χΩ = 0.1, see equations 48 and 49. This is necessary because some natural
frequencies of the oscillating geometrically exact beams do not cause a movement of
the coupling element and are therefore not influenced by its damping. Consequently,
strain energy would remain. The total energy after the transient analysis of 400.0 s
is determined to 1.4585 Nm. This corresponds to the analytically calculated total en-
ergy T that is present as kinetic energy due to the rigid body movement. It can be
determined with a total mass of the system mtotal = 214.808 kg and a velocity of
vsatellite = 0.1163m

s to T = 1
2mtotalv

2
satellite = 1.4555 Nm. This corresponds to a de-

viation of 0.2057 %.
We chose the dissipation parameter α = 0.5. To support this choice, we perform a

FFT-analysis for the system with α = 0 and with α = 0.5 to show that the chosen
value has no effect on the low natural frequencies. Still, the total energy of the system
is reduced and nonphysical high frequencies are dissipated. Of course, a high dissipa-
tion parameter will also affect the lower natural frequencies of a system. To perform
the FFT-analysis, we use the same transient simulation data as for the energy conser-
vation illustration above, shown in figure 8. Figure 10 shows the amplitude spectrum
resulting from the FFT-analyses. The dampened case α = 0.5 is plotted in blue, the
system without damping α = 0.0 in red. The translational displacements of the beam
tip were used as input values for the FFT-analysis. These oscillate in the lower natural
frequencies, which are bending natural modes. As mainly the first natural frequency
is excited, the first peak at f = 1.860Hz, is more pronounced than the following. It is
made clear that the chosen dissipation parameter has no influence on the low natural
frequencies.
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Fig. 10 FFT-Analyses of the satellite beam displacements, blue α = 0.5, red α = 0.0

4.4 Modal analysis of a wind turbine considering the
soil-structure interaction

We use the coupling element to model the soil-structure interaction of a wind turbine
to demonstrate its applicability to a complex mechanical example. Furthermore, the
influence of the coupling element on the natural frequencies is evaluated qualitatively.
In future research we will investigate the soil-structure interaction using the coupling
element, including mass and damping.
As the soil-structure interaction can affect the structural behaviour of wind turbine
significantly, it is considered in common wind turbine simulation frameworks such as
[7–9]. In these simulation tools the complex mechanical behaviour of the surrounding
soil can be idealised by a stiffness matrix coupled to the bottom node of the wind
turbine tower. To this purpose, we use the coupling element here.
We choose the example of the IEA-15-240-RWT reference wind turbine. The geometry,
mass and stiffness data are published in the technical report, see [32]. The structure is
designed to serve as a benchmark and platform for future wind energy developments.
In this example we consider an onshore configuration of the wind turbine, i.e. no
substructure is attached below the tower.
In the MBS simulation, the flexible components of the turbine, the blades and the
tower, are modelled with geometrically exact beams. The blades and the tower are
each spatially discretised with nel = 40 elements. Each element of the respective beam
is given the corresponding cross-sectional properties published in the technical report.
Since the hub and nacelle are not expected to deform significantly, they are idealised
by rigid bodies. In the model considered, the blades are mounted with a pitch angle
of φpitch = 0◦. To illustrate the concept, we choose a stiffness matrix with the entries
denoted in table 3. These are realistic values chosen according to the methodology
described by Häfele et al. [33]. In table 4 we compare the first natural frequencies of
the wind turbine structure, both considering rigid and flexible soil. An illustration of
the structure is shown in figure 11. Here, the mode shapes corresponding to natural
frequencies, in which a tower bending is involved, are shown. The director triads in each
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c11, c22[
N
m ] c33[

N
m ] c44, c55, c66[

Nm
rad ] c15, c51[

N
rad ] c24, c42[

N
rad ]

2 · 109 9 · 109 3.0 · 1011 −4 · 109 4 · 109

Table 3: Entries in the elasticity matrix of the coupling element
to consider the soil stiffness of a wind turbine foundation

Fig. 11 Visualisation of the 1st (left), 2nd (centre) and 8th (right) natural frequency
(NF) considering the flexibly modelled soil

node can be seen as black dots. The non-deformed initial configuration of the structure
is shown in grey, the mode shapes are shown in blue. In table 4 it becomes clear that
the flexible coupling of the structure leads to a reduction of the natural frequencies.
In particular, a large deviation can be seen in the low natural frequencies (1st NF:

NF [Hz] 1 2 3 4 5 6 7 8

Rigid 0.2161 0.2189 0.5675 0.6447 0.6973 0.9201 0.9338 1.5180
Flexible 0.2003 0.2025 0.5648 0.6403 0.6963 0.9191 0.9326 1.4321

Deviation [%] 7.3398 7.5187 0.4756 0.6878 0.1541 0.1182 0.1237 5.6724

Table 4: Comparison of the first natural frequencies (NF) of the IEA-15-240-
RWT reference wind turbine for rigid and flexible soil

7.3398%, 2nd NF: 7.5187%). The corresponding natural modes are the bending natural
modes of the tower (fore-aft, side-to-side), see figure 11. Therefore, soil deformation
is involved and the effect on these frequencies is an expected result. The 8th natural
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frequency also involves a higher tower bending natural mode. Thus, again a high
deviation regarding the rigid soil can be seen (5.6724%).
The influence of the flexible soil is a plausible result and will be investigated in more
detail in future work, together with the mass of the soil and its damping properties.

5 Concluding remarks
The motivation of this work was to develop a general node-to-node coupling element
formulation to consider geometrical nonlinearities when connecting components in
MBS simulations. The coupling element is a consistent contribution to the mechani-
cal framework presented in section 2. Its properties of objectivity, path-independence
and the preservation of linear and angular momentum as well as the total energy are
maintained. The coupling considers elastic, inertia and damping forces.
We described the mechanical derivation, which allows the computation of the elas-
tic forces on the respective nodes based on a 6 × 6 elasticity matrix considering an
objective deformation measure. Inertia forces are considered as an arbitrarily shaped
continuum between the coupled nodes. A fully populated inertia matrix can be con-
sidered accordingly. Strain/stress dependent damping was implemented following the
work of Armero and Romero [28] and Gebhardt et al. [19]. In addition, a modifica-
tion of this formulation has been shown to result in strain-rate/stress-rate dependent
damping, demonstrating that different dissipation functions can be used. This allows
the damping to be applied to specific physical problems, e.g. considering damping
functions that are material dependent.
Finally, we demonstrated the behaviour of the coupling element. In static analyses
the geometrically exact behaviour was illustrated compared to a linear deformation
measure. For small rotation angles the results were successfully verified against com-
mercial software. In a further example path-independence was indicated numerically.
The influence of the damping formalism was demonstrated in transient analyses of
an oscillating structure. Finally, the coupling element was applied to model the soil-
structure interaction of a wind turbine. A plausible influence on the natural frequencies
was shown.
In future work we plan to investigate higher order dissipation functions. A promis-
ing application domain of the coupling element is the more detailed consideration of
soil-structure interaction. In particular, the modelling of the soil damping behaviour
using the coupling element will be investigated. Also of interest is the elastic blade-
hub connection of wind turbines, which is assumed to be rigid in conventional MBS
simulations. In this work we focused on moderate deformations. To also consider large
deformations the application of a nonlinear material model is necessary, which will be
object of further research.
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