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A B S T R A C T   

Assessing groundwater potential for sustainable resource management is critically important. In 
addressing this concern, this study aims to advance the field by developing an innovative 
approach for Groundwater potential zone (GWPZ) mapping using advanced techniques, such as 
FuzzyAHP, FuzzyDEMATEL, and Logistic regression (LR) models. GWPZ was carried out by 
integrating various primary factors, such as hydrologic, soil permeability, morphometric, terrain 
distribution, and anthropogenic influences, incorporating twenty-seven individual criteria using 
multi-criteria decision models along with a hybrid approach for the Subarnarekha River basin, 
India, in Google earth engine (GEE). The predictive capability of the model was evaluated using a 
Multi-Collinearity test (VIF <10.0), followed by applying a random forest model, considering the 
weighted impact of the five primary factors. The hybrid model for GWPZ classification showed 
that 21.97 % (4256.3 km2) of the area exhibited very high potential, while 11.37 % (2202.1 km2) 
indicated very low potential for GW in this area. Validation of the groundwater level data from 72 
observation wells, performed by the Area under receiver operating characteristic (AUROC) curve 
technique, yielded values ranging between 75 % and 78 % for different models, underscoring the 
robust predictability of GWPZ. The hybrid and LR-FuzzyAHP models demonstrated remarkable 
effectiveness in GWPZ mapping, indicating that the downstream and southern regions boast 
substantial groundwater potential attributed to alluvial soil and favorable recharge conditions. 
Conversely, the central part grapples with a scarcity of groundwater. It holds the potential to 
assist planners and managers in formulating strategies for managing groundwater levels and 
alleviating the impacts of future droughts.   
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1. Introduction 

As the most dynamic and sustainable renewable natural resource, groundwater both maintains the Earth’s biogeochemical cycle 
equilibrium [1] and serves as a viable alternative water source in dry and semi-dry areas globally [2]. It is a prominent source of fresh 
drinking water for human consumption, with many developing countries depending heavily on it for various purposes, including 
agriculture, domestic usage, and urban and industrial growing [3]. The water demand is steadily rising as a consequence of population 
expansion, urban expansion, industrialization, and agricultural irrigation, potentially hurting groundwater storage and quality [4]. 
Unregulated groundwater development can lead to water scarcity issues, posing challenges in addressing environmental degradation 
and climate change patterns [5,6]. Therefore, groundwater management becomes vital for soil conservation efforts to ensure future 
food security. 

In India, groundwater is pivotal in Gross domestic product (GDP) growth. It accounts for 50 % of water consumption in urban areas 
and more than 80 % in rural areas [7]. The Central Groundwater Board [8] reported that India’s annual renewable groundwater 
resource is ~433 Billion cubic meters (BCM). The primary groundwater consumption is in the irrigation sector, accounting for 92 % 
(213 BCM), followed by industrial and domestic use, which accounts for 18 BCM. Groundwater monitoring is essential for estimating 
river basins’ water budgets, enabling sustainable hydrologic decision support systems. It also facilitates water quality monitoring for 
local livelihoods [9]. India has several river basins, including the Ganga, Brahmaputra, Godabari, Narmada, Mahanadi, and Suvar-
narekha, among others. 

The Suvarnarekha River basin is of significant importance in meeting the urban water demands, agriculture, irrigation needs, 
hydroelectric power generation, domestic use, and industrial requirements in the states of Jharkhand, Odisha, and even West Bengal. 
During the 2000–2010 period, the annual average groundwater recharge rate in the river basin varied from 519 mm to 858 mm [10]. 
However, in recent decades, the ecological environment of the Subarnarekha catchment area has deteriorated due to various factors, 
including low-intensity rainfall, reduced water holding capacity, increased mining activity, industrial growth, soil erosion, defores-
tation, and water pollution [11–13]. According to research conducted by Gautam et al. [14], heavy metals and nitrate pollution have 
been the main drivers behind the reduction in groundwater quality across the entire catchment area. Monitoring groundwater quantity 
and quality is urgently needed for sustainable development in the whole basin, as groundwater is less susceptible to contamination 
compared to surface water [15]. Mandal et al. [10] also experienced a significant decrease in the recharge rate, particularly for the 
years 2000, 2002, and 2009, which calls for special attention. 

The quantification and delineation of groundwater resources employing conventional techniques such as geological, geophysical, 
or hydrogeological methods are often labor-intensive, cost-ineffective, and time-consuming [16]. Therefore, recording and evaluating 
the outcomes of subsurface hydrological inquiries can provide a better alternative approach to traditional groundwater potential 
mapping. A cohesive method combining Remote sensing (RS) and Geographic information system (GIS) approach can serve as a su-
perior decision support system for intelligently assessing Groundwater Potential (GWP), groundwater quality suitability, discharge, 
recharge, and storage mapping [17–21]. Mohammed et al. [22,23] integrated RS and GIS techniques with the Analytic hierarchy 
process (AHP) method for effectively evaluating potential groundwater recharge zones in the Iraqi Western desert region. Tamesgen 
et al. [24] presented the GWP analysis with nine geo-environmental parameters through Ethiopia’s RS/GIS-based Multi-Criteria 
Decision Making (MCDM) approach. Kisiki et al. [25]used geospatial and RS data to define the groundwater recharge zones through 
the GWP evaluation. They then performed a sensitivity analysis to determine the impact of hydrologic and geological factors on their 
variations. The widely used multi-criteria-based decision support techniques for GWP mapping include AHP [22,26–28], Frequency 
ratio (FR) [29], Logistic regression (LR) [30], Fuzzy set [31], Quick unbiased efficient statistical tree (QUEST) [32], Weighted linear 
combination (WLC) [33], Evidential belief function (EBF) [34], Multi-influencing factor (MIF) [35], Shannon’s entropy [36], TOPSIS 
[37], Dempster-Shafer model [38], Bayesian network model [39] etc. Causal relationships based on Fuzzy decision-making trial and 
evaluation laboratory (FDEMATEL) approaches have also been applied for soil erosion, flood, and landslide susceptibility mapping 
[40,41]. Such integrated methods have also been used for groundwater potential mapping, for instance the study by Echogdali [42] in 
the Akka Basin, Morocco. 

Recent trends showed a paradigm shift towards developing big data geospatial hybrid MCDM-based cloud environments that 
enabled machine learning models for mapping groundwater productivity and availability. Emerging cloud computing platforms, 
including Google earth engine (GEE), Climate Engine (CE), SEPAL, IBM Cloud, OpenEO, Amazon web services (AWS), and Microsoft 
Azure cloud technology, have shown their capability in handling a vast amount of Analysis-ready product (ARP) conditioning pa-
rameters. These platforms effectively expedite decision-making, surpassing traditional data pre-processing methods [43–47]. Al-Ozeer 
et al. [48] used Azure Cloud with many parameters to quantify groundwater potential maps in Northern Iraq. The integration of RS, 
cloud computing, and MCDM with a AHP architecture has ushered in trends in achieving high efficiency in groundwater potential 
mapping [49]. 

GEE is an open-source, freely distributed cloud platform with petabyte-level storage ability, having earth observation data over the 
past four decades [50–52]. Magnoni et al. [53] incorporated GEE cloud computing with hydrological FLDAS models to identify 
groundwater dynamics in the suitability area for groundwater recharge zones during 2014–2017 in Brazil. Previous research had been 
limited to topography and a few conditioning parameters for quantifying GWP mapping. However, the new GEE cloud provides more 
parameters to aid groundwater assessment, evaluation, and conservation [54]. carried out GWP zoning using the GEE platform, 
integrating GIS and RS techniques by incorporating fifteen groundwater recharge monitoring parameters for Islamabad, Pakistan. 
They identified the 15 % area as suitable for extracting groundwater. 

While conventional methods of mapping and delineating GWPZ often rely on ground field measures/surveys and costly hydro-
geological and geophysical tools, the appearance of the GEE cloud presents a transformative opportunity. GEE provides extensive 
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Fig. 1. Study area map.  
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access to many conditioning parameters, including hydrological, permeability, morphometric, and anthropogenic criteria, enabling 
real-time GWPZ mapping with ample storage capacity. Nevertheless, in the context of the Subarnarekha River basin, limited studies 
have been conducted to ascertain the potential occurrence of subterranean water. Bridging this research gap, integrating cloud-based 
Geotools presents a affordable and expeditious means of generating and modeling geoscientific data. This current study used a syn-
thesis of MCDM processes with GIS and RS models to outline groundwater potential areas. 

The study’s novelty includes incorporating a large number of influencing factors for GW potential zone mapping through various 
multi-criteria analysis approaches enabled by the GEE cloud platform. The study also indicated that the combination of MCDM 
variation and RS-GIS for groundwater prospecting could be a cost-effective technique that could overcome the limitations of tradi-
tional methods. The study also encouraged the utilization of secondary information for quick assessment of GWPZ. In addition, this 
study provides deep insight into the ground storage change analysis in specific periods. The database can be utilized by the officials and 
authorities to adequately plan and manage the artificial recharge projects in the study area, ensuring that the region’s consumption 
stays sustainable. The scope of this study extends to near-real-time monitoring of underground water potential within any given 
watershed. The insights from this research will be instrumental in formulating a sustainable groundwater management strategy. 
Additionally, it will serve as a valuable resource for both private and public sectors in identifying optimal locations for borehole 
drilling operations. 

The study was carried out to GWPZ by using three MCDM approaches, namely, Fuzzy Analytic Hierarchy Process (FAHP), Fuzzy 
Decision-Making Trial and Evaluation Laboratory (FDEMATEL), and Logistic Regression (LR) with the assistance of twenty-seven 
influential parameters in the GEE cloud platform. Additionally, data from 72 well locations were incorporated to detect appro-
priate zones for groundwater recharge. 

2. Materials and methods 

2.1. Study area 

The Subarnarekha River basin, located in the Jharkhand region of India (Fig. 1), covers an area of 19,296 km2. The study area is 
positioned between the latitude of 21◦ 33′ to 23◦32′ East and longitude of 85◦ 09′ to 87◦ 27’ North, with an elevation of 740 m in a 
heterogeneous landscape. The fundamental landscape portion of our study area in its eastern side is marked by river terraces with 
newer geological formations, such as tertiary gravels, recently deposited alluvium, and Pleistocene alluvium [12]. Diverse parent 
materials and various soil groups, such as alluvial, red, and latosol soils, underline the river basin area. The basin area experiences a 
humid tropical climate characterized by hot summers and mild winters with an average annual rainfall of 1400 mm. According to Jain 

Fig. 2. Details workflow of the steps for the GWPZs mapping.  
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et al. (2007), around 80–90 % of total annual precipitation occurs during June–October. The basin has 12 gauge discharge sites and 
two flood forecasting stations. Moreover, the Subarnarekha basin provides the three states (West Bengal, Odisha, Jharkhand) with a 
considerable water source for their industrial, irrigation, and municipal needs. 

This basin include a variety of mineral materials (e.g. copper, iron, gold, and uranium), which can be exposed as a result of un-
planned mining as well as untreated industrial domestic wastewater, thus polluting the river and threatening marine life [55]. Heavy 
rainfall in the Chhotonagpur plateau generally brings floods and heavy siltation in the lower Subarnarekha basin, causing loss of 
property, domestic animals, and sometimes people. 

There are 38 dams (i.e., Hatia, Getasuld, Galudih, Chandil), 12 barrages, and four weirs in the river basin for providing irrigation in 
the surrounding region. The part of the Subarnarekha basin shows more than a 4 m rise in groundwater level fluctuation due to 
recharge and fall of less than 2 m in most of its parts. Higher levels of chlorine (up to 85.2 mg/L) and sodium (up to 39 mg/L) are 
present in groundwater [11]. 

2.2. Groundwater inventory mapping 

The groundwater inventory data were acquired from the Central Ground Water Board, India [8]. Groundwater wells, with a high 
yield of ≥10 m3h-1 (mean of score) were considered as a threshold for potentiality GWPZ activity in our study area. For 

Table 1 
Data layers sources and description for groundwater potential mapping.  

Sl 
no. 

Data type Description factors Source 

1 DEM SRTM (30 m) Elevation, slope, aspect, 
Profile curvature, TWI, SPI, 
TPI, Ruggedness index 

USGS/GEE 

2 Geomorphology Geological Survey of India (GSI 2019), 1:250,000 Geomorphology http://bhukosh.gsi.gov.in/Bhukosh 
3 Lithology Geological Survey of India (GSI 2019), 1:250,000 Lithology http://bhukosh.gsi.gov.in/Bhukosh  

Lineament Geological Survey of India (GSI 2019), 1:250,000 Lineament density http://bhukosh.gsi.gov.in/Bhukosh 
4 Soil data Harmonized World Soil Database v 1.2, 30 arc-second Soil texture http://www.fao.org/soils-portal/ 

soil-survey/soil-maps-and- 
databases/harmonized-world-soil- 
database-v12/en/ 

5 Soil moisture NASA_USDA/HSL/SMAP_soil_moisture, ssm band, 
0.25◦

Soil moisture NASA GSFC/GEE 

6 Soil loss (t ha-1 yr-1) Global Soil Erosion Modelling platform (GloSEM) 
version 1.1, 
Resampled 250 m, 

Soil loss https://esdac.jrc.ec.europa.eu/ 
content/global-soil-erosion 

7 Precipitation (mm/ 
yearly) 

UCSB-CHG/CHIRPS/PENTAD (CHIRPS Pentad: 
Climate Hazards Group InfraRed Precipitation with 
Station Data (version 2.0 final), 0.05◦

Precipitation https://code.earthengine.google. 
com/ 

8 Baseline water stress Aqueduct 3.0: Updated Decision-Relevant Global 
Water Risk Indicators (Aqueduct Water Risk Atlas), 5 
× 5 arc minutes 

Water stress https://www.wri.org/publication/ 
aqueduct-30 

9 Evapotranspiration Time Averaged Map of Evapotranspiration (daily 0.25 
deg. [GLDAS Model GLDAS_CLSM025_DA1_D v2.2] kg 
m-2 s-1) 2010–2020, 

Evapotranspiration https://giovanni.gsfc.nasa.gov/ 
giovanni 

10 Total Runoff Time Averaged Map of Strom surface & Baseflow- 
groundwater runoff daily 0.25 deg. [GLDAS Model 
GLDAS_CLSM025_DA1_D v2.2] kg m-2 s-1), 2003-02- 
01 - 2020-01-01 

Runoff https://giovanni.gsfc.nasa.gov/ 
giovanni 

11 Land use/land cover ESA/WorldCover/v100, 2020),10 m Land use/land cover https://code.earthengine.google. 
com/ 

12 Sentinel 2 MSI 
Images 

COPERNICUS/S2 level-1C, (2019-01-01 - 2019–12- 
31), 10 m 

NDVI https://code.earthengine.google. 
com/ 

13 Population density CIESIN/GPWv411/GPW_Population_Density, 30 arc 
seconds 

Population density NASA Socioeconomic Data and 
Applications Center(SEDAC). 
https://code.earthengine.google. 
com 

14 GHMTS The Global Human Modification of Terrestrial 
Systemsv1 (2016), 1-km 

GHMTS https://sedac.ciesin.columbia.edu/ 
data/set/lulc-human-modification- 
terrestrial-systems 

15 GMIS Global Man-made Impervious Surface (GMIS) Dataset 
From Landsat, v1, 30 m 

GMIS https://sedac.ciesin.columbia.edu/ 
data/set/ulandsat-gmis-v1 

16 HBSE Global Human Built-up And Settlement Extent 
(HBASE) Dataset From Landsat, v1, 30 m 

HBSE https://sedac.ciesin.columbia.edu/ 
data/set/ulandsat-hbase-v1 

17 Road network Road network in Subarnarekha basin region Distance from roads https://www.openstreetmap.org/ 
export#map=6/22.431/83.035 

18 River network WWF HydroSHEDS Free-Flowing Rivers Network v1 
(15 arc-seconds) 

Drainage density, Distance 
from rivers 

USGS/GEE  
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Table 2 
Selected GWPZs criterion range with five potentiality classes.  

Criterion Sub-criterion Level Very Highly (5) Highly (4) Moderately (3) Low (2) Very Low (1) 

(A) Morphometric 
1 Elevation (m) 0–20 21–36 37–53 54–74 >75 
2 Slope 0 0–2.4 2.4–5.5 5.5–10.7 10.7–19.7 19.7–54.27 
3 Aspect level South Southeast, Southwest East, West, Flat terrain Northeast, Northwest North 
4 Profile Curvature radians/ 

m 
3.41–2.97 1.61–2.97 0.25–1.61 − 1.10–0.25 − 2.99–− 1.1 

5 Ruggedness 
Index 

level 0–80 80–116 116–161 161–239 239–422.25 

6 Lineament 
density 

km/km2 0.33–0.41 0.24–0.33 0.16–0.24 0.08–0.16 0–0.08 

7 TPI level − 17.88–− 2.55 − 2.54–− 0.81 − 0.8–0.63 0.64–2.51 2.52–19 
8 Lithology level Sand, Silt and Clay, Yellowish 

Brown Fine Sand, Silt, Clay, 
Gravel Beds, Volcanic 
Agglomerates, Sand, Silt, Clay, 
Calcareous Concrete 

Lateritic Soil, Laterite, 
Limestone, Impure Marble, Calc 
Silicate Rocks, Limestone, Grit, 
Arkose, Conglomerate, Calc 
Schist, Dolomite 

Chlorite-Sericite Schist, Mica 
Schist, Quartzite, Cherty 
Quartzite, Coarse Tuff, Quartz 
Vein, Reef, Hematite, Magnetite 
Quartzite, Hematite 

Metabasic Rocks, Chlorite 
Schist And Altered Lava, Pelitic 
Schist, Granite Gneiss, 
Epidiorite, Hornblende Schist, 
Mafic Intrusive 

Slate, Phyllite, Mica Schist, 
Gabbro-Anorthosite, Slate And 
Phyllite, Gabbro, Diorite, 
Staurolite Kyanite Schist, 
Phyllite, Shale 

9 Geomorphology level Older Alluvial Plain, Older 
Flood Plain, Active Flood Plain, 
River, Dam and Reservoir, 
Pond, Waterbodies - 
unclassified 

Low Dissected Structural Hills 
and Valleys, Moderately 
Dissected Structural Hills and 
Valleys, Highly Dissected 
Structural Hills 

Highly Dissected Denudational 
Hills and Valleys, Moderately 
Dissected Denudational Hills 
and Valleys, Low Dissected 
Denudational Hills 

Highly Dissected Structural 
Upper Plateau, Highly 
Dissected Structural Lower 
Plateau, Moderately Dissected 
Structural Upper Plateau 

Active Quarry 

(B) Hydrologic 
10 TWI level 15.67–24.73 11.66–15.67 8.73–11.66 6.45–8.73 0–6.45 
11 SPI level 0–5.0 5.01–20.16 20.17–42.84 42.83–76.23 >76.23 
12 Drainage density km/km2 0.9–2.2 2.3–2.9 2.91–3.54 3.541–3.98 >3.98 
13 Precipitation mm 1663–1753 1565–1663 1465–1563 1385–1465 1220–1385 
14 Distance from 

rivers 
m <500 500–1000 1000–1500 1500–2000 >2000 

15 Total RO kg m− 2 

s− 1 
0.022–0.037 0.037–0.058 0.058–0.083 0.083–0.104 0.104–0.141 

16 Baseline water 
stress 

% <10 10–20 20–30 30–40 >80 

(C) Soil permeability 
17 Soil type level Sandy clay Loam Loam Sandy Loam Clay Loam Clay 
18 Soil moisture mm 17.70–21.97 13.43–17.70 9.17–13.43 4.90–9.17 0.63–4.90 
19 Soil ET kgm− 2 s 

− 1 
0.000045–0.000049 0.000042–0.000045 0.000040–0.000042 0.000038–0.000040 0.000034–0.000038 

20 Soil loss t ha− 1 

yr− 1 
0.08–0.56 0.56–1.1 1.1–1.8 1.8–3.5 3.5–6.1 

(D) Terrain distribution 
21 LU/LC dynamics level Water bodies, Wetland Forest cover area, Agricultural 

land 
Shrubland, Herbaceous 
vegetation 

Bare land/Sparse vegetation Settlement areas 

22 NDVI level 0.36–0.63, − 0.02 - 0.015 0.27–0.36 0.18–0.27 0.14–0.18 0.015–0.14 
23 GHMTS level 0.14–0.40 0.40–0.50 0.50–0.60 0.60–0.70 0.70–1.0 
(E) Anthropogenic 
24 Population 

density 
Person/ 
km2 

<250 250–500 500–1500 1500–2500 >2500 

25 HBSE level 200 200–200.05 200.05–200.07 200.07–201 201–202 
26 GMIS % 175–200 150–175 125–150 100–125 0–100 
27 Distance from 

road network 
m >2000 1500–2000 1000–1500 500–1000 <500  
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cross-validation, 72 well were used as samples to produce the GWPZ through a training (70 %) and testing (30 %) validation approach. 

2.3. Methodology 

The GWPZ mapping methodology was established before fieldwork, as illustrated in Fig. 2. This comprehensive framework covers 
five distinct stages. Firstly, it involves the preparation of the GWPZ conditioning database. Following this, sufficient data is employed 
to create Groundwater inventory mapping. The third stage incorporates applying the Random Forest (RF) model and Multi-collinearity 
analysis to determine variable importance and select GWPZ conditioning factors. Subsequently, spatial predictions for GWPZ maps are 
generated using a combination of FuzzyAHP, FuzzyDEMATEL, Logistic Regression (LR), and hybrid models. Finally, a feature selection 
analysis is executed employing the Boruta technique. The resulting maps are then rigorously validated using the Area Under the Curve 
(AUC) curve [39] to determine the most effective model for GWPZ mapping. 

2.4. Source of data 

The present research demonstrates using numerous factors for groundwater potential assessment in the Subarnarekha River basin. 
Five main factors were selected through an broad investigation of the literature and expert opinions on their relevance to groundwater 
assessment. These twenty-seven sub-factors were designated based on the relative influence of each data layer, determined through 
practical experience and knowledge of factors affecting GWPZ mapping. They were then adjusted based on their proximity to specific 
sub-categories [54]. The five major conditioning factors chosen are hydrological criteria, morphometric criteria, permeability, terrain 
distribution, and anthropogenic factors (see Table 1 and Supplementary Fig. 1). 

2.5. Groundwater potential evaluation 

Various geo-environmental factors play a significant role in determining the groundwater status of an area. In this study, condi-
tioning factors were used for GWPZ mapping (Table 2). A total of twenty-seven primary Groundwater conditioning factors (GWCFs) 
were classified into five major groups based on their similar properties and consistency (Supplementary Fig. 1). Those conditioning 
factors are: I): Hydrologic factors: Topographic wetness index (TWI), Stream power index (SPI), Drainage density, Precipitation, 
Distance from rivers, Total Run-Off (RO), and Groundwater stress, II): Permeability factors: Soil type, Soil moisture, Soil evapo-
transpiration (ET) and Soil loss III): Morphometric factors: Elevation, Slope, Aspect, Profile curvature, Ruggedness index, Lineament 
density, Topographic position index, Lithology, Geomorphology IV) Terrain distribution factors: Land use/land cover, Normalized 
differential vegetation index (NDVI), The Global Human Modification of Terrestrial System (GHMTS) and; V) Anthropogenic factors: 
Population density, Global Human Built-up and Settlement Extent (HBASE), Global Man-made Impervious Surface (GMIS), and Dis-
tance from roads [42,45,54] 

All conditioning factors are reclassified into raster layers with a resampled 30-m spatial resolution. Ten experts in the fields of 
hydrogeology, meteorology, and local administrators were interviewed through a questionnaire. Additionally, water resources experts 
were consulted to gather their opinions on these factors’ relative importance and ranking. Furthermore, the weights of the factors were 
estimated using FuzzyAHP, FuzzyDEMATEL, and Logistic regression techniques. Considering the probability of influencing GWP, 
individual factors were classified into five levels of impact, including very high, high, moderate, low, and very low. The groundwater 
potentiality of individual conditioning factors was evaluated, and the combined groundwater potentiality level for the main factors 
was estimated. The ranges of the selected factors were classified into two categories: numerical and non-numerical. The factors with 
numerical ranges were closely observed to decide whether they influenced the GWPZ directly or inversely. The numerical ranges of the 
potential classes were divided through Jank’s natural break grouping based on the available data range in ArcGIS software [56,57]. 

2.6. Multi-collinearity analysis 

Multi-collinearity denotes the linear dependency between two or more variables within a dataset [58]. As noted by Singha et al. 
[9], the Variance Inflation Factor (VIF) and tolerance levels, generated through multi-collinearity analysis, are valuable tools for GWPZ 
mapping (Eq. (1) & Eq. (2)). 

Toleranc=R2
J (1)  

VIF =

⌊
1

Tolerance

⌋

(2)  

where, R2
J is the coefficient of determination of J th factor. The threshold value of tolerance and VIF is > 0.1 and < 10, respectively [59]. 

The multicollinearity may exist when the value VIF exceeds 5.0, though a significant impact will be observed when it crosses 10. 

2.7. Random forest (RF) modeling 

RF modeling has been widely employed for nonparametric multivariate classification and regression tasks. RF works by con-
structing many decision trees during training and aggregating their outputs to improve predictive accuracy and control overfitting, 
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making it a robust choice for complex datasets [60]. Our study employed the ’caret’ package in R version 4.0.2 to implement the RF 
model. Specifically, after conducting multiple experiments, we configured the number of trees (’ntree’) to 500 and set the ’mtry’ 
parameter to 10. We adopted a 10-fold cross-validation approach during the RF modeling process to enhance the model’s robustness 
and mitigate overfitting. The GWCFs were prioritized based on the mean decrease in accuracy using the Gini index. We ensured that 
the total number of trees and factors tested at each split were fixed at 500 and 5, respectively, to achieve the lowest Out-of-bag (OOB) 
error (Supplementary Fig. 2). 

2.8. MCDM modeling 

In the FAHP modeling, all parameter weights are established relying on the decisions made by the decision-maker and their 
preferences for the alternatives. The analysis was conducted in the Python Google Colab cloud environment to generate the final 
results. 

2.9. Fuzzy-AHP modeling 

Fuzzy AHP represents an updated version of the AHP method introduced by Saaty. Given the inherent uncertainty and vagueness 
associated with the AHP method, FAHP is considered a more effective alternative. The fuzzy system incorporates fuzzification, which 
involves converting linguistic terms into membership functions. These membership functions consist of three parts: lower, upper, and 
intermediate membership functions. In our study, the triangular fuzzy number (TFN) matrix is implemented to manage uncertainty 
and ambiguity through the membership system (Supplementary Fig. 3). TFNs are typically denoted as (l, m, u) or (l/m, m/u), rep-
resenting the lowest possible value, the highest possible value, and the most likely value, respectively. The scale of relative importance, 
which ranges from 1 to 9 in crisp numbers, is replaced with fuzzy numbers (FNs). Each term is assigned a value between 0 and 1, 
representing its degree of membership within the intersection numbers. TFNs have a linear representation of each degree of mem-
bership on their left and right sides, as described in (Eq. (3) & Eq. (4)) [61]. 

μ(x \ M̃)=

⎧
⎪⎪⎨

⎪⎪⎩

0, x < l,
(x − l)/(m − l), l ≤ x ≤ m
(u − x)/(u − m), m ≤ x ≤ u

0, x > u

⎫
⎪⎪⎬

⎪⎪⎭

(3)  

M̃ =
(
Ml(y),Mr(y))

(l + m − l)y, u + (m − u)y)
(4)  

where, l(y) and r(y) denote the left and right sides of a FNs, respectively. 
To determine the weights of evaluation criteria using FAHP, pairwise comparison matrices were formulated for all criteria within 

the hierarchy which is expressed as matrix Ã in (Eq. (5)): 

Ã=

⎡

⎢
⎢
⎣

1̃ ã12 … ã1n
ã21 1̃ ã2n
⋮ ⋮ ⋱ ⋮

ãn1 an2⋯ 1̃

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

1̃ ã12 … ã1n
1/ã21 1̃ ã2n

⋮ ⋮ ⋮ ⋮
1/ãn1 1/an2⋯ 1̃

⎤

⎥
⎥
⎦ (5)  

where, ̃aij the relationship between parameters i and j. When parameters i and j are identical (i.e., i = j), the notation 1̃ is defined as a 
triangular fuzzy number represented by (1, 1, 1). Extending this concept, a fuzzy scale ranging from 1̃ to 9̃ is employed to assess the 
relative importance of parameters i to j. Conversely, the inverse of this scale, ranging from ̃1− 1 to ̃9− 1, is utilized to measure the relative 
importance of parameters i to j. This nuanced approach in evaluating the significance of parameters in relation to each other is 
underpinned by a fuzzy transformation rating scale, the specifics of which are elucidated by Tahria et al. [62]. 

Subsequently, the fuzzified pairwise comparison matrix was estimated using the Buckley fuzzy system to calculate the final fuzzy 
weighting through the geometric mean method (Eq. (6)). 

r̃i = (ãi1 ⊗ ãi2 ⊗ … ⊗ ãin)
1/n

And, then w̃i = r̃i ⊗ (̃ri ⊗ … ⊗ r̃n)
− 1 (6)  

where, ãin is fuzzy comparison value of criterion i to criterion n; therefore, r̃i is the geometric mean of fuzzy comparison value of 
criterion i to each criterion. In w̃i , i is the fuzzy weight of the i th criterion, and it can be revealed by a TFN. w̃i = (lwi,uwi,mwi), where 
lwi, uwi, mwi, stand for the lower, upper, and intermediate values of the fuzzy weight of the i th criterion, respectively. 

In this research, the principle of linguistic pairwise comparison was employed to estimate hierarchical fuzzy weights. Fuzzy weights 
were defined for the five selected GWPZ main criteria using fuzzy numbers, and these weights were further processed through the 
center of the area as a defuzzification method. This method calculated the defuzzified numeric crisp weights, which were then used to 
estimate the normalized final weight of the GWP influencing factor. 
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2.10. Fuzzy DEMATEL modeling 

DEMATEL is a group decision-making tool used to address complex inter-criterion relationship problems by interpreting causal 
effects [63]. Expert opinions, judgments, and respondent views are assigned numerical scores on a scale of five levels (0–4) for each 
perception. To account for inconsistencies and vagueness in expert opinions and subjectivity, we computed the initial direct influence 
matrix by converting the linguistic variables into corresponding TFNs (Triangular Fuzzy Numbers) (Eq. (7)), as shown in Supple-
mentary Table 1. 

⎡

⎢
⎢
⎣

0 x12 … x1n
x21 0 … x2n
⋮ ⋮ ⋮ ⋮

xn1 xn2 … 0

⎤

⎥
⎥
⎦ (7) 

The initial direct influence matrix is built through several pair-wise comparison matrix. Computed the initial fuzzy direct-relation 
matrix Zk by having inspectors acquaint with the fuzzy pair-wise relation between the entities in an n × n matrix, where k is the number 
of respondents. Based on the direct-relation, matrix is recognized as Zk = [Zk

ij]; Where Z is n × n non-negative matrix; Zij denotes the 
direct influence of factor i on factor j; and, when i = j and the diagonal features Zij = 0 (Eq. (8)). 

zk
ij =

(
lij,mij, uij

)

C1

Zk =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[0, 0] ⊗zk
12 … ⊗zk

1n

⊗2 ⊗zk
21 [0, 0] … ⊗zk

2n

⋮ ⋮ ⋮ ⋮
Cn ⊗zk

n1 ⊗zk
n2 … [0, 0]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8) 

Calculated the normalized fuzzy direct-relation matrix “D” using the following equation (Eq. (9)) 

D=
Zk

max
1≤i≤n

∑n

j=1
zij

, i, j = 1, 2,…, n (9) 

Obtained the total-relation matrix T using Eq. (8), where n × n identity matrix is denoted with I. Lower and upper values are 
computed individually from the formula (Eq. (10)). 

T =D(I − D)
− 1  

where, 

T =D + D2 + …+ =
∑∞

i=1
Di (10) 

Acquiring the column (Cj) and row (Ri) sums for each column j and row i from the T matrix, respectively, using equation (Eq. (11)). 

T =
[
tij
]

nxn i, j = 1, 2,…n

Ri =
∑n

1≤j≤n
tij ∀i

Cj =
∑n

1≤i≤n
tij ∀j

(11) 

The final Fuzzy DEMATEL weight Wj of criteria acquired from the equation (Eq. 12) 

Wj =

∑n

j=1
(Ri − Ci)

∑n

i=1

∑n

j=1
(Ri − Ci)

(12) 

The criterion cause and effect prominence/relation is shown by the causal diagram, where horizontal axis is represented by (Ri +Ci)

and the vertical axis is defined by (Ri − Ci). The “Prominence” indicator was demarcated in the horizontal axis, represented the relative 
importance of each parameter. The “Relation” is indicated in the vertical axis with the extent of influence of the factor. In this 
intersection module, the cause group is exhibited when the (Ri − Ci) = > 0, otherwise (Ri − Ci) =< 0 condition is contained in the 
effect group of the factor. Causal graph delineating the two-dimensional space for judgment of the multi-decision support system 
environment identifying the most influential factor and how they are interdependent with other parameters. In this study, Fuzzy 
DEMATEL methods were applied using Python jupyter notebook inbuilt GoogleColab cloud environment. 
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2.11. Logistic regression modeling 

The logistic regression model elucidates the GWPZ probability association between two intervariables [64]. The model output 
could be binary components, such as 0 or 1, high (100 % potential) or low (0 % potential) on a sigmoid-shaped curve. Logistic function 
p(z) working in this model is defined by the following formula (Eq. 13) 

p(z)=
1

1 + e− z (13)  

where, z is the net input of linear combination which is the linear combination of weights (β) and sample features (x), and given by the 
following equation (Eq. (14)). The probability of the best-fitting model was derived from logit transformation (Eq. (15)). 

z= βTx = β0 + β1x1 + β2x2 + … + βnxn (14)  

logit= log
{

p(x)
1 − p(x)

}

(15)  

where the coefficients β are computed using the maximum likelihood function. (β0 represents the intercept of the model, and βi 
represents the criteria. p(x) denotes the odds ratio that explained the occurrence of the potential probability. 

3. Results 

3.1. Multi-collinearity application 

In this section, we present the results of our analysis on multicollinearity among twenty-seven influential parameters categorized 
into five major criteria for GWPZs. We examine the tolerance and VIF values to assess multicollinearity issues affecting the GWCFs. 
Tolerance and VIF values below 0.1 and less than 10, respectively, indicated the absence of significant multicollinearity issues among 
predictor variables. The multicollinearity test result (Table 3) demonstrated no multicollinearity problems affecting the effectiveness 
of groundwater potential, as all the GWCFs had tolerance and VIF values below the specified thresholds. Tolerance values for the 
factors ranged from 0.13 to 0.85, while VIF values ranged from 1.16 to 7.69. Aspect had the highest tolerance value (0.85) among the 
conditioning factors, while HBSE had the highest VIF value (7.69). 

3.2. RF application for the relative criterion importance 

The RF algorithm used 100 trees and 27 conditioning factors for the GWPZ estimation. It can be seen from Table 4 that the RF model 

Table 3 
Results of Multi-collinearity analysis among the GWCFs.  

Criterion Tolerance VIF 

Elevation 0.41 2.44 
Slope 0.21 4.84 
Aspect 0.86 1.17 
Profile Curvature 0.28 3.56 
RI 0.61 1.64 
TPI 0.24 4.10 
Lineament 0.65 1.55 
Geomorphology 0.78 1.28 
Lithology 0.45 2.21 
CHIRPS 0.23 4.36 
SPI 0.14 7.07 
TWI 0.14 7.41 
DD 0.59 1.71 
Dist.to river 0.67 1.50 
TRO 0.32 3.12 
ST 0.34 2.91 
SM 0.44 2.29 
SL 0.28 3.54 
ET 0.26 3.86 
NDVI 0.57 1.75 
LULC 0.36 2.76 
GHMTS 0.48 2.08 
PD 0.63 1.60 
HBSE 0.13 7.69 
GMIS 0.14 7.46 
Dist.to road 0.72 1.39  
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correctly identified 34 non-potential wells as non-potential wells and 5 non-potential incorrectly as potential wells. Conversely, the 
algorithm correctly identified 28 groundwater potential wells as potential wells and 5 groundwater wells incorrectly as non-potential 
wells. Furthermore, the OOB error rate, estimated at 13.89 %, indicates an accuracy of 86.11 % in GWPZ estimation. The reduction in 
OOB error over the splits and tree numbers were depicted in Supplementary Fig. 2. 

The relative importance of the GWCFs derived from RF model in Fig. 3 (a) and (b) revealed that soil loss (6.78), soil type (6.08), 
total runoff (3.94), elevation (2.94), and soil moisture (2.71) were the most critical sub-criteria in the GWPZ analysis in the study area, 
while SPI (0.08) and baseline water stress (0.001) were the minor important criteria (Table 5). 

3.3. GWPZs with main criteria 

We employed 27 sub-factors, categorized into five major groups, to predict groundwater potential. The suitability of each 
parameter was assessed within these five significant criteria. A groundwater potential map was generated by integrating sub-criteria 
with individually reclassified layers using the natural break (Jenks) method, resulting in five-level classifications. These five central 
criteria-based GWPZ maps were then used to generate various output maps through MCDM models. In terms of hydrologic criteria, the 
highly and very highly potentiality classes covered 23.86 % and 18.73 % of the total area, respectively (Table 6 & Fig. 4 (a)). 
Permeability and terrain distribution were the most influential criteria for very low potentiality, with shares of 8.73 % and 1.46 %, 
respectively (Fig. 4 (b) and (d)). Regarding morphometric criteria, the moderately potential class accounted for 26.71 %, while the 
highly potentiality class covered 34.52 % (Fig. 4 (c)). In the anthropogenic criterion, areas with low to very low potentiality constituted 
0.91 %. In comparison, 19.01 % of the areas fell under the moderately potential class (Fig. 4 (e)). The highest GWP class, covering 
50.11 % of the area, was associated with the very highly potential category for the anthropogenic criterion (Table 6). 

3.4. MCDM model derived GWPZs map 

The MCDM models generated a GWPZ map for the Subarnarekha basin, classifying it into five primary levels. Fuzzy AHP, Fuzzy 
DEMATEL, and the Logistic Regression model were analyzed using an open-source Python Jupyter Notebook hosted on the Google 
Colab cloud platform. 

3.4.1. Fuzzy AHP estimation 
The Fuzzy AHP method was used to estimate the individual criterion weights, which were then employed to create the GWPZ map 

Table 4 
The confusion matrix of RF model.  

Class non-potential (“0”) potential (“1”) Error 

non-potential (“0”) 34 5 0.128 
potential (“1”) 5 28 0.151  

Fig. 3. Variable importance analysis of (a) mean decrease accuracy and (b) mean decrease Gini for GWPZ influencing factors using the RF model.  
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for the Subarnarekha basin. The fuzzy membership function was utilized to normalize the final fuzzy weighted criteria derived from 
fuzzy crisp layers (Table 7). Among the five criteria, the most influential factor in mapping the GWPZ was the hydrologic factor, with a 
weight of 0.410; thus, it was assigned the highest rank, indicating its suitability for groundwater recharge conditions. Conversely, the 
soil permeability, morphometric, terrain distribution, and anthropogenic parameters were measured less significant, with weights of 
0.314, 0.162, 0.070, and 0.044, respectively. The groundwater potentiality zones were categorized into five classes: very highly, 
highly, moderately, low, and very low, covering areas of 3235.58 km2 (16.70 %), 5198.50 km2 (26.83 %), 5421.03 km2 (27.98 %), 
3705.35 km2 (19.1 %), and 1815.04 km2 (9.37 %), respectively. The areas with very high and high groundwater potential were 
concentrated in the lower part of the Subarnarekha River (Fig. 5 (a)). In contrast, areas with moderate and low GWPZs dominated the 
upper and middle parts of the catchment area. 

3.4.2. Fuzzy DEMATEL estimation 
The study integrates fuzzy sets and the DEMATEL system to develop a comprehensive framework for measuring groundwater 

potential in the Subarnarekha catchment area. The interplay between each criterion was determined using linguistic variables and 
triangular fuzzy numbers (TFN) (Table 8). The study results were elucidated through causal graph analysis. In this analysis, 
groundwater potential GWP condition criteria such as g1 (hydrologic, 0.129), g3 (morphometric, 0.526), and g5 (anthropogenic, 
0.155) were categorized into the cause criteria cluster. Meanwhile, the effect criteria cluster included g2 (soil permeability, − 1.376) 
and g4 (terrain distribution, − 0.431) in GWPZ modeling (Fig. 4 (f)). The cause cluster criteria depicted the impact of the influencing 
factors, while the effect cluster criteria referred to the consequences of the affected criteria. Soil permeability emerged as the most 
important criterion in GWP, with the highest Di-rj value of − 1.376 (Table 8). In contrast, anthropogenic factors, with a higher Di + rj 
value of 1.152, were identified as significant criteria for GWPZ. Di + rj, termed as "prominence," was used to determine which pa-
rameters had the most substantial overall influence in the system. The results indicated that hydrologic criteria exhibited the most 
robust interactions with other parameters. 

Table 5 
Assessing the relative significance of the GWCFs.  

Sl. No. Criterion 0 1 Mean Decrease Accuracy Mean Decrease Gini 

1 Elev. 4.04 4.34 4.84 2.94 
2 Slope − 0.94 − 1.19 − 1.45 0.50 
3 Aspect 2.32 0.92 2.16 0.69 
4 Curva. 2.43 0.39 2.44 0.49 
5 RI − 0.12 − 0.53 − 0.51 0.73 
6 TPI 1.51 − 0.06 1.05 0.78 
7 Lineament − 0.41 − 0.32 − 0.46 0.82 
8 Geomorp. − 1.01 1.01 0.00 0.23 
9 Lithology − 0.63 − 1.01 − 0.90 0.18 
10 CHIRPS 1.23 3.24 2.57 1.06 
11 SPI 0.58 − 0.79 − 0.03 0.08 
12 TWI 1.01 − 0.04 0.88 0.23 
13 DD 1.33 − 1.13 0.56 0.44 
14 Dist. to.River 0.05 − 1.71 − 1.71 0.53 
15 BWS 0.001 0.001 0.001 0.001 
16 TRO 5.30 5.01 6.10 3.94 
17 ST 7.00 5.81 7.75 6.08 
18 SM 3.86 4.01 4.63 2.71 
19 SL 9.63 6.97 10.08 6.78 
20 ET 1.19 − 0.60 0.32 0.61 
21 NDVI 0.24 1.41 1.14 1.53 
22 LULC − 0.47 1.53 0.74 0.26 
23 GHMTS 0.38 − 0.68 − 0.17 0.72 
24 PD − 0.53 1.52 0.82 1.05 
25 HBSE 0.001 − 0.63 − 0.54 0.43 
26 GMIS − 1.42 0.06 − 0.58 0.70 
27 Dist.To.Road − 2.08 0.17 − 1.54 0.72  

Table 6 
Area coverage of GWPZ classes for five main criteria.  

Criteria Very Low (sq. 
km) 

% Low (sq. 
km) 

% Moderately (sq. 
km) 

% Highly (sq. 
km) 

% Very highly (sq. 
km) 

% 

Morphometric 1.51 0.01 2234.0 11.53 5176.00 26.71 6689.00 34.52 5275.0 27.23 
Hydrologic 620.86 3.20 3439.25 17.75 7062.79 36.45 4623.74 23.86 3628.88 18.73 
Soil permeability 1691.11 8.73 2079.09 10.73 8521.34 43.98 5530.96 28.55 1553.02 8.02 
Terrain 

distribution 
282.05 1.46 3728.44 19.24 3982.38 20.55 6817.54 35.19 4565.10 23.56 

Anthropogenic 176.41 0.91 177.19 0.91 3682.80 19.01 5629.60 29.06 9709.51 50.11  
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Fig. 4. GWPZ main criteria distribution map: (a) Hydrologic, (b) Soil permeability, (c) Morphometric. (d) Terrain distribution, (e) Anthropogenic, 
and f) Casual graph for g1~hydrologic, g2~soil permeability, g3~morphometric, g4~terrain distribution, g5~anthropogenic criteria. 
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Table 7 
Fuzzy AHP analysis for the assessment of the criterion weight and rank.  

Criterion Hydrologic Soil 
Permeability 

Morphometric Terrain 
Distribution 

Anthropogenic Crisp 
weight 

Normalized 
weight 

Rank 

Hydrologic (1, 1, 1) (1, 2, 3) (2, 3, 4) (4, 5, 6) (6, 7, 8) 0.445 0.410 1 
Soil Permeability (1/3, 1/2, 1) (1, 1, 1) (2, 3, 4) (4, 5, 6) (5, 6, 7) 0.34 0.314 2 
Morphometric (1/4, 1/3, 1/ 

2) 
(1/4, 1/3, 1/2) (1, 1, 1), (2, 3, 4) (4, 5, 6) 0.176 0.162 3 

Terrain 
Distribution 

(1/6, 1/5, 1/ 
4), 

(1/6, 1/5, 1/4), (1/4, 1/3, 1/ 
2), 

(1, 1, 1) (1, 2, 3) 0.076 0.070 4 

Anthropogenic (1/8, 1/7, 1/ 
6), 

(1/7, 1/6, 1/5), (1/6, 1/5, 1/ 
4), 

(1/3, 1/2, 1) (1, 1, 1) 0.048 0.044 5  

Fig. 5. Final MCDM derived GWPZ map; (a) FAHP, (b) FDEMATEL, and (c) LR (d) FAHP-FDEMATEL, (e) FAHP-LR, (f) FDEMATEL-LR, and (g) 
FAHP-FDEMATEL-LR. 
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Fig. 5. (continued). 

Table 8 
Fuzzy DEMATEL analysis for the assessment of the criterion crisp, weight, and rank.  

Criterion Hydrologic Soil 
permeability 

Morphometric Terrain 
distribution 

Anthropogenic Di + rj Di-rj Normalized 
Weight 

Rank 

Hydrologic (0, 0, 1/4) (3/4, 1, 1) (1/2, 3/4, 1) (1/4, 1/2, 3/4) (0, 1/4, 1/2) 13.773 0.129 0.231 1 
Soil permeability (1/2, 3/4, 1) (0, 0, 1/4) (1/4, 1/2, 3/ 

4) 
(1/4, 1/2, 3/4) (0, 1/4, 1/2) 13.632 − 1.376 0.228 2 

Morphometric (1/2, 3/4, 1) (1/2, 3/4, 1), (0, 0, 1/4) (0, 1/4, 1/2) (0, 1/4, 1/2) 11.875 0.526 0.199 3 
Terrain 

distribution 
(1/4, 1/2, 3/ 
4) 

(1/4, 1/2, 3/ 
4) 

(0, 1/4, 1/2) (0, 0, 1/4) (1/4, 1/2, 3/4) 11.872 − 0.43 0.187 4 

Anthropogenic (0, 1/4, 1/2) (1/4, 1/2, 3/ 
4) 

(0, 1/4, 1/2) (1/2, 3/4, 1) (0, 0, 1/4) 9.281 1.152 0.155 5  
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Based on FDEMATEL, normalized weights for the respective conditioning criteria were utilized to generate the GWPZs map. Hy-
drologic criteria carried the highest weight (0.231) and ranked 1st, followed by soil permeability (0.228) in second rank, morpho-
metric (0.199) in third rank, terrain distribution (0.187) in fourth rank, and anthropogenic (0.155) at fifth rank. Approximately 18.80 
% of the study area was categorized as very highly groundwater potential zones (Fig. 5 (b)). Additionally, 28.45 % and 28.94 % were 
designated as highly and moderately potential areas, respectively. In comparison, 7.71 % of the area was classified as having very low 
groundwater potential zones (Table 9). 

3.4.3. Logistic regression estimation 
The LR model yielded coefficients (β) for independent criteria in the GWPZ map equation (Eq. (16)): 

Z = − 13.59 + 0.464 X hydrologic + 0.114 X soil permeability + 0.019 X morphometric + 0.218 X terrain distribution

− 0.073 X anthropogenic (16) 

These conditional criteria were utilized to predict groundwater resources and estimate the GWPZ probability map. Positive co-
efficients (β) for hydrologic, soil permeability, morphometric, and terrain distribution positively influence groundwater occurrence 
probability. Conversely, the negative coefficient value (β) for anthropogenic (− 0.073) diminishes the likelihood of groundwater 
occurrence, making it a less significant parameter. By examining the inter-relationships between dependent and independent criteria 
using the LR model, the GWPZ map was created (Fig. 5 (c)). It reveals varying groundwater potential levels, from very low (darker 
blue) to very high (lighter yellow) in the southeastern part. Finally, the GWPZ levels were reclassified into the following classes: very 
highly (13.16 %), highly (22.51 %), moderately (30.80 %), low (23.50 %), and very low (10.03 %) (Table 9). 

3.4.4. Hybrid MCDM modeling 
An integrated MCDM modeling approach was used to create a GWPZ overlay layer in ArcGIS to minimize uncertainties in model 

performance. The combination of FAHP and FDEMATEL models resulted in a groundwater potentiality map (Fig. 5 (d)), with 
approximately 29.03 % indicating moderate potential (see Table 9). 

3.4.5. Integrated of FAHP and LR model 
Correspondingly, the combination of the FAHP and LR models revealed that within the total area of the Subarnarekha River basin, 

19.73 % was categorized under the very highly GWP zone (Fig. 5 (e)). Additionally, 25.05 % and 20.36 % belonged to the highly and 
moderately potential classes, respectively. The spatial distribution of GWP results via the combined LR and FDEMATEL approach 
indicated that 48.88 % of the area had highly to very high GWPZ (Fig. 6). Furthermore, 15.6 % exhibited moderate potential, while low 
and very low potential areas covered 11.62 % and 23.9 % of the region, respectively (Fig. 5 (f)). In the final hybrid results of Fuzzy- 
AHP-DEMATEL-LR, very highly, highly, moderately, low, and very low GWP classes accounted for 14.7 % (2852.45 km2), 25.75 % 
(4989.78 km2), 23.0 % (4456.22 km2), 23.4 % (4546 km2), and 13.06 % (2530.48 km2) of the entire basin, respectively (Fig. 6). The 
model’s output indicated that the downstream areas of the river basin exhibited high prospect zones due to their flat alluvial soil 
topography (Fig. 5 (g)). These regions have a high infiltration rate, resulting in greater aquifer storage capacity. In contrast, the 
recharge rate was identified as low in the northern and central parts of the basin, classifying them under the low and very low potential 
zone classes. 

3.4.6. Validation of groundwater levels 
The GWPZ map was evaluated by long-term groundwater level data for pre- and post-monsoon periods. A groundwater depth map 

of the selected study area was created for both pre-and post-monsoon periods, categorized into five classes based on the water table 
depth of groundwater level (Fig. 7 (a) and (b)). The average groundwater level depth in the pre- and post-monsoon seasons varied from 
4.35 to 7.57 m below groundwater level (mbgl), respectively. A high fluctuation level indicated low potential, while low fluctuation 
denoted high potential. The central part of the basin exhibited a high water table depth over both the pre-and post-monsoon seasons, 
indicating low GWPZ. 

In contrast, the upper and lower parts of the study area were characterized as having high potential for groundwater storage 
throughout the entire basin which is align with the groundwater potential zone map developed through our model. The ’Map query’ 
tool compared the groundwater potential zone map with the groundwater table depth. Most wells with low water table depths were 

Table 9 
MCDM model derived GWPZs area coverage in sq. km and percentage.  

Model Very Low Low Moderately Highly Very highly 

(km2) % (km2) % (km2) % (km2) % (km2) % 

LR 1943.1 10 4553.9 23.5 5966.7 30.8 4361.4 22.5 2550.5 13.2 
DEMA 1494.8 7.7 3257.8 16.8 5607.2 28.9 5513.1 28.5 3502.6 18.1 
FAHP 1815 9.4 3705.4 19.1 5421 28 5198.5 26.8 3235.6 16.7 
FDEM_FAHP 2202.1 11.4 4155.6 21.5 5676.7 29.3 3084.6 15.9 4256.5 22 
LR_FAHP 2286.3 11.8 4468.5 23.1 3945.3 20.4 4852.9 25.1 3822.4 19.7 
LR_DEMA 2251.1 11.6 4631.1 23.9 3021.7 15.6 5630.5 29.1 3841.1 19.8 
LR_FDEM_FAHP 2530.5 13.1 4546.6 23.5 4456.2 23 4989.8 25.8 2852.5 14.7  
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located in the suitable GWPZ (very highly and highly classified) as mapped by the MCDM models for both the pre-monsoon and post- 
monsoon periods. Slightly reduced matching of both maps for pre-monsoon and post-monsoon GW depth may be attributed to the type 
of groundwater use in the south-central region of our study area (Fig. 7 (c) and (d)). 

The performance and efficiency of the Fuzzy-AHP, Fuzzy-DEMATEL, and LR models were evaluated using the AUC matrices. From 
the validation results, it can be concluded that the LR-Fuzzy-AHP-DEMATEL model demonstrated superior effectiveness in identifying 
groundwater potential areas. This model reflects the correlation between groundwater potential criteria and the assigned criterion 
weights obtained through an MCDM model. The AUC-ROC value of LR-FDEMATEL-FAHP (0.782) is higher than that of LR-FAHP 
(0.775). The AUC results indicate that LR-FAHP achieved approximately 78 %, LR achieved 77 %, and FDEMATEL-FAHP achieved 
76 %. FAHP and FDEMATEL-LR both achieved approximately 75 % (Fig. 8). Therefore, the AUC results for the study area ranging 
between 75 % and 78 % indicate medium to the high predictability of GWPZ. An AUC value greater than 75 % is considered satis-
factory for acceptable model performance in this context [65]. 

3.4.7. Validation with actual pumping well yield 
To certify the GWPZ map, yield data from pumping wells in the lower basin of the Subarnarekha watershed (Baliapal and Hasimpur 

blocks, Balasore district, Odisha, India) were utilized. In this region, the average well yield was approximately 2334.14 m3 per day, 
primarily used for irrigation. Nearly all existing pumping wells in the region fell within the "good" and "very good" categories as 
determined by the hybrid model. Out of the ten wells, nine yields agreed with the GWPZ mapping, and one partially agreed with the 
GWPZ map. Two wells, currently in a defunct condition, disagreed with the GWPZ map (Table 10). Therefore, the overall accuracy 
level of the hybrid MCDM model was approximately 77 %. While this accuracy level may not be very high compared to previous studies 
involving fewer factors, it is noteworthy that some studies utilizing machine-learning techniques have achieved similar levels of ef-
ficiency. For example, the AHP produced an accuracy of 78.8 % [66] with an AUROC score of 0.705, which was considered indicative 
of good prediction capability for AHP. Additionally, results using the LR algorithm on testing data showed an AUROC score of 0.686. 

4. Discussions 

4.1. Groundwater status in the study area 

In the study area, the continuous expansion of agricultural land, mining activities, deforestation, industrialization, and urbani-
zation have led to an increasing demand for water, resulting in the depletion of the water table over time. Additionally, groundwater 
recharge decreases due to lower precipitation levels and intermittent rainfall events with limited runoff [67]. In such a scenario, there 
is a critical need for effective water management policies and training programs to enhance understanding of the hydrologic, 
morphometric, soil permeability, and anthropogenic factors interconnected with aquifer storage and surface runoff conditions. 
Consequently, groundwater resource mapping and analysis are crucial in monitoring long-term water sustainability and development 
within any region [23]. 

4.2. Selection of individual factors 

Twenty-seven relevant individual factors were measured for mapping groundwater potential zones. With the availability of cloud 

Fig. 6. Area coverage of GWPZs in MCDM model.  
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computing platforms, the estimation of parameters for high-resolution and large-sized images can be carried out easily, quickly, and 
efficiently. Increasing the number of parameters can precisely identify groundwater monitoring parameters and provide accurate zone 
mapping. However, the proximity of some parameters may lead to overlapping influences. Therefore, similar properties and 
composition factors were grouped under the same primary criteria [54]. also employed this approach of grouping criteria for 
groundwater potential mapping in Pakistan. In addition, the weight allocated to each class in the different criteria thematic maps based 
on their water potential capacity and characteristics is determined using the AHP method [57]. The data on the region’s groundwater 
prospects validated the method’s accuracy. 

In the MCDM modeling output, the hydrologic factor was the most crucial criterion, ranking highest in the GWPZ mapping analysis. 
The causal diagram revealed that the hydrologic (g1) criteria held the most significance, with high prominence and strong relation-
ships compared to other criteria. Similarly, the terrain distribution (g4) criteria had less influence, with low prominence and weaker 
relationships than others. Morphometric (g3) and anthropogenic (g4) criteria were essential and could be influenced by other criteria, 
although they had low prominence and high relationships with other criteria. Lastly, the soil permeability criteria were essential and 
could not be significantly influenced by other criteria, with high prominence and low relationships. 

4.3. Model integration as hybrid approach 

To overcome the limitation of a single model and better represent all influencing factors, we integrated the MCDM models, namely, 

Fig. 7. Comparison of GW depth in potential zones; a) Groundwater depth during pre-monsoon, (b) Groundwater depth during post-monsoon, (c) 
Suitable GW potential zones with better GW depth table: Pre-monsoon, d) Suitable GW potential zones with better GW depth table: Post-monsoon. 
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Fuzzy AHP [68] and Fuzzy DEMATEL, along with machine learning techniques, such as LR and RF, to achieve better groundwater zone 
mapping [69]. used logistic regression and RF to map groundwater at Sohag Governorate in Egypt [70]. created a GWPZ map in Upper 
Mesopotamia, Turkey, using ten theme layers through the Fuzzy AHP technique. All the different conditional criteria, modeling maps, 
calculations, and evaluations were conducted using fast-processing GIS, GEE, and the Google Colab cloud environment. The ROC 
validation results indicate that the hybrid (AUC~78 %) model is a more effective MCDM-based tool for identifying GWPZ areas. This 
hybrid model reveals that very high to high potential GWP classes cover 40.45 % (7842.23 km2) of the entire basin. 

4.4. Groundwater potential zoning 

The results shown that high groundwater resources were situated in close vicinity to the river channel (<500 m), characterized by a 
gentle slope, high TWI, high soil moisture, and low drainage density (<2.2 sq km) around the riverbank area [71]. showed that slope, 
LULC, and soil factors were the most sensitive factors for assessing GWPZ in Bangladesh. The low and very low potentiality areas 
corresponded to high population density, built-up land, and a short distance to the road network. Low potentiality areas also featured 
low porosity lithological ingredients (such as slate, phyllite, mica schist, gabbro-anorthosite, slate, phyllite, gabbro, diorite, staurolite 
kyanite schist, phyllite, and shale) with low permeability, high runoff, steep slopes, high elevation, and significant soil erosion. 

Implementing targeted measures for water conservation, such as groundwater recharge plans and various structural enhancements, 
is crucial. These actions, aligned with local terrain and geological features, are designed to bolster groundwater storage capacity in the 
study area. 

Fig. 8. Validation of different MCDM models for GWPZs mapping using the AUROC curve.  

Table 10 
Assessment of generated GWPZ map based on the well yield information.  

Sl. No. Well ID Latitude Longitude Actual yield (m3/day) Well location on GWP maps Hybrid model 

1 380 21.631 87.2562 2180.4 Very good Agree 
2 132 21.6563 87.2674 1817 Good Agree 
3 89 21.655 87.2951 1635.3 Good Agree 
4 44 21.6641 87.289 2725.5 Very good/good Agree 
5 5 21.67 87.2952 1998.7 Very good Agree 
6 138 21.67 87.2311 2725.5 Moderate Defunct/Disagree 
7 64 21.6715 87.2393 1726.15 Moderate Defunct/Disagree 
8 126 21.6747 87.2525 2089.55 Very good Agree 
9 52 21.6665 87.26 2543.8 Very good Partially agree 
10 216 21.7021 87.2004 1453.6 Very good Agree 
11 18 21.7027 87.2299 2271.25 Very good Agree 
12 130 21.6245 87.2856 5996.09 Good Agree 
13 33 21.6363 87.2717 1181.05 Good Agree 

Source: Lift Irrigation Corporation Ltd. (OLIC), Balasore, India, 2021 
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The downstream and southern parts of the region exhibit good groundwater potential due to the presence of alluvial soil with a high 
infiltration rate, particularly in flat terrains. Generally, the southern regions experience higher groundwater recharge as runoff flows 
slower than the northern regions. Among the terrain distribution parameters, the NDVI indices serve as a reliable indicator of 
groundwater potential, particularly in the region’s western part, where the NDVI value exceeds 0.55. The study’s findings indicated 
that the NDVI could be utilized to identify areas with a shallow water table and natural vegetation and areas with inadequate in-situ 
observations [72]. In the land-atmospheric system, evapotranspiration and soil moisture strongly correlate with groundwater po-
tential. In the lower stream of the entire study area, the presence of moderate to high evapotranspiration and soil moisture levels 
suggests the existence of an unconfined aquifer [73]. The Subarnarekha region faces significant soil loss due to extensive weathering 
and large-scale deforestation [12]. With a similar study, we could identify the susceptible zones and carry out necessary preventive 
measures in the river basin. 

Moreover, baseline water stress rises due to illegal mining activities, agricultural water withdrawals, and industrial demands [11]. 
The RF modeling results highlight that soil loss and soil type are the most influential variables, contributing to an accuracy of 86.11 % 
in estimating groundwater potential in the study area. The RF model was found suitable for this type of study and could be extended to 
other regions for wider applicability of the model as demonstrated by Madani and Niyazi, [74] in Western Saudi Arabia. 

4.5. Bourta Senstivity analysis 

Multi-collinearity-based critical analysis was carried out on the factors influencing final outputs. The selected parameters were 
evaluated through Boruta feature selection analysis to determine their level of significance (Fig. 9) GW distribution in the region. The 
least essential parameters could be included in the final potential zoning map [75]. The Boruta sensitivity of the groundwater 
influencing factors was summarized (Table 11). Based on the mean importance for the availability of the groundwater influencing 
factors, namely Total Runoff (30.74), rainfall (20.63), soil type (18.48), and DEM (18.02) are the most important factors, followed by 
soil moisture (16.31), population density (15.57), soil ET (13.85), TRI (13.02), soil loss (12.50), drainage density (10.47), lithology 
(9.90), NDVI (6.89), geomorphology (5.98), land use modification (5.81), road distance (5.77), lineament density (5.22), and slope 
(3.05). However, distance to rivers, BWS, TWI, TPI, SPI, profile curvature, aspect, LULC, HBSE, and GMIS were revealed to have been 
rejected among all assigned factors (Fig. 9). This will optimize the time required for analysis as well as improve the overall model 
accuracy. 

4.6. GRACE analysis 

As suggested by Scanlon et al. [76]; the utilization of Gravity Recovery and Climate Experiment (GRACE) products for the mea-
surement of equivalent water thickness (EWT) has proven instrumental. This choice is particularly noteworthy due to the substantial 
enhancement in the spatial localization and amplitude of improved terrestrial Total Water Storage anomalies (TWSA). The generation 
of GRACE-based EWT heat maps effectively illustrated the regional water balance pattern within the study area. To obtain compre-
hensive information, data were gathered from the Centre for Space Research (CSR) and the Jet Propulsion Laboratory (JPL), as 
depicted in Fig. 10 (a) and 10 (b). 

The monthly GRACE products were averaged for the area to deliver anomalies in EWT in centimeters during the period from 2002 
to 2022. The EWT range of CSR and JPL products was − 29.49 to 37.30 cm. The heat maps generated from the GRACE-based EWT data 
illustrate the regional water balance patterns within the study area (SF.4). 

In the early years, water availability in the basin region showed seasonal fluctuations, with levels under the mean from March to 
June and above the mean from July to November. Analyzing Equivalent EWT dynamics from CSR data, peak EWT occurred in 
August–October of 2003, 2007, 2011, 2020, and 2021 (30 cm), while the minimum was noted in April–June of 2009, 2010, 2016, and 
2018 (− 15 cm). Similarly, JPL data revealed a maximum EWT of 30 cm in August–October of 2003, 2007, 2008, and 2020, with a 
minimum recorded at − 15 cm in March–June during 2010, 2013, 2016, and 2017, respectively. These patterns provide insights into 
temporal variations in water availability. 

Analysis of heat maps for the study area indicates that in the earlier years (2002–2007), water availability was higher from August 
to October. However, in recent years (2010–2019), there’s been a decreasing trend in EWT during April to June. This decline may stem 
from reduced precipitation and the influence of climate change, marked by elevated daily and monthly temperatures. A parallel study 
by Salehie et al. [77] using GRACE solutions also highlighted a decline in water resources, ranging from 0.04 to 0.08 cm per year, 
within the Aral Sea’s delta basin. 

4.7. Scope and limitation of the models 

The ranking of individual factors can sometimes be criticized due to the need for a fixed pattern. However, grouping individual 
parameters with similar properties and proximity into primary criteria can reduce the overlap of influence from individual factors on 
GWPZ. The range of individual factors under a particular class may have localized effects. For instance, this study area’s precipitation 
ranged from 1200 mm to 1800 mm, which will not hold up well in other study areas. The cumulative effect of individual factors under 
primary criteria can determine the degree of suitability for the final mapping [78]. Incorporating machine learning models (e.g., RF, 
XGBoost, SVM), advanced cloud pltaform (e.g., Amazon web sservices (AWS), Microsoft azure, Climate engine (CE), OpenEO) and 
metaheuristic optimization techniques (e.g., genetic algorithm, and particle swarm optimization) can introduce new modeling ap-
proaches for GWPZ mapping [18,48,79–82]. Cloud platforms support the rapid assessment of numerous individual factors and enable 
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Fig. 9. Boruta feature selection analysis for GWPZ factors.  

Table 11 
Analysis of GWPZ importance factor using by Boruta technique.  

Parameters meanImp medianImp minImp maxImp normHits decision 

TRO 30.74 30.77 27.41 34.03 1.00 Confirmed 
Rainfall 20.63 20.76 17.79 23.11 1.00 Confirmed 
soiType 18.48 18.47 16.36 20.66 1.00 Confirmed 
DEM 18.02 18.10 14.72 20.69 1.00 Confirmed 
SoiMoisture 16.31 16.34 13.59 18.69 1.00 Confirmed 
Population 15.57 15.58 12.89 17.67 1.00 Confirmed 
SoilET 13.85 13.82 12.15 15.70 1.00 Confirmed 
TRI 13.02 13.04 11.07 15.01 1.00 Confirmed 
SoilLoss 12.50 12.38 10.21 14.94 1.00 Confirmed 
DrainageDensity 10.47 10.51 7.15 12.59 1.00 Confirmed 
Lithology 9.90 9.94 7.71 11.36 1.00 Confirmed 
NDVI 6.89 6.90 4.82 9.89 1.00 Confirmed 
GeoMorphology 5.98 5.96 4.09 7.57 0.98 Confirmed 
LUMod 5.81 5.75 3.52 8.04 0.98 Confirmed 
DistRoad 5.77 5.70 2.48 10.55 0.97 Confirmed 
Lineament 5.22 5.17 1.54 8.24 0.92 Confirmed 
Slope 3.05 3.09 0.74 5.69 0.63 Confirmed 
DistRiver 1.99 2.11 − 0.24 4.16 0.15 Rejected 
BWS 1.70 1.60 − 0.74 4.55 0.11 Rejected 
TWI 1.70 1.60 − 0.74 4.55 0.11 Rejected 
TPI 1.02 0.87 − 0.84 2.75 0.02 Rejected 
SPI 0.76 0.85 − 0.22 2.15 0.01 Rejected 
ProCurvature 0.74 1.07 − 0.75 2.01 0.00 Rejected 
Aspect 0.22 0.22 − 1.56 1.74 0.00 Rejected 
LULC 0.17 0.20 − 2.36 2.32 0.00 Rejected 
HBSE − 0.99 − 1.38 − 2.11 0.99 0.00 Rejected 
GMIS − 1.46 − 1.62 − 3.17 0.52 0.00 Rejected  
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the incorporation of large volumes of data. Modeling with climate change scenarios may provide a better understanding of future 
GWPZ in the study area. Indian meteorological data on precipitation with grid-based distribution may offer improved precipitation 
zoning compared to CHIRPS. 

5. Conclusion 

This study commenced a novel and highly effective approach for assessing groundwater resources in the Subarnarekha River basin, 
India, using a hybrid MCDM model. The integration of FuzzyAHP, FuzzyDEMATEL, and LR MCDM models, along with GIS and RS 
techniques through the GEE cloud platform. The average of all models revealed that approximately 14.74 % of the study area had a 
very high potential for groundwater occurrences, primarily in the southern and northern parts of the basin. Conversely, the middle part 
of the basin exhibited very low potential, covering approximately 10.71 % of the area. The hybrid MCDM model was rigorously 
validated using real-field yield data, achieving an accuracy level of 77 % and an impressive AUC score of 78 %. This hybrid MCDM 
proved to be a unique and robust method for identifying and quantifying GWPZ in the Subarnarekha River basin. The RF and Boruta 
algorithms also highlighted the significance of factors, such as soil texture, elevation, slope, precipitation, soil moisture, and runoff in 
GWPZ modeling, in conjunction with other influencing variables. An alarming trend was observed during the study regarding the 

Fig. 10. Monthly EWT variation from 2002 to 2022 derived from GRACE (a) CSR and (b) JPL products in Subarnarekha River basin.  
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availability of water resources, which had decreased during 2010–2019 compared to the 2002–2007 period in our study area. 
The study’s methodology was detailed and practical, which can be utilized for analyzing groundwater inquiry in other areas. It has 

enormous potential for boosting agricultural productivity and enhancing irrigation systems. These findings underscore the advantages 
of leveraging earth observation products for diverse applications, including groundwater stress monitoring, informed land-use 
planning, accurate water budget estimation, comprehensive water health monitoring, effective disaster management, sustainable 
groundwater preservation, and a reliable freshwater supply. Further, the study employed extensive groundwater yield data and aquifer 
information through the advanced hybrid machine learning and deep learning model to improve accuracy. 
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