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Abstract—The reliable detection of vulnerable road users and
the assessment of the actual vulnerability is an important task
for the collision warning algorithms of driver assistance systems.
Current systems make assumptions about the road geometry
which can lead to misclassification. We propose a deep learning-
based approach to reliably detect pedestrians and classify their
vulnerability based on the traffic area they are walking in.
Since there are no pre-labeled datasets available for this task,
we developed a method to train a network first on custom
synthetic data and then use the network to augment a customer-
provided training dataset for a neural network working on real
world images. The evaluation shows that our network is able to
accurately classify the vulnerability of pedestrians in complex real
world scenarios without making assumptions on road geometry.

Index Terms—neural networks, advanced driver assistance,
pedestrian detection, synthetic dataset

I. INTRODUCTION

The increasing complexity of traffic and an increasing

number of traffic areas shared by motorised and non-motorised

road users make driver attention a scarce resource that must be

guided towards relevant features in the vehicle environment.

In the automotive sector, different technologies are available

to highlight pedestrians, cyclists and other vulnerable road

users (VRUs) in order to draw the driver’s attention towards

them and therefore improve the driver’s steering and braking

performance [1]. Head-up displays, matrix headlights and

other augmented reality devices can be used to perform this

task. Modern vehicles are equipped with sensors for Advanced

Driver Assistance Systems (ADAS), which can provide various

2D and 3D sensor data streams. Extracting information about

other road users requires a classification filter that detects and

selectively highlights VRUs who share the traffic area with the

driver.

II. RELATED WORK

LIDAR and vision-based systems can be used to detect

pedestrians and other vulnerable road users in the vehicle’s

path. The authors of [2] show the fusion of visual detection

based on Fast R-CNN with LIDAR data. [3] focusses on the

detection of cyclists with LIDAR. Their detection is based

on Faster R-CNN and was trained on synthetic depth images.

LIDAR provides high-quality 3D images, but has a limited

range and is more expensive than camera-based solutions.

Therefore, LIDAR is typically used for research, prototyping

and high-end vehicles.

Optical systems can be tailored to massproduced vehicles

as they provide good results even when using consumer-

grade cameras. Vision-based collision warning and avoidance

systems typically consist of two algorithmic steps.

The first step is the detection of all vulnerable road users

within the camera image. Algorithms such as HOG [4] are

used in automotive systems, but are replaced by neural net-

works that perform better under difficult conditions. In [5],

a SegNet is used to detect pedestrians and cyclists in optical

images.

The second step following the pedestrian detection is classifi-

cation into different classes of vulnerability to assess the risk

of endangerment. The vulnerability can be calculated based on

the size and position of the detected objects within the frame.

In [6], VRU detection using a 2D pose estimation network and

fixed image regions for classification is shown. A straight road

geometry with sidewalks on the left and right side is assumed.

Objects in the top, left and right parts of the frame are therefore

considered less vulnerable than objects in the front center part.

On straight roads, this assumption works well, but fails in more

complex road environments. When the vehicle turns, VRUs

visible in front of the car can safely walk on the opposite

sidewalk, but VRUs on the side towards the turn are at risk.

Similar problems arise for narrowing and widening of the road,

T-intersections and at the end of declines.

III. PROPOSED WORK

The VRU classification task requires a semantic understand-

ing of the scene. Ideally, all aspects of a situation can be

assessed from a single image without relying on temporal

information or tracking. One possible solution is the use of a

CNN for semantic scene labelling like PSPNet [7]. Semantic

information about the relative position of the road and VRUs

can then be generated by analyzing the neighboring pixels

at the base point of objects. This works well for an open,

unobstructed view of the scene, but requires near-perfect

segmentation. This analysis fails if the base points of the

objects are occluded, which is usually the case in an urban

environment (Fig. 1). Furthermore, a full semantic segmenta-

tion requires a lot of computational power. To highlight VRUs,

a detection system based on bounding boxes is sufficient



Fig. 1. Camera view generated using our virtual environment. Pedestrian
bounding boxes show ground truth vulnerability (red/green).

Fig. 2. Synthetic semantic segmentation showing the vulnerability (red/green)
of occluded pedestrians on the sidewalk (pink) and on the road (purple)

and allows execution in real-time. We therefore propose an

approach in which the pose of VRUs is directly assessed in

relation to traffic areas with a YOLOv3 network [8] trained

on synthetic and real world training data.

IV. DATA ACQUISITION

There are no pre-labeled datasets available to classify the

location of road users in relation to the traffic areas in which

they move. Existing datasets such as Cityscapes [9] contain

semantic labels for pedestrians, road areas and sidewalks, but

it is a complex task to estimate the relative 3D position from

these data alone. Moreover, these data cannot easily be hand-

labeled from regular image datasets because it is very difficult

to judge relative locations in occluded or ambiguous situations.

We therefore use a virtual environment to generate our own

custom synthetic training data.

A. Virtual Environment

Our simulation uses Unreal Engine [10] and the Microsoft

AirSim plugin [11] with custom Python code to generate

the synthetic training datasets. We modelled an area around

an urban intersection based on satellite data and populated

the scenario with vehicles and pedestrians on the sidewalk

and crossing the road (Fig. 1). An actor vehicle with virtual

cameras can be placed anywhere in the environment. We used

the camera extrinsics provided by the Cityscapes dataset for

our vehicle camera to match the field of view of the generated

Fig. 3. Preprocessed training image with modified colors to emphasize the
relation of pedestrians and road objects.

Fig. 4. Bounding boxes generated by the intermediate CNN1. The three
pedestrians are detected as 68% safe, 88% vulnerable and 100% safe.

semantic segmentation. At each simulation tick, a downward

facing 3D linetrace is executed for the pedestrians within the

3D game environment to detect if they are on the road object

in order to provide 3D-referenced ground truth classification

information (Fig. 2).

B. Rendering Configuration

Besides regular rendering of color images, AirSim’s special

render modes can be used to create Cityscapes-compatible

semantic segmentation based on the virtual scenario. We have

replaced the predefined pedestrian class with the two classes

”vulnerable road user” and ”safe road user”. In order to

generate bounding boxes for individual pedestrians even if

they overlap, the classification is further extended to support

instance based segmentation.

C. Dataset Recording

The setup of the recorded pedestrians, vehicles and objects

in the synthetic data must be plausible to be used for trans-

fer training. Therefore, random locations along a predefined

plausible spline within our road layout are chosen for the

actor vehicle. After placement of the actor, collisions are

resolved before recording of our images to get images of

regular driving scenes. Each recorded dataset contains 20,000

images with Cityscapes semantic segmentation and ground

truth classification data. The classification is available for each

instance as a bounding box and at pixel level (Fig. 2).
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Fig. 5. The CNN-training consists of two steps. The virtual environment provides instance segmented images that are split into semantic segmentation and
classification bounding boxes for training of CNN1. The customer provides a reference dataset (Cityscapes). CNN1 is used to infer bounding boxes from
semantic segmentation for the second training step. Bounding boxes and camera images are used for the training of CNN2. This can then be deployed to the
vehicle to infer vulnerability on live camera images.

V. NEURAL NETWORK TRAINING

In order to classify the VRUs, we use a YOLOv3 Convolu-

tional Neural Network (CNN) architecture and train it on our

generated synthetic dataset using Darknet [12] on a cluster of

three Nvidia Tesla V100.

A. Network Architecture

The original YOLOv3 network [8] is configured for general

object detection and classifies its results with 80 labels. We

used the published network as a starting point and reduced

the number of classes from 80 to 2. This initial network

detected objects covering a large part of the image. Our objects

are usually farther away from the vehicle and therefore often

visually small. The YOLOv3 detection anchors [8] have been

adapted in our network to improve the detection of visually

small VRUs. YOLOv3 is a multilabel classifier that supports

classification using labels that are not mutually exclusive.

Since our classes are inherently disjunctive, a softmax layer

has been added. This layer selects the class with the high-

est probability to distinguish between vulnerable and non-

vulnerable road users.

B. Two Step Training

A major problem with using synthetic data for CNN training

is overfitting. In a virtual environment, only a limited number

of textures, objects, and other assets are available. Therefore,

training images are not realistic and diverse enough compared

to real world images. Networks trained on synthetic data

cannot be used directly for inference based on real camera

images. Our solution to this problem is a two-step training

process (Fig. 5). Instead of using the rendered images directly

as input, we use the virtual environment to render images

with a semantic segmentation compatible to the Cityscapes

dataset and corresponding images containing our classification

data. Then we train an intermediate CNN1 with the segmented

data as input and the generated classification as ground truth.

This first network enables the translation of regular semantic

segmentation into classified segmentation. In an inference step

(Infer. 1), this network can then be applied to the ground truth

semantic segmentation provided by the Cityscapes training

dataset to generate new end-to-end training data with clas-

sification bounding boxes. This data is then used in a second

training step (Train. 2) as ground truth to train the final CNN2

on the real world Cityscapes images.

C. Data Preprocessing

Bounding boxes around the pixels for the instantiated

classes are generated and saved as ground truth data. Each

frame is further processed to generate training data. All pedes-

trian classes and instances are merged into a single pedestrian

class that corresponds to the pedestrian class of Cityscapes.

The training results are bad when using semantic segmentation

directly as input, because the pseudo colors of the classes

are chosen arbitrarily and therefore similar colors do not

correspond to similar objects. Our evaluation showed that

parked bicycles (dark red) are treated as pedestrians (light

red) because they have a very similar red color. We there-

fore modified the classification colorscheme to emphasize the

relation between pedestrians, the road surface, and all other

objects. The three segmentation classes are mapped to the three

independent dimensions of the RGB colorspace. Pedestrians

are marked in red, the road surface green and the other classes

are evenly distributed within the blue channel (Fig. 3).

D. Deployment

A major advantage of the two-stage training approach is

that the classification task can be learned independently of the

image dataset, since the transfer to real images takes place in a

second training (Train. 2) step (Fig. 5). A customer can provide

images from his vehicles camera system and corresponding

semantic segmentation. Our intermediate CNN1 then converts

the segmentation into ground truth bounding boxes for training

on the real images. The resulting CNN2 can then be deployed

to the vehicle and used with live video data to infer bounding

boxes showing VRU vulnerability. These bounding boxes can

then be used by augmented reality devices to highlight the

VRUs at risk.



VI. PERFORMANCE EVALUATION

Our synthetic dataset consists of training, validation and

test images. Training images are used to train the CNN. The

unbiased validation dataset is used to evaluate parameter sets

during training. We use the synthetic test dataset (Fig. 4) for

the final evaluation of the intermediate CNN.

Our application of pedestrian highlighting depends on correct

classification and precise localization of the objects. As a

quality measure, we have chosen the standard mean average

precision (mAP) metric [13].

For 11 detection thresholds [0,0.1,. . . ,1], the bounding boxes

of the detections are extracted. For each bounding box x of

the two classes, we calculate the intersection over union (IOU)

with the reference bounding boxes r of the same class.

IOU =

x ∩ r

x ∪ r

Recall =
x ∩ r

x

Precision =

x ∩ r

r

If the IOU is greater than 50%, the bounding box is considered

a valid detection. For these, recall and precision curves are

generated. The mean average precision can then be calculated

according to [13]. Table I shows that our detector, which

achieves a mAP of 67.5%, lies between the original YOLOv3,

which is trained for 80 classes and a LIDAR-enhanced net-

work, that uses images as well as additional depth data.

TABLE I
AVERAGE PRECISION FOR OUR NETWORK COMPARED TO A

LIDAR-ENHANCED APPROACH AND THE ORIGINAL YOLOV3

Method mAP (50% IOU)

original YOLOv3 [8] 57.9%

proposed YOLOv3 67.5%

VGG + LIDAR [2] 75.7%

We applied our final CNN2 to the Cityscapes test images

(Fig. 6) to show the performance in real world applica-

tions. Pedestrians of different sizes are detected and cor-

rectly classified. Our approach shows good results even under

difficult geometric conditions with vulnerable pedestrians in

the foreground center and non-vulnerable pedestrians in the

background.

VII. CONCLUSION

We showed a two stage training process for deep learning

based classification of vulnerable road users. In the first

stage, we train the specific classification task on synthetic

semantic segmentation data generated with an application-

specific virtual environment. In the second stage, the learned

classification is transferred to real world data by applying

the first network to a semantic segmentation dataset. The

generated information is then used to train a network on real

camera images. This approach enables the creation of scene-

aware vulnerability maps for complex driving scenarios and

enables autonomous driving applications on consumer-level

hardware.

Fig. 6. Classification of our end-to-end CNN2 applied to a Cityscapes image.
Pedestrians on the sidewalk are classified as >65% safe (green). Pedestrians
on the road are classified as >97% vulnerable (red)

REFERENCES

[1] H. Kim, A. Miranda Anon, T. Misu, N. Li, A. Tawari, and K. Fujimura,
“Look at me: Augmented reality pedestrian warning system using an
in-vehicle volumetric head up display,” in Proceedings of the 21st

International Conference on Intelligent User Interfaces. ACM, 2016,
pp. 294–298.

[2] T. Kim and J. Ghosh, “Robust detection of non-motorized road users
using deep learning on optical and lidar data,” in 2016 IEEE 19th

International Conference on Intelligent Transportation Systems (ITSC).
IEEE, 2016, pp. 271–276.

[3] K. Saleh, M. Hossny, A. Hossny, and S. Nahavandi, “Cyclist detection in
lidar scans using faster r-cnn and synthetic depth images,” in 2017 IEEE

20th International Conference on Intelligent Transportation Systems

(ITSC). IEEE, 2017, pp. 1–6.
[4] N. Dalal and B. Triggs, “Histograms of oriented gradients for human

detection,” in international Conference on computer vision & Pattern

Recognition (CVPR’05), vol. 1. IEEE Computer Society, 2005, pp.
886–893.
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