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Abstract—This paper presents a bare-metal implemen-
tation of the IEEE 1588 Precision Time Protocol (PTP) for
network-connected microcontroller edge devices, enabling sub-
microsecond time synchronization in automotive networks and
multimedia applications. The implementation leverages the hard-
ware timestamping capabilities of the microcontroller (MCU) to
implement a two-stage Phase-locked loop (PLL) for offset and
drift correction of the hardware clock. Using the MCU platform
as a PTP master enables the distribution of a sub-microsecond
accurate Global Positioning System (GPS) timing signal over
a network. The performance of the system is evaluated using
master-slave configurations where the platform is synchronized
with a GPS, an embedded platform, and a microcontroller master.
Results show that MCU platforms can be synchronized to an
external GPS reference over a network with a standard deviation
of 40.7 nanoseconds, enabling precise time synchronization for
bare-metal microcontroller systems in various applications.

Index Terms—PTP, Precision Time Protocol, Microcontroller,
Embedded System, TSN, Time Sensitive Networking

I. INTRODUCTION

Distributed real-time systems of network-connected em-
bedded devices are an essential building block for a wide
variety of consumer, industrial, automotive, and scientific
applications, such as the network distribution of synchronized
audio-video data in multimedia setups, coordination of ma-
chines for manufacturing, data transfer between Vehicle-to-
Everything (V2X) nodes, and synchronization of distributed
scientific measurements. Precise time synchronization over the
network is a common requirement for all these Time Sensitive
Networking (TSN) applications. The Network Time Protocol
(NTP) is commonly used to synchronize the time of network
devices to a local or internet clock. NTP is software-based
and typically operates down to millisecond precision, but NTP
is not designed to fulfill the synchronization constraints of
real-time systems, or systems that require sub-millisecond
synchronization to operate [1].
In digital audio networks with multiple network-connected
speakers, a microsecond synchronization accuracy is required

for precise phase adjustment and sample-synchronous play-
back. The Audio Engineering Society (AES) specification
AES11 for digital audio transmission requires all output phases
to be within 5 % of the reference frame timing (±1 µs at
48 kHz) [2].
The automotive sector plays a major role in future deployments
of TSN applications. V2X applications require sub-millisecond
synchronization for network coordination and scheduling [3].
Sub-microsecond precision is needed for localization and
timing-based security measures [3]. Furthermore, the In-
Vehicle Network (IVN) moves from Controller Area Network
(CAN)-based systems to Ethernet-based network architectures.
The network is shared between critical control tasks, sensor
data transfer, and entertainment applications. The scheduling
of the network traffic requires precise sub-microsecond time
synchronization to ensure deterministic timing for critical
control signals while providing sufficient throughput for driver
assistance and multimedia systems [4]. Fig. 1 shows two
vehicles with synchronized IVN clock domains that exchange
timestamped data via V2X.
When microsecond or nanosecond precision is required, GPS-
based solutions can be deployed [5]. The GPS receiver gen-
erates a very accurate Pulse Per Second (PPS) hardware
signal from the satellite data to provide frequency and offset
synchronization to the device. Deploying GPS receivers to
every network node is expensive and often challenging. The
antenna must be deployed within line of sight to the sky, and
the PPS connection requires an individual cable connection.
Instead of connecting all network nodes to a PPS source, the
IEEE 1588 Precision Time Protocol (PTP) is used for precision
clock synchronization between a time master and all connected
slave devices over an existing network connection [6]. IEEE
802.1AS generalized Precision Time Protocol (gPTP) is based
on PTP but tailored towards industrial and automotive appli-
cations [7]. Data is sent either as UDP packets or as raw
Ethernet frames. This work uses the term PTP as a generalized
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Fig. 1. Vehicles exchange timestamped data via Vehicle-to-Everything (V2X).
A common time domain for the data is established with IEEE 1588 Precision
Time Protocol (PTP) synchronized In-Vehicle Network (IVN) clock domains.

term for all protocol variants. The implementation of PTP
relies on hardware timestamping support by the network
interface for precisely measuring the receive and send time
of the packets to compute the offset and drift of the local
clock. PTP implementations are available for many different
platforms. The Linux Kernel provides PTP functionality in its
driver modules and a PTP Hardware Clock (PHC) module [8]
which synchronizes the system clock to the timing informa-
tion provided by the network interface [9]. The PHC driver
achieves sub 1 µs synchronization performance with an Intel
i210 network card [10]. Embedded Linux systems such as the
Raspberry Pi Compute Module 4 (CM4) provide PTP support
as well. microcontroller (MCU) implementations are available
for different Real-Time Operating System (RTOS), such as
FreeRTOS [11] and Zephyr OS [12], which are commonly
used in industrial production-grade setups.

A. Contributions

In automotive development and research, MCUs are often
used bare-metal for sensor data acquisition over the network.
Numerous bare-metal drivers are commonly available for
many different sensor parts. A bare-metal PTP implementation
would allow network data acquisition by multiple distributed
MCU-based sensor nodes with a common reference time base.
Such a bare-metal implementation for MCUs is currently not
publicly available. Moreover, the public research and available
code for RTOS is limited to the slave mode. Expensive
metrology-grade master devices are typically used to provide
the reference time. This paper proposes an open-source bare-
metal implementation of PTP and gPTP for the network-
connected NXP i.MX RT1062 MCU using its hardware-
timestamping capabilities to achieve sub-microsecond-grade
time synchronization in distributed network applications. We
selected this MCU due to the available Ethernet driver li-
brary [13], a manufacturer-provided application note [14] that
describes the use of the integrated PTP hardware, and the
availability of a lot of input-output peripherals, which makes
this MCU suitable as a time-synchronized base platform in
different applications. In addition to the slave mode, our im-
plementation can be used as a time master to distribute a sub-
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Fig. 2. Precision Time Protocol: The slave estimates the delay and offset of
the local clock by exchanging messages with a master and measuring transmit
and receive timestamps.

microsecond accurate GPS timing signal in a network without
requiring a costly metrology time master. We evaluate the
performance of our implementation in different master-slave
scenarios and compare the achieved timing accuracy to CM4
embedded systems. The performance of our implementation
as a GPS-synchronized time master is evaluated separately.

II. SYSTEM ARCHITECTURE

A. Hardware Timestamping

Precision hardware timestamping is the basis for the PTP
algorithm. The Ethernet standard specifies a timestamping
mechanism in the physical layer (PHY) of the OSI reference
model [15, p. 368]. In embedded systems such as the CM4,
the PHY is often implemented as a separate chip, which is
connected via a Media Independent Interface (MII) connection
to the Media Access Control layer (MAC) integrated with
the main CPU [16]. Timestamping in the PHY avoids data
delays caused by buffering, as it measures the timing directly
at the wire [15, p. 374]. The PHY uses a hardware block
configured to trigger timestamping specifically for the IEEE
1588 PTP packets. Another option is to implement hardware
timestamping within the MAC. This approach is implemented
on our target MCU platform and can provide timestamps for
all network packets. The MAC approach enables the imple-
mentation of gPTP, which uses different peer-to-peer packet
types than IEEE 1588 PTP with the same synchronization
algorithm but is unavailable on the CM4.
The PHY [17] on the MCU development board has an asym-
metric data delay for transmitted and received packets. This
asymmetry of approximate 200 ns causes an offset when the
MCU target is connected to a system with symmetric transmit
and receive latency. Furthermore, the asymmetry is invisible
to the PTP algorithm that only measures round-trip delays. It
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Fig. 3. For PTP-offset values above 1000 ns, a coarse offset correction is
performed as a starting point for the more accurate fine clock controller.

is therefore adjusted manually specifically for this transceiver
chip.

B. Precision Time Protocol

The PTP clock synchronization mechanism [6] is based on
exchanging multicast network packets between a master clock
and a slave clock (Fig. 2). The transmit and receive times
of the messages are accurately recorded in hardware by the
network cards to calculate the drift and offset of the slave
clock relative to the master. The master clock is assumed to be
stable and is typically synchronized to an external time source
with high precision, such as a GPS receiver. The master sends
Sync packets in periodic intervals (1 s), which are received by
all slaves on the network. The master network card records
a transmission timestamp t1 relative to the master clock. On
arrival of the Sync packet, the slave network card records a
receive timestamp t2 relative to the slave clock. In a FollowUp
packet, the master sends t1 to the slave. An important metric
for clock synchronization accuracy is the clock drift. A drift
of 0 indicates perfect frequency synchronization. If at least
two pairs of Sync timestamps (t1t2, t′1t

′
2) are available to the

slave, it can compute its clock drift relative to the master.

Drift = 1− ∆t2
∆t1

= 1− t′2 − t2
t′1 − t1

(1)

The delay of the transmission line is measured to calculate
the slave offset. The slave sends a DelayRequest packet to the
master and records the transmission timestamp t3. The master
records the receive timestamp t4 and sends t4 to the slave in
a DelayResponse packet. Assuming a symmetrical data path
between both hosts, the slave can compute the path delay.

Delay =
∆t4,1 −∆t3,1

2
=

(t4 − t1)− (t3 − t2)

2
(2)

With a known path delay, the slave can calculate its clock
offset to the master.

Offset = (t2 − t1)− Delay (3)

All measurements are repeated periodically when a new sync
message is received. Based on Drift and Offset, we imple-
mented a two-step clock Phase-locked loop (PLL).

C. MCU Counter Correction

We selected the NXP i.MX RT1062 System on Chip with
an ARM Cortex-M7 running at 600 MHz as our target MCU
system. It has an integrated 100 Mbit/s Ethernet MAC with
hardware timestamping capability and is available with a
PHY [17] on the Teensy 4.1 development board [18]. As the

Master PTP Slave
Offset

Drift

∆C
δC

Fig. 4. The MCU implementation of coarse drift and offset correction directly
corrects the local clock to within 1000 ns.
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Fig. 5. The fine PI-controller-based clock PLL corrects the MCU clock offset
precisely by adjusting the local clock increments.

backend of our implementation, we use a modified version
of the QNEthernet library, which serves as the driver for the
interface to the hardware timers of the Ethernet MAC [13].
The PTP hardware counter of the system is implemented as
an adjustable nanosecond counter which is incremented by 40
(40 ns) per clock cycle of an oscillator with fOSC = 25MHz.
At a counter value of 109 (1 s), a modulo-based overflow,
which keeps the remainder for the beginning of the next
second, ensures the long-term accuracy of the counter [14]. In
contrast to a counter reset on overflow, the modulo operation
retains the overflow increments as part of the next second.
Interrupts due to the transmitting or receiving of network
packets, as well as external pin interrupts from an external
PPS source, trigger a capture of the current counter value in
hardware, which can be read by the application.
Based on the clock drift provided in Eq. 1, the counter drift
per second δC is computed.

δC = Drift · 109/s (4)

The drift of the counter δC is corrected with an adjusted cor-
rection increment value of either 39 ns, or 41 ns. The adjusted
correction increment value is used instead of the nominal 40 ns
increment every n cycles of the 25 MHz oscillator to slow the
counter down or to speed it up [14]. This way, the counter
drift correction by δC is distributed evenly over a full second
without large discontinuities of the counter value. Large values
of n allow for fine corrections in the order of nanoseconds per
second.

n =
fOSC

δC
=

25MHz

δC
(5)

We adopted the PI-Controller architecture of the Linux
implementation PTPd [19] as a clock PLL for the fine adjust-
ment of the slave clock. Fig. 5 shows the detailed controller
architecture. The PTP algorithm provides the current offset
measurement as an input error value to the controller. The
output of the controller supplies the counter adjustment value
δC to increase or decrease the slave counter speed. This way,
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Fig. 6. The measurement setup consists of a GPS receiver that provides a
reference PPS signal to the PTP master, which connects to the PTP slave via
an Ethernet connection. We measure the offset between the PPS signals of
the reference and the master or slave device with an oscilloscope.

offset, and drift are corrected simultaneously by increasing
or decreasing the counter speed. The proportional term KP

enables the short-term control of the time offset, and the
integral term KI drives the long-term steady-state error to
zero. The selection of the parameters is essential to ensure the
local asymptotic stability of the controller to avoid oscillations.
For our target update period of 1 s, KP = 1.5 and KI = 0.3
were selected according to the stability regions presented
in [20] and verified empirically. We confirmed the results
presented in [20] that show a strong dependency of the KI

parameter to KP , and the update period of the PTP algorithm.

D. Coarse Clock Correction

In the startup phase of the system, the nanosecond counter
of the MCU is uninitialized which results in a large clock
offset up to 1 s. Therefore, for offset values above 1000 ns,
a coarse synchronization of the clock frequency and a coarse
offset correction is performed as a starting point for the more
accurate fine clock controller. The drift and offset values are
calculated based on the timestamps provided by the PTP
algorithm. Fig. 3 shows the selection of coarse and fine
correction. A counter offset ∆C equal to the current Offset
value according to Eq. 3 is added to the hardware counter
value. The CPU of the MCU platform has read and write
access to the counter value with a non-deterministic latency
of multiple nanoseconds. Thus, this mechanism is only suitable
to apply a coarse offset correction to the counter.
Our PTP implementation targets a MCU platform without
a precision oscillator. Instead, it provides a regular crystal
oscillator. Given a common accuracy of 30 ppm, we expect
an initial drift up to 30 000 ns over an interval of 1 s. This
is significantly larger than the 40 ns increment of the counter.
Relying on a clock PLL-based correction of this initial offset
and drift causes ringing and a prolonged settling time due
to the large input pulse. Instead, we use the measured Drift
directly as a coarse correction value δC. As shown in Fig. 4,
drift and offset are applied directly as ∆C and δC to the slave
counter to perform the initial coarse correction.

E. MCU Master

In order to use the MCU platform as PTP master, synchro-
nization to the reference PPS signal of the GPS is required.
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Fig. 7. The oscilloscope acquires 3600 offset measurements between a
reference signal (top curve) and a slave device (bottom curves) for each
master-slave pair. Data is shown at 20 ns per division.

To achieve this synchronization, we employ the same two-
step synchronization algorithm described in the last sections
with a fixed DelayGPS = 0. It can be tuned based on the
length and velocity factor of the PPS wire from the GPS in
real-world applications. We generate an interrupt on the rising
edge of the reference PPS signal and record the timestamp t2
in hardware to compute the master offset from the reference.
t1 is by definition of the PPS signal equal to the value of the
next second.

OffsetMaster = (t2 − t1)− DelayGPS (6)

III. EVALUATION

The measurement setup is shown in Fig. 6 and consists
of a GPS receiver that provides a reference PPS-Signal to a
PTP master. The PTP slave is connected to the master via
an 100 Mbit/s Ethernet cable. We evaluate the synchronization
performance of our implementation against different master-
and slave devices. To isolate the impact of our algorithm, we
omitted switches and other network traffic and focused on
the raw time synchronization performance. We evaluate the
coarse mode of our algorithm separately as it is only relevant
in the first seconds after the system start and then focus on
the fine clock control, which is primarily used during regular
execution. The evaluated fine controller scenarios contain 3600
samples, equivalent to one hour of continuous operation after
the initial coarse synchronization phase. The measurement
results are plotted as a histogram of the 3600 offset values
with a bin size of 2 ns. Every plot shows the mean offset µ,
the standard derivation σ, and the expected range τ (defined
in the following section) together with the percentage of the
measurement values within that range.

A. Measurement Setup

In every measurement, the PPS signal of the GPS reference
is automatically compared to the PPS signal of the current
slave device. We use an oscilloscope (Keysight DSOX3034T)
for the measurements of our evaluation, which measures time-
domain offsets between two signals with sub-nanosecond
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Fig. 8. A CM4 master is connected to the GPS reference PPS signal. Fig. (a) shows the synchronization of a CM4 slave relative to the GPS with an expected
offset range of ± 16 ns and Fig. (b) shows the synchronization of an MCU slave with an expected offset of ± 48 ns.

accuracy [21]. We measure the synchronization accuracy based
on PPS signals generated by the devices. The PPS signals
are generated in hardware on the overflow of the nanosec-
ond counters to mark the start of a second. The increment
frequency fOSC of the clock oscillators defines the range τ
where the PPS signal is expected to activate.

τMCU = ± 1

25MHz
= ±40 ns (7)

An example of a scenario with 3600 measurements, and τ =
±40 ns is shown in Fig. 7.

B. CM4 Master Scenario

We use two CM4 as a reference baseline for the synchro-
nization performance of two embedded systems. Each board
supports timestamping directly in the BCM54210PE PHY with
a resolution of 8 ns [22], which is five times more accurate than
the 40 ns of the MCU board.

τCM4 = ± 1

125MHz
= ±8 ns (8)

Our evaluation in Fig. 8a shows synchronization of a slave
CM4 to a master CM4 with a standard deviation of 6.4 ns.
98.6 % of the measurements lie within the expected range
of 2τCM4 = ±16 ns. After establishing a baseline for com-
parison, we synchronize a MCU slave to a CM4 master
using our slave PTP implementation. The coarse phase of
the two-step correction algorithm enables a high-speed initial
synchronization. In our evaluation of the MCU performance,
typically 3 s are required to achieve the sub-microsecond
counter accuracy to start the fine clock PLL. We verified
the coarse clock drift to lie within the expected range of
30 000 ns/s. Typically, values of 12 000 ns/s were observed in
the coarse adjustment phase. In the fine PLL mode, the offsets
between the CM4 master and the MCU slave are expected in
a range of τCM4 + τMCU = ±48 ns. Fig. 8b shows the PPS

signal of the MCU slave relative to the GPS reference signal.
The histogram shows a standard deviation of 20.5 ns. 99.3 %
of the measurements lie within the expected range.

C. MCU Master Scenario

In the measurement scenario shown in Fig. 9, the CM4
master is replaced by a MCU master. In Fig. 9a, the synchro-
nization of the MCU master to the GPS reference signal as
described in section II-E is evaluated. As the influence of the
network delay is omitted, the synchronization to the reference
is achieved with a standard deviation of 17 ns. 98.1 % of the
measurements lie within the expected ±40 ns interval for a
single MCU platform.
After synchronizing the MCU to the GPS reference, it is used
as a PTP master to distribute the GPS-referenced time in
the network. We evaluated the MCU master performance by
synchronizing another MCU as a PTP slave. The evaluation
results are shown in Fig. 9b. The tolerance ranges of both
MCU add up to 2τMCU = ±80 ns. 94.7 % of the measurements
lie within the expected ±80 ns range with a standard deviation
of 41 ns.

IV. CONCLUSION

TSN is an essential aspect of modern distributed embed-
ded real-time systems. We implemented the Precision Time
Protocol for a bare-metal microcontroller platform and enable
synchronization of the MCU system clock to external GPS-
time signals, network time masters, and even other MCU
systems acting as time masters. Our implementation is based
on a two-step synchronization algorithm that combines a
coarse drift correction of a regular crystal oscillator with a fine
PI controller for precision offset correction on the nanosecond
scale. Our implementation and photos of the evaluation setup
are available at https://github.com/IMS-AS-LUH/t41-ptp . Our
evaluation provides measurements that confirm the expected
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Fig. 9. A MCU master is connected to the GPS reference PPS signal. Fig. (a) shows the synchronization of the master to the GPS reference with an expected
offset range of ± 40 ns and Fig. (b) shows the synchronization of an MCU slave relative to the GPS with an expected offset of ± 48 ns.

range of clock offsets for an embedded system and a MCU
based on the implemented hardware counters. We showed that
the clock frequency of the hardware counters significantly
impacts the achieved synchronization accuracy. The CM4
running at 125 MHz contributes an inaccuracy of 8 ns to the
synchronization, and the MCU running at 25 MHz contributes
40 ns of inaccuracy. We showed that a commercial MCU
platform can synchronize to an external GPS reference to act
as a time master on the network. Other MCU platforms can
synchronize their local clocks to the master over the network
connection with a standard deviation of 41 ns. Compared to
a typical quartz oscillator with a tolerance of 30 ppm, the
accuracy is improved by a factor of 730 down to an equivalent
accuracy of 41 ppb. The implementation presented in this pa-
per enables precision time synchronization for consumer-grade
bare-metal microcontroller systems for novel applications in
multimedia, manufacturing, automotive, and science.
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