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Abstract: Friction behaviour is an important characteristic of dynamic seals. Surface texturing is
an effective method to control the friction level without the need to change materials or lubricants.
However, it is difficult to put the manual prediction of optimal friction reducing textures as a function
of operating conditions into practice. Therefore, in this paper, we use machine learning techniques for
the prediction of optimal texture parameters for friction optimisation. The application of pneumatic
piston seals serves as an illustrative example to demonstrate the machine learning method and results.
The analyses of this work are based on experimentally determined data of surface texture parameters,
defined by the dimple diameter, distance, and depth. Furthermore friction data between the seal and
the pneumatic cylinder are measured in different friction regimes from boundary over mixed up to
hydrodynamic lubrication. A particular innovation of this work is the definition of a generalised
method that guides the entire machine learning process from raw data acquisition to model prediction,
without committing to only a few learning algorithms. A large number of 26 regression learning
algorithms are used to build machine learning models through supervised learning to evaluate the
suitability of different models in the specific application context. In order to select the best model,
mathematical metrics and tribological relationships, like Stribeck curves, are applied and compared
with each other. The resulting model is utilised in the subsequent friction optimisation step, in which
optimal surface texture parameter combinations with the lowest friction coefficients are predicted
over a defined interval of relative velocities. Finally, the friction behaviour is evaluated in the context
of the model and optimal value combinations of the surface texture parameters are identified for
different lubrication conditions.

Keywords: supervised learning; regression techniques; surface texturing; dynamic seals

1. Introduction

Friction is defined as the force of resistance acting between the contact surfaces of bod-
ies in relative motion [1]. In total, about 20% of global energy losses are due to overcoming
friction [2]. Therefore, low friction is targeted in many technical systems such as seals or
bearings. In order to reduce friction in tribological systems, it is necessary to understand the
individual factors that influence friction and to develop appropriate strategies to minimise
the friction [1].

On the one hand, material properties, such as the crystal structure [3], hardness [4,5],
elastic and shear modulus [6,7], grain size [8,9], and surface energy [10,11] of the contacting
materials affect the frictional behaviour. On the other hand, the operational conditions, such
as the normal loads [12,13], sliding velocities [14,15], environmental conditions [16,17], tem-
peratures [18], and lubricants [19], have a major influence on the tribological behaviour. Of
particular relevance are surface coatings or modifications of the surface topographies [20],
which both can contribute significantly to the friction behaviour. Surface modifications
involve techniques that artificially alter the structures of the solid surfaces through defined
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properties. This involves texturing the surface either by adding material to create protru-
sions or by removing material, displacing material and using self-moulding techniques
to create dimples [21,22]. Surface modifications can be achieved by changing the surface
roughnesses [23], textures [24], or a combination of both [25].

In order to reduce the friction of a tribological system, the performance of the lubricant
can be improved [26], the lubricant feeding conditions can be adjusted and optimised [27],
special materials and coatings can be used [28], operational conditions can be modified [29],
geometries can be optimised [30], and the contact surfaces can be modified [24]. In addi-
tion, it is possible to combine different processes, such as surface texturing and surface
coating [31,32]. Within this work, surface textured seals are analysed as an example ap-
plication. The textures, applied to the seal surfaces, are defined by the dimple diameter,
dimple distance, and dimple depth. This is why, surface modifications, specifically surface
texturing, are of particular interest. Surface textures have been demonstrated to positively
influence friction and wear under both dry friction conditions [33] as well as boundary [34],
mixed [35], elastohydrodyamic [36], and full-film hydrodynamic lubrication conditions [37].
Surface textures exhibit different beneficial effects on friction, depending on the lubrication
regime. The textures can reduce the real area of contact [38], trap wear particles [39],
accelerate the formation of tribolayers [40], store lubricant [41], draw additional lubricant
into the contact area [25], build-up additional hydrodynamic pressure [42], and locally
increase the fluid film height [43]. However, the mechanisms through which the textured
surface parameters affect the friction performance, such as the texture density or depth, are
still not fully understood and require further investigation [44]. Surface texturing is highly
application dependent and must be evaluated for each tribological system and lubrication
regime. Furthermore, the possible number of parameters for the surface texture design is
immense [45].

In this respect, machine learning is a powerful tool to predict application-dependent
optimum texture parameters and to overcome or reduce time consuming and expensive
trial-and-error approaches [46]. The advantages and potentials of machine learning tech-
niques lie in the handling of high-dimensional problems and the ability to adapt models
to changing conditions with reasonable effort [47], even if the physics behind the tri-
bological system is not fully understood [48]. According to the systematic reviews by
Marian et al. [47] and Paturi et al. [48], the number of tribology papers successfully investi-
gating and applying machine learning techniques is increasing exponentially. For example,
about 46% of the 330 papers evaluated were written between 2018 and 2022 [48]. In addi-
tion, around 76% of the 127 articles quantitatively analysed by Marian et al. were based
on experimentally collected data. The learning algorithm used in about three quarters
of the papers was a neural network category algorithm, making them overrepresented
in the tribological context [47]. So, it is noticeable that authors tend to focus on a few
learning algorithms at an early stage. However, other algorithms can also show comparable
or even better results, as presented in Section 5.2, so these should not be excluded from
the analysis from the outset. Based on the “no free lunch” theorem, it is only possible to
know exactly which model is the most suitable for the present application and data, if it
has been trained and tested [49]. As shown in Section 5.2, it is possible that not only one
algorithm shows good results, but that there are several suitable algorithms. Also, the
numerous application examples cited by Marian et al. [47] show that there is no universally
applicable learning algorithm for tribological problems. According to the “no free lunch”
theorem, the selection of a suitable learning algorithm must, therefore, always be made
individually for the prevailing application and is a challenge in the development of models
in machine learning [50]. It is, therefore, necessary to optimise the selection of texturing
parameters based on data from experiments or simulations, using several machine learning
(ML) algorithms.

Within this paper, the MATLAB Statistics and Machine Learning Toolbox® is utilised to
build regression models. The toolbox contains 26 learning algorithms from seven categories.
As an innovation, all of them are taken into account during the study to make an informed
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model selection based on trained and tested models with various evaluation metrics. The
aim is to be able to quickly identify the best of the 26 models, without having to perform
complex processes such as hyperparameter optimisation of single models, and thus enable
users who are not experts in machine learning to apply the ML methods. For this purpose,
a generalised method is explained on the basis of the selected aspects of the tribological
example application of surface textured pneumatic piston seals. This application serves as
an illustrative example. However, the methodology can also be applied to other surface
textured systems, such as metallic components or rubber parts.

2. Generalised Method for Machine Learning Model Generation and Application

The procedure acquired in this paper for developing machine learning models in the
context of tribological applications is shown in the flowchart below, see Figure 1. Although
this is not a universal and valid method in general, the flowchart shows the most common
methods, provided in the literature, that can be used.

Figure 1. Flowchart of a generalised machine learning development method using standard machine
learning techniques. The illustration shows an overview of the individual steps, which are briefly
explained in the following chapters.

The quality of the recorded data is of great importance, so careful data acquisition
must first be ensured, indicated by the grey step of the flowchart. This step is explained
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more in detail in Section 3 for the example application of surface textured pneumatic piston
seals. Based on this, data analysis and data preparation are necessary, indicated by the
blue steps of the flowchart. Using the prepared data, model building is performed, see the
first orange step of the flowchart. Data analysis, data preparation, and model building are
described in Section 4.

The best model is selected using mathematical performance ratios and partial depen-
dence plots in the context of tribological relationships, like Stribeck curves, indicated by
the second orange step of the flowchart, which is explained more in detail in Section 5. In
addition, this chapter contains the application of the generated model for the selection of
the optimal surface texture parameters, according to the purple steps of the flowchart, and
the preliminary examination of the friction results, depicted by the yellow steps. Based on
the green step of the flowchart, the tribological context of the friction results are discussed
in Section 6.

3. Friction and Seal Surface Texture Data Acquisition

Data acquisition is a process that leads to pre-processed measurement data, highlighted
as the grey step in the flowchart, shown in Figure 1. Within this step, data on friction values
and surface texture parameters of dynamic pneumatic piston seals are measured, which
together form the basis of the machine learning model.

3.1. Friction Measurements

The objective of the experimental testing procedure is to measure the friction forces
between surface textured pneumatic piston seals and a static pneumatic cylinder tube by
utilising a linear test rig, explained in Figure 2. The tribotechnical system considered to
record the friction forces consists of a pneumatic piston seal and a pneumatic cylinder tube,
see Figure 2b.

Figure 2. (a) Universal linear test rig. The carriage, connected to the linear guide, is driven by an
electric motor. The piston rod is connected to the carriage by a force sensor. The piston rod is linked
to the piston, in which the seal is installed. The seal can thus be moved relative to the static pneumatic
cylinder tube at the set velocity. (b) Tribotechnical System. A detailed view of the piston and seal
reveals the tribotechnical system. It consists of the base body (pneumatic piston seal) and the counter
body (pneumatic cylinder tube). The intermediate medium is a lubricating grease.

The nominal external diameter of the seal and internal diameter of the pneumatic
cylinder are equal to 40 mm. The material of the seals, which are manufactured by texturing
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during moulding (TDM) [51], is a fluoroelastomer with a Shore hardness of 80 A (FKM80A).
The pneumatic cylinder tube is made of anodised aluminium. Throughout the test proce-
dure, the same grease is used as in the interfacial medium [52]. An important challenge
during the measurements is the creation of a lubricating film that ensures reproducible
friction force measurements. Care must be taken to ensure that a consistent amount of
lubricant is present inside the pneumatic cylinder for each seal that is measured. This
was achieved by applying a constant mass of lubricant to the seals, cleaning the cylinder
between the measurements of two seals, and applying a constant mass of lubricant to the
cylinder itself. It has also been found that it is beneficial to measure friction on one seal,
starting at the highest velocity and decreasing towards the lowest velocity. The reason for
this is that the lubricant film is thickest at the highest velocities and is more easily dissolved
than built up during the test procedure, which means that conditioning runs between ve-
locities can be reduced. All of the experiments were performed at an ambient temperature
of 20 ◦C. In contrast to the real technical application of a pneumatically driven actuator,
the relative movement between the seal and the pneumatic cylinder was applied by the
linear guide of the test rig. Within the entire test procedure, the pneumatic cylinder was
depressurised. Each seal was tested at 19 test speeds ranging from 1 mm/s to 500 mm/s,
moving at a predefined trapezoidal speed profile, see Figure 3a. The distance to be driven
was selected between 15 mm and 450 mm depending on the velocity of the seal. For each
measurement, the piston was moved in two directions from the start position to the end
position and back again. This corresponded to one test cycle. A total of 12 cycles were
performed for each test speed and seal. This resulted in 228 friction measurement cycles
per seal, consisting of 228 downstrokes and 228 upstrokes.

Figure 3. (a) Trapezoidal velocity profile of the test rig. Within the stationary area of constant velocity,
marked in red, the mean value of the friction force is determined, which is used for further analyses.
(b) Friction force as a function of time. Positive values of friction indicate the downstroke of the test
rig, while negative values indicate the upstroke. The friction force signal shows a bumpy curve, as
the friction distance at the higher speeds is not sufficient to generate a constant value in the friction
force signal.
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A conditioning run is carried out before the 12 measured cycles in order to adjust
the tribological system and, in particular, the lubricant film height to the current velocity.
The temperature in the contact between the seal and cylinder was not recorded. However,
as the measurement results were within the 6 sigma interval and no systematic increase
or decrease in the friction characteristics could be identified over the number of cycles, a
temperature change in the contact was regarded to be negligible for friction evaluation. The
quasi-stationary friction force signal was evaluated from the friction signal at time intervals
where the velocity was stationary, see Figure 3b. To calculate the corresponding friction
coefficients associated with the friction forces, which were further processed in the machine
learning (ML) model, the required normal forces were provided by static FE simulations
of the contact pressure distribution between seal and cylinder. The FE model, which uses
a hyperelastic material model, was not the focus of this work, and was, therefore, not
described in detail.

3.2. Seal Surface Texture Measurements

In contrast with other studies, the machine learning model does not use nominal
texture parameters, but rather the real texture parameters of the pneumatic piston seals
that are measured. The surface analyses of the seals were based on 3D microscope mea-
surements, which were recorded using the method of focus variation. The collected data
were exported as cartesian xyz data points, see Figure 4a. Based on these data points, the
surface was visualised in two different areas—the textured (blue/green) and untextured
(yellow/orange) areas, see Figure 4b.

Figure 4. (a) Microscope surface scan of a textured seal (4 × 4 mm). The circles enclose the triangular
arranged circular dimples. The texture parameters of dimple diameter and dimple distance are
defined by the arrows. (b) Dimple depth information of the microscope scan. The yellow and orange
areas represent the untextured area of the seal surface, while the green and blue areas represent the
dimples with their depth.

On basis of the FE simulations already mentioned in Section 3.1, the contact width
between the seal and pneumatic cylinder tube is calculated, from which the effective contact
area is determined. The texture density, shown in Table 1, therefore only corresponds to
the density in effective contact between the seal and cylinder and neglects the textured
seal area that is not in contact, as it is tribologically irrelevant. The surface textures are
defined by the dimple diameter, distance, and depth. They have a basic circular shape
and are arranged in a triangular pattern. The diameter of the dimples is determined using
circular approximations of the green/blue data points. The dimple depth is the mean value
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of all data points within these approximated circles. In addition, the distance between
the dimples is calculated using the centre points of the approximated circles. This is not
only done for one individual dimple, but for the entire number of dimples, which are
positioned within the measuring area of 4 × 4 mm and the simulated contact width of
l = 643 µm of the seal. The corresponding number of evaluated dimples is specified in
Table 1. The related dimple parameters are determined as the mean values of the given
number of individual measurements. The real texturing density is the ratio of the textured
to untextured area of the analysed seal surface. Because of process tolerances that occur
during the laser and vulcanisation process of the seals, odd values can be seen in Table 1.

The general seal dimensions, more precisely the inner and outer diameters of the seals
and their deviation from nominal values, were not measured and considered, which is
discussed in Section 6 and mentioned in the outlook.

Table 1. Real seal surface texture parameters. The values are the mean value of the specified number
of analysed dimples within the simulated contact width of the seal.

Seal No. Diameter
in µm

Distance
in µm

Depth
in µm

Texture Density
in %

Number of
Analysed Dimples

1 - - - - -
2 97 195 7.9 20.4 58
3 96 243 8.6 15.3 46
4 100 244 11.4 15.8 43
5 149 244 14.5 34.3 46
6 143 292 12.9 25.2 37
7 147 294 19.3 26.8 37
8 149 294 24.8 27.2 37
9 196 293 23.6 45.0 37

10 199 390 23.3 21.9 28
11 147 293 19.1 26.3 37

4. Data Analysis, Data Preparation, and Model Development

The machine learning algorithms discussed in this paper are classified as supervised
learning. Within this category, regression algorithms were used, which deal with numerical
continuous output values. The training of the algorithms was conducted with a known set
of input data and known responses, which are the data collected in Section 3.1. The data
analysis, data preparation, and model development were guided by the method shown in
Figure 1. For the development of machine learning models, high data quality is an essential
requirement. This started with a comprehensive analysis of the available data to assess their
quality, which included an examination of its structural characteristics and properties (data
analysis). This understanding subsequently facilitated the preparation of the available data
with the aim of improving its quality, as well as its transformation into the desired format
(data preparation) [50,53]. Afterwards, model development began.

In order to be able to evaluate the data quality as part of the data analysis, a data quality
report (DQR) according to [50] was generated in this study for the available measurement
data. The report took the total number of numerical values, data completeness, cardinality,
minimum and maximum values, first and third quartiles, median and arithmetic mean,
and the standard deviation into account, which is shown in Table A1 of the Appendix A. It
was found that there were no missing values in the features studied, that the data had a
uniform character, and that there were no irregularities in the other indicators of the data
quality report. Interquartile ranges (IQRs) were calculated to identify individual data points
that represent mathematical outliers [53,54], which require a more detailed and individual
examination. Based on this examination, it becomes apparent that the identified outliers
were only default values for the test series or the texture parameters, specifically friction
values, that can be evaluated as being feasible with the help of the physical relationship of
the Stribeck curve. The sliding velocity can be used as an illustrative example. In Figure 5
it is visible that the sliding velocity was not sampled uniformly. The lower velocities were
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sampled more finely than the higher velocities. As a result, the higher values were marked
as mathematical outliers, although they were not physically outliers. Therefore, all these
data points were used for further analysis. The IQR calculated for the features can be found
in Figure A1 of the Appendix A.

In the context of data preparation, dimensionality is particularly important. Data sets
with high dimensionality lead to increased complexity, computational effort, and the risk
of overfitting [55,56]. For this reason, it is more useful to have many data points for each
feature, but not a larger number of features, because only features with a high significance
add value to the model and its accuracy [56].

In order to reduce the number of features while preserving the most relevant informa-
tion, principal component analysis (PCA) is used as a feature extraction method to assess
dimensionality. As this is a requirement for PCA, the existing data sets are standardised so
that the values of each feature are within the interval [−1; 1] and have an arithmetic mean
of zero as well as a standard deviation of one. According to the first principal component,
the feature of sliding velocity has the greatest influence on the coefficient of friction, since it
explains 85.34% of the variance. According to the second principal component, the texture
parameters dimple diameter, dimple distance and dimple depth have the greatest influence,
because they explain 13.40% of the variance. As a result, the analysis shows that the first
two principal components already explain 98.74% of the variance. The features that have
been examined are shown in Table 2. Based on the principal component analysis, features
with little influence on the variance of the original data can be removed.

Table 2. Coefficients of the first two principal components (PC 1 and PC 2) for the examined features.
The remaining features after PCA are highlighted in bold letters. Cycle and direction of motion
are removed.

Feature Sliding
Velocity Cycle Direction

of Motion
Dimple

Diameter
Dimple
Distance

Dimple
Depth

Texture
Density

PC 1 (85.34%) 1.00 0.00 0.00 0.00 0.00 0.00 0.00
PC 2 (13.40%) 0.00 0.00 0.00 0.55 0.83 0.09 0.00

The model is built using recursive feature elimination (RFE) according to the cross-
validation (CV) procedure. For this purpose, the training data is divided into a training
set and a test set. In this model development, 10% of the training data was used as test
data. To ensure that the quality of the generated model does not depend on the division
of the training data into training and validation sets, a variant of cross-validation called
k-fold cross-validation (KFCV) is used [53,56]. For model development, the training data
is divided into k subsets. In this study the cross-validation procedure is performed with
k = 5 or k = 10 subsets, depending on the number of records.

During the RFE process, features are eliminated iterative as part of model development,
which is outlined in Section 5.2. The minor influence of the cycle and the direction of motion,
as already observed in the PCA (see Table 2), can be confirmed. Hence, these features are
eliminated. The friction coefficients per seal and velocity are averaged over the measured
up and down cycles, which is possible due to the symmetry of the seal, so that the up
and downstroke force is nearly identical. The feature texture density is not removed from
the training data, since it is directly related to the dimple distance and diameter. This
reduces the number of data sets to N = 190 (10 surface textured seals and 19 tested sliding
velocities), leaving M = 5 features.

A total of 26 learning algorithms, shown in Table 3, are used for model development
using MATLAB Statistics and Machine Learning Toolbox®.
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Table 3. Summary of all algorithms studied by category: Supervised Learning—Regression. Algo-
rithm 16, which is chosen to build the best model within the prevailing application, is highlighted by
underlining, compare also Table 4. The four colored algorithms correspond to the curves of Figure 6.

Category No. Algorithm

Linear Regression Models 1 Linear
2 Interactions Linear
3 Robust Linear
4 Stepwise Linear

Regression Trees 5 Fine Tree
6 Medium Tree
7 Coarse Tree

Support Vector Machines 8 Linear SVM
9 Quadratic SVM

10 Cubic SVM
11 Fine Gaussian SVM
12 Medium Gaussian SVM
13 Coarse Gaussian SVM

Gaussian Process Regression Models 14 Squared Exponential
15 Matern 5/2
16 Exponential
17 Rational Quadric

Kernel Approximation Models 18 SVM Kernel
19 Least Squares Kernel Regression

Ensembles of Trees 20 Boosted Trees
21 Bagged Trees

Neural Networks 22 Narrow Neural Network
23 Medium Neural Network
24 Wide Neural Network
25 Bilayered Neural Network
26 Trilayered Neural Network

Figure 5. Stribeck curves from two different surface texture parameters, compared with the untex-
tured reference. The single data points were provided with error bars.
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Figure 6. Pre-Comparison of the predicted Stribeck curves, based on the best algorithm each within
the four best model categories according to the performance indices using seal sample 8 as an example.
The curves are only based on the first model epoch, considering the maximum dataset before RFE.
The individual data of the first epoch are specified in Table A2. The results of the last epoch after RFE
can be found in Table 4.

Table 4. Comparison of the last epoch of the four algorithms, shown in Figure 6. The features
cycle and direction of movement were already removed after recursive feature elimination (RFE),
resulting in an implementation with averaged friction coefficients as described above. Only these four
algorithms were evaluated up to the last epoch. The other algorithms from Table 3 were discarded
due to poor metrics in the first epoch.

No. Algorithm (Category) MSE R2

5 Fine Tree (Regression Trees) 0.00050 0.78870
16 Exponential (Gaussian Progress Regression Models) 0.00009 0.96077
18 SVM Kernel (Kernel Approximation Models) 0.00320 −0.4098
25 Bilayered Neural Network (Neural Networks) 0.00070 0.68924

5. Friction Measurement Results and Machine Learning Model
5.1. Preliminary Examination of the Friction Results

From the friction coefficients per seal and sliding velocities described in Section 3.1,
Stribeck curves were generated for the qualitative preliminary investigation. According to
the principal component analysis (PCA) of Section 4, the features direction of the motion
and cycle were not significant. Therefore, the friction coefficients per seal and velocity
were averaged. Figure 5 shows the exemplary Stribeck curves of textured seals 3 and 10
compared with the untextured reference seal 1, compared with Table 1.

The curves represent the average friction coefficients per seal, while the error bars mark
the 6 sigma interval at the test velocity, to obtain 99.7% as the confidence interval. It can
be seen that the textured seals had higher friction coefficients in the boundary and mixed
friction regime than the untextured reference. In addition, the area of mixed friction was
more pronounced and extended over a larger velocity interval depending on the texture
parameters. On the other hand, the Stribeck curve of seal 3 shows that texturing could lead
to lower friction coefficients in the hydrodynamic friction region. The texture parameters
of seal 3 were proven to be advantageous in a direct comparison with the textures of
the 9 other textured seals, as the associated Stribeck curve has the lowest coefficients of
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friction in the hydrodynamic friction regime due to a lower slope. In contrast, the texture
parameters of seal 10 resulted in high friction coefficients in all of the friction regimes. This
shows that surface texturing did not automatically lead to an improved friction behaviour.
In addition, the qualitative preliminary examination of the collected measurement data
indicated the need for a model to identify optimal and discrete texture parameters and to
fathom tribological relationships in a factual context.

5.2. Machine Learning Model

The model was built using the MATLAB Statistics and Machine Learning Toolbox® by
recursive feature elimination according to the k-fold cross-validation method, see Section 4.
The training data were based on the measured friction and surface data of 10 textured
pneumatic piston seals, whose texture was characterised by dimples with a circular basic
shape in a triangular pattern, compared with Section 3.2. The maximum dataset con-
sisted of N = 4560 records (228 + 228 piston strokes multiplied with 10 textured seals) and
M = 7 features according to Table 2, each with an associated friction coefficient output. In
the first model generation step, one model was generated for each of the 26 learning algo-
rithms specified in Table 3 using the MATLAB toolbox. In this process, k = 10 folds were
used in the k-fold cross validation (KFCV). Furthermore, 10% of the records were separated
as the test dataset, from which the mathematical evaluation metrics MSE and R2 [53,57]
were calculated. As an example, Figure 6 shows different Stribeck curves, predicted by four
different algorithms based on seal 8, in comparison with the measured friction values of seal
8. The related performance indices of the four models are summarised in the legend. The
figure clarifies that the evaluation of the models using solely mathematical evaluation met-
rics was inadequate. The Regression Tree and Kernel Approximation models showed the
best performance indices, but were unable to reproduce the known dependency between
the velocity and friction coefficient as a Stribeck curve with the available experimental data.
In particular, the Kernel Approximation Model showed a clear overfitting. Only at discrete
test velocities could the friction coefficients be accurately predicted. In addition to the
performance indices, it was advisable to evaluate the models on the basis of known partial
dependencies, which represented the dependence between the target response, friction
value, and at least one feature. The Gaussian Process Regression and Neural Network
models not only showed good performance indices, but also reproduced the partial depen-
dence between velocity and friction coefficient as a Stribeck curve according to Figure 6.
Especially in case of non-parametric models, a priori selection of learning algorithms was
not advisable, as it was difficult to estimate how they reacted to the training data. As in
Figure 6, the overfitted kernel approximation model showed similar correlations in other
partial dependencies, which could be visualised using partial dependence plots (PDP).
For example, the correlation between the dimple diameter and friction coefficient was
unknown, but a strongly fluctuating correlation with many deflections was not expected
from a tribological point of view.

The recursive feature elimination within the first model generation showed that the
features direction of movement and cycle were not significant. The method thus confirmed
the results of the principal component analysis of Section 4. The final model generation
was, therefore, performed with the averaged friction coefficients, as described in Section 4.
The training data consisted of N = 190 records and M = 5 features. For model building,
k = 5 folds were used. Further, 10% of the records were separated as the test dataset in
order to be able to determine the performance indices on the basis of unknown data. The
comparison of the last epoch of the performance indices of the four algorithms, shown
in Figure 6, is provided in Table 4. It is clear that the neural network, which had both
good mathematical metrics and a good representation of tribology in the form of the
Stribeck curve, had poor MSE and R2 values in the last epoch. Therefore, throughout the
course of model development and evaluation, an exponential Gaussian Process Regression
model, underlined in Table 3, with the following features emerged as the best model in the
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applications context: velocity, dimple diameter, dimple distance, dimple depth, and real
texture density inside the contact area.

The GPR model reveals the following performance indices: MSE = 0.00009 and
R2 = 0.96077. The performance indices of the model with a reduced number of features of
M = 5 were almost identical to those of the maximum dataset of the first model generation.
The MSE even improved slightly. The friction coefficients could thus be predicted with
a high degree of certainty for discrete texture parameters at different sliding velocities.
As shown previously, the model was able to reproduce the known dependency friction
velocity as a Stribeck curve. Further evaluation of the model performance, e.g., using a
residual plot, showed no anomalies that would indicate a poor model fit [57].

To identify optimal texturing parameters, the selected machine learning model was
used to predict friction coefficients for discrete combinations of feature values within the
intervals of the training data. Thus, there was no prediction by extrapolation. The generated
Stribeck curves could be used to evaluate the tribological behaviour of the textured seals
within different friction regimes. Figure 7 shows the prediction interval (grey area), in
which the model could create predictions for the feature intervals specified in Table 5,
compared with the mean friction curve of the untextured reference seal 1. It can be seen
that there was no texture parameter combination, based on the model, that led to lower
friction coefficients in the boundary and mixed friction regime.

Figure 7. Model evaluation: comparison of the untextured reference seal 1 to the model prediction
interval (grey area) and Stribeck curves, predicted by the model, of the identified optimum texture
parameters for each friction regime.

Table 5. Feature intervals used for the machine learning model evaluation.

Feature Unit Min. Max. Resolution

Velocity mm/s 1 500 19 values
Diameter µm 95 205 5
Distance µm 190 400 10
Depth µm 5 30 1
Texture density % 15 45 1

No texture emerged as a global optimum from the parameter study carried out.
Three predicted Stribeck curves could be identified, each of which could be considered
as an optimum in one of the friction states. The corresponding texture parameters are
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summarised in Table 6. From the model prediction, it can be seen that all three texture
parameters led to lower friction coefficients in the hydrodynamic friction region compared
with the untextured reference. However, low friction coefficients in the hydrodynamic
friction regime were at the expense of increased friction coefficients in the boundary and
mixed friction regions. In addition, the transition to hydrodynamic friction was shifted
to higher speeds, so that boundary and mixed friction were more pronounced over a
larger velocity interval. These results were consistent with the preliminary examination, as
explained in Section 5.1.

Table 6. Optimal texture parameters for each friction regime according to the machine learning model
prediction. Friction increase and friction reduction are related to the untextured reference seal 1. The
data are based on the values from the graphs of Figure 7, taking into account the discrete values, as
specified in Table 5.

No. Optimum Diameter
in µm

Distance
in µm

Depth
in µm

Texture Density
in %

Max. Friction
Increase (Velocity)

Max. Friction
Reduction (Velocity)

1 Boundary/Mixed friction 145 290 13 25 362%
(5 mm/s)

35%
(500 mm/s)

2 Mixed/Hydrodyn. friction 95 240 9 16 390%
(5 mm/s)

44%
(500 mm/s)

3 Hydrodyn. friction 145 290 19 26 526%
(5 mm/s)

47 %
(500 mm/s)

The optimum texture in the transition zone from mixed friction to hydrodynamic
friction No. 2 from Table 6 can be identified as a compromise between Nos. 1 and 3. At the
maximum velocity of 500 mm/s, the maximum predicted friction coefficient reduction was
approximately 44%. In addition, the predicted friction coefficient of µ = 0.044 at a velocity
of 50 mm/s for these texture parameters was the lowest within the entire predictions of the
machine learning model.

As mentioned above, the chosen textures on which the model was based were asso-
ciated with a significant increase in the friction coefficients in the boundary and mixed
friction regions. As can be seen in Table 6, there was a maximum increase in the friction
coefficient of 526% at a low speed of 5 mm/s. So, it became clear that the improvement in
the frictional behaviour strongly depended on the surface texture and especially on the
operational conditions such as the sliding velocity of the seal.

6. Tribological Discussion of the Machine Learning Model Results

The Gaussian process regression (GPR) model, which was the most suitable model
for the present application and the existing data in a tribological context, reproduced the
property of a Stribeck curve, as explained in Section 5. Based on this property and the
mathematically metric values specified in Section 5.2, the validity of the model could
be assumed. As described, suitable surface textures significantly reduced friction in a
hydrodynamic lubrication regime. However, an increase in friction was observed in the
boundary and mixed friction regions.

There are several possible reasons for this behaviour, which is contrary to most of the
literature, where the dimples showed a reduction in friction over nearly the entire range of
operational conditions, e.g., due to their improved micro-hydrodynamic pressure build up
or their lubricant storage effect [21,37,58–62]. In fact, however, the dimples could not only
serve as a source of lubricant and thus support hydrodynamic film formation, but also as a
sink in the event of mixed friction or insufficient lubrication. At low sliding velocities or
during idle periods, lubricant collected in and around the dimples, causing the roughnesses
of the untextured areas of the seal to be in contact with the roughnesses of the pneumatic
cylinder tube surface for a longer period of time, which increased the frictional force in
the mixed friction area. This effect increased with the viscosity of the lubricant, which was
consistent with the present friction measurements, as a grease with a higher viscosity was
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used. Untextured seals, therefore, have the advantage that less lubricant was required to
separate the contact surfaces in this lubrication condition [63].

Another possibility for increasing friction at low speeds, where the surfaces were not
completely separated from each other as in the hydrodynamic lubrication state, was based
on the texturing during moulding (TDM) manufacturing method of the seals. During
production, the negative of the desired dimple texture was applied to the metallic mould
by laser ablation. During the vulcanisation process, the texture is directly transferred from
the mould to the rubber surface, so that protrusions in the mould became dimples in the
seal. The resulting removal of material from the metal mould increased the outer diameter
of the seals by an amount equal to the depth of the dimples [51]. This increased the contact
pressure between the seal and the pneumatic cylinder tube and thus the friction.

A third possibility for friction increase in the boundary and mixed lubrication regimes
was the texture-parameter-dependent wiping effect of the dimples, where at low sliding
speeds and, therefore, low film heights, the lubricant was wiped off and the edges of the
dimples interlocked with the cylinder surface. The negative contribution of the three effects
to friction described above has not yet been studied and quantified in detail, and will be the
subject of future research. For this purpose, the tests were to be repeated in a glass cylinder.
By recording the dynamic contact between the seal and the glass cylinder with the help
of a high-speed camera, lubricant sinks and wiper effects could be detected. In addition,
the tests were repeated with different pistons, in which the fit between the inner diameter
of the seals and the outer diameter of the pistons was varied. This changed the contact
pressure between the seal surface and the internal cylinder surface, allowing manufacturing
tolerances to be simulated with defined dimensions. Consequently, their effect on friction
could be analysed.

On the other hand, the positive friction-reducing effects of the dimple textures in the
hydrodynamic lubrication regime were evident for nearly all of the textured seals analysed
in this paper (see the grey area of Figure 7). Textures with extremely large diameters,
especially distances above 200 µm and 395 µm, were an exception, due to their inappropriate
aspect ratio [64]. This indicates that a positive effect of the dimples was present, but that
there was a limit to the positive properties of the dimples with their effect of increasing
hydrodynamic pressure build-up for the prevailing specific application of a pneumatic
piston seal [25].

It can also be seen that the slope of the Stribeck curve of the textured seals, and
therefore the friction coefficient, was generally lower in the hydrodynamic lubrication
regime, even though the lubricant was exactly the same in all of the tests. This behaviour
could be explained by the advantageous choice of the texturing parameters, which reduced
the shear stress inside the lubricant film by increasing the lubrication film thickness due
to the increased dimple-induced micro-hydrodynamic pressure build up, which further
separated the contacting surfaces [19,65]. In addition, this behaviour was supported by the
lubricant storage effect of the dimples, so that sufficient lubricant was provided to separate
the surfaces [34,64].

The modelling was exclusively based on the measured values recorded in Section 3.
An extension to include measured values such as seal diameter tolerances, temperature, or
other disturbing influences could change the results of the methodology in such a way that
another of the 26 algorithms analysed was classified as the most suitable for the prevailing
application, which will be analysed in future work.

7. Conclusions

The generalised method, presented in this paper, represents essential steps for building
regression models through supervised learning, using experimental measured friction and
surface texture data as an illustrative example of pneumatic piston seals. In particular, the
parallel use of a large number of 26 different machine learning algorithms in the context
of an exhaustive search led to good results, even when fundamental correlations in the
prevailing data were unknown. The individual steps can be automated, so that the method
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is even suitable for identifying trends in ongoing experiments or production processes and
for intervening at an early stage if targets are possibly missed. For example, the ML model
can be used to identify the operating conditions within the limits of velocity parameters
tested, where the surface textures reveal the maximum friction reduction compared with
the untextured reference. This is even possible for a texture parameter combination that
has not been physically tested.

The approach of this work reveals that machine learning models should be checked
as much as possible using different evaluation metrics and should be classified in the
specific applications context. Machine learning techniques are particularly treacherous for
inexperienced users, as they usually produce good results according to the mathematical
performance indicators R2 and MSE, but may fail to represent the underlying physics,
as represented by Stribeck curves. The strength of the generalised method, presented
in this paper, lies in its ability to reduce factual relationships to the essential influencing
parameters in order to reveal even fundamental physical relationships.

Because it can be fully automated, the method can provide early insights, particularly
in tribological testing, that can be directly incorporated into testing procedures and spec-
imen optimisations for the targeted optimisation parameter, such as friction. As Marian
et al. pointed out in their systematic review that the automation of data collection and pro-
cessing could additionally be applied to existing data and completed projects to extend or
test relationships and conclusions through machine learning [47]. The generalised method
presented in this paper, which is based on common standard machine learning procedures
and a large variety of learning algorithms, is a novel and strong tool for the realisation of
this approach. The main subjects and findings of the paper are listed below:

1. A novel machine learning methodology is developed to build several ML models and
select the most suitable model that reliably predicts optimal surface texture parameters
for different operating conditions such as lubrication regimes;

2. Both mathematical metrics and tribological relationships in the form of the Stribeck
curve are taken into account to determine the most suitable ML model;

3. Surface textured pneumatic piston seals are used as an example application in
this study;

4. Friction measurements of the seals and surface texture measurements of the real parts
serve as the basis of data for ML modeling

5. For the example application and the underlying data, a Gaussian process regression
(GPR) model has proven to be the best model in terms of mathematical metrics and
the tribological representation of the Stribeck curves;

6. Depending on the prevailing friction regimes and surface textures, friction reductions
of up to 47%, and friction increases of up to 526% could be identified for the surface
textures, compared with an untextured reference surface;

7. The advantage of the method is that a large number of 26 ML models can be compared
and the best one selected without having to perform complex processes such as
hyperparameter optimisation of individual models, so that a large number of users
can use the method without being ML experts.
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Abbreviations
The following abbreviations are used in this manuscript:

CV Cross validation
DQR Data quality report
GPR Gaussian process regression
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PDP Partial dependence plot
RFE Recursive feature elimination
SPLOM Scatterplot matrix
SVM Support vector machine
TDM Texturing during moulding

Appendix A

Table A1. Data Quality Report.

Feature Number of
Values

Missing
Values Cardinality Minimum 1st Quartil

Sliding velocity in mm/s 3990 0 19 1.00 5.00
Cycle 3990 0 11 1.00 4.00
Direction of motion 3990 0 2 −1.00 −1.00
Dimple diameter in µm 3990 0 10 96.51 100.35
Dimple distance in µm 3990 0 10 195.76 243.54
Dimple depth in µm 3990 0 10 7.91 11.41
Real texture density 3990 0 10 0.15 0.20
Friction coefficient 3990 0 3990 0.03 0.08

Feature Mean Median 3rd
Quartil Maximum Standard

deviation

Sliding velocity in mm/s 89.21 10.00 100.00 500.00 145.94
Cycle 6.24 6.00 9.00 11.00 3.04
Direction of motion −0.50 −1.00 1.00 1.00 1.00
Dimple diameter in µm 142.57 147.23 149.23 199.10 34.74
Dimple distance in µm 278.20 292.59 293.60 389.86 48.99
Dimple depth in µm 16.55 16.79 23.32 24.78 5.99
Real texture density 0.26 0.26 0.27 0.45 0.08
Friction coefficient 0.12 0.11 0.16 0.42 0.06

Table A2. Summary of all algorithms and their performance indices within the first model epoch
with the full dataset according to Section 5.2 studied by category: Supervised Learning — Regression.

Category No. Algorithm MSE R2

Linear Regression Models 1 Linear 0.00259 0.27744
2 Interactions Linear 0.00214 0.40334
3 Robust Linear 0.00259 0.27707
4 Stepwise Linear 0.00212 0.40908
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Table A2. Cont.

Category No. Algorithm MSE R2

Regression Trees 5 Fine Tree 0.00001 0.99738
6 Medium Tree 0.00002 0.99337
7 Coarse Tree 0.00011 0.96963

Support Vector Machines 8 Linear SVM 0.00262 0.26978
9 Quadratic SVM 0.00133 0.62854
10 Cubic SVM 0.00146 0.59357
11 Fine Gaussian SVM 0.00057 0.84057
12 Medium Gaussian SVM 0.00104 0.71004
13 Coarse Gaussian SVM 0.00224 0.37614

Gaussian Process Regression 14 Squared Exponential 0.00046 0.87305
Models 15 Matern 5/2 0.00035 0.90343

16 Exponential 0.00014 0.96152
17 Rational Quadric 0.00036 0.90069

Kernel Approximation Models 18 SVM Kernel 0.00003 0.99114

19 Least Squares Kernel
Regression 0.00013 0.96501

Ensembles of Trees 20 Boosted Trees 0.00013 0.96412
21 Bagged Trees 0.00018 0.95081

Neural Networks 22 Narrow Neural Network 0.00015 0.95800
23 Medium Neural Network 0.00008 0.97772
24 Wide Neural Network 0.00005 0.98352
25 Bilayered Neural Network 0.00006 0.98428
26 Trilayered Neural Network 0.00007 0.98161

Figure A1. Boxplots of relevant features for visualising IQR. The lower and upper quartile (blue),
lower and upper whisker (black), median (red line), lower limit (red downward-pointing triangle)
and upper limit of the IQR (red upward-pointing triangles), and outliers (red crosses) are shown. The
features cycle and direction of motion are not considered, as they only represent a numerator and the
numerical representation of the direction.
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