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Abstract
We present a newmodel formulation for a multiproduct dynamic order quantity problemwith product returns and a reprocess-
ing option. The optimization considers the limited shelf life of sterile medical devices as well as the capacity constraints of
reprocessing and sterilization resources. The time-varying demand is known in advance and must be satisfied by purchasing
new medical devices or by reprocessing used and expired devices. The objective is to determine a feasible procurement and
reprocessing plan that minimizes the incurred costs. The problem is solved in a heuristic manner in two steps. First, we use
a Dantzig-Wolfe reformulation of the underlying problem, and a column generation approach is applied to tighten the lower
bound. In the next step, the obtained lower bound is transformed into a feasible solution using CPLEX. Our numerical results
illustrate the high solution quality of this approach. The comparison with a simulation based on the first-come-first-served
principle shows the advantage of integrated planning.

Keywords Sterile service department · Material logistics in hospitals · Reusable medical devices · Procurement ·
Reprocessing · Limited shelf life · Column generation

Highlights

• We present a novel model formulation for a multiproduct
dynamic order quantity problemwith product returns and
a reprocessing option that incorporates the limited shelf
life of sterile medical devices and capacity constraints on
reprocessing and sterilization resources.

• We propose a two-stage heuristic approach based on
Dantzig-Wolfe reformulation and column generation
techniques to generate high-quality solutions.

• Our simulation study shows a significant cost reduc-
tion compared to the standard first-come-first-served
approach. These results highlight the practical advan-
tages of the proposed model.
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1 Introduction

Currently, hospitals are under considerable cost pressure.
Germany changed its care fee system to a fee-for-care system
in 2004 which forced German hospitals to institute cost-
saving measures and process optimization. Until the end of
2003, a daily rate was paid for each patient, which depended
on the treatment costs that were actually incurred. Due to
a lack of incentives to reduce costs, a new billing procedure
based on diagnosis-related groups (DRGs) was introduced in
2004. Based on the primary diagnosis, patients are assigned
to a DRG. For each medical treatment, a uniform flat-rate
payment is defined, which represents a fixed price for ser-
vices that do not depend on the individual patient. Thus, the
hospital is only profitable if the actual treatment costs do not
exceed the specified fixed price. The DRG system therefore
transfers both the cost responsibility and the cost risk directly
to hospitals.

Rationalization activities often focus on the surgical area.
On the one hand, surgeries are themain source of revenue.On
the other hand it accounts for a substantial portion of the hos-
pital’s total costs. Hence, in the literature, many approaches
focus on the optimization of this area. However, little atten-
tion has been given to the supply of sterile goods. The supply
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of medical devices is not profitable itself, even though cost
reductions in this area would have a profit-increasing effect.
Moreover, the supply of thesemedical devices is of enormous
importance for the surgical area. For example, the hygiene
scandal at Mannheim University Hospital in October 2014
meant that activity in the entire surgical area nearly stopped
since sterile goods were not sufficiently reprocessed. Fur-
thermore, [21] pointed out that the supply of sterile goods
is of great importance for the surgical area, since surgical
teams assume that the medical devices required for opera-
tions are not missing or contaminated to ensure the success
of the surgery and avoid endangering the health of the patient.

The task of the sterile service department (SSD) is to
supply the surgical area with the required quantity of ster-
ile medical devices on time to ensure that the surgery runs
smoothly. This work addresses the logistical processes that
are necessary to fulfill this task. The processes involved in
supplying sterile goods greatly depend on whether medical
devices are intended for single ormultiple uses. The handling
of medical devices is regulated in the European Union in
Regulation 2017/745 on medical devices, cf. [13]. Single-
use medical devices are intended to be consumed when used
in the operating room. From a logistical point of view, pro-
curement and storage processes are necessary for single-use
medical devices; cf. [17]. Although reusable medical devices
require additional reprocessing, they are often preferable
for economic and ecological reasons. Reprocessing yields
an additional backward-oriented material flow of medical
devices. Thus, complexity has increased due to this repro-
cessing option. Procuring and reprocessing are two options
for satisfying the demand in the operating room. Further-
more, decisions about the procurement times and quantities
directly influence the planning of reprocessing, and vice
versa. Hence, the present work concentrates on reusable
medical devices. The focus is on the development of an opti-
mization model and a suitable solution approach that can be
used to determine procurement and reprocessing plans that
minimize the total costs. However, these plans must ensure
the timely provision of medical devices. The work presented
in this paper is based on considerations first discussed in [31].

The remainder of this paper is structured as follows:
Section 2 describes the tasks of the central sterile supply
department. These tasks include supplying the surgical area
with sterile medical devices and reprocessing these devices
after utilization. Section 3 provides an overview of the related
literature.

In Section 4, a new model formulation for integrated
procurement and reprocessing planning of reusable medical
devices with a limited storage time is presented. A col-
umn generation approach is proposed in Section 5. Based
on the generated test instances, the numerical investigations
in Section 6 evaluate the performance of the proposed solu-
tion approach in terms of computational effort and solution

quality. Finally, in Section 7, the presented results are sum-
marized, and further research directions are described.

2 Reprocessing and procurement of reusable
medical devices

This work focuses on the provision, reprocessing and pro-
curement of reusable sterile goods in hospitals. Reusable
sterile goods are medical devices that are intended by the
manufacturer for multiple low-germ and sterile usage. They
must be reprocessed by the SSD after use before they can be
utilized again.

The demand quantities of medical devices can be derived
from the surgery schedule as a result of operational surgery
planning, which usually includes a planning horizon of one
week, cf. [15]. The aim of operational surgery planning is to
assign patients to a specific day of the week with a start time
for the operation as well as an operating room and team. A
distinction must be made between elective and emergency
patients. Unlike emergency patients, elective patients do not
have critical injuries or illnesses that require immediate sur-
gical care. Typically, elective patients account for 80 to 90%
of the operations in a hospital. Thus, due to the short plan-
ning horizon of one week, operations on elective patients
can be planned under almost deterministic conditions. How-
ever, emergency patients cannot be scheduled. According to
[4], hospitals have three options for dealing with medical
emergencies in operational surgery planning. First, a separate
operating room can be reserved exclusively for emergencies.
Second, a portion of the capacity in each operating room
could be reserved. Third, a combination could be considered.
Analogously, these three options can be applied by the SSD
to cope with emergency patients. Additionally, safety stocks
for particular medical devices are stipulated by law in some
countries. In Germany, for example, the Federal Office of
Civil Protection and Disaster Assistance provides an inven-
tory list for stocking specific medical devices (see [5]). This
list contains, e.g., scissors, scalpels, and forceps.

Compliance with the surgery schedule requires the timely
availability and provision of essential medical devices. Con-
sequently, the surgical area must be closely coordinated with
the supply of sterile goods to avoid delays. The core task
of the SSD is the timely supplying of operating rooms with
sterile medical devices of the required quantity and qual-
ity. The main process of supplying reusable medical devices
can therefore be divided into the following subprocesses:
procurement, storage, provision, transport, reprocessing and
disposal. Thus, these processes must be coordinated effi-
ciently.

Since hospitals usually do not produce medical devices,
the SSD is also responsible for the procurement of medical
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devices from external suppliers. According to regulations,
medical consumables must be disposed of after use. Thus,
the material flow of medical consumables through the hos-
pital is strictly forward oriented and corresponds to a classic
supply chain. Reusable medical devices, such as surgical
instruments, must also be procured, but they can be used
several times. Hence, from the perspective of the SSD, the
surgical area is both a consumer of sterile medical devices
and a supplier of these products in a nonsterile condition.
Hence, a closed-loop supply chain must be considered due
to the additional reverse material flow from the operating
room to the SSD and the reprocessing option. With a por-
tion of approximately 80% of working time, reprocessing
constitute the main tasks of the SSD. The whole process
can be described as a reprocessing cycle that is identical for
all reusable medical devices. This reprocessing cycle starts
with the usage of medical devices in operating rooms. Med-
ical devices are typically provided in surgery-specific sets
that must be extracted before usage. Afterwards, the utilized
medical devices are returned to the SSD. It is worth mention-
ing that even the medical devices that were not used must be
reprocessed if their packaging was opened or damaged.

At the beginning of a reprocessing operation, medical
devices are precleaned to remove contamination. Addition-
ally, a prescreening of medical devices with uneven surfaces
is necessary because contamination is difficult to remove.
Damaged medical devices are disposed of and thus leave the
reprocessing cycle directly. The decontamination of medical
devices includes cleaning, disinfection, rinsing and drying.
For this process, medical devices are placed in sieves. These
sieves are loaded into washer-disinfectors. Thermal disin-
fection is based on the so-called A0 concept. The A0 value
describes the time duration required to killmicroorganisms at
a given temperature. The required A0 value depends on the
risk classification of a medical device that was introduced
by [38] who classified medical devices as noncritical, semi-
critical or critical based on the risk of infection related to
the usage on the patient. Theoretically, each medical device
can be reprocessed by any time-temperature combination
in which the corresponding A0 value is at least as high as
the device-specific value. For example, an A0 value of 600
can be achieved by “600 seconds at 80◦ C” or by “60 sec-
onds at 90◦ C”. However, the temperature must not exceed
the device-specific temperature tolerance stipulated by its
manufacturer. The final rinsing and drying guarantee that no
residue of the chemicals used for cleaning remains on the
medical devices.

Afterwards, the cleaning results are controlled, and the
functionality is tested. The medical devices are packed into
surgery-specific sets. Subsequent sterilization is used to kill
the remaining microorganisms. Various sterilization types as
well as different time-temperature combinations are avail-
able. The sterilization procedure is selected based on the

requirements of the medical device. Thermostable medical
devices are usually sterilized by steam or hot air. For heat-
sensitive medical devices, different methods are available
with lower process temperatures. Notably, the complete
reprocessing operation includes precleaning, decontamina-
tion and sterilization.

If the medical devices are not provided directly in oper-
ating rooms, they can be stored unprotected on shelves or
protected in cabinets or drawers. However, the shelf life of
sterilized medical devices depends on the type of packaging
and storage conditions. If these devices are stored unpro-
tected, they must be used within 48 hours. If they are stored
protected, the shelf life can be up to 12 months. The stor-
age space for sterile medical devices is usually limited since
the SSD is often located close to the operating rooms; long
transportation may increase the risk of contamination. With-
drawal from storage is based on the first-in–first-out principle
to avoid exceeding the maximum storage time. If the maxi-
mum storage time is exceeded, the medical devices must be
reprocessed again.

3 Related work

The handling of medical devices in hospitals has received
little attention in literature. An overview of the logistics of
sterile medical devices can be found in [45]. Most scientific
publications examining the reprocessing of medical devices
describe rules and legal requirements for reprocessing and
sterilization. Insights are given, for example, by [22] and
[33].

In the literature, there are a few approaches to operat-
ing room planning that include the availability of medical
devices or their reprocessing.Meskens et al. [24] presented an
optimization problem for the generation of a surgery sched-
ule, in which reprocessable medical devices are considered
renewable resources. Each type of operation requires a char-
acteristic number of different medical devices that are only
available in limited quantities. Guinet and Chaabane [14, 44]
and [43] consider the resource limitations of medical devices
when preparing surgery schedules.

Cardoen et al. [6, 7] include the necessary reprocessing
time of medical devices in operating room planning. After
use, medical devices are not available for a fixed number
of periods, so operations of the same type cannot immedi-
ately follow one another. Al Hasan et al. [3] also created
a surgery schedule taking into account the availability of
medical devices and the reprocessing time. To comply with
the surgery schedule, a medical device can be prioritized for
reprocessing, leading to additional costs.

Coban [8] formulated a mixed-integer model to plan surg-
eries and reprocess medical devices in an integrated manner.
However, only homogeneousmedical devices are considered
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in this model. A certain number of sterile medical devices are
provided for each operation. If the number of sterile medi-
cal devices is not sufficient, the operation cannot take place
and must be postponed. It is not possible to order missing
medical devices to comply with the surgical plan. After use,
the medical devices can be reprocessed and stored. However,
only one type of sterilization is considered.

Most of the literature on inventory management for med-
ical devices addresses medical consumables. Ahmadi et al.
[1] and [34] provide an overview. In the literature on inven-
tory management of reusable medical devices, reprocessing
plays a rather secondary role. One reason is that reprocessing
is outsourced to an external service provider and is therefore
no longer part of the planning problem.

In [42], an external service provider conducts the steriliza-
tion of medical devices. The authors consider an integrated
lot sizing and transportation problem with deterministic
demand to determine the optimal order times and quanti-
ties. Diamant et al. [11] also assume that sterilization is
outsourced. The authors determine the minimum quanti-
ties required to ensure a defined service level for stochastic
demand.

The majority of publications on reprocessing medical
devices deal with either the rules to be observed in repro-
cessing or the reliability of the overall process. Several
publications focus on decontamination resources, which,
according to [10], are the bottleneck of the entire repro-
cessing cycle. Ozturk et al. [28] developed a mixed-integer
linear program to model the decontamination step as a batch
scheduling problemwithmultiple identicalmachines. Before
decontamination, the incoming medical devices are grouped
into a batch and assigned to a machine. The earliest possi-
ble planning time is obtained for each medical device. The
authors aim tominimize the total reprocessing time.Ozturk et
al. [27] develop a problem-specific branch & bound heuristic
to solve larger test instances. Xu and Wang [47] generalize
the problem presented by [28] to the case of nonidentical
machines with different capacities. Furthermore, [26] exam-
ines a special case in which an external service provider
conducts sterilization. Theusedmedical devices are collected
after the operation and sent to the service provider.

The work of [40, 41] and [36] addresses the question
of whether medical devices should be sterilized in a cen-
tralized or decentralized manner. However, the question of
centralized or decentralized reprocessing and the purchasing
of reprocessing resources is largely a strategic decision.

Lot sizing problems are related to order quantity plan-
ning. There are numerous approaches in the literature that
take perishability or limited shelf life into account, e.g., [19]
and [29]. In addition, there are approaches in which limited
storage capacity is considered in planning. See [12] and [20]
for the one-product case and [2, 23, 25] and [46] for themulti-
product case. Numerous approaches take a remanufacturing

option into account when planning lot sizes. See [39] and
[37] for the one-product case without capacity restrictions.
Approaches for capacity-restricted lot sizing with remanu-
facturing are considered, for example, by [30, 35] and [9].

To fully map the planning situation in the supply of
sterile goods, procurement and reprocessing activities must
be planned simultaneously by considering reprocessing and
storage capacities and the limited storage time of medical
devices. However, the publications presented above cover
only a few aspects of these requirements. To the best of
our knowledge, publications that incorporate procurement,
reprocessing and the limited shelf life of medical devices do
not exist.

4 The integrated procurement and
reprocessing planning problem for
reusable medical devices

4.1 Model assumptions

In the integrated Procurement and Reprocessing Planning
Problem (PRPP), the planning horizon is divided into T dis-
crete periods (t ∈ T ). Typically, the length of the planning
horizon depends on the surgery schedule. Consequently, a
planning horizon of one week is often assumed. We con-
sider a seven-day week where each day consists of two shifts
with a length of 8 hours, i.e., each period t equals one shift.
K different medical devices (k ∈ K) can be procured or
reprocessed. In Fig. 1, cf. [31], the material flow of reusable
medical devices is described.

Procurement of medical devices

Medical devices can be procured from an external supplier.
For better differentiation, the notation related to the procure-
ment process has been marked with superscript o. Variable
material costs pcok are incurred for each ordered quantity Qo

kt
of medical device k in period t . In addition, each order
of medical device k incurs quantity-independent ordering
costs ocok . The binary variable γ o

kt equals 1 ifmedical device k
is ordered in period t . Otherwise, this variable γ o

kt is equal
to 0. Notably, the procured medical devices are delivered in
sterile and protected conditions. Furthermore, they can be
used or stored directly without delay.

Reprocessing of medical devices

The complete reprocessing operation includes the steps of
precleaning, decontamination and sterilization, as described
in Section 2. However, [26] noted that decontamination
resources, i.e., the washer-disinfectors for cleaning, disinfec-
tion, rinsing and drying, are of particular importance, as they
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Procurement of

medical devices

Protected

storage

Reprocessing

and sterilization

Preparation in

operating rooms

Unprotected

storage

Unsterile

storage

Fig. 1 Material flow of reusable medical devices

often represent a bottleneck in terms of time in the reprocess-
ing cycle. Thus, it is sufficient to focus on decontamination
resources.

Different reprocessing types (s ∈ S = {1, . . . , S}) can
be identified from the existing time-temperature combina-
tions (cf. Section 2). However, due to different temperature
tolerances, not every time-temperature combination is per-
missible for each medical device, e.g., thermolabile medical
devices cannot be reprocessed at 90◦ C. Thus, the set Ks

includes those medical devices that can be reprocessed by
type s. The subset Sk , on the other hand, includes those
types through which medical device k can be reprocessed.
It is worth mentioning that a reprocessing operation does not
necessarily require homogeneous medical devices; rather,
differentmedical devices canbe reprocessed at the same time.

The integer decision variable χr
st denotes the number of

reprocessing operations of type s carried out in period t .
Here, the notation related to reprocessing has been marked
with superscript r . The duration of a reprocessing operation
of type s is described by tsrs , which depends neither on the
assigned medical devices nor on the reprocessing quantity.
The capacity crt limits the number of reprocessing opera-
tions that can be carried out in period t can be deleted. The
fixed costs scrs are incurred for each reprocessing operation of
type s. Notably, because of the higher energy consumption of
heating, high-temperature reprocessing, although shorter in
duration, is more costly than time-temperature combinations
with lower temperatures but longer durations. Furthermore,
the space volmax of a reprocessing operation that is con-
sumed by medical devices k with space requirements volk is
also limited.

The decision variable Qp
kst specifies the reprocessed quan-

tity of medical device k in period t using type s, which
is stored protected e.g. in cabinets or drawers afterwards
(denoted by superscript p). The packaging of one unit of
medical device k incurs packaging costs pcpk if stored pro-
tected. Analogously, Qu

kst specifies the reprocessed quantity

of medical device k in period t using type s that is stored
unprotected e.g. on shelves afterwards (denoted by super-
script u). Packaging costs pcuk also apply for each unit if
stored unprotected. Since protected storage requires addi-
tional packaging compared with that of unprotected storage,
the packaging costs for protected storage are higher (pcpk >

pcuk ∀ k ∈ K). The reprocessed medical devices can be used
to fulfill the demand at the end of a period.

Shelf life and storage of medical devices

For protected stored medical devices I pkt , the maximum shelf
life clearly exceeds the length of the planning horizon, so
the shelf life can be neglected in this case. However, for
unprotected storage, the storage duration must be monitored
explicitly. The index h ∈ H = {0, . . . , hmax, hmax + 1}
describes the number of periods for which the medical
devices have already been stored unprotected. After hmax+1
periods of unprotected storage, a medical device exceeds
the maximum shelf life and will lose its sterile condition.
The parameter αh describes the state of sterility in the stor-
age period h. For storage period h ≤ hmax, the parameter
αh is equal to 1. Otherwise, the parameter αh equals 0
(αh = 0 ∀ h > hmax).

The integer decision variable I ukth indicates the inven-
tory of the unprotected stored medical device k at the end
of period t in storage period h. The decision variable I pkt
describes the stock of protected stored medical devices k at
the end of period t . Furthermore, the inventory of used and
unsterile medical devices k at the end of period t is denoted
by I rkt .

In each period t , the inventory of unprotected and pro-
tected stored sterilemedical devices is limited by the capacity
limit cI

u
or cI

p
. The parameter volk indicates the storage

space requirement for one unit ofmedical device k. However,
the storage capacity for used medical devices is assumed to
be unlimited.
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Demand fulfillment and returns

The dynamic demand dkt of medical device k in period t is
derived from the surgery schedule.Thus, it is assumed that the
period-specific demand dkt is known in advance and must be
completely satisfied. The requirements of medical device k
in period t can be covered by both protected and unprotected
stored medical devices. The respective withdrawal quanti-
ties from storage are referred to as staging quantities. The
decision variable Au

kth corresponds to the staging quantity of
unprotected stored medical device k in period t with storage
duration h. Furthermore, Ap

kt denotes the staging quantity of
protected stored medical device k in period t .

After utilization, a portion 0 ≤ βk ≤ 1 ofmedical device k
returns to the depot of usedmedical devices in period t . How-
ever, a time delay of two periods is assumed, so the returns rkt
of medical device k can be determined by rkt = �βk ·dk,t−2�.
Due to damage or signs of aging, the nonreturning por-
tion (1− βk) of medical device k cannot be reprocessed and
must be disposed of.

The goal of the PRPP is to determine a feasible pro-
curement and reprocessing plan that completely satisfies the
derived demand and minimizes the procurement and repro-
cessing costs.

4.2 Mathematical model formulation

Using the notation presented in Table 1, the integrated pro-
curement and reprocessing planning problem for reusable
medical devices can be mathematically modeled as follows:

Model PRPP

min Z =
∑

k∈K

∑

t∈T

(
ocok · γ o

kt + pcok · Qo
kt

)+
∑

s∈S

∑

t∈T
scrs · χr

st

+
∑

k∈K

∑

s∈Sk

∑

t∈T

(
pcuk · Qu

kst + pcpk · Qp
kst

)
(1)

subject to

Ap
kt +

hmax∑

h=0

Au
kth = dkt ∀ k ∈ K, t ∈ T (2)

∑

s∈Sk

Qu
kst − Au

kt0 = I ukt0 ∀ k ∈ K, t ∈ T (3)

αh · I uk,t−1,h−1− Au
kth = I ukth ∀ k ∈ K, t ∈ T , h ∈ H\{0}

(4)

Table 1 Notation used for the PRPP

Indices and index sets:

h ∈ H set of storage periods
(h ∈ {0, . . . , hmax, hmax + 1})

k ∈ K set of medical devices (k ∈ {1, . . . , K })
s ∈ S set of types (s ∈ {1, . . . , S})
t ∈ T set of periods (t ∈ {1, . . . , T })
k ∈ Ks ⊆ K subset of medical devices requiring type s

s ∈ Sk ⊆ S subset of types that can reprocess medical
device k

Parameters:

αh shelf life indicator in storage period h

βk portion of reprocessable medical device k
after utilization

bigMkt sufficiently large number for medical
device k in period t

cI
u

storage capacity for unprotected stored
medical devices

cI
p

storage capacity for protected stored
medical devices

crt capacity of reprocessing resources in
period t

dkt demand of medical device k in period t

ocok fixed procurement costs per order of
medical device k

pcok variable procurement costs per unit of
medical device k

pcpk variable packaging costs for one protected
stored unit of medical device k

pcuk variable packaging costs for one
unprotected stored unit of medical
device k

rkt returns of medical device k in period t

scrs fixed costs for a reprocessing operation of
type s

tsrs duration of a reprocessing operation of
type s

volk space requirement for reprocessing or
storing one unit of medical device k

volmax space capacity for reprocessing

Decision variables:

Ap
kt ∈ N0 staging quantity of protected stored

medical device k in period t

Au
kth ∈ N0 staging quantity of unprotected stored

medical device k in period t and storage
period h

I pkt ∈ N0 protected end-of-period inventory of sterile
medical device k in period t

I rkt ∈ N0 end-of-period inventory of used medical
device k in period t

I ukth ∈ N0 unprotected end-of-period inventory of
sterile medical device k in period t and
storage period h
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Table 1 continued

Qo
kt ∈ N0 ordered quantity of medical device k in

period t

Q p
kst ∈ N0 reprocessing quantity of medical device k

with type s in period t with subsequent
protected storage

Qu
kst ∈ N0 reprocessing quantity of medical device k

with type s in period t with subsequent
unprotected storage

γ o
kt ∈ {0, 1} binary ordering variable for medical

device k in period t

χr
st ∈ N0 number of reprocessing operations of

type s in period t

I pk,t−1 + Qo
kt +

∑

s∈Sk

Q p
kst − Ap

kt = I pkt ∀ k ∈ K, t ∈ T

(5)

I rk,t−1+rkt +
hmax+1∑

h=1

(1−αh) · I uk,t−1,h−1−
∑

s∈Sk

(
Qp

kst + Qu
kst

) = I rkt

∀ k ∈ K, t ∈ T (6)

Qo
kt ≤ bigMkt · γ o

kt ∀ k ∈ K, t ∈ T (7)

∑

k∈Ks

volk · (
Qp

kst + Qu
kst

) ≤ volmax · χr
st∀ s ∈ S, t ∈ T (8)

∑

s∈S
tsrs · χr

st ≤ crt ∀ t ∈ T (9)

∑

k∈K

hmax∑

h=0

volk · I ukth ≤ cI
u ∀ t ∈ T (10)

∑

k∈K
volk · I pkt ≤ cI

p ∀ t ∈ T (11)

Ap
kt , Au

kth ∈ N0 ∀ k ∈ K, t ∈ T , h ∈ H (12)

I pkt , I rkt , I ukth ∈ N0 ∀ k ∈ K, t ∈ T , h ∈ H (13)

Qo
kt , Qp

kst , Qu
kst ∈ N0 ∀ k ∈ K, s ∈ Sk, t ∈ T (14)

χr
st ∈ N0 ∀ s ∈ S, t ∈ T (15)

γ o
kt ∈ {0, 1} ∀ k ∈ K, t ∈ T (16)

The inventory balance constraints are represented by (2)
to (6). Equations (2) ensure that the given demand dkt is
fulfilled completely by the cumulative staging quantities for
each medical device k in period t . According to constraints
(3), the inventory of unprotected medical devices with stor-
age time h = 0 only consists of the directly reprocessed
quantities in the considered period t , unless the devices are
directly used for demand fulfillment. Equations (4) repre-
sent the inventory balance constraints for unprotected stored
sterile medical devices with storage time h ≥ 1. However,
these restrictions also ensure that medical devices that reach
the maximum storage time h = hmax + 1 in period t will
lose their sterile condition. Equations (5) represent the inven-
tory balance constraints for protected storedmedical devices.
Constraints (6) describe the inventory balance equations for
nonsterile medical devices, including medical devices with
an expired storage time.

The constraints (7) link the integer variables for procure-
ment Qo

kt with the binary variables γ o
kt . If medical device k is

ordered in period t (Qo
kt > 0), an ordering process is needed.

This forces the binary order variable γ o
kt to the value one. The

parameter bigMkt represents a sufficiently large number and
is defined as follows:

bigMkt =
T∑

τ=t

dkτ ∀ k ∈ K, t ∈ T . (17)

Constraints (8) combine the reprocessing quantities Qp
kst

and Qu
kst with the number of reprocessing operations χr

st .
If at least one medical device k is reprocessed in period t
with type s, i.e.,

∑
k

(
Qp

kst + Qu
kst

)
> 0, the integer variable

χr
st equals the required number of reprocessing operations.

The capacity constraints (9) ensure that the given capacity
of the reprocessing resource is not exceeded; i.e., the maxi-
mum number of reprocessing operations that can be carried
out in period t is limited. Constraints (10) and (11) restrict
the storage capacities of protected and unprotected stored
sterile medical devices. Constraints (14) to (16) define the
dimensions of the decision variables.

If the reprocessing capacity crt is set to zero for all peri-
ods, medical devices cannot be reprocessed and the complete
period-specific demand dkt for medical device k must be sat-
isfied by procurement. In this case, the PRPP corresponds to
an uncapacitated lot sizing problem with inventory bounds.
Since this lot sizing problem is proven to be NP-hard (see
[2]), the PRPP is alsoNP-hard. Due to theNP-hardness of
the PRPP, the computational effort to solve this problem opti-
mally using a standard MILP solver is usually prohibitively
large for all but tiny problem instances. Thus, a heuristic is
required to determine an appropriate solution within a rea-
sonable time frame.
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5 A solution approach based on column
generation

5.1 Idea of Dantzig-Wolfe decomposition and
column generation

The proposed solution approach is based on Dantzig-Wolfe
decomposition, which is used to reformulate the PRPP. The
PRPP is decomposed into a master problem denoted as MP-
PRPP and K device-specific subproblems denoted as SP-
PRPPk . A column generation (CG) approach is applied to
solve the master problem. The master problem is initialized
with a small number of columns. In an iterative procedure,
the subproblems are solved to generate new columns for the
master problem. If a new column will lead to a reduction
in the objective function value of the master problem, it is
incorporated into the master problem. However, the column
generation approach terminates if no further columns can be
generated that reduce the current objective function value of
the master problem. The process of the CG approach for the
PRPP is described below. Further implementation details of
the solution approach can be found in [31].

5.2 Themaster problem

From a mathematical perspective, the master problem corre-
sponds to a set partitioning reformulation of the PRPP. The
objective of the Set Partitioning Problem (SPP) is to select
exactly one procurement and reprocessing plan for eachmed-
ical device k at a minimal total cost. The selection of plans
must meet the capacity restrictions for protected and unpro-
tected storage as well as for reprocessing.

First, it is assumed that all possible and feasible pro-
curement and reprocessing plans Nk are known for medical
device k in advance. A procurement and reprocessing plan
is feasible if the demand is met in each period. A procure-
ment and reprocessing plan n is described by procurement

quantities Q
o(n)

kt and decisions γ
o(n)
kt . In addition, each plan n

provides information regarding the quantities of protected
and unprotected reprocessed medical devices k of type s in

period t , which are described by parameters Q
p(n)

kst and Q
u(n)

kst .
Furthermore, each plan n contains the end-of-period inven-

tory of protected I
p(n)

kt and unprotected I
u(n)

kth stored medical
devices k in period t , where the storage duration h is also
known.

The fixed and variable procurement costs of medical
device k in plan n can be determined with respect to γ

o(n)
kt

and Q
o(n)

kt . For plan n, the variable packaging costs of med-

ical device k can be calculated using the parameters Q
p(n)

kst

and Q
u(n)

kst . However, the reprocessing costs depend on the
selected plans and the number of reprocessing operationsχr

st .

Thus, these costs must be implicitly taken into account in the
objective function of the master problem.

The parameters Q
p(n)

kst and Q
u(n)

kst allow for the determina-
tion of the capacity requirements for reprocessing medical
device k using type s in period t with plan n. In addition, the
required storage capacity for protected or unprotected stor-

age can be derived with respect to I
p(n)

kt and I
u(n)

kth for medical
device k in period t with plan n.

For the selection of a plan n for medical device k, the
binary variable ϑkn is used, which is defined as follows:

ϑkn =
{
1, if plan n ∈ Nk is selected for medical device k
0, otherwise.

(18)

The objective of the master problem is to select exactly
one plan for each medical device k so that the total procure-
ment and reprocessing costs are minimized and the capacity
restrictions are met.

The model formulation of the master problem is intro-
duced using the additional notation in Table 2.

Model MP-PRPP

min Z =
∑

k∈K

∑

n∈Nk

∑

t∈T

(
pcok · Qo(n)

kt + ocok · γ
o(n)
kt

)
· ϑkn

+
∑

k∈K

∑

n∈Nk

∑

s∈Sk

∑

t∈T

(
pcpk ·Qp(n)

kst + pcuk ·Qu(n)

kst

)
·ϑkn

+
∑

s∈S

∑

t∈T
scrs · χr

st (19)

subject to dual variables

∑

k∈Ks

∑

n∈Nk

volk ·
(
Q

p(n)

kst + Q
u(n)

kst

)
· ϑkn ≤ volmax · χr

st

∀ s ∈ S, t ∈ T → πr
st (20)

∑

s∈S
tsrs · χr

st ≤ crt ∀ t ∈ T → πr
st (21)

∑

k∈K

∑

n∈Nk

⎛

⎝
hmax∑

h=0

volk · I u(n)

kth

⎞

⎠ ·ϑkn ≤ cI
u ∀t ∈ T → π I u

t

(22)

∑

k∈K

∑

n∈Nk

(
volk · I p(n)

kt

)
· ϑkn ≤ cI

p ∀ t ∈ T → π I p
t

(23)
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Table 2 Additional notation used for master problem MP-PRPP

Indices and index sets:

n ∈ Nk set of procurement and reprocessing plans
for medical device k

Parameters:

I
p(n)

kt protected end-of-period inventory of sterile
medical device k in period t of plan n

I
u(n)

kth unprotected end-of-period inventory of
sterile medical device k in period t of
plan n

Q
o(n)

kt ordered quantity of medical device k in
period t of plan n

Q
p(n)

kst reprocessing quantity of medical device k
in period t of type s with subsequent
protected storage in plan n

Q
u(n)

kst reprocessing quantity of medical device k
in period t of type s with subsequent
unprotected storage in plan n

γ
o(n)
kt level of the binary ordering variable of

medical device k in period t in plan n

Decision variables:

ϑkn ∈ {0, 1} binary selection variable for plan n of
medical device k

Dual variables:

πr
st ∈ R dual variable for reprocessing capacity

constraints of type s in period t

π I p
t ∈ R dual variable for protected storage capacity

constraints in period t

π I u
t ∈ R dual variable for unprotected storage

capacity constraints in period t

σk ∈ R dual variable for convexity constraints of
medical device k

∑

n∈Nk

ϑkn ≥ 1 ∀k ∈ K → σ r
k (24)

ϑkn ∈ {0, 1} ∀ k ∈ K, n ∈ Nk → πr
t (25)

χr
st ∈ N

+
0 ∀ s ∈ S, t ∈ T → πr

t (26)

The objective function (19) minimizes the total costs.

These costs include variable (pcok · Qo(n)

kt ) and fixed pro-

curement costs (ocok · γ o(n)
kt ), variable packaging costs (pcpk ·

Q
p(n)

kst + pcuk · Qu(n)

kst ) each associated with the selected plans
and fixed reprocessing costs.

The inequalities (20) link the selection variables ϑkn with
the number of performed reprocessing operations χr

st . If a
plan n is selected (ϑkn > 0) with positive reprocessing

quantities (Q
p(n)

kst + Q
u(n)

kst > 0), at least one reprocessing

operation is needed, i.e., χr
st > 0. The dual variables πr

st cor-
respond to these restrictions. The capacity restrictions (21)
guarantee that the reprocessing capacity crt is not exceeded.
The corresponding dual variables are denoted by πr

st .
Constraints (22) and (23) reflect the capacity limitations

for unprotected and protected storage. The corresponding
dual variables are denoted by π I u

t and π I p
t .

The inequalities (24) ensure that at least one plan is
selected for each medical device k. Theoretically, more than
one plan can be selected. However, due to the minimization
of the objective function, exactly one plan must be selected
because additional plans lead to additional costs. The dual
variables of these restrictions are denoted by σk .

It is worth mentioning that if all procurement and repro-
cessing plans are known in advance, the optimal solution
of the SPP equals the optimal solution of the PRPP. How-
ever, since the number of plans increases exponentially,
the determination of all plans in advance would be very
time-consuming. Thus, themaster problem is solved by a col-
umn generation approach, where new plans are determined
iteratively by solving medical device-specific subproblems.
These new plans are subsequently included in the master
problem. A new procurement and reprocessing plan n is
included in the master problem, i.e., in the setNk , if it yields
a reduction in the current objective function value, i.e., if the
reduced costs are negative.However, a rising number of plans
will lead to a substantial increase in the numerical effort to
solve the master problem to optimality. Thus, only the LP
relaxation of the master problem is solved, i.e., ϑkn ∈ [0, 1]
and χr

st ∈ R
+
0 . Now, convex combinations of procurement

and reprocessing plans are allowed according to (24). In gen-
eral, the column generation approach does not terminate with
an integer solution, but provides a lower bound that can be
used to determine a feasible upper bound as described below.

5.3 Themedical device-specific subproblem

The objective of the medical device-specific subproblem SP-
PRPPk is to generate new procurement and reprocessing
plans for each medical device k. The notation of the med-
ical device-specific subproblem SP-PRPPk is known from
Table 1, additional notation is provided in Table 3.

In each iteration of the CG approach, a new plan is added
to the relaxed master problem. The master problem is solved
again, and the dual variablesσ k ,πr

st ,π
I u
t andπ I p

t are updated
and incorporated into the objective function of each subprob-
lem as parameters σ k , πr

st , π
I u
t and π I p

t .

Model SP-PRPPk of medical device k

min Z SP
k =

∑

t∈T

(
pcok · Qo

kt + ocok · γ o
kt

)
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Table 3 Additional notation for medical device-specific subproblem SP-PRPPk

Parameters:

πr
st level of the dual variable πr

st corresponding to the reprocessing capacity restriction of type s in period t

π I p
t level of the dual variable π I p

t corresponding to the protected storage capacity restriction in period t

π I u
t level of the dual variable π I u

t corresponding to the unprotected storage capacity restriction in period t

σ k level of the dual variable σk corresponding to the convexity constraints of medical device k

+
∑

s∈Sk

∑

t∈T

(
pcpk · Qp

kst + pcuk · Qu
kst

)

−
∑

s∈Sk

∑

t∈T
πr
st · volk · (

Qp
kst + Qu

kst

)

−
∑

t∈T

hmax∑

h=0

π I u
t ·volk · I ukth−

∑

t∈T
π I p
t · volk · I pkt−σ k

(27)

subject to

Ap
kt +

hmax∑

h=0

Au
kth = dkt ∀ t ∈ T (2k)

∑

s∈Sk

Qu
kst − Au

kt0 = I ukt0 ∀ t ∈ T (3k)

αh · I uk,t−1,h−1 − Au
kth = I ukth ∀ t ∈ T , h ∈ H\{0} (4k)

I pk,t−1 + Qo
kt +

∑

s∈Sk

Q p
kst − Ap

kt = I pkt ∀ t ∈ T (5k)

I rk,t−1+rkt+
hmax+1∑

h=1

(1−αh)·I uk,t−1,h−1−
∑

s∈Sk

(
Qp

kst+Qu
kst

)= I rkt

∀ t ∈ T (6k)

Qo
kt ≤ bigMkt · γ o

kt ∀ t ∈ T (7k)

Ap
kt , Au

kth ∈ N0 ∀ t ∈ T , h ∈ H (12k)

I pkt , I rkt , I ukth ∈ N0 ∀ t ∈ T , h ∈ H (13k)

Qo
kt , Qp

kst , Qu
kst ∈ N0 ∀ s ∈ Sk, t ∈ T (14k)

γ o
kt ∈ {0, 1} ∀ t ∈ T (16k)

The objective function (27)minimizes the reduced costs of
the newly derived procurement and reprocessing plan for the
respectivemedical device k. The restrictions Eqs. (2k) – (7k),

(12k) – (14k) and (16k) are equivalent to the medical device-
specific constraints of the PRPP.

Notably, the subproblem described is an extension of the
single-item lot-sizing problemwith perishable inventory pre-
sented by [19].

5.4 Outline of the column generation approach

A flow chart of the solution approach is presented in Fig. 2,
cf. [31] . The column-generation approach is initialized with
a dummy plan n0 ∈ Nk for each medical device k. In this
plan, all procurement and reprocessing quantities are fixed

at 0; i.e., Q
o(n0)
kt = 0, γ o(n0)

kt = 0 and Q
p(n0)
kst = Q

u(n0)
kst = 0.

In addition, no medical device is stored either protected

or unprotected; i.e., I
p(n0)
kt = I

u(n0)
kth = 0. This means that

these dummy plans do not consume any capacity in the MP-
PRPP and are therefore formally feasible. However, these
dummy plans cannot satisfy demand. Thus, to prevent the
later selection of these dummy plans, prohibitively high costs
are assigned to them.

After initialization, the iterative solutionprocess begins. In
each iteration, the LP relaxation of theMP-PRPP is solved to
obtain updated dual variables for the next subproblem.A new
procurement and reprocessing plan with negative reduced
costs is determined by solving the medical device-specific
subproblem SP-PRPPk to optimality using CPLEX. If such
a plan exists, it is included in the relaxed MP-PRPP. Since
the inclusion of a new plan involves an improvement in the
objective function value of the relaxed master problem, the
counter of iterations i toV is reset to zero. Additionally, the
relaxedmaster problem is solved once again, the subproblem
of the medical device with the next higher index is consid-
ered, and a new iteration begins.

The inclusion of a new plan in the restricted MP-PRPP
is accompanied by a change in the dual variables. Based on
these updated dual variables, the next subproblem is solved. If
no procurement and reprocessing plan with negative reduced
costs can be identified, the counter i toV increases by 1
(i toV := i toV + 1). If the counter i toV is less than the
number K of medical devices, the medical device index is
increased by1or reset to 1 (if k = K )before the next iteration
starts (right branch in Fig. 2). Otherwise, the counter i toV

corresponds to the number K of medical devices. In this
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Fig. 2 Flow chart of the CG
approach for PRPP
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case, the procedure terminates because the objective func-
tion value of the restricted master problem has not improved
for i toV = K iterations, and therefore, no further procure-
ment and reprocessing plan for any of the medical devices
exists, which reduces the objective function value of themas-
ter problem.

If a dummy plan n0 has been selected for at least one
medical device k, a feasible solution for the PRPP does not
exist. Otherwise, the objective function value of the relaxed
MP-PRPPconstitutes a feasible lower bound.Notably, if both
the selection variablesϑkn and the variables for the number of
reprocessing operations χr

st are integers after the termination
of the column generation approach, this lower bound is also
the optimal solution of the unrelaxed MP-PRPP and is thus
also optimal for the PRPP.

However, it is usually the case that not all variables in
the lower bound are integers. Nevertheless, the solution of
the (relaxed) MP-PRPP can be used to solve the monolithic
PRPP. Based on the procedure of [35], the corresponding
binary variables γ o

kt of the procurement and reprocessing
plans n for medical device k whose selection variables are
integers, i.e., those that satisfy ϑkn = 1, are fixed in the

solution of the relaxed master problem. Then, the reduced
PRPP can be solved using CPLEX in a comparatively short
amount of time under the assumption that the binary vari-
ables can be fixed for a large portion of medical devices. It
should be noted that because these variables are fixed, a fea-
sible solution for the reduced PRPP cannot be guaranteed,
although such a solution exists for the monolithic problem.
In addition, fixing these variables can prevent the global opti-
mum from being found.

Furthermore, the variables χr
st from the final solution of

the relaxed master problem can be rounded down and fixed
according to (28) in the reduced PRPP; i.e.,

χr
st = ⌊

χr
st

⌋ ∀ s ∈ S, t ∈ T . (28)

Notably, this fixed number of reprocessing operations is
always feasible with respect to capacity constraints (9),
whereas rounding up may lead to a capacity overload. How-
ever, even with rounded down values, there is no guarantee
that a feasible solution exists for the reduced PRPP. Thus,
the fixation of the integer reprocessing variable χr

st can be
removed after a short time limit. At best, a feasible initial
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solution will have been determined within this short time
limit. After a second time limit to further improve the initial
solution, this approach terminates with a procurement and
reprocessing plan.

6 Numerical analysis

6.1 Design of test instances

For the numerical analysis, we define three problem classes
(PCs) by varying the number of medical devices. A plan-
ning horizon of one week is assumed, and each day of the
week is divided into three time slots, each with a length of
eight hours. Thus, in total, 21 periods are considered. The
maximum storage duration is limited to 48 hours for unpro-
tected stored medical devices. Thus, seven storage periods
(h ∈ {0, . . . , 6}) must be taken into account; i.e., in storage
period h = 5, a medical device is stored for six periods and
thus for 48 hours. Hence, in the subsequent storage period
h = 6, the medical device exceeds the maximum storage
duration and is no longer sterile. Furthermore, three differ-
ent time-temperature combinations (reprocessing types) are
defined. Table 4 gives an overview of the PCs.

As shown in Table 5, selected input parameters are sys-
tematically varied in each PC to analyze their impact on the
numerical effort and solution quality. One test instance (TI)
is generated for each parameter combination. Thus, in total,
216 test instances are examined for each problem class. The
generation of test instances is described inmore detail in [31]
and Appendix A.

The numerical results presented in this paper are based on
[31]. We implemented the model formulation of the PRPP
and the solution approach based on column generation in
the algebraic modeling system GAMS (Ver. 30.3.0). For the
solution approach and the determination of reference values,
we used CPLEX 12.10. The numerical study was conducted
on the LENA cluster of the Leibniz Universität IT Services
in Hannover using a single thread with a 2.40 GHz processor
and 30 GB of RAM.

Table 4 Dimensions of problem classes

Medical Periods Reprocessing Maximum shelf
devices |K| |T | types |S| life |H|

PC I 20 21 3 7

PC II 40 21 3 7

PC III 100 21 3 7

Table 5 Number of scenarios for the examined input parameters

Abbreviation Symbol # Characteristics

Start of planning [Monday
or Thursday]

− 2

Coefficient of variation of
demand

vcd 2

Return portion βk 3

Capacity per reprocessing
operation

volmax 3

Resource capacity in SSD crt 3

Storage capacity of
unprotected stored
medical devices

cI
u

2

6.2 Reference solutions

The CPLEX solver was able to determine a feasible solution
for each test instance. Hereafter, the objective function value
is called the CPLEX reference solution. Table 6 provides an
overview of the solution quality of these reference solutions.

The computational time is limited for each test instance
with respect to the problem class. This time limit is reported
in column TimLimCPX . For each PC, the average integrality
gap is denoted by ∅IntGapCPX , where the instance-specific
integrality gap IntGapCPX

T I is derived as follows:

IntGapCPX
T I = ObjFunCPX

T I − LowBCPX
T I

ObjFunCPX
T I

· 100%.

For each TI, the parameter ObjFunCPX
T I describes the best

known objective function value, and LowBCPX
T I denotes the

best lower bound obtained by CPLEX within the given time
limit. In column IntGapCPX

max , the maximum integrality gap
is reported for each PC. Column OptSolCPX contains the
proportions of optimally solved test instances.

As depicted in Table 6, the average integrality gap
∅IntGapCPX is relatively small, less than 1% for all PCs. In
addition, the maximum integrality gap IntGapCPX

max is rather
small; it is 2.5% in PC III. Despite the large time limit, even
in PC I, only a few test instances can be solved to the proven

Table 6 Solution quality of CPLEX reference solutions

TimLimCPX
∅IntGapCPX IntGapCPX

max OptSolCPX

PC I 3,600 s 0.36% 1.43% 2.78%

PC II 7,200 s 0.73% 1.92% 0.93%

PC III 14,400 s 0.82% 2.50% 0.00%
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optimality. Furthermore, Table 6 shows that both the average
and the maximum integrality gaps increase with increasing
problem size.

6.3 Results of the column generation-based solution
approach

Analysis of the lower bound
In this section, the solution quality of the heuristic approach is
presented and discussed. First, the quality of the lower bound
obtained by column generation is evaluated in Table 7.

A feasible lower bound was determined for each test
instance. The entries in column TimCG provide informa-
tion regarding the average computational time of the CG
approach. For each TI, the relative deviation IntGapCG

T I
between the determined lower bound LowBCG

T I and the
CPLEX reference solution ObjFunCPX

T I is calculated as fol-
lows:

IntGapCG
T I = ObjFunCPX

T I − LowBCG
T I

ObjFunCPX
T I

· 100%

Hence, column ∅IntGapCG contains the average integral-
ity gap for each PC. Column IntGapCG

max shows the maximum
deviation of the lower bound from theCPLEXreference solu-
tion. Furthermore, the proportion of medical devices with an
integer solution in the lower bound, i.e., ϑkn = 1, is reported
in column ∅|Kfix|. Additionally, in column ∅IntGapLP , the
average deviation of the lower bound is compared to the LP
relaxation of the PRPP, where

IntGapLPT I = ObjFunCPX
T I − ObjFunLPT I

ObjFunCPX
T I

· 100%.

For each TI, the optimal solution of the LP relaxation is
denoted by ObjFunLPT I .

As expected, the computational time required to deter-
mine the lower bound increases with the number of medical
devices. Nevertheless, even in PC III, the computational time
is less than nine minutes on average. However, within each
PC, the computational time of individual test instances devi-
ates substantially from the average. The boxplot diagram in
Fig. 3 gives a better impressionof theobserved computational

Table 7 Characteristics of the lower bound determined by column gen-
eration

TimCG ∅IntGapCG IntGapCG
max ∅|Kfix| ∅IntGapLP

PC I 123 s 0.86% 2.77% 68.29% 2.98%

PC II 268 s 1.52% 3.55% 78.06% 3.56%

PC III 528 s 1.20% 3.65% 86.44% 3.49%

times for each PC. Notably, the box plot whiskers describe
the data points that are limited to a maximum of 1.5 times
the interquartile range.

For 75% of the instances in PC I, the column generation
approach terminates in less than 133 seconds. Furthermore,
the computational time for 75% of the instances does not
exceed 300 seconds in the case of PC II or 600 seconds
in the case of PC III. Individual outliers can be observed
for all PCs, deviating significantly from the average com-
putational time. However, the computational time of these
outliers is less than 2.5 times the average computational time.
With one exception, all outliers belong to parameter constel-
lations in which the planning horizon begins on Thursday. In
these test instances, the reprocessing capacity on the week-
end is used to increase the inventory of protected stored
medical devices. Thus, the capacity for protected storage
also becomes scarce in these periods. This scarcity substan-
tially influences the structure of the generated procurement
and reprocessing plans since more plans must be generated
during column generation. On average, test instances whose
planning horizon begins on a Thursday require 1.3 times the
computing time of TIs whose planning begins on a Mon-
day. Notably, the capacity of protected storage is not fully
exhausted in any period if planning begins on a Monday.

The average integrality gap ∅IntGapCG is lower than
1.6% for all problem classes. Furthermore, the lower bound
obtained by column generation is obviously tighter than the
LP relaxation. The maximum deviation IntGapCG

max does not
exceed 4.7%, which also indicates the high quality of the
lower bound obtained by column generation. The portion
∅|Kfix| of medical devices for which exactly one order quan-
tity and reprocessing plan are selected in the final solution
of the relaxed master problem (ϑkn = 1) increases from
approximately 68% in PC I to more than 86% in PC III.

Analysis of the upper bound
Based on the generated lower bound, a feasible solution is
determined for each TI. The solution quality of these upper
bounds is analyzed below. The numerical results are summa-
rized in Table 8.

Although a large number of binary variables can be fixed
after the column generation approach terminates, the reduced
PRPP still has a large number of integer decision variables.
Therefore, a PC-specific time limit is also used for the gen-
eration of a feasible solution. This time limit is provided in
column TimLimUB . To quickly determine a (first) feasible
upper bound, the number of reprocessing operations χr

st of
type s obtained from the final solution of the relaxed mas-
ter problem is rounded down to the next integer and initially
fixed. This fixation reduces the solution space and usually
accelerates optimization. However, the fixation of the vari-
able χr

st is removed after amaximum of 10% of the time limit
specified in column TimLimUB . Column FeasSolUB

10% reports
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Fig. 3 Spread of the computational times of the CG approach

the proportion of instances with feasible solutions that were
already found after 10% of the time limit had passed.

The remaining computational time is used to improve
this initial solution; however, after that, all binary procure-
ment variables are continuously fixed. Otherwise, if no initial
solution is found, the previous fixation of variables χr

st is
removed, and the reduced PRPP with only fixed binary vari-
ables is solved. Using this approach, a feasible upper bound
UpBT I , i.e., a feasible solution, is found for each TI. The
deviation of this upper bound from the CPLEX reference
solution ObjFunCPX

T I is calculated as follows:

DEVUB,CPX
T I = UpBT I − ObjFunCPX

T I

ObjFunCPX
T I

· 100%.

In column ∅DEVUB,CPX , the PC-specific deviation is pro-
vided. Column BetSolUB reports the proportion of test
instances with an upper bound UpBT I that is at least as
good or better than the CPLEX reference value ObjFunCPX

T I .
Furthermore,∅IntGapUB,LB describes the average deviation
between the upper and lower bounds determined by column
generation and can be derived for each instance as follows:

IntGapUB,LB
T I = UpBT I − LowBCG

T I

LowBCG
T I

· 100%.

For each test instance, the time limit provided to determine
an upper bound was fully exhausted. For more than 96% of
the test instances, a feasible initial solution was determined

Table 8 Characteristics of the
upper bound obtained by
column generation

TimLimUB FeasSolUB
10% ∅DevUB,CPX

∅IntGapUB,LB BetSolUB

PC I 180s 97.22% 0.23% 1.10% 10.18%

PC II 300s 96.19% 0.39% 1.95% 11.57%

PC III 600s 99.54% 0.75% 1.98% 14.81%
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based on the fixed number of reprocessing operations. The
average computational time required to determine this initial
solution for PRPP based on this fixation was less than one
second in the case of PC I, less than five seconds for PC II
and less than 21 seconds for PC III.

When the time limit TimLimUB is reached, on average,
the upper bound deviates by less than 1% from the CPLEX
reference solution for all PCs. This emphasizes the high solu-
tion quality. This deviation tends to increase slightly in all
PCs if the reprocessing capacity crt is decreased. The inte-
grality gap ∅IntGapUB,LB is less than 2% even in PC III and
is therefore very small.

In addition, for more than 10% of the instances, a solution
was found that is at least as good or better than the CPLEX
reference solution. The average computational effort needed
to determine this solution amounts to less than 10% of the
provided time limit for CPLEX to generate a reference solu-
tion. However, it is possible that CPLEX will find a good
solution at the very beginning of the optimization process
and use themajority of the computational effort to prove opti-
mality or to raise the lower bound. Thus, the investigations
below should allow a fairer comparison between CPLEX and
the proposed solution approach.

Reference solutions with a comparable computational time
To define an admissible time limit for CPLEX to determine
a reference solution for each PC, the average computational
time TimCG for generating the lower bound (see Table 7)
was first rounded up to the next full minute. Then, the given
time limit TimLimUB for generating an upper bound, accord-
ing to Table 8, was added. Since the computational effort
for determining the lower bound varies depending on the
instance, the sum of the run times was multiplied by a factor
of 1.5. The resulting PC-specific time limit is shown in col-
umn TimLimCPX

red in Table 9. Notably, within this new time
limit, the solution approach based on column generation ter-
minates earlier in more than 98% of the instances. This time
limit corresponds to about an eighth of the previous time

limit that was given to CPLEX for determining the reference
solutions in Section 6.2.

Column FeasSolCPX
red in the upper part of Table 9 indi-

cates the proportion of instances for which CPLEX found
a feasible solution within the reduced time limit. For each
test instance, the integrality gap IntGapCPX

red is determined.
Column ∅IntGapCPX

red shows the average integrality gap of
each PC. In column IntGapCPX

max,red, the maximum integrality
gap is given.

The results of the proposed solution approach are described
in the lower part of Table 9. The structure of this table is
similar to the structure of Table 8. The additional column
DevUB,CPX

max,red indicates the maximum deviation of the upper

bound from the new reference solution. Column BetSolUB
red

again gives the proportion of instances for which the objec-
tive function value is at least as good or better than the new
reference solution. Notably, for the comparison, only test
instances for which CPLEX was able to find a feasible solu-
tion within the specified new time limit were examined.

Within this new time limit, CPLEX was not able to find a
feasible solution for all TIs. The portion of TIs for which no
feasible solution was found within this time limit increases
with the number of medical devices. While CPLEX found
a feasible solution for more than 98% of instances in PC I
and II, CPLEX failed to determine a feasible solution for 28
of 216 test instances in PC III. Our solution approach, on the
other hand, was able to generate a feasible solution with less
computational effort for all TIs.

For the TIs with a feasible solution, the average integrality
gap ∅IntGapCPX

red is relatively small for all PCs. Integrality
gaps higher than 25% are only found for individual outliers.
It is worth mentioning that the proposed solution approach
determines feasible solutions of high quality that deviate
by less than 0.4% from the reference solution on average,
even for the largest PC. For approximately 30% of the test
instances, the solution approach terminates with a feasible
solution that is at least as good as or better than the new
CPLEX reference solution.

Table 9 Comparison of the
reference solutions with a
reduced time limit

CPLEX solver

FeasSolCPX
red ∅IntGapCPX

red IntGapCPX
max,red TimLimCPX

red

PC I 99.07% 0.52% 1.98% 480 s

PC II 98.61% 1.04% 2.70% 900 s

PC III 87.04% 1.22% 25.17% 1800 s

Solution approach

FeasSolUB
red ∅DevUB,CPX

red DecUB,CPX
max,red BetSolUB

red

PC I 100.00% 0.13% 1.37% 30.55%

PC II 100.00% 0.14% 3.78% 35.65%

PC III 100.00% 0.32% 16.15% 27.78%
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6.4 Comparison to first–come-first-served
simulation

To provide a baseline for further comparison, we follow the
idea of [10] to use a first-come–first-served (FCFS) approach
for reprocessing medical devices. Such a FCFS approach is
quite common in SSDs. Therefore, we implemented a simu-
lation approach which is guided by the FCFS principle.

The procedure for each period t can be described as fol-
lows:

• At the beginning of each period, the net demand is derived
for each medical device k by taking the current inven-
tory into account. Notably, the inventory is withdrawn
according to the FIFO principle, where medical devices
in unprotected storage are preferred.

• Based on the period-specific returns rkt for all medical
devices, the returns are randomly arranged unit by unit
and stored in serial order. Following this order, we try to
assign all returned units to a reprocessing operation via
the following procedure:

1. If at least one reprocessing operation with sufficient
capacity is scheduled, the current medical device unit
is assigned to the reprocessing operation with the
fastest reprocessing time,
i. if there is unsatisfied demand for this medical

device, this unit is taken directly for demand sat-
isfaction;

ii. else if the net demand has been fulfilled and
enough storage capacity is left, this unit is stored
(unprotected storage preferred);

iii. otherwise the current unit is skipped.

• Regardless of which of the above cases i. to iii. was
selected, inventory levels are set according to inventory
balance constraints (2) to (6).

2. else if the capacity of the reprocessing resource is
sufficient and either net demand for the current med-
ical device is unsatisfied or storage capacity is left,
an additional reprocessing operation is scheduled
(preferably with the fastest reprocessing time, that
can reprocess the current medial device unit) and go
to 1;

3. otherwise the current unit is skipped.

• If the current medical device unit has no successor, the
assignment for the current period ends. Demand that is
not met by neither inventory nor reprocessing must be
procured. Medical device units that have been skipped
are considered first in the following period t + 1.

We passed the obtained simulation results to the PRPP,
where we fixed the variable values, i.e., variables (12) –
(16), to verify feasibility of the procurement and reprocessing
plans.

Next, we analyze the results of the simulation from aman-
agerial perspective; therefore, six TI of PC 1 were selected
for the simulation that differ in available resource cr (low,
medium, and high) and storage capacity cI

u
(low, high).

For each instance, 1000 replications were performed, and
the mean values were determined. These mean values are
compared with the corresponding solution of the monolithic
PRPP. Our evaluation concentrates on the obtained procure-
ment and reprocessing plans.

An instance-specific cost comparison is provided in
Table 10.

The results of the simulation study show that the mean
values of the total costs are on average 3.76 times higher
than the objective function value of the monolithic PRPP.
The 95% confidence interval is rather small. In the case of
low resource capacity, the total cost is higher, but the 95%
confidence interval is smaller compared to the case of high
resource capacity.

While the total number of reprocessing operations sched-
uled during the simulation is approximately 17.5% lower
than that of the solution of the PRPP, the simulated capacity
consumption is only slightly lower with a deviation between
1.3% and 4.5%. This can be explained by the fact that slow
reprocessing operations were scheduled more often than fast
reprocessing operations. In contrast, fast reprocessing oper-
ations are prioritized during optimization to increase the
number of reprocessed devices and thus avoid procurement.
During the simulation, medical devices that can be repro-
cessed by a faster reprocessing operation are also integrated
into slow reprocessing operations. After optimization, this
case is rarely observed. Scheduling a larger number of slow
reprocessing operations means that the scarce capacity of
the decontamination resource is used up more quickly. As a
result, orders must be placed myopically and therefore much
more frequently. For example, we found that the simulated
solutions exceeded both the orders placed and the quantities
procured by a factor of four.

The simulation results also show that some medical
devices exceeded their maximum shelf life after reprocess-
ing. Therefore, reprocessing of this device was unnecessary.
This happens very rarely for medical devices with regular
high demand. However, for products with sporadic demand,
we observed that products exceeded shelf-life up to twice
a week. This results in unnecessary reprocessing costs as
well as unnecessary capacity consumption. In the opti-
mized solution, shelf-life exceedance does not occur after
reprocessing.
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Table 10 Cost comparison
between PRPP and simulation
study

Case (cI
u
/cr ) Obj. PRPP Mean Value Mean Deviation

incl. 95% confidence interval

Case 1 (high/low) 95,793.5 370, 727.3 ± 190.6 387.01% ± 0.20%

Case 2 (high/medium) 86,921.5 335, 693.5 ± 265.7 386.20% ± 0.31%

Case 3 (high/high) 80,002.5 287, 354.9 ± 529.3 359.19% ± 0.66%

Case 4 (low/low) 95,868.5 363, 698.3 ± 159.1 379.37% ± 0.17%

Case 5 (low/medium) 87,482.5 332, 738.4 ± 203.7 380.35% ± 0.23%

Case 6 (low/high) 80,937.5 294, 942.2 ± 424.5 364.41% ± 0.52%

7 Conclusion and outlook

In this paper, we presented a newmodel formulation for inte-
grated procurement and reprocessing planning of reusable
medical devices with a limited shelf life. Based on a surgery
schedule with a planning horizon of one week, the objec-
tive of the PRPP is to determine a feasible procurement and
reprocessing plan for the SSD in a hospital. To solve the
PRPP, a solution approach based on the principle of Dantzig-
Wolfe decomposition and column generation was presented.
As part of an extensive numerical study, the solution quality
of this approach was examined. The integrality gaps of the
lower bound obtained by column generation are very close
to the optimal solution. The applied solution approach yields
a high solution quality, and the solutions are very close to
the CPLEX reference values. However, the numerical effort
is substantially reduced. When the time limit was reduced,
unlike the presented solution approach, CPLEXwas not able
to find a feasible solution for all TIs.

Future research will address different model extensions.
Regarding the procurement of medical devices, minimum
order quantities or quantity discounts as well as the selec-
tion of external suppliers can be integrated into the model
formulation. Regarding reprocessing, the model formula-
tion can be extended to take several parallel resources into
account to reduce bottlenecks in reprocessing operations.
However, if these resources do not differ, this extension
involvesmany redundant or symmetric solutions. Thus, addi-
tional constraints are required to avoid symmetries. Hence,
an adaptation of the solution approach is likely needed, since
a smaller number of integer variables can be expected to
appear in the final solution of the relaxed master problem.
Additionally, the subproblems can be solved heuristically to
reduce the numerical effort. However, to guarantee a feasible
lower bound, theMILP solver is only required if the heuristic
cannot identify any further plan with negative reduced costs.
This approach can be extended to an exact branch&price
approach, where column generation occurs in each node of
the search tree.

Furthermore, the demand for medical devices is derived
directly from the surgery schedule. Thus, the demand can

be assumed to be deterministic. It is also assumed that the
surgery schedule is executed without any changes, such that
the use of medical devices always takes place in the spec-
ified period. However, due to short-term staff absences or
urgent emergency surgeries, deviations from the schedule
may occur, leading to uncertainty in both demand and return
data. To cope with these uncertainties, e.g. sample average
approaches can be used, cf. [16] and [18], to determine a
robust procurement and reprocessing plan. Depending on
the condition of the used medical device, it may be neces-
sary to go through the reprocessing cycle several times. As a
result, the affected medical device may not be used immedi-
ately after reprocessing. Therefore, further research should
also investigate the robustness of the determined procure-
ment and reprocessing plan. In addition, the simultaneous
consideration of stochastic demand and return data should
be considered.

ADetailed description of the test instances

For the generation of test instances, see also [31], we assume
a hospital in which surgeries of elective patients take place in
two shifts fromMonday to Friday. Therefore, the demand for
medical devices is positive in at most ten periods. Hereafter,
these periods are called surgical periods t ′ ∈ T . In Table 11,
the surgical periods are highlighted in bold.

The SSD, on the other hand, also operates in two shifts
(time slots 1 and 2), but these shifts are fromMonday to Sun-
day. In an alternative scenario, the planning horizon begins on
Thursday to vary the position of the surgical periods. Thus,
the third time slot on Wednesday represents the last period
of the planning horizon in the second scenario.

Table 11 Surgical periods (start of planning: Monday)

Mon. Tue. Wed. Thr. Fri. Sat. Sun.

Time slot 1 1 4 7 10 13 16 19

Time slot 2 2 5 8 11 14 17 20

Time slot 3 3 6 9 12 15 18 21
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Using an ABC analysis, [32] examines both the demand
and the turnover ratio of medical devices. They point out that
a relatively small portion ofmedical devices account formost
of the demand. In contrast, the majority of medical devices
possess an irregular demandwith small quantities. Following
this observation, an XYZ analysis is used to assign medical
devices according to their demand and turnover ratio to one
of three classes κ ∈ {X ,Y , Z}. The characteristics associated
with each class are summarized in Table 12.

Class X includes regularly required basic instruments.
Medical devices in this class are required in each surgical
period; i.e., the demand is comparatively high. Department-
specific instruments constitute Class Y , while Class Z
includes special surgery-specific instruments. The medical
devices in Class Z are therefore required less often. Thus,
these medical devices are only required in one out of ten
surgical periods. For example, in PC I, ten different medical
devices belong to Class Z . Each of these medical devices is
required in a different surgical period. The demand for med-
ical devices in Classes Y and Z is evenly distributed over
the surgical periods.

The expected valueμκ
k of the demand formedical device k

is determined by a uniform distribution in a given inter-
val depending on the assigned κ . μX

k ∈ [150, 250], μY
k ∈

[40, 60] and μZ
k ∈ [4, 6] apply to these integer intervals,

so the class-specific expected values of the demand are
μX = 200, μY = 50 and μZ = 5. Using a (truncated)
normal distribution, the demand dκ

kt ′ is then generated in the
surgical periods t ′ and rounded to the next integer. The stan-
dard deviation is σk = 1

10 ·μκ
k , so the coefficient of variation

vcd is 1
10 . In an alternative scenario, the standard deviation is

σk = 3
10 ·μκ

k ; thus, the coefficient of variation is
3
10 . Notably,

the normal distribution theoretically enables a negative real-
ization of the demand. These realizations are set to 0.

For the proportion of returned medical devices, three
different values are defined in Classes X and Y , namely,(
βX
k , βY

k ∈ {98%, 95%, 90%}). For medical devices of Class
Z , on the other hand, it is assumed that due to the low
turnover ratio and the associated lower level of wear and
tear, no medical devices need to be disposed of (βZ

k = 1).
The return rkt of medical device k in period t is determined
by rkt = �βκ

k · dk,t−2�. The return quantities in the first and
second periods of the planning horizon depend on the class,
and rk1 = rk2 = �βκ

k · μdκ �.

Table 12 Class-specific characteristics of medical devices

surgical periods Proportion Distribution of
with dkt ′ > 0 demand

Class X 10 of 10 �X = 20% dX
kt ′ ∼ N (μX

k , σ 2
k )

Class Y 4 of 10 �Y = 30% dYkt ′ ∼ N (μY
k , σ 2

k )

Class Z 1 of 10 �Z = 50% dZ
kt ′ ∼ N (μZ

k , σ 2
k )

The fixed procurement costs ocok are normalized to ocok =
250 for eachmedical device k. The variable costs pcok for one
unit of medical device k follow a uniform distribution in the
real-valued interval pcok ∈ [25, 125] and are then rounded
off in steps of 0.5.

The medical devices are assigned to the processing types
based on the A0 concept explained in Section 2. Due to the
temperature sensitivity of some medical devices, it can be
expected that only a comparatively small portion of medical
devices can be reprocessed at very high temperatures. Since
compatibility restrictions only exist for temperatures that are
too high, all medical devices can be reprocessed using the
reprocessing type with the lowest temperature. The diagram
in Fig. 4 illustrates this relationship.

The medical devices are assigned to the subset Ks1 with
probability P[k ∈ Ks1 ] = 1

3 . If an assignment is made, these
medical devices can also use reprocessing types s2 and s3.
Otherwise, the remainingmedical devices are assigned to the
subsetKs2 with probability

1
2 ; i.e., P[k ∈ Ks2 ] = 1

3 + 2
3 · 12 =

2
3 . The sterilization type s3 can be used by allmedical devices,
i.e., (P[k ∈ Ks3 ] = 1).

The variable packaging costs for unprotected and pro-
tected storage are pcuk = 1 or pcpk = 2 per unit of
medical device k. The reprocessing costs scrs per operation
of type s and the associated duration tsrs are also based
on the A0 concept. Consequently, the reprocessing time
decreases with increasing temperature. Furthermore, repro-
cessing types with high process temperatures incur higher
costs due to the higher energy requirement. Table 13 shows
the reprocessing costs scrs and the duration ts

r
s per operation

of type s.
The space requirement volk for reprocessing one unit

of medical device k is uniformly distributed in the interval
volk ∈ [5, 15]. The average space requirement vol

κ
is deter-

mined for each class κ . The capacity volmax per reprocessing
operation depends on the PC. In PC I, vol

max = 250 capac-
ity units per operation are available, while in PC II or PC III,
500 or 1, 000 capacity units per operation are available. The
capacity per reprocessing operation is varied in each problem
class by the factor vg ∈ {4/5, 1, 6/5}.

Fig. 4 Assignment of medical devices to reprocessing types Ks
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Table 13 Reprocessing type-specific costs and duration per reprocess-
ing operation

Costs scrs Duration tsrs

Reprocessing type s1 200 25

Reprocessing type s2 100 40

Reprocessing type s3 50 60

The capacity depends on the PC and the regular repro-
cessing capacity vol

max
. From Monday to Friday, there are

crt =
⌈(

1 − cem
) · |K| · ( ∑

κ �κ · μκ · vol
κ) · ∑

s∈S tsrs
2 · |S| · vol

max

⌉

capacity units available in the first and second time slots,
while this capacity is halved on weekends. Furthermore,
there is no capacity available in the third time slot. Similar
to the surgery schedule, the capacity for reprocessing medi-
cal devices for emergency patients is reserved in the SSD in
the amount of cem ∈ [0, 1]. This factor is examined in three
different forms

(
cem ∈ {20%, 10%, 0%}).

The PC-specific storage capacity for protected medical
devices is limited in each period to

cI
p =

⌈
1
2 · |K| ·

( ∑

κ

�κ · μκ · vol
κ
)⌉

∀ t ∈ T .

Depending on this size, two forms
(
cI

u ∈ {⌈
1/3 · cI p⌉,

⌈
1/2·

cI
p⌉})

are analyzed. I uk01 = I uk02 = ⌊
1/10 · μκ

⌋
applies

to the initial inventory of unprotected and protected stored
medical devices, and I pk0 = ⌊ 1

3 ·μκ
⌋
applies to each medical

device k. The initial inventory of used medical devices is
I rk0 = ⌊

1/3 · μκ
⌋
.
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