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A B S T R A C T

This article provides an overview of model predictive control (MPC) frameworks for dynamic operation of
nonlinear constrained systems. Dynamic operation is often an integral part of the control objective, ranging
from tracking of reference signals to the general economic operation of a plant under online changing time-
varying operating conditions. We focus on the particular challenges that arise when dealing with such more
general control goals and present methods that have emerged in the literature to address these issues. The goal
of this article is to present an overview of the state-of-the-art techniques, providing a diverse toolkit to apply
and further develop MPC formulations that can handle the challenges intrinsic to dynamic operation. We also
critically assess the applicability of the different research directions, discussing limitations and opportunities
for further research.
. Introduction

Model predictive control (MPC), also called receding horizon con-
rol, is a modern optimization-based control method. The underlying
rinciple is to repeatedly solve finite horizon open-loop optimal control
roblems online. Feedback is generated implicitly by only implement-
ng the initial part of the optimized input trajectory and repeating
he online optimization in the next time step. MPC is widely used
n practice (cf. the surveys by Qin and Badgwell (2003) and Samad,
auer, Bortoff, Di Cairano, Fagiano, Odgaard, Rhinehart, Sánchez-
eña, Serbezov, Ankersen, et al. (2020)) and actively researched in
cademia (Mayne, 2014). This success of MPC is primarily due to
ome intrinsic advantages: (i) direct consideration of state and input
onstraints; (ii) applicability to general nonlinear MIMO systems; (iii)
ptimization of general performance criteria.

There have been significant advances in academia over the last
ecades, resulting in a mature stability theory for MPC (Mayne, Rawl-
ngs, Rao, & Scokaert, 2000). Much ongoing research in MPC is focused
n deriving efficient implementations (Verschueren, Frison, Kouzoupis,
rey, Duijkeren, Zanelli, Novoselnik, Albin, Quirynen, & Diehl, 2022),
ccounting for model errors (Kouvaritakis & Cannon, 2016; Mayne,
016), or learning the model online (Hewing, Wabersich, Menner, &
eilinger, 2020). In contrast, this article focuses on the design and
nalysis of MPC framework that can be applied to dynamic operation.

✩ Johannes Köhler was supported by the Swiss National Science Foundation under NCCR Automation (grant agreement 51NF40 180545).
∗ Corresponding author.

E-mail address: jkoehle@ethz.ch (J. Köhler).

1.1. Dynamic operation

The motivation of the present article comes from many emerging
control applications in which the control goal is not accurately reflected
by the setpoint stabilization problem, which is classically studied in
MPC. We specifically consider the challenges intrinsic in dynamic op-
eration, which has received less attention in the MPC community and
is rarely studied in a unified fashion. By dynamic operation, we primarily
consider the following three challenges related to the control goal:

(C.1) Stationary operation is not desired;
(C.2) Desired mode of operation changes online in an unpredictable

fashion;
(C.3) Desired mode of operation cannot be directly specified in terms

of a given setpoint/trajectory of the system state.

The desired mode of operation captures the control goal, which is
encoded in a cost function to be minimized. Examples of desired
mode of operation include: staying at a setpoint, following a time-
varying trajectory, or operating on some general set. (C.1) implies
that an optimal controller does not drive the system to a steady-state,
which, e.g., arises naturally if a time-varying cost function is chosen.
(C.2) considers that this cost function is not only time-varying, but
also the future evolution cannot be predicted. Lastly, (C.3) reflects
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that determining an optimal state trajectory for a given cost function
is non-trivial, i.e., the cost function does not simply minimize the
distance to some (feasible) setpoint/trajectory/set. Next, we illustrate
these abstract challenges (C.1)–(C.3) using applications. Consider a
motion planning or trajectory optimization problem, as encountered in
robotics, aerospace, or autonomous driving. (C.1): The primary goal
is to track/follow some time-varying dynamic trajectory/path. (C.2):
This reference is often generated online by a separate unit (e.g., using
artificial intelligence and visual feedback) independent of the controller
(and hence unpredictably). (C.3): The reference is primarily specified
in terms of a low dimensional output of the system, which is often not
physically realizable due to the dynamics or constraints on the system.
As a completely different application, consider a heating, ventilation,
and air conditioning (HVAC) system to regulate temperature in a
building. (C.3): The control goal naturally revolves around economic
criteria such as the energy consumption. (C.2): The optimal mode of
operation depends on external factors, such as temperature, occupancy,
and price/demand, which fluctuate in an unpredictable fashion. (C.1):
The same external variables are subject to significant changes over
time, e.g., due to the periodic day–night cycle, making the optimal
mode of operation non-stationary. Analogous considerations apply to
water distribution networks, power networks, power generation using
kites and many more. Overall, in many applications the desired mode
of operation is dynamic; the controller needs to change the mode
of operation based on external, online changing, variables; and the
optimal mode of operation is not explicitly specified in terms of a
known feasible setpoint/trajectory of the system state.

1.2. Contribution

We provide an overview of recent advances in the design and anal-
ysis of MPC formulations that can accommodate and address the chal-
lenges intrinsic to dynamic operation (C.1)–(C.3). We are specifically
interested in classical system theoretic properties, such guaranteeing
recursive feasibility, constraint satisfaction, and stability/performance
for general nonlinear systems. We provide a set of tools and methods
to design MPC schemes for such challenging control applications with
guaranteed closed-loop properties. We discuss the existing work and
methods in a broad context, highlighting gaps in the existing literature
and discussing different strategies in a unified fashion. In general, the
challenges (C.1)–(C.3) and the studied methods touch on a number of
different research fields in MPC, e.g.: trajectory tracking (Faulwasser,
2012), output regulation (Köhler, Müller, & Allgöwer, 2022a), artificial
references in MPC (Limón, Ferramosca, Alvarado, & Alamo, 2018),
economic MPC (Faulwasser, Grüne, & Müller, 2018), and MPC without
terminal constraints (Grüne & Pannek, 2017). We study these formula-
tions in a unified way, focusing on how these frameworks address the
challenges outlined above.

1.3. Outline

First, we introduce preliminaries regarding the design of a stabilizing
MPC scheme and explain the challenges in applying this design to
dynamic operation (Section 2). Moreover, we present designs for the
stabilizing terminal ingredients, primarily the local control Lyapunov
function (CLF), for general tracking problems (Section 3). Then, we
show how infeasible and online changing references can be accommo-
dated using artificial reference trajectories (Section 4). Furthermore, we
discuss how economic performance criteria can be directly optimized
using economic MPC formulations (Section 5). Finally, we present an al-
ternative framework, focusing on the analysis of simpler MPC schemes
without stabilizing terminal ingredients (Section 6). The paper concludes
with a discussion regarding the different provided tools, their benefits,
limitations, and open issues in the literature (Section 7). We note that
Section 2.2 explains how these different developments are motivated
by the challenges (C.1)–(C.3) and Section 7.1 summarizes how the
2

different designs address the challenges (C.1)–(C.3). 2
1.4. Notation

We denote the set of integers in an interval [𝑎, 𝑏] by I[𝑎,𝑏]. For
𝑘,𝑁 ∈ I≥0, the modulo operator is denoted by mod(𝑘,𝑁) ∈ I[0,𝑁−1].
The quadratic norm w.r.t. a positive definite matrix 𝑄 = 𝑄⊤ is denoted
by ‖𝑥‖2𝑄 ∶= 𝑥⊤𝑄𝑥. The identify matrix is denoted by 𝐼𝑛 ∈ R𝑛×𝑛. For 𝑥 ∈
R𝑛1 , 𝑦 ∈ R𝑛2 , we abbreviate the stacked vector as (𝑥, 𝑦) ∶= [𝑥⊤, 𝑦⊤]⊤ ∈
R𝑛1+𝑛2 . For a symmetric matrix 𝐴 = 𝐴⊤, 𝐴 ≻ 0 (𝐴 ⪰ 0) indicates that the
matrix is positive definite (positive semidefinite). The interior of a set
X ⊆ R𝑛 is denoted by int(X). By ∞, we denote the class of functions
𝛼 ∶ R≥0 → R≥0, which are continuous, strictly increasing, unbounded,
and satisfy 𝛼(0) = 0. For a continuously differentiable function 𝐹 (𝑥, 𝑦),
𝐹 ∶ R𝑛1 ×R𝑛2 → R𝑚,

[ 𝜕𝐹
𝜕𝑥

]

|

|

|

|(𝑥̄,𝑦̄)
∈ R𝑚×𝑛1 denotes the Jacobian matrix of

w.r.t. 𝑥 evaluated at (𝑥̄, 𝑦̄).

2. Preliminaries: Recursive feasibility & stability in MPC

Before addressing the challenges intrinsic to dynamic operation
(C.1)–(C.3), we first provide preliminaries regarding stabilizing MPC
designs, analogous to the textbooks by Rawlings, Mayne, and Diehl
(2017) and Grüne and Pannek (2017). We consider a nonlinear discrete-
time system

𝑥(𝑡 + 1) = 𝑓 (𝑥(𝑡), 𝑢(𝑡)), 𝑥(0) = 𝑥0, (1)

ith the state 𝑥(𝑡) ∈ 𝑋 = R𝑛, the control input 𝑢(𝑡) ∈ U ⊆ R𝑚, and the
ime step 𝑡 ∈ I≥0. For a sequence 𝐮 ∈ U𝑁 , we denote the 𝑘th element
y 𝐮𝑘 ∈ U with 𝑘 ∈ I[0,𝑁−1]. Given an initial state 𝑥 ∈ 𝑋 and an input
equence 𝐮 ∈ U𝑁 , we denote the solution to (1) after 𝑘 ∈ I≥0 steps
y 𝑥𝐮(𝑘, 𝑥) ∈ 𝑋, 𝑘 ∈ I[0,𝑁] with 𝑥𝐮(0, 𝑥) = 𝑥. The system is subject to
ointwise-in-time constraints

𝑥(𝑡), 𝑢(𝑡)) ∈ Z ⊆ 𝑋 × U, ∀𝑡 ∈ I≥0, (2)

hich, e.g., model actuator limitations or safety critical limits on the
tate. The goal is to minimize a given stage cost 𝓁 ∶ 𝑋×U → R, resulting
n the following optimal control problem

⋆
∞(𝑥) ∶= lim sup

𝑁→∞
inf

𝐮∈U𝑁

𝑁−1
∑

𝑘=0
𝓁(𝑥𝐮(𝑘, 𝑥),𝐮𝑘) (3)

s.t. (𝑥𝐮(𝑘, 𝑥),𝐮𝑘) ∈ Z, 𝑘 ∈ I≥0.

.1. Stabilizing MPC design

Solving Problem (3) is typically computationally intractable. MPC
pproximately solves Problem (3) by repeatedly solving a finite-horizon
pen-loop optimal control problem:

⋆
𝑁 (𝑥) ∶= inf

𝐮∈U𝑁

𝑁−1
∑

𝑘=0
𝓁(𝑥𝐮(𝑘, 𝑥),𝐮𝑘) + 𝑉f (𝑥𝐮(𝑁, 𝑥)) (4)

s.t. (𝑥𝐮(𝑘, 𝑥),𝐮𝑘) ∈ Z, 𝑘 ∈ I[0,𝑁−1], 𝑥𝐮(𝑁, 𝑥) ∈ Xf ,

ith prediction horizon 𝑁 ∈ I≥1, a terminal cost 𝑉f ∶ 𝑋 → R, and a
erminal set Xf ⊆ 𝑋. To simplify the theoretical exposition, we pose the
ollowing standing assumption.

ssumption 1 (Continuity and Compactness). The input constraint set U
s compact. The dynamics 𝑓 and the cost functions 𝓁, 𝑉f are continuous.

These conditions imply that Problem (4) has a minimizer (Rawlings
t al., 2017, Prop. 2.4), which is denoted by 𝐮⋆(𝑥) ∈ U𝑁 .1 The
losed-loop operation is defined by

(𝑡 + 1) = 𝑓 (𝑥(𝑡),𝐮⋆0 (𝑥(𝑡))), 𝑡 ∈ I≥0, (5)

1 In case the minimizer is not unique, one minimizer can be selected. Al-
hough we assume that a minimizer is computed, most closed-loop guarantees
lso hold if a suboptimal feasible solution is computed (McAllister & Rawlings,
023; Scokaert, Mayne, & Rawlings, 1999).
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i.e., at each time 𝑡 we apply the first part of the optimal open-loop input
sequence 𝐮⋆(𝑥(𝑡)) ∈ U𝑁 computed based on the measured state 𝑥(𝑡).

The following result recaps standard design conditions and resulting
losed-loop properties of the MPC, assuming a feasible steady state
𝑥r , 𝑢r ) ∈ Z, 𝑓 (𝑥r , 𝑢r ) = 𝑥r should be stabilized.

ssumption 2 (Stabilizing Stage Cost). There exist functions 𝛼𝓁 , 𝛼𝓁 ,
f ∈ ∞ such that 𝛼𝓁(‖𝑥−𝑥r‖) ≤ 𝓁min(𝑥) ≤ 𝛼𝓁(‖𝑥−𝑥r‖) for all (𝑥, 𝑢) ∈ Z,
f (𝑥) ≤ 𝛼f (‖𝑥 − 𝑥r‖) for all 𝑥 ∈ Xf , and 𝓁(𝑥r , 𝑢r ) = 0, 𝑉f (𝑥r ) = 0, with
min(𝑥) ∶= min𝑢∈U 𝓁(𝑥, 𝑢).

ssumption 3 (Terminal Ingredients). There exists a terminal control
aw 𝑘f ∶ Xf → U such that for all 𝑥 ∈ Xf :

(T.1) Constraint satisfaction: (𝑥, 𝑘f (𝑥)) ∈ Z;
(T.2) Positive invariance: 𝑓 (𝑥, 𝑘f (𝑥)) ∈ Xf ;
(T.3) Local CLF: 𝑉f (𝑓 (𝑥, 𝑘f (𝑥))) − 𝑉f (𝑥) ≤ −𝓁(𝑥, 𝑘f (𝑥)).

Furthermore, there exists a function 𝛼V ∈ ∞ such that for any state
𝑥 ∈ 𝑋 such that Problem (4) is feasible, it holds:

(T.4) Weak controllability:  ⋆
𝑁 (𝑥) ≤ 𝛼V(‖𝑥 − 𝑥r‖).

Theorem 1. (Rawlings et al., 2017, Thm. 2.19) Let Assumption 1,
2, and 3 hold. Suppose Problem (4) is feasible with 𝑥 = 𝑥0. Then,
Problem (4) is feasible for all 𝑡 ∈ I≥0, the constraints (2) are satisfied, 𝑥r
is asymptotically stable, and the following performance bound holds for the
resulting closed-loop system (5):

 cl
∞ (𝑥0) ∶=

∞
∑

𝑡=0
𝓁(𝑥(𝑡), 𝑢(𝑡)) ≤  ⋆

𝑁 (𝑥0). (6)

The intuition behind the terminal set and terminal cost is to ap-
proximate the infinite-horizon tail for 𝑘 ∈ I≥𝑁 (Chen & Allgöwer,
1998), i.e., a feasible solution to Problem (3) is given by appending
𝐮⋆(𝑥) ∈ U𝑁 with the terminal control law 𝑘f (𝑥) for 𝑘 ∈ I≥𝑁 due
to (T.1), (T.2). Stability is ensured by showing that the value function
 ⋆
𝑁 is a Lyapunov function, i.e., Condition (T.3) implies  ⋆

𝑁 (𝑥(𝑡 + 1)) −
 ⋆
𝑁 (𝑥(𝑡)) ≤ −𝓁(𝑥(𝑡), 𝑢(𝑡)), 𝑡 ∈ I≥0. Condition (T.4) is a technical condition

to ensure that  ⋆
𝑁 is a Lyapunov function, which holds trivially if

𝑥r ∈ int(Xf ) (Rawlings et al., 2017, Sec. 2.4.2). Under additional
technical conditions, the performance bound (6) also yields a subop-
timality/regret bound w.r.t. the optimal performance  ⋆

∞ (cf., Köhler
(2021, App. A) and Grüne and Pannek (2017, Thm. 5.22)). Overall,
Theorem 1 provides all the desired closed-loop properties and the posed
conditions (Asm. 2–3) can be constructively satisfied (cf. Section 3).

2.2. Challenges in dynamic operation

In the following, we explain how the challenges related to dynamic
operation (C.1)–(C.3) complicate the application of this design and
how the different frameworks discussed in this article approach these
problems. The design of the terminal ingredients (Asm. 3) is centred
around the CLF 𝑉f and a control law 𝑘f that locally stabilizes the steady
state 𝑥r . This offline design becomes challenging if the setpoint 𝑥r can
change online (C.2) and non-stationary references are considered (C.1).
Constructive designs addressing this issue are presented in Section 3.

The desired setpoint 𝑥r can change arbitrary online (C.2) and may
even be physically infeasible (C.3). This can lead to infeasibility of
Problem (4) due to the terminal set constraint Xf and hence invali-
date all closed-loop guarantees. In Section 4, artificial references are
included in the MPC formulation to avoid these complications.

All of these designs try to stabilize some given reference using a
positive definite stage cost 𝓁 (Asm. 2). Section 5 shows how to directly
minimize an economic (indefinite) cost 𝓁 (C.3).

Lastly, Section 6 explores an alternative approach: deriving system
3

theoretic conditions and a sufficiently long prediction horizon 𝑁 to L
ensure closed-loop properties for simpler MPC designs, which do not
require 𝑉f , Xf satisfying Assumption 3.

The summary (Section 7.1) provides a detailed discussion how these
different methods address the challenges (C.1)–(C.3).

3. Terminal ingredients for nonlinear tracking MPC

In this section, we focus on constructing a terminal cost 𝑉f and
terminal set Xf (Asm. 3) for dynamic tracking problems, i.e., refer-
ences that are non-stationary (C.1) and subject to unpredictable online
changes (C.2). We first summarize the standard linearization-based
design for the regulation problem (Section 3.1) and discuss extensions
to track online changing setpoints (Section 3.2). Then, we consider
tracking of dynamic reference trajectories (Section 3.3), including the
case where the full reference may change online (Section 3.4). Lastly,
we provide some discussion (Section 3.5), an illustrative numerical
example (Section 3.6), and mention open issues (Section 3.7).

3.1. Regulation problem

We consider the basic stabilizing MPC formulation introduced in
Section 2 and provide a constructive design to satisfy Assumptions 2–3.
The following assumption enables a local LQR design.

Assumption 4 (Local LQR Design).

(a) Quadratic stage cost 𝓁 = ‖𝑥 − 𝑥r‖2𝑄 + ‖𝑢 − 𝑢r‖2𝑅, 𝑄,𝑅 ≻ 0.
(b) Reference strictly feasible: 𝑟 = (𝑥r , 𝑢r ) ∈ Zr ⊆ int(Z), 𝑓 (𝑥r , 𝑢r ) =

𝑥r .
(c) The dynamics 𝑓 are twice continuously differentiable.

The following method was first derived by Chen and Allgöwer
1998), cf. Rawlings et al. (2017, Sec. 2.5.5) for the considered discrete-
ime variant. We denote the Jacobians by

(𝑟) ∶=
[

𝜕𝑓
𝜕𝑥

]

|

|

|

|

|𝑟
, 𝐵(𝑟) ∶=

[

𝜕𝑓
𝜕𝑢

]

|

|

|

|

|𝑟
(7)

and abbreviate the following matrix expression related to the linear
quadratic regulator (LQR):

LQR(𝐴,𝐵,𝐾, 𝑃 , 𝑃+, 𝑄,𝑅) (8)
∶=(𝐴 + 𝐵𝐾)⊤𝑃+(𝐴 + 𝐵𝐾) − 𝑃 +𝑄 +𝐾⊤𝑅𝐾.

he condition 𝐿𝑄𝑅 ⪰ 0 can enforce Condition (T.3) from Assumption 3
or the linearization around the setpoint 𝑟 ∈ Zr . We account for the
inearization error by imposing a stronger condition on the linearization
ith a tuning variable 𝜖 > 0.

roposition 1. Let Assumption 4 hold. Suppose (𝐴(𝑟), 𝐵(𝑟)) is stabilizable
nd choose matrices 𝑃 ,𝐾 satisfying 𝐿𝑄𝑅(𝐴(𝑟), 𝐵(𝑟), 𝐾, 𝑃 , 𝑃 ,𝑄+ 𝜖𝐼𝑛, 𝑅) ⪰
, e.g., using the algebraic Riccati equation. Then, there exists a sufficiently
mall 𝛼 > 0, such that the quadratic terminal cost 𝑉f (𝑥) = ‖𝑥 − 𝑥r‖2𝑃 ,
he linear terminal controller 𝑘f (𝑥) = 𝑢r + 𝐾(𝑥 − 𝑥r ) and the terminal set
f = {𝑥 ∈ 𝑋|𝑉f (𝑥) ≤ 𝛼} satisfy Assumptions 2–3.

Twice continuous differentiability of 𝑓 ensures that Condition (T.3)
olds for the nonlinear system for all 𝛼 ≤ 𝛼1, with some 𝛼1 > 0. Analytic
ormulas for 𝛼1 can be derived using bounds on the Hessian (Chen & All-
öwer, 1998; Rawlings et al., 2017) and less conservative constants can
e obtained using sampling-based approaches, cf. Chen and Allgöwer
1998, Rem. 3.1), Köhler, Müller, and Allgöwer (2020a, Alg. 1), Ra-
hans, Griffith, Patwardhan, Biegler, and Pillai (2019). Condition (T.1)
olds for all 𝛼 ≤ 𝛼2 with some 𝛼2 > 0 since (𝑥r , 𝑢r ) ∈ Zr ⊆ int(Z).
n case Z is a polytope, 𝛼2 can be exactly determined using a linear
rogram (Conte, Jones, Morari, & Zeilinger, 2016, Eq. (10)) and Köhler
2021, Lemma 3.37) provide a similar procedure if Z is given by
ipschitz continuous inequality constraints.
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3.2. Tracking of online changing setpoints

In practice, the setpoint 𝑥r to be stabilized is often subject to
npredictable online changes (C.2). However, the provided design
equires some offline computation to determine a terminal cost 𝑉f
nd a terminal set Xf to stabilize a specific setpoint 𝑥r . This offline
rocedure needs to be repeated if we wish to stabilize a different
etpoint 𝑥r , which is undesirable from a practical perspective. Due
o its practical relevance, many approaches have been suggested to
vercome this issue. Findeisen, Chen, and Allgöwer (2000) suggest a
ixed matrix 𝑃 for the quadratic terminal cost 𝑉f for different setpoints
r using a pseudo linearization, however, practical application of this
heory is difficult. Wan and Kothare (2003, 2004) locally describe
he nonlinear system as a linear difference inclusion (LDI) and com-
ute constant matrices 𝑃 ,𝐾, which are valid for a local set of steady
tates, i.e., enforcing LQR(𝐴(𝑟), 𝐵(𝑟), 𝐾, 𝑃 , 𝑃 ,𝑄,𝑅) ⪰ 0 for all 𝑟 in
ome region. Limón et al. (2018, App. B) partition the steady-state
anifold and compute different matrices 𝑃 ,𝐾 for each partition using

his LDI description, resulting in a piece-wise quadratic terminal cost.
owever, the manual partitioning can result in a cumbersome design
rocess, especially if the system is strongly nonlinear or the steady-state
anifold is high-dimensional, and the resulting discontinuity can bring

dditional complications.
Köhler et al. (2020a) alleviate these shortcomings with a continuous

arametrization: 𝑉f (𝑥, 𝑟) = ‖𝑥 − 𝑥r‖2𝑃 (𝑟), 𝑘f (𝑥, 𝑟) = 𝑢r + 𝐾(𝑟)(𝑥 − 𝑥r ),
Xf (𝑟) = {𝑥 ∈ 𝑋| 𝑉f (𝑥, 𝑟) ≤ 𝛼(𝑟)} with 𝑃 (𝑟), 𝐾(𝑟), 𝛼(𝑟) continuous in 𝑟.
The local CLF condition (T.3) then holds with 𝛼(𝑟) chosen sufficiently
small (cf. Section 4.2.5) if

LQR(𝐴(𝑟), 𝐵(𝑟), 𝐾(𝑟), 𝑃 (𝑟), 𝑃 (𝑟), 𝑄 + 𝜖𝐼𝑛, 𝑅) ⪰ 0 (9)

holds for all feasible reference setpoints 𝑟. By interpreting the reference
𝑟 as a parameter, this can be viewed as a special case of gain-scheduling
synthesis for linear-parameter varying (LPV) systems, a classical ro-
bust control problem (Rugh & Shamma, 2000). The computation of
parametrized matrices 𝑃 ,𝐾 satisfying Condition (9) can be reformu-
lated as linear matrix inequalities (LMIs), cf. Köhler et al. (2020a) for
details. As a result, suitable terminal ingredients can be obtained during
runtime by simply evaluating the parametrized terminal ingredients
around a new setpoint 𝑥r .

3.3. Trajectory tracking

In the following, we address non-stationary operation (C.1) in terms
of tracking a time-varying reference trajectory 𝑟(𝑡), 𝑡 ∈ I≥0. We assume
that the reference is feasible, i.e., 𝑥r (𝑡+1) = 𝑓 (𝑥r (𝑡), 𝑢r (𝑡)), (𝑥r (𝑡), 𝑢r (𝑡)) ∈
Zr , 𝑡 ∈ I≥0. For a given state 𝑥 and time 𝑡, the trajectory tracking MPC
is characterized by

min
𝐮∈U𝑁

𝑁−1
∑

𝑘=0
𝓁(𝑥𝐮(𝑘, 𝑥),𝐮𝑘, 𝑡 + 𝑘) + 𝑉f (𝑥𝐮(𝑁, 𝑥), 𝑡 +𝑁) (10)

s.t. (𝑥𝐮(𝑘, 𝑥),𝐮𝑘) ∈ Z, 𝑘 ∈ I[0,𝑁−1], 𝑥𝐮(𝑁, 𝑥) ∈ Xf (𝑡 +𝑁),

with 𝓁(𝑥, 𝑢, 𝑡) = ‖𝑥−𝑥r (𝑡)‖2𝑄 +‖𝑢− 𝑢r (𝑡)‖2𝑅, minimizer 𝐮⋆(𝑥, 𝑡) ∈ U𝑁 , and
value function  ⋆

𝑁 (𝑥, 𝑡). The closed-loop system is given by

𝑥(𝑡 + 1) = 𝑓 (𝑥(𝑡),𝐮⋆0 (𝑥(𝑡), 𝑡)), 𝑡 ∈ I≥0. (11)

The analysis and closed-loop properties of such a trajectory tracking
MPC are analogous to Section 2.

Assumption 5. There exists a terminal control law 𝑘f ∶ 𝑋 × I≥0 → U
such that for all 𝑡 ∈ I≥0 and all 𝑥 ∈ Xf (𝑡):

(T.1) Constraint satisfaction: (𝑥, 𝑘f (𝑥, 𝑡)) ∈ Z;
(T.2) Positive invariance: 𝑓 (𝑥, 𝑘f (𝑥, 𝑡)) ∈ Xf (𝑡 + 1);
(T.3) Local CLF: 𝑉 (𝑓 (𝑥, 𝑘 (𝑥, 𝑡)), 𝑡 + 1) − 𝑉 (𝑥, 𝑡) ≤ −𝓁(𝑥, 𝑘 (𝑥, 𝑡), 𝑡).
4

f f f f
Furthermore, there exists a function 𝛼V ∈ ∞, such that for any (𝑥, 𝑡)
such that Problem (10) is feasible, it holds

(T.4) Weak controllability:  ⋆
𝑁 (𝑥, 𝑡) ≤ 𝛼V(‖𝑥 − 𝑥r (𝑡)‖).

Theorem 2. Let Assumption 1, 4(a), and 5 hold. Suppose Problem (10)
is feasible with (𝑥, 𝑡) = (𝑥0, 0). Then, Problem (10) is feasible for all 𝑡 ∈ I≥0,
the constraints (2) are satisfied, and 𝑥r (𝑡) is uniformly asymptotically stable
for the resulting closed-loop system (11).

The proof and closed-loop properties are analogous to Theorem 1
using  ⋆

𝑁 (𝑥, 𝑡) as a uniform time-varying Lyapunov function (Grüne &
Pannek, 2017, Thm. 2.22). Next, we focus on the constructive de-
sign of terminal ingredients for such time-varying reference trajecto-
ries 𝑟(𝑡) (Asm. 5). The following design is largely based on the work
by Faulwasser (2012), Faulwasser and Findeisen (2011). Analogous
to the stabilization problem, we pick the linear-quadratic time-varying
parametrization 𝑉f (𝑥, 𝑡) = ‖𝑥 − 𝑥r (𝑡)‖2𝑃 (𝑡), 𝑘f (𝑥, 𝑡) = 𝑢r (𝑡) +𝐾(𝑡)(𝑥 − 𝑥r (𝑡)),
Xf = {𝑥 ∈ 𝑋|𝑉f (𝑥, 𝑡) ≤ 𝛼(𝑡)}. By linearizing Condition (T.3) and adding
a slack 𝜖 > 0, we obtain the design conditions

LQR(𝐴(𝑟(𝑡)), 𝐵(𝑟(𝑡)), 𝐾(𝑡), 𝑃 (𝑡), 𝑃 (𝑡 + 1), 𝑄 + 𝜖𝐼, 𝑅) ⪰ 0, (12)

which need to hold for all 𝑡 ∈ I≥0. These conditions correspond to
an LQR problem for the linear time-varying (LTV) system representing
the dynamics of the error 𝑥 − 𝑥r locally around the reference 𝑥r .
Tractable designs can, e.g., be obtained by assuming that the reference
𝑟(𝑡) becomes constant after some finite time. In this case, a stationary
LQR is solved at the final state and then the time-varying LQR is solved
backwards to obtain 𝑃 (𝑡), 𝐾(𝑡) (Faulwasser & Findeisen, 2011). The
terminal set scaling 𝛼(𝑡) can be chosen similar to the setpoint stabi-
lization problem with the difference that 𝛼(𝑡 + 1) and 𝛼(𝑡) are coupled
through the time-varying invariance condition (T.2), cf. Faulwasser
and Findeisen (2011, Thm. 2). Aydiner, Müller, and Allgöwer (2016)
propose a design for periodic reference trajectories, i.e., 𝑟(𝑡) = 𝑟(𝑡 + 𝑇 ),
∀𝑡 ∈ I≥0 with some 𝑇 ∈ I≥1. By imposing the same periodicity in
𝑃 (𝑡), 𝐾(𝑡), the design can be cast as a periodic LQR problem or a
sequence of 𝑇 coupled LMIs.

3.4. Trajectory tracking with online changing trajectories

Next, we simultaneously address non-stationary operation (C.1)
with unpredictable online changes (C.2) by considering time-varying
reference trajectories 𝑟 that may change unpredictably during online
operation. The design of a trajectory tracking MPC scheme (Section 3.3)
requires computing the Jacobian of the nonlinear dynamics around
the full reference trajectory 𝑟(𝑡) and solving a set of LMIs or Riccati
equations to determine the LQR-based terminal ingredients. This can
become computationally very expensive. As a result, if the reference
trajectory changes during runtime, re-computing terminal ingredients
for a new reference 𝑟(𝑡) becomes a bottleneck in the practical applica-
tion. To circumvent this issue, Köhler et al. (2020a) propose a reference
generic offline computation. The goal is to have one offline computation
to obtain continuously parametrized terminal ingredients of the form
𝑃 (𝑟), 𝐾(𝑟), such that

QR(𝐴(𝑟), 𝐵(𝑟), 𝐾(𝑟), 𝑃 (𝑟), 𝑃 (𝑟+), 𝑄 + 𝜖𝐼, 𝑅) ⪰ 0 (13)

or all 𝑟, 𝑟+ ∈ Zr with 𝑥+r = 𝑓 (𝑥r , 𝑢r ). This problem can be cast as a
ain-scheduling problem for LPV systems by viewing the reference 𝑟 as
parameter that is slowly time-varying, where a bound on the change

an be deduced from the dynamics. There exists much literature on the
ynthesis of gain-scheduled controllers, which are used by Köhler et al.
2020a, Prop. 1) to derive a finite-dimensional semidefinite program
SDP) to compute 𝐾(𝑟), 𝑃 (𝑟) satisfying (13). By defining 𝑃 (𝑡) = 𝑃 (𝑟(𝑡)),
(𝑡) = 𝐾(𝑟(𝑡)), these parametrized terminal ingredients also satisfy the

QR conditions (12) for any possible reference. Hence, the trajectory
racking MPC (Theorem 2) can be implemented without a priori knowl-
dge of the full reference and requires no repeated offline computations
n case the reference changes.
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3.5. Discussion

In the following, we discuss some variants. The efficient update
of the scaling 𝛼 > 0 characterizing the terminal set Xf and general
feasibility and stability questions under online changes of the reference
are revisited in Section 4.

3.5.1. Terminal equality constraint
A simpler design for the terminal ingredients is given by a ter-

minal equality constraint, historically also called zero-terminal con-
straint (Mayne & Michalska, 1990), with Xf = {𝑥r}, 𝑘f = 𝑢r , 𝑉f = 0.
This design directly satisfies Conditions (T.1)–(T.3) from Assumption 3.
Condition (T.4) holds if an additional local controllability condition is
satisfied and the prediction horizon 𝑁 is larger than the controllability
index (Köhler, 2021, Prop. 3.10). This approach is easy to apply, which
makes it particularly attractive for application with online changing
setpoints or dynamic trajectories (Section 3.2, 3.4, 4), compare Limón
et al. (2018, Sec. III.A); Berberich, Köhler, Müller, and Allgöwer (2020),
Fagiano and Teel (2013), Müller, Angeli, and Allgöwer (2013) and
Limón, Pereira, De La Peña, Alamo, and Grosso (2014), Limón, Pereira,
de la Peña, Alamo, Jones, and Zeilinger (2016). However, there are sig-
nificant drawbacks to this design: Yu, Reble, Chen, and Allgöwer (2014)
show that nonlinear MPC schemes with ‘‘proper’’ terminal ingredients
are inherently robust 2, however, terminal equality constraints require
a multi-step implementation3 to retain inherent robusness (Berberich
et al., 2022b, Prop. IV.1). Additional practical drawbacks include a
small region of attraction and in general worse control performance,
cf. the comparisons by Chen and Allgöwer (1998, Sec. 5), Raff, Huber,
Nagy, and Allgöwer (2006, Sec. V), Köhler, Müller, and Allgöwer
(2020b, Sec. 4.1), and Köhler et al. (2020a, Sec. 5.2).

3.5.2. More general stage cost
Considering the design of the terminal cost 𝑉f satisfying (T.3) using

LQR: The same procedure can be applied for non-quadratic (twice cont.
differentiable) stage costs 𝓁 by replacing 𝑄 +𝐾⊤𝑅𝐾 by the Hessian of
𝓁, see Amrit, Rawlings, and Angeli (2011, Sec. 4.1) and Köhler et al.
(2020a, App. D) for details.

3.5.3. LPV & incremental system properties
The design conditions (9)/(13) utilize LPV theory. There exists a

rich history on addressing nonlinearity in MPC using LPV embeddings,
compare the survey by Morato, Normey-Rico, and Sename (2020).
Condition (13) ensures that any dynamically feasible reference 𝑟 can be
stabilized, which is also referred to as incremental stability with the con-
traction metric 𝑃 .4 This relates to a long history on the interplay between
LPV systems, incremental Lyapunov functions, and contraction metrics,
compare Angeli (2002), Fromion and Scorletti (2003), Koelewijn, Tóth,
and Nijmeijer (2019), Wang, Tóth, and Manchester (2019) and Köhler
(2021, Appendix C).

2 Inherent robustness implies that recursive feasibility and some form of
tability are preserved for sufficiently small model mismatch. These results
lso require that state constraints are relaxed using penalties.

3 In a multi-step implementation, the first 𝜈 ∈ I>1 elements of the optimal
input sequence 𝐮⋆ are applied to the system in open loop and the optimization
problem is only solved every 𝜈 steps. Berberich, Köhler, Müller, and Allgöwer
(2022b) choose 𝜈 larger than the controllability index to derive robustness
guarantees.

4 The presented quadratic terminal cost 𝑉f is only a local CLF. The Rie-
mannian energy based on the metric 𝑃 (𝑟) provides a ‘‘global’’ incremental
Lyapunov function 𝑉f (Manchester & Slotine, 2017). Evaluating this function is
computationally more expensive compared to the simple quadratic expression
since it involves an integral. Details regarding the exact region where Condi-
tion (T.3) holds for Zr ≠ R𝑛+𝑚 can be found in Sasfi, Zeilinger, and Köhler
(2023, Prop. 5).
5
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Fig. 1. Evasion manoeuvrer of a car with reference trajectory 𝑟 (red), (projected)
terminal sets (blue ellipses) and state constraints (black), adapted from Köhler et al.
(2020a). The terminal ingredients are optimized offline before knowing the exact
reference trajectory 𝑟 (cf. Section 3.4). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

3.6. Illustrative example

The example by Köhler et al. (2020a, Sec. IV) considers a kinematic
bicycle model of a car with 𝑛 = 5 states and 𝑚 = 2 inputs. The
design (13) is utilized to compute terminal ingredients that are valid for
any (dynamically feasible) reference trajectory 𝑟(⋅) in a specified con-
traint set Zr . This offline optimization required 14 min using heuristic
ridding. During online operation, an unexpected evasion manoeuvrer
s required and valid terminal ingredients ensuring exponential stability
re readily available, which are illustrated in Fig. 1. This example
emonstrates how to design nonlinear MPC schemes with guaranteed
tability properties induced by suitable terminal ingredients, even for
ime-varying reference trajectories (C.1) which are not known before
and (C.2).

.7. Open issues

Limiting factors for practical deployment are complexity of the of-
line design for high-dimensional systems and performance limitations
n case the terminal set Xf is small. Methods to address scalability are
utlined in Section 7.2.2. Section 7.3.3 provides a broad discussion on
tilization of terminal ingredients in MPC and alternatives for easier
eployment.

. Tracking MPC formulations using artificial references

In this section, we extend the tracking MPC formulations studied
n Section 3 to ensure closed-loop properties under online changing
eferences (C.2), even if the desired target value is not achievable (C.3).
pecifically, this is achieved by jointly optimizing artificial references.
e first present a setpoint tracking MPC with corresponding closed-

oop properties (Section 4.1) and discuss practical implications (Sec-
ion 4.2). Then, we present extensions to periodic reference tracking
Section 4.3) and discuss how partially decoupling tracking and plan-
ing can reduce the computational demand (Section 4.4). Lastly, we
rovide a numerical example (Section 4.5) and mention open issues
Section 4.6).

.1. Setpoint tracking MPC

We consider a system output 𝑦 = ℎ(𝑥, 𝑢) ∈ 𝑌 = R𝑝, with ℎ Lipschitz
ontinuous, and some online supplied exogenous target value 𝑦d(𝑡) ∈
, which may vary unpredictably during online operation (C.2). The

ontroller should drive the system to a steady state that achieves this
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target output, i.e., lim𝑡→∞ ‖𝑦d(𝑡) − 𝑦(𝑡)‖ = 0. Since this is in general not
feasible (C.3), we consider the more general problem of minimizing a
continuous offset cost 𝑉o(𝑦, 𝑦d), that quantifies the error between the
system output 𝑦 and the target output 𝑦d.

4.1.1. Setpoint tracking MPC - historical developments
The main difficulty stems from two factors: (i) 𝑦d can arbitrar-

ily change online (C.2) and hence terminal set constraints centred
around 𝑦d are not recursively feasible; (ii) tracking 𝑦d is in general ill-
posed (C.3) as it may not be feasible due to the constraints (2). These
challenges are related to the design of reference governors (Garone,
Di Cairano, & Kolmanovsky, 2017), a control unit that adjusts an
externally provided reference 𝑦d before passing it to a lower level
controller in order to ensure constraint satisfaction. Chisci, Falugi, and
Zappa (2005), Chisci and Zappa (2003) propose a feasibility recovery
mode, which similarly adjusts the reference before passing it to an
MPC to ensure feasibility. External loops to adjust the reference in
MPC schemes are also used by Mayne and Falugi (2016) and Skibik,
Liao-McPherson, Cunis, Kolmanovsky, and Nicotra (2021), Skibik, Liao-
McPherson, and Nicotra (2023). The following exposition utilizes the
framework of artificial references, which includes this reference com-
putation in the MPC formulation. This idea was initially developed
by Limón, Alvarado, Alamo, and Camacho (2008)5 for linear systems
and has led to many further developments in the literature concerning:

• setpoint tracking for linear systems (Aboudonia, Eichler, Cor-
diano, Banjac, & Lygeros, 2022; Berberich et al., 2020; Fer-
ramosca, Limón, Alvarado, Alamo, & Camacho, 2009; Ferramosca,
Limón, González, Odloak, & Camacho, 2010; Limón & Alamo,
2015; Simon, Löfberg, & Glad, 2014; Zeilinger, Raimondo, Dom-
ahidi, Morari, & Jones, 2014),

• extensions to nonlinear systems (Berberich, Köhler, Müller, &
Allgöwer, 2022a; Cotorruelo, Ramirez, Limón, & Garone, 2020;
Cunha & Santos, 2022; Galuppini, Magni, & Ferramosca, 2023;
Köhler, Krügel, Grüne, Müller, & Allgöwer, 2023; Köhler et al.,
2020b; Köhler, Müller, & Allgöwer, 2022b; Limón et al., 2018;
Rickenbach, Köhler, Scampicchio, Zeilinger, & Carron, 2023;
Soloperto, Köhler, & Allgöwer, 2022)

• and periodic reference trajectories (Köhler et al., 2020b; Köhler,
Müller, & Allgöwer, 2023b; Limón et al., 2014, 2016; Yang, Zhao,
Xia, & Zhang, 2021).

4.1.2. Setpoint tracking MPC using artificial references
For a given state 𝑥 ∈ 𝑋 and a target value 𝑦d ∈ 𝑌 , the setpoint

tracking MPC formulation is given by

min
𝐮∈U𝑁 ,𝑟∈Zr

𝑁−1
∑

𝑘=0
𝓁(𝑥𝐮(𝑘, 𝑥),𝐮𝑘, 𝑟) + 𝑉f (𝑥𝐮(𝑁, 𝑥), 𝑟) + 𝑉o(ℎ(𝑟), 𝑦d)

s.t. (𝑥𝐮(𝑘, 𝑥),𝐮𝑘) ∈ Z, 𝑘 ∈ I[0,𝑁−1], 𝑥𝐮(𝑁, 𝑥) ∈ Xf (𝑟), (14)
𝑓 (𝑥r , 𝑢r ) = 𝑥r .

A minimizer is denoted by 𝑟⋆(𝑥, 𝑦d), 𝐮⋆(𝑥, 𝑦d) with the value function
 ⋆
tr (𝑥, 𝑦d). The closed-loop system is given by

𝑥(𝑡 + 1) = 𝑓 (𝑥(𝑡),𝐮⋆0 (𝑥(𝑡), 𝑦d(𝑡))), 𝑡 ∈ I≥0. (15)

The main difference to a standard MPC formulation is the joint opti-
mization over the artificial reference 𝑟 = (𝑥r , 𝑢r ) ∈ Zr . The offset cost
𝑉o penalizes the distance between the output 𝑦 = ℎ(𝑟) at the artificial
reference 𝑟 and the desired target 𝑦d. For a fixed artificial reference
𝑟, Problem (14) corresponds to a standard stabilizing MPC scheme as
studied in Theorem 1. The external target 𝑦d only appears in the cost
𝑉o and hence feasibility can be guaranteed independent of 𝑦d.

5 For the special case of integrating processes, a similar idea was proposed
arlier by Carrapiço and Odloak (2005).
6

Theorem 3. Let Assumptions 1 and 4(a) hold. Suppose the terminal
ingredients 𝑉f , Xf are designed according to Section 3.2 or Section 3.5.1,
ensuring that the conditions in Assumption 3 hold for any 𝑟 ∈ Zr .6
Suppose further Problem (14) is feasible for 𝑥 = 𝑥0. Then, for any time-
varying target sequence 𝑦d(𝑡), Problem (14) is feasible for all 𝑡 ∈ I≥0 and
the constraints (2) are satisfied for the resulting closed-loop system (15).
Furthermore, if 𝑦d is constant, then lim𝑡→∞ ‖𝑥⋆r (𝑥(𝑡), 𝑦d) − 𝑥(𝑡)‖ = 0.

The proof is analogous to Theorem 1 by using the previously
ptimal artificial reference 𝑟⋆ as a candidate solution.

.1.3. Stability analysis
Theorem 3 only ensures convergence to the artificial steady state

⋆
r . Convergence and stability w.r.t. the target 𝑦d require additional
onditions. We consider a quadratic offset cost 𝑉o(𝑦, 𝑦d) = ‖𝑦 − 𝑦d‖2𝑆

with 𝑆 ≻ 0, but much of the presented theory generalizes to contin-
uous (sub)differentiable, strictly convex functions (Limón et al., 2018,
Asm. 2). The set of feasible output references is given by

Ys ∶= {𝑦 ∈ 𝑌 | ∃(𝑥, 𝑢) ∈ Zr , ℎ(𝑥, 𝑢) = 𝑦, 𝑓 (𝑥, 𝑢) = 𝑥} (16)

and a minimizing setpoint is given by 𝑦⋆rd(𝑦d) ∈ argmin𝑦∈Ys
𝑉o(𝑦, 𝑦d).

Note that 𝑦⋆rd(𝑦d) = 𝑦d if 𝑦d ∈ Ys.

Assumption 6. (Limón et al., 2018, Asm. 1–2)

Tr.1) Convexity: The set Ys is convex.
Tr.2) Uniqueness: There exists a unique Lipschitz continuous function

𝑔 ∶ Ys → Zr , such that 𝑔(𝑦) = (𝑥, 𝑢) for any steady state
(𝑥, 𝑢) ∈ Zr , 𝑓 (𝑥, 𝑢) = 𝑥, 𝑦 = ℎ(𝑥, 𝑢).

Assumption 6 and 𝑉o (strictly) convex imply that there exist a
nique optimal steady state (𝑥⋆rd, 𝑢

⋆
rd) = 𝑔(𝑦⋆rd) and the following theorem

nsures stability of this steady state.

heorem 4. (Köhler et al., 2020b, Thm. 8) Let the conditions in
heorem 3 hold. Suppose further that Assumption 6 holds and that 𝑦d(𝑡) is
onstant for all 𝑡 ∈ I≥0. Then, the optimal steady state 𝑥⋆rd is exponentially
table for the resulting closed-loop system (15) with the Lyapunov function
⋆
tr (𝑥, 𝑦d) − 𝑉o(𝑦⋆rd(𝑦d), 𝑦d).

The main idea behind this result is that if 𝑥 is close to the artificial
eference 𝑥⋆r , then the optimizer can move the artificial reference 𝑦r
owards the minimizer 𝑦⋆rd (using convexity), thus also decreasing the
ffset cost 𝑉o. Limón et al. (2008, 2018) showed convergence with a
ase distinction, however, more recent results directly derive suitable
yapunov inequalities (Cunha & Santos, 2022; Köhler et al., 2023,
020b; Limón et al., 2014, 2016; Soloperto et al., 2022; Zeilinger et al.,
014). The following intermediate lemma provides further intuition for
his stability result.

emma 1 (Adapted from Soloperto et al. (2022, Prop. 2)). Suppose the
onditions in Theorem 4 hold. There exists a constant 𝑐 > 0, such that
or any (𝑥, 𝑦d) with Problem (14) feasible it holds that ‖𝑥 − 𝑥⋆r (𝑥, 𝑦d)‖

2
𝑄 ≥

‖𝑟⋆(𝑥, 𝑦d) − 𝑔(𝑦⋆rd(𝑦d))‖
2.

A similar bound is derived by Limón et al. (2014, Lemma 2)
ssuming continuity of minimizers w.r.t. 𝑥 and results comparable
o Lemma 1 are also recently derived by Cunha and Santos (2022,
emma 4) and Köhler et al. (2023, Lemma 2). Lemma 1 ensures that
he distance between the artificial reference 𝑟⋆ and the optimal setpoint
𝑟⋆rd = 𝑔(𝑦⋆rd) is upper bounded by the distance of the system state 𝑥 to the
artificial reference 𝑥⋆r , which converges to 0 according to Theorem 3.

6 These designs also ensure feasibility of Problem (4) and a quadratic upper
ound on the value function  ⋆

𝑁 (𝑥) in a neighbourhood of the reference 𝑥r ,
cf. Köhler et al. (2020b, Prop. 4, Lemma 5). This guarantee holds uniformly
for all 𝑥 ∈ Z and the neighbourhood ‖𝑥 − 𝑥 ‖ ≤ 𝜖 with some uniform 𝜖 > 0.
𝑟 r r
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4.2. Discussion

In the following, we discuss some of the properties of this setpoint
tracking MPC formulation and different variations.

4.2.1. General properties
The introduction of the artificial setpoint 𝑟 in Problem (14) does

ot increase the design complexity and, depending on the prediction
orizon 𝑁 , has a small impact on the overall computational complexity.
owever, there are a number of practical benefits. Feasibility is com-
letely independent of the external target 𝑦d, thus efficiently accounting
or unpredictable online changes (C.2). Having a unified formulation
hat jointly solves planning and tracking simplifies the design and
an effectively deal with infeasible targets (C.3). Furthermore, the
ffset cost 𝑉o allows for intuitive tuning, e.g., Ferramosca et al. (2009)
nsure local optimality using a large (exact) penalty while Berberich
t al. (2022a) provide strong robustness properties using a small offset
ost. Notably, artificial references can also significantly increase the
egion of attraction, enabling large setpoint changes with arbitrary
mall prediction horizons. Artificial setpoints also provide a simple tool
o enable coordination in a distributed setting (Köhler et al., 2022b;
ickenbach et al., 2023) and can easily accommodate online model
pdates (Berberich et al., 2022a; Peschke & Görges, 2023; Sasfi et al.,
023).

.2.2. Convexity
The presented analysis (Theorem 4/ Lemma 1) uses convexity of

he set of feasible steady-state outputs Ys. This condition does not
equire convexity of the steady-state manifold (𝑥, 𝑢), which can be
ignificantly more restrictive for nonlinear systems (cf. Köhler et al.
2020b, Fig. 1)). If Ys is not convex, the closed-loop system converges
o some steady state, which is in general a local minimum. Soloperto,
esbah, and Allgöwer (2023) show that this issue can sometimes be

ircumvented by simply increasing the offset cost 𝑉o and using a large
orizon 𝑁 . More systematically, Cotorruelo et al. (2020) derive a
ransformation of the output to ensure the convexity condition holds
or the special case of non-convex sets in normal form (e.g., star-
haped). Soloperto et al. (2022, Prop. 4) show that convexity is not
eeded if the offset cost 𝑉o is chosen as the path-distance restricted
o the feasible steady-state manifold. The design by Cotorruelo et al.
2020) allows for an efficient implementation, but application for more
eneral environments with multiple obstacles seems challenging. The
pproach by Soloperto et al. (2022) is applicable to complex non-
onvex environments. However, the implicit characterization of 𝑉o
ssentially requires the solution to a (simplified) planning problem,
hus increasing computational complexity.

.2.3. Uniqueness and zone tracking
Condition (Tr.2) in Assumption 6 ensures that the optimal steady

tate 𝑥rd is unique. Limón et al. (2018, Rem. 1) derive a unique
ipschitz continuous function 𝑔 using a rank condition on the Jacobians
f 𝑓, ℎ and the implicit function theorem. If this condition does not
old, one can also specify a unique map 𝑔 in Problem (14), cf. Limón
t al. (2018, Equ. (9)). More generally, if stability of a specific point is
ot required, a more flexible zone tracking MPC can be considered (Fer-
amosca et al., 2010; Soloperto et al., 2022). In this case, the offset
ost 𝑉o can, e.g., penalize deviations of the output 𝑦 from some general
esired set Yd ⊆ 𝑌 . Correspondingly, one can show that the closed-loop
ystem stabilizes a set of optimal steady states instead of one unique
tate. Notably, while the analysis, e.g., to show Lemma 1, can become
ore complex (Soloperto et al., 2022, Prop. 1)), the implementation of

uch a zone-tracking MPC remains simple.7

7 Ferramosca et al. (2010) explain in detail how the offset cost 𝑉o can be
cast as a linear or quadratic cost using additional linear inequality constraints.
Notably, Liu, Mao, and Liu (2019) provide a more general zone-tracking
MPC formulation that directly uses invariant sets instead of steady states 𝑥r ,
however, this requires a significantly different (set-based) MPC formulation.
7

a

4.2.4. Semidefinite input–output cost 𝓁
For the intermediate result (Lemma 1) and for the overall stability

result (Theorem 4), it is crucial that the stage cost 𝓁 is positive definite
w.r.t. 𝑥. However, e.g., in case of input–output models, it is quite
common to formulate the stage cost 𝓁 using the output 𝑦, which
s only positive semidefinite in the state 𝑥. Berberich et al. (2020)

show stability of the optimal steady state 𝑥⋆rd with such stage costs for
linear observable systems. Galuppini et al. (2023) provide initial results
for more general nonlinear detectable systems. However, in contrast
to Berberich et al. (2020), this implementation explicitly requires the
storage function certifying detectability. This is due to a difference in
the considered Lyapunov function, with the storage function evaluated
at the online optimized steady state 𝑥r or the (unknown) optimal steady
state 𝑥⋆rd.

4.2.5. Terminal set Xf (𝑟) for setpoint tracking
Limón et al. (2008) provide a polytopic terminal set Xf (𝑟) using

the maximal admissible set of an augmented state for linear systems
with polytopic constraints. However, computing this set can result
in scalability issues and this approach does not transfer to nonlinear
systems. Instead, a common approach is to scale a parametrized set:
Xf (𝑟) = {𝑥 ∈ 𝑋| 𝑉f (𝑥, 𝑟) ≤ 𝛼(𝑟)} with 𝑉f quadratic and a scaling 𝛼(𝑟) > 0.
eilinger, Morari, and Jones (2014, Lemma III.2) derive a quadratic
xpression for 𝛼(𝑟). Limón et al. (2018, App. B) compute a piece-
ise constant scaling 𝛼(𝑟) by partitioning the steady-state manifold
ffline. Cotorruelo, Hosseinzadeh, Ramirez, Limón, and Garone (2021)
btain a polynomial expression for 𝛼(𝑟) by solving a sum-of-squares
SOS) problem offline. However, computing a parametrized function
(𝑟) offline is conservative.

Köhler et al. (2020b) address this issue by including the scaling 𝛼 ∈
[𝛼min, 𝛼1] ⊆ R≥0 as a decision variable in Problem (14). Specifically, the
constraint 𝑟 ∈ Zr in Problem (14) is replaced by comparable constraints
on (𝑟, 𝛼) that corresponds to Condition (T.1). In the special case of 𝑘f∕𝑉f
linear/quadratic (cf. Section 3) and Z polytopic, this is a set of linear
inequality constraints. However, the approach can also be applied if Z
is given by Lipschitz continuous inequality constraints (Köhler, 2021,
Sec. 3.2.2). The lower bound 𝛼 ≥ 𝛼min > 0 ensures that Lemma 1 holds
with a uniform constant 𝑐 > 0 and hence the exponential stability
result (Theorem 4) remains valid (Köhler et al., 2020b, Prop. 12).
The increase in computational demand due to the online optimization
of the scaling 𝛼 tends to be negligible, while it can have significant
performance benefits (Köhler et al., 2020b, Sec. 4). For linear systems
with a polytopic terminal set Xf , a comparable online optimization of
he scaling 𝛼 is also suggested by Simon et al. (2014). It is possible to
urther generalize the terminal set by online optimizing over matrices
∈ R𝑛×𝑛, 𝐾 ∈ R𝑚×𝑛 characterizing 𝑉f , 𝑘f (Aboudonia et al., 2022;

ang et al., 2021). However, this introduces LMI constraints in the
PC formulation, which can significantly increase the computational

omplexity.

.3. Dynamic reference tracking

Section 4.2 ensures recursive feasibility for arbitrary time-varying
argets 𝑦d(𝑡), but stability/performance guarantees are restricted to
piece-wise) constant targets 𝑦d. Intuitively, online optimized artificial
etpoints 𝑟 provide reasonably good performance if the target 𝑦d is
nly ‘‘slowly’’ changing with time.8 However, in many applications the
ptimal operation is intrinsically dynamic (C.1) and trying to steer
he system to a steady state 𝑟 ∈ Zr may not result in satisfactory
erformance. Instead, similar to Sections 3.3–3.4, dynamic reference
rajectories 𝐫𝑘 ∈ Zr , 𝑘 ∈ I≥0 need to be considered.

8 A corresponding performance result is not yet available in the literature,
owever, we conjecture that performance bounds similar to Nonhoff, Köhler,
nd Müller (2023, Thm. 10) can be established.
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4.3.1. Periodic reference tracking
The special case of periodic target signals, i.e., 𝑦d(𝑡 + 𝑇 ) = 𝑦d(𝑡)

with some period length 𝑇 ∈ I≥1, has been studied for linear systems
by Limón et al. (2014, 2016) with extensions to nonlinear systems
by Köhler et al. (2020b, 2023b), Yang et al. (2021). Let us denote the
set of 𝑇 -periodic references by 𝑇 ⊆ Z𝑇

r . Given a target signal 𝐲d ∈ 𝑌 𝑇 ,
ptimal periodic operation is characterized by

min
𝐫∈𝑇

𝑉o,𝑇 (𝐫, 𝐲d) ∶= min
𝐫∈𝑇

𝑇−1
∑

𝑘=0
‖ℎ(𝐫𝑘) − 𝐲d,𝑘‖2𝑆 , (17)

with a minimizer 𝐫⋆rd. Given the state 𝑥 ∈ 𝑋 and target signal 𝐲d ∈ 𝑌 𝑇 ,
the periodic tracking MPC formulation is given by:

min
𝐮∈U𝑁 ,𝐫∈Z𝑇

r

𝑁−1
∑

𝑘=0
𝓁(𝑥𝐮(𝑘, 𝑥),𝐮𝑘, 𝐫𝑘) + 𝑉f (𝑥𝐮(𝑁, 𝑥), 𝐫𝑁 ) + 𝑉o,𝑇 (𝐫, 𝐲d)

s.t. (𝑥𝐮(𝑘, 𝑥),𝐮𝑘) ∈ Z, 𝑘 ∈ I[0,𝑁−1], 𝑥𝐮(𝑁, 𝑥) ∈ Xf (𝐫𝑁 ),

𝐫 ∈ 𝑇 , 𝐫𝑘 ∶= 𝐫mod(𝑘,𝑇 ), 𝑘 ∈ I[𝑇 ,𝑁]. (18)

Problem (18) jointly optimizes a periodic artificial reference 𝐫 ∈ Z𝑇
r

to match the target signal 𝐲d ∈ 𝑌 𝑇 and computes an input sequence
𝐮 ∈ U𝑁 to drive the system state 𝑥 to this artificial reference 𝐫 ∈
Z𝑇
r . For 𝑇 = 1, this reduces to the setpoint tracking MPC in Prob-

lem (14). For a fixed artificial reference 𝐫, Problem (18) reduces to
the trajectory tracking MPC scheme studied in Theorem 2. Assuming
the terminal set Xf and the terminal cost 𝑉f are properly designed
(cf. Section 3.3, 3.5.1), this scheme inherits the same properties of
Theorem 3: (i) Recursive feasibility and constraint satisfaction holds for
any 𝐲d; (ii) if 𝐲d is consistent/periodic, i.e., 𝐲d,𝑘(𝑡 + 1) = 𝐲d,mod(𝑘+1,𝑇 )(𝑡),
then lim𝑡→∞ ‖𝐱⋆r,0(𝑥(𝑡), 𝐲d(𝑡)) − 𝑥(𝑡)‖ = 0, i.e., the system converges to
the artificial periodic reference 𝐫. Similar to Theorem 4, stability of
the optimal periodic reference trajectory can be guaranteed with a
suitable uniqueness and convexity condition for 𝐫 ∈ 𝑇 , see Köhler
et al. (2020b, Thm. 8) for details.

4.3.2. Discussion
This periodic tracking MPC scheme shares all the theoretical prop-

erties of the setpoint tracking MPC (Section 4.1), enabling a seamless
extension to dynamic/periodic problems. However, there are some
practical concerns to be considered: (i) Computational complexity is in-
creased, especially if 𝑇 ≫ 𝑁 . This issue will be addressed in Section 4.4.
(ii) The design of terminal ingredients 𝑉f ,Xf is more challenging. One
solution is to combine the parametrized terminal ingredients (Sec-
tion 3.4) with an online optimized scaling 𝛼 > 0 (Section 4.2.5),
cf. (Köhler et al., 2020b, Prop. 12). Other possibilities include simple
terminal equality constraint (Köhler et al., 2020b, Prop. 4) or online
optimizing terminal ingredients (Yang et al., 2021). (iii) There are
numerous control problems which cannot be addressed using periodic
references 𝐫 ∈ Z𝑇

r and target signals 𝐲d ∈ 𝑌 𝑇 .

4.4. Partially decoupled tracking and planning

The MPC formulations with artificial references provide a gen-
eral framework to simultaneously address challenges (C.1)–(C.3) by
combining a tracking MPC (Problem (10)) with reference planning (Prob-
lem (17)). However, there are different cases in which the reference
planning problem becomes computationally expensive: periodic ref-
erences 𝐫 ∈ Z𝑇

r with 𝑇 ≫ 𝑁 (Section 4.3); non-trivial offset cost
𝑉o (Soloperto et al., 2022, Prop. 4), Rickenbach et al. (2023, Sec. 5);
joint optimization of terminal ingredients (Aboudonia et al., 2022; Yang
et al., 2021). This increases the computational complexity of the MPC
8

scheme, which can be a bottleneck for practical application.
4.4.1. Decoupled tracking & planning
A natural solution is to split Problem (14) in two problems: a

tracking MPC and a reference planner that can be solved independently.
This corresponds to a classical tracking–planning decomposition as
often applied with some tracking controller (not necessarily MPC),
see the overview by Schweidel, Yin, Smith, and Arcak (2022). Corre-
sponding approaches where the tracking controller is given by an MPC
scheme (Section 3.3) are also routinely applied, see the architecture
by Mayne, Kerrigan, Van Wyk, and Falugi (2011) or experimental
results by Liniger, Domahidi, and Morari (2015), Romero, Sun, Foehn,
and Scaramuzza (2022). Online changes in the target 𝑦d require online
re-planning of the reference 𝐫. This may yield feasibility issues in the
tracking MPC scheme if the reference planning is completely decoupled
from the tracking.

4.4.2. Constrained reference planning
Köhler et al. (2020b, Sec. 3.4) address this issue by updating the

reference every 𝑀 ∈ I≥1 steps and imposing additional constraints
on the planner to ensure feasibility of the tracker. For simplicity, we
consider again the special case of 𝑇 -periodic reference trajectories
(Section 4.3). At time 𝑡𝑖 = 𝑀 ⋅ 𝑖, 𝑖 ∈ I≥0, the reference planner computes
a periodic reference 𝐫𝑘(𝑡𝑖) and a terminal set scaling 𝜶𝑘(𝑡𝑖), 𝑘 ∈ I[0,𝑇−1]
corresponding to a terminal set Xf (𝑟, 𝛼) = {𝑥 ∈ 𝑋| 𝑉f (𝑥, 𝑟) ≤ 𝛼}, where
we define 𝐫𝑘 ∶= 𝐫mod(𝑘,𝑇 ), 𝜶𝑘 ∶= 𝜶mod(𝑘,𝑇 ), 𝑘 ∈ I≥𝑇 . Then, for any
𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1), the control input 𝑢(𝑡) is computed with a tracking MPC
(Problem (10)) using a terminal set Xf (𝐫𝑁+𝑡−𝑡𝑖 (𝑡𝑖),𝜶𝑁+𝑡−𝑡𝑖 (𝑡𝑖)). The new
reference for time 𝑡𝑖+1 is computed as:

min
𝐫,𝜶

𝑉o,𝑇 (𝐫, 𝐲d(𝑡𝑖+1)) (19a)

s.t. (𝐫,𝜶) ∈ ̃𝑇 , (19b)

Xf (𝐫𝑁+𝑀 (𝑡𝑖),𝜶𝑁+𝑀 (𝑡𝑖)) ⊆ Xf (𝐫𝑁 ,𝜶𝑁 ). (19c)

The set ̃𝑇 characterizes the set of periodic reference trajectories 𝐫 ∈
Z𝑇
r with scaling variables 𝜶 ∈ R𝑇

≥0 such that the periodic sequence of
erminal sets Xf (𝐫𝑘,𝜶𝑘) satisfies Assumption 5 (Köhler et al., 2020b,
qu. (29b)–(29e)).9 In the absence of constraint (19c), Problem (19)
orresponds to a decoupled reference planning. Eq. (19c) constrains the
lanner such that feasibility of the terminal set constraint is preserved,
ee Fig. 2 for an illustration. Condition (19c) is in general not compu-
ationally tractable, but simple sufficient conditions can be obtained
sing the quadratic parametrization of 𝑉f from Section 3.4 (Köhler
t al., 2020b, Prop. 15). A feasible candidate solution to Problem (19)
s given by the previous solution shifted by 𝑀 steps.

This design directly ensures recursive feasibility of the tracking MPC
nd the planner. However, Condition (19c) may prevent convergence
o the optimal periodic trajectory, i.e., in general (19c) might only be
easible if 𝐫𝑁 = 𝐫𝑁+𝑀 (𝑡𝑖). Köhler et al. (2020b, Prop. 16) address this

issue by using an exponential decay of the CLF 𝑉f with some known
factor 𝜌 < 1 to implement a contractive terminal set. This ensures that
Constraint (19c) is inactive for small enough reference updates and
hence finite-time convergence of 𝐫 to the optimal periodic reference
can be ensured.

4.4.3. Partial coupling between tracking and planning
Problem (19) uses no information of the current state of the tracker,

which can result in slow convergence of the reference. Köhler et al.
(2020b, Alg. 1) propose a partial coupling, which utilizes the most up to
date information of the tracker to relax Condition (19c). Specifically, at
time 𝑡𝑖 we know the predicted terminal cost in the tracking MPC, which
satisfies 𝑉f (𝑥𝐮⋆ (𝑁, 𝑥(𝑡𝑖)), 𝐫𝑁 (𝑡𝑖)) ≤ 𝜶𝑁 (𝑡𝑖). Thus, we shrink the scaling

9 Specifically, (𝑥, 𝑘f (𝑥, 𝑟)) ∈ Z for all 𝑥 ∈ Xf (𝑟, 𝛼), which can be reformulated
as discussed in Section 4.2.5. Furthermore, positive invariance requires a
bound of the form 𝜶𝑘+1 ≥ 𝜌𝜶𝑘, with some contraction rate 𝜌 < 1 (Köhler et al.,
2020b, Rem. 14), which trivially holds if 𝛼 is constant.
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Fig. 2. Illustration how the constrained reference planning (19) ensures recursive
easibility of the tracking MPC at time 𝑡𝑖+1. Closed-loop state 𝑥(𝑡), 𝑡 ∈ I[𝑡𝑖 ,𝑡𝑖+1 ] (blue,

solid), predicted state sequence 𝑥𝐮 of the tracker (blue, dash-dotted); artificial reference
𝐫 at time 𝑡𝑖 (red, dashed) with terminal set scaling 𝛼 (red-dotted); artificial reference
𝐫 at time 𝑡𝑖+1 (magenta, dashed) with terminal set scaling 𝛼 (magenta, dotted). The
predicted state sequence 𝑥𝐮 of the tracker (blue, dash-dotted) satisfies the new terminal
set constraint (magenta), since it contains the previous terminal set constraint (red),
cf. (19c). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

𝜶𝑁+𝑘(𝑡𝑖), 𝑘 ∈ I≥0 to enforce more restrictive (but feasible) contractive
constraints for the tracking MPC. As a result, Constraint (19c) can be
relaxed to

Xf (𝐫𝑁+𝑀 (𝑡𝑖), 𝜌𝑀𝑉f (𝑥𝐮⋆ (𝑁, 𝑥(𝑡𝑖)), 𝐫𝑁 (𝑡𝑖))) ⊆ Xf (𝐫𝑁 ,𝜶𝑁 ). (20)

The reduction in conservatism is due to the difference between the
achieved convergence of the closed-loop tracking MPC and the a priori
worst-case bound based on the local contraction rate 𝜌 < 1 of the
terminal control law 𝑘f . Skibik et al. (2023) propose a similar strategy
for the special case of linear systems, steady states (𝑇 = 1), and
synchronous updates (𝑀 = 1).

4.4.4. Discussion
Overall, this partially decoupled strategy retains the theoretical

properties of the MPC formulations with artificial references: recursive
feasibility and convergence to the optimal feasible reference. A stan-
dard tracking MPC scheme is implemented and reference updates are
computed in parallel on a different time scale (𝑀 ≫ 1). Notably, the ad-
ditional constraint (20) to recompute the reference 𝐫(𝑡𝑖+1) in the planner
(Problem (19)) depends on the reference 𝐫(𝑡𝑖) and the state 𝑥(𝑡𝑖), which
are available at time 𝑡𝑖.10 Hence, this more complex planning problem
can be solved in the time interval [𝑡𝑖, 𝑡𝑖+1]. This significantly reduces the
computational requirements, allowing for fast feedback and complex
planning problems in practical application. However, an increase in
𝑀 also slows down convergence to the optimal periodic reference 𝐲⋆rd,
resulting in a trade-off, see the numerical comparison by Köhler et al.
(2020b, Sec. 4).

4.5. Illustrative example

Fig. 3 illustrates application of the tracking MPC formulations with
a periodic artificial reference using a ball-and-plate system with 𝑛 = 8
states and 𝑚 = 2 inputs by Köhler et al. (2020b). This demonstrates
optimal periodic operation, even if a time-varying infeasible target
𝑦d is specified (C.1),(C.3), and effective dealing with online changes
in the optimal mode of operation (C.2). Furthermore, a comparison
with the partially decoupled tracking and planning (Section 4.4) clar-
ifies that reduced computational complexity also reduces convergence
speed. Experimental results demonstrating the practicality of the set-
point tracking MPC formulation (Section 4.1) are provided by Limón

10 Problem (19) also depends on the target signal 𝐲d(𝑡𝑖+1), which is in general
nly available at time 𝑡𝑖+1. However, all theoretical properties remain valid if
t is replaced by the periodic continuation of the available target signal 𝐲 (𝑡 ).
9

d 𝑖
Fig. 3. Periodic tracking with a ball-and-plate system, adapted from Köhler et al.
(2020b). Closed-loop state 𝑥 (blue, solid) resulting from periodic tracking MPC
(Section 4.3.1) with a time-varying target signal 𝑦d (red) and state constraints X (black).
Closed-loop state resulting from partially decoupled tracking and planning (Section 4.4)
with 𝑀 = 2 shown dashed in magenta. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

et al. (2018), Nubert, Köhler, Berenz, Allgöwer, and Trimpe (2020),
Rickenbach et al. (2023) with a four-tank, a robotic manipulator, and
coordination of miniature cars, respectively.

4.6. Open issues

Further research is required regarding convexity issues (Section
4.2.2) to enhance applicability for cluttered obstacle domains in robo-
tics. Practicality of the partially decoupled tracking and planning
framework (Section 4.4) to complex real world problems remains to be
demonstrated. The problem of non-periodic problems remains largely
unexplored. We expect that further developments regarding flexible
time parametrization (Section 7.2.1) can yield significant performance
benefits. Section 7.3.1 provides a more detailed discussion regarding
benefits and limitations of utilizing artificial references.

5. Economic MPC

In this section, we extend the problem formulation to economic
MPC (Ellis, Liu, & Christofides, 2017; Faulwasser et al., 2018; Müller
& Allgöwer, 2017). In control theory, one of the primary goals is
to achieve stability of the closed-loop system and steer the system
state/output to some desired setpoint or trajectory. In Sections 2–
4, we accomplished such tracking objectives with MPC schemes by
using a stage cost 𝓁 which is positive definite w.r.t. a desired mode
of operation (cf. Asm. 2). In economic MPC this condition is removed
and instead an economic stage cost 𝓁e is used that directly reflects
the desired objective (C.3), e.g., minimizing energy consumption in
HVAC or maximizing the yield in a chemical plant. Correspondingly,
in this section our primary goal is not to ensure some form of stability.
Rather, we derive bounds on the closed-loop performance in terms of
the economic stage cost 𝓁e. We first discuss how the basic stabilizing
MPC can be extended to economic MPC (Section 5.1), including non-
stationary operation (C.1) using a periodic reference (Section 5.2).
Then, we derive an economic MPC scheme for online changing op-
erating conditions (C.2) using artificial setpoints (Section 5.3) and
periodic artificial references (Section 5.4). Furthermore, we discuss
convergence/stability in economic MPC (Section 5.5) and the design
of an economic terminal cost (Section 5.6). Finally, we provide a

numerical example (Section 5.7) and mention open issues (Section 5.8).
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5.1. Performance guarantees in economic MPC

We extend the standard stabilizing MPC scheme from Section 2 to
directly consider an economic stage cost 𝓁e.

Assumption 7 (Continuity and Compactness). The economic stage cost
𝓁e and the dynamics 𝑓 are continuous. The constraint set Z is compact.

This assumption ensures that 𝓁e is bounded. We define an optimal
steady state (𝑥r , 𝑢r ) ∈ Z by

𝓁e = min
(𝑥r ,𝑢r )∈Z

𝓁e(𝑥r , 𝑢r ) s.t. 𝑥r = 𝑓 (𝑥r , 𝑢r ). (21)

We consider an economic MPC scheme which directly minimizes the
economic stage cost 𝓁e over the prediction horizon:

min
𝐮∈U𝑁

𝑁−1
∑

𝑘=0
𝓁e(𝑥𝐮(𝑘, 𝑥),𝐮𝑘) + 𝑉f ,e(𝑥𝐮(𝑁, 𝑥)) (22)

s.t. (𝑥𝐮(𝑘, 𝑥),𝐮𝑘) ∈ Z, 𝑘 ∈ I[0,𝑁−1], 𝑥𝐮(𝑁, 𝑥) ∈ Xf .

The closed-loop operation is defined by

𝑥(𝑡 + 1) = 𝑓 (𝑥(𝑡),𝐮⋆0 (𝑥(𝑡))), 𝑡 ∈ I≥0, (23)

where 𝐮⋆(𝑥) is a minimizer to Problem (22). The conditions on the
terminal ingredients are adjusted as follows.

Assumption 8. Conditions (T.1)–(T.2) from Assumption 3 hold.
Furthermore, the terminal cost 𝑉f ,e ∶ 𝑋 → R is continuous and satisfies

𝑉f ,e(𝑓 (𝑥, 𝑘f (𝑥))) − 𝑉f ,e(𝑥) ≤ −𝓁e(𝑥, 𝑘f (𝑥)) + 𝓁e. (24)

This condition can be trivially satisfied using a terminal equality
constraint w.r.t. the steady state 𝑥r , i.e., 𝑉f ,e = 0, Xf = {𝑥r}, 𝑘f = 𝑢r .
More general designs are discussed in Section 5.6.

Theorem 5. Let Assumptions 7 and 8 hold. Suppose Problem (22) is
feasible with 𝑥 = 𝑥0. Then, Problem (22) is feasible for all 𝑡 ∈ I≥0, the
constraints (2) are satisfied, and the following performance bound holds for
the resulting closed-loop system (23):

lim sup
𝐾→∞

1
𝐾

𝐾−1
∑

𝑡=0
𝓁e(𝑥(𝑡), 𝑢(𝑡)) ≤ 𝓁e. (25)

This result was initially developed by Angeli, Amrit, and Rawlings
2012, Thm. 1) with a terminal equality constraint and then generalized
y Amrit et al. (2011, Thm. 18). Theorem 5 ensures that the closed-
oop performance with an economic MPC is (on average) no worse than
imply steering the system to a steady state, as done in a standard
racking MPC scheme. On a theoretical level, the only difference to
roblem (4) is that Assumptions 2–3 are relaxed to Assumption 8.
rom a conceptual level, the more important difference is that the
PC directly minimizes the cost 𝓁e instead of indirectly considering

t by steering the system to some optimal setpoint 𝑥r . Such a direct
inimization of the economic criterion 𝓁e can significantly enhance
erformance, cf. the numerical investigations by Ellis et al. (2017),
öhler, Müller, and Allgöwer (2020c), Rawlings, Angeli, and Bates
2012), Rawlings, Bonné, Jorgensen, Venkat, and Jorgensen (2008) and
he discussion in Section 7.3.2.

.2. Periodic economic MPC

The design in Section 5.1 first determines an optimal steady state
r and then Theorem 5 ensures that the closed-loop performance is
o worse than operation at this optimal steady state. In the following,
e generalize this to provide performance guarantees w.r.t. optimal
eriodic operation (C.1), similar to Zanon, Grüne, and Diehl (2017)
nd Alessandretti, Aguiar, and Jones (2016). We consider an economic
10
stage cost 𝓁e(𝑥, 𝑢, 𝑡) which is time-varying11 and 𝑇 -periodic with some
period length 𝑇 ∈ I≥1. We compute an optimal 𝑇 -periodic reference
𝑟(𝑡 + 𝑇 ) = 𝑟(𝑡) ∈ Z, 𝑡 ∈ I≥0:

𝓁e ∶= min
𝐫∈𝑇

1
𝑇

𝑇−1
∑

𝑘=0
𝓁e(𝐫𝑘, 𝑘), (26)

where 𝑇 ⊆ Z𝑇 is the set of 𝑇 -periodic references (cf. Section 4.3.1).
he goal is to design an economic MPC scheme which outperforms
peration at this periodic reference 𝑟(𝑡). For a given state 𝑥 and time
, the periodic economic MPC formulation is given by:

min
𝐮∈U𝑁

𝑁−1
∑

𝑘=0
𝓁e(𝑥𝐮(𝑘, 𝑥),𝐮𝑘, 𝑡 + 𝑘) + 𝑉f ,e(𝑥𝐮(𝑁, 𝑥), 𝑡 +𝑁) (27)

s.t. (𝑥𝐮(𝑘, 𝑥),𝐮𝑘) ∈ Z, 𝑘 ∈ I[0,𝑁−1], 𝑥𝐮(𝑁, 𝑥) ∈ Xf (𝑡 +𝑁),

ith a minimizer 𝐮⋆(𝑥, 𝑡) ∈ U𝑁 and Xf , 𝑉f ,e are 𝑇 -periodic. The
losed-loop system is given by

(𝑡 + 1) = 𝑓 (𝑥(𝑡),𝐮⋆0 (𝑥(𝑡), 𝑡)), 𝑡 ∈ I≥0. (28)

ssumption 9. There exists a 𝑇 -periodic terminal control law 𝑘f ∶ 𝑋×
≥0 → U such that for all 𝑡 ∈ I≥0 and all 𝑥 ∈ Xf (𝑡) Conditions (T.1)–(T.2)
rom Assumption 5 hold, 𝑉f ,e is continuous, and

𝑉f ,e(𝑓 (𝑥, 𝑘f (𝑥, 𝑡)), 𝑡 + 1) − 𝑉f ,e(𝑥, 𝑡) (29)
− 𝓁e(𝑥, 𝑘f (𝑥, 𝑡), 𝑡) + 𝓁e(𝑥r (𝑡), 𝑢r (𝑡), 𝑡).

heorem 6. Let Assumptions 7 and 9 hold. Suppose Problem (27) is
easible with (𝑥, 𝑡) = (𝑥0, 0). Then, Problem (27) is feasible for all 𝑡 ∈ I≥0,
he constraints (2) are satisfied, and the following performance bound holds
or the resulting closed-loop system (28):

lim sup
𝐾→∞

1
𝐾

𝐾−1
∑

𝑡=0
𝓁e(𝑥(𝑡), 𝑢(𝑡), 𝑡) ≤ 𝓁e. (30)

Theorem 6 ensures that closed-loop performance with the economic
PC is (on average) no worse than using a trajectory tracking MPC

cheme (Section 3.3) to drive the system to the optimal periodic refer-
nce 𝑟. The proof of this result is analogous to Theorem 6 (Zanon et al.,
017, Rem. 5.8). Assumption 9 can be satisfied with a simple terminal
quality constraint.

.2.1. Shifted terminal cost
The terminal cost decrease (29) is w.r.t. the cost 𝓁e at a specific

reference point 𝑥r (𝑡), while the performance guarantee (30) is w.r.t. 𝓁e,
.e., the average performance over one period length. The following
roposition shows how we can modify the characterization of the
erminal cost 𝑉f ,e to directly consider 𝓁e.

roposition 2. (Köhler et al., 2020c, Lemma 5) Let Assumptions 7 and
hold. For any 𝑡 ∈ I≥0 and any 𝑥 ∈ Xf (𝑡), the shifted terminal cost

𝑉f ,e(𝑥, 𝑡) ∶= 𝑉f ,e(𝑥, 𝑡) +
𝑇−2
∑

𝑘=0

𝑇 − 1 − 𝑘
𝑇

𝓁e(𝑥r (𝑡 + 𝑘), 𝑢r (𝑡 + 𝑘), 𝑡 + 𝑘)

atisfies

̃f ,e(𝑓 (𝑥, 𝑘f (𝑥, 𝑡)), 𝑡 + 1) − 𝑉f ,e(𝑥, 𝑡) + 𝓁e(𝑥, 𝑘f (𝑥, 𝑡), 𝑡) ≤ 𝓁e. (31)

11 Although we consider a time-varying cost 𝓁e for generality, periodic
operation can also outperform stationary operation in case of a time-invariant
setting, see, e.g., Köhler, Müller, and Allgöwer (2018b), Köhler et al. (2020c),
Zanon et al. (2017).
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Inequality (31) direct relates the decrease in the terminal cost
with 𝓁e, the desired average cost of the periodic reference 𝑟, which
becomes crucial for the design later (Section 5.4). The same design
condition is required to show that closed-loop performance is better
than performance at some general set (Dong & Angeli, 2018).

5.3. Online changing costs using artificial setpoints

In the following, we consider an economic stage cost 𝓁e(𝑥, 𝑢, 𝑦e) that
depends on some time-varying external parameters 𝑦e(𝑡) ∈ 𝑌 ⊆ R𝑝 with
𝑌 compact, e.g., reflecting changes in online prices or user preference.
Online variations in 𝑦e(𝑡) result in an online change of the optimal
setpoint 𝑥r (C.2). Ideally, the economic MPC should provide a perfor-
mance that is no worse than this new optimal setpoint. Fagiano and
Teel (2013), Müller et al. (2013), Müller, Angeli, and Allgöwer (2014a)
and Ferramosca, Limón, and Camacho (2014) propose economic MPC
formulations using artificial setpoints (cf. Section 4.1) to address this
issue. We first present the approach by Müller et al. (2013, 2014a) and
then explain the relation and difference to the approaches by Fagiano
and Teel (2013) and Ferramosca et al. (2014). For a given state 𝑥,
parameters 𝑦e ∈ 𝑌 ⊆ R𝑝, a weight 𝛽 ≥ 0, and a later specified variable
𝜅 ∈ R, the economic MPC formulation is given by

min
𝐮∈U𝑁 ,𝑟∈Zr

𝑁−1
∑

𝑘=0
𝓁e(𝑥𝐮(𝑘, 𝑥),𝐮𝑘, 𝑦e) + 𝑉f ,e(𝑥𝐮(𝑁, 𝑥), 𝑟, 𝑦e)

+ 𝛽𝓁e(𝑥r , 𝑢r , 𝑦e)

s.t. (𝑥𝐮(𝑘, 𝑥),𝐮𝑘) ∈ Z, 𝑘 ∈ I[0,𝑁−1], 𝑥𝐮(𝑁, 𝑥) ∈ Xf (𝑟), (32)
𝑓 (𝑥r , 𝑢r ) = 𝑥r , 𝓁e(𝑥r , 𝑢r , 𝑦e) ≤ 𝜅.

A minimizer is denoted by 𝑟⋆(𝑥, 𝑦e, 𝜅, 𝛽), 𝐮⋆(𝑥, 𝑦e, 𝜅, 𝛽) and the closed-
loop system is given by

𝑥(𝑡 + 1) =𝑓 (𝑥(𝑡),𝐮⋆0 (𝑥(𝑡), 𝑦e(𝑡)), 𝜅(𝑡), 𝛽(𝑡)), 𝑡 ∈ I≥0, (33)
𝜅(𝑡 + 1) =𝓁e(𝑟⋆(𝑥(𝑡), 𝑦e(𝑡), 𝜅(𝑡), 𝛽(𝑡)), 𝑦e(𝑡 + 1)),

with some later specified weight 𝛽(𝑡), and initialization 𝛽(0) = 𝛽0 ≥
0 and 𝜅(0) = 𝜅0 = ∞. Compared to the setpoint tracking MPC
(Problem (14)), Problem (32) directly minimizes the economic cost 𝓁e
instead of utilizing a positive definite tracking stage cost 𝓁. The added
constraint involving 𝜅 ensures that the cost at the artificial reference 𝑟
does not deteriorate compared to the previous solution. The weighting
𝛽 is used to ensure convergence of the artificial reference to a (local)
minimum (Section 5.3.2/5.3.3).

5.3.1. Relative performance guarantees
The following conditions on the self-tuning weight 𝛽 are trivially

satisfied with a constant weight 𝛽 ≥ 0.

Assumption 10. (Müller et al., 2013, Asm. 1) 𝛽(𝑡) is non-negative,
𝛽(𝑡 + 1) − 𝛽(𝑡) admits a uniform upper bound, and lim sup𝑡→∞ 𝛽(𝑡 + 1) −
𝛽(𝑡) ≤ 0.

Theorem 7. (Müller et al., 2013, Thm. 1) Let Assumptions 7 and 10
hold. Suppose that 𝑉f ,e, 𝑘f , Xf satisfy the conditions in Assumption 8 for
any (constant) feasible setpoint 𝑟 ∈ Zr ⊆ Z and any (constant) 𝑦e ∈ 𝑌 .
Suppose further that Problem (32) is feasible for 𝑥 = 𝑥0. Then, for any
time-varying parameters 𝑦e(𝑡), Problem (32) is feasible for all 𝑡 ∈ I≥0 and
the constraints (2) are satisfied for the resulting closed-loop system (33).
Furthermore, if 𝑦e is constant, then the following performance bound holds

lim sup
𝐾→∞

1
𝐾

𝐾−1
∑

𝑡=0
𝓁e(𝑥(𝑡), 𝑢(𝑡), 𝑦e) ≤ 𝜅∞ ∶= lim

𝑡→∞
𝜅(𝑡). (34)

Theorem 7 ensures that the closed-loop performance is no worse
han the performance at the artificial reference, which is given by
. This result does not imply that the artificial reference 𝑟 converges
o some (local) optimum. In Theorem 4 we address a similar issue
11
or a setpoint tracking MPC scheme, where we use the fact that the
ystem converges close to the artificial reference and hence the artificial
eference can be incrementally moved w.r.t. the candidate solution (see
lso Lemma 1). However, the closed-loop system with the economic
PC will in general not converge close to the artificial setpoint 𝑟.

.3.2. Self-tuning weight and local optimality
Müller et al. (2014a) propose the following solution to this problem:

he terminal set constraint Xf should have a non-empty interior and
e exponentially contractive, e.g., using a terminal set Xf designed
ccording to Section 3.2. This ensures that at any point in time, the
rtificial reference 𝑟 can be incrementally moved (Müller et al., 2014a,
emma 1). Then, by suitably increasing the weighting 𝛽(𝑡) online if

needed, Müller et al. (2014a, Thm. 3) ensure that the closed-loop
performance is no worse than operating at a locally optimal steady
state.12

5.3.3. Constant weight 𝛽 and suboptimality bound
The above discussed work by Müller et al. (2013, 2014a) is inspired

by Fagiano and Teel (2013). Instead of ensuring convergence of the
artificial reference 𝑟 by increasing the weight 𝛽, Fagiano and Teel
(2013, Prop. 2) use a large constant weight 𝛽 and derive a suboptimality
estimate 𝜖(𝛽) w.r.t. a local minimizer. Furthermore, Fagiano and Teel
(2013, Alg. 3) use simple terminal equality constraint in combination
with a multi-step implementation.13

5.3.4. Linear systems and strong duality
Ferramosca et al. (2014) address the problem in the special case

of linear dynamics using a strong duality assumption. In particular, a
shifted economic stage cost is minimized and a sufficiently large posi-
tive definite offset cost 𝑉o (Section 4.1) is utilized to ensure asymptotic
stability of the optimal steady state. However, these techniques cannot
be transferred to the nonlinear setting and the minimized cost does in
general not have an intuitive ‘‘economic’’ interpretation.

5.4. Periodic optimal operation using artificial references

In the following, we combine the designs and problem setups from
Sections 5.2 and 5.3, following the work by Köhler et al. (2020c).
Specifically, we consider a stage cost 𝓁e(𝑥, 𝑢, 𝑦e), which depends on
some parameters 𝑦e(𝑡) ∈ 𝑌 . If 𝑦e is 𝑇 -periodic, then we wish to
provide performance guarantees w.r.t. the optimal 𝑇 -periodic opera-
tion. However, the parameters 𝑦e may also be subject to additional
unpredictable fluctuations and we need to guarantee reliable operation
during such transient phases. Such problems naturally arise, e.g., in
water distribution networks, electrical networks or HVAC systems,
where the optimal mode of operation depends largely on external
variables (e.g., the weather). These variables have a strong periodic
component (C.1) (e.g., due to the day–night cycle) but are also subject
to additional variations that are difficult to predict (C.2).

12 Müller et al. (2013) provide explicit update rules for this self-tuning weight
𝛽, which require that 𝛽 increases unbounded if 𝑟 is not a local minimizer.

13 This analysis uses condition (Fagiano & Teel, 2013, Asm. 7), which is
difficult to verify a priori. Köhler et al. (2020c, Lemma 4) show that instead it
suffices to assume local controllability, a prediction horizon 𝑁 longer than the
controllability index 𝜈, and a multi-step implementation, cf. also the discussion

regarding terminal equality constraints in Section 3.5.1.
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5.4.1. Economic MPC using periodic artificial references
A natural solution to extend the economic MPC formulation in

Section 5.3 to periodic problems is to replace the artificial setpoint
𝑟 ∈ Zr by a periodic reference trajectory 𝐫 ∈ 𝑇 ⊆ Z𝑇

r and consider
periodic prediction 𝐲e ∈ 𝑌 𝑇 for the parameters with 𝐲e,0(𝑡) = 𝑦e(𝑡).

For a given state 𝑥, time 𝑡, parameters 𝐲e ∈ 𝑌 𝑇 , weight 𝛽 ≥ 0, and
ariable 𝜅 ∈ R, an economic MPC formulation with periodic artificial
eferences is given by:

min
𝐮∈U𝑁 ,𝐫∈Z𝑇

r

𝑁−1
∑

𝑘=0
𝓁e(𝑥𝐮(𝑘, 𝑥),𝐮𝑘, 𝐲e,𝑘) + 𝑉f ,e(𝑥𝐮(𝑁, 𝑥), 𝐫, 𝐲e)

+ 𝛽
𝑇−1
∑

𝑘=0
𝓁e(𝐫𝑘, 𝐲e,𝑘) (35)

s.t. (𝑥𝐮(𝑘, 𝑥),𝐮𝑘) ∈ Z, 𝑘 ∈ I[0,𝑁−1], 𝑥𝐮(𝑁, 𝑥) ∈ Xf (𝐫),

𝐫 ∈ 𝑘,
𝑇−1
∑

𝑘=0
𝓁e(𝐫𝑘, 𝐲e,𝑘) ≤ 𝜅,

where we define 𝐫𝑘 ∶= 𝐫mod(𝑘,𝑇 ), 𝐲e,𝑘 ∶= 𝐲e,mod(𝑘,𝑇 ) for 𝑘 ∈ I≥𝑇 . A
minimizer is denoted by 𝐫⋆(𝑥, 𝐲e, 𝜅, 𝛽), 𝐮⋆(𝑥, 𝐲e, 𝜅, 𝛽) and the closed-loop
system is given by

𝑥(𝑡 + 1) =𝑓 (𝑥(𝑡),𝐮⋆0 (𝑥(𝑡), 𝐲e(𝑡), 𝜅(𝑡), 𝛽(𝑡))), 𝑡 ∈ I≥0, (36)

𝜅(𝑡 + 1) =
𝑇−1
∑

𝑘=0
𝓁e(𝐫⋆𝑘+1(𝑥(𝑡), 𝐲e(𝑡), 𝜅(𝑡), 𝛽(𝑡)), 𝐲e,𝑘(𝑡 + 1)),

with initialization 𝜅(0) = 𝜅0 = ∞ and a self-tuning weight 𝛽(𝑡) ≥ 0.
This is a direct extension of the approach in Section 5.3, replacing the
artificial setpoint 𝑟 ∈ Zr by an artificial periodic reference 𝐫 ∈ Z𝑇

r .

5.4.2. Pitfalls - periodic artificial references
Next, we provide a negative result: A direct/naïve extension of the

design in Section 5.3 to the periodic setting does not provide the desired
performance guarantees. We consider the following standard conditions
for the terminal ingredients.

Assumption 11. There exists a control law 𝑘f ∶ 𝑋 ×𝑇 , such that for
any periodic reference 𝐫 ∈ 𝑇 and any state 𝑥 ∈ Xf (𝐫) and any 𝑦 ∈ 𝑌 𝑇 :

(E.1) Constraint satisfaction: (𝑥, 𝑘f (𝑥, 𝐫)) ∈ Z;
(E.2) Positive invariance: 𝑓 (𝑥, 𝑘f (𝑥, 𝐫)) ∈ Xf (𝐫̃);
(E.3) Terminal cost: 𝑉f ,e(𝑓 (𝑥, 𝑘f (𝑥, 𝐫)), 𝐫̃, 𝐲̃e) − 𝑉f ,e(𝑥, 𝐫, 𝐲e) ≤ −𝓁e(𝑥, 𝑘f

(𝑥, 𝐫), 𝐲e,𝑁 ) + 𝓁e(𝐫𝑁 , 𝐲e,𝑁 ),

with the periodically shifted sequences 𝐫̃𝑘 = 𝐫𝑘+1, 𝐲̃e,𝑘 = 𝐲e,𝑘+1.

For a given periodic trajectory 𝐫 and parameters 𝐲e, Assumption 11
corresponds to Assumption 9 and is trivially satisfied by a terminal
equality constraint Xf (𝐫) = {𝐱r,𝑁}, 𝑉f ,e = 0.

Theorem 8. (Köhler et al., 2020c) Let Assumption 7, 10, and 11 hold.
Suppose Problem (35) is feasible for 𝑥 = 𝑥0. Then, for any parameters 𝐲e(𝑡),
Problem (35) is feasible for all 𝑡 ∈ I≥0 and the constraints (2) are satisfied
for the resulting closed-loop system (36). Furthermore, if 𝐲e is consistently
periodic, i.e., 𝑦e(𝑡 + 𝑘) = 𝐲e,𝑘(𝑡), 𝑡, 𝑘 ∈ I≥0, then the following performance
bound holds

lim sup
𝐾→∞

1
𝐾

𝐾−1
∑

𝑡=0
𝓁e(𝑥(𝑡), 𝑢(𝑡), 𝑦e(𝑡)) (37)

≤ lim sup
𝑡→∞

1
𝑇

𝑡+𝑇−1
∑

𝑘=𝑡
𝓁e(𝐫⋆0 (𝑥(𝑘), 𝐲e(𝑘), 𝜅(𝑘), 𝛽(𝑘)), 𝐲e,0(𝑘)).

Theorem 8 ensures recursive feasibility and constraint satisfaction
independent of the parameters 𝐲e. The performance bound (37) follows
from Condition (E.3) of the terminal cost 𝑉f ,e. However, this bound
is not w.r.t. the average cost of the periodic reference 𝐫⋆, but only
w.r.t. 𝐫⋆, the first point of the periodic reference. Köhler et al. (2020c,
12

0 a
Sec. II.C) provide a simple example (inspired by the counterexample
by Müller and Grüne (2016)) that demonstrates that the closed-loop
performance can be arbitrarily bad compared to the periodic reference
𝐫⋆. The problem is that the sequence of optimized trajectories 𝐫⋆0 (𝑡),
𝑡 ∈ I≥0 can differ completely from the periodic artificial reference
𝐫⋆ ∈ Z𝑇

r , even if the average cost of the periodic trajectories coincide.

5.4.3. Performance guarantees
Köhler et al. (2020c) provided a simple solution to this problem.

Using Proposition 2, we construct a shifted terminal cost

𝑉f ,e(𝑥, 𝐫, 𝐲e) ∶= 𝑉f ,e(𝑥, 𝐫, 𝐲e) +
𝑇−2
∑

𝑘=0

𝑇 − 1 − 𝑘
𝑇

𝓁e(𝐫𝑘+𝑁 , 𝐲e,𝑘+𝑁 )

which satisfies

𝑉f ,e(𝑓 (𝑥, 𝑘f (𝑥, 𝐫)), 𝐫̃, 𝐲̃e) − 𝑉f ,e(𝑥, 𝐫, 𝐲e)

≤ − 𝓁e(𝑥, 𝑘f (𝑥, 𝐫), 𝐲e,𝑁 ) + 1
𝑇

𝑇−1
∑

𝑘=0
𝓁e(𝐫𝑘, 𝐲e,𝑘).

This shifted terminal cost directly provides a decrease condition w.r.t.
the average performance at the periodic reference. The following theo-
rem demonstrates that this yields the desired performance guarantees.

Theorem 9. (Köhler et al., 2020c, Prop. 3, Prop. 6, Cor. 1) Suppose
the conditions in Theorem 8 hold and we replace the terminal cost 𝑉f ,e
n Problem (35) by 𝑉f ,e. Then, the closed-loop system (36) satisfies the
ollowing performance bound

lim sup
𝐾→∞

1
𝐾

𝐾−1
∑

𝑡=0
𝓁e(𝑥(𝑡), 𝑢(𝑡), 𝑦e(𝑡)) ≤ lim

𝑡→∞

𝜅(𝑡)
𝑇

. (38)

Furthermore, if 𝛽(𝑡) is updated using Müller et al. (2013, Update scheme
2 or 6) and the terminal set Xf is contractive (Köhler et al., 2020c,
Asm. 3), then the closed-loop performance is on average no worse than the
performance at a locally optimal periodic orbit.

Theorem 9 shows that we obtain the desired performance guar-
antees, outperforming standard stabilization of some optimal periodic
trajectory. The design of this shifted terminal cost 𝑉f ,e is motivated
y the characterization of periodic optimality by Köhler et al. (2018b,
rop. 1), which is inspired by non-monotonic Lyapunov functions (Ah-
adi & Parrilo, 2008). Unfortunately, the shifted terminal cost 𝑉f ,e does
ot admit an intuitive interpretation. Köhler et al. (2020c, Prop. 2)
lso report an alternative design ensuring the performance bound (38)
y constraining 𝓁e(𝐫𝑘, 𝐲e,𝑘), 𝑘 ∈ I[0,𝑇−1]. However, this requires an
dditional continuity condition to ensure local optimality (Köhler et al.,
020c, Asm. 5).

.4.4. Periodicity constrained economic MPC
Houska and Müller (2017), Wang, Salvador, de la Peña, Puig,

nd Cembrano (2018) develop a periodicity constrained economic MPC
cheme that intrinsically provides closed-loop performance bounds
.r.t. the optimized periodic reference. Instead of separately optimizing
predicted input sequence 𝐮 ∈ U𝑁 and a periodic trajectory 𝐫 ∈ 𝑇 ,

this approach only optimizes over periodic trajectories that starts at the
current state 𝑥:

min
𝐫∈𝑇

𝑇−1
∑

𝑘=0
𝓁e(𝐫𝑘, 𝐲e,𝑘) s.t. 𝐱r,0 = 𝑥. (39)

Problem (39) can be recovered as a special case from Problem (35)
by setting the prediction horizon 𝑁 = 0 and using a simple terminal
equality constraint Xf = {𝐱r,0}, 𝑉f ,e = 0. This special case does not
atisfy the technical conditions we posed on the terminal set Xf (Köhler
t al., 2020c, Asm. 3). Hence, Theorem 9, which shows convergence to
locally optimal reference, is not applicable. In fact, convergence to

locally optimal periodic orbit can only be established under rather
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restrictive conditions, cf. Wang et al. (2018, Example 6, Thm. 1)
and Houska and Müller (2017, Lemma 3, Thm. 4). Köhler et al. (2020c,
Sec. V.B, App. A) also provide a numerical comparison, demonstrating
that the lack of a prediction horizon 𝑁 limits the performance of this
approach.

5.5. Stability and convergence in economic MPC

While Sections 5.1–5.4 focus on performance guarantees, the ques-
tion of stability and convergence can also plays an important role when
studying economic MPC schemes.

5.5.1. Dissipativity, optimality, stability
Dissipativity plays a crucial role to study stability in economic

MPC (Faulwasser et al., 2018) and optimal control (Grüne, 2022). Ne-
glecting some technical conditions, one can show equivalence between
the following properties:

• the system is optimally operated at the steady state 𝑥r (in a strict
sense);

• (strict) dissipativity w.r.t. the supply rate 𝑠(𝑥, 𝑢) = 𝓁(𝑥, 𝑢) −
𝓁(𝑥r , 𝑢r ), i.e., ∃𝜆 ∶ 𝑋 → R≥0, s.t. 𝜆(𝑓 (𝑥, 𝑢)) − 𝜆(𝑥) ≤ +𝑠(𝑥, 𝑢) −
𝛼𝓁(‖𝑥 − 𝑥r‖), 𝛼𝓁 ∈ ∞;

• the closed-loop system (23) (asymptotically) stabilizes 𝑥r ;
• the turnpike property holds, i.e., optimal solutions stay close to
𝑥r most of the time;

ee Angeli et al. (2012), Faulwasser et al. (2018), Faulwasser, Korda,
ones, and Bonvin (2017), Grüne and Müller (2016), Müller (2021),
üller, Angeli, and Allgöwer (2015) for details. Loosely speaking,

hese results imply that the economic MPC scheme ‘‘does the right
hing’’: If operation at the steady state is optimal, then the closed-
oop will converge to this steady state. If the closed-loop system does
ot stabilize the steady state, then superior performance is achieved
sing some dynamic operation. Given strict dissipativity, transient
erformance bounds of economic MPC compared to the infinite horizon
ptimal performance can also be established (Grüne & Panin, 2015).
eneralizations of this dissipativity concept are available for periodic
rbits (Köhler et al., 2018b; Zanon et al., 2017), general sets (Dong

Angeli, 2018; Martin, Köhler, & Allgöwer, 2019), and the con-
tructive verification is studied by Berberich, Köhler, Allgöwer, and
üller (2020), Pirkelmann, Angeli, and Grüne (2019), cf. Müller (2021)

nd Grüne (2022) for recent overviews. While dissipativity is not used
or the designs in this section, the analysis in Section 6 needs this
roperty.

.5.2. Enforcing convergence/stability in economic MPC
In various applications, we might wish to constructively enforce

onvergence/stability to some mode of operation, irrespective of its
ptimality in terms of the stage cost 𝓁e. One can simply use a tracking
PC formulation (Section 4) to stabilize the optimal steady state or

eriodic orbit (Limón et al., 2014). Furthermore, it is possible to
hoose a tracking stage cost 𝓁, which locally approximates an economic
PC scheme (De Schutter, Zanon, & Diehl, 2020). In the special case

f linear systems and (strictly) convex cost 𝓁e, an economic MPC
ehaves like a stabilizing MPC due to duality/dissipativity, and thus
tability can be naturally established (Broomhead, Manzie, Shekhar, &
ield, 2015; Ferramosca et al., 2014). Alamir and Pannochia (2021)
nsure asymptotic stability of the optimal steady state by adding a
arge enough penalty on non-stationary operation. Gutekunst, Bock,
nd Potschka (2020) achieve convergence to the optimal periodic
rajectory by penalizing the non-periodicity in the economic stage cost
e. Convergence/stability can also be imposed with Lyapunov-based
onstraints (Heidarinejad, Liu, & Christofides, 2012), (Ellis et al., 2017,
ec. 4), average constraints (Müller, Angeli, & Allgöwer, 2014b; Müller,
ngeli, Allgöwer, Amrit, & Rawlings, 2014; Rosenfelder, Köhler, &
llgöwer, 2020), or by considering a multi-objective formulation (He,
ang, & Sun, 2015), (Faulwasser et al., 2018, Sec. 9), (Eichfelder,
13

rüne, Krügel, & Schieß l, 2023; Soloperto, Köhler, & Allgöwer, 2020).
.6. Design of terminal ingredients in economic MPC

In the following, we discuss how to modify the design of the ter-
inal ingredients from Section 3 to satisfy the conditions in economic
PC (Asm. 8, 9, 11). A recent overview for these design methods can

e found in Köhler et al. (2020c, Sec. IV.A).
The conditions on the terminal set Xf , i.e., positive invariance and

onstraint satisfaction, are equivalent to the conditions needed in the
racking MPC schemes (Section 3–4) and hence the terminal set can
e constructed using the design procedures in Section 3. Recall that
he economic MPC schemes with artificial references (Section 5.3–5.4)
equire a contractive terminal set, while a simple terminal equality
onstraint requires modifications to ensure convergence to a local
inimum.

.6.1. Terminal cost - standard design
The conditions on the terminal cost 𝑉f ,e involve the economic stage

ost 𝓁e, which is in general neither quadratic nor positive definite. This
ecessitates modifications to the design procedures in Section 3. Let us
irst consider a fixed optimal steady state 𝑥r (Section 5.1). (Amrit et al.,
011) propose a simple design to compute an economic terminal cost
f the form 𝑉f ,e(𝑥) = ‖𝑥‖2𝑃 + 𝑝⊤𝑥 that satisfies (24). Specifically, one
an derive a local linear-quadratic upper bound on the stage cost 𝓁e
sing the Jacobian and Hessian of 𝓁e (Amrit et al., 2011, Lemma 23).
hen, the matrix 𝑃 is designed using a Lyapunov equation comparable
o LQR ⪰ 0 (8), where the role of 𝑄,𝑅 is replaced by a positive
emidefinite matrix that upper bounds the Hessian of 𝓁e. The vector
∈ R𝑛 is chosen such that it exactly compensates the Jacobian of the

tage cost 𝓁e. Then, analogous to Proposition 1, Inequality (24) holds
n a sufficiently small terminal set (Amrit et al., 2011, Lemma 24).
otably, this terminal cost 𝑉f ,e is not positive definite w.r.t. 𝑥r . This
aptures the fact that, for some initial conditions in the terminal set, the
ransient cost is strictly smaller than the cost at the optimal steady state.
ue to this, the terminal set Xf cannot be chosen as a sublevel set of the
conomic terminal cost 𝑉f ,e (as done in tracking MPC, Section 4.2.5).
ote that there is no degree of freedom in the choice of 𝑝 as it needs

o exactly cancel the Jacobian of 𝓁e.

.6.2. Extensions
Next, we discuss how to extend this design to periodic problems

Section 5.2), artificial setpoints (Section 5.3), and artificial periodic
eference trajectories (Section 5.4) using the design by Köhler et al.
2020c, Sec. IV.A).

For periodic reference trajectories (Section 5.2), we consider 𝑉f ,e(𝑥, 𝑡)
‖𝑥 − 𝑥r (𝑡)‖2𝑃 (𝑡) + (𝑥 − 𝑥r (𝑡))⊤𝑝(𝑡). Time-varying matrices 𝑃 (𝑡) can be

omputed using a time-varying (periodic) LQR, similar to Aydiner et al.
2016). Köhler et al. (2020c, Prop. 4) provide a formula to compute 𝑝(𝑡)
y solving a linear system of equations that includes the Jacobian of the
ynamics 𝑓 and the stage cost 𝓁e along the periodic reference 𝑟(𝑡).

To account for artificial setpoints (Section 5.3), the main challenge
s related to the linear correction factor 𝑝. Specifically, while the
pproach from Section 3.2 can be used to compute a parametrized
atrix 𝑃 (𝑟), this is in general not possible for 𝑝(𝑟). Instead, we include

he vector 𝑝 ∈ 𝑋 as a decision variable in the MPC that needs to satisfy
n equality constraint involving the Jacobian of the dynamics 𝑓 and
he stage cost 𝓁e, cf. Müller et al. (2014a, Rem. 7).

For periodic artificial reference trajectories (Section 5.4), we simply
ombine the previous two approaches. A parametrized matrix 𝑃 (𝑟)
s computed offline following the design in Section 3.4. A periodic
orrection term 𝐩 ∈ 𝑋𝑇 is included in the online optimization with
uitable constraints involving the Jacobian of 𝑓 and 𝓁e, cf. Köhler et al.
2020c, Sec. IV.A).
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Fig. 4. Temperature control in a building, adapted from (Köhler et al., 2020c). Closed-
loop state 𝑥 (blue, solid) resulting from periodic economic MPC (Theorem 9) with
time-varying ambient temperature and price signal, which also changes unpredictably
during online operation. Time-varying state constraints (black, solid). Optimal trajectory
computed in hindsight with known price signal 𝑦e shown in magenta, dashed. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

5.6.3. Positive definite terminal cost
The computation of the correction factor 𝑝 can become complex,

e.g., when considering artificial references. Alessandretti et al. (2016)
propose a positive definite terminal cost 𝑉f ,e by suitably scaling a
tracking terminal cost 𝑉f , which does not require this correction term
𝑝. The same approach can be applied to general artificial references
using the parametrized terminal cost (Section 3) to provide a terminal
cost for artificial references without the need to online compute the
correction term 𝑝 (Köhler et al., 2020c, Rem. 5). However, this neglects
the gradient information captured by 𝑝 and is hence more conservative,
see also the comparison by Köhler et al. (2020c, App. A).

5.7. Illustrative example

Fig. 4 illustrates application of the economic MPC formulation with
artificial periodic references (Theorem 9) with a simple scalar system
modelling temperature control in a building by Köhler et al. (2020c).
The system is subject to time-varying temperature constraints and
a disjoint input constraint modelling a discrete set of chillers. The
economic objective 𝓁e is minimizing energy cost. Ambient temperature
and electricity cost are time-varying with period length 24 hours (C.1).
As the true external quantities are not (exactly) periodic, the closed-
loop system needs to react to unexpected changes in the optimal mode
of operation (C.2). This example highlights the performance of the
economic MPC formulation, achieving close to optimal performance
despite unpredictable online changes (C.2) in external time-varying
quantities (C.1).

5.8. Open issues

Performance guarantees beyond periodic optimal operation remain
largely an open issue, see, e.g., Dong and Angeli (2018), Martin et al.
(2019) and Grüne and Pirkelmann (2020) for some recent results. The
utilization of artificial references inherits the limitations of tracking
MPC formulations with artificial references (Section 4.6) and hence
may also benefit from the extensions in Sections 4.4 and 7.2.1. Tran-
sient performance/regret bounds relative to the optimal performance
are a practically relevant and theoretically challenging issue, especially
considering unpredictable online changes in the cost (C.2) or lack of
14

knowledge of the optimal mode of operation (C.3).
6. MPC without terminal constraints/cost

In this section, we analyse simpler MPC formulations, which do not
rely on a terminal cost 𝑉f or a terminal set Xf satisfying Assumption 3.
First, we provide some motivation and historical context regarding
the analysis of such MPC schemes (Section 6.1). Then, we derive
qualitative conditions in terms of the stage cost 𝓁 and intrinsic system
properties, such that a sufficiently long prediction horizon 𝑁 ensures
desired closed-loop properties (Section 6.2). Furthermore, we provide
quantitative bounds for a sufficiently long horizon 𝑁 and discuss how
to use these analysis results constructively in the design (Section 6.3).
Finally, we provide a numerical example (Section 6.4) and mention
open issues (Section 6.5).

6.1. Motivation and historical context

In the following, we study an MPC formulation given by

 ⋆
𝑁 (𝑥) ∶= min

𝐮∈U𝑁

𝑁−1
∑

𝑘=0
𝓁(𝑥𝐮(𝑘, 𝑥),𝐮𝑘) (40)

s.t. (𝑥𝐮(𝑘, 𝑥),𝐮𝑘) ∈ Z, 𝑘 ∈ I[0,𝑁−1],

ith a minimizer 𝐮⋆(𝑥) and the closed-loop system

(𝑡 + 1) = 𝑓 (𝑥(𝑡),𝐮⋆0 (𝑥(𝑡))), 𝑡 ∈ I≥0. (41)

ompared to the standard formulation in Problem (4), we simply
emove the terminal cost 𝑉f and the terminal set constraint Xf in
roblem (40).

The design and analysis of the MPC formulations in Sections 2–5
evolve around the terminal ingredients. However, the design of the
erminal ingredients (Section 3) can be complicated and application
o large scale systems brings additional challenges (cf. Section 7.2.2).
his design also requires stabilizability of the linearization, which is
ot given for non-holonomic systems like a car (Worthmann, Mehrez,
anon, Mann, Gosine, & Diehl, 2015). Furthermore, the terminal set
onstraint Xf can lead to feasibility issues, e.g., if the design is done
ncorrectly or the model mismatch is neglected. In contrast, Prob-
em (40) is strikingly simple from an application perspective. Due to
hese reasons, many MPC implementations do not utilize properly de-
igned terminal ingredients, cf. Section 7.3.3 for a balanced discussion
egarding drawbacks and merits of terminal ingredients in MPC.

.1.1. What can go wrong?
For 𝑁 → ∞, Problem (40) results in the infinite horizon optimal

ontroller, which is known to be stabilizing under standard conditions.
ence, one may expect that the stability properties of the closed-loop

ystem (41) improve if we increase the prediction horizon 𝑁 . However,
tability is in general not monotone w.r.t. the horizon 𝑁 , i.e., the
losed-loop system (41) may become unstable if the prediction horizon

increases, see, e.g., the numerical examples by Primbs, Nevistić,
nd Doyle (1999, Sec. 4.2) and Köhler, Zeilinger, and Grüne (2023,
ec. VII.A). Instability due to a finite horizon 𝑁 can even be observed
or simple stable linear systems, e.g., water tanks (Raff et al., 2006) or
ass–spring–damper systems (Köhler et al., 2023). Hence, a theoretical

nalysis is required to a priori judge the stability properties of such MPC
ormulations.

.1.2. Stability conditions - historical developments
Historically, MPC emerged from the process control industry with-

ut any system theoretic guarantees and terminal ingredients are
mostly) not used, cf. Qin and Badgwell (2003, Sec. V5), Mayne
2013, Sec. 3 (i)). Such MPC formulations are also called unconstrained
PC (Grüne, 2009; Grüne, Pannek, Seehafer, & Worthmann, 2010;
eble & Allgöwer, 2012) due to the absence of a stabilizing terminal
onstraint (despite the presence of input or state constraints). Given
hat such MPC formulations are routinely applied, there is a significant
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interest in understanding the theoretical properties. Early works use
regularity properties to ensure stability under some sufficiently long
horizon 𝑁 , cf., e.g., the works by Alamir and Bornard (1995) and Jad-
babaie and Hauser (2005). However, it is difficult to obtain quantitative
bounds regarding the horizon 𝑁 using this analysis.

Over the last two decades, there has been a tremendous advance-
ment on this problem with a rich theory deriving quantitative bounds,
see, e.g., the overview and the textbook by Grüne (2012), Grüne and
Pannek (2017). Specifically, the works by Grimm, Messina, Tuna, and
Teel (2005), Tuna, Messina, and Teel (2006) and Grüne (2009), Grüne
et al. (2010), Grüne and Rantzer (2008) provide a foundation to deter-
mine stability properties and a sufficiently long prediction horizon 𝑁 .
This has lead to multiple subsequent advancements, addressing among
others:

• tight14 estimates for the stabilizing horizon 𝑁 (Grüne, 2009;
Grüne et al., 2010; Köhler, 2021; Köhler et al., 2023; Reble &
Allgöwer, 2012);

• characterizing the region of attraction (Boccia, Grüne, & Worth-
mann, 2014; Esterhuizen, Worthmann, & Streif, 2020; Köhler &
Allgöwer, 2021; Köhler, Müller, & Allgöwer, 2019b; Köhler et al.,
2022a; Pan, Stomberg, Engelmann, & Faulwasser, 2021);

• semidefinite cost (Grimm et al., 2005; Köhler et al., 2022a, 2023;
Westenbroek, Siththaranjan, Sarwari, Tomlin, & Sastry, 2022);

• economic cost (Faulwasser & Bonvin, 2015; Grüne, 2013; Grüne
& Pirkelmann, 2020; Grüne & Stieler, 2014; Köhler et al., 2019b;
Long & Xie, 2021; Müller & Grüne, 2016);

• terminal weights (Beckenbach & Streif, 2022; Grüne et al., 2010;
Köhler & Allgöwer, 2021; Köhler et al., 2023; Moreno-Mora,
Beckenbach, & Streif, 2023; Reble, Quevedo, & Allgöwer, 2012;
Tuna et al., 2006);

• continuous-time problems (Esterhuizen et al., 2020; Faulwasser,
Mehrez, & Worthmann, 2021; Long & Xie, 2021; Pan et al., 2021;
Reble & Allgöwer, 2012; Reble et al., 2012; Westenbroek et al.,
2022);

• non-holonomic systems (Coron, Grüne, & Worthmann, 2020;
Rosenfelder, Ebel, Krauspenhaar, & Eberhard, 2023; Worthmann
et al., 2015).

n the following, we summarize the main results in these directions.

.2. Qualitative conditions

In the following, we discuss qualitative conditions on the system
nd the stage cost 𝓁, which ensure desired closed-loop properties with
sufficiently long prediction horizon 𝑁 . We first focus on the standard
roblem of driving the system to the origin using a positive definite
tage cost 𝓁 (Section 6.2.1). Then, we extend the problem to a positive
emidefinite input–output stage cost 𝓁 (Section 6.2.2) and a singular
utput cost 𝓁 (Section 6.2.3). The generalizations to an economic stage
ost 𝓁e and dynamic problems are studied in Sections 6.2.4 and 6.2.5,
espectively. This exposition considers global stability with pure input
onstraints, i.e., Z = 𝑋 × U. Section 6.2.6 shows how these arguments
aturally extend to state constraints with a suitable region of attraction.

.2.1. Cost controllability
We first focus on the prototypical problem of stabilizing the origin

ith 0 = 𝑓 (0, 0), 0 ∈ U, and a positive definite stage cost 𝓁 (Asm. 2),
ith 𝑟 = 0 for simplicity.

ssumption 12. (Grüne, 2012, Asm. 3.5) There exists a constant
≥ 1, such that for any 𝑥 ∈ 𝑋 and any horizon 𝑁 ∈ I≥1, the value

unction satisfies
⋆
𝑁 (𝑥) ≤ 𝛾𝓁min(𝑥). (42)

14 Tight in the sense that no smaller bound can be derived given the posed
ssumptions and Lyapunov function.
15
A sufficient condition for (42) is exponential cost controllability,
hich is characterized as follows: For any 𝑥 ∈ 𝑋, there exists an input

equence 𝐮 ∈ U∞ satisfying 𝓁(𝑥𝐮(𝑘, 𝑥),𝐮𝑘) ≤ 𝐶𝜌𝑘𝓁min(𝑥), 𝑘 ∈ I≥0 with
onstants 𝐶 ≥ 1, 𝜌 ∈ [0, 1). If a system is exponentially stabilizable, then
his condition holds with a quadratic stage cost 𝓁(𝑥, 𝑢) = ‖𝑥‖2𝑄 + ‖𝑢‖2𝑅,
𝑄,𝑅 ≻ 0. In general, Assumption 12 does not hold and there may not
xist any finite horizon 𝑁 ensuring asymptotic stability when using

a quadratic stage cost 𝓁 (Müller & Worthmann, 2017). Systematic
choices of 𝓁 can be derived using homogeneity (Coron et al., 2020)
and non-holonomic vehicles are explored by Rosenfelder et al. (2023),
Worthmann et al. (2015).

Theorem 10. (Grüne & Rantzer, 2008, Thm. 4.5) Let Assumption 1, 2,
nd 12 hold. There exists a constant 𝑁 ≥ 0, such that for all 𝑁 > 𝑁 and

all 𝑥0 ∈ 𝑋, the closed-loop system (41) satisfies
⋆
𝑁 (𝑥(𝑡 + 1)) − 𝑁 (𝑥(𝑡)) ≤ −𝛼𝑁𝓁(𝑥(𝑡), 𝑢(𝑡)), 𝑡 ∈ I≥0, (43)

ith 𝛼𝑁 ∈ (0, 1], the origin is asymptotically stable with the Lyapunov
unction  ⋆

𝑁 , and the following performance bound holds
∞
∑

𝑡=0
𝓁(𝑥(𝑡), 𝑢(𝑡)) ≤ 1

𝛼𝑁
 ⋆
∞(𝑥0). (44)

Theorem 10 ensures stability and (44) provides a relative subopti-
ality/regret bound 1∕𝛼𝑁 ∈ [0,∞) w.r.t. the infinite-horizon optimal

olution  ⋆
∞ . Inequality (43) is also called a relaxed dynamic program-

ing inequality. It holds that lim𝑁→∞ 𝛼𝑁 = 1 and hence optimality is
ecovered in the limit.

To simplify the exposition, in the following we assume that the non-
inear system is exponentially stabilizable and hence a simple quadratic
ost 𝓁 can be used.

.2.2. Cost detectability
In many applications, we encounter a cost of the form 𝓁(𝑥, 𝑢) =

ℎ(𝑥)‖2𝑄 + ‖𝑢‖2𝑅, where 𝑦 = ℎ(𝑥) is some lower dimensional output of
he system (Section 4.1). This is particularly relevant if we identified an
nput–output model, e.g., an impulse response model, from data. Con-
ition (42) is not applicable in this case and we require a detectability
ondition.

ssumption 13. (Grimm et al., 2005, SA 3/4) There exist constants
≥ 1, 𝛾o ≥ 0, 𝜖o > 0 and a storage function 𝑊 ∶ 𝑋 → R≥0, such that

for any horizon 𝑁 ∈ I≥1 and for any 𝑥 ∈ 𝑋, 𝑢 ∈ U:

1) Cost controllability:  ⋆
𝑁 (𝑥) ≤ 𝛾‖𝑥‖2;

2) Cost detectability: 𝑊 (𝑥) ≤ 𝛾o‖𝑥‖2,
𝑊 (𝑓 (𝑥, 𝑢)) −𝑊 (𝑥) ≤ −𝜖o‖𝑥‖2 + 𝓁(𝑥, 𝑢).

Condition 1) holds if the system is exponentially stabilizable and
ℎ is Lipschitz continuous (Köhler et al., 2022a, Prop. 2). Condition 2)
ensures that lim𝑡→∞ 𝓁(𝑥(𝑡), 𝑢(𝑡)) = 0 implies lim𝑡→∞ ‖𝑥(𝑡)‖ = 0, i.e., the
ystem is zero-state detectable with the output 𝑦. This property is also
alled input–output-to-state stability (IOSS), 𝑊 (𝑥) is an IOSS Lyapunov
unction, and for linear systems this reduces to the standard detectabil-
ty condition (Cai & Teel, 2008). In case of nonlinear autoregressive
odels (NARX), a simple quadratic IOSS Lyapunov function 𝑊 (𝑥) can

e constructed (Köhler et al., 2023, Rem. 3). Assumption 12 is a special
ase of Assumption 13 considering 𝑊 (𝑥) = 0.

heorem 11 (Grimm et al. (2005, Thm. 1–2), Köhler et al. (2023,
hm. 1)). Let Assumptions 1 and 13 hold. There exists a constant 𝑁 ≥ 0,

such that for all 𝑁 > 𝑁 and all 𝑥0 ∈ 𝑋, the origin is exponentially
stable for the resulting closed-loop system (41) with the Lyapunov function
 ⋆
𝑁 (𝑥) +𝑊 (𝑥). Furthermore, there exists a constant 𝛼𝑁 ∈ (0, 1], such that
∞
∑

𝓁(𝑥(𝑡), 𝑢(𝑡)) ≤ 1  ⋆
∞(𝑥0) +

1 − 𝛼𝑁 𝑊 (𝑥0). (45)

𝑡=0 𝛼𝑁 𝛼𝑁
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Theorem 11 yields closed-loop properties comparable to Theo-
rem 10 with a semidefinite stage cost under a detectability condition
(Asm. 13).

6.2.3. Singular output cost
Next, we consider a pure output stage cost 𝓁(𝑥, 𝑢) = ‖ℎ(𝑥)‖2𝑄 without

any input regularization. Such a cost appears naturally in case no
input reference is available, e.g., in the classical output regulation
setting (Köhler et al., 2022a). Furthermore, studying this singular cost
provides insight for the implications of decreasing the input weighting
𝑅 (Westenbroek et al., 2022). Due to the absence of an input regulariza-
tion 𝑅 ≻ 0, the cost detectability condition 2) is more restrictive. Köhler
et al. (2022a, Prop. 4) show that this cost 𝓁 satisfies a comparable
detectability condition if the system is minimum-phase/output-input sta-
ble (Liberzon, Morse, & Sontag, 2002), i.e., the zero dynamics (ℎ(𝑥) ≡ 0)
are asymptotically stable. Westenbroek et al. (2022, Lemma 3,Thm. 3)
derive a converse result: If the system is non-minimum-phase, then for
any (finite) prediction horizon 𝑁 , the closed-loop system is unstable
if the input regularization 𝑅 is chosen small enough. Some intuition
for these results can be found by relating the MPC with this singu-
lar cost 𝓁 to a high-gain controller, which is known to destabilize
non-minimum-phase systems (Davison & Wang, 1974, Thm. 8).

6.2.4. Economic cost and dissipativity
In the following, we discuss results for an economic stage cost

𝓁e(𝑥, 𝑢) (Section 5), which is indefinite (Asm. 2 does not hold). Grüne
(2013), Grüne and Stieler (2014) show that a sufficiently long pre-
diction horizon 𝑁 ensures (practical) stability of the optimal steady
state 𝑥r , given strict dissipativity (cf. Section 5.5.1) and a local conti-
nuity/controllability condition. The main difference between this strict
dissipativity condition and the cost detectability condition 2) is the fact
that 𝑊 (𝑥) in Assumption 13 needs to be positive semidefinite (Höger
& Grüne, 2019, Thm. 2). The implementation of this economic MPC
scheme (Problem (40)) only requires the specification of the stage cost
𝓁e, but no knowledge of the optimal steady state 𝑥r , i.e., the closed-loop
system ‘‘finds’’ the optimal steady state. Due to the absence of terminal
ingredients, these economic MPC schemes also yield transient perfor-
mance bounds relative to the infinite horizon optimal controller (Grüne
& Stieler, 2014).

6.2.5. Dynamic operation
In the following, we explain how the results in Sections 6.2.1–

6.2.4 can be naturally extended to address the challenges related to
dynamic operation (C.1)–(C.3). Most difficulties listed in Section 2.2
are not present due to the simple design in Problem (40). In particular,
as no specific design is required for the implementation, this MPC
formulation can directly cope with online changes in the mode of
operation (C.2). Furthermore, Sections 6.2.2–6.2.4 study output refer-
ences or economic costs (C.3). Notably, the results for economic stage
costs 𝓁e also apply to unreachable references (Rawlings et al., 2008).
Specifically, suppose the stage cost is positive definite w.r.t. some state
𝑥r , but this setpoint is not feasible (due to dynamics or constraints).
Then, the closed-loop system (practically) converges to the steady state
with the smallest distance to the unfeasible target 𝑥r (Köhler et al.,
2019b; Long & Xie, 2021).

Next, we discuss results for non-stationary operation (C.1). Gen-
erally speaking, the previously presented results extend to the time-
varying case, assuming the corresponding conditions related to cost
controllability, cost detectability or dissipativity are suitably adjusted,
as discussed below in detail.

Trajectory tracking MPC schemes without terminal ingredients are
investigated by Faulwasser et al. (2021), Köhler et al. (2019b, 2022a).
Köhler et al. (2019b, Prop. 2) ensure cost controllability (Asm. 12) for
any dynamically feasible reference trajectory if the system is incremen-
tally stabilizable (cf. Section 3.5.3). Köhler et al. (2022a, Prop. 3) show
cost detectability (Asm. 13) if additionally the output ℎ is Lipschitz
16

s

continuous and the system is incrementally IOSS, which characterizes
detectability for nonlinear systems (Allan, Rawlings, & Teel, 2021).
Faulwasser et al. (2021, Sec. 1.4) use differential flatness to verify cost
controllability.

Considering the singular output stage cost (Section 6.2.3), Köhler
et al. (2022a) apply this analysis to solve the output regulation prob-
lem (Isidori & Byrnes, 1990), i.e., an exogenous system generates a
time-varying output reference 𝑦r (𝑡) that should be tracked. The classical
solution to this problem requires the solution to a partial differential
equation to determine the regulator manifold, where this tracking
objective is achieved. Köhler et al. (2022a, Thm. 2) show that a simple
MPC formulation (Problem (40)) with an output tracking cost 𝓁 =
ℎ(𝑥) − 𝑦r‖2𝑄 implicitly steers the system to this regulator manifold,
iven a minimum-phase condition. Since this manifold is unknown,
egularization w.r.t. some reference input 𝑢r cannot be directly applied.
owever, in case the exogenous signal is periodic, it is possible to pe-
alize the non-periodicity in the input. In this case, the minimum-phase
ondition can be relaxed to a standard detectability/IOSS condition in
ombination with a technical non-resonance condition (Köhler et al.,
022a, Sec. IV).

For the case of time-varying economic stage costs 𝓁(𝑥, 𝑢, 𝑡), Köhler
t al. (2019b, Thm. 3, Lemma 4) investigate periodic problems, show
trict dissipativity, and prove that the closed-loop system implicitly
racks the optimal periodic trajectory, see also Long and Xie (2021) for
he continuous-time extension. Grüne and Pirkelmann (2020) extend
his result to general time-varying problems. These results assume that
here exists a unique time-varying optimal trajectory 𝑥⋆rd(𝑡). However,
n a time-invariant setup, the optimal mode of operation may also be
on-stationary, cf., e.g., maximizing the yield of a continuous stirred-
ank reactor (Bailey, Horn, & Lin, 1971). In case the system is optimally
perated at a (time-invariant) periodic orbit, Müller and Grüne (2016,
ec. 3) show that the closed-loop performance can be arbitrarily subop-
imal, even with an arbitrarily large horizon 𝑁 . Suitable stability and
erformance guarantees can be obtained using: a multi-step implemen-
ation (Müller & Grüne, 2016); additional symmetry conditions (Köhler
t al., 2018b); or discounting in the cost (Schwenkel, Hadorn, Müller,
Allgöwer, 2024). Results for more general optimal operation in some

non-periodic) set are not yet available.

.2.6. State constraints and region of attraction
The previous analysis uses a global stabilizability condition

Asm. 12/13). However, this precludes hard state constraints and most
nstable systems. Due to its global nature, it is in general also challeng-
ng to verify numerically. We address this issue by considering a relaxed
ocal condition and suitably characterize the region of attraction. In the
ollowing, we again consider general state and input constraints (2).

First, we investigate the regulation problem with 𝓁(𝑥, 𝑢) = ‖𝑥‖2𝑄 +
𝑢‖2𝑅 (Section 6.2.1).

ssumption 14. (Boccia et al., 2014, Asm. 1) There exist constants
≥ 1, 𝑐 > 0, such that for any 𝑥 ∈ 𝑋 satisfying 𝓁min(𝑥) ≤ 𝑐 and

ny horizon 𝑁 ∈ I≥1, Problem (40) is feasible and the value function
atisfies (42).

Compared to Assumption 12, this relaxes the requirement to hold
nly locally around the origin. Similar to Proposition 1, if the nonlinear
ynamics are twice-continuously differentiable, the linearization at
he origin is stabilizable, and 0 ∈ int(Z), then Assumption 14 holds
ith some 𝑐 > 0, 𝛾 ≥ 1 (Schulze Darup & Cannon, 2015). Hence,
ssumption 14 allows for hard state constraints and unstable systems.
ue to the presence of hard state constraints, recursive feasibility of
roblem (40) is not immediately obvious.

heorem 12. (Boccia et al., 2014, Thm. 4) Let Assumption 1, 2,
nd 14 hold. For any constant 𝑉 > 0, there exists a horizon 𝑁𝑉 ≥ 0,

uch that for any horizon 𝑁 > 𝑁𝑉 and any initial condition 𝑥0 ∈
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𝑁

X𝑉 ∶=
{

𝑥 ∈ 𝑋|  ⋆
𝑁 (𝑥) ≤ 𝑉

}

, Problem (40) is feasible for all 𝑡 ∈ I≥0,
the constraints (2) are satisfied, the set X𝑉 is positively invariant, and the
origin is exponentially stable with the Lyapunov function  ⋆

𝑁 for the resulting
closed-loop system (41).

Theorem 12 reveals a connection between the region of attraction
X𝑉 and the horizon bound 𝑁 > 𝑁𝑉 . Compared to Theorem 1, recursive
feasibility is not ensured for any feasible initial condition, but only a
subset X𝑉 . The proof first establishes a decrease condition on the Lya-
punov function  ⋆

𝑁 , which ensures positive invariance of the sublevel
set X𝑉 and thus recursive feasibility of Problem (40), i.e., ‘‘stability im-
plies feasibility’’. This is in contrast to the standard paradigm for MPC
with terminal ingredients, i.e., ‘‘feasibility implies stability’’ (Scokaert
et al., 1999), which first establishes recursive feasibility independent
of any stability properties. Since the stability properties depend on a
sufficiently long horizon 𝑁 , also recursive feasibility can be lost here
if the horizon is not sufficiently large.

Esterhuizen et al. (2020, Thm. 1) extend Theorem 12 to continuous-
time problems. For detectable and singular costs 𝓁, Köhler et al. (2022a,
Thm. 1,Thm. 2) analyse the region of attraction as a sublevel set of the
Lyapunov function. For economic stage costs, Faulwasser and Bonvin
(2015, Lemma 3) show that the turnpike property (Section 5.5.1)
ensures recursive feasibility, cf. also Faulwasser et al. (2018, Sec. IV.2).
Köhler et al. (2019b, Thm. 3) analyse the region of attraction of an
economic MPC scheme using a sublevel set of the (practical) Lyapunov
function, compare also the continuous-time extension by Long and Xie
(2021, Thm. 3.3).

6.3. Quantitative bounds

In the following, we discuss quantitative bounds on the sufficiently
long horizon 𝑁 ensuring desired closed-loop properties. First, we
resent quantitative, partially tight, bounds on the prediction horizon
or the different problem setups (Section 6.3.1). Then, we outline
ow the theoretical results can be constructively used in the design
Section 6.3.2).

.3.1. Tight horizon bounds
We first consider the regulation problem (Section 6.2.1) using As-

umption 12 and discuss different techniques to obtain 𝑁 for this
problem, see also Grüne (2012).

Observe that there always exists a 𝑘 ∈ I[0,𝑁−1], such that 𝓁(𝑥𝐮⋆
(𝑘, 𝑥),𝐮𝑘) ≤  ⋆

𝑁 (𝑥)∕𝑁 . Hence, a simple candidate solution is obtained
by appending the finite-horizon optimal solution at this point 𝑘, which
ensures (43) with 𝛼𝑁 > 0 for 𝑁 > 𝑁 ≈ 𝛾2 (Grimm et al., 2005). By
sing the principle of optimality and recursively applying (42), Tuna
t al. (2006) and Grüne and Rantzer (2008) show an exponential decay

⋆
𝑁−𝑘(𝑥𝐮⋆ (𝑘, 𝑥)) ≤ 𝜌𝑘𝛾

⋆
𝑁 (𝑥), 𝜌𝛾 = (𝛾 − 1)∕𝛾 ∈ [0, 1), (46)

which ensures stability for 𝑁 > 𝑁 ≈ 2𝛾 log(𝛾). Grüne (2009) deter-
ine a tight constant 𝛼𝑁 satisfying (43) using a linear program (LP)

nd Grüne et al. (2010) derive the analytical solution 𝑁 ≈ 𝛾 log(𝛾), see
lso Reble and Allgöwer (2012) for the continuous-time case. Given
ssumption 12, this is the least conservative15 bound s.t.  ⋆

𝑁 is a
yapunov function (cf. (43)).

Köhler et al. (2023, Thm. 3) extend this LP analysis to derive a
ight estimate 𝑁 for detectable stage costs (cf. Theorem 11), which

recovers the LP bounds by Grüne (2009), Grüne et al. (2010) as a
special case. This improves bounds previously derived in Grimm et al.
(2005, Thm. 1–2) and Köhler et al. (2022a, App. A).

15 In practice we may still achieve stability with a shorter horizon 𝑁 ≪ 𝑁 .
This has two reasons: a) This derivation uses a fixed Lyapunov function  ⋆

𝑁 .
b) The horizon bound 𝑁 is valid for all systems satisfying condition (42), not
only the considered dynamics 𝑓 and cost 𝓁.
17
For economic stage costs, the results by Grüne (2013), Grüne and
Stieler (2014) are largely qualitative and convergence is only ensured
up to a remainder term that vanishes as 𝑁 → ∞.

Considering the region of attraction X𝑉 based on local conditions
(Theorem 12): Köhler (2021, Rem. 4.32) derives a tight estimate cou-
pling the region of attraction X𝑉 and a sufficiently long horizon 𝑁𝑉 .
This result shows that the required horizon 𝑁𝑉 can be decomposed as a
sum of two terms: a horizon 𝑁 which only depends on the local bound
𝛾 (Asm. 14) and a horizon 𝑁0 that depends linearly on the region of
attraction 𝑉 . The derivation of this result incorporates the LP analysis
by Grüne et al. (2010) and contradiction arguments similar to Limón,
Alamo, Salas, and Camacho (2006), which ensure 𝓁min(𝑥𝐮⋆(𝑥)(𝑘, 𝑥)) ≤ 𝑐
for all 𝑘 ∈ I[𝑁0 ,𝑁−1]. Related results include early work by Boccia et al.
(2014), continuous-time results (Esterhuizen et al., 2020), a bound 𝑁𝑉
inear in 𝑉 (Köhler et al., 2019b, Thm. 2), and recent bounds for semi-
efinite costs (cf. Köhler et al. (2022a, Thm. 1, Thm. 2), Köhler (2021,
hm. 4.12, Thm. 4.50)) and economic costs (cf. Köhler et al. (2019b,
hm. 3) and Long and Xie (2021, Thm. 3.3)).

In the special case of open-loop stable systems, Köhler et al. (2023,
em. 4) show that for any horizon 𝑁 ∈ I≥1, asymptotic stability
an be ensured by choosing a sufficiently large input penalty 𝑅 ≻ 0.
his follows from Theorem 11 by picking 𝑊 (𝑥) (Asm. 13) as a Lya-
unov function characterizing the open-loop (input-to state) stability.
n case of hard state constraints, a large region of attraction requires

(proportional) increase in the prediction horizon 𝑁 (Köhler, 2021,
hm. 4.12).

For minimum-phase systems, Köhler et al. (2022a, Rem. 7) show
symptotic stability with a singular cost 𝓁(𝑥, 𝑢) = ‖ℎ(𝑥)‖2𝑄 and a very
hort horizon 𝑁 (independent of 𝛾). In the continuous-time case with
n input–output stage cost 𝓁(𝑥, 𝑢) = ‖ℎ(𝑥)‖2𝑄 + ‖𝑢‖2𝑅, Westenbroek
t al. (2022, Thm. 2) show asymptotic stability for any horizon 𝑁 by
hoosing a sufficiently small input penality 𝑅 ≻ 0. Both results only
old locally in case of compact input constraints 𝑢 ∈ U and a longer
orizon is required to ensure a large region of attraction (Köhler, 2021,
hm. 4.50).

.3.2. From analysis to design
In contrast to Sections 2–5, this section mainly provides analysis

esults and hence we next discuss how to apply these theoretical results.
irst, we explain how these theoretical results can be used to inform the
hoice of the prediction horizon 𝑁 and stage cost 𝓁. Then we mention
ome modifications to Problem (40) to enable theoretical guarantees
ith significantly shorter horizons 𝑁 while keeping a simple design.

For a given stage cost 𝓁, the previous results provide a lower bound
on the prediction horizon such that desired closed-loop properties

can be guaranteed for 𝑁 > 𝑁 . Consider for example a trajectory track-
ing MPC scheme (Section 3.3) with some feasible reference trajectory
𝑟(𝑡) which is generated online (C.2). By verifying cost controllability
(Asm. 12) for any dynamic reference trajectory, we can derive a horizon
𝑁 ensuring asymptotic stability for any reference trajectory (Köhler
et al., 2019b, Sec. III).

Depending on the system dynamics and the chosen stage cost 𝓁,
the derived horizon bound 𝑁 may simply be too large for real-time
implementation. For practical application, we may instead treat the
prediction horizon 𝑁 as given (due to computational requirements) and
consider the stage cost 𝓁 as a design parameter. The qualitative results
(Section 6.2) provide some indication how the stage cost should be
chosen and we mentioned special cases (open-loop stable, minimum-
phase) for which we can derive arbitrarily small horizon bounds.
Considering the horizon bounds (Section 6.3.1), the stage cost 𝓁 should
be chosen s.t. the cost controllability constant 𝛾 (Asm. 12) is sufficiently
small.

In Section 4, tracking MPC formulations use artificial setpoints to
effectively deal with infeasible references and provide a large region of
attraction, even for short horizons 𝑁 . For the simple MPC formulation

(Problem (40)), infeasible references result in an economic formulation
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and closed-loop properties require a potentially very large prediction
horizon 𝑁 . Even for feasible references, a large region of attraction
requires a large prediction horizon 𝑁 . Hence, it is desirable to merge
the benefits of the simple design of Problem (40) and the properties
of artificial references (Section 4). Limón et al. (2018, Thm. 3) show
that we can forgo the design of a terminal set constraint Xf for set-
point tracking MPC formulations by using sublevel set arguments (cf.
Section 6.2.6). However, implementation still requires the design of a
local CLF satisfying Condition (T.2) in Assumption 3. Soloperto et al.
(2022, Thm. 2) directly integrate an artificial setpoint in Problem (40),
without any terminal cost 𝑉f . The corresponding analysis characterizes
the region of attraction as a sublevel sets of the tracking cost (cf.
Section 6.2.6) w.r.t. any artificial reference 𝑟 ∈ Zr . This provides a large
region of attraction and stability of the optimal setpoint with relatively
short prediction horizons 𝑁 , while the absence of terminal ingredients
allows for a simple design.

Using a (local) CLF as a terminal cost 𝑉f can ensure stability
properties for any horizon 𝑁 ∈ I≥1 (Section 2). However, computing
a local CLF can be cumbersome and avoiding this is one of the main
motivations to consider the simple MPC formulation in Problem (40).
In order merge the complementary advantages we investigate two
questions:

1) Can we ensure stability with a shorter horizon 𝑁 if we add a
terminal cost 𝑉f satisfying a relaxed CLF condition?

2) Is the design of such a relaxed CLF significantly simpler?

1): Tuna et al. (2006, A 3) characterize a relaxed CLF as

min
𝑢∈U

𝑉f (𝑓 (𝑥, 𝑢)) + 𝓁(𝑥, 𝑢) ≤ (1 + 𝜖f )𝑉f (𝑥), 𝜖f ∈ [0,∞), (47)

and similar conditions are used by Köhler and Allgöwer (2021), Köhler
et al. (2023), Reble et al. (2012). For 𝜖f = 0, Condition (47) corresponds
to Assumption 3, however, (47) is also naturally satisfied for any
positive definite terminal cost 𝑉f with some finite 𝜖f < ∞. Köhler et al.
(2023, Thm. 5–8) provide a (tight) LP analysis ensuring stability for
𝑁 > 𝑁 ≈ 𝛾(log(𝛾) − log(1 + 1∕𝜖f )), see also the continuous-time results
y Reble et al. (2012). For 𝜖f → ∞, this recovers the horizon bounds

by Grüne et al. (2010), while 𝜖f → 0 enables asymptotic stability with
rbitrary short horizons 𝑁 . The analysis can be naturally extended to
haracterize the region of attraction (cf. Section 6.2.6), see Köhler and
llgöwer (2021) and Köhler (2021, Thm. 4.37). Köhler et al. (2023,
hm. 5) and Köhler and Allgöwer (2021, Thm. 5) also discuss how the
dded terminal cost 𝑉f changes the performance bounds (44)/(45).

2): For practical application, we require a simple way to obtain
terminal cost 𝑉f . Beckenbach and Streif (2022) and Moreno-Mora

t al. (2023) compute 𝑉f using approximate dynamic programming
nd relate 𝜖f to the stopping condition. Grüne et al. (2010, Thm. 5.4)
uggest 𝑉f (𝑥) = 𝜔𝓁min(𝑥) with a simple weighting 𝜔 ≥ 1, which
s especially attractive if min𝑢∈U 𝓁min(𝑓 (𝑥, 𝑢)) ≤ 𝓁min(𝑥). In this case,
symptotic stability holds for any horizon 𝑁 ∈ I≥1 if 𝜔 is chosen

sufficiently large (Köhler et al., 2023, Sec. VI), see also Reble et al.
(2012) and Alamir (2018) regarding stability results by increasing
the weighting over the horizon. Köhler and Allgöwer (2021), Magni,
De Nicolao, Magnani, and Scattolini (2001) define 𝑉f (𝑥) use a finite-
horizon rollout, i.e., 𝑉f (𝑥) =

∑𝑀−1
𝑘=0 𝓁(𝑥𝐮(𝑘, 𝑥),𝐮𝑘) with the rollout

horizon 𝑀 ∈ I≥1 and some locally stabilizing control law 𝐮 ∈ U𝑀 . The
resulting MPC formulation is equivalent to Problem (40) with a horizon
𝑁 + 𝑀 with an additional constraint on the last 𝑀 inputs. Köhler
and Allgöwer (2021, Prop. 4) provide an LP analysis to derive a tight
constant 𝜖f satisfying (47) and show that asymptotic stability can be
ensured with a significantly smaller horizon 𝑁+𝑀 . Such a combination
of online optimization and a finite-horizon rollout is also key in various
reinforcement learning algorithms (Bertsekas, 2022). Bonassi, La Bella,
Farina, and Scattolini (2024, Thm. 1) show that a scaled finite-horizon
rollout cost can provides a local CLF satisfying Assumption 3. For the
18

special case of linear systems with polytopic constraints, Dutta, Hartley,
Maciejowski, and De Keyser (2014, Sec. V) and Raković and Zhang
(2023, Thm. 4) show that this finite-horizon rollout can implicitly char-
acterize the terminal set constraint Xf . The implicit characterization of
the terminal cost in terms of a finite-horizon rollout ensures that no
redesign is required for online changing setpoints (cf. Section 3.2/4.1)
if a (locally) stabilizing feedback is known (Magni & Scattolini, 2005),
which makes it very attractive for practical application.

For economic MPC without terminal ingredients, the theoretical
bounds on the prediction horizon are rather qualitative. Zanon and
Faulwasser (2018, Thm. 5) show that for any finite horizon 𝑁 , the
economic MPC scheme results in suboptimal operation. Zanon and
Faulwasser (2018, Thm. 5) ensure (local) asymptotic stability by adding
a linear gradient correction as a terminal cost. Liu and Liu (2016,
Thm. 4) use a finite-horizon rollout of the economic cost 𝓁e as a
terminal cost, which ensures exponential stability for a sufficiently
large rollout horizon 𝑀 .

6.4. Illustrative example

We illustrate the application of these theoretical results at the
example of a chain of linear mass–spring–damper systems with 𝑛 =
12 states and 𝑚 = 1 input by Köhler et al. (2023, Sec. VII.A). The
stage cost is 𝓁(𝑥, 𝑢) = ‖𝑦‖2 + ‖𝑢‖2𝑅 + ‖𝑥‖2𝑄 with controlled position
𝑦, a small weight 𝑄 ≻ 0, and a tunable input regularization 𝑅 >
0. The system is open-loop stable, lightly damped, severely under
actuated, and has non-minimum-phase behaviour w.r.t. 𝑦. The MPC
formulation (40) destabilizes the system if a short horizon 𝑁 or small
regularization parameters 𝑅 is chosen. We utilize Theorem 11 to sys-
tematically determine sufficiently large prediction horizons 𝑁 ensuring
global exponential stability for different choice of 𝑅, which is visualized
in Fig. 5. Numerically computing 𝑁 for the different parameter combi-
nations takes about 12 seconds. This provides a constructive method
to choose an input regularization 𝑅 ensuring exponential stability
for a given prediction horizon 𝑁 . Conservatism of the analysis in
Theorem 10 and significantly shorter horizons by including a simple
approximate terminal cost are also visible in Fig. 5. Given that this
offline verification utilizes no specific requirements regarding the con-
sidered setpoint, the same design choices 𝑁,𝑅 also ensure stability
for arbitrary reference setpoints (C.2) or (feasible) reference dynamic
trajectories (C.1). Constructive utilization of the theory in Section 6
is (currently) primarily considered for non-holonomic vehicles, see
numerical studies by Coron et al. (2020), Worthmann et al. (2015)
and experimental results by Rickenbach et al. (2023), Rosenfelder et al.
(2023).

6.5. Open issues

The lack of tools to automatically verify the posed conditions
(Asm. 12–14) limits application for high-dimensional nonlinear sys-
tems. The theoretical bound on a sufficiently long horizon 𝑁 is often
too conservative to be applied. Incorporating a terminal penalty while
keeping a simple design procedure is a promising research direction,
see also discussion in Section 7.3.3.

7. Discussion and conclusions

In this section, we provide some high-level discussion and conclu-
sions. First, we provide a concise summary of the different frameworks
introduced in this article (Section 7.1) and address some important
extensions (Section 7.2). Lastly, we discuss complementary advantages

of these frameworks and possible unifying approaches (Section 7.3).
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Fig. 5. Chain of mass–spring–dampers, adapted from Köhler et al. (2023). Sufficient
horizon 𝑁 for stability for varying 𝑅 based on Theorem 11 in blue, solid. Bound
𝑁 utilizing an additional approximate terminal cost (Section 6.3.2) using a finite-
orizon roll-out with 𝑀 = 10 shown in magenta, dotted. Theoretical bounds 𝑁 using

Theorem 10 shown in red, dashed. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

7.1. Summary

In the following, we summarize the main tools and methods devel-
oped in Sections 3–6 and discuss how they address the challenges of
dynamic operation (C.1)–(C.3).

In Section 3, we provide design procedures for the terminal ingre-
dients 𝑉f ,Xf . For a given steady state, this design uses the linearization
o construct a local CLF with the LQR (Chen & Allgöwer, 1998). For
on-stationary operation (C.1), we use a local LTV model around a
eference trajectory and construct a local CLF using a time-varying
QR (Faulwasser & Findeisen, 2011). To account for online changes in
he reference (C.2), we develop a reference generic offline computation
sing tools from LPV systems to yield parametrized terminal ingredients
or any feasible reference setpoint/trajectory (Köhler et al., 2020a).
n addition, we discuss terminal equality constraints as a simple but
onservative alternative (Section 3.5.1).

In Section 4, we design tracking MPC formulations using artificial
eferences. These designs address online changing operating condi-
ions (C.2) by ensuring feasibility independent of online changes in the
eference. Furthermore, the offset cost 𝑉o enables indirect specification

of the optimal mode of operation through a (possibly infeasible) out-
put target 𝑦d (C.3), while stability of the implicitly defined optimal
steady state is ensured (Limón et al., 2018). To account for non-
stationary operation (C.1), a periodic artificial reference trajectory is
used and stability of the (unknown) optimal periodic trajectory is
established (Köhler et al., 2020b; Limón et al., 2016). The deployment
of these nonlinear tracking MPC schemes hinges on the design of
terminal ingredients for online changing references (Section 3). Im-
portant extensions include the design of an offset cost 𝑉o addressing
non-convexity (Soloperto et al., 2022) and the reduction of the online
computational demand by operating a tracking MPC and a planner at
different frequencies (Köhler et al., 2020b).

In Section 5, we directly express the control goal in the cost 𝓁e (C.3)
using an economic MPC formulation (Faulwasser et al., 2018). The
economic MPC scheme ensures that the closed-loop performance is no
worse than tracking MPC schemes (Angeli et al., 2012). Non-stationary
operation (C.1) in terms of periodic trajectories can also be directly
addressed (Zanon et al., 2017). To account for online changing operat-
ing conditions (C.2), we use artificial setpoints (Section 4). Optimality
guarantees with economic stage costs require a self-tuning weight
𝛽(𝑡) (Müller et al., 2014a). We use artificial periodic references to
account for non-stationary and online changing operating conditions
19

(C.1)–(C.2), however, this may result in suboptimal performance. We p
recover the desired performance guarantees by introducing a shifted
terminal cost 𝑉f that yields a monotonic decrease condition (Köhler
et al., 2020c). We also discuss stability and the design of terminal
ingredients for economic MPC schemes.

In Section 6, we analyse MPC formulations without terminal ingre-
dients. Given a suitable stabilizability condition, asymptotic stability is
ensured with a sufficiently long horizon 𝑁 and a tight bound for this
horizon is computed using an LP analysis (Grüne et al., 2010). Since this
framework requires no explicit offline design, the results can be directly
applied to non-stationary operation (C.1) with online changing operat-
ing conditions (C.2). We address input–output/output references (C.3)
assuming detectability/minimum-phase (Grimm et al., 2005; Köhler
et al., 2022a; Westenbroek et al., 2022) and a tight horizon bound
𝑁 is obtained using an LP analysis (Köhler et al., 2023). The con-
sideration of infeasible references complicates the analysis, however,
(practical) stability of the optimal feasible trajectory can be ensured
with a sufficiently large horizon (Köhler et al., 2019b; Long & Xie,
2021). General economic stage cost can be handled similarly (Grüne,
2013; Grüne & Pirkelmann, 2020; Grüne & Stieler, 2014). Although
most of these results consider global properties, we also study the region
of attraction (Boccia et al., 2014), including corresponding bounds on
the prediction horizon 𝑁 (Köhler, 2021). By adding a terminal weight,
stability can be ensured with a significantly shorter horizon 𝑁 (Köhler
t al., 2023).

.2. Extensions

In the following, we discuss some important extensions w.r.t. the
xposition in Sections 2–6. First, we provide more flexible MPC for-
ulations for non-stationary operation (C.1) by introducing a time-

arametrization (Section 7.2.1). Then, we discuss large scale systems
nd distributed solutions (Section 7.2.2). Finally, we consider the pres-
nce of model mismatch (Section 7.2.3).

.2.1. Flexible time parametrization
In the following, we re-parametrize time-varying reference signals

o increase the flexibility of the MPC approaches.
The MPC formulations based on artificial periodic reference tra-

ectories 𝐫 ∈ Z𝑇
r (Section 4.3/5.4) fix a period length 𝑇 ∈ I≥1 and

hen provide stability/optimality guarantees w.r.t. all 𝑇 -periodic tra-
ectories. By adopting a continuous-time formulation with a variable
tep-size, we can optimize over periodic trajectories without fixing

period length, cf. Houska (2015, Sec. 2), Gutekunst et al. (2020,
ec. 3), Köhler et al. (2020c, Rem. 2, App. A).

In Section 3.2, we introduce the trajectory tracking problem us-
ng a time-varying reference trajectory 𝑥r (𝑡), 𝑡 ∈ I≥0. This problem
an be generalized to a path-following problem, where only the ge-
metric curve of the reference is provided, i.e., 𝑥r (𝜃) with a scalar
arametrization 𝜃 ∈ [0, 1]. The timing can be flexibly changed by
ptimizing 𝜃̇(𝑡) > 0 as a free control input and a desired speed 𝜃̇
an be set in the cost function. Corresponding path-following MPC
ormulations with stability and convergence guarantees are derived
y Faulwasser (2012), Faulwasser and Findeisen (2015), Yu, Li, Chen,
nd Allgöwer (2015), including an MPC formulation without terminal
ngredients (Faulwasser et al., 2021). Such path-following implementa-
ions are also successfully applied in different experiments (Faulwasser,

eber, Zometa, & Findeisen, 2016; Liniger et al., 2015; Romero et al.,
022). These approaches are also called model predictive contouring
ontrol (Lam, Manzie, & Good, 2010).

It is natural to combine a path-following formulation with an artifi-
ial reference path (Section 4). Sánchez, D’Jorge, Limache, González,
nd Ferramosca (2023) provide a first step in this direction, by op-
imizing a periodic artificial reference 𝐫 ∈ 𝑇 and evaluating the
ffset cost 𝑉o w.r.t. a periodic reference curve. By jointly optimizing the
ath-progress 𝜃, convergence to the optimal periodic curve is ensured.
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However, this approach still requires a fixed period length 𝑇 in the
rtificial reference. Further research is required in this direction.

In summary, most of the designs in this article that use a time-
arying reference can be generalized to use a more flexible time
arametrization, which can significantly improve performance.

.2.2. Large scale systems and distributed solutions
In the following, we discuss application of the presented approaches

o large scale systems. Scalability for large systems is often achieved us-
ng distributed approaches, see the overviews by Christofides, Scattolini,
e la Pena, and Liu (2013), Müller and Allgöwer (2017) on distributed
PC. We discuss design procedures that are scalable and preserve

parsity of the optimization problems. Hence, efficient distributed op-
imization methods can be applied (Engelmann, Jiang, Benner, Ou,
ouska, & Faulwasser, 2022), see also Köhler, Müller, and Allgöwer

2019a) regarding closed-loop properties under inexact distributed op-
imization.

Considering the design of terminal ingredients 𝑉f , 𝑘f (Section 3),
omputing the CLF based on the LQR destroys the sparsity struc-
ure in Problem (4)/(10). Furthermore, the LMI based computation of
arametrized terminal ingredients by Köhler et al. (2020a) does not
cale to high dimensional systems. Conte et al. (2016) propose an LMI-
ased design of the terminal ingredients for linear systems using a
istributed parametrization of 𝑉f , 𝑘f . This ensures that the offline de-
ign and the online optimization can be efficiently distributed. Similar
istributed parametrizations can be utilized to compute parametrized
erminal ingredients for nonlinear systems, cf. Wang, Manchester, and
ao (2017).

Artificial references (Section 4) can be naturally combined with
istributed formulations. Distributed setpoint tracking MPC formula-
ions (Section 4.1) for large scale systems are derived by Aboudonia
t al. (2022), Ferramosca, Limón, Alvarado, and Camacho (2013).
rtificial references can also facilitate complex coordination in multi-
gent systems (Köhler et al., 2022b, 2023b; Rickenbach et al., 2023).
öhler et al. (2022b) achieve consensus by only communicating arti-

icial references with other agents. Similarly, Rickenbach et al. (2023)
olve the coverage control problem and ensure collision avoidance by
nly exchanging artificial references.

In general, few existing results extend economic MPC (Section 5) to
arge scale distributed systems (Müller & Allgöwer, 2017, Sec. 4.5). The
esign of the terminal ingredients for large scale systems also utilizes
distributed parametrization (Köhler, 2017, Sec. 2.2). Coordination of
ultiple agents with economic cost functions is addressed by Köhler,
üller, and Allgöwer (2018) using a separate coordination algorithm

o compute reference setpoints.
MPC formulations without terminal ingredients (Section 6) are sim-

le to apply for large scale systems due to the absence of any of-
line designs. For example, Giselsson and Rantzer (2014) and Köhler
t al. (2019a, App. A) derive closed-loop guarantees for regulation and
conomic performance despite inexact distributed optimization.

.2.3. Model mismatch and robustness
In this article, we assume that the system evolves exactly according

o our model (1), which is rarely the case in practice. In general,
ecursive feasibility and closed-loop properties under model mismatch
equire a robust MPC design (Kouvaritakis & Cannon, 2016; Mayne,
016). A simple robust MPC design uses a nominal prediction and con-
ines the system state 𝑥(𝑡) in a tube around this nominal prediction with
n additional tube feedback, cf. Mayne (2016), Mayne et al. (2011),
aković, Dai, and Xia (2023), Sasfi et al. (2023); Kouvaritakis and
annon (2016, Sec. 3.5). By using a nominal cost, the nominal closed-

oop properties we derive in this article also apply to this nominal
rajectory and the system state 𝑥(𝑡) is confined to a neighbourhood of
his nominal trajectory.

While the design of such tubes is beyond the scope of this article,
20

e highlight a connection to the parametrized terminal cost 𝑉f (𝑥, 𝑟) (
ntroduced in Section 3.4. Specifically, this design results in an in-
remental Lyapunov function (cf. Section 3.5.3), which is used in the
onlinear robust MPC designs by Bayer, Bürger, and Allgöwer (2013),
öhler, Müller, and Allgöwer (2018a), Köhler, Soloperto, Müller, and
llgöwer (2021), Sasfi et al. (2023), Singh, Majumdar, Slotine, and
avone (2017) to parametrize this tube.

In the following, we mention existing results that combine the
ominal results in Sections 3–6 with a robust MPC formulation. Robust
rajectory tracking (Section 3.3) is studied by Köhler et al. (2020a,
pp. B). Robust setpoint tracking formulations (Section 4.1) for linear
nd nonlinear systems are developed by Limón, Alvarado, Alamo, and
amacho (2010), Zeilinger et al. (2014) and Cunha and Santos (2022),
ubert et al. (2020), cf. also Peschke and Görges (2023), Sasfi et al.

2023) regarding online model updates. For artificial periodic refer-
nces (Section 4.3), Pereira, de la Peña, Limón, Alvarado, and Alamo
2017) provide a robust design for linear systems, cf. also Broomhead
t al. (2015). Robust economic MPC formulations (Section 5.1) are

developed by Bayer, Lorenzen, Müller, and Allgöwer (2016), Bayer,
Müller, and Allgöwer (2014) and a periodic extension (Section 5.2) is
derived by Wabersich, Bayer, Müller, and Allgöwer (2018). Robust MPC
formulations without terminal ingredients (Section 6) are developed
by Köhler et al. (2018a) and results for output regulation and economic
MPC are derived by Köhler et al. (2022a) and Klöppelt, Schwenkel,
Allgöwer, and Müller (2021), Schwenkel, Köhler, Müller, and Allgöwer
(2020).

Offset-free tracking MPC formulations are routinely applied to en-
ure convergence to the desired reference (Betti, Farina, & Scattolini,
013; Limón et al., 2010; Magni & Scattolini, 2005; Morari & Maeder,
012). In particular, asymptotically constant model mismatch can be
ompensated (asymptotically) using a disturbance observer or a veloc-
ty formulation (Cisneros & Werner, 2020; Muske & Badgwell, 2002;
annocchia & Rawlings, 2003). This does not ensure convergence to
n optimal steady state (21) in case of an economic stage cost 𝓁e.
odifier adaptation estimates a correction for the steady-state opti-
ization (21) that ensures convergence to the (economically) opti-
al steady state (Alamo, Ferramosca, González, Limón, & Odloak,
014; Faulwasser & Pannocchia, 2019; Vaccari, Bonvin, Pelagagge, &
annocchia, 2021). Developing similar approaches for more dynamic
roblems (C.1) is an open problem.

.3. Complementary benefits and limitations

In the following, we contrast the complementary advantages of
he different MPC frameworks presented in Sections 3–6 and highlight
ome unifying approaches. First, we analyse the role of artificial ref-
rences (Section 7.3.1). Then, we discuss benefits of using economic
PC formulations (Section 7.3.2). Finally, we contrast the benefits and

imitations of using terminal ingredients in MPC (Section 7.3.3).

.3.1. Artificial references
One of the key tools we use in Sections 4–5 to deal with online

hanging operating conditions (C.2) are artificial references (Section 4).
rtificial references ensure recursive feasibility and constraint satisfac-

ion completely independent of the control goal, which is expressed by
ome target to be tracked or an economic cost, both of which may vary
npredictably online. The non-trivial part is that under nominal con-
itions, we obtain the same performance/stability guarantees that we
ould achieve with a standard MPC formulation with a fixed optimal

eference (cf. Theorem 4/9). From a design perspective, the addition of
n artificial reference does not require complex offline operations and is
ence easy to apply. Additional benefits of artificial references include
he large region of attraction and flexibility, e.g., if multiple setpoints
re optimal (cf. Section 4.2.3). Main challenges and limitations in
he application of artificial references include: (i) design of terminal
ngredients; (ii) periodicity requirement for dynamic references; and

iii) computational complexity.
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(i) One drawback of this approach is arguably the fact that terminal
ingredients need to be designed for all possible references, e.g., us-
ing Köhler et al. (2020a). The approach by Soloperto et al. (2022)
circumvents this issue by using artificial references without any ter-
minal ingredients. This combines many of the benefits of artificial
references (Section 4) and MPC without terminal ingredients (Sec-
tion 6), such as a simple design, a large region of attraction, and direct
handling of online changing or infeasible references (C.2)–(C.3).

(ii) We address optimal operation with non-stationary targets (C.1)
using periodic artificial reference trajectories 𝐫 ∈ Z𝑇

r and provide
guarantees w.r.t. optimal periodic operation with period length 𝑇 .
This requires a priori knowledge of the optimal periodic length 𝑇 ,
which can be relaxed using a suitable parametrization (Section 7.2.1).
More importantly, there are many control problems where optimal
operation is completely non-periodic. For example, batch processes in
process control or motion planning problems for autonomous robots are
typically posed as finite-horizon control problems and searching for a
periodic solution may be infeasible or highly suboptimal. Addressing
such problems with artificial references remains an open issue.

(iii) Considering the computational complexity, Problem (14)/(32)
uses an artificial setpoint, which slightly increases the computational
complexity.16 However, the increase in computational complexity can
be very large in case of artificial periodic reference trajectories 𝐫 ∈ Z𝑇

r
(cf. Problem (18)/(35)) with 𝑇 ≫ 1. Köhler et al. (2020b) address
this issue by decomposing Problem (18) into a tracking MPC and a
planning problem (Section 4.4). This circumvents the computational
increase by running a standard tracking MPC scheme while the plan-
ning problem is solved in parallel on a longer time-scale. In general,
decomposing complex control problems into a standard tracking MPC
scheme combined with a more complex optimization problem solved on
a slower time-scale is a promising approach, cf., e.g., tracker–planner
hierarchy (Schweidel et al., 2022) or asynchronous updates in robust
MPC (Sieber, Zanelli, Leeman, Bennani, & Zeilinger, 2023).17

7.3.2. Directly minimizing economic costs
In Section 5, we discuss economic MPC formulations that directly

optimize the performance measure 𝓁e, e.g., reflecting production yield
and energy consumption. This is in contrast to the tracking MPC
formulations (Section 2–4), which use a positive definite stage cost
𝓁 to regulate the system to some desired mode of operation. In the
following, we discuss the benefits of directly using an economic stage
cost 𝓁e vs. a regulation cost 𝓁.

A benefit of tracking MPC formulations is simplicity, i.e., we en-
sure stability of the optimal setpoint and hence closed-loop operation
is no worse than operation at this setpoint. In economic MPC, we
may require additional modifications to ensure the same performance
bounds with artificial references and even more care is required for
economic MPC formulations without terminal ingredients. The fact that
economic MPC schemes do not necessarily guarantee stability may be a
practical hindrance for deployment. For example, monitoring a process
may be less trivial as significant fluctuations in the controlled variables
could indicate some failure, even if these fluctuations do improve the
economic performance.

Theorem 5 ensures that the average performance of an economic
MPC scheme is no worse than any tracking MPC scheme. There are nu-
merous examples demonstrating significant performance benefits using
economic MPC schemes (Ellis et al., 2017; Rawlings et al., 2012, 2008).

16 Solvers exploiting the structure in Problem (4) (cf. Verschueren et al.
2022, Sec. 2.7.2)) are not directly applicable to Problem (14)/(32). A simple
orkaround by Rickenbach et al. (2023) is to use an augmented state (𝑥, 𝑟).
17 The idea by Sieber et al. (2023) can also be adapted to the problem in
ection 4.4 by removing the feasibility preserving constraint (19c) and instead
ptimizing the reference 𝐲r in the tracking MPC as a convex combination with
21

scalar interpolating variable (given convexity, Asm. 6).
The adoption of economic MPC is especially relevant in applications
where the objective is largely independent of the stability of the system,
e.g., in HVAC systems economic cost functions are common to reduce
energy consumption (Taheri, Hosseini, & Razban, 2022, Table 3). Even
though similar economic considerations are paramount in various in-
dustries, the deployment of tracking MPC formulations remains the
norm.

The introduction of economic MPC schemes in practice may be
facilitated by formulations that also enable a user to flexibly set de-
sired stability properties. Approaches to address this issue include
Lyapunov constraints (Ellis et al., 2017; Heidarinejad et al., 2012),
average constraints (Müller et al., 2014b, 2014), multi-objective for-
mulations (Eichfelder et al., 2023; Soloperto et al., 2020), or using the
external variable 𝑦e to flexibly change the cost online (cf. Köhler et al.
(2020c, Fig. 4), Section 5.3).

7.3.3. On terminal ingredients in MPC
In the following, we discuss advantages and limitations of using

terminal ingredients in MPC, see also the discussions by Mayne (2013)
and Grüne and Pannek (2017, Sec. 7.4). First, we provide a general dis-
cussion contrasting the standard MPC formulation (Section 2) to MPC
formulations without terminal ingredients (Section 6). Then, we focus
on the challenges related to dynamic operation (C.1)–(C.3). Finally, we
highlight some approaches that combine ideas from both frameworks.

We first focus on stabilizing the origin with a quadratic stage cost
𝓁(𝑥, 𝑢) = ‖𝑥‖2𝑄 + ‖𝑢‖2𝑅 and distinguish three MPC formulations:

• no terminal ingredients, also called ‘‘unconstrained’’ MPC (UCON,
Section 6, Grüne et al. (2010));

• a classical quadratic terminal cost 𝑉f , also called quasi-infinite
horizon (QINF, Section 3.1, Chen and Allgöwer (1998));

• a simple terminal equality constraint (TEC, Section 3.5.1).

Considering the closed-loop performance and region of attraction, QINF
is generally superior to TEC, see, e.g., comparisons by Chen and All-
göwer (1998, Sec. 5), Raff et al. (2006, Sec. V), Köhler et al. (2020b,
Sec. 4.1), and Köhler et al. (2020a, Sec. 5.2). General statements
regarding the performance of UC vs. QINF/TEC are difficult, however,
two important extreme cases can be regarded. (i) The performance
of QINF is locally close to optimal (cf. Grüne and Pannek (2017,
Thm. 5.22), Köhler (2021, App. A)), while the performance of UCON
with a short horizon 𝑁 can be highly suboptimal. (ii) Theorem 10 can
ensure any desired performance bound 𝛼𝑁 ∈ [0, 1) for UCON with
a sufficiently large (finite) horizon 𝑁 . In contrast, the terminal set
constraint in QINF/TEC typically yields a bounded feasible set, which
may result in severe performance limitations.

TEC requires a more restrictive local controllability condition to be
applied. TEC and UCON require no offline design, while QINF requires
an LQR design based on the linearization and the determination of a
suitable terminal set scaling 𝛼 > 0. Given terminal ingredients 𝑉f , Xf
(Asm. 3), we can directly compute constants 𝛾, 𝑐 satisfying cost con-
trollability (Asm. 14), cf. Schulze Darup and Cannon (2015). However,
there is no algorithm to determine an analytical formula for a local
CLF 𝑉f using given constants 𝑐, 𝛾 that satisfy the cost controllability
condition (Asm. 14). Hence, the design of a CLF 𝑉f and a positive
invariant set Xf for QINF is intrinsically more complex.

In the following, we focus on challenges related to dynamic oper-
ation (C.1)–(C.3). The design of a terminal cost 𝑉f for time-varying
references (C.1) or online changing references (C.2) becomes signifi-
cantly more complex (Section 3). In addition, evaluation of the terminal
cost/set 𝑉f∕Xf in Problem (10) requires the state reference 𝑥r (𝑡), which
is difficult to implement if only an output reference 𝑦r (𝑡) is avail-
able (C.3). Furthermore, all theoretical properties break down if the
provided reference does not satisfy the constraints or dynamics (C.3).
Although the deployment of artificial references can avoid some of
these issues, this results in additional challenges (cf. Section 7.3.1).
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In contrast, MPC formulations without terminal ingredients can be
directly applied to time-varying or online changing references (C.1)–
(C.2). Even output references 𝑦r (𝑡) or infeasible references can be
handled (cf. Section 6.2.5). Hence, the advantages of a simple MPC
formulation without terminal ingredients become more pronounced
when considering such dynamic operation. However, derivation of a
sufficiently long horizon 𝑁 also becomes more challenging and in gen-
eral a long prediction horizon 𝑁 may be needed due to the absence of
terminal ingredients. Such MPC formulations without terminal ingredi-
ents are also particularly popular in robotics experiments with dynamic
operation, cf., e.g., Faulwasser et al. (2016), Liniger et al. (2015),
Rickenbach et al. (2023), Romero et al. (2022), Rosenfelder et al.
(2023). This important factor is often neglected in discussions regarding
benefits and drawbacks of terminal ingredients in MPC, cf. Mayne
(2013) and Grüne and Pannek (2017, Sec. 7.4). One important excep-
tion is economic MPC (Section 5): There exist results for time-varying
economically optimal operation without terminal ingredients (Grüne &
Pirkelmann, 2020; Köhler et al., 2019b; Long & Xie, 2021), however,
the corresponding conditions are very challenging to verify. On the
other hand, Section 5 introduces simple design methods for economic
MPC schemes with terminal ingredients that provide strong theoretical
properties.

Lastly, we discuss approaches that unify the benefits of MPC frame-
works with and without terminal ingredients. Limón et al. (2006) show
that we can drop the terminal set constraint Xf in Problem (4) for any
initial condition in a region of attraction 𝑥 ∈ X𝑉 . Limón et al. (2018,
Sec. III.B) combine this with artificial setpoints to handle infeasible
references. Soloperto et al. (2022) further remove the requirement of a
local CLF 𝑉f , thus simplifying the design. Magni et al. (2001) and Köhler
and Allgöwer (2021) use a finite-horizon rollout cost 𝑉f to approximate
a CLF. Köhler et al. (2023) provide a theoretical analysis to ensure
stability with a short horizon 𝑁 using such an approximate CLF, see
also the continuous-time results by Reble et al. (2012). In combination,
these approaches can be implemented with a short horizon 𝑁 , without
any complex offline design, and for infeasible references.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

Aboudonia, A., Eichler, A., Cordiano, F., Banjac, G., & Lygeros, J. (2022). Distributed
model predictive control with reconfigurable terminal ingredients for reference
tracking. IEEE Transactions on Automatic Control, 67(11), 6263–6270.

Ahmadi, A. A., & Parrilo, P. A. (2008). Non-monotonic Lyapunov functions for stability
of discrete time nonlinear and switched systems. In Proc. 47th IEEE conf. decision
and control (pp. 614–621).

Alamir, M. (2018). Stability proof for nonlinear MPC design using monotoni-
cally increasing weighting profiles without terminal constraints. Automatica, 87,
455–459.

Alamir, M., & Bornard, G. (1995). Stability of a truncated infinite constrained receding
horizon scheme: the general discrete nonlinear case. Automatica, 31(9), 1353–1356.

Alamir, M., & Pannochia, G. (2021). A new formulation of economic model predictive
control without terminal constraint. Automatica, 125, Article 109420.

Alamo, T., Ferramosca, A., González, A. H., Limón, D., & Odloak, D. (2014). A gradient-
based strategy for the one-layer RTO+ MPC controller. Journal of Process Control,
24(4), 435–447.

Alessandretti, A., Aguiar, A. P., & Jones, C. N. (2016). On convergence and performance
certification of a continuous-time economic model predictive control scheme with
time-varying performance index. Automatica, 68, 305–313.

Allan, D. A., Rawlings, J., & Teel, A. R. (2021). Nonlinear detectability and incremental
input/output-to-state stability. SIAM Journal on Control and Optimization, 59(4),
22

3017–3039.
Amrit, R., Rawlings, J. B., & Angeli, D. (2011). Economic optimization using model
predictive control with a terminal cost. Annual Reviews in Control, 35, 178–186.

Angeli, D. (2002). A Lyapunov approach to incremental stability properties. IEEE
Transactions on Automatic Control, 47, 410–421.

Angeli, D., Amrit, R., & Rawlings, J. B. (2012). On average performance and stability
of economic model predictive control. IEEE Transactions on Automatic Control, 57,
1615–1626.

Aydiner, E., Müller, M. A., & Allgöwer, F. (2016). Periodic reference tracking for
nonlinear systems via model predictive control. In Proc. European control conf. (pp.
2602–2607).

ailey, J., Horn, F., & Lin, R. (1971). Cyclic operation of reaction systems: Effects of
heat and mass transfer resistance. AIChE Journal, 17, 818–825.

ayer, F., Bürger, M., & Allgöwer, F. (2013). Discrete-time incremental ISS: A
framework for robust NMPC. In Proc. European control conf. (pp. 2068–2073).

ayer, F. A., Lorenzen, M., Müller, M. A., & Allgöwer, F. (2016). Robust economic
model predictive control using stochastic information. Automatica, 74, 151–161.

ayer, F. A., Müller, M. A., & Allgöwer, F. (2014). Tube-based robust economic model
predictive control. Journal of Process Control, 24, 1237–1246.

eckenbach, L., & Streif, S. (2022). Approximate infinite-horizon predictive control. In
Proc. 61st IEEE conf. decision and control (pp. 3711–3717). IEEE.

erberich, J., Köhler, J., Allgöwer, F., & Müller, M. A. (2020). Dissipativity properties
in constrained optimal control: A computational approach. Automatica, 114, Article
108840.

erberich, J., Köhler, J., Müller, M. A., & Allgöwer, F. (2020). Data-driven tracking
MPC for changing setpoints. In Proc. 21st IFAC world congress (pp. 6923–6930).

erberich, J., Köhler, J., Müller, M. A., & Allgöwer, F. (2022a). Linear tracking MPC
for nonlinear systems—Part II: The data-driven case. IEEE Transactions on Automatic
Control, 67(9), 4406–4421.

erberich, J., Köhler, J., Müller, M. A., & Allgöwer, F. (2022b). Stability in data-driven
MPC: An inherent robustness perspective. In Proc. 61st IEEE conf. decision and control
(pp. 1105–1110).

ertsekas, D. (2022). Lessons from AlphaZero for optimal, model predictive, and adaptive
control. Athena Scientific.

etti, G., Farina, M., & Scattolini, R. (2013). A robust MPC algorithm for offset-free
tracking of constant reference signals. IEEE Transactions on Automatic Control, 58(9),
2394–2400.

occia, A., Grüne, L., & Worthmann, K. (2014). Stability and feasibility of state
constrained MPC without stabilizing terminal constraints. Systems & Control Letters,
72, 14–21.

onassi, F., La Bella, A., Farina, M., & Scattolini, R. (2024). Nonlinear MPC design
for incrementally ISS systems with application to GRU networks. Automatica, 159,
Article 111381.

roomhead, T. J., Manzie, C., Shekhar, R. C., & Hield, P. (2015). Robust periodic
economic MPC for linear systems. Automatica, 60, 30–37.

ai, C., & Teel, A. R. (2008). Input–output-to-state stability for discrete-time systems.
Automatica, 44(2), 326–336.

arrapiço, O. L., & Odloak, D. (2005). A stable model predictive control for integrating
processes. Computers & Chemical Engineering, 29(5), 1089–1099.

hen, H., & Allgöwer, F. (1998). A quasi-infinite horizon nonlinear model predictive
control scheme with guaranteed stability. Automatica, 34, 1205–1217.

hisci, L., Falugi, P., & Zappa, G. (2005). Predictive tracking control of constrained
nonlinear systems. IEE Proceedings D (Control Theory and Applications), 152(3),
309–316.

hisci, L., & Zappa, G. (2003). Dual mode predictive tracking of piecewise constant
references for constrained linear systems. International Journal of Control, 76(1),
61–72.

hristofides, P. D., Scattolini, R., de la Pena, D. M., & Liu, J. (2013). Distributed model
predictive control: A tutorial review and future research directions. Computers &
Chemical Engineering, 51, 21–41.

isneros, P. S., & Werner, H. (2020). A velocity algorithm for nonlinear model
predictive control. IEEE Transactions on Control Systems Technology, 29(3),
1310–1315.

onte, C., Jones, C. N., Morari, M., & Zeilinger, M. N. (2016). Distributed synthesis
and stability of cooperative distributed model predictive control for linear systems.
Automatica, 69, 117–125.

oron, J.-M., Grüne, L., & Worthmann, K. (2020). Model predictive control, cost
controllability, and homogeneity. SIAM Journal on Control and Optimization, 58(5),
2979–2996.

otorruelo, A., Hosseinzadeh, M., Ramirez, D. R., Limón, D., & Garone, E. (2021). Refer-
ence dependent invariant sets: Sum of squares based computation and applications
in constrained control. Automatica, 129, Article 109614.

otorruelo, A., Ramirez, D. R., Limón, D., & Garone, E. (2020). Nonlinear MPC for
tracking for a class of non-convex admissible output sets. IEEE Transactions on
Automatic Control, 66(8), 3726–3732.

unha, V. M., & Santos, T. L. (2022). Robust nonlinear model predictive con-
trol based on nominal predictions with piecewise constant references and
bounded disturbances. International Journal of Robust and Nonlinear Control, 32(6),
3944–3968.

avison, E., & Wang, S. (1974). Properties and calculation of transmission zeros of

linear multivariable systems. Automatica, 10(6), 643–658.

http://refhub.elsevier.com/S1367-5788(23)00093-7/sb1
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb1
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb1
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb1
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb1
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb2
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb2
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb2
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb2
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb2
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb3
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb3
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb3
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb3
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb3
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb4
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb4
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb4
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb5
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb5
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb5
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb6
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb6
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb6
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb6
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb6
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb7
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb7
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb7
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb7
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb7
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb8
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb8
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb8
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb8
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb8
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb9
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb9
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb9
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb10
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb10
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb10
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb11
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb11
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb11
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb11
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb11
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb12
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb12
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb12
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb12
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb12
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb13
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb13
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb13
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb14
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb14
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb14
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb15
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb15
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb15
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb16
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb16
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb16
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb17
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb17
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb17
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb18
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb18
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb18
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb18
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb18
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb19
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb19
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb19
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb20
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb20
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb20
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb20
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb20
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb21
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb21
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb21
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb21
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb21
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb22
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb22
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb22
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb23
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb23
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb23
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb23
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb23
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb24
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb24
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb24
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb24
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb24
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb25
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb25
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb25
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb25
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb25
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb26
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb26
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb26
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb27
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb27
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb27
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb28
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb28
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb28
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb29
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb29
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb29
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb30
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb30
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb30
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb30
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb30
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb31
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb31
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb31
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb31
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb31
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb32
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb32
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb32
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb32
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb32
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb33
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb33
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb33
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb33
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb33
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb34
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb34
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb34
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb34
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb34
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb35
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb35
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb35
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb35
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb35
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb36
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb36
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb36
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb36
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb36
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb37
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb37
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb37
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb37
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb37
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb38
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb38
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb38
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb38
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb38
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb38
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb38
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb39
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb39
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb39


Annual Reviews in Control 57 (2024) 100929J. Köhler et al.

K

K

K

K

K

K

K

K

De Schutter, J., Zanon, M., & Diehl, M. (2020). TuneMPC - A tool for economic tuning
of tracking (N)MPC problems. IEEE Control Systems Letters, 4(4), 910–915.

Dong, Z., & Angeli, D. (2018). Analysis of economic model predictive control with ter-
minal penalty functions on generalized optimal regimes of operation. International
Journal of Robust and Nonlinear Control, 28(16), 4790–4815.

Dutta, A., Hartley, E., Maciejowski, J., & De Keyser, R. (2014). Certification of a class
of industrial predictive controllers without terminal conditions. In Proc. 53nd IEEE
conf. decision and control (pp. 6695–6700).

Eichfelder, G., Grüne, L., Krügel, L., & Schieß l, J. (2023). Relaxed dissipativity
assumptions and a simplified algorithm for multiobjective MPC. Computational
Optimization and Applications, 86(3), 1081–1116.

Ellis, M., Liu, J., & Christofides, P. D. (2017). Economic model predictive control –
theory, formulations and chemical process applications. Springer, 5(7), 65.

Engelmann, A., Jiang, Y., Benner, H., Ou, R., Houska, B., & Faulwasser, T.
(2022). ALADIN—-An open-source MATLAB toolbox for distributed non-convex
optimization. Optimal Control Applications & Methods, 43(1), 4–22.

Esterhuizen, W., Worthmann, K., & Streif, S. (2020). Recursive feasibility of continuous-
time model predictive control without stabilising constraints. IEEE Control Systems
Letters, 5(1), 265–270.

Fagiano, L., & Teel, A. R. (2013). Generalized terminal state constraint for model
predictive control. Automatica, 49, 2622–2631.

Faulwasser, T. (2012). Optimization-based solutions to constrained trajectory-tracking and
path-following problems (Ph.D. thesis), Otto-von-Guericke-Universität Magdeburg.

Faulwasser, T., & Bonvin, D. (2015). On the design of economic NMPC based on
approximate turnpike properties. In Proc. 54th IEEE conf. decision and control (pp.
4964–4970).

Faulwasser, T., & Findeisen, R. (2011). A model predictive control approach to
trajectory tracking problems via time-varying level sets of Lyapunov functions. In
Proc. 50th IEEE conf. decision and control, European control conf. (pp. 3381–3386).

Faulwasser, T., & Findeisen, R. (2015). Nonlinear model predictive control for con-
strained output path following. IEEE Transactions on Automatic Control, 61(4),
1026–1039.

Faulwasser, T., Grüne, L., & Müller, M. A. (2018). Economic nonlinear model predictive
control. Foundations and Trends® in Systems and Control, 5, 1–98.

Faulwasser, T., Korda, M., Jones, C. N., & Bonvin, D. (2017). On turnpike and
dissipativity properties of continuous-time optimal control problems. Automatica,
81, 297–304.

Faulwasser, T., Mehrez, M., & Worthmann, K. (2021). Predictive path following control
without terminal constraints. In Recent advances in model predictive control: theory,
algorithms, and applications (pp. 1–26). Springer.

Faulwasser, T., & Pannocchia, G. (2019). Toward a unifying framework blending real-
time optimization and economic model predictive control. Industrial and Engineering
Chemistry Research, 58(30), 13583–13598.

Faulwasser, T., Weber, T., Zometa, P., & Findeisen, R. (2016). Implementation of
nonlinear model predictive path-following control for an industrial robot. IEEE
Transactions on Control Systems Technology, 25(4), 1505–1511.

Ferramosca, A., Limón, D., Alvarado, I., Alamo, T., & Camacho, E. F. (2009). MPC for
tracking with optimal closed-loop performance. Automatica, 45, 1975–1978.

Ferramosca, A., Limón, D., Alvarado, I., & Camacho, E. F. (2013). Cooperative
distributed MPC for tracking. Automatica, 49(4), 906–914.

Ferramosca, A., Limón, D., & Camacho, E. F. (2014). Economic MPC for a changing
economic criterion for linear systems. IEEE Transactions on Automatic Control, 59,
2657–2667.

Ferramosca, A., Limón, D., González, A., Odloak, D., & Camacho, E. F. (2010). MPC
for tracking zone regions. Journal of Process Control, 20, 506–516.

Findeisen, R., Chen, H., & Allgöwer, F. (2000). Nonlinear predictive control for setpoint
families. In Proc. American control conf. (pp. 260–264).

Fromion, V., & Scorletti, G. (2003). A theoretical framework for gain scheduling.
International Journal of Robust and Nonlinear Control, 13(10), 951–982.

Galuppini, G., Magni, L., & Ferramosca, A. (2023). Nonlinear MPC for tracking
piecewise-constant reference signals: the positive semidefinite stage cost case. In
Proc. 12th IFAC symp. nonlinear control systems (pp. 210–215).

Garone, E., Di Cairano, S., & Kolmanovsky, I. (2017). Reference and command
governors for systems with constraints: A survey on theory and applications.
Automatica, 75, 306–328.

Giselsson, P., & Rantzer, A. (2014). On feasibility, stability and performance in
distributed model predictive control. IEEE Transactions on Automatic Control, 59(4),
1031–1036.

Grimm, G., Messina, M. J., Tuna, S. E., & Teel, A. R. (2005). Model predictive control:
For want of a local control Lyapunov function, all is not lost. IEEE Transactions on
Automatic Control, 50(5), 546–558.

Grüne, L. (2009). Analysis and design of unconstrained nonlinear MPC schemes for
finite and infinite dimensional systems. SIAM Journal on Control and Optimization,
48(2), 1206–1228.

Grüne, L. (2012). NMPC without terminal constraints. In Proc. IFAC conf. nonlinear
model predictive control (pp. 1–13).

Grüne, L. (2013). Economic receding horizon control without terminal constraints.
Automatica, 49, 725–734.

Grüne, L. (2022). Dissipativity and optimal control: Examining the turnpike
phenomenon. IEEE Control Systems Magazine, 42(2), 74–87.
23
Grüne, L., & Müller, M. A. (2016). On the relation between strict dissipativity and
turnpike properties. Systems & Control Letters, 90, 45–53.

Grüne, L., & Panin, A. (2015). On non-averaged performance of economic MPC with
terminal conditions. In Proc. 54th conf. on decision and control (pp. 4332–4337).

Grüne, L., & Pannek, J. (2017). Nonlinear model predictive control: theory and algorithms.
Springer.

Grüne, L., Pannek, J., Seehafer, M., & Worthmann, K. (2010). Analysis of unconstrained
nonlinear MPC schemes with time varying control horizon. SIAM Journal on Control
and Optimization, 48(8), 4938–4962.

Grüne, L., & Pirkelmann, S. (2020). Economic model predictive control for time-varying
system: Performance and stability results. Optimal Control Applications & Methods,
41(1), 42–64.

Grüne, L., & Rantzer, A. (2008). On the infinite horizon performance of receding
horizon controllers. IEEE Transactions on Automatic Control, 53(9), 2100–2111.

Grüne, L., & Stieler, M. (2014). Asymptotic stability and transient optimality of
economic MPC without terminal conditions. Journal of Process Control, 24,
1187–1196.

Gutekunst, J., Bock, H. G., & Potschka, A. (2020). Economic NMPC for averaged infinite
horizon problems with periodic approximations. Automatica, 117, Article 109001.

He, D., Wang, L., & Sun, J. (2015). On stability of multiobjective NMPC with objective
prioritization. Automatica, 57, 189–198.

Heidarinejad, M., Liu, J., & Christofides, P. D. (2012). Economic model predictive
control of nonlinear process systems using Lyapunov techniques. AIChE Journal,
58(3), 855–870.

Hewing, L., Wabersich, K. P., Menner, M., & Zeilinger, M. N. (2020). Learning-based
model predictive control: Toward safe learning in control. Annual Review of Control,
Robotics, and Autonomous Systems, 3, 269–296.

Höger, M., & Grüne, L. (2019). On the relation between detectability and strict
dissipativity for nonlinear discrete time systems. IEEE Control Systems Letters, 3(2),
458–462.

Houska, B. (2015). Enforcing asymptotic orbital stability of economic model predictive
control. Automatica, 57, 45–50.

Houska, B., & Müller, M. A. (2017). Cost-to-travel functions: A new perspective on
optimal and model predictive control. Systems & Control Letters, 106, 79–86.

Isidori, A., & Byrnes, C. I. (1990). Output regulation of nonlinear systems. IEEE
Transactions on Automatic Control, 35(2), 131–140.

Jadbabaie, A., & Hauser, J. (2005). On the stability of receding horizon control with
a general terminal cost. IEEE Transactions on Automatic Control, 50(5), 674–678.

Klöppelt, C., Schwenkel, L., Allgöwer, F., & Müller, M. A. (2021). Transient performance
of tube-based robust economic model predictive control. In Proc. IFAC conf.
nonlinear model predictive control (pp. 28–35).

Koelewijn, P. J., Tóth, R., & Nijmeijer, H. (2019). Linear parameter-varying control of
nonlinear systems based on incremental stability. In Proc. 3rd IFAC workshop on
linear parameter varying systems (pp. 38–43).

Köhler, J. (2017). Distributed economic model predictive control under inexact minimization
with application to power systems (Master’s thesis), Universität Stuttgart.

Köhler, J. (2021). Analysis and design of MPC frameworks for dynamic operation of
nonlinear constrained systems (Ph.D. thesis), Universität Stuttgart.

Köhler, J., & Allgöwer, F. (2021). Stability and performance in MPC using a finite-tail
cost. In Proc. IFAC conf. nonlinear model predictive control (pp. 166–171).

Köhler, M., Krügel, L., Grüne, L., Müller, M. A., & Allgöwer, F. (2023). Transient
performance of MPC for tracking. IEEE Control Systems Letters, 7, 2545–2550.

Köhler, P. N., Müller, M. A., & Allgöwer, F. (2018). A distributed economic MPC
framework for cooperative control under conflicting objectives. Automatica, 96,
368–379.

Köhler, J., Müller, M. A., & Allgöwer, F. (2018a). A novel constraint tightening
approach for nonlinear robust model predictive control. In Proc. American control
conf. (pp. 728–734).

öhler, J., Müller, M. A., & Allgöwer, F. (2018b). On periodic dissipativity notions in
economic model predictive control. IEEE Control Systems Letters, 2(3), 501–506.

öhler, J., Müller, M. A., & Allgöwer, F. (2019a). Distributed model predictive
control—recursive feasibility under inexact dual optimization. Automatica, 102, 1–9,
extended-version-online.

öhler, J., Müller, M. A., & Allgöwer, F. (2019b). Nonlinear reference tracking: An
economic model predictive control perspective. IEEE Transactions on Automatic
Control, 64(1), 254–269.

öhler, J., Müller, M. A., & Allgöwer, F. (2020a). A nonlinear model predictive
control framework using reference generic terminal ingredients. IEEE Transactions
on Automatic Control, 65(8), 3576–3583, extended version: arXiv:1909.12765.

öhler, J., Müller, M. A., & Allgöwer, F. (2020b). A nonlinear tracking model predictive
control scheme for unreachable dynamic target signals. Automatica, 118, Article
109030.

öhler, J., Müller, M. A., & Allgöwer, F. (2020c). Periodic optimal control of nonlinear
constrained systems using economic model predictive control. Journal of Process
Control, 92, 185–201.

öhler, J., Müller, M. A., & Allgöwer, F. (2022a). Constrained nonlinear output
regulation using model predictive control. IEEE Transactions on Automatic Control,
67(5), 2419–2434, extended version: arXiv:2005.12413.

öhler, M., Müller, M. A., & Allgöwer, F. (2022b). Distributed MPC for self-organized
cooperation of multi-agent systems. arXiv preprint arXiv:2210.10128.

http://refhub.elsevier.com/S1367-5788(23)00093-7/sb40
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb40
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb40
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb41
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb41
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb41
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb41
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb41
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb42
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb42
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb42
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb42
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb42
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb43
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb43
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb43
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb43
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb43
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb44
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb44
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb44
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb45
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb45
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb45
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb45
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb45
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb46
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb46
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb46
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb46
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb46
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb47
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb47
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb47
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb48
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb48
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb48
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb49
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb49
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb49
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb49
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb49
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb50
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb50
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb50
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb50
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb50
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb51
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb51
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb51
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb51
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb51
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb52
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb52
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb52
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb53
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb53
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb53
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb53
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb53
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb54
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb54
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb54
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb54
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb54
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb55
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb55
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb55
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb55
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb55
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb56
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb56
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb56
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb56
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb56
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb57
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb57
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb57
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb58
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb58
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb58
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb59
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb59
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb59
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb59
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb59
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb60
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb60
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb60
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb61
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb61
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb61
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb62
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb62
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb62
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb63
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb63
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb63
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb63
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb63
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb64
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb64
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb64
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb64
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb64
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb65
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb65
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb65
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb65
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb65
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb66
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb66
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb66
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb66
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb66
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb67
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb67
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb67
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb67
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb67
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb68
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb68
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb68
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb69
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb69
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb69
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb70
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb70
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb70
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb71
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb71
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb71
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb72
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb72
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb72
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb73
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb73
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb73
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb74
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb74
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb74
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb74
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb74
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb75
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb75
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb75
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb75
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb75
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb76
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb76
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb76
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb77
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb77
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb77
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb77
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb77
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb78
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb78
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb78
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb79
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb79
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb79
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb80
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb80
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb80
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb80
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb80
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb81
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb81
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb81
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb81
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb81
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb82
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb82
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb82
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb82
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb82
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb83
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb83
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb83
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb84
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb84
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb84
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb85
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb85
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb85
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb86
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb86
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb86
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb87
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb87
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb87
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb87
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb87
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb88
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb88
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb88
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb88
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb88
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb89
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb89
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb89
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb90
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb90
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb90
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb91
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb91
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb91
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb92
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb92
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb92
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb93
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb93
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb93
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb93
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb93
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb94
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb94
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb94
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb94
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb94
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb95
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb95
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb95
https://www.ist.uni-stuttgart.de/de/institut/team/PDFs_MA-Seiten/JK/Inexact_automatica.pdf
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb97
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb97
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb97
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb97
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb97
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb98
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb98
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb98
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb98
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb98
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb99
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb99
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb99
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb99
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb99
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb100
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb100
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb100
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb100
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb100
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb101
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb101
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb101
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb101
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb101
http://arxiv.org/abs/2210.10128


Annual Reviews in Control 57 (2024) 100929J. Köhler et al.

K

K

K

L

L

L

L

L

L

L

L

M

M

M

M

M

N

N

P

P

P

P

P

P

Q

R

R

R

R

R

R

R

R

R

R

R

Köhler, M., Müller, M. A., & Allgöwer, F. (2023b). Distributed model predictive control
for periodic cooperation of multi-agent systems. In Proc. 22nd IFAC world congress
(pp. 3501–3506).

öhler, J., Soloperto, R., Müller, M. A., & Allgöwer, F. (2021). A computationally effi-
cient robust model predictive control framework for uncertain nonlinear systems.
Transactions on Automatic Control, 66(2), 794–801.

öhler, J., Zeilinger, M. N., & Grüne, L. (2023). Stability and performance analysis
of NMPC: Detectable stage costs and general terminal costs. IEEE Transactions on
Automatic Control, 68(10), 6114–6129.

ouvaritakis, B., & Cannon, M. (2016). Model predictive control: classical, robust and
stochastic. Springer.

Lam, D., Manzie, C., & Good, M. (2010). Model predictive contouring control. In Proc.
49th IEEE conf. decision and control (pp. 6137–6142).

iberzon, D., Morse, A. S., & Sontag, E. D. (2002). Output-input stability and
minimum-phase nonlinear systems. IEEE Transactions on Automatic Control, 47(3),
422–436.

imón, D., & Alamo, T. (2015). Tracking model predictive control. In Encyclopedia of
systems and control (pp. 1475–1484).

imón, D., Alamo, T., Salas, F., & Camacho, E. F. (2006). On the stability of constrained
MPC without terminal constraint. IEEE Transactions on Automatic Control, 51,
832–836.

imón, D., Alvarado, I., Alamo, T., & Camacho, E. F. (2008). MPC for tracking piecewise
constant references for constrained linear systems. Automatica, 44, 2382–2387.

imón, D., Alvarado, I., Alamo, T., & Camacho, E. (2010). Robust tube-based MPC for
tracking of constrained linear systems with additive disturbances. Journal of Process
Control, 20, 248–260.

imón, D., Ferramosca, A., Alvarado, I., & Alamo, T. (2018). Nonlinear MPC for tracking
piece-wise constant reference signals. IEEE Transactions on Automatic Control, 63,
3735–3750.

imón, D., Pereira, M., De La Peña, D. M., Alamo, T., & Grosso, J. M. (2014). Single-
layer economic model predictive control for periodic operation. Journal of Process
Control, 24, 1207–1224.

imón, D., Pereira, M., de la Peña, D. M., Alamo, T., Jones, C. N., & Zeilinger, M.
N. (2016). MPC for tracking periodic references. IEEE Transactions on Automatic
Control, 61, 1123–1128.

Liniger, A., Domahidi, A., & Morari, M. (2015). Optimization-based autonomous racing
of 1:43 scale RC cars. Optimal Control Applications & Methods, 36(5), 628–647.

Liu, S., & Liu, J. (2016). Economic model predictive control with extended horizon.
Automatica, 73, 180–192.

Liu, S., Mao, Y., & Liu, J. (2019). Model-predictive control with generalized zone
tracking. IEEE Transactions on Automatic Control, 64(11), 4698–4704.

Long, Y., & Xie, L. (2021). Unconstrained tracking MPC for continuous-time nonlinear
systems. Automatica, 129, Article 109680.

Magni, L., De Nicolao, G., Magnani, L., & Scattolini, R. (2001). A stabilizing model-
based predictive control algorithm for nonlinear systems. Automatica, 37(9),
1351–1362.

Magni, L., & Scattolini, R. (2005). On the solution of the tracking problem for non-linear
systems with MPC. International Journal of Systems Science, 36, 477–484.

Manchester, I. R., & Slotine, J.-J. E. (2017). Control contraction metrics: Convex and
intrinsic criteria for nonlinear feedback design. IEEE Transactions on Automatic
Control, 62, 3046–3053.

Martin, T., Köhler, P. N., & Allgöwer, F. (2019). Dissipativity and economic model
predictive control for optimal set operation. In Proc. American control conf. (pp.
1020–1026).

Mayne, D. Q. (2013). An apologia for stabilising terminal conditions in model predictive
control. International Journal of Control, 86(11), 2090–2095.

Mayne, D. Q. (2014). Model predictive control: Recent developments and future
promise. Automatica, 50(12), 2967–2986.

Mayne, D. Q. (2016). Robust and stochastic model predictive control: Are we going in
the right direction? Annual Reviews in Control, 41, 184–192.

Mayne, D. Q., & Falugi, P. (2016). Generalized stabilizing conditions for model
predictive control. Journal of Optimization Theory and Applications, 169, 719–734.

Mayne, D. Q., Kerrigan, E. C., Van Wyk, E., & Falugi, P. (2011). Tube-based robust
nonlinear model predictive control. International Journal of Robust and Nonlinear
Control, 21, 1341–1353.

Mayne, D. Q., & Michalska, H. (1990). Receding horizon control of nonlinear systems.
IEEE Transactions on Automatic Control, 35(7), 814–824.

Mayne, D. Q., Rawlings, J. B., Rao, C. V., & Scokaert, P. O. (2000). Constrained model
predictive control: Stability and optimality. Automatica, 36, 789–814.

McAllister, R. D., & Rawlings, J. B. (2023). A suboptimal economic model predictive
control algorithm for large and infrequent disturbances. IEEE Transactions on
Automatic Control, to appear.

Morari, M., & Maeder, U. (2012). Nonlinear offset-free model predictive control.
Automatica, 48(9), 2059–2067.

Morato, M. M., Normey-Rico, J. E., & Sename, O. (2020). Model predictive control
design for linear parameter varying systems: A survey. Annual Reviews in Control,
49, 64–80.

Moreno-Mora, F., Beckenbach, L., & Streif, S. (2023). Predictive control with learning-
based terminal costs using approximate value iteration. In Proc. 22nd IFAC world
congress (pp. 4255–4260).
24
Müller, M. A. (2021). Dissipativity in economic model predictive control: beyond
steady-state optimality. In Recent advances in model predictive control: theory,
algorithms, and applications (pp. 27–43). Springer.

Müller, M. A., & Allgöwer, F. (2017). Economic and distributed model predictive
control: Recent developments in optimization-based control. SICE Journal of Control,
Measurement, and System Integration, 10(2), 39–52.

Müller, M. A., Angeli, D., & Allgöwer, F. (2013). Economic model predictive control
with self-tuning terminal cost. European Journal of Control, 19, 408–416.

Müller, M. A., Angeli, D., & Allgöwer, F. (2014a). On the performance of economic
model predictive control with self-tuning terminal cost. Journal of Process Control,
24, 1179–1186.

Müller, M. A., Angeli, D., & Allgöwer, F. (2014b). Transient average constraints in
economic model predictive control. Automatica, 50(11), 2943–2950.

üller, M. A., Angeli, D., & Allgöwer, F. (2015). On necessity and robustness of
dissipativity in economic model predictive control. IEEE Transactions on Automatic
Control, 60(6), 1671–1676.

üller, M. A., Angeli, D., Allgöwer, F., Amrit, R., & Rawlings, J. B. (2014). Convergence
in economic model predictive control with average constraints. Automatica, 50,
3100–3111.

üller, M. A., & Grüne, L. (2016). Economic model predictive control without terminal
constraints for optimal periodic behavior. Automatica, 70, 128–139.

üller, M. A., & Worthmann, K. (2017). Quadratic costs do not always work in MPC.
Automatica, 82, 269–277.

uske, K. R., & Badgwell, T. A. (2002). Disturbance modeling for offset-free linear
model predictive control. Journal of Process Control, 12(5), 617–632.

onhoff, M., Köhler, J., & Müller, M. A. (2023). Online convex optimization for
constrained control of linear systems using a reference governor. In Proc. 22nd
IFAC world congress (pp. 2881–2886).

ubert, J., Köhler, J., Berenz, V., Allgöwer, F., & Trimpe, S. (2020). Safe and fast
tracking on a robot manipulator: Robust MPC and neural network control. IEEE
Robotics and Automation Letters, 5(2), 3050–3057.

an, G., Stomberg, G., Engelmann, A., & Faulwasser, T. (2021). First results on turnpike
bounds for stabilizing horizons in NMPC. In Proc. IFAC conf. nonlinear model
predictive control (pp. 153–158).

annocchia, G., & Rawlings, J. B. (2003). Disturbance models for offset-free
model-predictive control. AIChE Journal, 49(2), 426–437.

ereira, M., de la Peña, D. M., Limón, D., Alvarado, I., & Alamo, T. (2017). Robust
model predictive controller for tracking changing periodic signals. IEEE Transactions
on Automatic Control, 62, 5343–5350.

eschke, T., & Görges, D. (2023). Robust adaptive tube tracking model predictive
control for piece-wise constant reference signals. International Journal of Robust and
Nonlinear Control, 33, 8158–8182.

irkelmann, S., Angeli, D., & Grüne, L. (2019). Approximate computation of storage
functions for discrete-time systems using sum-of-squares techniques. In Proc. 11th
IFAC symp. nonlinear control systems (pp. 508–513).

rimbs, J. A., Nevistić, V., & Doyle, J. C. (1999). Nonlinear optimal control: A control
Lyapunov function and receding horizon perspective. Asian Journal of Control, 1(1),
14–24.

in, S. J., & Badgwell, T. A. (2003). A survey of industrial model predictive control
technology. Control Engineering practice, 11(7), 733–764.

aff, T., Huber, S., Nagy, Z. K., & Allgöwer, F. (2006). Nonlinear model predictive
control of a four tank system: An experimental stability study. In Proc. IEEE int.
conf. control applications (pp. 237–242).

ajhans, C., Griffith, D. W., Patwardhan, S. C., Biegler, L. T., & Pillai, H. K. (2019).
Terminal region characterization and stability analysis of discrete time quasi-infinite
horizon nonlinear model predictive control. Journal of Process Control, 83, 30–52.

aković, S. V., Dai, L., & Xia, Y. (2023). Homothetic tube model predictive control for
nonlinear systems. IEEE Transactions on Automatic Control, 68(8), 4554–4569.

aković, S. V., & Zhang, S. (2023). Model predictive control with implicit terminal
ingredients. Automatica, 151, Article 110942.

awlings, J. B., Angeli, D., & Bates, C. N. (2012). Fundamentals of economic model
predictive control. In Proc. 51st IEEE conf. decision and control (pp. 3851–3861).

awlings, J. B., Bonné, D., Jorgensen, J. B., Venkat, A. N., & Jorgensen, S. B. (2008).
Unreachable setpoints in model predictive control. IEEE Transactions on Automatic
Control, 53, 2209–2215.

awlings, J. B., Mayne, D. Q., & Diehl, M. (2017). Model predictive control: theory,
computation, and design. Nob Hill Publishing, third printing.

eble, M., & Allgöwer, F. (2012). Unconstrained model predictive control and
suboptimality estimates for nonlinear continuous-time systems. Automatica, 48,
1812–1817.

eble, M., Quevedo, D. E., & Allgöwer, F. (2012). Improved stability conditions for
unconstrained nonlinear model predictive control by using additional weighting
terms. In Proc. 51st IEEE conf. decision and control (pp. 2625–2630).

ickenbach, R., Köhler, J., Scampicchio, A., Zeilinger, M. N., & Carron, A. (2023).
Active learning-based model predictive coverage control. arXiv preprint arXiv:
2303.09910.

omero, A., Sun, S., Foehn, P., & Scaramuzza, D. (2022). Model predictive contouring
control for time-optimal quadrotor flight. IEEE Transactions on Robotics, 38(6),
3340–3356.

http://refhub.elsevier.com/S1367-5788(23)00093-7/sb103
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb103
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb103
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb103
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb103
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb104
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb104
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb104
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb104
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb104
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb105
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb105
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb105
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb105
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb105
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb106
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb106
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb106
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb107
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb107
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb107
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb108
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb108
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb108
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb108
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb108
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb109
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb109
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb109
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb110
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb110
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb110
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb110
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb110
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb111
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb111
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb111
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb112
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb112
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb112
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb112
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb112
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb113
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb113
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb113
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb113
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb113
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb114
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb114
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb114
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb114
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb114
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb115
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb115
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb115
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb115
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb115
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb116
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb116
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb116
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb117
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb117
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb117
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb118
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb118
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb118
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb119
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb119
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb119
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb120
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb120
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb120
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb120
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb120
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb121
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb121
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb121
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb122
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb122
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb122
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb122
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb122
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb123
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb123
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb123
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb123
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb123
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb124
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb124
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb124
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb125
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb125
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb125
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb126
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb126
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb126
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb127
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb127
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb127
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb128
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb128
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb128
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb128
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb128
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb129
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb129
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb129
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb130
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb130
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb130
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb131
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb131
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb131
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb131
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb131
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb132
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb132
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb132
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb133
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb133
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb133
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb133
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb133
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb134
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb134
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb134
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb134
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb134
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb135
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb135
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb135
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb135
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb135
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb136
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb136
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb136
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb136
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb136
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb137
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb137
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb137
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb138
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb138
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb138
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb138
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb138
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb139
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb139
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb139
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb140
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb140
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb140
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb140
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb140
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb141
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb141
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb141
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb141
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb141
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb142
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb142
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb142
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb143
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb143
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb143
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb144
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb144
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb144
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb145
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb145
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb145
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb145
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb145
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb146
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb146
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb146
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb146
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb146
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb147
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb147
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb147
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb147
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb147
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb148
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb148
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb148
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb149
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb149
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb149
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb149
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb149
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb150
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb150
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb150
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb150
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb150
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb151
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb151
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb151
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb151
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb151
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb152
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb152
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb152
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb152
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb152
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb153
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb153
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb153
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb154
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb154
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb154
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb154
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb154
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb155
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb155
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb155
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb155
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb155
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb156
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb156
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb156
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb157
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb157
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb157
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb158
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb158
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb158
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb159
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb159
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb159
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb159
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb159
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb160
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb160
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb160
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb161
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb161
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb161
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb161
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb161
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb162
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb162
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb162
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb162
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb162
http://arxiv.org/abs/2303.09910
http://arxiv.org/abs/2303.09910
http://arxiv.org/abs/2303.09910
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb164
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb164
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb164
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb164
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb164


Annual Reviews in Control 57 (2024) 100929J. Köhler et al.

W

W

W

W

W

W

W

Y

Y

Y

Z

Z

Z

Z

Rosenfelder, M., Ebel, H., Krauspenhaar, J., & Eberhard, P. (2023). Model predictive
control of non-holonomic systems: Beyond differential-drive vehicles. Automatica,
152, Article 110972.

Rosenfelder, M., Köhler, J., & Allgöwer, F. (2020). Stability and performance in
transient average constrained economic MPC without terminal constraints. In Proc.
21st IFAC world congress (pp. 6943–6950).

Rugh, W. J., & Shamma, J. S. (2000). Research on gain scheduling. Automatica, 36,
1401–1425.

Samad, T., Bauer, M., Bortoff, S., Di Cairano, S., Fagiano, L., Odgaard, P. F., et
al. (2020). Industry engagement with control research: Perspective and messages.
Annual Reviews in Control, 49, 1–14.

Sánchez, I. J., D’Jorge, A., Limache, A. C., González, A. H., & Ferramosca, A.
(2023). Tracking periodic parametric references using model predictive control.
International Journal of Robust and Nonlinear Control, 33, 7452–7470.

Sasfi, A., Zeilinger, M. N., & Köhler, J. (2023). Robust adaptive MPC using control
contraction metrics. Automatica, 155, Article 111169.

Schulze Darup, M., & Cannon, M. (2015). A missing link between nonlinear MPC
schemes with guaranteed stability. In Proc. 54th IEEE conf. decision and control
(pp. 4977–4983).

Schweidel, K. S., Yin, H., Smith, S. W., & Arcak, M. (2022). Safe-by-design planner–
tracker synthesis with a hierarchy of system models. Annual Reviews in Control, 53,
138–146.

Schwenkel, L., Hadorn, A., Müller, M. A., & Allgöwer, F. (2024). Linearly dis-
counted economic MPC without terminal conditions for periodic optimal operation.
Automatica, 159, Article 111393.

Schwenkel, L., Köhler, J., Müller, M. A., & Allgöwer, F. (2020). Robust economic model
predictive control without terminal conditions. In Proc. 21st IFAC world congress (pp.
7097–7104).

Scokaert, P. O., Mayne, D. Q., & Rawlings, J. B. (1999). Suboptimal model predictive
control (feasibility implies stability). IEEE Transactions on Automatic Control, 44,
648–654.

Sieber, J., Zanelli, A., Leeman, A., Bennani, S., & Zeilinger, M. N. (2023). Asynchronous
computation of tube-based model predictive control. In Proc. 22nd IFAC world
congress (pp. 9102–9108).

Simon, D., Löfberg, J., & Glad, T. (2014). Reference tracking MPC using dynamic
terminal set transformation. IEEE Transactions on Automatic Control, 59(10),
2790–2795.

Singh, S., Majumdar, A., Slotine, J.-J., & Pavone, M. (2017). Robust online motion
planning via contraction theory and convex optimization. In Proc. int. conf. on
robotics and automation (pp. 5883–5890).

Skibik, T., Liao-McPherson, D., Cunis, T. r., Kolmanovsky, I., & Nicotra, M. M. (2021). A
feasibility governor for enlarging the region of attraction of linear model predictive
controllers. IEEE Transactions on Automatic Control, 67(10), 5501–5508.

Skibik, T., Liao-McPherson, D., & Nicotra, M. M. (2023). A terminal set feasibility
governor for linear model predictive control. IEEE Transactions on Automatic Control,
68(8), 5089–5095.

Soloperto, R., Köhler, J., & Allgöwer, F. (2020). Augmenting MPC schemes with active
learning: Intuitive tuning and guaranteed performance. IEEE Control Systems Letters,
4(3), 713–718.

Soloperto, R., Köhler, J., & Allgöwer, F. (2022). A nonlinear MPC scheme for output
tracking without terminal ingredients. IEEE Transactions on Automatic Control, 68(4),
2368–2375.

Soloperto, R., Mesbah, A., & Allgöwer, F. (2023). Safe exploration and escape local
minima with model predictive control under partially unknown constraints. IEEE
Transactions on Automatic Control, 68(12), 7530–7545.
25
Taheri, S., Hosseini, P., & Razban, A. (2022). Model predictive control of heating,
ventilation, and air conditioning (HVAC) systems: A state-of-the-art review. Journal
of Building Engineering, Article 105067.

Tuna, S. E., Messina, M. J., & Teel, A. R. (2006). Shorter horizons for model predictive
control. In Proc. American control conf. (pp. 863–868).

Vaccari, M., Bonvin, D., Pelagagge, F., & Pannocchia, G. (2021). Offset-free economic
MPC based on modifier adaptation: Investigation of several gradient-estimation
techniques. Processes, 9(5), 901.

Verschueren, R., Frison, G., Kouzoupis, D., Frey, J., Duijkeren, N. v., Zanelli, A., et
al. (2022). acados—A modular open-source framework for fast embedded optimal
control. Mathematical Programming Computation, 14(1), 147–183.

Wabersich, K. P., Bayer, F. A., Müller, M. A., & Allgöwer, F. (2018). Economic
model predictive control for robust periodic operation with guaranteed closed-loop
performance. In Proc. European control conf. (pp. 507–513).

an, Z., & Kothare, M. V. (2003). Efficient scheduled stabilizing model predictive
control for constrained nonlinear systems. International Journal of Robust and
Nonlinear Control, 13, 331–346.

an, Z., & Kothare, M. V. (2004). Efficient scheduled stabilizing output feedback model
predictive control for constrained nonlinear systems. IEEE Transactions on Automatic
Control, 49, 1172–1177.

ang, R., Manchester, I. R., & Bao, J. (2017). Distributed economic MPC with separable
control contraction metrics. IEEE Control Systems Letters, 1(1), 104–109.

ang, Y., Salvador, J. R., de la Peña, D. M., Puig, V., & Cembrano, G. (2018).
Economic model predictive control based on a periodicity constraint. Journal of
Process Control, 68, 226–239.

ang, R., Tóth, R., & Manchester, I. R. (2019). A comparison of LPV gain scheduling
and control contraction metrics for nonlinear control. In Proc. 3rd IFAC workshop
on linear parameter varying systems (pp. 44–49).

estenbroek, T., Siththaranjan, A., Sarwari, M., Tomlin, C. J., & Sastry, S. (2022).
On the computational consequences of cost function design in nonlinear optimal
control. In Proc. 61st IEEE conf. decision and control (pp. 7423–7430).

orthmann, K., Mehrez, M. W., Zanon, M., Mann, G. K., Gosine, R. G., & Diehl, M.
(2015). Model predictive control of nonholonomic mobile robots without stabilizing
constraints and costs. IEEE Transactions on Control Systems Technology, 24(4),
1394–1406.

ang, H., Zhao, H., Xia, Y., & Zhang, J. (2021). Nonlinear MPC with time-varying
terminal cost for tracking unreachable periodic references. Automatica, 123, Article
109337.

u, S., Li, X., Chen, H., & Allgöwer, F. (2015). Nonlinear model predictive control
for path following problems. International Journal of Robust and Nonlinear Control,
25(8), 1168–1182.

u, S., Reble, M., Chen, H., & Allgöwer, F. (2014). Inherent robustness properties
of quasi-infinite horizon nonlinear model predictive control. Automatica, 50(9),
2269–2280.

anon, M., & Faulwasser, T. (2018). Economic MPC without terminal constraints:
Gradient-correcting end penalties enforce asymptotic stability. Journal of Process
Control, 63, 1–14.

anon, M., Grüne, L., & Diehl, M. (2017). Periodic optimal control, dissipativity and
MPC. IEEE Transactions on Automatic Control, 62, 2943–2949.

eilinger, M. N., Morari, M., & Jones, C. N. (2014). Soft constrained model predictive
control with robust stability guarantees. IEEE Transactions on Automatic Control,
59(5), 1190–1202.

eilinger, M. N., Raimondo, D. M., Domahidi, A., Morari, M., & Jones, C. N. (2014).
On real-time robust model predictive control. Automatica, 50(3), 683–694.

http://refhub.elsevier.com/S1367-5788(23)00093-7/sb165
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb165
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb165
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb165
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb165
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb166
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb166
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb166
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb166
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb166
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb167
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb167
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb167
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb168
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb168
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb168
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb168
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb168
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb169
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb169
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb169
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb169
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb169
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb170
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb170
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb170
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb171
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb171
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb171
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb171
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb171
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb172
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb172
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb172
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb172
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb172
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb173
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb173
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb173
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb173
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb173
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb174
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb174
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb174
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb174
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb174
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb175
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb175
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb175
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb175
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb175
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb176
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb176
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb176
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb176
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb176
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb177
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb177
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb177
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb177
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb177
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb178
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb178
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb178
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb178
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb178
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb179
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb179
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb179
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb179
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb179
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb180
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb180
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb180
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb180
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb180
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb181
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb181
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb181
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb181
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb181
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb182
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb182
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb182
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb182
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb182
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb183
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb183
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb183
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb183
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb183
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb184
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb184
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb184
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb184
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb184
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb185
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb185
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb185
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb186
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb186
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb186
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb186
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb186
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb187
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb187
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb187
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb187
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb187
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb188
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb188
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb188
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb188
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb188
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb189
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb189
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb189
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb189
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb189
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb190
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb190
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb190
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb190
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb190
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb191
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb191
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb191
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb192
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb192
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb192
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb192
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb192
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb193
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb193
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb193
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb193
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb193
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb194
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb194
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb194
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb194
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb194
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb195
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb195
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb195
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb195
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb195
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb195
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb195
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb196
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb196
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb196
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb196
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb196
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb197
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb197
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb197
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb197
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb197
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb198
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb198
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb198
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb198
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb198
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb199
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb199
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb199
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb199
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb199
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb200
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb200
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb200
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb201
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb201
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb201
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb201
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb201
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb202
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb202
http://refhub.elsevier.com/S1367-5788(23)00093-7/sb202

	Analysis and design of model predictive control frameworks for dynamic operation—An overview
	Introduction
	Dynamic operation
	Contribution
	Outline
	Notation

	Preliminaries: Recursive feasibility & stability in MPC
	Stabilizing MPC design
	Challenges in dynamic operation

	Terminal ingredients for nonlinear tracking MPC
	Regulation problem
	Tracking of online changing setpoints
	Trajectory tracking
	Trajectory tracking with online changing trajectories
	Discussion
	Terminal equality constraint
	More general stage cost
	LPV & incremental system properties

	Illustrative example
	Open issues

	Tracking MPC formulations using artificial references
	Setpoint tracking MPC
	Setpoint tracking MPC - historical developments
	Setpoint tracking MPC using artificial references
	Stability analysis

	Discussion
	General properties
	Convexity
	Uniqueness and zone tracking
	Semidefinite input–output cost ℓ
	Terminal set Xf(r) for setpoint tracking

	Dynamic reference tracking
	Periodic reference tracking
	Discussion

	Partially decoupled tracking and planning
	Decoupled tracking & planning
	Constrained reference planning
	Partial coupling between tracking and planning
	Discussion

	Illustrative example
	Open issues

	Economic MPC
	Performance guarantees in economic MPC
	Periodic economic MPC
	Shifted terminal cost

	Online changing costs using artificial setpoints
	Relative performance guarantees
	Self-tuning weight and local optimality
	Constant weight β and suboptimality bound
	Linear systems and strong duality

	Periodic optimal operation using artificial references
	Economic MPC using periodic artificial references
	Pitfalls - periodic artificial references
	Performance guarantees
	Periodicity constrained economic MPC

	Stability and convergence in economic MPC
	Dissipativity, optimality, stability
	Enforcing convergence/stability in economic MPC

	Design of terminal ingredients in economic MPC
	Terminal cost - standard design
	Extensions
	Positive definite terminal cost

	Illustrative example
	Open issues

	MPC without terminal constraints/cost
	Motivation and historical context
	What can go wrong?
	Stability conditions - historical developments

	Qualitative conditions
	Cost controllability
	Cost detectability
	Singular output cost
	Economic cost and dissipativity
	Dynamic operation
	State constraints and region of attraction

	Quantitative bounds
	Tight horizon bounds
	From analysis to design

	Illustrative example
	Open issues

	Discussion and Conclusions
	Summary
	Extensions
	Flexible time parametrization
	Large scale systems and distributed solutions
	Model mismatch and robustness

	Complementary benefits and limitations
	Artificial references
	Directly minimizing economic costs
	On terminal ingredients in MPC


	Declaration of competing interest
	Data availability
	References


