
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

ART IC LE TYPE

Organizing GUI Tests from Behavior‐Driven Development as
Videos to Obtain Stakeholders’ Feedback

Jianwei Shi1

Jonas Mönnich2

Jil Klünder1

Kurt Schneider1

1Leibniz University Hannover, Software
Engineering Group, Hannover, Germany
2imbus AG, Brunswick, Germany

Correspondence
Jianwei Shi, Leibniz University Hannover,
Software Engineering Group, Hannover,
Germany.
Email: jianwei.shi@inf.uni‐hannover.de

Present address
Welfengarten 1, 30167 Hannover, Germany

Abstract
Demonstrating software early and responding to feedback is crucial in agile development. How‐
ever, it is difficult for stakeholders who are not on‐site customers but end users, marketing people,
or designers, etc. to give feedback in an agile development environment. Successful Graphical User
Interface (GUI) test executions can be documented and then demonstrated for feedback. In our
new concept, GUI tests from Behavior‐Driven Development (BDD) are recorded, augmented, and
demonstrated as videos. A GUI test is divided into several GUI unit tests, which are specified in
Gherkin, a semi‐structured natural language. For each GUI unit test, a video is generated during
test execution. Test steps specified in Gherkin are traced and highlighted in the video. Stakeholders
review these generated videos and provide feedback, e.g., on misunderstandings of requirements
or on inconsistencies. To evaluate the impact of videos in identifying inconsistencies, we asked 22
participants to identify inconsistencies between (1) given requirements in regular sentences and
(2) demonstrated behaviors from videos with Gherkin specifications or from Gherkin specifications
alone. Our results show that participants tend to identify more inconsistencies from demonstrated
behaviors which are not in accordance with given requirements. They tend to recognize incon‐
sistencies more easily through videos than through Gherkin specifications alone. The types of
inconsistency are three‐fold: the mentioned feature can be incorrectly implemented, not imple‐
mented, or an unspecified new feature. We use a fictitious example showing how this feedback
helps a product owner and her team manage requirements. We conclude that GUI test videos can
help stakeholders give feedback more effectively. By obtaining early feedback, inconsistencies can
be resolved, thus contributing to higher stakeholder satisfaction.

K E YWORD S
GUI test, video, BDD, feedback

1 INTRODUCTION

Software requirements are shaped through communication between stakeholders. Stakeholders1 are people or organizationswho have an influence
on the requirements or are impacted by the system. They can be customers, developers, end‐users, user experience (UX) designers, or marketing
people who express opinions about a software system. A common issue is the insufficient communication among stakeholders in large‐scale
software projects 2,3 and in global software development4,5. This can lead tomisunderstandings regarding the requirements. Thus, the implemented
software can have wrong or missing functionality. This, in turn, leads to dissatisfied stakeholders or customers2.
A possible solution is that developers demonstrate the software under development and get feedback from stakeholders. This feedback can be

beneficial, because it comes from other perspectives and could also play a significant role on clarifying requirements. Potential end‐users can give
feedback on usage problems and suggest new features or extensions6. UX designers can give some feedback on quality related requirements, e.g.,
usability of software7. Moreover, marketing people can see the demonstrated software’s GUI to identify inconsistencies with the corporate design.
In agile software development, continuous feedback is realized by regular demonstrations of the software in review meetings, e.g., in sprint

review meetings 8. This feedback can be addressed in future iterations9,10. However, only the on‐site customer and the development team attend

Journal of Software: Evolution and Process 2023;00:1–16 wileyonlinelibrary.com/journal/ © 2023 Copyright Holder Name 1

https://orcid.org/0000-0001-6228-2478
https://orcid.org/0000-0002-6156-0672
https://orcid.org/0000-0001-7674-2930
https://orcid.org/0000-0002-7456-8323

2 SHI et al.

such meetings, and other stakeholders cannot give feedback this way. As argued above, other stakeholders can also give valuable feedback and
should thus be involved in the process. Unfortunately, having more people attending the review meetings is often impossible due to large and
diverse groups of stakeholders, who have other responsibilities. In this paper, we want to address this problem by presenting an approach to
obtain feedback from diverse stakeholders. We propose to record graphical user interface (GUI) tests on video, augment this video with further
explanations (if needed), and present this video to stakeholders who can give feedback without actually using the software themselves.
The video can also help a product owner quickly gain an overview on the current status of the project. In agile software development, a product

owner wants to see a result in the presentation in a review meeting (e.g. sprint review meeting). According to private communication with some
product owners, they want to see a successful demonstration without occasional failures due to imperfect code. The proposed video can be shown
directly without running the software under development, which saves time for product owners, developers, and testers in the review meeting.
The aim of this paper is to use existing successful GUI tests to create and use videos to obtain feedback from stakeholders. A video is recorded

during a slowed down GUI test run while GUI interactions are highlighted in the video. The resulting video is slowed down sufficiently for human
observers to follow. In the video, theGUI control element under interaction is highlighted to show the test stepwith inputs.Weprovide stakeholders
with the video to obtain feedback. We apply this concept in Behavior‐Driven Development (BDD), an agile software development method. In BDD,
the tests are first specified in a natural language and then developed in automated tests11. We propose to create the videos using the automated
tests, and to explain the videos using the corresponding specifications.
Throughout this paper, we use the following fictional example to illustrate how our approach applies in BDD processes and contributes to

software evolution:

Jenny is a product owner who has rich IT‐security experience. She needs to take care that the software is implemented as already doc‐
umented according to the communication with customers. She regularly holds sprint review meetings, where she sees the demonstration
videos of already implemented functionalities. She then gives feedback on the demonstration and plans for the requirements for the next
sprint. She also frequently obtains feedback from stakeholders regarding the current status of the software under development. However,
the stakeholders are busy with their daily business and do not always have time to communicate with her. She tries to obtain stakeholders’
feedback by showing them the demonstration videos and asking for their comments.

1.1 Context of This Article

This article is an extension of Shi et al. 12 from the International Conference on Software and System Processes (ICSSP). The extended contribution
points are highlighted in bold in the following paragraph.
In this article, we make the following contributions:

1. We provide supplementary steps beside the regular agile processes to involve stakeholders in the development. We update the process
descriptions and mark the supplementary steps clearly in the regular agile processes. (Section 3)

2. We divide a GUI test into several GUI unit tests and organize them in a connection graph. Stakeholders see the graph and choose a continuous
GUI test flow to watch. (Sections 3 and 5)

3. We evaluate the effect of videos with regard to finding inconsistencies between requirements and the demonstrated software from the
stakeholders’ perspective. (Section 5)

4. Throughout the paper, we incorporate the fictional example of Jenny. We state how she gives feedback in the review meeting by viewing
the videos (Section 3.3). Based on the coded results of inconsistencies identified by our participants, we show the activities through which
she obtains and summarizes the feedback from stakeholders (Section 5.6).

5. We discuss the applicability of our approach by using a test framework called “Robot Framework”, which is currently financed by more than
50 organizations† and popular among industrial practitioners. (Section 5.5)

† https://robotframework.org/foundation/ Accessed: 1‐Nov‐2023

https://robotframework.org/foundation/

Organizing GUI Tests from Behavior‐Driven Development as Videos to Obtain Stakeholders’ Feedback 3

2 RELATEDWORK

We list the works which reveal the necessity of involving stakeholders in testing. Tests are written based on the requirements specification. Re‐
quirements should be written in a way that makes the tests easily interpretable. Hence, the alignment of requirements with tests is considered in
this section. Lastly, we list works that use videos as a medium to communicate requirements.
An industrial case study from Mäntylä et al.13 shows that not only testers are involved in testing, but also people who have a close relationship

with customers. Sales personnel tend to discover additional relevant defects from the customer perspective. Chawani et al.14 investigate the par‐
ticipation of stakeholders in software development for health care inMalawi. By inviting nurses as end‐users during testing, requirements regarding
the data format and user interface design were elicited. The managers of the health center and the ministry of health saw a system demonstration
and provided feedback in more detail. In this investigation, feedback from various stakeholders complemented each other to generate concrete
requirements.
The necessary practice of aligning requirements with tests is discussed in many studies15,16,17,18. Graham 16 has listed seven myths about com‐

mon misunderstandings about requirements and tests. She argues that the requirements should be formulated as clear as possible, so that they
can serve as a basis for test specifications (cf. myths 3 and 6). Ramesh and Jarke15 have interviewed software companies about the requirements.
From the results of the interviews, requirements are mapped to the tests to ensure the testability of the requirements. Bjarnason et al.17 propose
that testers check the testability of requirements. Most of their interviewees find the review of requirements by testers to be meaningful, because
the review activates communication about requirements and thus improves their quality. Furthermore, Bjarnason et al.18 conducted an industrial
case study to investigate the benefits and challenges of using test cases as requirements. They summarize that this practice can help people in
different roles within a company to communicate about requirements and to align their goals. A challenge of involving customers is that customer
competence about GUI and quality requirements is required for communicating the related requirements.
To gain a shared understanding of requirements, Stangl and Creighton19 propose the usage of paper GUI sketches to create videos. During

the video creation, a executable GUI is not yet implemented. All GUI sketches are in prototypes. In their tool, the use cases are connected with
correspondingGUI elements (e.g. an input field). Their tool could automatically regenerate the videowhen theGUI design is changed. For evaluation,
Stangl and Creighton planned to conduct an industrial case study. However, we do not find that study to the best of our knowledge. Pham et
al. 20 propose videos of GUI test executions for debugging purposes. The videos are captured during test execution, while a matching relationship
between video and test code is created. A side‐by‐side viewer is used to replay the GUI interactions and corresponding lines in the test code. In
the context of a qualitative evaluation in one company, the two interviewed developers believed that videos can help with debugging. Shi and
Schneider 21 follow the concept of Pham et al.20 and suggest the highlighting of GUI interactions. In the video, the GUI element under interaction
(e.g., button or entry field) is accentuated by a colored border. Tandun22 implements this highlighting concept in a software suite that is used to
capture and replay a GUI test run. The effect of the video in debugging has been investigated among ten testers in a company. A semi‐structured
interview has been conducted to collect subjective opinions of the shown videos. Shi et al.23 have coded these opinions. According to the coding
results, participants mentioned that the highlighting function can help to reveal the position of defects accurately and explicitly.
Using the implementation22, Shi et al. 24 have proposed the “videos as a by‐product of GUI testing” approach and conducted a user study among

ten participants acting as developers. In the study, the developers have to analyze the reported defect either by videos or screenshots from a test
case. Each developer has four test cases and analyzes the defect through videos in two cases and through screenshots in the other two cases. The
study has two groups: the first group analyzes the defect by videos in the first two cases and by screenshots in the last two cases; the second group
analyzes the defect by screenshots in the first two cases and by videos in the last two cases. The quantitative results do not prove the difference
in efficiency or effectiveness between videos and screenshots statistically. In the interview, developers express complementary advantages and
disadvantages of videos and screenshots.
The novel contributions in this paper are: 1. We use videos for alignment of requirements with testing; 2. Videos are viewed not only by de‐

velopers 20,21,24, but also by stakeholders, who are end‐users, designers, developers, or testers; 3. We design an experiment to compare a classic
(textual specifications) with a supplemented solution (textual specifications, videos and a connection graph). To check the effect of the supple‐
mented documentations, we ask participants to recognize inconsistencies from demonstrated behaviors which are not in accordance with given
requirements. This kind of dedicated experiment is missing in a similar earlier study from Stangl and Creighton19.

3 METHODOLOGY

A GUI test is a concrete representation of how a software should be used and what behavior is expected. When GUI tests are demonstrated to
stakeholders, they may give feedback or modify their requirements. Hence, we propose our basic concept:While a GUI test is executing, the exe‐
cution is captured as a demonstration video. Meanwhile, the begin and end timestamps of each GUI interaction is linked with the demonstration

4 SHI et al.

video. Such a demonstration is not a test in itself but rather a system demonstration to obtain feedback. If an agile development team writes
GUI tests and updates them regularly during development, these tests can be used for demonstration in order to solicit feedback and validate
requirements. Behavior‐Driven Development is an agile development method, in which the acceptance criteria are defined at first, and tests are
maintained during the development. We want to apply this concept in BDD and ask our research question.

Research Question: How can existing GUI tests be used to create videos for obtaining feedback during Behavior‐Driven Development?

3.1 Gherkin specification and GUI Unit Tests in Behavior‐Driven Development

We apply the proposed concept in Behavior‐Driven Development (BDD), an agile development method.
Acceptance criteria contain scenarios which are specified in Gherkin. The Gherkin text of a scenario corresponds to the test case elements:

Given (preconditions),When (actions with inputs), Then (expected results). An example: “Given I am on the page of ‘duckduckgo.com’When I enter
‘University’ in the search field And I click the search button near the search field Then I see a list of links with short textual information”. These
Gherkin specifications are stored in feature files.
From the set of BDD tests, we use the automated GUI tests to create videos. In BDD, unit tests are implemented and automatically executed.

We employ unit tests within the GUI to create videos. We call these tests “GUI unit tests” and propose the following definition:
A GUI unit test is a GUI test that interacts with logically related graphical control elements on the GUI. Figure 1 shows an example of a GUI unit
test and the corresponding GUI.

Email:

Password:

Repeat password:

Sign up

@gui @iteration-1
Scenario: Request account creation
Given I am on the start screen and not logged in
When I choose "Create new user account"

And I type maxi.muster@gmail.com in email
And I type Zi9+#ao in password
And I repeat the password
And I click the sign up button

Then I see "Please confirm account creation"

F I GUR E 1 Gherkin specification of a GUI unit test and the GUI after choosing “Create new user account”.

In BDD, a feature file contains many scenarios, like the one in Fig. 1. One scenario specifies one GUI unit test. For each GUI unit test, a video is
captured during test execution.

3.2 General Application in BDD

Figure 2 depicts the supplemented BDD processes as a FLOW diagram. We use the FLOW notation by Stapel et al.25

We explain the activities based on the standard BDD steps according to Smart11. Our supplementations are marked as bold text in the following
list. A sub‐item means that the supplement is an extension of the standard BDD step of the corresponding item.

1. Business analyst, developers and testers come together to talk about requirements;
2. Business analyst, developers and testers define and write/update acceptance criteria;
3. The business analyst creates a connection graph (e.g. Fig. 3) that shows relationships between scenarios (i.e., GUI unit tests);
4. According to written acceptance criteria, developers develop the software, while testers write BDD unit tests. During this step:

GUI unit tests are implemented according to Gherkin specifications. The specifications are stored in feature files;
5. The written tests are automated and run regularly. During this step:

Executions of GUI unit tests are captured. The test execution should be modified automatically, i.e., the test execution is slowed down and
interactions in the test are highlighted. The modifications follow the concept from Shi and Schneider21.
Test results are generated from a test automation framework and shown to the development team;

Organizing GUI Tests from Behavior‐Driven Development as Videos to Obtain Stakeholders’ Feedback 5

6. The videos and the aforementioned graph are presented to stakeholders using our GUI Unit Test Viewer application (e.g. Fig. 4). A playlist
of videos is organized, so that the stakeholders see a consolidated video. In the consolidated video shown in GUI Unit Test Viewer, the
stakeholders can refer to corresponding specifications (scenarios). Stakeholders’ feedback can be obtained during the presentation;

7. The obtained stakeholder feedback is considered in a review meeting, then the process starts again from step 2.

Stakeholder

Videos

Communication
about requirements

Execute
GUI unit tests

Write or update
acceptance

criteria

Feature files

Developer

Business analyst

Tester

GUI Unit Test Viewer

Create graph

Implement
features and write

tests (TDD)

Source code &
GUI unit tests

<Person>

<Document/Tool>

<Activity>

Legend:

3

4

5

6
Step number

2

Information
flows
from person
into activity

Generates
information

Receives
information

Information
flows in

Information
flows out

Review
meeting 7

1

6

F I GUR E 2 FLOW diagram of the supplemented BDD processes. Note that for activity “Review meeting” and “Create graph”, all roles could
participate: the dashed lines between all roles and these activities are omitted.

Request
account creation

Confirm
account creation

Log in
(successful)

Log out Change
password

Feature: User Authentication
As a user
I want to have a private user account
So that my personal data and actions are
protected from unauthorized access

Log in
(empty username/password)

Request
account deletion

Confirm
account deletion

Log in
(bad username/password)

Reset
password

Legend
 Scenario
 Selected scenario
 Executing direction

Log out

Change password

F I GUR E 3 Mockup of the connection graph.

6 SHI et al.

3.3 Application in Jenny’s team

Recently, Jenny’s team received a task to develop a web application for film ratings. Jenny’s team is using BDD in SCRUM. In the kick‐off meeting,
Jenny, representatives of users, developers and testers are present. They talk about the web application and formulate acceptance criteria in
Gherkin. In the team internally, the team members communicate with each other about requirements in Gherkin. After two weeks, the first sprint
is finished and Jenny holds a sprint review meeting. In this meeting, the team shows Jenny a connection graph (Fig. 3) of currently implemented
scenarios for the feature “User Authentication”.
Jenny is glad that so many scenarios are already implemented. She wants to see a user journey where a user has successfully registered, logged

in and logged out. She selects these scenarios (the gray rectangles in Fig. 3) and is redirected to the video view (Fig. 4) of the GUI Unit Test Viewer.

F I GUR E 4 Mockup of GUI Unit Test Viewer.

Jenny also sees that the password is shown explicitly in scenario “Request account creation” (See Fig. 3). This is not desired by stakeholders.
Therefore, the next iteration should mask the password with asterisks (***). She also indicates that the password should be verified to prevent
accidental unintended inputs according to quality requirement category user error detection in Software Product Quality (ISO 25010).
In addition, she also wants to see the edge cases where the system handles unsuccessful log in. She selects “Log in (empty username/password)”

and “Log in (bad username/password)” and then sees the videos through GUI Unit Test Viewer. From her experience in IT‐Security, she understands
that the error message “bad username/password” not only indicates incorrect input but can also suggest vulnerabilities for a potential attack. She
states that the unsuccessful logging in must consider the SQL injection risk. Therefore, a new scenario should be added: Log in (unsuccessful, SQL
Injection).
After she gives feedback about IT‐Security, she notices that the password should be strong enough to prevent attacks. Back to the scenario

“Request account creation”, she tells the team that they need to add a scenario called “Request account creation (weak password)” which takes a
simple password as the Gherkin step: “And I type 123456 in password”.

4 EVALUATION

In this evaluation we focus on the stakeholders’ perspective. We are interested in whether videos help stakeholders provide feedback on the
software. Based on the goal template by Basili and Rombach26, we specify our evaluation goal as follows:

Organizing GUI Tests from Behavior‐Driven Development as Videos to Obtain Stakeholders’ Feedback 7

Goal definition:
We analyze videos of every single GUI unit test and a connection graph of these GUI unit tests
for the purpose of evaluation
with respect to the effectiveness of inconsistency identification between given requirements and videos
from the viewpoint of the potential stakeholders such as end‐users, designers, developers, or testers
in the context of a controlled online experiment with Prolific participants in demonstrating account management functions of an online
website.

We planned to involve participants via the online platform Prolific (https://www.prolific.co/researchers). We have chosen a film rating platform
Letterboxd (https://letterboxd.com/) as the online website. The website should be easy understandable by the participants who have internet
surfing experience.

4.1 User Study Design

Based on the evaluation goal, we ask the following evaluation questions (EQ):

• EQ1: How can videos and the connection graph of GUI unit tests support a precise identification of inconsistencies between requirements and
the developed software?

• EQ2: How can videos and the connection graph of GUI unit tests facilitate giving feedback for stakeholders?

To answer these evaluation questions, we give all participants the same textual requirements to unify their understanding. The behaviors of
GUI unit tests are then demonstrated to the participants as Gherkin specifications or as Gherkin specifications with a video. The participants are
asked to list inconsistencies between given requirements and the demonstrated behaviors. For example, if “delete account” is specified in the given
requirements, but “deactivate account” is shown in the video, this difference is an inconsistency. Our second author first familiarized himself with
an English website that he had selected. He then specified behaviors for the account management section of the website as GUI unit tests in
Gherkin. Afterwards, he specified those same functionalities in regular sentences (as given requirements) while introducing several inconsistencies.
Our first author then checked the given requirements and Gherkin specifications. Selecting these functionalities allowed us to (1) describe all
functions as textual requirements in less than 350 words and (2) describe each function in Gherkin texts of no more than 12 lines and in video of
no more than 38 seconds. Thus, long viewing time due to lengthy texts or videos has been avoided. We prepared ten scenarios (i.e., GUI unit tests)
for the evaluation, e.g., creating an account, resetting a password, changing a profile picture. We want to investigate the effect of the videos and
graph compared to the Gherkin specifications. Hence, participants are separated into two groups: 1. The control group receives only the Gherkin
specifications, as those are available and up‐to‐date in BDD per default; 2. The experimental group receives the Gherkin specifications and, in
addition, the videos and connection graph of the GUI unit tests, as we propose in Sec. 3.
Table 1 shows the designed metrics for EQ1 and EQ2. The metrics M1, M2 are calculated by counting inconsistencies from collected answers

and are thus objective. The metrics M3, M4, M5 measure subjective perceptions and are collected using an 8‐point Likert scale, because (1) given
an even number of options, participants should have a clear opinion acting as customers; and (2) eight options allow the participants to give their
opinions precisely.
We are interested in testing the following hypotheses, which are shown in Tab. 1. The corresponding null hypotheses assume that there is no

difference between both provisions in the respective metrics.
Figure 5 shows the steps of the experiment. In advance, participants should understand the Gherkin specifications. Therefore, Gherkin is ex‐

plained in an example, followed by twomulti‐select multiple‐choice questions to test comprehension. The questions are: “1.Which of the following
keywords are always included in a scenario (according to the text above)? 2. Which of the following statements is/are correct?” Afterwards, the
textual requirements (in regular sentences, not in Gherkin) are shown, followed by one multi‐select multiple‐choice question: “Which of the fol‐
lowing statements is/are correct?” If participants are unable to answer the test questions correctly, the experiment must not be continued, as we
assume that they have not understood the basics.
Next, the GUI unit tests are demonstrated. Participants in both groups receive the Gherkin specifications for every scenario. The experimental

group receives one connection graph before seeing the first scenario. This connection graph conveys relationships between the ten scenarios
by displaying some exemplary execution sequences (as shown in Fig. 3). After that, the GUI unit tests are demonstrated (1) through Gherkin
specifications for the control group, (2) through Gherkin specifications and GUI unit test videos for the experimental group. At the end of each

8 SHI et al.

TAB L E 1 Metrics for the Evaluation Questions and corresponding Hypotheses
EQ Metrics Hypotheses Begin: There is a difference in ...

EQ1
M1: Number of correctly identified inconsistencies the number of correctly identified inconsistencies (H1)
M2: Number of incorrectly identified inconsistencies the number of incorrectly identified inconsistencies (H2)

EQ2

M3: Average certainty of mentioning inconsistencies the average certainty of giving inconsistencies (H3)
(from 1: very uncertain to 8: very certain)
M4: Difficulty of identifying inconsistencies the difficulty of identifying inconsistencies (H4)
(from 1: very easy to 8: very difficult)
M5: Understanding of development status the understanding of the development status (H5)
(from 1: very limited to 8: very extensive)

Hypotheses End: ... between the provision of Gherkin specifications and
the provision of Gherkin specifications, connection graph, and videos.

Control group

Gherkin training
and

comprehension
test

Provision of
requirements in

regular sentences
and

comprehension
test

Provision of Gherkin spec.

Provision of Gherkin spec.,
connection graph, and

videos

Asking for
inconsistencies
and certainty of
the answer (for
each scenario)

Process
assessment

Asking for
demo-
graphic

data

Self
assessment
in answer

quality

Experimental group

F I GUR E 5 General experiment design. (Note: spec. means specifications)

Click to show requirements

Note: The following Gherkin text and video depict the same scenario in different ways.
Do not compare the Gherkin text with the video, but compare the text & video with
the requirements (above).

Scenario: Reset password
 Given I am on the login page
 And the following account exists:
 | Email | Username | Password |
 | maxi.muster@gmail.com | MaxiMuster | P4ssw0rt |
 When I select "Reset"
 And I enter my email "maxi.muster@gmail.com"
 And I submit my input
 Then I am redirected to the start page that shows the latest popular films

Does scenario 4 (Gherkin text & video) match the requirements?
If the scenario matches the requirements, please write "Matches all (Stimmt
überein)". Otherwise, describe all inconsistencies that you notice.

How certain are you on answering the last question?
very uncertain very certain

F I GUR E 6 One page in the questionnaire (scenario 4, experimental group).

scenario page, the participants of both groups are asked to state the inconsistencies they found (M1, M2), as well as their answer certainty (M3).
Figure 6 shows scenario four from the translated questionnaire (experimental group). The original instructions for the experiment were written in
German and are available in our data set27.
After checking the tenth scenario, participants are asked to answer the questions “Overall, how difficult was it to recognize inconsistencies?”

(M4, question ID ProcEval1 27) and “After showing you ten scenarios: How do you assess your understanding of the functionality and usage of the

Organizing GUI Tests from Behavior‐Driven Development as Videos to Obtain Stakeholders’ Feedback 9

presented functions?” (M5, question ID ProcEval2 27). At last, participants fill in their demographic data and assess their answer quality (seriousness,
distraction, understanding of instructions). To encourage honest responses, we inform participants that their quality assessment responses have
no consequences.
Participation in the experiment was rewarded because we wanted to get as many potential participants as possible. The payment for one per‐

son was 5.00 GBP for the control group and 5.50 GBP for the experimental group. The number of participants in each group was limited to
eleven. We have found participants through Prolific. We set the following criteria on the platform to filter participants: residence in Germany, Ger‐
man as first language, and very good English skills. This way, we ensured that participants can follow German instructions, understand English
text in the software, and write texts in German. The platform then sent invitations to qualified participants. Participants could conduct the ex‐
periment if they received an invitation and participation spaces were still available. The experiment was conducted on an online survey platform
(https://www.soscisurvey.de).

4.2 Demographics

For each group, 11 participants took part in the experiment. The gender distribution is almost equal (10 female, 12male). The participants belong to
different age groups, with the youngest being 19 and the oldest 60 years old. The average age is 28.7. In terms of educational level, all participants
have at least a vocational baccalaureate diploma (Fachabitur in German). None of the participants have extensive knowledge of programming or
BDD.

4.3 Data Analysis

The self assessment of answer quality is adequate for checking hypotheses. According to the submitted answers, all participants have answered
the questions seriously and understood the instructions. Almost all participants reported that they performed the experiment without distraction;
only one reported a brief distraction.
The second author first counted metricsM1 andM2 for the submitted inconsistencies. Participants were asked to identify inconsistencies from

demonstrated behaviors which are not in accordance with the given requirements. We count a correct inconsistency if a participant states a real
difference between requirements and demonstrated behaviors. We count an incorrect inconsistency if we recognize that the participant states
an inconsistency which is not related to the corresponding requirement. Then, the first author checked and corrected the counting and asked for
confirmation from the second author. Only one disagreement was left after the confirmation: this was settled by consulting the third author. The
exact counting reference is available in the survey data27 (sheet “Counting Detail”). The mean and standard deviation forM1 andM2 are calculated
between all participants.
To calculate M3, the median value of all assessments of certainty on giving inconsistencies is calculated for each participant respectively. M4

and M5 are collected through answers to the mentioned questions about the difficulty of finding inconsistencies and the understanding of the
development status. As these metrics are collected via Likert scale, we calculate only their median for further interpretation.
To calculate the Mann‐Whitney U test for all metrics, we follow the instructions from Bortz and Schuster28 for small samples of shared rankings.

For the sake of transparency, the individual calculation steps for this test are provided in the data set27. According to the hypothesis definitions,
all hypotheses are two‐tailed. For interpretation, we set the significance level α to 0.05. Table 2 shows the statistical results.

TAB L E 2 Statistical Results for All Metrics

Metric Control Group Experimental Group Mann‐Whitney U Test
Mean SD Mean SD U p

M1 1.91 1.64 5.73 4.88 26.5 0.024
M2 0.36 0.81 0.36 0.50 53.5 0.557

Median Median U p

M3 7 7 30.5 0.022
M4 5 4 30.0 0.037
M5 5 6 23.0 0.011

SD: Standard Deviation
Two‐tailed, significance level α = 0.05

10 SHI et al.

In addition,we plot the histograms for the certainty ofmentioning an inconsistency (note that this is notM3, Fig. 7 left), the difficulty of identifying
inconsistencies (M4, Fig. 7 middle), and the understanding of development status (M5, Fig. 7 right). We can see that participants in experimental
group tend to be more certain in mentioning an inconsistency and more extensive in understanding of development status. Regarding difficulty,
seven participants in experimental group find identifying inconsistency easy (4), while nine participants in control group find it difficult (5 and 6).

F I GUR E 7 Histograms related to metrics 3, 4, and 5.

4.4 Answers to the Evaluation Questions

Regarding M1, a significant difference between both groups is observed (p=0.024). The mean number of correctly identified inconsistencies is
higher in the experimental group than in the control group. H1 is accepted. In contrast, results of M2 show no significant difference (p=0.557).
Most (16) participants did not falsely identify inconsistencies. Two participants in the control group stated two false inconsistencies each, while
four participants in the experimental group stated one false inconsistency each. Therefore, we cannot reject the null hypothesis of H2. Overall, we
answer EQ1 as follows: The difference that we have found in the mean number of correctly identified inconsistencies suggests that the GUI unit
test videos and connection graph help stakeholders recognize inconsistencies with stakeholders’ requirements.
ForM3, a significant difference is measured (p=0.022). H3 is accepted. However, we cannot infer the difference direction inM3 as the medians

of both groups are the same. Results from M4 show a significant difference (p=0.037). Participants from the control group tend to think that
inconsistency recognition is difficult when viewing Gherkin specifications only (Median=5). H4 is accepted. Regarding M5, another significant
difference is observed (p=0.011). Participants of both groups can understand the current development status. However, the experimental group
has a greater median value ofM5 than the control group. H5 is accepted. Overall, we answer EQ2 as follows: The videos and connection graph of
GUI unit tests appear to facilitate stakeholder feedback in two ways: stakeholders can (1) recognize inconsistencies easily and (2) understand the
current development status extensively.

5 DISCUSSION

First, we discuss some other results found in the experiment. Second, we discuss the applicability of our proposed concept in Robot Framework.
Third, we imagine that Jenny obtained feedback from stakeholders through the evaluation. We show how Jenny and her team benefit from the
feedback.

Organizing GUI Tests from Behavior‐Driven Development as Videos to Obtain Stakeholders’ Feedback 11

5.1 Inconsistencies Found by Participants

To count M1 and M2, we originally used a standard solution of 24 inconsistencies. We found another 5 correct inconsistencies (shown as blue
text in the survey data27, sheet “Counting Detail”) in answers from participants of the experimental group. One inconsistency is “The standard
avatar is grey (instead of blue)” from participant 14 in the experimental group. Given the video, participants found inconsistencies which were not
intentionally designed before conducting the experiment. This supports H1.

5.2 Time Cost on Viewing Videos

The length of the 10 videos used in the experiment ranges from 18 to 38 seconds.Wemeasured session duration, i.e., how long it took a participant
to complete the entire online experiment. The results show that the control group took an average of 21.0 minutes and the experimental group
took an average of 31.7 minutes per person. We can infer that the participants may have used the 10.7 minutes for viewing the 10 videos. This
estimated time cost is acceptable.

5.3 Effect of the Connection Graph and Videos

In the experimental group, participants were shown the connection graph of the GUI unit tests once before the first scenario was shown. Then
they were asked to identify inconsistencies for each scenario separately, while the video was shown. The correctly identified inconsistencies (M1)
should not be related to other scenarios, i.e., other GUI unit tests. Hence, we argue that mainly the video helped participants to find more correct
inconsistencies (M1).
For other metrics, the connection diagram and videos should have a combined effect. However, the effect of the connection graph itself is not

separately investigated. By selecting an individual continuous GUI unit test flow, stakeholders can view a personalized video and can give feedback
for a specific use case. The interaction with a connection graph and its effect on requirements elicitation is worth investigating in a future study.

5.4 The Storage of the Videos

The 10 videos used in this study are approximately 7.7 MB in size. In a real project, a product owner maintains videos in the GUI Unit Test Viewer.
The videos should cover all scenarios in a connection graph (as Fig. 3) and include multiple versions per each scenario. For example, if we maintain
two latest versions per each scenario in Fig. 3 (10 scenarios), we would need to save 20 videos, totaling approximately 15 MB in size. This size is
considerable for maintenance. The videos should be stored before the software is no longer in use. This way, stakeholders can refer to them at any
time to see how the implementation of a function has evolved. If storage size becomes an issue, we recommend keeping only the last 2 to 3 latest
versions of a scenario.

5.5 Applicability in Robot Framework

Keyword‐driven testing can be applied in BDD. In keyword‐driven testing, a keyword defines a set of test steps and is named as a phrase (e.g. “I
enter my email”, line 17 in file Keywords.resource, Fig. 8). Daigl and Rohner 29 explain that the keywords have three levels: 1. High‐level: as test steps
in a test case; 2. Intermediate‐level; 3. Low‐level: implemented as test code or run from a person. The high‐level keywords are similar to Gherkin
steps, and the low‐level keywords are similar to the real test code in BDD. Robot framework is one of the keyword‐driven testing frameworks.
Hence, we discuss how to use Robot Framework in our approach.
The test specifications in Robot Framework are maintained in files using three different data formats: robot file, resource file, and python file. The

test suite is defined in a robot file, which consists of many test cases. Each test case consists of many keywords. The keywords are defined either
in the robot file (as local keywords) or a resource file (as reusable keywords). The implementation code of the keywords is written in python files.
Daigl and Rohner 29 have shown how to write Gherkin specifications in Robot Framework. The Gherkin steps are considered as test steps in a

test case. The prefixes Given, When, Then, And are ignored in Robot Framework; the following phrase is recognized as a keyword. An example is
shown in Fig. 8: The keyword of the Gherkin step “Given I am on the login page” (line 10 from file ResetPassword.robot) is “I am on the login page”
(line 6 from file Keywords.resource). In the definition of the keyword “I am on the login page”, the login page under development is opened (line 8
from file Keywords.resource)).

12 SHI et al.

ResetPassword.robot Keywords.resource

Database.py

F I GUR E 8 Example project in Robot Framework

According to private communication with test engineers at imbus AG, it is technically possible to convert feature files to robot files. Hence, we
have the following suggestions of application in Robot Framework with regard to Fig. 2: At step 1, use Gherkin to communicate with stakeholders.
Between step 2 and 3, convert the feature files to robot files. At step 4, develop the tests in Robot Framework; regard a test case in the robot files
as a GUI unit test. At step 5, trace the time of each test step (e.g. line 11 in Fig. 8 is a step) in a test case when making a video.

5.6 Jenny Obtains Feedback from Stakeholders

Jenny has organized an online surveywith 20 stakeholders to obtain feedback. These stakeholders did not attend the kick‐offmeeting and have their
own understanding of the requirements (as requirements in regular sentences in Fig. 5). After reading Gherkin‐Texts with or without the connection
graph and the videos, they have given their feedback for each scenario. Jenny has gathered this feedback and conducted an analysis. (We will use
the results of the evaluation in this illustrative example.)
Jenny finds that this feedback indicates different types of inconsistencies:

• The related requirement has been Incorrectly implemented.
• The mentioned requirement is Unimplemented.
• The mentioned requirement has been Additionally implemented.
• Unclear: Further tests are needed to check if the mentioned requirement is correctly implemented.

TAB L E 3 Inconsistency quotes, types, and frequency (please refer to the full list in Tab. A1 of Appendix A)
Scenario and description Inconsistency quotes from participants (selected) Type Frequency

Scenario 1: Request
account creation

A minimum age is required at registration. I 1
Successful account creation is not explicitly confirmed (via pop‐up message). U 2

Scenario 2: Log in (bad
username/password)

The dark gray design of the website can be rated as “not friendly”. I 1
The entries will not be removed after the failed login. U 4

Scenario 3: Log in
(successful)

The user is not forwarded to start page (with popular films). I 12
The registration can also be done via e‐mail. Unclear 2

Scenario 4: Reset
password

The user is redirected to the home page after resetting the password. I 10
Successful reset is not explicitly confirmed (via pop‐up message). U 5

Scenario 8: Log out The user is not forwarded to start page (with popular films). I 9
Successful logging out is not explicitly confirmed (via pop‐up message). U 3

Scenario 10: Successful
deactivation of account

A farewell message is displayed. A 3
After logging out, there is no redirection to the home page (with popular movies). I 1

I: Incorrectly implemented
U: Unimplemented
A: Additionally implemented

Organizing GUI Tests from Behavior‐Driven Development as Videos to Obtain Stakeholders’ Feedback 13

Jenny categorized the feedback into these types and counted them, some of the results are shown in Tab. 3. Now that Jenny has a summary of
the feedback results in Tab. 3, she wants to consider them in the next sprints. We list some actions that she will take. Jenny sees that the feedback
“The user is not forwarded to start page (with popular films)” (incorrectly implemented) is mentioned about ten times for scenarios 3 and 8 each. Jenny
will replace the last Gherkin steps of scenarios 3 and 8 with “And I see the start page with popular films” and set the priority of implementation to
the highest possible value. For the feedback “The entries will not be removed after the failed login” (unimplemented) of scenario 2, four participants
indicate that the entered credentials should be cleared after a failed log in. This point is concerned to be critical in IT‐Security, which Jenny really
cares about but did forget. She adds the Gherkin step “And I see cleared username and password fields” at the end of each scenario regarding
a failed log in. For the feedback “The registration can also be done via e‐mail” (Unclear), Jenny will adapt the Gherkin specification of Scenario 3:
add another input data “maxi.muster@gmail.com | P4ssw0rt” after the Gherkin step “When I enter the following data:”. She will talk to the testers
about this. In addition, Jenny notices that three participants find the display of the farewell message as an inconsistency (additionally implemented).
Jenny documents this point in the backlog for later discussion, because she thinks the farewell message supports the friendly impression of the
web application.

5.7 Threats to Validity

Our results are subject to some threats to validity which we discuss in the following according to Wohlin et al.30

5.7.1 Construct Validity

In the online questionnaire, participants could not conduct German tasks with the software, since it was only available in English. To mitigate this
threat, we set criteria on the survey platform to only select participants who have the required language skills.
One aspect that may have affected the validity of the results is that participants may have misunderstood the tasks or not read the task instruc‐

tions carefully. To mitigate this threat, we conducted a pilot study with two participants and adjusted the instructions based on their feedback. In
addition, we asked participants if they answered the questions seriously and if they had any points of confusion. All participants confirmed that
they had answered all questions seriously and that they did not have any points of confusion. This way, we were able to minimize the participants’
misunderstanding of the task instructions.
Furthermore, participants were given textual requirements which they did not collect or formulate on their own. Therefore, we could not assume

that participants compared the video to the given requirements instead of their own requirements. To mitigate this threat, we presented a hint
every time a new video was shown. This way, we made the given textual requirements easily accessible.
Due to the nature of an online experiment, participants might have been interrupted by their environment (e.g., phone calls, door bells, etc.).

To analyze the influence of such interruptions, we investigated the quality of the given answers. As only one participant experienced one short
distraction and others were not distracted according to their answers to the question “Were you able to complete the questionnaire without being
distracted?” (question ID SelfAssess2 27), we consider this threat to be of small relevance.
In addition, participants might have been tired which could have had an influence on their judgment. To reduce the risk of tiring the participants

while doing the experiment, we described functionalities in short texts and opted for a number of ten scenarios, leading to an average duration
of 26.4 min per experiment. As we assume this session duration to be adequate, we consider the loss of concentration during the experiment to
have had a low influence. Nevertheless, we could not counteract tiredness caused by external factors such as participating early in the morning,
or in a stressful phase.
The payment for participants may threaten the validity, because it cannot motivate participants intrinsically. Participants took part in the exper‐

iment if they accepted the invitations and free spaces were still available. We cannot influence the selection of subjects because this is dependent
on the platform and the initiative of participants.

5.7.2 Internal Validity

We used the Gherkin language to specify GUI unit tests. We must not assume that participants are familiar with this language. Therefore, it
is possible that they do not understand the Gherkin text. To mitigate this threat, we performed a Gherkin training with two control questions.
Participants had to answer these questions correctly to continue the experiment. Furthermore, we asked participants if they were able to follow
the instructions. In case of difficulties with the given tasks of the experiment, participants were asked to communicate these difficulties at the
end of the study. All participants understood the instructions according to question SelfAssess3 27 and have written no comments regarding any
difficulties.

14 SHI et al.

In the experimental group, videos may show participants functionalities that are not described in the given requirements. Participants may then
write these functions as inconsistencies, which affect the collected identifications with respect to validating H1, H2, H3, and H4. To mitigate this,
participants were given the following instruction: “In the videos, youmay sometimes see functionalities that were not discussed in the requirements.
Disregard these functionalities when looking for inconsistencies.” We do not see these kinds of requirements in any submitted answers.

5.7.3 Conclusion Validity

Our results are based on insights from 22 participants. To analyze the results objectively, we applied hypotheses testing at a significance level of
α = 0.05.
In our experiment, the videos were created manually, not from a modified GUI unit test. This might threaten the validity of answers to research

and evaluation questions. To mitigate this, the second author created the video while slowly interacting with the software so that viewers can
follow. In further video editing, he added rectangles to highlight every GUI interaction, as suggested by Shi and Schneider21. All videos are available
in our data set 27.
An imprecise counting ofM1 andM2 might be another threat. If these metrics are counted by one person, errors may happen. The second and

first authors double‐checked the results to mitigate this threat. The third author gave her opinion on one disagreement so that the counting was
unified.

5.7.4 External Validity

Our results must not be over‐interpreted and generalized. The main limitation affecting the generalizability of our results is the lack of developer
perspective. In addition, we only applied our concept in an experimental setting, with limited practical relevance. Hence, future studies are required
to evaluate the benefits for the industry and the applicability in a real‐world setting.

6 CONCLUSION AND FUTUREWORK

In agile development, feedback should be elicited in short intervals and fed into development. Stakeholders whomight not use the software directly
can give valuable feedback.Wewant to involve these stakeholders by using successful GUI tests for software demonstration.We have used existing
successful automated GUI tests from BDD and proposed concepts to demonstrate software under development. GUI unit tests are specified in
Gherkin text according to the acceptance criteria and then implemented. In internal review meetings, a product owner can view the videos and
give her feedback which can be soon considered by the development team. In an external demonstration of the software under development,
stakeholders review the consolidated video and give feedback. The product owner can summarize this feedback as an orientation in planning the
requirements of the next iteration. Although we propose to use videos for non‐personal communication, we argue the videos can also be used in a
physical meeting as a complement to live demonstration. The videos can show a software under development instantly, without the waiting time
for preparing a demonstration due to technical issues.
We conducted a dedicated experiment from the perspective of the stakeholders to investigate the effect of videos in identifying inconsistencies

between given requirements and demonstrated behaviors. Compared to the control group, participants in the experimental group received a
connection graph and videos. Results with statistical significance have shown that (1) videos seem to help stakeholders find inconsistencies in the
demonstrated software that do not match the given requirements and (2) videos and a connection graph of the videos seem to help stakeholders
recognize inconsistencies easily and understand demonstrated functionalities extensively.
Based on the concept and the experiment, we answer our research question.

Answers to Research Question: The automated GUI tests are divided into several GUI unit tests, which are used to create videos. Videos are
recorded in a modified test run. The test steps are explained in Gherkin while viewing the video. Stakeholders view a connection graph and
videos of the GUI unit tests. This way, stakeholders can effectively give feedback to a software under development.

The effects of active selection of the connection graph and consolidated video by stakeholders can be studied in the future. In addition, we
have discussed a potential application within Robot Framework and given suggested instructions. These instructions can serve as the foundation
for future collaboration with industrial practitioners.

Organizing GUI Tests from Behavior‐Driven Development as Videos to Obtain Stakeholders’ Feedback 15

ACKNOWLEDGMENT

This work is funded by Deutsche Forschungsgemeinschaft (DFG) ‐ Project number 289386339 (ViViUse). We thank the test engineers at imbus
AG for comments about the process conception.

REFERENCES
1. Glinz M, Wieringa RJ. Stakeholders in Requirements Engineering. IEEE Software. 2007;24(2):18–20. doi: 10.1109/MS.2007.42
2. Bjarnason E, Wnuk K, Regnell B. Requirements are slipping through the gaps ‐ A case study on causes & effects of communication
gaps in large‐scale software development. In: IEEE 2011; Trento, Italy:37–46

3. Abelein U, Paech B. State of Practice of User‐Developer Communication in Large‐Scale IT Projects: Results of an Expert Interview
Series. In: Springer International Publishing 2014; Cham:95–111

4. Niazi M, Mahmood S, Alshayeb M, et al. Challenges of project management in global software development: A client‐vendor analysis.
Information and Software Technology. 2016;80:1–19.

5. Nicolas J, Carrillo De Gea JM, Nicolas B, Fernandez‐Aleman JL, Toval A. On the Risks and Safeguards for Requirements Engineering in
Global Software Development: Systematic Literature Review and Quantitative Assessment. IEEE Access. 2018;6:59628–59656. doi:
10.1109/ACCESS.2018.2874096

6. Groen EC, Seyff N, Ali R, et al. The Crowd in Requirements Engineering: The Landscape and Challenges. IEEE Software. 2017;34(2):44–
52. doi: 10.1109/MS.2017.33

7. Bach PM, DeLine R, Carroll JM. Designers wanted: participation and the user experience in open source software development. In:
ACM 2009; Boston MA USA:985–994

8. PaasivaaraM, Durasiewicz S, Lassenius C. Distributed Agile Development: Using Scrum in a Large Project. In: IEEE 2008; Bangalore:87–
95

9. Cockburn A. Agile Software Development. Addison Wesley, 2001.
10. Williams L, Cockburn A. Agile Software Development: It’s about Feedback and Change. Computer. 2003;36(06):39–43. doi:

10.1109/MC.2003.1204373
11. Smart JF. BDD in Action: Behavior‐Driven Development for the whole software lifecycle. Shelter Island, NY: Manning, 2014.
12. Shi J, Mönnich J, Klünder J, Schneider K. Using GUI Test Videos to Obtain Stakeholders’ Feedback. In: IEEE 2023; Melbourne,

Australia:35–45
13. MäntyläMV, Itkonen J, Iivonen J.Who testedmy software? Testing as an organizationally cross‐cutting activity. SoftwareQuality Journal.

2012;20(1):145–172.
14. Chawani MS, Kaasbøll J, Finken S. Stakeholder participation in the development of an electronic medical record system in Malawi. In:

ACM Press 2014; Windhoek, Namibia:71–80
15. RameshB, JarkeM. Toward referencemodels for requirements traceability. IEEE Transactions on Software Engineering.2001;27(1):58–93.

doi: 10.1109/32.895989
16. Graham D. Requirements and testing: seven missing‐link myths. IEEE Software. 2002;19(5):15–17. doi: 10.1109/MS.2002.1032845
17. Bjarnason E, Runeson P, Borg M, et al. Challenges and practices in aligning requirements with verification and validation: a case study

of six companies. Empirical Software Engineering. 2014;19(6):1809–1855.
18. Bjarnason E, Unterkalmsteiner M, Engström E, Borg M. An Industrial Case Study on Test Cases as Requirements. In: Springer

International Publishing 2015; Cham:27–39.
19. Stangl H, Creighton O. Continuous demonstration. In: IEEE 2011; Trento:38–41
20. Pham R, Holzmann H, Schneider K, Brüggemann C. Tailoring video recording to support efficient GUI testing and debugging. Software

Quality Journal. 2014;22(2):273–292.
21. Shi J, Schneider K. Creation of Human‐friendly Videos for Debugging Automated GUI‐Tests. In: Springer International Publishing 2021;

Cham:141–147.
22. Tandun MA. Report‐Video Production for Quick Bug‐finding in the Web Applications. https://www.pi.uni‐hannover.de/fileadmin/pi/

se/Stud‐Arbeiten/2022/BA_Tandun_2022.pdf; 2022.
23. Shi J, Schneider K, TandunM, KarrasO. SupplementaryMaterial for Evaluating ScreenTracer among Testers. https://zenodo.org/record/

7522978; 2023
24. Shi J, Karras O, Obaidi M, Tandun M. Can Videos as a By‐Product of GUI Testing Help Developers Understand GUI Tests?. In: IEEE

2023; Hannover, Germany:146–153
25. Stapel K, Schneider K, Lübke D, Flohr T. Improving an Industrial Reference Process by Information Flow Analysis: A Case Study. In:

Springer 2007.
26. Basili V, Rombach H. The TAME project: towards improvement‐oriented software environments. IEEE Transactions on Software

Engineering. 1988;14(6):758–773. doi: 10.1109/32.6156
27. Shi J, Mönnich J, Klünder J, Schneider K. Supporting Data Set for Paper ‘Using GUI Test Videos to Obtain Stakeholders’ Feedback’.

https://doi.org/10.5281/zenodo.7727748; 2023.
28. Bortz J, Schuster C. Statistik für Human‐ und Sozialwissenschaftler. Springer, 2010
29. Daigl M, Rohner R. Keyword‐Driven Testing: Grundlage für effiziente Testspezifikation und Automatisierung. Heidelberg: dpunkt.verlag,

2022.
30. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A. Experimentation in Software Engineering. Springer Berlin Heidelberg,

2012

http://dx.doi.org/10.1109/MS.2007.42
http://dx.doi.org/10.1109/ACCESS.2018.2874096
http://dx.doi.org/10.1109/ACCESS.2018.2874096
http://dx.doi.org/10.1109/MS.2017.33
http://dx.doi.org/10.1109/MC.2003.1204373
http://dx.doi.org/10.1109/MC.2003.1204373
http://dx.doi.org/10.1109/32.895989
http://dx.doi.org/10.1109/MS.2002.1032845
https://www.pi.uni-hannover.de/fileadmin/pi/se/Stud-Arbeiten/2022/BA_Tandun_2022.pdf
https://www.pi.uni-hannover.de/fileadmin/pi/se/Stud-Arbeiten/2022/BA_Tandun_2022.pdf
https://zenodo.org/record/7522978
https://zenodo.org/record/7522978
http://dx.doi.org/10.1109/32.6156
https://doi.org/10.5281/zenodo.7727748

16 SHI et al.

How to cite this article: Shi J, Mönnich J, Klünder J, and Schneider K. Organizing GUI Tests from Behavior‐Driven Development as Videos to Obtain
Stakeholders’ Feedback Preprint of J of Softw Evol Proc.

APPENDIX

A FULL LIST OF CODED INCONSISTENCY TYPES

TAB L E A1 Inconsistency quotes, types, and frequency (#)
Scenario and description Inconsistency quotes from participants Type #

Scenario 1: Request
account creation

The kind of CAPTCHA is not specified and does not correspond to an image CAPTCHA. I 1
A minimum age is required at registration. I 1
The user is shown a welcome page after logging in (instead of start page with movies). I 2
Successful account creation is not explicitly confirmed (via pop‐up message). U 2

Scenario 2: Log in (bad
username/password)

The registration can also be done via e‐mail. U 1
The dark gray design of the website can be rated as “not friendly”. I 1
The entries will not be removed after the failed login. U 4

Scenario 3: Log in
(successful)

The user is not forwarded to start page (with popular films). I 12
The registration can also be done via e‐mail. Unclear 2

Scenario 4: Reset
password

The user is redirected to the home page after resetting the password. I 10
Successful reset is not explicitly confirmed (via pop‐up message). U 5
No email was sent or it is not mentioned, that a email was sent. U 3

Scenario 5: Add profile picture Drag & Drop cannot be realized on a smartphone or tablet. U 2
Scenario 6: Delete profile picture The standard avatar is grey (instead of blue). I 1

Scenario 7: Add favorite
movie to profile

The user does not select from a poster preview. U 5
The number of favorite movies is not controlled. Up to 4 movies can be added. I 4
Successful adding of a favorite film is not explicitly confirmed (via pop‐up message). U 3

Scenario 8: Log out

The user is not forwarded to start page (with popular films). I 9
Successful logging out is not explicitly confirmed (via pop‐up message). U 3
Youwill not have access to the profile settings after logging out, but you should alsomake
sure that you do not have access to the rest of the profile functions (e.g. rate movies).

Unclear 1

Scenario 9: Unsuccessful
deactivation of account

The incorrect entry will not be removed. U 3
The form says Delete instead of Deactivate. I 2

Scenario 10: Successful
deactivation of account

The form says Delete instead of Deactivate. I 1
A farewell message is displayed. A 3
After logging out, there is no redirection to the home page (with popular movies). I 1
Successful deactivation of an account is not explicitly confirmed (via pop‐up message). U 1

I: The related requirement has been Incorrectly implemented.
U: The mentioned requirement is Unimplemented.
A: The mentioned requirement has been Additionally implemented.

	Organizing GUI Tests from Behavior-Driven Development as Videos to Obtain Stakeholders' Feedback
	Abstract
	Introduction
	Context of This Article

	Related Work
	Methodology
	Gherkin specification and GUI Unit Tests in Behavior-Driven Development
	General Application in BDD
	Application in Jenny's team

	Evaluation
	User Study Design
	Demographics
	Data Analysis
	Answers to the Evaluation Questions

	Discussion
	Inconsistencies Found by Participants
	Time Cost on Viewing Videos
	Effect of the Connection Graph and Videos
	The Storage of the Videos
	Applicability in Robot Framework
	Jenny Obtains Feedback from Stakeholders
	Threats to Validity
	Construct Validity
	Internal Validity
	Conclusion Validity
	External Validity

	Conclusion and Future Work
	Acknowledgment
	REFERENCES
	APPENDIX
	Full List of Coded Inconsistency Types

