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1  |  INTRODUC TION

Liver fibrosis is linked to severe morbidity and mortality around the 
globe.1,2 A worldwide prevalence of 1.5 billion cases is estimated 
and accounts for more than a million deaths annually.3,4 Viral or 

parasite infections are the leading causes of liver fibrosis in devel-
oping nations, whereas excessive alcohol intake is the primary fac-
tor in industrialized nations.5,6 Autoimmune and metabolic diseases, 
drug- associated disorders and hereditary conditions are additional 
aetiologies of hepatic fibrosis.7–10 Regardless of their diverse causes, 
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Abstract
Liver fibrosis is a common chronic hepatic disease. This study aimed to investigate 
the	 effect	 of	 pitavastatin	 (Pit)	 against	 thioacetamide	 (TAA)-	induced	 liver	 fibrosis.	
Rats	were	divided	into	four	groups:	(1)	control	group;	(2)	TAA	group	(100 mg/kg,	i.p.)	
three	times	weekly	for	2 weeks;	(3	and	4)	TAA/Pit-	treated	group,	in	which	Pit	was	ad-
ministered	orally	(0.4	and	0.8 mg/kg/day)	for	2 weeks	following	TAA	injections.	TAA	
caused liver damage manifested by elevated serum transaminases, reduced albumin 
and	histological	alterations.	Hepatic	malondialdehyde	(MDA)	was	increased,	and	glu-
tathione	(GSH)	and	superoxide	dismutase	(SOD)	were	decreased	in	TAA-	administered	
rats. TAA upregulated the inflammatory markers NF- κB, NF- κB p65, TNF- α	and	IL-	6.	
Treatment	with	Pit	 ameliorated	 serum	 transaminases,	 elevated	 serum	albumin	 and	
prevented	histopathological	 changes	 in	TAA-	intoxicated	 rats.	Pit	 suppressed	MDA,	
NF- κB, NF- κB	p65,	the	inflammatory	cytokines	and	PI3K	mRNA	in	TAA-	intoxicated	
rats.	 In	addition,	Pit	enhanced	hepatic	antioxidants	and	boosted	the	nuclear	 factor	
erythroid	2–related	factor	2	(Nrf2)	and	heme	oxygenase-	1	(HO-	1)	mRNA.	Moreover,	
immunohistological	studies	supported	the	ability	of	Pit	to	reduce	liver	fibrosis	via	sup-
pressing p-	AKT	expression.	In	conclusion,	Pit	effectively	prevents	TAA-	induced	liver	
fibrosis by attenuating oxidative stress and the inflammatory response. The hepato-
protective	 efficacy	 of	 Pit	was	 associated	with	 the	 upregulation	 of	Nrf2/HO-	1	 and	
downregulation of NF- κB	and	PI3K/Akt	signalling	pathways.
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such injuries drive inflammation, and liver fibrosis becomes inevita-
ble sequelae of all chronic liver diseases.11,12

Reiterated liver insults lead to cellular damage, activation of my-
ofibroblasts and persistent inflammation.13 As a result, the wound 
healing response becomes abnormal, and an increased amount of re-
active	oxygen	species	(ROS)	is	produced,	which	in	turn,	triggers	the	
massive generation of inflammatory mediators, such as chemokines, 
cytokines, and multiple growth factors.14	 Increased	numbers	of	 im-
mune and inflammatory cells may be attracted by chemokines; once 
there, cytokines and growth factors can bind to their specific recep-
tor, stimulating the production of several transcription factors and 
proteins.15 Consequently, regulatory pathways that support normal 
liver functions, cell development, proliferation and differentiation will 
also be disrupted. Collagen, elastin, and glycoproteins, among other 
extracellular	matrix	components	(ECMs),	will	be	made	in	large	quan-
tities, deposited and regenerated in the peri- sinusoidal area.14 The 
aberrant overexpression of the enzymatic breakdown ‘matrix metal-
loproteinases	 (MMPs)’	 and	 their	 corresponding	 antagonists	 causes	
matrix remodelling to begin. Moreover, the expression of genes that 
govern the production of interleukins, enzymes and growth factors 
is constantly upregulated.15 This causes a vicious cycle of liver dam-
age and repair that finally results in the disruption of liver processes, 
chronic inflammation and, ultimately, liver fibrosis.3,16,17

If	untreated,	fibrosis	can	lead	to	cirrhosis,	hepatic	failure	and	he-
patocarcinoma and potentially cause mortality. This process typically 
takes	decades	(about	20–30 years),	although	it	can	advance	quickly,	
as	in	the	case	of	biliary	atresia,	drug-	induced	liver	damage,	HIV/HCV	
coinfection,	 or	HCV	 infections	 following	 liver	 transplantation.18 A 
great deal of work has been done to understand the pathophysi-
ology of fibrosis, which has led to the identification of prospective 
targets for antifibrotic drugs that could either slow down or reverse 
fibrosis.19

Pitavastatin	 is	 a	 cholesterol-	lowering	 agent	 (statin)	 that	 was	
approved	 in	 2009.	 It	 is	 also	 one	 of	 the	 foundations	 for	 treating	
and preventing atherosclerotic cardiovascular disease.20 Similar 
to	 other	 members	 of	 its	 class	 (statins),	 Pit	 works	 by	 inhibiting	
3-	hydroxy-	3-	methylglutaryl	coenzyme	A	(HMG-	CoA)	reductase	in	a	
competitive	manner;	it	prevents	HMG-	CoA	from	being	converted	to	
mevalonic acid, the cholesterol precursor.21 More than 200 million 
users around the globe receive statins and have experienced positive 
effects, including lowering cardiovascular events and mortality.22 A 
great deal of recent evidence has shown that statin administration 
in patients with preexisting chronic liver conditions such as fibrosis, 
cirrhosis and hepatocellular carcinoma exerts no harmful effect on 
the liver.23	In	fact,	clinical	trials	on	patients	with	chronic	liver	disease	
proved that liver enzymes were lower in the statin- treated group.22–24 
Some studies postulated that the beneficial action of statins, known 
as pleiotropic effects, would return to the inhibitory effect on cell 
proliferation, the anti- inflammatory action or the improvement in 
endothelial function, and the vaso- protective effect.25,26	Herein,	we	
conducted a study to decipher the cell signalling pathway underlying 
the	therapeutic	effect	of	Pit	in	liver	fibrosis;	and	to	delineate	a	spe-
cific mechanism of action to statins in chronic liver diseases.

2  |  MATERIAL S AND METHODS

2.1  |  Animals

Wistar	rats	weighing	150–200 g	and	5 months	old	were	acquired	from	
the	 Animal	 House	 Colony	 at	 the	 National	 Research	 Centre	 (NRC,	
Egypt).	Twenty-	four	 rats	were	housed	on	a	12-	h	 light/dark	 cycle	 at	
ambient	temperature	(25°C).	The	animals	were	treated	in	accordance	
with national and international ethical standards. All the experiments 
followed the ethical guidelines established by the NRC's Committee 
on	Animal	Care	and	Use's	ethics	committees	(Reg.	No.	1041112022).

2.2  |  Chemicals

For	induction	of	thioacetamide	(TAA)	toxicity,	TAA	was	bought	from	
Sigma-	Aldrich	 (St	Louis,	MO,	USA).	For	Pit	 treatments,	Pit	was	ac-
quired from Western pharmaceutical industries, Egypt. Every other 
chemical used in the experiments had the highest purity and analyti-
cal	grade.	Freshly	suspended	Pit	was	orally	administered	at	0.4	and	
0.8 mg/kg	in	a	1%	Tween	80	solution.

2.3  |  Experimental design

The rodents were split into four groups, each containing six animals; 
one was assigned as the negative control, one positive control, in 
addition	 to	 two	 Pit	 treatment	 groups.	 Rats	 in	 Group	 1	 (negative	
control	group)	were	given	an	intraperitoneal	(IP)	injection	of	saline	
three times a week for two consecutive weeks. Rats in Group 2 (TAA 
group)	received	an	intraperitoneal	(IP)	injection	of	TAA	(100 mg/kg)	
three times a week for two consecutive weeks to cause liver fibro-
sis.27	Rats	in	groups	three	and	four	were	given	Pit	orally	‘0.4	and	0.8	
mg/kg’28	every	day	for	2 weeks	following	the	TAA	injection.

2.4  |  Preparation of serum samples

The serum sampling was performed as per Metwaly et al.; the rats were 
deprived of food overnight. Subsequently, blood samples were taken, 
and the serum was separated by spinning the samples in a centrifuge 
at	3000 rpm	and	4°C	for	5 min.	The	resulting	serum	was	then	stored	
at	−80°C	for	future	use	in	the	analysis	of	biochemical	parameters.29

2.5  |  Liver tissue collection

Liver tissues were gathered and rinsed with a cold saline solution. They 
were divided into three portions. The initial portion was immediately 
frozen	 in	 liquid	nitrogen	and	 stored	at	−80°C	 for	 extracting	mRNA.	
The	 second	 portion	was	 homogenized	with	 a	mixture	 of	 100 mg	 of	
tissue	 and	1 mL	of	 iced	0.5%	potassium	chloride.	This	was	 followed	
by	 1 min	 sonication	 and	 10 min	 centrifugation	 at	 3000 rpm	 at	 4°C.	
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Subsequently, the resulting supernatant was separated and preserved 
at	−80°C.	This	portion	was	intended	for	assessing	hepatic	glutathione	
(GSH)	and	MDA	levels	using	colorimetric	kits,	as	well	as	for	measur-
ing NFκB, p- NFκB, TNF- α,	IL-	6,	Nrf2,	and	HO-	1	levels	using	enzyme-	
linked	immunosorbent	assay	(ELISA).	The	last	portion	was	fixed	in	10%	
buffered formalin, which was necessary for conducting further histo-
pathological and immune- histochemical examinations.

2.6  |  Liver function tests

To evaluate liver function, serum ALT, AST, and albumin levels were 
measured colorimetrically using commercial kits (Bio- diagnostic® 
kits	Cat#	AS	10	61	and	AL	10	31,	Cairo,	Egypt).

2.7  |  Liver oxidative stress markers

The	measurement	of	GSH	content	and	MDA	level	‘Catalog#	K464-	100	
and	K739-	100,	BioVision,	Milpitas	Boulevard,	Milpitas,	USA’,	was	per-
formed calorimetrically according to the manufacturer's instructions.

2.8  |  ELISA assay

Protein	concentrations	were	measured	using	commercially	available	
enzyme-	linked	 immunosorbent	 assay	 (ELISA)	 kits;	 NFκB, p- NFκB 
(Catalogue#	MBS453975,	MyBioSource,	Inc.,	San	Diego,	CA	92195-	
3308,	USA),	TNF-	α	(Catalogue#	SL0889Mo,	Sunlong	Biotec	Co.	LTD,	
Zhejiang,	 China),	 IL-	6	 (Catalogue#	 K739-	100,	 BioVision,	 Milpitas	
Boulevard,	Milpitas,	USA),	Nrf2	 (Catalogue#	EH3417,	Wuhan	Fine	
Biotech	Co.,	Ltd,	China	(430206)),	and	HO-	1	(Catalogue#	E4525-	100,	
55	S.	Milpitas	Blvd.,	Milpitas,	CA	95035	USA).	The	manufacturer's	
instructions	were	followed	for	each	ELISA	kit.

2.9  |  Histopathological and immune- histochemical 
examinations

According to the procedure of El- Said et al., the tissue was embed-
ded	in	10%	buffered	formalin,	liver	tissues	were	fixed	for	24 h.	Then,	
dehydrated in different grades of alcohol, cleared in xylene, and 
embedded in paraffin wax. Using hematoxylin and eosin stain, the 
paraffin	sections	 (4 μm)	were	stained.	To	avoid	bias,	 the	cells	were	
examined by a blinded pathologist using a light microscope.30

2.10  |  Immune- histochemical examination of 
p- AKT expression

The other paraffin section from each group was used for immuno-
histochemical detection of the expression of p-	AKT	 in	various	ex-
perimental groups using avidin- biotin- peroxidase according to the 
method described by.31

For the purpose of identifying a bound antigen and antibody, liver 
cuts were treated with antibodies for p-	AKT	 (Abcam,	 Cambridge,	
MA,	USA)	 at	 a	 dilution	of	 1:200	 (v/v)	 and	 (Vactastain	ABC	perox-
idase	 kit,	 Vector	 Laboratories,	 Burlingame,	 USA).	 Chromagen	 3,	
3- diaminobenzidine tetrahydrochloride was used to visualize each 
marker's	expression	(DAB,	St	Louis,	MO,	USA).

2.11  |  Statistical analysis

Before the statistical analysis, data values were checked for normality 
using	the	Shapiro	test.	The	data	are	presented	as	means ± S.E.	Data	
were processed by one- way anova	 followed	 by	 the	 Tukey–Kramer	
post	 hoc	 test.	 GraphPad	 Prism	 software	 (version	 9,	 CA,	 USA)	was	
employed to perform the statistical analysis and establish the repre-
sented graphs. The significance level was set to p < 0.05	for	all	statisti-
cal tests.32

3  |  RESULTS

3.1  |  Thioacetamide- induced alterations in sera 
parameters in rats

Liver damage, as revealed by ALT and AST activity (Figure 1A,B),	by	
5.4-  and 6.5- fold in relation to the negative control, and a reduction in 
albumin level (Figure 1C)	by	57%,	as	a	consequence	of	TAA	exposure	
(Figure 1C).	Pit	administration	at	both	0.4	and	0.8 mg/kg	reduced	ALT	
and	AST	activity	by	about	75%	and	elevated	the	serum	albumin	level	
by	36%	and	57%,	respectively,	compared	to	the	TAA	group.

3.2  |  Inhibition of the TAA- Induced oxidative stress 
by pitavastatin treatment

The degree of lipid peroxidation was evaluated by detecting malon-
dialdehyde	 (MDA),	a	 result	of	 lipid	peroxidation.	TAA-	intoxicated	
rats	 had	 a	 3.8-	fold	 rise	 in	MDA	 levels,	 while	 Pit	 (0.4	 or	 0.8 mg/
kg)	 treatment	 suppressed	 this	 increase	by	43%	and	58%	relative	
to the TAA group (Figure 2A).	 Liver	 homogenates	 were	 tested	
for	GSH	 level	 (Figure 2B)	and	superoxide	dismutase	 (SOD)	activ-
ity (Figure 2C),	an	intracellular	antioxidant	enzyme.	TAA	caused	a	
decline	in	both	the	level	of	GSH	and	activity	of	SOD	by	81%	and	
77%	relative	to	the	control	group.	While	the	rats	given	Pit	(0.4	or	
0.8 mg/kg)	 recovered	the	 level	GSH	by	3.3-		and	3.7-	fold	and	the	
activity	 of	 SOD	 by	 3.0-		 and	 3.4-	fold	 relative	 to	 the	 TAA	 group,	
respectively.

3.3  |  Pitavastatin mitigates TAA- Induced hepatic 
inflammation in rats

To further explain the mechanism underlying the protective ef-
fect	of	Pit	against	liver	fibrosis,	the	levels	of	NF-	κB, p- NF- κB, TNF 
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and	IL-	6	were	measured	to	evaluate	the	anti-	inflammatory	activity	
of	Pit.	TAA	upregulated	hepatic	NF-	κB (Figure 3A),	p-	NF-	κB levels 
(Figure 3B),	TNF-	α (Figure 3C),	and	IL-	6	(Figure 3D)	by	4.8-	,	4-	,	4.1-		
and	 4.7-	fold	 compared	 to	 normal	 control.	 In	 contrast,	 Pit	 therapy	
dramatically downregulated NF- κB or p- NF- κB and its downstream 
signalling proinflammatory mediators, TNF- α	and	IL-	6	by	61%,	46%,	
53%,	and	60%	for	Pit	0.4 mg/kg	dosage	and	by	68%,	57%,	61%,	and	
68%	for	Pit	0.8 mg/kg	dose,	respectively.

3.4  |  Pitavastatin activates Nrf2/HO- 1 signalling in 
TAA- Intoxicated rats

TAA downregulated the hepatic Nrf2 (Figure 4A)	levels	compared	
with	the	control	group	by	78%.	Pit	(0.4	or	0.8 mg/kg)	upregulated	
hepatic Nrf2 by 3.3-  and 3.7- fold relative to the TAA group. To 
confirm	the	Pit	 (0.4	or	0.8 mg/kg)	activation	 in	TAA-	treated	rats,	
HO-	1,	 the	 downstream	 of	 Nrf2,	 was	 estimated,	 which	 showed	
a prominent rise by 2.2-  and 2.8- fold relative to the TAA group 
(Figure 4B).

3.5  |  Effect of pitavastatin on Nrf2 and PI3K 
mRNA expression

The mRNA liver content of Nrf2 (Figure 5A)	 and	PI3K	 (Figure 5B)	
showed that TAA caused a significant decrease in the Nrf2 and a 
significant	increase	in	the	PI3K	by	80%	and	2.8-	fold	relative	to	the	
control	group.	Pit	(0.4	or	0.8 mg/kg)	administration	upregulated	the	
mRNA	of	Nrf2	by	3.3-		and	3.7-	fold	and	downregulated	PI3K	by	53%	
and	61%	compared	to	the	TAA	group.

3.6  |  Histopathological findings

Livers of control rats showed normal histological structure, normal 
central veins, portal areas, and hepatic cords (Figure 6A).	 Livers	of	
TAA- cirrhotic model rats revealed capsular corrugation and marked 
parenchymal fibroplasia with portal- to- portal bridging fibrosis 
(Figure 6B).	The	portal	areas	showed	increased	fibrous	tissue	prolif-
eration that sends septa extending peripherally, dividing the paren-
chyma into pseudolobules, some of which are hyperplasic regenerated 

F I G U R E  1 Thioacetamide-	induced	alterations	in	the	serum	of	Wistar	rats	(A)	alanine,	(B)	aspartate	aminotransferases,	and	(C)	albumin.	
Each	bar	represents	the	mean ± SE	of	six	rats.	*	versus	normal	control	group,	@ versus TAA group, #	versus	Pit	(0.4 mg/kg)	at	p < 0.05.	Pit,	
pitavastatin; TAA, thioacetamide.
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lobules. Along those sepat, there are proliferated bile ducts, few 
lymphoplasmacytes, and congested vessels. The hepatic cells within 
those regenerated nodules are larger in size with large magenta 
nuclei that sometimes- compressed other vacuolated hepatic cells 
(Figure 6C).	Regarding	rats	treated	with	Pit	 following	TAA	adminis-
tration,	examination	of	 their	 livers	 showed	 that	Pit	 could	markedly	
retract hepatic fibroplasia, particularly with the higher dose group. 
No	pseudo-	lobulation	was	noticed	 in	 both	 groups.	With	0.4 mg/kg	
Pit	administration,	only	mild	fibrous	proliferation	is	observed	in	scat-
tered portal triads with or without incomplete peripheral extension 
accompanied by mild to moderate degrees of hepatocellular degen-
erative changes and scattered necrotic cells (Figure 6D).	On	the	other	
hand,	 administering	Pit	 at	 a	dose	of	0.8 mg/kg	markedly	 curbed	 fi-
brous proliferation within the portal areas and hepatic parenchyma. 
Only	some	hepatocellular	vacuolar	degeneration	and	scarce	necrotic	
cells were the only pronounced lesions (Figure 6E).

3.7  |  Immunohistochemistry findings

Regarding the p- Akt immune expression, the livers of control rats 
showed nil expression of p- Akt within the hepatic parenchymal cells 

(Figure 7A).	While	in	TAA	fibrotic	model	rats,	a	marked	increase	in	
the expression of p- Akt was noticed compared with the other ex-
perimental groups (Figure 7B).	However,	Pit	administration	at	both	
doses (Figure 7C,D)	markedly	decreased	the	immune	expression	of	
p- Akt among the livers of the treated rats.

4  |  DISCUSSION

Statins have been recently prescribed for all chronic liver illnesses, 
and further hepatoprotective benefits are under clinical investi-
gation.33	 Pit,	 a	 third-	generation	 statin,	 is	 of	 special	 interest	 in	 the	
treatment of chronic liver disease, including fibrosis, cirrhosis, and 
hepatocellular carcinoma.21,26,34,35	 It	has	the	highest	bioavailability	
among	all	statins	(more	than	60%);	therefore,	it	is	highly	effective	in	
low doses and will be readily absorbed with minimal side effects.36 
The	 possible	 hepatoprotective	 effects	 of	 Pit	 and	 the	 underlying	
mechanisms are being assessed in the current study.

TAA- induced liver fibrosis is a reliable model that exactly mimics 
the biochemical and histological changes of human liver fibrosis.6 
It	was	employed	in	the	present	study	as	it	is	associated	with	lower	
mortality rates than other models. ALT and AST are cytoplasmic in 

F I G U R E  2 Effect	of	pitavastatin	on	(A)	malondialdehyde,	(B)	glutathione,	and	(C)	superoxide	dismutase	activity	in	rat	livers	intoxicated	
with	TAA.	Each	bar	represents	the	mean ± SE	of	six	rats.	*	versus	normal	control	group,	@ versus TAA group, #	versus	Pit	(0.4 mg/kg)	at	
p < 0.05.	Pit,	pitavastatin;	TAA:	thioacetamide.
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origin, and elevated serum levels, as shown in the TAA group, reflect 
cell membrane destruction and hepatocyte death.32,37–41	Our	results	
indicated	that,	unlike	all	other	statins,	Pit	undergoes	minimal	hepatic	
metabolism42 and does not cause any elevation in aminotransferase 

levels.	Infect,	Pit	is	a	highly	lipophilic	agent	that	undergoes	glucuronic	
acid conjugation, and a recent meta- analysis study demonstrated 
that only hydrophilic statins result in the risk of aminotransferase 
elevation.43	Therefore,	we	can	state	that	the	high-	dose	(0.8 mg/kg)	

F I G U R E  3 Pitavastatin	mitigated	inflammation	in	TAA-	intoxicated	rats.	Pitavastatin	decreased	hepatic	(A)	NF-	κB,	(B)	p-	NF-	κB,	(C)	TNF-	α 
and	(D)	IL-	6	in	TAA	rats.	Each	bar	represents	the	mean ± SE	of	six	rats.	*	versus	normal	control	group,	@ versus TAA group, #	versus	Pit	
(0.4 mg/kg)	at	p < 0.05.	Pit,	pitavastatin;	TAA,	thioacetamide.

F I G U R E  4 Pit-	activated	hepatic	(A)	Nrf2/	(B)	HO-	1	signalling	in	TAA-	intoxicated	rats.	Each	bar	represents	the	mean ± SE	of	six	rats.	
*	versus	normal	control	group,	@ versus TAA group, #	versus	Pit	(0.4 mg/kg)	at	p < 0.05.	Pit,	pitavastatin;	TAA,	thioacetamide.
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administration	of	Pit,	which	showed	better	control	of	aminotransfer-
ase,	was	associated	with	no	signs	of	toxicity	in	liver	fibrosis.	In	line	
with our data, the safety of statins for patients with liver dysfunction 
has also been reported in several clinical trials.44

Our	 results	 indicate	 that	 Pit	 (0.8 mg/kg)	 can	 reverse	 liver	 fi-
brosis by targeting two main pathways—NF- κB	 and	 PI3K/Nrf2/
HO-	1—that	capture	inflammation,	oxidative	stress,	and	proliferation.	
Kupffer	cells	are	an	important	contributor	to	HSC/HMF	activation	
and liver fibrosis. They function to sense and remove pathogens 
and	dangerous	molecules	via	pattern-	recognition	receptors	(PRRs),	

which detect danger signals, including lipopolysaccharide, chemical 
insults, and carcinogens.45 Upon TAA recognition, various inflam-
matory	 cytokines	 and	 chemokines	 were	 released	 by	 Kupfer	 cells,	
which	 stimulated	 HSCs	 and	 started	 the	 inflammation	 response.6 
TAA also activated NF- κB, which regulates the inflammatory re-
sponse	in	HSCs.	This	was	further	confirmed	by	the	high	content	of	
Ser536- phosphorylated p65 (the active form of NF- κB).	Accordingly,	
several NF- κB-	dependent	genes,	including	IL-	6	and	TNF-	α, were up-
regulated	 in	the	TAA	group.	Our	results	demonstrated	that	Pit	ex-
erts a potent anti- inflammatory effect, most probably via binding 

F I G U R E  5 Effect	of	pitavastatin	on	Nrf2	and	PI3k	mRNA	expression.	Each	bar	represents	the	mean ± SE	of	six	rats.	*	versus	normal	
control group, @ versus TAA group, #	versus	Pit	(0.4 mg/kg)	at	p < 0.05.	Pit,	pitavastatin;	TAA,	thioacetamide.

F I G U R E  6 Effect	of	pitavastatin	on	histopathology	findings.	Hematoxylin	and	eosin	stained	liver	sections.	(A)	liver	of	control	rat	showing	
normal	parenchymal	cells,	portal	triad	(dotted	arrow),	and	central	vein	(arrow).	(B,	C)	liver	of	TAA	administrated	rat	showing	portal	to	portal	
bridging	fibrosis	(dotted	arrow)	with	pseudolobulation	(PL)	and	increased	fibrous	proliferation	in	portal	areas,	few	lymphoplasmacytes	(long	
arrow),	proliferated	bile	ducteols	(short	arrow),	vacuolated	hepatocytes	(insert)	and	few	apoptotic	cells.	Pit	(D)	(0.4 mg/kg)	and	(E)	(0.8 mg/kg)	
treated	rats	showing	marked	retraction	of	fibrous	proliferation	in	portal	areas	(dotted	arrow)	and	in	hepatic	parenchyma	with	only	mild	
incomplete	peripheral	extension	of	fibrous	septa	(arrow)	in	the	low	dose	treated	rat.
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to NF- κB, curbing the formation of its active form, pNF- κB, and, in 
turn, inhibiting the downstream inflammatory response of NF- κB as 
represented	in	the	reduced	liver	content	of	IL-	6	and	TNF-	α.46

Oxidative	stress	is	a	common	sequela	of	inflammation;	ROS	are	
highly generated in response to persistent inflammatory media-
tors. Nrf2 regulates the liver resistance to oxidants47; it mediates 
the	expression	of	antioxidant-	responsive	elements	 (ARE),	which	 in	
turn, initiate the transcription of several downstream antioxidant 
protective	 genes	 such	 as	 HO-	1,	 SOD,	 and	 reduced	 glutathione	
(GSH).48	Herein,	Pit	played	a	dual	function	in	preventing	liver	fibro-
sis: first, it greatly enhanced Nrf2 content and expression, allowing 
Nrf2	 to	 inhibit	 the	 activation	 of	 hepatic	 stellate	 cells.	 Second,	 Pit	
increased	 the	 DNA-	binding	 activity	 of	 Nrf2	 and	 induced	 the	 ex-
pression	(measured	as	liver	content)	of	its	target	genes,	HO-	1,	SOD,	
and	GSH.	Additionally,	Pit—owing	to	its	fundamental	lipid-	lowering	
effect—reduces the levels and oxidation of low- density lipoprotein; 
therefore,	 MDA,	 a	 lipid	 peroxidation	 byproduct,	 was	 significantly	
decreased	 upon	 Pit	 administration.	 Collectively,	 this	 confirms	 the	
cellular	protective	effect	of	Pit	in	liver	fibrosis.49	It	 is	worth	noting	
that	the	MDA	data	presented	in	Figure 2A exhibited large error bars, 
particularly in the TAA group. This could be attributed to inherent 
individual variability in the degree of lipid peroxidation induced by 
TAA	administration.	 Importantly,	 despite	 the	variability,	 pitavasta-
tin	 treatment	 at	 both	 doses	 still	 significantly	 reduced	MDA	 levels	
compared to the TAA group.35,37,50,51 The lack of dose- dependent 
difference	in	MDA	suppression	between	the	two	pitavastatin	doses	

could suggest a potential ceiling effect on lipid peroxidation inhibi-
tion	even	at	the	lower	0.4 mg/kg	dose.	However,	further	studies	with	
larger sample sizes may be warranted to fully evaluate the dose–re-
sponse relationship.

The	PI3K/AKT	signalling	pathway	is	intimately	connected	to	the	
activation of hepatic stellate cells and the production of ECM.52,53 
Inhibition	of	the	PI3K/AKT	signalling	has	been	shown	to	be	effective	
in preventing liver damage, enhancing liver function, and reducing 
collagen synthesis and deposition.54,55 Therefore, one of the current 
approaches	for	treating	liver	fibrosis	is	to	reduce	PI3K/AKT	activity.	
According	to	our	findings,	TAA	increased	the	expression	of	PI3K	and	
p-	AKT,	which	is	consistent	with	other	research.56,57	In	line	with	our	
findings	in	the	rat	model	of	TAA-	induced	hepatic	fibrosis,	the	PCR	
and	immunohistochemical	analysis	showed	that	Pit	efficiently	sup-
presses	the	PI3K/AKT	signal	pathway.58 These findings showed that 
the	suppression	of	the	PI3K/AKT	signalling	pathway	by	Pit	could	re-
duce hepatic fibrosis. Additionally, NF- κB signalling is governed by 
PI3K/AKT.59	Crosstalk	between	the	PI3K/AKT	and	NF-	κB pathways 
may have occurred in the current investigation because both of their 
activity was suppressed.

Beyond	 its	 lipid-	lowering	 role,	 our	 study	 showed	 that	 Pit	 has	
beneficial pleiotropic effects that target key processes in the patho-
physiology	 of	 liver	 fibrosis.	 It	 acts	 on	 inflammation	 by	 decreasing	
the production of NF- kB, and hence the release of proinflammatory 
cytokines such as TNF- α	and	IL-	6,	and	it	decreases	the	level	of	oxi-
dative	stress	by	stimulating	the	Nrf2/HO-	1	pathways.

F I G U R E  7 Photograph	of	liver	slices	stained	with	antibodies.	Normal	control	(A),	TAA	group	(B),	and	Pit-	treated	groups	0.4	or	0.8 mg/kg	
(C,D).
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It	is	important	to	note	that	our	investigation	focused	on	a	con-
cise acute model, facilitating the monitoring of liver fibrosis progres-
sion. This approach serves as a valuable clinical tool for safeguarding 
patients' livers, preventing the progression to advanced stages of 
hepatic fibrosis. Moreover, it provided a reliable means to histologi-
cally induce substantial bridging fibrosis while mitigating the risk of 
increased animal mortality associated with more prolonged expo-
sures. This model was studied previously in studies.27,37,50,51,60

The observed antifibrotic effects and mechanisms of pitavastatin 
in a rat model of TAA- induced liver fibrosis suggest its potential for 
clinical use. Given its existing approval and favourable safety profile, 
repurposing pitavastatin for hepatic fibrosis treatment in patients 
appears feasible and could offer a streamlined path for clinical trans-
lation.	However,	additional	pharmacokinetic	studies	are	required	to	
determine the optimal dosing regimen that can safely replicate the 
antifibrotic concentrations achieved in this preclinical study. The 
next steps should involve clinical trials assessing pitavastatin's effi-
cacy as a monotherapy or in combination with other agents for liver 
fibrosis	across	various	causes.	In	summary,	this	study	establishes	a	
robust preclinical foundation, supporting the need for future clinical 
investigations into pitavastatin as a therapy for liver fibrosis.

5  |  CONCLUSIONS

The	 current	 investigation	 results	 show	 that	Pit	 is	 very	 efficient	 in	
reducing TAA- induced liver fibrosis, which is probably mediated by 
its ability to inhibit oxidative stress and lipid peroxidation as an an-
tioxidant.	 It	has	the	ability	to	reduce	 inflammation	by	blocking	the	
NF- κB pathway, which triggers the production of inflammatory me-
diators like TNF- α	and	IL-	6.	As	a	result	of	activating	Nrf2,	increasing	
HO-	1,	suppressing	PI3K	activity,	and	inhibiting	Akt	phosphorylation,	
Pit	 therapy	 improved	 the	 oxidative	 stress	 state	 of	 rat	 livers.	 This	
indicates	 that	 this	 improvement	 is	associated	with	 the	Nrf2/HO-	1	
signalling	pathway.	Pit	exhibited	antifibrotic	properties	against	TAA-	
induced	 liver	 fibrosis	 in	 rats.	 These	 findings	 suggest	 that	 Pit	may	
have therapeutic potential for reducing hepatic inflammation and its 
development into fibrosis.

The antifibrotic effects and mechanisms demonstrated for pi-
tavastatin in the rat model of TAA- induced liver fibrosis provide sup-
port for its potential clinical application. As pitavastatin is already an 
approved medication with a favourable safety profile, repurposing it 
for hepatic fibrosis treatment in patients is feasible and could provide 
an expedited path for clinical translation. Further pharmacokinetic 
studies are still needed to determine the optimal dosing regimen 
that could safely reproduce the antifibrotic hepatic concentrations 
achieved in this preclinical study. Clinical trials evaluating the antifi-
brotic efficacy of pitavastatin monotherapy or in combination with 
other agents in patients with liver fibrosis of various aetiologies are 
warranted.	Overall,	the	present	study	provides	a	strong	preclinical	
basis to motivate future clinical investigation of pitavastatin for liver 
fibrosis therapy.
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