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1 Introduction

D-branes and orientifold planes are necessary ingredients in semi-realistic compactifications

of type II string theories, where they play an important role for the implementation of chiral

matter, supersymmetry breaking or tadpole cancelation in the presence of fluxes. Being

massive and charged localised objects, they generally also backreact on the geometry and

source a non-trivial profile for the warpfactor, dilaton and some of the RR-potentials.

Apart from the special cases where this backreaction is absent due to a local cancelation

of charge and tension for suitably stacked D-branes and O-planes, one needs to take into

account these backreaction effects, or make sure they can be neglected.

The GKP setup [1] and its T-duality relatives (see e.g. [2, 3]) are the few examples

where such backreaction effects are quite well understood,1 but much less is known about

more general cases, e.g. with intersecting branes or cases for which the sources and fluxes

are not all mutually BPS as in de Sitter vacua.

1See [4, 5] for fully backreacted solutions of codimension-2 branes in 6D supergravity.
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A common approach to deal with the effects of localised sources is to take them into

account only in an averaged or integrated sense. At the level of the 10D field equations,

this procedure corresponds to “smearing” the D-branes and O-planes in the directions

perpendicular to their world volumes;2 in other words, one replaces the delta-function of

the energy and charge density along the transverse brane coordinates by a constant in the

equations of motion,

δ → const. (1.1)

On a torus, the smearing could be viewed as a truncation of the Fourier expansion of

the delta-function to the constant term. For compactifications on more general group or

coset manifolds (including the much studied examples of spheres and (twisted) tori), this

smearing of the sources allows a consistent truncation of the effective lower-dimensional

theory to the sector of left-invariant modes [2, 7, 8]. It is this consistent truncation prop-

erty that is usually (albeit often implicitly) exploited in the derivation of effective gauged

supergravity theories, see e.g. [9] and references therein. At the level of the 10D field equa-

tions, the smearing in general leads to substantial simplifications regarding the profile of

the warp factor, the dilaton and some RR-potentials and allows the construction of many

explicit 10D solutions, see e.g. [10, 11].

As the smearing of a brane-like source is a drastic modification of the original setup,

one should wonder to what extent this can actually be a good approximation to a solution

with truly localised branes. More precisely, there are two questions one may ask in this

context:

1. Does a smeared solution always imply a localised solution, or could there be smeared

solutions that have no well-defined localised counterpart?

2. In case a smeared solution does have a localised version, how physically different

are these two solutions, e.g. regarding the vacuum expectation values or masses of

stabilised moduli or the value of the effective cosmological constant?

In this paper we want to address the first question,3 building upon our previous

work [3]. There we studied this question for BPS-type solutions that generalize the GKP

solutions [1] to various spacetime dimensions and found that the BPSness played a crucial

role in achieving successful localisation. Intuitively, this may be understood as a conse-

quence of the cancelation of forces between the fluxes and the localised sources in such

setups. By BPS-type solutions we mean that the solutions satisfy a Bogomol’nyi bound,

but are not necessarily supersymmetric. As an example, the GKP solutions [1] are BPS

but only supersymmetric when the ISD flux is of the specific complexity type (2, 1) (see

also [19]).

For non-BPS solutions, on the other hand, it becomes unclear whether localisation

works and simple arguments presented in [3] indicate that it may not work in general. In

this paper we further improve on the arguments given in [3] and consider a particular setup

2We refer to [6] for a proper treatment of smeared sources in flux compactifications.
3The second question is what “warped effective field theory” is concerned with, see e.g. [12–18] and

references therein.
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where the effects of the brane localisation can be traced explicitly. Concretely, we consider

spacetime-filling (anti-)D6-branes on AdS7×S3,4 for which a solution exists in the limit of

smeared sources [3]. This example is closely related to the (smeared) Minkowski solutions of

GKP [1] and their generalisations to different dimensions [3] and configurations with mixed

sources (cf. appendix A). We show that this solution is perturbatively stable in the left-

invariant closed string modes, which is the sector usually considered in lower-dimensional

supergravity analyses.

Next we study the localisation of the branes. We start with considering the branes to

be fully localised as delta-functions. Under the assumption that the fluxes very close to

the sources are mutually BPS with the source, we find that the equations of motion do not

allow for any possibility to match the behaviour of the fields, close to and away from the

sources. Therefore it is not possible to construct fully localised solutions with this BPS-

like behaviour near the branes. We point out a caveat in the case that one uses boundary

conditions for which the fluxes near the sources are not mutually BPS with the sources.

However, it is unclear how such boundary conditions could be consistent with a static

solution, since there should be a non-zero force between the fluxes and the sources. We

will present a detailed discussion of boundary conditions at the sources and a generalisation

of our argument to different setups in [20].

In this paper we then present, instead, an independent calculation that supports the

above conclusions. In order to do so, we consider regularised brane profiles that may

approximate the previously considered delta-type profiles to arbitrary precision. If we

assume a smooth profile, we find a one parameter family of solutions which correspond

to exactly the one parameter family of coordinate transformations of the fully smeared

solution. This means that there exists no solutions with regular brane profiles other than

the fully smeared one. This is in contrast to the BPS solutions given by the GKP solutions

and their T-duals, since they solve the equations of motion for any brane profile. We then

use this to rule out also regularised brane profiles with the shape of step functions.

In the discussion we emphasise the possible implications of our results on known solu-

tions that are utilising the smeared approximation of D-branes or O-planes.

2 A simple non-BPS setup on AdS7 × S3

In this section we present a simple non-BPS setup on AdS7 × S3 with spacetime-filling

(anti-)D6-branes as sources. This setup yields a smeared solution and allows to explicitly

tackle the questions raised in the introduction.

We should point out that this example is a special case of a more general class of setups

for which smeared solutions exist (see appendix A). These setups have d-dimensional AdS,

Minkowski or dS spacetimes and a mixture of spacetime filling sources that allows net

charge/tension ratios that can be non-extremal, T = ηQ with arbitrary η. Those solutions

4The sphere geometry is not necessary for the smeared solution as any positively curved Einstein space

could fulfill the smeared equations of motion. The sphere is chosen so as to make a fully explicit discussion

of the localised case feasible.
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with |η| = 1 were already discussed in [3]. The specific AdS4 solution with |η| = 1 and

S3 × S3 as internal space was first established in [21].

In the following, we shall restrict our discussion to the AdS7 example with |Q| = T > 0,

since it is the simplest case of this class of models and we consider it sufficient for support-

ing the main point of this paper, namely that localisation of smeared non-BPS solutions

may fail.

2.1 Type IIA supergravity and smeared D6/D6-branes

To establish our notation and conventions we present the equations of motion for type

IIA supergravity with spacetime-filling D6/D6-branes in Einstein frame. We use the same

conventions as in [3].5 Throughout the paper a, b are 10D indices, µ, ν are external and i, j

are internal indices. The bosonic sector of type IIA supergravity contains the metric gab,

the dilaton φ, the H field strength, as well as the RR field strengths F0, F2, F4. Since we

compactify to AdS7, however, we do not consider any external fields that break translational

invariance and hence do not turn on F4.

The trace reversed Einstein equation is then

Rab =
1

2
∂aφ∂bφ +

1

2
e−φ|H|2ab −

1

8
e−φgab|H|2 +

1

16
e

5
2
φgabF

2
0 (2.1)

+
1

2
e

3
2
φ|F2|2ab −

1

16
e

3
2
φgab|F2|2 +

1

2
(T loc

ab − 1

8
gabT

loc) ,

where |A|2ab ≡ 1
(p−1)! Aaa2...apA

a2...ap

b , |A|2 ≡ 1
p! Aa1...apA

a1...ap .

The non-vanishing part of the local stress tensor is given by

T loc
µν = −e

3
4
φµ6gµνδ(D6) , (2.2)

where µ6 is a positive number, and δ(D6) is the delta distribution with support on the

D6-brane world volume(s), i.e. it may implicitly also include sums of parallel D6-branes.

The dilaton equation of motion is given by

∇2φ = −1

2
e−φ|H|2 +

5

4
e

5
2
φF 2

0 +
3

4
e

3
2
φ|F2|2 +

3

4
e

3
4
φµ6δ(D6) . (2.3)

The Bianchi identities for the field strengths are

dH = 0 , dF0 = 0 , dF2 = HF0 ± µ6δ3 , (2.4)

where the upper sign of the source term is for D6-branes and the lower sign for anti-

D6-branes. δ3 is shorthand for the normalized volume 3-form transverse to the D6-brane

multiplied by δ(D6), δ3 = δ(D6) ⋆3 1.
∫

δ(D6) ⋆3 1 = 1 . (2.5)

The equations of motion for H and F2 read

d(e−φ ⋆ H) = −e
3
2
φ ⋆ F2 ∧ F0 , d

(

e
3
2
φ ⋆ F2

)

= 0 . (2.6)

5They are related to the conventions of [22] by going to Einstein frame and changing the sign of H .
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In the smeared limit we have

δ(D6) → 1

V
, (2.7)

where V is the volume of the space transverse to the branes.

2.2 The smeared solution

In the smeared limit, we can set F2 = 0 and assume that all other fields are constant. We

furthermore assume that the metric

ds2
10 = R2

AdSds2
7 + R2

S3ds2
3 , (2.8)

is a direct product AdS7 × S3 with RAdS the AdS radius and RS3 the radius of the three-

sphere and write

H = λF0e
7
4
φ ⋆3 1 . (2.9)

Going through the equations of motions (2.1), (2.3), (2.4), (2.6), one then finds that all are

solved for

R2
S3 =

R2
AdS

12
=

77/8

√
2 55/4

(F 2
0 h5)1/4, eφ =

√

20

7
√

7

1
√

F 2
0 h

, λ = −
(+)

5

2
, µ6 = 2|F0|hπ2,

(2.10)

where h =
√

|H|2R6
S3 is independent of RS3. The (lower) upper sign in λ is for (anti-)D6-

branes. For large flux parameters, we thus have large volumes and small string coupling.

3 Perturbative stability

In this section we want to verify the perturbative stability of the smeared solution of

the previous section. For practical reasons, we do this only for the subsector of the left-

invariant modes. This is precisely the sector that underlies the usual gauged supergravity

description. In case there happen to be tachyonic modes among the higher Kaluza-Klein

modes or in the sector that is not left-invariant, they would hence also be missed in the

gauged supergravity approach, which is the standard tool to find new vacua.

We first consider the closed string sector and perform the computation in all details.

For the open string sector we are necessarily sketchy and point out where possible insta-

bilities could reside, if any.

3.1 The left-invariant closed string moduli

When we regard the three-sphere as the group manifold SU(2) there is a standard way to

take into account a subset of the degrees of freedom, namely the left-invariant modes [23].

The left-invariant modes are the lower-dimensional fields that one obtains by expanding

the supergravity fields in the left-invariant Maurer-Cartan basis of SU(2). These forms

form a global coframe on the group manifold and obey the characteristic equation

dei = −1

2
f i

jke
j ∧ ek. (3.1)
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We take a basis for the structure constants for which [24]

f i
jk = q ǫjkl δ

li, (3.2)

where q is a number that gives the curvature scale.

There are six metric scalars, three scalars from C1, three from B2, one from C3 and

one being the dilaton φ in ten dimensions. This adds up to 14 scalars that form the coset

manifold SL(5)/SO(5). Of course when we add the “open string degrees” of freedom,

coming from the D6/D6-branes, we have more scalars, and the coset enlarges.

Let us write the moduli explicitly in a convenient basis, by which we mean a field basis

for which the field metric, at the solution, is canonically normalised. This then allows us

to compute the scalar masses by simply diagonalising ∂i∂jV .

The 10D metric, in Einstein frame, is written as follows

ds2
10 = e2αvds2

7 + e2βvds2
3 , (3.3)

where v is the volume modulus and the numbers α and β are chosen such that the reduced

theory is in Einstein frame and that the volume modulus is canonically normalised

α2 =
3

80
, β = −5

3
α . (3.4)

The internal metric is then written as

ds2
3 = Mij ei ⊗ ej , (3.5)

where M is the symmetric, positive definite, metric-moduli matrix. It is explicitly given

by M = LLT , with L the coset representative of SL(3)/SO(3) in a solvable basis

L =









e
1
2
σ1+ 1

2
√

3
σ2 e

− 1
2
σ1+ 1

2
√

3
σ2χ1 e

− 1
√

3
σ2(χ1χ2 + χ3)

0 e
− 1

2
σ1+ 1

2
√

3
σ2 e

− 1
√

3
σ2χ2

0 0 e
− 1

√

3
σ2









. (3.6)

Note that det(M) = 1. The five scalars, σ1, σ2, χ1, χ2 and χ3 are canonically normalised

and together with the volume modulus v we have six metric scalars as announced previously.

The on-shell values σ1 = σ2 = χi = 0 give the “round sphere”, which corresponds to our

solution.

The C3 field gives one canonically normalised axionic scalar a via C3 = aǫ3. The

B-field and C1 field both give rise to three canonically normalised scalars bi and ci as

follows

B =
1

2
bi ǫijk ej ∧ ek, (3.7)

C1 = cie
i. (3.8)
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The scalar potential gets contributions from the internal curvature, VR, the H-flux, VH ,

the RR p-form fluxes, Vp, and the source tension, VD6. We explicitly find

VR = e(7α+β)v q2

(

− 1

2
(Tr[M ])2 + Tr[M2]

)

, (3.9)

V0 =
1

2
e

5
2
φ+(7α+3β)v F 2

0 , (3.10)

VD6 = e
3
4
φ+7αv TD6 , (3.11)

VH =
1

2
h2e−φ+(7α−3β)v , (3.12)

V2 =
1

2
e

3
2
φ+(7α−β)v

(

− qciδ
mi + F0b

m
)(

− qcjδ
nj + F0b

n
)

Mmn , (3.13)

where we have taken the H-field to be given by

H = hǫ3 + dB , (3.14)

with B as above. In order for the dB term to generate a mass term for the bi-scalars we

need dB ∼ ǫ3, which cannot be done given the cohomology of SU(2). F4 is not contributing

any energy and hence, a is a massless axion.

Our AdS solution stabilises the combinations F0b
m− qciδ

mi while the orthogonal com-

binations remain flat. This allows us to set bi = ci = 0. Also, since the three-sphere is

round, we have M = 1, or, equivalently, σ1 = σ2 = χ1 = χ2 = χ3 = 0 at the vacuum.

We also choose the dilaton, φ, the axion a and the volume scalar v to be zero. Then all

scalars are zero at the solution and we are at the origin of the scalar field space, where the

metric is canonically normalised. These field values imply that we have to take the fluxes

and tension appropriately

F 2
0 =

4

25
h2, T =

2

5
h2, q2 =

28

25
h2. (3.15)

One can easily check that the origin in field space (i.e. all scalars zero) is an extremum of

the potential.

Mathematica finds the following eigenvalues of ∂i∂jV |φi=0 at the origin of field space

λ = h2

{

56

25
,
32

25
,

2

25
(18 ±

√
79), 0

}

, (3.16)

where the multiplicity of λ = 56
25h2 is 5, the multiplicity of λ = 32

25h2 is 3 and the multiplicity

of λ = 0 is 4. The other two eigenvalues have multiplicity equal to 1. Since there are no

negative mass modes the solution is stable with respect to these 14 left-invariant degrees

of freedom.

3.2 Open string moduli

We have not taken into account the open string moduli since this is technically more

challenging. The appropriate technique for this would be to construct the corresponding

half-maximal gauged supergravity in D = 7 since the gauged supergravity also contains

– 7 –
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the open string fields. We leave this for further research, but already comment on what

one could expect on general grounds.

First of all one naively expects the moduli associated with the brane position to be

massless as the round sphere is homogenous and hence without preferred points. The same

is true for our fluxes that fill the sphere. However, there is the possibility of brane-flux

annihilation, which can be a perturbative effect in some cases [25]. Note that the fluxes

behave as D6-branes when the sources are pure anti-D6-branes and vice versa. Since the

amount of fluxes equals the amount of brane charge the flux/brane annihilation process

should be perturbative, at least this was the case for geometries dual to cascading gauge

theories in [25]. It seems sensible that this applies to our situation as well. Brane/flux

annihilation should occur via the Myers effect [26], which implies the nucleation of a D8-

brane, wrapping a 2-sphere inside the 3-sphere. However, this presumed instability would

be absent for the solution with just a single D6-brane. It would be interesting to study

the decay further and give a quantitative description. However, in this paper we want

to understand the relation between smeared and localised sources, which we take to be a

closed string problem.

4 Localisation

In [3] an intuitive argument was presented explaining why it is difficult to find static

configurations composed of mutually non-BPS components. A simple example is an anti-

brane sitting in a background of ISD flux. What will happen in general is that the flux

is attracted to and sucked up by the brane, and possibly annihilated. The equations

that capture this behaviour in our setup are primarily the F2 Bianchi identity and the

equation of motion for the H field. The Bianchi identity determines F2 in terms of the

sources, including F0H, and the equation of motion for H determines how H responds

to F2. A combination of both equations provides a very powerful tool to restrict possible

configurations.

In the following we will treat two cases, first we consider the case of delta-function

sources and find strong constraints that rule out a large class of configurations. Then we

focus on extended and fully regularised source profiles. We analyse the full system using

a Taylor expansion, where we find some surprisingly strong analytical constraints on what

kind of configurations are possible. Our results show that the fully smeared solution is the

only regular solution to the equations of motion.

4.1 The ansatz

As a starting point we assume that all sources are located on the north or/and south pole

of the three-sphere such that the setup preserves an SO(3)-symmetry of the full SO(4)

symmetry of the smeared solution. Although the backreaction might bring us away from

the three-sphere, we see no physical reason for why it should break the symmetry exhibited

by the setup. We can then assume that for any setup preserving these isometries one can

find a metric which at most has the physical singularities (i.e. the sources) at the poles.

– 8 –
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The most general form of such a metric is

ds2
10 = e2A(θ)ds2

7 + e2B(θ)
(

dθ2 + e2C(θ) sin2(θ)dΩ2
2

)

, (4.1)

where the second conformal factor C can be absorbed into B by a suitable coordinate

transformation θ → θ̃(θ) that keeps the sources at the poles. One can show that, if the

original metric does not have any singularities away from the poles, then the same is true

for the new metric for which C is transformed away. Hence, without loss of generality, we

can write

ds2
10 = e2A(θ)ds2

7 + e2B(θ)
(

dθ2 + sin2(θ)dΩ2
2

)

, (4.2)

and assume A,B to be regular away from the poles.

The flux ansatz is

H = λF0e
7
4
φ ⋆3 1 , (4.3)

F2 = e−
3
2
φ−7A ⋆3 dα , (4.4)

where φ, λ and α are now functions depending on θ and we take F0 to be constant. This

is the most general ansatz compatible with the form equations of motion (2.4) and (2.6)

and our symmetries. In our previous work [3], we have considered a similar ansatz for

the AdS4 × S3 × S3 solution, but did not take into account a non-trivial profile for the

variable λ. We then found an obstacle to localisation. Allowing the variable λ is the most

general ansatz and we should be able to fully settle the discussion on whether localisation

is possible or not.

Hence, the problem is reduced to finding a set of five unknown functions A,B, φ, λ, α

depending on θ and obeying coupled second-order differential equations, which we now

derive. A prime ′ denotes the derivative with respect to θ, e.g., A′ = dA/dθ.

The F2-Bianchi identity implies

(

e−
3
2
φ−7A+B sin2 θα′

)′

e3B sin2 θ
= e

7
4
φλF 2

0 + Qδ(D6) , (4.5)

where Qδ(D6) symbolizes all source contributions at the north and south pole and is

therefore generically a sum of delta-functions. The H equation of motion allows us to

eliminate α in terms of λ

α = e
3
4
φ+7Aλ + α0 . (4.6)

The dilaton equation gives
(

e7A+B sin2 θφ′
)′

e7A+3B sin2 θ
= e

5
2
φF 2

0

(

5

4
− λ2

2

)

+
3

4
e−14A−2B− 3

2
φ(α′)2 +

3

4
e

3
4
φTδ(D6) , (4.7)

where Tδ(D6) symbolizes the sum over all localised tension contributions. The trace of

the external Einstein equation gives

16

7
R7 = −96e−2A − 16e−2B

(

7(A′)2 + A′B′ +
(sin2 θA′)′

sin2 θ

)

= e
5
2
φF 2

0 (1 − 2λ2) − e−14A−2B− 3
2
φ(α′)2 − e

3
4
φTδ(D6) . (4.8)
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The internal Einstein equation is more involved. We first display the Ricci tensor

Rθθ = 2 − (sin2 θB′)′

sin2 θ
− 7(A′)2 − B′′ − 7A′′ + 7A′B′, (4.9)

Rϕϕ = e−2Bgϕϕ

(

2 − (B′)2 − (sin2 θB′)′

sin2 θ
− cot θ(B + 7A)′ − 7A′B′

)

, (4.10)

where ϕ indicates the two remaining angles. The Einstein equation in the (θθ)-direction

leads to

2−(sin2 θB′)′

sin2 θ
− 7(A′)2 − B′′ − 7A′′ + 7A′B′ =

1

2
(φ′)2 +

1

16
e

5
2
φ+2B F 2

0 (1 + 6λ2) − 1

16
e−14A− 3

2
φ(α′)2 +

7

16
e

3
4
φ+2BTδ(D6) , (4.11)

whereas the Einstein equations in the (ϕϕ)-directions lead to

2−(B′)2 − (sin2 θB′)′

sin2 θ
− cot θ(B + 7A)′ − 7A′B′ =

1

16
e

5
2
φ+2B F 2

0 (1 + 6λ2) +
7

16
e−14A− 3

2
φ(α′)2 +

7

16
e

3
4
φ+2BTδ(D6) . (4.12)

4.2 Delta-function sources

In the case of delta-function sources our tool is the combination of the H equation of motion

and the Bianchi identity for F2. At any point away from the sources we can combine (4.5)

and (4.6) by substituting λ to find

(

e−
3
2
φ−7A+B sin2 θ

)′

e3B sin2 θ
α′ + e−

3
2
φ−7A−2Bα′′ = αeφ−7AF 2

0 , (4.13)

where we have used that through a shift in α we can always set α0 = 0.

This equation tells us one important fact: for non-singular eφ, eA, eB , the function α

must obey at any extremum (α′ = 0)

sgn α′′ = sgn α . (4.14)

Note that this is also true at either of the poles (θ = 0, π), if there are no localised sources

at that pole. To be able to make use of this equation, we need to know the behaviour of α

close to the (anti-)brane. This brings us to the difficult discussion of what the boundary

conditions should be, resemblant of the discussion of the boundary conditions for anti-D3-

branes at the tip of the conifold [27, 28].

BPS-like boundary conditions. Global tadpole cancellation requires the integrated

flux to be of opposite BPS-type as the brane itself, which immediately raises concerns

about the possible stability of the localised system. On the other hand, it is only the

integrated flux that is fixed by tadpole cancellation, so one may hope that perhaps a

judicious distribution of the flux relative to the branes and a suitable choice of boundary

conditions could result in a static solution.
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Figure 1. Configuration of a single D6-brane and flux. The solid line corresponds to the usual

boundary condition of a BPS D6-brane, whereas the dashed lines represent more general boundary

conditions consistent with net ‘IASD’ flux near the D6-brane. Global tadpole cancellation then

enforces the forbidden extrema marked by the crosses.

The simplest possibility in this respect would be to take the boundary conditions as

defined by the BPS D6-brane solution in massive IIA supergravity [29], which also involves

H-flux and the Roman’s mass F0, as well as F2-flux magnetically sourced by the brane.

With these boundary conditions, the flux near the brane would be BPS with respect to

the brane itself, and one would at least not expect instabilities to occur from the region

close to the brane. As one moves away from the brane, the flux gradually has to change

its BPS-type, as required by tadpole cancellation. Whether such a configuration has a

chance to be also globally stable is not at all obvious. The interesting point now is that we

actually do not need to know anything about the global stability of this flux setup, since

we can rule it out completely using a simple ‘topological’ argument based on (4.14).

To see this, let us literally assume the standard BPS-boundary conditions at the (anti-)

D6-brane6 so that we have a near horizon region at the brane, where eA and eφ approach

zero, so that, in particular, e
3
4
φ+7A → 0. An assumed ‘I(A)SD’ flux7 near the (anti-)brane

would mean λ = +
(−)1, and hence, using (4.6), α >

(<) 0 for an (anti-)brane starting at α = 0.

In figures 1 and 2, these standard BPS boundary conditions lead to the α profile indicated

by the solid lines. If we do not insist on the flat space boundary conditions but still require

a net ‘I(A)SD’ flux near the (anti-)brane, we would still have that α >
(<) 0 near the brane,

corresponding to the dashed lines in figure 1 and 2.

The important point now is that, to ensure tadpole cancellation, the total integrated

flux for (anti-)branes has to have exactly the opposite sign,
∫

F0H = F 2
0

∫

α eφ−7A ⋆3 1 <
(>) 0.

Hence α must at some point change its sign. This generically requires an extremum with

sgn α′′ = −sgn α, in contradiction with (4.14), so that with the BPS-like boundary con-

6The main differences of the BPS solutions [29] to our setup are the different world volume geometries

(AdS vs. Minkowski), the compactness and curvature of the transverse dimensions and the different sign of

the integrated flux HF0. Zooming into the brane region with an assumed locally BPS flux, however, the

large scale curvature and global structure should not matter.
7In lack of a better word, we will call the flux for λ = +

(−)1 that is mutually BPS with O6-planes and

D6-branes (O6-planes and D6-branes) ‘I(A)SD’ and flux with F0H = αF 2
0 eφ−7A ⋆3 1 with α >

(<) 0 net

‘I(A)SD’.
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Figure 2. A configuration with a D6-brane at each pole with assumed ‘IASD’ flux near the branes,

again leading to forbidden extrema.

ditions considered here, we can easily rule out certain combinations of fluxes and sources

that are not mutually BPS.

Let us illustrate this with two examples. First consider the case of a single anti-D6-

brane located at θ = 0 and no source at θ = π. This case is depicted in figure 1.

Starting from the anti-brane, we have, close to the brane, α < 0, since the flux is locally

net ‘IASD’. To cancel the tadpole, the integrated flux must be positive, and hence α must

become positive somewhere between the poles. Since we also have to have an extremum

at the pole at θ = π due to rotational symmetry, α is forced to at least one extremum

that violates (4.14) (marked by crosses in the figure). Note that, due to (4.14), the local

maximum in figure 1 would also be excluded if it happens to be at the pole without the

brane. We can also consider this case starting from the point θ = π, where, as mentioned

above, we have an extremum due to the rotational symmetry and the absence of a source.

If, as is the case depicted in the figure, we start out at some positive α at that pole, α

must grow. Then, to match with the boundary condition of the anti-brane at θ = 0, α

has to have a maximum with α > 0, which is again forbidden by (4.14). If we start out

at some negative α at θ = π, α must decrease, and we could potentially match with the

anti-D6-brane at θ = 0. However, the net flux charge
∫

HF0 would then be negative so

that now the tadpole constraint would be violated. The case α(π) = 0 can be excluded in

a similar manner.

In the second example, we place one anti-brane at θ = 0 and another at θ = π. This

situation is depicted in figure 2. Starting at θ = 0 the situation is just as before, we need α

to flip sign to be able to cancel the tadpole, which leads to an extremum violating (4.14).

In this case, coming from θ = π is just the mirrored situation. That is, it is not possible

to match the ‘IASD’ boundary conditions of two anti-branes.

One might wonder how BPS setups constructed of anti-orientifold planes and ‘IASD’

fluxes fit in our discussion. Although the geometry is different in those cases, our qualitative

argument can be applied similarly, since it does not rely on the details of the internal space.

We show a setup with anti-O6-planes at each pole in figure 3.

The boundary conditions for the anti-O6-planes are different from the standard D6-

brane boundary conditions: instead of having e
3
4
φ+7A zero, this factor diverges at the
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Figure 3. BPS configuration with orientifold-planes.

Figure 4. Alternative boundary conditions.

plane, hence α diverges. Furthermore, the anti-orientifold charge and the ‘IASD’ flux are

already mutually BPS, and α never needs to switch sign to cancel the tadpole. This is

the reason why the BPS situations survive localisation whereas the non-BPS situations

collapse.

Alternative boundary conditions. Obviously one can draw a curve for α, consistent

with the global tadpole cancelation, that obeys (4.14) in its extrema. One example with

an equal number of anti-D6-branes at the north- and south-pole is given in figure 4.

Note however that when the warp factor and the dilaton go to zero near the source,

our argument rules out all net ‘ISD’ boundary conditions with finite λ. The only net ‘ISD’

cases we cannot rule out with this argument would then be such that λ blows up at least

as fast as the warp factor and dilaton go to zero so that α does not vanish (cf. (4.6)).

Furthermore, the boundary conditions would have to be such that α′ < 0 at the anti-D6-

brane. It would be quite surprising if such solutions could be static, since the fluxes near

the branes are not mutually BPS with the sources, so that one would expect net forces

between the branes and the fluxes. It should be possible to check explicitly whether these

anti-BPS-like boundary conditions could make any sense at all in our model, because the

boundary conditions have to be consistent with the tension and charge multiplying the

delta-function of the sources, which excludes many possible boundary behaviours. We will

discuss this in more detail in [20].
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In the rest of this paper, we instead give another argument against the localisability

of the smeared solution presented in section 3, by viewing perfectly localised sources as

a limiting case of regularised brane profiles of finite extent. This argument will be very

general and does not use stability considerations or assumptions about boundary conditions

and can hence be viewed as a complementary confirmation of the findings of the present

subsection.

4.3 Regularised sources

We now explore the possibility of solutions with a regularised source profile, where the

source is non-zero at points away from the poles. Let us consider extremal sources |Q| =

T > 0 that have a regular profile with the source term written as

Tδ(D6) = z(θ)e−3B , (4.15)

with z(θ) being a smooth function that becomes a constant in the smeared limit. The reason

we took out the e−3B factor is that the delta-function, as it appears in the equations of

motion, contains an inverse determinant of the metric.

Our setup has a consistent solution, if we can solve the equations of motion (4.5), (4.7),

(4.8), (4.11), (4.12). We can check the consistency of these five differential equations by

means of a Taylor expansion

e2A(θ) =
∑

n

an(θ − θ0)
n, e2B(θ) =

∑

n

bn(θ − θ0)
n,

e
1
4
φ(θ) =

∑

n

fn(θ − θ0)
n, λ(θ) =

∑

n

λn(θ − θ0)
n, (4.16)

around an arbitrary point θ0 ∈]0, π[, where z(θ0) 6= 0. Plugging this expansion into the

equations of motion, their coefficients ∼ (θ − θ0)
n yield algebraic equations for every order

n that have to be satisfied at θ = θ0. At every order n, one can then use the four

equations (4.5), (4.7), (4.8), (4.11) to determine an+2, bn+2, fn+2, λn+2 in terms of the lowest

order coefficients q = {a0, b0, f0, λ0, a1, b1, f1, λ1}. The remaining fifth equation (4.12) then

gives a constraint between the elements of q only. At zeroth order (n = 0), for example,

a2, b2, f2, λ2 are determined in terms of q, whereas the fifth equation yields an additional

constraint for q, and so on. Going to higher orders n, potentially produces an infinite

amount of constraints between the elements of q and thus should generically lead to strong

constraints.8

From the equations of the first six orders, we get the following conditions (upper sign

for D6-branes, lower sign for anti-D6-branes as sources)

a1 = f1 = λ1 = 0 , λ0 = ∓5

2
, F 2

0 =
48

7

1

a0f
10
0

. (4.17)

8This operation of finding constraints is very time consuming and sometimes, if not done in the correct

order, too complex to solve on a desktop computer. Therefore the reader interested in verifying these

computations should contact the authors to get more precise instructions.
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Figure 5. A brane source that is a step function.

Since θ0 was arbitrary these constraints must be satisfied for all θ0 ∈]0, π[, and hence

e2A(θ) = a = const. , e
1
4
φ(θ) = f = const. , λ(θ) = ∓5

2
, F 2

0 =
48

7

1

af10
, (4.18)

everywhere (except at the poles). We can then plug this ansatz into the equations of

motion (4.5), (4.7), (4.8), (4.11), (4.12) and solve for B(θ) and z(θ). We find that all

equation are solved for

e2B(θ) =
4

3

[

ξ cos(θ) −
√

16

a
+ ξ2

]−2

, z(θ) =
320

7
√

3 af3

∣

∣

∣

∣

ξ cos(θ) −
√

16

a
+ ξ2

∣

∣

∣

∣

−3

. (4.19)

This solution has z(θ)e−3B constant, which, with (4.15) and the fact that all fields

except B are constant, suggests that this is just the smeared solution written in a different

coordinate system of the sphere. To find the corresponding coordinate transformation,

consider

ds2
S3 = R2

S3(dθ′
2
+ sin2 θ′dΩ2) = e2B(θ)(dθ2 + sin2 θdΩ2) . (4.20)

Eliminating θ′ in terms of θ provides an ordinary differential equation for e2B(θ) with

solutions which agree exactly with (4.19). This means that we have proven that the smeared

solution is the only solution to the equations of motion for which the source profile is a

smooth function.

Note that our proof for obtaining the profile of z(θ) was valid in the support of z(θ).

Hence one could still study the case for which, instead of an everywhere smooth function,

the source profile is a step function as in figure 5.

Then we should solve the vacuum equations outside of the source and match at the

boundary θ = ǫ. For this to work the solution outside the source region should have a zero

integrated total flux induced charge

∫ π

ǫ
F0H = 0 . (4.21)

This follows because the regularised brane itself cancels exactly the flux-induced charge

that is within the brane region (θ < ǫ) so that the region outside the brane also has to

have vanishing charge. Put differently, the source swallows as much flux within its spatial

extent as it has charge. This implies that λ is varying and switches sign outside the source.

However, it is easy to prove that this cannot occur, using the same reasoning as before
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based on (4.14). The only thing we need is the behaviour of the fields at the boundary of

the regularised source, where θ = ǫ. Assuming that the fields and their first derivatives are

continuous at the step, we must have α′ = 0 (the same is true for the other fields), since

otherwise we cannot consistently connect to the smeared solution inside the region θ < ǫ.

Take for simplicity the solution which has positive α at the regularised source and α0 = 0

(the latter can be obtained by simply shifting α). Then we have that, at θ = ǫ, (cf. (4.14))

α′′ > 0 . (4.22)

So the function α is increasing when it leaves the brane. But we argued that it has

to become negative in order to cancel the global tadpole. Therefore it has to reach a

maximum somewhere. At the would-be maximum we have α′ = 0 and hence we would

again find α′′ > 0 inconsistent with it being a maximum. Therefore α, and thus λ, can

never switch sign in order to cancel the global tadpole. The same happens when there are

box-like brane sources at both poles.

In [3] we conjectured that a static non-BPS solution of the above kind could not be

localised since the fluxes, for fixed λ, behave as smeared branes with the opposite charge of

the real brane that cancels the tadpole. Therefore one expects the fluxes to be attracted into

the localised branes. When the branes are smeared out this process does not occur since

there is no preferred point of attraction. Rather one would expect brane-flux annihilation

to take place but this is outside of the closed string sector we consider. One could have

expected the no-go of [3] to be evaded by having a varying λ, in the same way that anti-

branes at the tip of the warped conifold, locally generate IASD fluxes [30], which, far away

from the anti-branes change back into ISD fluxes. However, our above proof indicates that,

when we do this for regularised branes, this is not possible and λ remains constant, and

hence the only solution is the fully smeared one.

4.4 Summary of results

In the case of fully localised sources we have shown, using “topological” arguments, that

it is not possible to construct solutions, for a large class of boundary conditions. These

arguments only use the Bianchi identity for F2 and the H equation of motion. The power

of the argument is in its global nature. It could be that solutions exist locally around the

north- and south-pole, but they are bound to collapse somewhere in the middle. Note that

these arguments specifically use the choice of boundary conditions and the global tadpole

cancellation condition. Hence in a non-compact situation (like the conifold) things might

change. But non-compact models should be regarded as local models that eventually need

an embedding in a global compact model for which the global tadpole indeed matters.

The dependence on the boundary condition is also essential, and we have shown cases

where there might be an option to evade our no-go for a given set of boundary conditions.

However, if the fluxes near the source are mutually BPS with the source, then there is no

solution.

To strengthen our results we have considered the possibility that the sources are not

fully localised as a delta-function but instead have some remaining profile away from the
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pole on which the source is placed. Our results show that the solution is uniquely the fully

smeared solution, which is not dependent on any assumptions of boundary conditions. The

fact that there exists no source profile that is even a bit lumped around the poles makes it

unlikely that solutions in the fully localised case exist.

This is in strong contrast with the BPS solutions given by the GKP backgrounds and

their T-duals, since there one can find solutions to the equations of motion for an arbitrary

source profile. The only fields that depend on the specific form of the source are the warp

factor and the F5-flux.

5 Discussion

One can regard the existence of flux vacua as a consequence of a balancing of various forces

coming from localised sources, fluxes and curvature. When flux vacua are established using

smeared sources, one has to make sure that the balancing of the forces does not rely on

the sources being smeared out. If this is not satisfied, the solutions could not be trusted,

since the balancing of the forces would be lost for the localised sources, and the solutions

become non-static. Especially for non-BPS situations one might expect problems since one

generically combines ingredients that are mutually non-BPS and therefore exert non-zero

forces on each other. It is conceivable that smearing sources can undo such forces and

give rise to fake solutions, which exist only due to the smearing. A simple example with

mutually non-BPS ingredients is an anti-D3-brane in an ISD background, or its T-dual

version with an anti-D6-brane, considered in this paper in detail.

The localised version of such a smeared non-BPS solution would lead to brane-like

sources surrounded by flux that, on the average, has the wrong sign to be mutually BPS

with the source at a global level. However, if the flux changes its BPS-type near the branes

so as to be mutually BPS with them in their vicinity, the balance of forces could be restored

at least in the region near the branes. The question then is whether such a gradient in the

flux type can be sustained and produce a static global solution.

We have investigated this using truly delta-like brane sources and found global ob-

structions for the existence of a solution, as long as arbitrarily close to the source the

fluxes are mutually BPS with the sources. We furthermore investigated the existence of

solutions with regularised brane sources and showed that the fully smeared solutions are

unique, thereby confirming the conjecture made in [3]. The reason we investigated reg-

ularised sources as well is that they should tell us about what happens in the localised

limit. Intuitively this can be understood by considering a truly localised brane whose pro-

file is then a tiny bit smeared. We find in our setup that the entire background flux gets

drawn into the brane region, which can be viewed as the physical reason for the complete

breakdown of the solution upon localisation of the sources.

Our work is similar in spirit to the investigations of the backreaction of anti-D3-

branes in throat geometries (see e.g. [27, 28, 30–34] and references therein) but is different

in the sense that we do not break supersymmetry perturbatively by just a few anti-branes.

Instead we have as many SUSY-breaking branes as there is background flux. However,

as we show in the appendix we can also find smeared solutions with a tunable amount of
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SUSY-breaking branes, such that we can be arbitrarily close to the BPS no-scale Minkowski

solutions of [1, 3]. We study the localisation of these solutions in [20], where we also discuss

the boundary conditions at the sources in more detail.

Our results have particular relevance for attempts to find well-controlled de Sitter

vacua at leading order in the gs and α′ expansion [35]. Such classical de Sitter compact-

ifications are surprisingly difficult to engineer due to a number of simple no-go theorems.

The simplest way around these no-go theorems seems to require the inclusion of orientifold

planes in combination with compact spaces of negative integrated scalar curvature [36–38].

In the limit of smeared O-planes on a few negatively curved manifolds, classical de Sitter

solutions were indeed identified in [39–44].9 The known de Sitter models of this type are

still not satisfactory, as they all have a tachyonic instability (i.e. they correspond to saddle

points rather than local minima in the effective potential), and they suffer from reliability

issues when flux quantization is taken into account [44]. However, a more basic issue with

compactifications on negatively curved spaces was raised in [47]. There it was pointed out

that in absence of warping and noticeable quantum corrections, negative curvature spaces

require the presence of a continuous distribution of negative energy density as given by a

smeared O-plane. Upon localisation of the O-planes, however, an everywhere negatively

curved compact space can only be maintained when there are strong warping effects ev-

erywhere or the classical approximation breaks down. As the localisation of a smeared

source does induce a nontrivial warp factor, one can potentially maintain negative internal

curvature, and indeed in a BPS-like Minkowski configuration, one can explicitly show that

this is possible [3]. The importance of our result lies in the observation that in non-BPS

cases, such as de Sitter solutions, a localised solution may simply not exist after all. Note

also that our results do not depend on the size of the compact space, which clearly shows

that localisation effects in flux compactifications are important for arbitrarily large internal

spaces.

It should be emphasised that our results not only cast doubts on the validity of classical

de Sitter vacua that have been constructed in the limit of smeared sources, but that,

more generally, non-BPS configurations supported by smeared D-branes or O-planes may

not have reliable localized counterparts, even when they are perturbatively stable in the

usual gauged supergravity truncation, involve AdS-spaces or compact spaces of positive

curvature.
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A Smeared non-BPS solutions for general d and η

Let us consider a combination of smeared p-brane sources that can be a general mixture of

Dp-, anti-Dp-, Op- and anti-Op-planes. This way we can get arbitrarily close to the BPS

point by taking an arbitrarily small amount of anti-branes compared to the background O-

planes. This makes sense in the supergravity picture where we do not bother about charge

quantisation. Since the question we address is a supergravity question (the existence of

localised solutions), we settle with this imprecise state of affairs. Because this mixture

might be non-BPS we allow a resulting charge Q and tension T that might have different

magnitudes, i.e.,

T = ηQ , (A.1)

where η measures how far we are from a BPS situation. For example η = 1 with Q < 0

means a BPS mixture of (anti-)Op and (anti-)Dp sources such that the orientifold tension

dominates. Or when η = −1 and Q < 0 this corresponds to a net anti-Dp charge and

tension. We furthermore point out that there also exist tachyonic de Sitter solutions with

η < −1 when we allow Op- and anti-Op-planes at the same time. It is not immediately

clear to us whether this can be done consistently in the context of flux compactifications,

but examples with Op- and anti-Op-planes appeared in [48].

A.1 The ansatz

We look for solutions with constant dilaton, φ0, and an internal space that is a direct

product of two spaces

ds2
10 = ds2

p+1 + dΣ2
3 + dΣ2

6−p , (A.2)

H = h ⋆3 1 , (A.3)

F6−p = (−1)pe−
p+1
4

φ0κ ⋆9−p H , (A.4)

where ds2
p+1 is the metric of the external space, which we assume to be maximally sym-

metric (AdS, Mink, or dS), and dΣ2
3 and dΣ2

6−p are metrics on Euclidean 3-, resp. (6− p)-

dimensional Einstein spaces, sofar left unspecified. The parameter κ is assumed constant.

E.g., for p = 3 we have that κ = +1 corresponds to ISD fluxes and κ = −1 to IASD fluxes.

Since H fills the Σ3 space, the duality relation between F6−p and H implies that F6−p fills

the Σ6−p space, so these are truly simple ansätze.

Let us now go through all equations of motion. The H and F6−p Bianchi identities are

trivially satisfied whereas the F8−p Bianchi identity implies the tadpole condition10

Q = −e−
p+1
4

φ0κh2. (A.5)

10In this appendix we set the volume of the internal space V = 1 or equivalently take Q and T to denote

the charge/tension densities.
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Furthermore, the H, F6−p and F8−p equations of motion are also satisfied. The dilaton

equation, on the other hand implies a second-order polynomial for κ, which allows two

solutions

κ± =
(p − 3)η ±

√

(p − 3)2η2 + 8(p − 1)

2(p − 1)
. (A.6)

This implies that we always have two branches of solutions corresponding to κ+ and κ−.

Let us analyse the internal Einstein equation along the first space Σ3. We find

(R3)ab =
e−φ0

16
h2

(

6 − κη(p + 1) − (5 − p)κ2
)

g
(3)
ab , (A.7)

which fixes the curvature of the Einstein space Σ3. Similarly we find from the remaining

directions in the internal Einstein equation

(R6−p)ab = −e−φ0

16
h2

(

2 + (p + 1)ηκ − (p + 3)κ2
)

g
(6−p)
ab . (A.8)

The external Einstein equation sets the value of the cosmological constant in the external

dimensions

Rp+1 = −1

8
(p + 1)e−φ0h2

(

1 +
5 − p

2
κ2 − (7 − p)

2
ηκ

)

. (A.9)

Let us now analyse all the possible solutions, starting with recovering the BPS and

non-BPS solutions of [3], where η = ±1.

A.2 The solutions with η = ±1

The solutions for κ are (A.6)

η = ±1 → κ = η , κ = −η
2

p − 1
. (A.10)

From equation (A.5) this determines the sign of the charge and from that we find the sign

of the tension using (A.1). For the “BPS” values, κ = η = ±1, we find that the tension is

necessarily negative

T (κ = η) = −h2e−
p+1
4

φ0, (A.11)

and that the solution is Minkowski and the internal spaces Σ3,Σ6−p are flat. For p = 3

this is the smeared GKP solution, built from O3-planes and ISD flux when η = 1 and

anti-O3-planes and IASD flux when η = −1.

For the non-BPS values κ = − 2
p−1η we find

Rp+1 = − (p + 1)2

2(p − 1)2
e−φ0h2, (A.12)

(R3)ab =
(p + 1)(p − 2)

2(p − 1)2
e−φ0h2 g

(3)
ab , (A.13)

(R6−p)ab =
(p + 1)

2(p − 1)2
e−φ0 h2 g

(6−p)
ab . (A.14)
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Hence these are AdS solutions with positively curved internal Einstein spaces, which we

can for instance take to be spheres.11 Combining equations (A.1), (A.5) we find the total

tension to be positive

T

(

κ =
−2

p − 1
η

)

=
2

p − 1
h2e−

p+1
4

φ0 , (A.15)

corresponding to net D-brane tension.

The solutions with η = ±1 are special in the sense that supersymmetry is not broken by

the sources, but by choosing fluxes that are not mutually BPS with the branes. This implies

that, under certain conditions, these AdS solutions are expected to be critical points of

half-maximal gauged supergravities. This seems the case when we take as internal Einstein

spaces the S3 × S6−p (or T 3 × S4 when p = 2). This is because sphere-reductions, when

consistent, are not expected to break the supersymmetry of the ten-dimensional action,

only the sources break half of the supersymmetries. Especially for p = 3, 5 and 6 we are

bound to have a description in terms of half maximal gauged supergravity since S3 ×S6−p

is then a group manifold and dimensionally reducing on a group manifold is consistent [23].

A.3 The solutions with general η

Let us now consider general η. We find

Rp+1 = − (p + 1)

2(p − 1)
e−φ0 h2 (1 − ηκ) , (A.16)

(R3)ab =
(p − 2)

2(p − 1)
e−φ0 h2(1 − ηκ)g

(3)
ab , (A.17)

(R6−p)ab =
1

2(p − 1)
e−φ0 h2 (1 − ηκ)g

(6−p)
ab , (A.18)

with the total tension of the sources given by

T = −e−
p+1
4

φ0ηκh2. (A.19)

From these expressions we notice the following structure

• For the range κη < 1 we have non-BPS AdS vacua with positively curved internal

Einstein spaces.

• For the range κη = 1 we have the BPS Minkowski solutions with flat internal spaces

and net orientifold sources.

• For the range κη > 1 we have de Sitter solutions with negatively curved internal

Einstein spaces and net orientifold sources.

By using the dependence of κ on η we can verify that κη > 1 necessarily implies η2 > 1,

which implies that the de Sitter solutions are only possible for combinations of Op- and

anti-Op-planes since such combinations have more negative tension than charge. The

Minkowski turning point ηκ = 1 implies η2 = 1 and is thus only possible for BPS sources.

11The case p = 2 is exceptional because the 3-space Σ3 filled with H-flux is flat.

– 21 –



J
H
E
P
0
8
(
2
0
1
1
)
1
0
5

In order to understand the perturbative stability of the solution we also computed the

masses of 3 universal scalar fields: the dilaton φ, the volume modulus ϕ1, and the modulus

ϕ2 that measures the relative sizes of the two internal Einstein spaces (and does not exist

for the p = 6 solution). We found that the AdS solutions are stable within this subspace

of degrees of freedom and the dS solutions are not.
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[20] J. Bl̊abäck et al., to appear.

[21] E. Silverstein, TASI/PiTP/ISS lectures on moduli and microphysics, hep-th/0405068

[SPIRES].

[22] P. Koerber, Lectures on generalized complex geometry for physicists,

Fortschr. Phys. 59 (2011) 169 [arXiv:1006.1536] [SPIRES].

[23] J. Scherk and J.H. Schwarz, How to get masses from extra dimensions, Nucl. Phys. B 153

(1979) 61 [SPIRES].

[24] N. Alonso Alberca et al., Domain walls of D = 8 gauged supergravities and their D = 11

origin, JHEP 06 (2003) 038 [hep-th/0303113] [SPIRES].

[25] S. Kachru, J. Pearson and H.L. Verlinde, Brane/flux annihilation and the string dual of a

non-supersymmetric field theory, JHEP 06 (2002) 021 [hep-th/0112197] [SPIRES].

[26] R.C. Myers, Dielectric-branes, JHEP 12 (1999) 022 [hep-th/9910053] [SPIRES].

[27] I. Bena, M. Graña and N. Halmagyi, On the existence of meta-stable vacua in

Klebanov-Strassler, JHEP 09 (2010) 087 [arXiv:0912.3519] [SPIRES].

[28] P. McGuirk, G. Shiu and Y. Sumitomo, Non-supersymmetric infrared perturbations to the

warped deformed conifold, Nucl. Phys. B 842 (2010) 383 [arXiv:0910.4581] [SPIRES].

[29] B. Janssen, P. Meessen and T. Ort́ın, The D8-brane tied up: string and brane solutions in

massive type IIA supergravity, Phys. Lett. B 453 (1999) 229 [hep-th/9901078] [SPIRES].

[30] O. DeWolfe, S. Kachru and M. Mulligan, A gravity dual of metastable dynamical

supersymmetry breaking, Phys. Rev. D 77 (2008) 065011 [arXiv:0801.1520] [SPIRES].

[31] I. Bena, G. Giecold and N. Halmagyi, The backreaction of anti-M2 branes on a warped

Stenzel space, JHEP 04 (2011) 120 [arXiv:1011.2195] [SPIRES].

[32] D. Baumann, A. Dymarsky, S. Kachru, I.R. Klebanov and L. McAllister, D3-brane potentials

from fluxes in AdS/CFT, JHEP 06 (2010) 072 [arXiv:1001.5028] [SPIRES].

[33] A. Dymarsky, On gravity dual of a metastable vacuum in Klebanov-Strassler theory,

JHEP 05 (2011) 053 [arXiv:1102.1734] [SPIRES].

[34] I. Bena, G. Giecold, M. Graña, N. Halmagyi and S. Massai, On metastable vacua and the

warped deformed conifold: analytic results, arXiv:1102.2403 [SPIRES].

[35] M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary constraints on type IIA

string theory, JHEP 12 (2007) 095 [arXiv:0711.2512] [SPIRES].

[36] E. Silverstein, Simple de Sitter solutions, Phys. Rev. D 77 (2008) 106006 [arXiv:0712.1196]

[SPIRES].

[37] S.S. Haque, G. Shiu, B. Underwood and T. Van Riet, Minimal simple de Sitter solutions,

Phys. Rev. D 79 (2009) 086005 [arXiv:0810.5328] [SPIRES].

[38] T. Wrase and M. Zagermann, On classical de Sitter vacua in string theory,

Fortschr. Phys. 58 (2010) 906 [arXiv:1003.0029] [SPIRES].

– 23 –

http://arxiv.org/abs/1009.4200
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1009.4200
http://dx.doi.org/10.1088/1126-6708/2008/11/021
http://arxiv.org/abs/0807.4540
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.4540
http://arxiv.org/abs/hep-th/0405068
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0405068
http://dx.doi.org/10.1002/prop.201000083
http://arxiv.org/abs/1006.1536
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1006.1536
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B153,61
http://dx.doi.org/10.1088/1126-6708/2003/06/038
http://arxiv.org/abs/hep-th/0303113
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0303113
http://dx.doi.org/10.1088/1126-6708/2002/06/021
http://arxiv.org/abs/hep-th/0112197
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0112197
http://dx.doi.org/10.1088/1126-6708/1999/12/022
http://arxiv.org/abs/hep-th/9910053
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9910053
http://dx.doi.org/10.1007/JHEP09(2010)087
http://arxiv.org/abs/0912.3519
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0912.3519
http://dx.doi.org/10.1016/j.nuclphysb.2010.09.008
http://arxiv.org/abs/0910.4581
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0910.4581
http://dx.doi.org/10.1016/S0370-2693(99)00315-9
http://arxiv.org/abs/hep-th/9901078
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9901078
http://dx.doi.org/10.1103/PhysRevD.77.065011
http://arxiv.org/abs/0801.1520
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0801.1520
http://dx.doi.org/10.1007/JHEP04(2011)120
http://arxiv.org/abs/1011.2195
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1011.2195
http://dx.doi.org/10.1007/JHEP06(2010)072
http://arxiv.org/abs/1001.5028
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1001.5028
http://dx.doi.org/10.1007/JHEP05(2011)053
http://arxiv.org/abs/1102.1734
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1102.1734
http://arxiv.org/abs/1102.2403
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1102.2403
http://dx.doi.org/10.1088/1126-6708/2007/12/095
http://arxiv.org/abs/0711.2512
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0711.2512
http://dx.doi.org/10.1103/PhysRevD.77.106006
http://arxiv.org/abs/0712.1196
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0712.1196
http://dx.doi.org/10.1103/PhysRevD.79.086005
http://arxiv.org/abs/0810.5328
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0810.5328
http://dx.doi.org/10.1002/prop.201000053
http://arxiv.org/abs/1003.0029
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1003.0029


J
H
E
P
0
8
(
2
0
1
1
)
1
0
5

[39] R. Flauger, S. Paban, D. Robbins and T. Wrase, Searching for slow-roll moduli inflation in

massive type IIA supergravity with metric fluxes, Phys. Rev. D 79 (2009) 086011

[arXiv:0812.3886] [SPIRES].

[40] C. Caviezel et al., On the cosmology of type IIA compactifications on SU(3)-structure

manifolds, JHEP 04 (2009) 010 [arXiv:0812.3551] [SPIRES].

[41] U.H. Danielsson, S.S. Haque, G. Shiu and T. Van Riet, Towards classical de Sitter solutions

in string theory, JHEP 09 (2009) 114 [arXiv:0907.2041] [SPIRES].

[42] C. Caviezel, T. Wrase and M. Zagermann, Moduli stabilization and cosmology of type IIB on

SU(2)-structure orientifolds, JHEP 04 (2010) 011 [arXiv:0912.3287] [SPIRES].

[43] U.H. Danielsson, P. Koerber and T. Van Riet, Universal de Sitter solutions at tree-level,

JHEP 05 (2010) 090 [arXiv:1003.3590] [SPIRES].

[44] U.H. Danielsson et al., De Sitter hunting in a classical landscape, arXiv:1103.4858

[SPIRES].

[45] X. Dong, B. Horn, E. Silverstein and G. Torroba, Micromanaging de Sitter holography,

Class. Quant. Grav. 27 (2010) 245020 [arXiv:1005.5403] [SPIRES].

[46] D. Andriot, E. Goi, R. Minasian and M. Petrini, Supersymmetry breaking branes on

solvmanifolds and de Sitter vacua in string theory, JHEP 05 (2011) 028 [arXiv:1003.3774]

[SPIRES].

[47] M.R. Douglas and R. Kallosh, Compactification on negatively curved manifolds,

JHEP 06 (2010) 004 [arXiv:1001.4008] [SPIRES].

[48] S. Kachru, J. Kumar and E. Silverstein, Orientifolds, RG flows and closed string tachyons,

Class. Quant. Grav. 17 (2000) 1139 [hep-th/9907038] [SPIRES].

– 24 –

http://dx.doi.org/10.1103/PhysRevD.79.086011
http://arxiv.org/abs/0812.3886
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.3886
http://dx.doi.org/10.1088/1126-6708/2009/04/010
http://arxiv.org/abs/0812.3551
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.3551
http://dx.doi.org/10.1088/1126-6708/2009/09/114
http://arxiv.org/abs/0907.2041
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0907.2041
http://dx.doi.org/10.1007/JHEP04(2010)011
http://arxiv.org/abs/0912.3287
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0912.3287
http://dx.doi.org/10.1007/JHEP05(2010)090
http://arxiv.org/abs/1003.3590
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1003.3590
http://arxiv.org/abs/1103.4858
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1103.4858
http://dx.doi.org/10.1088/0264-9381/27/24/245020
http://arxiv.org/abs/1005.5403
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1005.5403
http://dx.doi.org/10.1007/JHEP05(2011)028
http://arxiv.org/abs/1003.3774
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1003.3774
http://dx.doi.org/10.1007/JHEP06(2010)004
http://arxiv.org/abs/1001.4008
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1001.4008
http://dx.doi.org/10.1088/0264-9381/17/5/323
http://arxiv.org/abs/hep-th/9907038
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9907038

	Introduction
	A simple non-BPS setup on AdS(7) x S**3
	Type IIA supergravity and smeared D6/overline D6-branes
	The smeared solution

	Perturbative stability
	The left-invariant closed string moduli
	Open string moduli

	Localisation
	The ansatz
	Delta-function sources
	Regularised sources
	Summary of results

	Discussion
	Smeared non-BPS solutions for general d and eta
	The ansatz
	The solutions with eta=+-1
	The solutions with general eta


