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Abstract

A Poincaré multiplet of mass eigenstates (P2 — mz)\IJ = 0 cannot be a subspace of a space
with a D-vector position operator X = (X, ... X p—1): the Heisenberg algebra [ P™*, X,,] =
i6™,, implies by a simple argument that each Poincaré multiplet of definite mass vanishes.
The same conclusion follows from the Stone-von Neumann theorem. In a quantum theory the
constraint of an absolutely continuous spectrum to a lower dimensional submanifold yields
zero even if Dirac’s treatment of the corresponding classical constraint defines a symplectic
submanifold with a consistent corresponding quantum model. Its Hilbert space is not a
subspace of the unconstrained theory. Hence the operator relations of the unconstrained model
need not carry over to the constrained model. Our argument excludes quantized worldline
models of relativistic particles and the physical states of the covariant quantum string. We
correct misconceptions about the generators of Lorentz transformations acting on particles.

Keywords Heisenberg algebra - Stone-von Neumann theorem - Covariant string - Mass
shell condition - Constrained system - Continuous spectrum

1 Introduction

The momentum P = (P°, ... PP~1) generates the unitary representation U, = e'©¢ of
translations in spacetime. This makes models tempting which contain in addition a spacetime
position operator X = (X, ... Xp—1), which Lorentz transforms as a D-vector and which
is translated,

e Px, e P =X, —a,, acRP. (1)

Functions of X such as V,(X) = el?X —. v, are shifted, U,e!? XU, = b (X~a)
These are the Weyl relations

UaVo = VoUge Y | UUp = Ugipy , VaVip = Vagp - )

On the dense subspace of smooth, rapidly decreasing wave functions, the Schwartz space
S(RP) ¢ L*(RP), their generators constitute an algebra and represent the Heisenberg Lie

B Norbert Dragon
dragon@itp.uni-hannover.de

1 TInstitut fiir Theoretische Physik, Leibniz Universitdt Hannover, Hannover, Germany

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10773-023-05529-z&domain=pdf

5 Page2of9 International Journal of Theoretical Physics (2024) 63:5

algebra
[P", P =0=[Xp, Xn]l, [P", Xn]=18", m,ne{0,1,...D —1}. 3)
Differentiating VU, V! = U, el with respect to a,, at a = 0 shows
el X pme=ibX — pm y pm peRP. “)

Thus by (1) and (4) the operators X, and P™ are unitarily equivalent to the shifted
operators. So their spectra are invariant under shifts and consist of the continuum RP?.

However, the possible momenta of relativistic particles do not fill a D-dimensional con-
tinuum but are restricted to mass shells

Mm={peRD:p°=,/m2+p2}. 5)

The particle states constitute Poincaré multiplets with discrete masses.! Though this dis-
crepancy in covariant quantum string theory, which contains (3) was observed [2, 3, 8] it was
not considered a severe fault. Lecture notes as e.g. [1, 10] and books claimed “The physical
space of allowed string states is a subspace of the complete Fock space” [7, p.76] with a
unitary representation of the Weyl relations.

We show: This is untenable. The spacetime Heisenberg Lie algebra (3) excludes any
subspace with a definite mass m whether m vanishes or not.

To constrain in canonically quantized world line models the continuous momentum
spectrum to mass shells yields zero, because the volume measure of a lower dimensional
submanifold vanishes. This is very much different from constraints which select from dis-
crete possibilities.

In particular by this reason of vanishing measure the Stone-von Neumann theorem
excludes mass shells in the continuous momentum spectrum.

If theories, different from the covariantly quantized worldline models or the covariant
quantum string, contain only the spatial part of the Heisenberg Lie algebra then this is
consistent with massive particles, m > 0. This is compatible with Lorentz covariance, even
though of an unusual kind. Covariance does not require X be the spatial components of a
D-vector.

Because Lorentz generators, which are constructed using (3), do not act on particles with
a definite mass, we specify the generators which do.

' A Poincaré multiplet V is a space with a definite scalar product and an irreducible unitary representation
of the Poincaré group. By a unitary change of the basis all its states ® and W can be chosen to be square
integrable functions ®, ¥ : M, — €4 of the mass shell with scalar product (up to its sign)

dD*]
ew = [ e T

We do not need these details but use only that the momenta P™ are self-adjoint operators which map their
domain in V to itself, that V' and its orthogonal complement span the complete space and that all states in V
are eigenstates of P2 with the common eigenvalue m2.
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2 Absence of Mass Multiplets

Lemma A Poincaré multiplet V of states ¥ of a definite mass m
D—1
(P*=m)W =0, P*= (P> = > (P)?, 6)
i=1

cannot be a subspace of a space with a nondegenerate scalar product in which Heisenberg
pairs (i, j € {1,... D — 1}) satisfy

[P, PI1=0=[X, X1, [P}, X/]=—i8", @)

and commute with P° o,

(PO, X1 =0. ®)
Proof The space is the orthogonal sum of the mass multiplet and its complement. All arbi-
trarily chosen states W and @ of the multiplet are orthogonal to the complement and have a
vanishing matrix element of the commutator [(P? —m?), X! =2iP!

(@[(P? —m?), X"1¥) = (P? —mHD | X' W) — (| X' (P? — m*)W)

oo ©)
=0-0=2i(®|P'W)

P'W is in the Poincaré multiplet V' and therefore orthogonal to the complement of the
multiplet. By (9) it is also orthogonal to the multiplet. So all scalar products of P!W vanish.
But the scalar product is nondegenerate, hence

Pw=0. (10)

Exchanging ® and W in the argument, one also has P!® = 0. As P! is hermitian their
matrix element of the commutator [ P!, X!] = —i vanishes

(@ [P, X"T¥) = (Plo|X'W) — (@ | X'P'W)=0—-0=—i(®|W). (1)
All scalar products of ¥ vanish, thus
v=0. (12)
The state W was arbitrarily chosen from the mass multiplet, so there is none.

The argument needs only the nondegeneracy of the scalar product, not its positivity, and
does not even require X' be hermitian. It needs no assumptions about wavefunctions, which
represent a state, nor their explicit scalar product. For our conclusion it is sufficient that they
exist.

Our lemma excludes quantized models [1, 9, 13] of free relativistic particles which classi-
cally traverse worldlines 7 — x () with action given by their length. Canonical quantization
yields the Heisenberg algebra. The mass shell condition (P2 — m2)W¥ = 0 arises as con-
straint because of the reparametrization invariance ¢ +> '(¢). But, no matter how suggestive,
aesthetical and geometrical a classical system may be, this does not guarantee that canonical
quantization yields a quantum model in which the constraint has a nonvanishing solution.

These models contain the algebra (3) and declare to contain a multiplet of definite mass.
They lay claim to the name ‘relativistic particle’ but contain none. This justifies to rename
them ‘worldline models’ to avoid the confusing statement that relativistic particles do not
exist. Experimentally, relativistic particles are verified beyond doubt, but the covariantly
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quantized worldline models fail to describe them whatever their denomination pretends.
Our lemma applies also to the covariant quantum string which postulates (3). Its Hilbert
space is claimed to be an orthogonal sum of mass multiplets — the physical states — and a
complement. Our lemma excludes any multiplet of definite mass. The covariant quantum
string has no physical states.

In particular, one cannot constrain the absolutely continuous spectrum of a quantum model
to a lower dimensional submanifold: each integral of a projection valued measure on a set of
vanishing measure yields zero. This is what vanishing projection measure means.

In a quantum model there is no solutions to a constraint, which restricts a continuous
spectrum to a submannifold, even if the solutions of the corresponding classical constraint
define a symplectic submanifold with Dirac brackets [4] and with a consistent correspond-
ing quantum model. Its Hilbert space is not a subspace of the unconstrained model. In the
constrained model the operator relations of the unconstrained model need not hold.

If one does not want to give up reason altogether then we see only two options to evade
our lemma as it excludes also the idea that some of the operators X" are not self-adjoint.
In this case the Stone-von Neumann theorem would not apply. But our lemma holds also if
some X" are not self-adjoint.

As first option one can give up the interpretation that X" and P™ are operators in a space
with a nondegenerate scalar product. Thereby one gives up the interpretation that they act
on quantum particles. For example, they could act on off-shell Feynman graphs. These are
not elements of a space of quantum states though one speaks about them in terms of virtual
particles. In diagrams with loops virtual particles turn out to have the momentum spectrum
RP.

The second option gives up the algebra (3). This is the only option in theories which allow
for multiplets of relativistic particles.

3 The Stone-von Neumann Theorem

By the Stone-von Neumann theorem [ 12, Theorem X1.84]* each unitary representation of the
Weyl relations (2) is unitarily equivalent to the one in a Hilbert space L(RP) x A/ of states
W : p > W(p) which map p € RP almost everywhere to W (p) in some Hilbert space A"
The unitary representation acts multiplicatively and by translation

Ua¥)(p) =P W(p), (V,¥)(p) =W(p+Dh),

(13)
(@) = /de (DPI (D)

By the theorem one is not free to choose a different scalar product which integrates not over
RP but only over a mass shell with measure d°~! p//m?2 + p2.

The scalar product of L>(RP) implies that each multiplet of definite mass vanishes:
L?>(RP) is the space of equivalence classes of square integrable wave functions, which are

2 We reserve the name ’covariant string’ to string models with the algebra (3). This article does not deal with
the light cone string, which employs only a subalgebra, nor with the path integral quantization of worldlines
[15].

3 The result is unchanged by identifying states which differ by spurious states.

4 There for D = 1. The result carries over to finite D [14, Notes 8.10].
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equivalent if the D-dimensional measure of the support of their difference vanishes,
w=0<:>V<1>:/de<d><p>|\If<p)>N=0. (14)
All wave functions Wphys € L?(RP) with definite mass m

Wonys(p) = 0 if p° # /m? + p? (15)

only have a (D — 1)-dimensional support of vanishing D-dimensional measure. They are
equivalent to O and vanish.

Physical states are not elements of L2(RP—1) obtained from L2(RP) by restriction to the
mass shell: restriction of equivalence classes is a linear map, it vanishes if applied to 0. On
L*(RP) restriction to a mass shell vanishes altogether. To realize the algebra in a space with
a different measure is excluded by the Stone-von Neumann theorem.

If it needed another argument: the Heisenberg algebra (3) is represented by the hermitian
operators

P"W(p) = p"W(p) , X, W(p) = —idpW(p). (16)

They generate an algebra which is defined on and maps to itself the Schwartz space S(R?, \)
of smooth functions ¥ : R? — A which together with each of their derivatives decrease
rapidly [14]. The only smooth function of R? which vanishes outside mass shells is ¥ = 0.

4 Consistent Spatial Position Operator

The disastrous, innocent looking relation [X?, P?] ) (8) in covariantly quantized worldline
models is incompatible with the Schrodinger equation i 9, WV (1) = POW (7) for the motion of
a massive (m > 0) relativistic particle.

For its expected position x/(r) = (W (¢)|X'W(r)) to change in the course of the time ¢
by the expected velocity 8,x’ = v/ = (\IJl(Pi / PO)IIJ) one has to have not (8) but different
operators acting on L?(M,,), m > 0, which satisfy (in slight notational abuse we denote
these different operators in this section again by their conventional names)

. pi .
[X’,Po]ziﬁ@[x',Pz—mz]zo. A7)

It is this value which the commutator of X’ with P° must have in order to commute with
the mass shell condition. Moreover, (17) is required to justify the denomination ‘position
operator’. It entails the notion that in the course of time the position of a particle changes
with its velocity.

Poincaré covariance does not require the position operator X be the spatial part of a
D-vector: X = X, is the position operator used by an observer at rest with four-velocity
u = (1,0, ...). Under spacetime translations a and rotations R it transforms linear inhomo-
geneously’

. . P
eleP X g~laP :X—}-a—i—aoﬁ, UrXUr~' = R7'X, (18)

5 In an orthonormal basis our metric is n = diag(1, —1,..., —1).
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where Uy represents the rotation R in Hilbert space. Observers boosted by

. («/ 1 +u? u’ ) (19
u = uu’ ’
u 1+ 14++1+u?
to four-velocity u, measure position with
X, = U, X, U, 7" . (20)

Under Lorentz transformations A the position operators transform by Wigner rotation
UnXuUn™' = WA, )Xau, WA w) = Lay ' AL, €SO(D = 1), (1)

in a Poincaré covariant way, even though X is not the spatial part of a D-vector.

5 Lorentz Generators of Particles

In terms of the algebra (3) one can specify generators M, = ™" My, /2, My = —Mpyp,
of Lorentz transformations Ue» = e~ Mo [10],

—iMmmy L i(PMXT — PUXM) T (22)

where ' are skew hermitian matrices which commute with X and P and represent the
Lorentz Lie algebra

[an, FI”S] — _nmr FnS + nms Fl‘lr + nanmS _ nl‘l.&‘l"mr (23)

as do the operators [ = i(P" X" — P"X™).

Nonvanishing I'"”" can occur only in case the scalar product in spin space is indefinite,
otherwise there are no finite dimensional, skew hermitian matrices which generate the Lorentz
group.

However as our lemma shows, the operators P and X do not act on particles with a definite
mass but in a space in which P has the continuous spectrum R (4) with unbounded and
also negative energies. This is not the space of relativistic particles.

To show that X" and P™ are not required for the construction of Lorentz generators we
specify the ones which act on massive one-particle states. These physical states, to which
the generators can can be applied, correspond to rapidly decreasing momentum wave func-
tions ¥ : M,, — C? which map the massive shell M,,,, m > 0, (5) smoothly to some
space C?, in which skew hermitian matrices T'; j = —I'ji generate a d-dimensional unitary
representation of SO(D — 1), (i, j, k,l € {l,..., D —1}),

[Tij, Crl = 8ixUji — 8jx Uit — 8uUjie + 8 Lik 24

@ Springer



International Journal of Theoretical Physics (2024) 63:5 Page70f9 5

The generators of the Poincaré group [11] and the position operator map by®

(=i P"W¥)(p) = —ip"¥(p).
(—iMyW)(p) = —(p'd,1 — p? 9, )W (p) + Tij ¥ (p) ,

J
(<iMo ) () = P 8 W (p) + Ty W (p) (25)

l

(—iX'W)(p) = 0,/ W (p) + o)z‘l’(l’)

2(p

this Schwartz space S(M,,,, C? c L*(M,,, C%) of smooth states of rapid decrease to itself.
The generators are skew hermitian with respect to the Lorentz invariant measure (d?~! p)/ p°.

They are equivariant: observers, Lorentz boosted by L, (19) to four-velocity u, use the
generators (20, 21) and

ULM IanUL,Ail = (Lu)rm(Lu)Sner . (26)

The massless case is not obtained by simply specifying m = 0 in the energy p® = \/1?
Its inverse 1/p° and therefore the invariant measure (d~!p)/p°, the generators Mo; and
X' are singular at p = 0. There the energy is only continuous, not smooth. The distinguished
momentum p = 0 is a fixed point of Lorentz transformations and not invariant under trans-
lations. This excludes generators X I of such translations [6]: massless states do not allow the
spatial Heisenberg algebra (7).

The Lorentz generators, acting on massless, physical states turn out not to act on smooth
functions of RP~! but on smooth sections of a vector bundle over $°~2 x R which carries
a representation of SO(D — 2) with generating matrices I';;.

In the coordinate patch Uy = [p :p0 = p? Ipl + p: > 0} the sections are smooth
functions Wy which the generators map to (p; := pD_l, i,j,ke{l,...D— 2})7

(—iM;; W), (p) = —(Pi3pj - P‘/api)‘IJN(P) + T Yn(p),

A k
(—iM @)y (p) = —(p2dy — p'0p. ) Un (p) + Tik—— Wy (p)
k

(~iMoi W), (p) = I3, Wn (p) + F,-kppT Wy (p)

Ipl + p;
(—iMo. W)\ (p) = P19y, Wi (p) -

The detailed discussion of massless states, e.g. the relation Wg(p) = hsy (p) WYy (p) with
. \2h
hsy(p) = (M> where Wy is smooth in Us = [p :p0 =./p2 Ip| — p; > 0] will

pip}

be given elsewhere [5]. Here it is only important that in contrast to the covariantly quantized
worldline particles they and their Poincaré transformations exist.

6 We use matrix notation and suppress indices of the components of W and I'; ;. Checking the Lorentz algebra
observe Z i1 Lpipi = (p92 —m2? = (p° + m)(p° — m).

7 Checking the Lorentz algebra observe Z 2 P pt =1pl? — (p2)? = (Ipl + p2)(Ipl — p2).
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6 Conclusions

The spacetime Heisenberg Lie algebra excludes relativistic particles with a definite mass.
This important result does not depend on this or that method of quantization. The lemma
follows in each quantum theory by elementary algebra. The same conclusion follows from
the Stone-von Neumann theorem.

More generally, each solution of a constraint which restricts an absolutely continuous
spectrum to a lower dimensional submanifold vanishes.

In quantum physics not only the algebra of operators is important but also the domain
on which they act. As the spacetime Heisenberg Lie algebra does not allow a subspace of
relativistic particles we specify the generators of Lorentz transformations which do.

Though our lemma has far reaching implications its proof is astonishingly simple. It
excludes D Heisenberg pairs as they originate from canonical quantization of classical point
particles traversing worldlines which maximize a diffeomorphism invariant action. To impose
the corresponding constraint, the mass shell condition, on the momenta of the states, has no
solution.
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