Halogenated Rocaglate Derivatives: Pan-antiviral Agents against Hepatitis E Virus and Emerging Viruses

Catherine Victoria, ${ }^{\ddagger}$ Göran Schulz, ${ }^{\ddagger}$ Mara Klöhn, Saskia Weber, Cora M. Holicki, Yannick Bräggemann, Miriam Becker, Gisa Gerold, Martin Eiden, Martin H. Groschup, Eike Steinmann,* and Andreas Kirschning*

Cite This: J. Med. Chem. 2024, 67, 289-321

Read Online

| ACCESS \| 狊 Article Recommendations | (s) Supporting Information |
| :--- | :--- | :--- |

Abstract

The synthesis of a library of halogenated rocaglate derivatives belonging to the flavagline class of natural products, of which silvestrol is the most prominent example, is reported. Their antiviral activity and cytotoxicity profile against a wide range of pathogenic viruses, including hepatitis E, Chikungunya, Rift Valley Fever virus and SARS-CoV-2, were determined. The incorporation of halogen substituents at positions $4^{\prime}, 6$ and 8 was shown to have a significant effect on the antiviral activity of rocaglates, some of which even showed enhanced activity compared to CR-31-B and silvestrol.

flavaglines was studied for the natural product silvestrol (2a) and 1 -O-formylglafoline (1d). The excellent broadband antiviral activity of silvestrol (2a) was substantiated for highly pathogenic Ebola virus, ${ }^{7}$ as well as Zika virus, Hepatitis E virus (HEV) and viruses from the Coronaviridae and Picornaviridae family without pronouced cytotoxic effects for immortalized cell lines (Huh-7 and MRC-5). ${ }^{8}$ Translation initiation is a key process in viral proliferation. Because RNA viruses do not encode their own translational machinery, they rely on host protein synthesis. In the past, targeting the translation machinery of the host has been extensively studied and proposed as a therapeutic strategy for the treatment of viral infections. It is widely accepted that rocaglates exert their biological activity by stimulation of eIF4Af-RNA clamping. ${ }^{9}$ The eukaryotic initiation factor 4 a (eIF4A) is an ATPdependent RNA helicase, responsible for unwinding the secondary structure of mRNAs. Flavaglines force an engagement between eIF4A and RNA that prevents eIF4A from participating in the ribosome-recruitment step of translation. Recently, Iwasaki and co-workers resolved the structure of the human complex composed of eIF4A1, AMPPNP, rocaglamide $\mathbf{l b}$ and polypurine RNA, providing the molecular basis of

[^0]

Figure 1. Structures of rocagloic acid (1a) and rocaglamide (1b), derivatives CR-31-B (1c) and 1-O-formylglafoline (1d) as well as silvestrol (2a) and its 5^{\prime}-epimer (2b).

- INTRODUCTION

Rocaglates are natural products that belong to the flavaglines, a natural product class with more than 100 members to date. ${ }^{1-3}$ They are found in several tree species of the genus Aglaia (Meliaceae) that grow in subtropical and tropical forests of Southeast Asia, Northern Australia and the Pacific region. ${ }^{4}$

The first rocaglate extracts collected revealed significant activity against P-388 lymphatic leukemia in CDF1 mice and inhibitory activity in vitro against cells derived of human epidermoid carcinoma of the nasopharynx ($\kappa \mathrm{B}$ cells). The antileukemic effect was attributed to the $1 H$-cyclopenta $[b]$ benzofurans rocagloic acid (1a, Figure 1) and rocaglamide (1b). ${ }^{5}$ Later, antiviral properties against the Newcastle disease virus (NDV) were reported ${ }^{6}$ and the biological target of

1a rocagloic acid, $X=O H, R=H$
1b rocaglamide, $X=\mathrm{NMe}_{2}, R=H$ 1c (-)-CR-31-B, X = NH-OMe, R = H 1c $(-)$-CR-31-B, $X=\mathrm{NH}-\mathrm{OMe}, \mathrm{R}$
1d 1-O-formylglafoline, $X=O M e$, $\mathrm{R}=-\mathrm{CHO}$

1a rocagloic acid, $X=O H, R=H$

2a silvestrol, $\mathrm{R}^{1}=\mathrm{OH} ; \mathrm{R}^{2}=\mathrm{H}$ 2b epi-silvestrol, $R^{1}=H ; R^{2}=O H$

rocaglamide RNA sequence selectivity. From these X-ray studies it was found that in particular the dimethoxysubstituted aromatic ring A in $\mathbf{1 b}$ is directed toward the polypurine RNA. As such, ring A is stacked with the adenine base of A7 and guanine base of G8 nearly in parallel. ${ }^{10}$
Synthetic efforts had led to new rocaglate variants and derivative (-)-CR-31-B (1c) has to be noted as it was also found to inhibit the replication of Zika-, Lassa-, Crimean Congo hemorrhagic fever virus and Coronaviridae family members. ${ }^{11-13}$ It was precisely this promising biological potential of rocaglates that triggered synthetic programs culminating in the first total synthesis by Trost et al. in 1990^{14} and follow-up synthetic programs by the groups of Désaubry, ${ }^{15-17}$ Porco, ${ }^{18,19}$ Tremblay, ${ }^{20}$ Burns, ${ }^{21}$ Ishibashi ${ }^{22}$ and Reich ${ }^{23}$ that provided rocaglate-derived compound libraries.

The majority of these studies primarily focused on the substitution of the methoxy groups at C6 and C4' and variation of the amide moiety. Both showed a profound effect on biological activity. Unsurprisingly, several halogenated rocaglates were also part of these libraries, as halogens are of great importance in medicinal chemistry. They give, in most cases, advantages to biophysical and -chemical properties of related compounds. Halogen substitution can enhance metabolic stability, lipophilicity and electronegativity. Moreover, introduction of halogen substituents can also provide halogen bonding (XB), which might lead to enhanced activity. ${ }^{24-26}$ In these preliminary studies, it was revealed that chlorine at C6 and a chlorine or bromine substituent at C 4 ' lead to a significant improvement in the inhibition of translation initiation. ${ }^{14-16,20,27,28}$ However, the possible impact of the small and highly electronegative fluorine atom as a substituent at C 6 or $\mathrm{C} 4^{\prime}$ is so far unknown. Furthermore, no derivatives halogenated at the C 8 position have been reported to date.

Consequently, we initiated a program to synthesize and biologically evaluate a library of so far unknown halogenated rocaglate derivatives and tested them against several emerging RNA viruses, including HEV, Chikungunya (CHIKV), Rift Valley fever (RVFV) and SARS-CoV-2 viruses. As part of this program, we also aimed to identify the most practical synthetic route among several options for accessing the target derivatives.

- RESULTS AND DISCUSSION

General Considerations on the Syntheses. To date, the majority of rocaglate syntheses are based on a biomimetic approach starting from 3-hydroxyflavones (flavonol) and cinnamic acid derivatives, first described by Porco and coworkers in 2004. ${ }^{29}$ This process first involves UV lightmediated $[3+2]$-cycloaddition via an excited-state intramolecular proton transfer leading to the aglain core. Subsequently, skeletal rearrangements via a ketol shift and anti-selective reduction of the resulting ketone lead to the cyclopenta $[b]$ benzofuran core present in the rocaglates. Excellent substrate selection and high diastereoselectivity for the establishment of the five stereocenters in only three steps are compelling reasons for the superiority of this route.

Surprisingly, synthetic access to the required $5,7,4^{\prime}$ substituted flavonols still poses a major challenge. In previous studies on flavaglines, the flavonols were most commonly prepared via an Algar-Flynn-Oyamada (AFO) reaction ${ }^{14,22}$ or alternatively a Baker-Venkataraman synthesis. ${ }^{20,22,30}$

The first route represents an oxidative cyclization of the corresponding chalcone with $\mathrm{NaOH}, \mathrm{KOH}$ or $\mathrm{K}_{2} \mathrm{CO}_{3}$ in combination with hydrogen peroxide (Scheme 1, Route A).

Scheme 1. Synthetic Approaches to Rocaglate Derivatives with $5,7,4^{\prime}$-Substituted Flavonols as Key Intermediates and Structure of Aurones

Although this biomimetic approach allows for rapid access to flavonols, its substrate scope is however rather restricted. In particular, electron-donating substituents at C5 and C7 or electron-withdrawing substituents at $\mathrm{C} 4^{\prime}$ favor the formation of the corresponding aurone instead of the flavonoid. ${ }^{31,32}$ It should be noted, however, that in principle an alternative type of cyclization to the aurone skeleton is conceivable and possible.
The Baker-Venkataraman synthesis (Scheme 1, Route B) ${ }^{20}$ requires a larger number of steps but is supposedly more versatile with respect to substrate scope, as the different electronic properties of the substituents at C5 and C7 have little effect on the formation of flavonol.

The synthesis commenced from the corresponding ohydroxyl acetophenones. A Rubottom oxidation sequence leads to the α-hydroxyacetophenones from which the bisbenzoates are formed by esterification. Depending on the desired substitution pattern on the B ring, various benzoic acid or benzoyl chloride derivatives can be used. ${ }^{20,22}$ Next, the sequence proceeds through a base-mediated Baker-Venkataraman rearrangement, followed by acid-catalyzed condensation and saponification of the enol ester that yields the flavonol. However, the aforementioned reaction sequence involves harsh basic and acidic conditions, which can limit the application of some protecting and functional groups.

Synthesis of Rocaglates Based on the BakerVenkataraman Rearrangement. To investigate the influence of halogen substituents at C^{\prime}, we resorted to the BakerVenkataraman route, since the electron-withdrawing effect of fluorine, chlorine and bromine in the AFO reaction strongly favors the formation of aurone. Based on studies by Tremblay et al., ${ }^{20}$ we established a reliable, high-yielding and scalable linear route (Scheme 2) where acetophenones 3a and 3b served as starting materials (see the Supporting Information).

Rubottom oxidation and formation of the α-hydroxyacetophenones 4, followed by double esterification with various 4substituted benzoyl chlorides, furnished precursors 5 that are

Scheme 2. Synthesis of Rocaglates by the Baker-Venkataraman Route ${ }^{a}$

${ }^{a}$ Reagents and conditions: a) TBSOTf, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; b) $m \mathrm{CPBA}, \mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$ to rt; c) $p \mathrm{TsOH}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$, reflux; d) 4-DMAP, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; e) LiHMDS, THF, $-20^{\circ} \mathrm{C}$; f) $\mathrm{AcOH}, \mathrm{H}_{2} \mathrm{SO}_{4}$, rt (rt to $80^{\circ} \mathrm{C}$ for $\mathrm{R}^{3}=\mathrm{Cl} ; 60^{\circ} \mathrm{C}$ for $\mathrm{R}^{1}=\mathrm{OBn}, \mathrm{R}^{3}=\mathrm{Br}$, then $\mathrm{BnBr}, \mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, reflux); g) $5 \% \mathrm{NaOH}, \mathrm{EtOH}, 80^{\circ} \mathrm{C}$; h) trans-methyl cinnamate, $\mathrm{CHCl}_{3} / \mathrm{TFE} 7: 3$, UV light (365 nm), $-5^{\circ} \mathrm{C}$; (i) $\mathrm{NaOMe}, \mathrm{MeOH}$, reflux; j) $\left.\mathrm{Me}_{4} \mathrm{NBH}(\mathrm{OAc})_{3}, \mathrm{AcOH}, \mathrm{MeCN}, \mathrm{rt} ; \mathrm{k}\right) \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{THF}, \mathrm{rt}$; l) $\mathrm{TMSCHN}_{2}, \mathrm{PhMe} / \mathrm{MeOH}, \mathrm{rt}$. Abbreviations: TBS = t-butyldimethylsilyl, $m \mathrm{CPBA}$ = meta-chloroperbenzoic acid, $p \mathrm{TsOH}=$ para-toluenesulfonic acid, 4-DMAP = 4-dimethyaminopyridine, LiHMDS = lithium hexamethyldisilazide, $\mathrm{Ac}=$ acyl, $\mathrm{Bn}=$ benzyl, $\mathrm{TFE}=$ 2,2,2-trifluoroethanol, $\mathrm{TMS}=$ trimethylsilyl.

Scheme 3. Synthesis of Rocaglates by the Algar-Flynn-Oyamada Route ${ }^{a}$

${ }^{a}$ Reagents and conditions: a) $4-\mathrm{R}^{3}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}, \mathrm{NaOEt}, \mathrm{EtOH}, \mathrm{rt}$; b) NaOH (aq.), $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}$ to rt; c) trans-methyl cinnamate, $\mathrm{CHCl}{ }_{3} /$ TFE 7:3, UV light (365 nm), $-5{ }^{\circ} \mathrm{C}$; d) $\mathrm{MeONa}, \mathrm{MeOH}$, reflux; e) $\mathrm{NMe}_{4} \mathrm{~B}(\mathrm{OAc})_{3} \mathrm{H}, \mathrm{AcOH}, \mathrm{MeCN}$, rt.
required for the Baker-Venkataraman rearrangement, consistently in excellent yields. In the presence of LiHMDS as a base, the anionic rearrangement led to the phenol 6. Next, a ring-closing condensation reaction led to the formation of flavonol esters 7. We found that elevated temperatures were required for substrates with chlorine or bromine substitution at C4', while complete conversion was already observed at room temperature (rt) for substrates that bear a methoxy or fluorine
substituent at this position. Subsequent saponification with sodium hydroxide gave the corresponding flavonols $\mathbf{8 a} \mathbf{- b c}$ in excellent yields. ${ }^{33}$

As mentioned before, these harsh acidic/basic reaction conditions were accompanied by several limitations. Incorporation of acid-labile protecting groups like MOM on the phenol functionality, as well as flavonols with sensitive structural modifications on the B-ring such as the pyridine
ring as well as electron-withdrawing groups such as 4nitrobenzene, is not feasible.
With the flavonols in hand, using methyl cinnamate, the synthesis proceeded with a UV light-mediated [3+2]-cycloaddition, followed by a ketol shift and finally diastereoselective reduction of the ketone according to the protocol of Rizzacassa et al. ${ }^{34}$ Methyl rocaglates $\mathbf{9 a - b c}$ were obtained in good yields. In the cases where a benzyloxy group was installed at C6, we were able to convert it to the corresponding methoxy ethers 11ba-bc via deprotection with $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$ and methylation with trimethylsilyldiazomethane. ${ }^{20}$

Flavonol Synthesis Based on Algar-Flynn-Oyama-da-Type Reactions. Next, we turned our attention toward the modification of the C6 and C8 positions of rocaglates. As mentioned above, the AFO synthesis is a promising approach for the synthesis of flavonols that possess an electronwithdrawing substituent at C5 and C7 (corresponding to C6 and C 8 in the corresponding rocaglate) and an electronwithdrawing substituent at $\mathrm{C} 4^{\prime}$. Accordingly, we prepared a series of new halogenated rocaglates via the route depicted in Scheme 3. The acetophenones $3 \mathbf{c}-\mathbf{i}$ and 3 n were prepared from their respective 3,5 -substituted phenols by acetylation followed by Fries rearrangement, whereas $\mathbf{3 j}-\mathbf{m}$ were synthesized from their respective 3,5-dimethoxy halobenzenes by acylation and mono-demethylation (see Supporting Information).
According to a procedure by Sale et al., ${ }^{35}$ the acetophenones could be easily converted into chalcones $\mathbf{1 2 c} \mathbf{c}-\mathbf{n}$ in the presence of sodium ethoxide as a base. The subsequent AFO reaction using a mixture of NaOH and $\mathrm{H}_{2} \mathrm{O}_{2}$ gave the desired flavonols $\mathbf{8 c} \mathbf{c} \mathbf{n}$ in acceptable yields. Remarkably, this protocol also allowed the synthesis of flavonols $8 \mathbf{d b}$ and $8 \mathbf{n b}$ bearing electron-withdrawing substituents at the C 4 ' position. However, in these cases, significant proportions of corresponding aurones (see Scheme 1) were also formed. Analogous to flavonols 8a-bc prepared via the Baker-Venkataraman route, compounds $8 \mathbf{c}-\mathbf{n}$ were converted to rocaglate derivatives $9 \mathrm{c}-$ n using the established sequence. With the exception of the 4^{\prime} bromo rocaglates $\mathbf{9 d b}$ and $\mathbf{9 n b}$, yields of about 50% over three steps were obtained for the major endo-diastereomer.

Conversion of Rocaglate Methyl Esters to the Corresponding Amides. Starting from the new rocaglate methyl esters, selected members of this library were converted into amides (Scheme 4). It was previously demonstrated that the incorporation of both an N, N-dimethylamide and an N methoxyamide group can result in significantly improved antiviral activity. ${ }^{14,}$

Biological Studies. In total, we prepared 33 rocaglates as racemic mixtures via two different routes, with 30 of the derivatives containing one or more halogen atoms. Since it is known from previous work that the presence of a benzyloxy group at position 6 leads to decreased translational inhibition, ${ }^{21}$ compounds $9 \mathbf{b a}, \mathbf{9 b b}$ and $\mathbf{9 b c}$ were excluded from the study of antiviral activity. In addition to the resynthesized (\pm)-rocaglamide (rac-1b), (\pm)-CR-31-B (rac1c) and (\pm)-methylrocaglate (11bc), commercial (- -)-silvestrol (2a) also served as a reference compound.
Hepatitis E viruses are characterized by a highly structured 5^{\prime} untranslated region (5^{\prime} UTR) and rely on cap-dependent translation for their efficient replication. ${ }^{36}$ Herein, we assessed structure-activity relationships of our new halogenated rocaglates and their potential as antiviral agents against HEV replication by transfecting hepatoma cells (HepG2) with the

Scheme 4. Transformation of Selected Methyl Esters to the Corresponding N, N-Dimethyl and N-Methoxymethyl Amides ${ }^{a}$

9a $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{OMe}, \mathrm{R}^{3}=\mathrm{Cl}$
13a $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{OMe}, \mathrm{R}^{3}=\mathrm{Cl}$
13ba $R^{1}=R^{2}=O M e, R^{3}=F$ 13bc $R^{1}=R^{2}=R^{3}=O M e$ 13h $R^{1}=O M e, R^{2}=F, R^{3}=\mathrm{OMe}$ (99\%) 13da $R^{1}=R^{2}=C l R^{3}=O M e$ 13da $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Cl}, \mathrm{R}^{3}=\mathrm{OMe}$ 13f $\mathrm{R}^{1}=\mathrm{Br}, \mathrm{R}^{2}=\mathrm{Cl}, \mathrm{R}^{3}=\mathrm{OMe} \quad(90 \%)$ $13 \mathrm{~g} \mathrm{R}^{1}=\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{Br}, \mathrm{R}^{3}=\mathrm{OMe} \quad$ (88\%) $13 \mathrm{~m} \mathrm{R}^{1}=\mathrm{Br}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{OMe}$
1 bc $R^{1}=R^{2}=R^{3}=O M e$
9h $R^{1}=O M e, R^{2}=F, R^{3}=O M e$
9 da $R^{1}=R^{2}=\mathrm{Cl}, \mathrm{R}^{3}=\mathrm{OMe}$ 9f $\mathrm{R}^{1}=\mathrm{Br}, \mathrm{R}^{2}=\mathrm{Cl}, \mathrm{R}^{3}=\mathrm{OMe}$ $9 \mathrm{~g} \mathrm{R}^{1}=\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{Br}, \mathrm{R}^{3}=\mathrm{OMe}$

(31\% o2s)
(34\% o2s)
(75\% o2s)
(34\% o2s)
(9\%)
(44\%)
(36\%)
(34\%)
(31\%)
(33\% o2s)
(34\% o2s)
\% o2s

[^1]HEV-3 replicon p6-Gluc and treating these cells with the compounds listed in Figure 2 in concentrations ranging from

Figure 2. Synthesized rocaglates selected for biological evaluation.
0.15 to 1000 nM (Figure 3A,B). Luciferase activity and MTT assays were conducted to measure HEV RNA replication and cell viability, respectively. The obtained $\mathrm{EC}_{50}, \mathrm{EC}_{90}, \mathrm{CC}_{50}$ and selectivity index (SI) values are summarized in Figure 3C and Table 1.

In accordance with previous findings for non-halogenated compounds, ${ }^{14,23}$ an example of chlorinated C2-methyl ester 9a $\left(\mathrm{EC}_{90}=105.4 \mathrm{nM}\right)$ showed to be inferior in potency compared to its corresponding dimethylamide 14aa ($\mathrm{EC}_{90}=101.6 \mathrm{nM}$) and its methoxyamide $\mathbf{1 4 a b}\left(\mathrm{EC}_{90}=18.2 \mathrm{nM}\right)$. To further support this outcome, the same series of derivatives with

Figure 3. Antiviral efficacy of halogenated rocaglates against HEV. A) Schematic representation of assay setup. B) Plate layout for in vitro testing. C) $\mathrm{EC}_{90}, \mathrm{EC}_{50}, \mathrm{CC}_{50}$ and SI values derived from dose-response curves at 24 and 48 h post-electroporation.
fluorine instead of chlorine were tested. The result proved to be similar, with methoxyamide as the most potent member (14bab, $\mathrm{EC}_{90}=338.2 \mathrm{nM}$) compared to its dimethylamide 14baa $\left(\mathrm{EC}_{90}=828.8 \mathrm{nM}\right)$ and ester 11ba $\left(\mathrm{EC}_{90}>1000 \mathrm{nM}\right)$ ($\mathrm{X}=\mathrm{NHOMe}>\mathrm{NMe}_{2}>\mathrm{OMe}$), respectively.
The observed improvement in EC_{90} values for amides may be attributed by the fact that carbonyl groups of the amide serve as better hydrogen bond donors to Gln 195 of eIF4A compared to methyl esters. ${ }^{17,18}$ Notably, enhanced inhibition of HEV replication was observed in the $\mathrm{C} 4^{\prime}$-bromo methyl ester 11bb ($\mathrm{EC}_{90}=91.3 \mathrm{nM}$) compared to C^{\prime}-chlorine 9a $\left(\mathrm{EC}_{90}=105.4 \mathrm{nM}\right)$ and C^{\prime}-fluorine methyl ester 11ba $\left(\mathrm{EC}_{90}\right.$ $>1000 \mathrm{nM}$). Moreover, 9a and amide derivatives 14aa (EC_{90} $=101.6 \mathrm{nM})$ and $\mathbf{1 4 a b}\left(\mathrm{EC}_{90}=18.2 \mathrm{nM}\right)$ displayed superior HEV inhibition compared to C^{\prime}-methoxy substituents (rac$\mathbf{1 b}, r a c-1 c$ and 11bc). In contrast, fluorine functionalization in 11ba, 14baa and 14bab at position $\mathrm{C} 4^{\prime}$ resulted in decreased activity and cytotoxicity for methyl esters, N-dimethylamides and N -methoxyamides relative to C^{\prime} '-methoxy derivatives (compare 14bab $\left[\mathrm{EC}_{90}=338.2 \mathrm{nM} ; \mathrm{CC}_{50}=142.9 \mathrm{nM}\right]$ with rac-1c $\left[\mathrm{EC}_{90}=27.3 \mathrm{nM}, \mathrm{CC}_{50}=14.3 \mathrm{nM}\right]$, 14baa $\left[\mathrm{EC}_{90}=\right.$ $828.8 \mathrm{nM}, \mathrm{CC}_{50}=296.9 \mathrm{nM}$] with rac-1b $\left[\mathrm{EC}_{90}=201.3 \mathrm{nM}\right.$;
$\left.\mathrm{CC}_{50}=44.5 \mathrm{nM}\right]$ and 11ba $\left[\mathrm{EC}_{90}>1000 \mathrm{nM} ; \mathrm{CC}_{50}=421.4\right.$ nM] with 11bc $\left[\mathrm{EC}_{90}=187.8 \mathrm{nM} ; \mathrm{CC}_{50}=65.3 \mathrm{nM}\right]$). These observations corresponded to the EC_{90} trends $\mathrm{Br}>\mathrm{Cl}>\mathrm{OMe}$ $>\mathrm{F}$ and $\mathrm{Cl}>\mathrm{OMe}>\mathrm{F}$ for methyl esters and carbonyl amides, respectively. To further elucidate the influence of halogen functionalization, we examined halogenated rocaglates substituted with Br, Cl and F at positions 6 and 8 , or both, concerning their antiviral activity against HEV replication. The C8-bromo methyl ester $91\left(\mathrm{EC}_{90}=304.7 \mathrm{nM}\right)$ displayed marginally reduced activity compared to compound $9 \mathbf{e}\left(\mathrm{EC}_{90}\right.$ $=282.4 \mathrm{nM})$ (C8, C6-bromine substitution). Conversely, the introduction of a bromine atom solely at position C6 in 9 m $\left(\mathrm{EC}_{90}=30.6 \mathrm{nM} ; \mathrm{CC}_{50}=13.8 \mathrm{nM}\right)$ significantly enhanced both activity and cytotoxicity. A similar trend was observed for chlorine-substituted derivatives (compare 9j $\left[\mathrm{EC}_{90}=393.5\right.$ $\mathrm{nM}]$ with $9 \mathrm{da}\left[\mathrm{EC}_{90}=725.3 \mathrm{nM}\right]$ and $9 \mathrm{k}\left[\mathrm{EC}_{90}=45.5 \mathrm{nM}\right]$). However, C6- and C8-bromine substitutions generally produced more active compounds than their C6- and C8chlorine counterparts. Also, addition of a bromine atom (position C4) to an already halogenated derivative enhanced activity (compare 9na $\left[\mathrm{EC}_{90}=873.3 \mathrm{nM}\right]$ with $9 \mathrm{nb}\left[\mathrm{EC}_{90}=\right.$

Table 1. Overview of Halogenated Rocaglates Synthesized in the Present Work and Their Corresponding Efficacy against HEV at 24 and $48 \mathrm{~h}^{a}$

compd	R^{1}	R^{2}	R^{3}	X	24 h (in nM$)$			SI	48 h (in nM)			SI
					EC_{50}	EC_{90}	CC_{50}		EC_{50}	EC_{90}	CC_{50}	
9m	Br	OMe	OMe	OMe	3.1	40.7	420.9	160.4	1.4	30.6	13.8	11.0
9da	Cl	Cl	OMe	OMe	25.4	642.3	797.7	31.7	17.5	725.3	148.9	8.2
9k	Cl	OMe	OMe	OMe	5.4	45.1	442.9	79.3	2.5	45.5	19.9	7.5
14m	Br	OMe	OMe	NHOMe	1	328.3	748.2	52782.3	0.2	1.6	1	7.4
(-)-silvestrol (2a)	dioxanyloxy	OMe	OMe	OMe	4.2	40.5	180.3	76.7	2.2	28.1	13.4	6.1
14f	Br	Cl	OMe	NHOMe	4.6	53.4	407.1	123.2	2.6	30.2	15.6	5.7
9f	Br	Cl	OMe	OMe	9.9	582.8	663.4	122.2	14.9	453.5	61.0	5.1
14 g	Cl	Br	OMe	NHOMe	4.1	131.1	464.2	162.7	5.5	62.9	26.3	4.6
14ab	OMe	OMe	Cl	NHOMe	2.8	23.8	528.8	197.9	2.3	18.2	10.0	4.2
(\pm)-CR-31-B (rac-1c)	OMe	OMe	OMe	NHOMe	6.1	29.0	188.3	35.4	3.7	27.3	14.3	3.8
9 db	Cl	Cl	Br	OMe	29.6	128.0	388.8	13.4	14.7	123.9	48.0	3.7
14bab	OMe	OMe	F	NHOMe	53.7	670.1	666.0	13.5	52.9	338.2	142.9	3.7
14da	Cl	Cl	OMe	NHOMe	8.6	172.5	510.7	65.9	9.8	134.5	31.8	3.3
11bb	OMe	OMe	Br	OMe	7.3	157.7	420.5	74.1	9.4	91.3	27.1	3.2
9 g	Cl	Br	OMe	OMe	52.1	481.5	812.5	19.0	37.9	364.6	101.0	2.8
14ha	OMe	F	OMe	NMe_{2}	56.9	>1000	637.6	14.3	47.1	758.7	120.3	2.7
14aa	OMe	OMe	Cl	NMe_{2}	7.2	174.5	390.3	50.8	8.9	101.6	22.7	2.7
9 e	Br	Br	OMe	OMe	36.1	361.5	765.6	22.1	33.2	282.4	90.2	2.6
9 h	OMe	F	OMe	OMe	61.0	>1000	>1000	30.4	64.3	633.7	163.2	2.5
91	OMe	Br	OMe	OMe	83.6	343.2	787.1	9.7	44.7	304.7	113.9	2.5
14hb	OMe	F	OMe	NHOMe	17.2	91.2	491.2	28.5	10.9	69.8	27.5	2.5
(\pm)-methyl rocaglate (11bc)	OMe	OMe	OMe	OMe	28.4	630.9	689.8	24.4	29.9	187.8	65.3	2.5
9a	OMe	OMe	Cl	OMe	19.4	139.8	512.6	26.4	16.8	105.4	38.8	2.2
(\pm)-rocaglamide ($\mathrm{rac}-\mathbf{1 b}$)	OMe	OMe	OMe	NMe_{2}	27.8	213.1	549.5	19.7	21.0	201.3	44.5	2.1
9 nb	OMOM	F	Br	OMe	86.9	345.4	727.1	8.1	63.2	298.0	113.3	2.1
9j	OMe	Cl	OMe	OMe	92.6	576.6	832.1	9.3	75.7	393.5	147.8	1.8
9na	OMOM	F	OMe	OMe	202.2	>1000	911.8	4.6	146.1	873.3	235.6	1.8
14baa	OMe	OMe	F	NMe_{2}	228.6	>1000	965.7	4.4	208.2	828.8	296.9	1.5
11ba	OMe	OMe	F	OMe	338.4	>1000	>1000	10.9	334.3	>1000	421.4	1.4
9 i	F	OMe	OMe	OMe	>1000	>1000	>1000	1.0	731.7	>1000	904.5	1.3
9c	F	F	OMe	OMe	>1000	>1000	>1000	1.0	>1000	>1000	>1000	1.0

${ }^{a}$ Designations of $\mathrm{R}^{1}-\mathrm{R}^{3}$ and X Are Presented in Figure 2. SI values represent mean SI values calculated from three biological replicates and therefore do not necessarily represent the ratio between EC_{50} and CC_{50} values listed in the table.
$298.0 \mathrm{nM}]$ or $9 \mathrm{da}\left[\mathrm{EC}_{90}=725.3 \mathrm{nM}\right]$ with $9 \mathrm{db}\left[\mathrm{EC}_{90}=123.9\right.$ $\mathrm{nM}]$).

Fluorine functionalization at position C 8 in carbonyl amides 14ha $\left(\mathrm{EC}_{90}=758.7 \mathrm{nM}\right)$ and $\mathbf{1 4 h b}\left(\mathrm{EC}_{90}=69.8 \mathrm{nM}\right)$ led to reduced activity compared to non-halogenated amides rac-1b and rac-1c. Intriguingly, the introduction of a fluorine moiety at position C 6 in $9 \mathrm{c}\left(\mathrm{EC}_{90}>1000 \mathrm{nM}\right)$ and $9 \mathrm{i}\left(\mathrm{EC}_{90}>1000\right.$ nM) completely diminished antiviral activity in hepatoma cells.

Collectively, these findings demonstrate that bromine functionalization yielded the most significant improvement of activities when substituted at position $\mathrm{C} 6\left(\mathrm{C} 6>\mathrm{C} 4^{\prime}>\mathrm{C} 8\right)$, while chlorine substitutions led to the most potent increase in activity for position $\mathrm{C} 4^{\prime}\left(\mathrm{C}^{\prime}>\mathrm{C} 8\right)$. Conversely, fluorine functionalization at $\mathrm{C} 4^{\prime}$ and C 8 resulted in reduced antiviral activity and cytotoxicity and entirely abrogated activity when introduced at the C 6 position ($\mathrm{C} 8>\mathrm{C} 4^{\prime}>\mathrm{C} 6$). Based on calculated SI values, two additional trends were observed. First, substitutions on ring A (position C6 and C8) tend to result in improved SI values compared to C 4 ' or C 2 substitutions. Also, derivatives with improved activity were observed to have better SI values than less potent derivatives.
Based on selectivity indices calculated for 48-h treated compounds, we identified 9 m and 9 da as the most promising
rocaglates in our investigation (Figure 3A). Consequently, we evaluated the antiviral efficacy of 9da and 9 m against CHIKV, RVF and SARS-CoV-2. Derivative 9 k and $\mathbf{1 4 m}$ were not included, due to high structural similarity of 9 k to 9 m and high toxicity observed for $\mathbf{1 4 m}$ at 48 h . Therefore, we also selected derivative $\mathbf{1 4 f}$ for further analysis. The C6, C8-chlorofunctionalized methyl ester 9da proved to be the least active derivative for all tested viruses (Figure 4A-C, Table 2). N methoxyamide $\mathbf{1 4 f}$ exhibited less activity than the C6-bromofunctionalized 9 m for Chikungunya virus (CHIKV) [$\mathrm{EC}_{90}=$ 20.2 nM vs $\mathrm{EC}_{90}=9.8 \mathrm{nM}$], Rift Valley fever virus (RVFV) $\left[\mathrm{EC}_{90}=113.2 \mathrm{nM}\right.$ vs $\mathrm{EC}_{90}=53.2 \mathrm{nM}$] and SARS-CoV-2 $\left[\mathrm{EC}_{90}=339.9 \mathrm{nM}\right.$ vs $\mathrm{EC}_{90}=80.0 \mathrm{nM}$], while $\mathbf{1 4 f}$ and 9 m showed similar activity against HEV. Finally, we evaluated the influence of the cell density on the antiviral activity of exemplified for 9 m by comparing the standard protocol cell density to that of a confluent monolayer. As depicted in Figure S1, cell viability improved when cell density was higher. However, at the same time the antiviral response of 9 m decreased, which is likely due to the greater number of cells replicating the HEV genome, necessitating a higher dose of the drug to achieve the same reduction of replication (Figure S1).
A

Figure 4. Pan-antiviral inhibition of HEV, Chikungunya virus (CHIKV), Rift Valley fever virus (RVFV) and SARS-CoV-2 replication by $\mathbf{9 m}$, 9 da and 14f. A) HEV subgenomic replicon HEVp6-Gluc was electroporated into HepG2 cells. Cells were treated with 9m, 9da and 14f at concentrations ranging from 0.15 nM to 1000 nM for 24 and 48 h . Depicted are nonlinear fit response curves representative of three biological replicates for HEVp6-Gluc (dark blue lines), and cell viability was monitored by MTT assay (gray lines). Error bars indicate standard deviation, $n=$ 3. B) Huh-7 cells were treated with different concentrations (0.15 nM to 1000 nM) of $\mathbf{9 m}$, $\mathbf{9} \mathbf{d a}$ and $\mathbf{1 4 f}$ and infected at a MOI of 2.5 with infectious clone CHIKV LR2006-OPY1 expressing GFP under the control of a subgenomic promotor. GFP expression as measure of infection (left panel) and cell viability (right panel) were measured by live cell imaging and MTT assay, respectively. C) Vero-E6 cells were infected with SARS-CoV-2 or RVF strain MP-12 at a multiplicity of infection (MOI) of 0.1 . Supernatants were collected at 24 h post infection (hpi) or 48 hpi and subjected to RT-qPCR analysis as measure of infection (left and middle panel). Cell viability was determined by MTT assay (right panel).

- CONCLUSION

One of the most promising targets for inhibition of viral protein synthesis is the eukaryotic initiation factor (eIF) 4 F complex (comprised of eIF4A, 4E and 4G). Due to a highly structured viral 5^{\prime}-untranslated region (5^{\prime} UTR), a large number of RNA viruses require the DEAD-box RNA helicase activity of eIF4A to unwind the viral genome and to allow for the recruitment and scanning of the $43 S$-pre-initiation complexes (43S-PIC) during translation initiation. ${ }^{37}$ Intriguingly, several previous studies have reported that inhibition of the eIF4A complex by rocaglates could prevent replication of different RNA viruses in vitro and in vivo. ${ }^{38}$ In this study, a library of 27 halogenated derivatives of rocaglamide was synthesized via two different synthetic routes. Subsequent biological evaluation of the modified rocaglate derivatives revealed an potential antiviral effect on hepatitis E (HEV) and moderate antiviral activities against Chikungunya (CHIKV), Rift Valley river virus (RVFV) and SARS-CoV-2 viruses. In addition, the compounds exerted some cytostatic effects, which was reflected by the low to moderate SI values. The biological
tests revealed various structure-activity findings about the rocaglates, especially with regard to positions $4^{\prime}, 6$ and 8 (Figure $5 \mathrm{~A}-\mathrm{C}$). For the 4^{\prime} position, an increase in activity of F $<\mathrm{OMe}<\mathrm{Cl}<\mathrm{Br}$ was found. The bromine derivative is thus more active than the rocaglate with the methoxy group found in the natural products. The fluorine derivative, on the other hand, exerts hardly any antiviral activity. For the 6 position the trend is as follows. Here fluorine leads to complete loss of antiviral activity followed by $\mathrm{OMe}<\mathrm{Cl}<\mathrm{Br}$. Finally, the replacement of the methoxy group in position 8 gave the following relationship: $\mathrm{Br} \sim \mathrm{Cl}<\mathrm{F}<\mathrm{OMe}$. Replacing the methoxy groups at positions 6 and 8 with two identical substituents results in the following picture: $\mathrm{F} \ll \mathrm{MeO} \sim \mathrm{Br}<$ Cl . The antiviral activity of the dichloro derivative 9 da is further enhanced when the methoxy group at $\mathrm{C} 4^{\prime}$ is replaced by bromine, as in rocaglate $\mathbf{9 d b}$. Finally, it was found that the best halogen combination at positions 6 and 8 is bromine at C6 and chlorine at C8 in rocaglate derivative 9 f .

It is remarkable that the medicinal-chemically relevant halogen fluorine shows a negative influence on the antiviral

Table 2. Overview of Halogenated Rocaglates Synthesized in the Present Work and Their Corresponding Efficacy against Chikungunya Virus (CHIKV), SARS-CoV-2 and Rift Valley Fever Virus (RVFV) at 24 and 48 h, Respectively ${ }^{a}$

					24 h (in nM)				48 h (in nM$)$			
compound	R^{1}	R^{2}	R^{3}	X	EC_{50}	EC_{90}	CC_{50}	SI	EC_{50}	EC_{90}	CC_{50}	SI
CHIKV												
9m	Br	OMe	OMe	OMe	2.1	12.3	>1000	637.2	2.9	9.8	>1000	428.1
9da	Cl	Cl	OMe	OMe	18.1	83.4	>1000	57.5	22.4	92.3	>1000	44.9
14f	Br	Cl	OMe	NHOMe	3.1	19.0	>1000	402.1	3.4	20.2	>1000	317.4
SARS-CoV-2												
9 m	Br	OMe	OMe	OMe	33.9	40.39	>1000	29.5	47.8	80.0	>1000	20.9
9da	Cl	Cl	OMe	OMe	110.8	387.2	>1000	9.0	176.5	557.5	>1000	5.7
14f	Br	Cl	OMe	NHOMe	51.4	919.9	>1000	19.5	189.5	339.9	176.4	0.9
RVFV												
9m	Br	OMe	OMe	OMe	26.6	39.4	>1000	38.4	43.32	53.2	>1000	23.1
9da	Cl	Cl	OMe	OMe	101.7	227.1	>1000	9.8	142.6	217.2	>1000	7.0
14f	Br	Cl	OMe	NHOMe	42.1	92.51	>1000	23.8	106.4	113.2	176.4	1.7

${ }^{a}$ Designations of $\mathrm{R}^{1}-\mathrm{R}^{3}$ and X are presented in Figure 2.

Figure 5. Short summary of SAR analysis and proposed interaction of bromine substituent at C 6 of ring A with the polypurine chain. ${ }^{a}$ $\mathrm{C}(\mathrm{O}) \mathrm{NMe}_{2}$ and $-\mathrm{C}(\mathrm{O}) \mathrm{NHOMe}$ instead of $-\mathrm{CO}_{2} \mathrm{Me}$ ester. ${ }^{b}-$ $\mathrm{C}(\mathrm{O}) \mathrm{NHOMe}$ shows improved activity over $-\mathrm{CO}_{2} \mathrm{Me}$ ester.
properties of rocaglates, at least in particular at positions 4^{\prime} and 6 , less so at position 8 .
Another trend worth mentioning is the fact that substitutions at the A ring (C6, C8) lead overall to better SI values in terms of activity than modifications at $\mathrm{C} 4^{\prime}$ or at C 2 (ester to amide). In general, more antiviral active derivatives show on average a better SI value than derivatives with lower activity.

This study contributes to the elucidation of new structureactivity relationship for a series of antiviral compounds targeting a panel of human pathogenic viruses. We identified compounds 9 m and $\mathbf{1 4 f}$, which are all more potent than the
natural product (\pm)-rocaglamide (rac-1b) and similarly potent as (-)-silvestrol (2a), as potential candidates for further studies. The cytotoxicity of these compounds is comparatively low warranting further explorations. Finally, one may speculate about the special effect of halogen substitution presented in this work. The report by Iwasaki and co-workers ${ }^{10}$ on the resolved structure of the human complex composed of eIF4A1, AMPPNP, rocaglamide $\mathbf{1 b}$ and polypurine RNA provides insight into this matter, because ring A in $\mathbf{1 b}$, that we modified with halogen substituents, is directed toward the polypurine RNA, specifically the adenine base of A7 and guanine base of G8. Halogen bonding, ${ }^{39}$ which resembles the electron density donation-based weak interaction of halogens with Lewis bases, including nucleobases, ${ }^{40}$ may provide a rationale for the observations reported here. A telling example is clindamycin, a halogenated ribosome binder that binds into the 50 S subunit. ${ }^{41}$ It contains one chlorine atom that is directed toward the sugar edge of guanosine and forms an interaction with the guanine nitrogen atom. ${ }^{40}$

Particularly, the introduction of bromine at position 6 in ring A leads to improved antiviral properties and this may be associated with halogen bonding toward the adenine base of A7 and guanine base at G8 (Figure 5D). In the future, structural biology studies should provide a deeper understanding of the halogen effect observed here.

EXPERIMENTAL SECTION

Chemical Synthesis: General Methods. All experiments involving water-sensitive compounds were carried out in dried glassware under argon or nitrogen. Anhydrous solvents (MeCN , $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{PhMe}$) were obtained from a M. Braun MB solvent purification system or commercial solvents were used as supplied. Petroleum ether and dichloromethane were distilled before application and triethylamine was dried over KOH and distilled as well. Commercial reagents were used as supplied. Thin-layer chromatography (TLC) was performed on aluminum-backed plates precoated (0.25 mm) with silica gel 60 F 254 with a suitable solvent system and was visualized using UV fluorescence and/or developed with KMnO_{4}, anisaldehyde or vanillin stain followed by brief heating. For column chromatography, silica gel ($35-70 \mu \mathrm{~m}$) was used. Alternatively, a Biotage SP purification system was used. Biotage silica cartridges were used as supplied. All compounds are $>95 \%$ pure. The purity of tested compounds was determined by analytical liquid
chromatography of solutions of the compounds in DMSO- d_{6}. Waters Alliance 2695 LC with a Waters Acquity 2996 photodiode array detector equipped with a Varian Polaris C18-A column $(5.0 \mu \mathrm{~m}, 50$ $\mathrm{mm} \times 2.0 \mathrm{~mm})$. The mobile phases were (A) 0.1% formic acid in water and (B) 0.1% formic acid in acetonitrile. After injection the gradient holds were at $\mathrm{A} / \mathrm{B}(90 \% / 10 \%)$ for 1.00 min followed by a gradient to $\mathrm{A} / \mathrm{B}(0 \% / 100 \%)$ over 1.75 min , a 0.05 min flush at $0 \% /$ $100 \%(\mathrm{~A} / \mathrm{B})$ and a 1.20 min re-equilibration at $\mathrm{A} / \mathrm{B}(90 \% / 10 \%)$ at a flow rate of $0.8 \mathrm{~mL} / \mathrm{min}$ and a column temperature of $45{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectra are represented as follows: chemical shift, multiplicity (s $=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{q} \mathrm{i}=$ quintet, $\mathrm{sx}=$ sextet, $\mathrm{sp}=$ septet, $\mathrm{bs}=$ broad singlet, $\mathrm{m}=$ multiplet $)$, coupling constant (J) in hertz (Hz), integration and assignment. ${ }^{13} \mathrm{C}$ NMR spectra are represented as follows: chemical shift, substitution ($\mathrm{p}=$ primary, $\mathrm{s}=$ secondary, $\mathrm{t}=$ tertiary, $\mathrm{q}=$ quaternary $)$ and assignment. ${ }^{19} \mathrm{~F}$ NMR spectra are represented as follows: multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{qi}=$ quintet, $\mathrm{sx}=$ sextet, $\mathrm{sp}=$ septet, $\mathrm{bs}=$ broad singlet, $\mathrm{m}=$ multiplet), coupling constant (J) in hertz (Hz), integration and assignment. The numbering of the carbon and hydrogen atoms of the rocaglates synthesized follows the IUPAC nomenclature. A list of all rocaglates including the numbering of the carbon and hydrogen atoms is provided in the Supporting Information. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded using a Bruker Ultrashield 500 MHz with Avance-III HD console, a Bruker Ascend 400 MHz with Avance-III console, a Bruker Ascend 400 MHz with Avance-III HD console, a Bruker Ultrashield 400 MHz with Avance-I console and a Bruker Ascend 600 MHz with Avance Neo console. High-resolution mass spectrometry (HRMS) data was measured with a Micromass LCT with lockspray source. The injection proceeded in loop-mode with a HPLC system by Waters (Alliance 2695). Alternatively, mass spectra were recorded with an Acquity-UPLC system by Waters in combination with a Q-Tof Premier mass spectrometer by Waters in lockspray mode. The ionization happened by electrospray ionization (ESI) or by chemical ionization at atmospheric pressure (APCI). The calculated and found mass are reported. GC/MS analyses were carried out with an HP 6890 chromatograph with KAS 4, coupled to an HP 5973 quadrupole mass selective detector. Samples were analyzed on an Optima 5 column (poly(5% phenyl-95\% methylsiloxane), $30 \mathrm{~m} \times 0.32 \mathrm{~mm}$ i.d. \times film thickness $0.25 \mu \mathrm{~m}$). Carrier gas, He; injector temp., 60 to 300 ${ }^{\circ} \mathrm{C}$ at $12{ }^{\circ} \mathrm{C} / \mathrm{min}$, splitless; temp. program: $50^{\circ} \mathrm{C}$ (isothermal 1 min) to $300^{\circ} \mathrm{C}$, at $20^{\circ} \mathrm{C} / \mathrm{min}$ and held isothermal for 6 min at $300^{\circ} \mathrm{C}$; ion source: EI, ionization energy, 70 eV ; electron mass spectra were acquired over the mass range of $40-500 \mathrm{amu}$.

Synthesis of (\pm)-Methyl $(1 R, 2 R, 3 S, 3 \mathrm{a} R, 8 \mathrm{bS})$-3a-(4-chloro-phenyl)-1,8b-dihydroxy-6,8-dimethoxy-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxylate (9a).

2-Hydroxy-1-(2-hydroxy-4,6-dimethoxyphenyl)ethan-1-one (4a). To a solution of 1-(2-hydroxy-4,6-dimethoxyphenyl)ethan-1-one (3a +) $\left(3.52 \mathrm{~g}, 17.9 \mathrm{mmol}, 1.00\right.$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(36 \mathrm{~mL})$ were added freshly distilled $\mathrm{Et}_{3} \mathrm{~N}(9.3 \mathrm{~mL}, 47.9 \mathrm{mmol}, 2.67$ equiv) and TBSOTf ($9.5 \mathrm{~mL}, 41.3 \mathrm{mmol}, 2.30$ equiv) at $0{ }^{\circ} \mathrm{C}$ and stirred at the same temperature for 4 h . The reaction was terminated by the addition saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and warmed up to rt. The layers were separated and the aqueous layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The collected organic layers were washed with brine, dried over MgSO_{4}, filtered and concentrated in vacuo. The crude/biphasic solution was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, dried over MgSO_{4}, filtered and concentrated in vacuo. The solvent residue was removed under high vacuum and the crude TBS-enol ether as thick red syrup was used directly for the next step. A suspension of $\mathrm{NaHCO}_{3}(3.21 \mathrm{~g}, 38.2$
mmol, 2.50 equiv) and $m \mathrm{CPBA}(77 \mathrm{wt} \%, 6.04 \mathrm{~g}, 35.0 \mathrm{mmol}, 1.60$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(44 \mathrm{~mL})$ was prepared and stirred at rt for 30 min. A solution of crude TBS-enol ether $(6.50 \mathrm{~g})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(23$ mL) was then added to the $m \mathrm{CPBA}$ suspension at $0^{\circ} \mathrm{C}$ and stirred for 30 min . The reaction mixture was warmed up to rt and stirred for 2 h . The reaction was terminated by dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed extensively with NaHCO_{3} (sat., aq.) to remove the $m \mathrm{CPBA}$ residue. The organic layers were washed with water, NaCl (sat., aq.), dried over MgSO_{4}, filtered and concentrated in vacuo. The thick red syrup crude was used for the next reaction without further purification. To the epoxide crude $(6.69 \mathrm{~g})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(10: 1,66 \mathrm{~mL})$ was added $p \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.29 \mathrm{mg}, 1.5 \mathrm{mmol}, 0.10$ equiv) and stirred under refluxing conditions for 6 h . The reaction was cooled down to rt and extracted with EtOAc , washed with NaHCO_{3} (sat., aq.), water, NaCl (sat., aq.), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude extract was stirred under refluxing conditions in EtOH for 1 h and slowly precipitated overnight at rt. The suspension was filtered and washed with cold EtOH to afford $\mathbf{4 a}$ as a pale-orange solid (1.09 g, $5.13 \mathrm{mmol}, 60 \%$ over three steps). $R_{\mathrm{f}}=0.42$ (petroleum ether/ EtOAc 1:1); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 13.22$ ($\mathrm{s}, 1 \mathrm{H}$, $\mathrm{OH}), 6.11(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 5.94(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, $4.71\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 201.9(\mathrm{q}, \mathrm{C}=\mathrm{O}), 167.3(\mathrm{q}, \mathrm{ArC})$, 167.1 (q, ArC), $163.32(q, \operatorname{ArC}), 93.8(\mathrm{t}, \operatorname{ArCH}), 91.0(\mathrm{t}, \mathrm{ArCH}), 68.9$ $\left(\mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right), 55.73\left(\mathrm{p}, \mathrm{OCH}_{3}\right), 55.71\left(\mathrm{p}, \mathrm{OCH}_{3}\right)$. The analytical data are consistent with those reported in the literature. ${ }^{21}$

2-(2-((4-Chlorobenzoyl)oxy)-4,6-dimethoxyphenyl)-2-oxo-ethyl 4-chlorobenzoate (5a). To a solution of alcohol $4 \mathrm{a}(1.09 \mathrm{~g}, 5.16$ mmol, 1.00 equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{~mL})$ were added DMAP (0.03 $\mathrm{mg}, 0.26 \mathrm{mmol}, 0.05$ equiv) and freshly distilled triethylamine (2.2 $\mathrm{mL}, 15.5 \mathrm{mmol}, 3.00$ equiv) and cooled down to $0^{\circ} \mathrm{C}$. To the cold suspension was added 4-chlorobenzoyl chloride ($0.36 \mathrm{~mL}, 2.69 \mathrm{mmol}$, 2.00 equiv) and warmed up to rt. The orange suspension was stirred at rt for 3 h , before the reaction was terminated by the addition of HCl solution ($1 \mathrm{M}, 15 \mathrm{~mL}$). The layers were separated and the aqueous layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The collected organic layers were washed with NaCl (sat., aq.), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product 5 a was used for the next step without further purification. $R_{\mathrm{f}}=0.50$ (petroleum ether/ EtOAc 2:1); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 8.08(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}$), $7.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}$), 7.43 (d, $J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 6.42(\mathrm{~d}, J=3.3$ $\mathrm{Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 5.27\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.85(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.

1-(4-Chlorophenyl)-3-(2-hydroxy-4,6-dimethoxyphenyl)-1,3-di-oxopropan-2-yl 4-chlorobenzoate (6a). To a solution of diester 5a ($2.52 \mathrm{~g}, 5.16 \mathrm{mmol}, 1.00$ equiv) crude in dry THF (29 mL) was added LiHMDS (1.0 M in THF, $15.5 \mathrm{~mL}, 15.5 \mathrm{mmol}, 3.00$ equiv) at $-20{ }^{\circ} \mathrm{C}$. The resulting red solution was stirred at the same temperature for 1 h . The reaction was terminated by the addition of $\mathrm{NH}_{4} \mathrm{Cl}$ (sat., aq.) and warmed up to rt for 5 min . The layers were separated, the aqueous layers were extracted with EtOAc. The collected organic layers were washed with NaCl (sat., aq.), dried over MgSO_{4}, filtered and carefully concentrated in vacuo. The crude product 6a was used for the next step without further purification. R_{f} $=0.54$ (petroleum ether/EtOAc 1:1); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$: $\delta[\mathrm{ppm}] 13.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.04(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.96$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.42$ (d, $\left.J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}{ }^{\prime}\right), 7.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.12(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 5.84(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.36$ (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$).

2-(4-Chlorophenyl)-5,7-dimethoxy-4-oxo-4H-chromen-3-yl 4chlorobenzoate (7a). To a solution of crude 6a (2.52 g) in AcOH $(65 \mathrm{~mL})$ was added $\mathrm{H}_{2} \mathrm{SO}_{4}(1.37 \mathrm{~mL}, 25.8 \mathrm{mmol}, 5.00$ equiv $)$, stirred at $80{ }^{\circ} \mathrm{C}$ and monitored by TLC. After all the starting material was consumed, the acidic solution was poured into ice water and stirred for 15 min . The resulting precipitate was filtered with Büchner funnel and washed with cold water. The solid was dried and recrystallized in EtOH to give $7 \mathrm{a}(1.46 \mathrm{~g}, 3.10 \mathrm{mmol}, 60 \%$ over three steps) as a beige solid. $R_{\mathrm{f}}=0.61$ (petroleum ether/EtOAc 1:1); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$
$\mathrm{MHz}): \delta[\mathrm{ppm}] 8.11(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.45(\mathrm{dd}, J=13,5.7 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{ArH}), 6.56(\mathrm{~d}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.36(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 3.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 3.92 (s, 3H, OCH_{3}).

2-(4-Chlorophenyl)-3-hydroxy-5,7-dimethoxy-4H-chromen-4one ($8 a$). To a suspension of $7 \mathrm{a}(1.46 \mathrm{~g}, 3.10 \mathrm{mmol}, 1.00$ equiv) was added an aqueous NaOH solution ($5 \mathrm{wt} \%, 4.5 \mathrm{~mL}, 5.82 \mathrm{mmol}, 1.88$ equiv) in $\mathrm{EtOH}(42 \mathrm{~mL})$. The reaction was heated to $80^{\circ} \mathrm{C}$ and stirred for 1 h . After starting material was fully consumed, the reaction was terminated by the addition of an HCl solution (aq., $1 \mathrm{M}, 5.82 \mathrm{~mL}$, $5.82 \mathrm{mmol}, 1.88$ equiv). The precipitate was filtered and washed with cold EtOH to afford 8 a as a yellow solid ($854 \mathrm{mg}, 2.56 \mathrm{mmol}, 83 \%$). $R_{\mathrm{f}}=0.78$ (petroleum ether/EtOAc 1:1); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta[\mathrm{ppm}] 8.16(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.49(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.46(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 6.56(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.36$ $(\mathrm{d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 3.98\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 3.92\left(\mathrm{~s}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 171.9(\mathrm{q}, \mathrm{C}=\mathrm{O}), 164.7(\mathrm{q}, \mathrm{ArC}), 160.6$ ($q, \operatorname{ArC}), 158.9(q, \operatorname{ArC}), 140.7(\mathrm{q}, \mathrm{C}=\mathrm{COH}), 138.4(\mathrm{q}, C O H)$, 135.5 (q, ArC), 129.6 ($q, \operatorname{ArC}), 128.8(\mathrm{t}, 2 \times \mathrm{ArC}), 128.4(\mathrm{t}, 2 \times \mathrm{ArC})$, 106.2 (q, ArC), 95.8 (t, ArC), 92.3 (t, ArC), 56.4 (p, $\mathrm{CH}_{3} \mathrm{O}$), 55.9 (p, $\mathrm{CH}_{3} \mathrm{O}$); HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$333.0530, found 333.0533.
(\pm)-Methyl (1R,2R,3S,3aR,8bS)-3a-(4-chlorophenyl)-1,8b-dihy-droxy-6,8-dimethoxy-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxylate (9a). To a solution of $\mathbf{8 a}$ ($508 \mathrm{mg}, 1.53 \mathrm{mmol}, 1.00$ equiv) in dry 2,2,2-TFE $(13 \mathrm{~mL})$ and dry $\mathrm{CHCl}_{3}(31 \mathrm{~mL})$ was added methyl cinnamate $(3.51 \mathrm{~g}, 21.7 \mathrm{mmol}$, 14.2 equiv). The clear solution was degassed with argon for 15 min , followed by UV-irradiation ($100 \mathrm{~W}, 365 \mathrm{~nm}$) at $-5^{\circ} \mathrm{C}$ for $10-16 \mathrm{~h}$. After the reaction was finished, the solvent was removed in vacuo and the excess of methyl cinnamate was removed by silica gel purification (petroleum ether/EtOAc 10:1, then 4:1, then EtOAc). The product mixture was used directly for the next step. To the solution of cycloadduct crude (727 mg) in dry $\mathrm{MeOH}(49 \mathrm{~mL})$ was added $\mathrm{NaOMe}(25 \mathrm{wt} \%$ in $\mathrm{MeOH}, 902 \mu \mathrm{~L}, 4.17 \mathrm{mmol}, 2.84$ equiv) and stirred under refluxing conditions for 1 h The reaction was terminated by the addition of $\mathrm{NH}_{4} \mathrm{Cl}$ (sat., aq.). The aqueous layers were extracted with EtOAc. The collected organic layers were washed with water, NaCl (sat., aq.), dried over MgSO_{4}, filtered and concentrated in vacuo. The ketone crude product was directly used for the next step. A solution of $\mathrm{Me}_{4} \mathrm{NBH}(\mathrm{OAc})_{3}(2.34 \mathrm{~g}, 8.92 \mathrm{mmol}, 6.42$ equiv) and freshly distilled $\mathrm{AcOH}(839 \mu \mathrm{~L}, 14.5 \mathrm{mmol}, 10.4$ equiv $)$ in dry MeCN $(36 \mathrm{~mL})$ was prepared and stirred at rt for 10 min . To this solution was added ketone crude product $(688 \mathrm{mg})$ in dry $\mathrm{MeCN}(23 \mathrm{~mL})$. The reaction was carried out under light exclusion and stirred for 19 h at rt. The reaction was terminated by the addition of NaK-tartrate (sat., aq.) and $\mathrm{NH}_{4} \mathrm{Cl}$ (sat., aq.). The layers were separated and the aqueous layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The collected organic layers were washed with water and NaCl (sat., aq.), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by silica gel column chromatography (petroleum ether/ EtOAc 3:1, then 2:1) to yield 9a ($272 \mathrm{mg}, 0.55 \mathrm{mmol}, 39 \%$ over three steps) as a pale-yellow foam. $R_{\mathrm{f}}=0.43\left(8 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \cdot{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 7.12-6.96\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{2} \mathbf{3}^{\prime}, H-\right.$ $\left.5^{\prime}, H-2^{\prime \prime}, H-6^{\prime \prime}\right), 7.09-7.07\left(\mathrm{~m}, 3 \mathrm{H}, H-2^{\prime}, H-6^{\prime}, H-4^{\prime \prime}\right), 6.92$ (d, J=7.3 $\left.\mathrm{Hz}, 2 \mathrm{H}, H-3^{\prime \prime}, H-5^{\prime \prime}\right), 6.28(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, H-5), 6.11(\mathrm{~d}, J=1.9$ $\mathrm{Hz}, 1 \mathrm{H}, H-7), 5.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.12(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 4.66$ $(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}, H-1), 4.23(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}, H-3), 3.99(\mathrm{dd}, J=$ $14,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.78$ (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}-6$), 3.72 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}-8$), $3.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}-11\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}]$ $170.3(\mathrm{C}=\mathrm{O}), 162.8(\mathrm{q}, \mathrm{C}-6), 160.3(\mathrm{q}, \mathrm{C}-4 \mathrm{a}), 157.8(\mathrm{q}, \mathrm{C}-8), 138.0$ ($\left.q, C-1^{\prime}\right), 135.9\left(q, C-1^{\prime \prime}\right), 130.9\left(q, C-4^{\prime}\right), 129.4\left(t, C-2^{\prime}, C-6^{\prime}\right), 127.7$ (t, C-2", C-6"), 127.6 (t, C-3", C-5"), 126.3 (t, C-3', C-5'), 125.9 (t, C-4"), 107.9 (q, C-8a), 101.2 (q, C-3a), 93.5 ($q, C-8 b), 91.9$ (t, C-7), 88.3 ($\mathrm{t}, \mathrm{C}-5$), $78.8(\mathrm{t}, \mathrm{C}-1), 55.5\left(\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-6 / 8\right), 55.4$ ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-6 / 8$), $54.8(\mathrm{t}, \mathrm{C}-3), 51.5\left(\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-11\right), 51.0(\mathrm{t}, \mathrm{C}-2)$; HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}$ calc. for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{FO}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$503.1477, found 503.1482; HPLC purity $\sim 100.00 \%$.

Synthesis of (\pm)-Methyl ($1 R, 2 R, 3 S, 3 \mathrm{aR}, 8 \mathrm{bS}$)-3a-(4-fluoro-phenyl)-1,8b-dihydroxy-6,8-dimethoxy-3-phenyl-2,3,3a,8b-
tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxylate (11ba).

1-(4-(Benzyloxy)-2-hydroxy-6-methoxyphenyl)-2-hydroxyethan-1one (4b). A solution of 4-benzyloxy-2-hydroxy-6-methoxyacetophenone (3 b) $\left(16.9 \mathrm{~g}, 62.0 \mathrm{mmol}, 1.00\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(125 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$, treated with $\mathrm{Et}_{3} \mathrm{~N}(21.6 \mathrm{~mL}, 155 \mathrm{mmol}, 2.50$ equiv) and TBSOTf ($32.8 \mathrm{~mL}, 143 \mathrm{mmol}, 2.30$ equiv) and stirred at $0^{\circ} \mathrm{C}$ for 2.5 h . The reaction was terminated by the addition NaHCO_{3} solution (sat., aq.) and was allowed to warm to rt. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic phases were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The yielding two-phasic mixture of the product and triethylammonium triflate was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{NH}_{4} \mathrm{Cl}$ solution (sat., aq.) and the phases were separated. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL}, 3 \times)$. The organic phases were combined, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The TBS-enol ether was collected as a salmon-colored solid (31.8 g) and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(60.0 \mathrm{~mL})$ and added to a suspension of $m \mathrm{CPBA}(77 \mathrm{wt} \%, 21.4 \mathrm{~g}$, 86.8 mmol, 1.40 equiv) and $\mathrm{NaHCO}_{3}(11.2 \mathrm{~g}, 133 \mathrm{mmol}, 2.15$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(240 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was allowed to warm to rt and stirred for 2 h . Then, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$, washed with NaHCO_{3} (sat., aq.) and $\mathrm{H}_{2} \mathrm{O}$, dried over MgSO_{4} and filtered. After concentration under reduced pressure, the crude epoxide was obtained as a brown viscous oil (32.1 $\mathrm{g})$ and dissolves in a mixture of $\operatorname{THF}(320 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(32.0 \mathrm{~mL})$. The solution was treated with $p \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(1.18 \mathrm{~g}, 6.20 \mathrm{mmol}, 10$ $\mathrm{mol} \%)$. The orange reaction mixture was heated under refluxing conditions for 6 h . The mixture was allowed to cool to rt and partitioned between EtOAc and NaHCO_{3} solution (sat., aq.). The organic phase was dried over MgSO_{4}, filtered and concentrated under reduced pressure. After purification by column chromatography (petroleum ether/EtOAc $5: 1 \rightarrow 2: 1$) the desired product $\mathbf{4 b}$ was obtained as a pale-brown solid $(10.9 \mathrm{~g}, 37.8 \mathrm{mmol}, 61 \%$ over three steps). $R_{\mathrm{f}}=0.21$ (petroleum ether/EtOAc 3:1); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta[\mathrm{ppm}] 13.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.43-7.34(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{ArH})$, $6.19(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.02(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 5.08(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.72(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH} \mathrm{OH}), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 202.1(\mathrm{q}, \mathrm{C}=\mathrm{O}), 167.4(\mathrm{q}, \mathrm{ArC}), 166.3$ $(\mathrm{q}, \operatorname{ArC}), 163.3(\mathrm{q}, \operatorname{ArC}), 135.7(\mathrm{q}, \operatorname{ArC}), 128.9(\mathrm{t}, 2 \times \operatorname{ArC}), 128.6(\mathrm{t}$, ArCH), $127.8(\mathrm{t}, \mathrm{ArCH}), 103.6(\mathrm{q}, \mathrm{ArC}), 94.8(\mathrm{t}, \mathrm{ArCH}), 91.7(\mathrm{t}$, $\mathrm{ArCH}), 70.6\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 68.8\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{OH}\right), 55.9\left(\mathrm{p}, \mathrm{OCH}_{3}\right)$. The analytical data are consistent with those reported in the literature. ${ }^{20}$

2-(4-(Benzyloxy)-2-((4-fluorobenzoyl)oxy)-6-methoxyphen-yl)-2oxoethyl 4-fluorobenzoate (5ba). DMAP ($21 \mathrm{mg}, 0.17 \mathrm{mmol}, 0.05$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(1.46 \mathrm{~mL}, 10.4 \mathrm{mmol}, 3.00$ equiv) were added into a solution of $\mathbf{4 b}\left(1.00 \mathrm{~g}, 3.47 \mathrm{mmol}, 1.00\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$, followed by the addition of 4-fluorobenzoyl chloride $(0.82 \mathrm{~mL}, 6.94$ mmol, 2.00 equiv) at $0^{\circ} \mathrm{C}$. The orange suspension was warmed up to rt and stirred for 3 h . The reaction was terminated by the addition of $\mathrm{HCl}(1 \mathrm{M}, 10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The organic layers were washed with NaCl solution (sat., aq., 50 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude extract 5 ba as a pale-orange solid $(1.99 \mathrm{~g})$ was directly used for the next step. $R_{\mathrm{f}}=0.38$ (petroleum ether/EtOAc 2:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta[\mathrm{ppm}] 8.16(\mathrm{dd}, J=9.0,5.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}$), 8.02 (dd, $J=9.0,5.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \operatorname{ArH}), 7.42-7.33(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{ArH}), 7.10(\mathrm{td}, J$ $=22,8.4 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{ArH}), 6.53(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.49(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 5.27\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.08(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH} 2), 3.86(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.

2-(4-(Benzyloxy)-2-hydroxy-6-methoxyphenyl)-2-oxoethan-e-1,1-diyl bis(4-fluorobenzoate) (6ba). LiHMDS (1 M in THF 10.4 $\mathrm{mL}, 10.4 \mathrm{mmol}, 3.00$ equiv) was added to the crude extract 5 ba (3.47
mmol) in THF (19 mL) at $-30{ }^{\circ} \mathrm{C}$ and stirred at the same temperature for 1.5 h . The reaction was terminated by the addition of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution at $-30^{\circ} \mathrm{C}$ and warmed up to rt. The mixture was extracted with $\mathrm{EtOAc}(3 \times 50 \mathrm{~mL})$. The organic layers were washed with water and NaCl solution (sat., aq., 100 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude extract $\mathbf{6 b a}$ as a yellow foam $(1.84 \mathrm{~g})$ was used directly in the next step without further purification. $R_{\mathrm{f}}=0.40$ (petroleum ether/EtOAc 2:1); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 13.18(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH})$, 8.12 (dd, $J=9.0,5.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}$), $8.06(\mathrm{dd}, J=8.9,5.3 \mathrm{~Hz}, 2 \mathrm{H}$, $2 \times \mathrm{ArH}), 7.40-7.33(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{ArH}), 7.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}) 7.20(\mathrm{t}, \mathrm{J}=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Ar} H), 7.12(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \operatorname{ArH}), 6.20(\mathrm{~d}, J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 5.92(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 5.07(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.

7-(Benzyloxy)-2-(4-fluorophenyl)-5-methoxy-4-oxo-4+H-chro-men-3-yl 4-fluorobenzoate (7ba). Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(0.92 \mathrm{~mL}$, $17.3 \mathrm{mmol}, 5.00$ equiv) was added to crude $\mathbf{6 b a}(3.47 \mathrm{mmol})$ dissolved in $\mathrm{CH}_{3} \mathrm{COOH}(43 \mathrm{~mL})$ and stirred at rt for 16 h , monitored by TLC. In the presence of starting material, additional $\mathrm{H}_{2} \mathrm{SO}_{4}(0.92$ $\mathrm{mL}, 17.3 \mathrm{mmol}, 5.00$ equiv) was added to the dark brown solution and stirred for further 16 h at rt . After full conversion of the starting material, the reaction mixture was poured into ice water and stirred for 15 min . The suspension was filtered by Büchner funnel. The precipitate was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and concentrated in vacuo. The crude extract was purified by silica gel column chromatography (PE/ $\mathrm{EtOAc}=4: 1$, then $2: 1$) to yield ester $7 \mathbf{b a}(1.25 \mathrm{~g}, 2.42 \mathrm{mmol}, 70 \%$ over three steps) as a yellow foam. $R_{\mathrm{f}}=0.67$ (petroleum ether/EtOAc 1:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 8.20(\mathrm{dd}, J=9.0,5.4$ $\mathrm{Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}$), 7.89 (dd, $J=9.1,5.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}$), $7.48-7.36$ $(\mathrm{m}, 5 \mathrm{H}, 5 \times \mathrm{ArH}), 7.15(\mathrm{td}, J=8.6,3.8 \mathrm{~Hz}, 4 \mathrm{H}, 4 \times \mathrm{ArH}), 6.64(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.47(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 5.16$ (s, 2H, $\mathrm{OCH}_{2} \mathrm{Ph}$), $3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.

7-(Benzyloxy)-2-(4-fluorophenyl)-3-hydroxy-5-methoxy-4H-chromen-4-one ($8 b a$). NaOH (5% aqueous, $1.09 \mathrm{~mL}, 1.42 \mathrm{mmol}$, 1.88 equiv) was added to $7 \mathbf{b a}(390 \mathrm{mg}, 0.76 \mathrm{mmol}, 1.00$ equiv) in EtOH (10 mL). The yellow suspension was stirred 3 h at rt . The reaction was terminated by the addition of an aqueous HCl solution ($1 \mathrm{M}, 1.42 \mathrm{mmol}, 1.42 \mathrm{~mL}, 1.88$ equiv) and precipitated yellow solids. The suspension was filtered and the precipitate was washed with cold EtOH to give pure product $\mathbf{8 b a}$. The mother liquor was concentrated and was purified further by silica gel column chromatography (petroleum ether/EtOAc 2:1, then $1: 1$) to give total product 8ba as a yellow solid ($264 \mathrm{mg}, 0.69 \mathrm{mmol} 91 \%$). $R_{\mathrm{f}}=0.33$ (petroleum ether/ EtOAc 1:2); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 8.22$ (dd, $J=9.1$, $5.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.48-7.37(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{ArH}), 7.20(\mathrm{t}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 6.65(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.46(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 5.17\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 3.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 172.0(\mathrm{q}, \mathrm{C}=\mathrm{O}), 163.7(\mathrm{q}, \mathrm{ArC}), 163.3$ ($q, d, J=251 \mathrm{~Hz}, \operatorname{ArC}), 160.7(\mathrm{q}, \operatorname{ArC}), 158.9(\mathrm{q}, \operatorname{ArC}), 141.2(\mathrm{q}, \mathrm{C}=$ $\mathrm{COH}), 138.0(\mathrm{q}, \mathrm{COH}), 135.5(2 \times \mathrm{ArC}), 129.4(\mathrm{t}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \times$ ArC), 128.8 (t, $2 \times \operatorname{ArC),~} 128.6$ ($\mathrm{t}, \operatorname{ArC}$), 127.7 ($\mathrm{t}, 2 \times \operatorname{ArC),127.3(q,~}$ $d, J=3.2 \mathrm{~Hz}, \mathrm{ArC}) 115.7(\mathrm{t}, d, J=22 \mathrm{~Hz}, 2 \times \operatorname{ArC}), 106.4(\mathrm{q}, \mathrm{ArC})$, $96.3(\mathrm{t}, \mathrm{ArC}), 93.4(\mathrm{t}, \mathrm{ArC}), 70.7\left(\mathrm{~s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 56.5\left(\mathrm{p}, \mathrm{OCH}_{3}\right)$; HRMS (ESI ${ }^{+}$) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{FO}_{5} \mathrm{Na}[\mathrm{M}-\mathrm{Na}]^{+} 415.0958$, found 415.0964.
(\pm)-Methyl-6-(benzyloxy)-3a-(4-fluorophenyl)-1,8b-dihydroxy-8-methoxy-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]-benzofuran-2-carboxylate (9ba). Methyl cinnamate (1.19 g, 7.38 mmol, 14.20 equiv) was added to flavonol $\mathbf{8 b a}(204 \mathrm{mg}, 0.52 \mathrm{mmol}$, 1.00 equiv) in $\mathrm{CHCl}_{3}(10.4 \mathrm{~mL})$ and 2,2,2-trifluoroethanol (4.3 mL). The solution was degassed with argon for 20 min and irradiated (100 W, 365 nm) at $-10{ }^{\circ} \mathrm{C}$ under argon atmosphere for $16-40 \mathrm{~h}$. After starting material $\mathbf{8 b b}$ was fully consumed, the reaction mixture was concentrated in vacuo and the methyl cinnamate excess was removed by silica gel column chromatography (petroleum ether/EtOAc 4:1, then 1:1). The desired cycloadduct was obtained as a mixture of isomers as a yellow foam (228 mg). The isomer mixture was used submitted for subsequent reaction without further purification. The mixture ($228 \mathrm{mg}, 0.41 \mathrm{mmol}, 1.00$) was dissolved in dry MeOH (13.5 mL) and NaOMe ($25 \mathrm{wt} \%$ in $\mathrm{MeOH}, 250 \mu \mathrm{~L}, 1.16 \mathrm{mmol}, 2.84$ equiv)
was added. The reaction was stirred under refluxing conditions for 1 h. The reaction was terminated by the addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution (sat., aq., 10 mL) and extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The organic layers were washed with water and NaCl (sat., aq.), dried over MgSO_{4}, filtered and concentrated in vacuo to give the desired keto ester mixture as a yellow foam (228 mg) and used the directly for the next step. A suspension of $\mathrm{Me}_{4} \mathrm{NBH}(\mathrm{OAc})_{3}(688 \mathrm{mg}, 2.62 \mathrm{mmol}$, 6.42 equiv) and freshly distilled $\mathrm{CH}_{3} \mathrm{COOH}(246 \mu \mathrm{~L}, 4.24 \mathrm{mmol}$, 10.4 equiv) in dry $\mathrm{MeCN}(10.5 \mathrm{~mL})$ was prepared and stirred at rt for 5 min . To the prepared suspension was added the keto ester mixture ($228 \mathrm{mg}, 0.41 \mathrm{mmol}, 1.00$ equiv) and stirred for 16 h at rt under light protection. The reaction was terminated by the addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution (sat., aq.) and NaK-tartrate (sat., aq.) solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 60 \mathrm{~mL})$. The organic layers were washed with water and NaCl (sat., aq.), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude extract was purified by silica column chromatography (petroleum ether/EtOAc 3:2) to give racemic endo-product $9 \mathbf{b a}(107 \mathrm{mg}, 0.19 \mathrm{mmol}, 47 \%$ over three steps) as a pale-yellow foam. $R_{\mathrm{f}}=0.52(\mathrm{EtOAc}) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, 400 MHz): δ [ppm] 7.47-7.36 (m, 5H, H-3"', H-4 ${ }^{\prime \prime \prime}, H-5^{\prime \prime \prime}, H-6^{\prime \prime \prime}, H-$ $7^{\prime \prime \prime}$), 7.18-7.15 (m, 2H, H-2', H-6'), 7.07-7.05 (m, 3H, H-2", H-4", $\left.H-6^{\prime \prime}\right), 6.86-6.80\left(\mathrm{~m}, 4 \mathrm{H}, H-3^{\prime}, H-5^{\prime}, H-3^{\prime \prime}, H-5^{\prime \prime}\right), 6.36$ (d, J = 1.7 $\mathrm{Hz}, 1 \mathrm{H}, H-5), 6.22(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, H-7), 5.09\left(\mathrm{~s}, 2 \mathrm{H}, H-1^{\prime \prime \prime}\right), 5.03$ (d, J=6.5 Hz, 1H, H-1), 4.33 (d, J=14 Hz, 1H, H-3), 3.91-3.86 (m, 1H, H-2), $3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}-8\right), 3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}-11\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 170.4(\mathrm{q}, \mathrm{C}-11), 163.3(\mathrm{q}, \mathrm{C}-8), 161.9$ ($\left.q, d, J=247 \mathrm{~Hz}, C-4^{\prime}\right), 160.6$ (q, C-4a), 156.9 ($q, C-6$), 136.6 ($q, C-$ $\left.1^{\prime \prime}\right), 136.4\left(\mathrm{C}-2^{\prime \prime \prime}\right), 130.4\left(\mathrm{q}, d, J=3.3 \mathrm{~Hz}, C-1^{\prime}\right), 129.6(\mathrm{t}, d, J=8.1$ $\left.\mathrm{Hz}, 2 \mathrm{C}, \mathrm{C}-2^{\prime}, \mathrm{C}-6^{\prime}\right), 128.7$ (t, C-4"', C-6"'), 128.2 (t, C-5"'), 127.8 (t , C-2", C-6" $), 127.7$ ($\mathrm{t}, \mathrm{C}-3^{\prime \prime}, C-5^{\prime \prime}$), 127.6 ($\left.\mathrm{t}, \mathrm{C}-3^{\prime \prime \prime}, C-7^{\prime \prime \prime}\right), 126.7$ ($\mathrm{t}, \mathrm{C}-$ $\left.4^{\prime \prime}\right), 114.1\left(\mathrm{t}, d, J=21 \mathrm{~Hz}, C-3^{\prime}, C-5^{\prime}\right), 107.7(\mathrm{q}, C-8 \mathrm{a}), 101.7$ (C-3a), 93.7 (t, C-7), 93.5 (t, C-5), 90.5 (C-8b), 79.6 (t, C-1), 70.5 (s, C-1"'), 55.8 (p, H ${ }_{3} \mathrm{CO}-11$), 55.1 ($\mathrm{t}, \mathrm{C}-3$), 52.1 ($\left.\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-8\right), 50.3(\mathrm{t}, \mathrm{C}-2)$. HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / z$ calcd for $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{FO}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$579.1795, found 579.1799.
(\pm)-Methyl-3a-(4-fluorophenyl)-1,6,8b-trihydroxy-8-methoxy-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxylate (10ba). Pd/C ($10 \%, 6.6 \mathrm{mg}, 0.006 \mathrm{mmol}, 0.05$ equiv) and 9ba ($51 \mathrm{mg}, 0.09 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (0.92 mL). Hydrogen gas was bubbled through the black suspension for 10 min at rt . The reaction was carried under H_{2}-atmosphere (high-pressure hydrogen balloons were attached) for 16 h . After the reaction was finished (monitored by TLC), the reaction mixture was filtered over Celite to remove the Pd / C, rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and concentrated in vacuo to give crude phenol 10ba (43 mg) as a yellow foam. The crude product was submitted for subsequent reaction without further purification. $R_{\mathrm{f}}=0.20$ (petroleum/EtOAc 1:2).
(\pm)-Methyl-3a-(4-fluorophenyl)-1,8b-dihydroxy-6,8-dime-thoxy-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta-[b]-benzofuran-2-carboxylate (11ba). To crude 10ba ($50 \mathrm{mg}, 0.11$ mmol, 1.00 equiv) in toluene $/ \mathrm{MeOH}(1: 1,7 \mathrm{~mL})$ was added TMSCHN 2 (2 M in hexanes, $0.86 \mathrm{~mL}, 1.72 \mathrm{mmol}, 16.0$ equiv) and stirred 3 h at rt . After the reaction was finished (monitored by TLC), the solvent was removed in vacuo. The crude extract was purified by silica gel column chromatography to afford $\mathbf{1 1 \mathbf { b a }}(38 \mathrm{mg}, 0.08 \mathrm{mmol}$, 71% over two steps) as a colorless foam. $R_{\mathrm{f}}=0.29$ (petroleum/EtOAc 1:2); ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 7.12(\mathrm{q}, J=4.8 \mathrm{~Hz}$, $\left.2 \mathrm{H}, H-2^{\prime}, H-6^{\prime}\right), 7.05\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, H-3^{\prime \prime}, H-5^{\prime \prime}\right), 6.98(\mathrm{t}, J=7.3$ $\left.\mathrm{Hz}, 1 \mathrm{H}, H-4^{\prime \prime}\right), 6.89\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, H-2^{\prime \prime}, H-6^{\prime \prime}\right), 6.83(\mathrm{t}, J=8.9$ $\left.\mathrm{Hz}, 2 \mathrm{H}, H-3^{\prime}, H-5^{\prime}\right), 6.29$ (d, $\left.J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, H-5\right), 6.12$ (d, $J=1.9$ $\mathrm{Hz}, 1 \mathrm{H}, H-7), 5.22(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 5.10(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OH}), 4.68$ $(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, H-1), 4.21(\mathrm{~d}, J=14 \mathrm{~Hz}, H-3), 3.97(\mathrm{dd}, J=14,5.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.78$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}-6$), 3.73 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}-8$), 3.55 (s , $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}-11$) ppm. ${ }^{13} \mathrm{C}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 100 \mathrm{MHz}\right): \delta$ [ppm] 170.7 ($q, C-11), 163.2(q, C-8), 161.1$ ($\left.q, C-4^{\prime}\right), 160.8$ ($\left.q, C-4 a\right)$, 158.3 ($q, C-6), 138.5\left(\mathrm{q}, C^{\prime \prime}-1^{\prime \prime}\right), 133.3\left(\mathrm{q}, d, J=2.9 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}-1^{\prime}\right)$, 129.9 ($\left.\mathrm{t}, d, J=8.0 \mathrm{~Hz}, C-2^{\prime}, C-6^{\prime}\right), 128.1\left(\mathrm{t}, C-2^{\prime \prime}, C-6^{\prime \prime}\right), 127.9(\mathrm{t}, C-$ $\left.3^{\prime \prime}, C-5^{\prime \prime}\right), 126.4\left(\mathrm{t}, C-4^{\prime \prime}\right), 113.5\left(\mathrm{t}, d, J=21 \mathrm{~Hz}, C-3^{\prime}, C-5^{\prime}\right), 108.5$ (q, C-8a), 41.6 ($q, C-3 a), 93.8(q, C-8 b), 92.3(t, C-7), 88.8(t, C-5), 79.2$ ($\mathrm{t}, \mathrm{C}-1$), $55.9\left(\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-6\right), 55.8\left(\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-8\right), 55.2(\mathrm{t}, \mathrm{C}-3), 51.8(\mathrm{p}$,
$\mathrm{H}_{3} \mathrm{CO}-11$), 51.4 ($\mathrm{t}, \mathrm{C}-2$) ppm. HRMS (ESI ${ }^{+}$) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{O}_{7} \mathrm{FNa}[\mathrm{M}+\mathrm{Na}]^{+}$503.1482, found 503.1489; HPLC Purity 98.08\%.

Synthesis of (\pm)-Methyl ($1 R, 2 R, 3 S, 3 \mathrm{aR}, 8 \mathrm{bS}$)-3a-(4-bromo-phenyl)-1,8b-dihydroxy-6,8-dimethoxy-3-phenyl-2,3,3a,8b-tetrahydro-1 H -cyclopenta[b]benzofuran-2-carboxylate (11bb).

2-(4-(Benzyloxy)-2-((4-bromobenzoyl)oxy)-6-methoxyphenyl)-2oxoethyl 4-bromobenzoate (5bb). A solution of the α-hydroxy ketone $\mathbf{4 b}\left(3.07 \mathrm{~g}, 10.6 \mathrm{mmol}, 1.00\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35.5 \mathrm{~mL})$ was treated with 4-DMAP ($65.0 \mathrm{mg}, 532 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) and triethylamine ($4.45 \mathrm{~mL}, 31.9 \mathrm{mmol}, 3.00$ equiv). The mixture was cooled to $0^{\circ} \mathrm{C}$ and 4-bromobenzoyl chloride ($4.67 \mathrm{~g}, 21.3 \mathrm{mmol}, 2.00$ equiv) was added and stirred at rt for 3.5 h . The solution was terminated by the addition of $\mathrm{HCl}\left(1.00 \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ and the phases were separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic phases were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The desired bisbenzoate 5bb was obtained as a yellow foam (6.97 g) and was used directly for the next step. $R_{\mathrm{f}}=0.50$ (petroleum ether/EtOAc 2:1).

1-(4-(Benzyloxy)-2-hydroxy-6-methoxyphenyl)-3-(4-bromophen-yl)-1,3-dioxopropan-2-yl 4-bromobenzoate (6bb). A solution of crude bisbenzoate $\mathbf{5 b b}(6.97 \mathrm{~g}, 10.7 \mathrm{mmol}, 1.00$ equiv) in THF (59.2 mL) was cooled to $-20^{\circ} \mathrm{C}$ and treated with LiHMDS solution (1.00 M in THF, $32.0 \mathrm{~mL}, 32.0 \mathrm{mmol}, 3.00$ equiv). The mixture was stirred at $-20^{\circ} \mathrm{C}$ for 30 min . Then, the reaction was terminated by the addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution (sat., aq.) and warmed to rt. The aqueous phase was extracted with EtOAc ($3 \times$) and the combined organic phases were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was suspended in EtOH and heated under refluxing conditions for 15 min . After cooling to rt , the suspension was filtered and the solid was washed with cold EtOH. The desired phenol $\mathbf{6 b b}$ was obtained as a pale-yellow solid (4.93 g , $7.54 \mathrm{mmol}, 71 \%$ over two steps). $R_{\mathrm{f}}=0.50$ (petroleum ether/EtOAc 2:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 13.14(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH})$, $7.96(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH})$, $7.67(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Ar} H), 7.59(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH})$, $7.40-7.34(\mathrm{~m}, 6 \mathrm{H}, 5 \times \mathrm{ArH}, \mathrm{CHO}), 6.20(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, $5.93(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 5.06\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 3.35(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 193.3(\mathrm{q}, \mathrm{C}=\mathrm{O})$, $190.0(\mathrm{q}, \mathrm{C}=\mathrm{O}), 167.9(\mathrm{q}, \mathrm{C}(=\mathrm{O}) \mathrm{O}), 166.4(\mathrm{q}, \operatorname{ArC}), 164.9$ (q , $\mathrm{ArC}), 161.5$ (q, ArC), 135.7 (q, ArC), 133.5 (q, ArC), 132.6 ($\mathrm{t}, 2 \times$ $\mathrm{ArC}), 132.1(\mathrm{t}, 2 \times \mathrm{ArC}), 131.8(\mathrm{t}, 2 \times \mathrm{ArC}), 130.3(\mathrm{t}, 2 \times \mathrm{ArC}), 129.6$ $(\mathrm{q}, \mathrm{ArC}), 129.3(\mathrm{q}, \mathrm{ArC}), 128.9(\mathrm{t}, 2 \times \mathrm{ArC}), 128.6(\mathrm{t}, \mathrm{ArCH}), 127.8$ $(\mathrm{t}, 2 \times \operatorname{ArC}), 127.7(\mathrm{q}, \mathrm{ArC}), 104.6(\mathrm{t}, \mathrm{ArCH}), 95.3(\mathrm{t}, \mathrm{ArCH}), 91.9(\mathrm{t}$, $\mathrm{ArCH}), 76.9(\mathrm{t}, \mathrm{HCO}), 70.6\left(\mathrm{~s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 55.6\left(\mathrm{p}, \mathrm{OCH}_{3}\right)$. The analytical data are consistent with those reported in the literature. ${ }^{20}$
7-(Benzyloxy)-2-(4-bromophenyl)-5-methoxy-4-oxo-4H-chro-men-3-yl 4-bromobenzoate (7bb). A suspension of crude phenol $\mathbf{6 b b}(4.42 \mathrm{~g}, 6.76 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{AcOH}(92.0 \mathrm{~mL})$ was treated with $\mathrm{H}_{2} \mathrm{SO}_{4}$ ($96 \mathrm{wt} \%, 2.09 \mathrm{~mL}, 35.4 \mathrm{mmol}, 5.24$ equiv) and stirred at $50^{\circ} \mathrm{C}$ for 20 h . The reaction mixture was poured into ice-cold $\mathrm{H}_{2} \mathrm{O}$, the yellow suspension was filtered and the precipitate was washed with $\mathrm{H}_{2} \mathrm{O}$. The wet solid was suspended in a minimal amount of EtOH and heated under refluxing conditions for 45 min . After cooling to rt, the mixture was filtered, the precipitate was washed with cold EtOH and dried under reduced pressure to give a mixture of $7 \mathbf{b} \mathbf{b}$ and $\sim 40 \%$ of the debenzylated flavonol ester. The solid was dissolved in DMF (65.0 mL) and treated with $\operatorname{BnBr}(807 \mu \mathrm{~L}, 6.76 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.87 \mathrm{~g}, 13.5 \mathrm{mmol}, 2.00$ equiv), stirred at rt for 2.5 h and then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and NaCl solution (sat., aq., 100 mL). The phases were separated and the organic phase was dried over MgSO_{4}, filtered and concentrated under reduced pressure.

The residue was suspended in a minimal amount of EtOH and heated to reflux for 1 h , cooled to rt and filtered. After washing with cold EtOH and drying under reduced pressure, the desired 3benzyloxyflavonate $\mathbf{7 b b}$ was obtained as a yellow solid $(3.25 \mathrm{~g}, 5.11$ $\mathrm{mmol}, 76 \%) . R_{\mathrm{f}}=0.60$ (petroleum ether/EtOAc 1:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 8.03(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.74$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}$), $7.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}$), 7.58 $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Ar} H), 7.45-7.38(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{Ar} H), 6.63(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{ArH}), 6.47(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 5.16$ (s, 2H, OCH Ph), $3.91(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3^{\prime}}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 170.4(\mathrm{q}, \mathrm{C}=\mathrm{O})$, $163.9(\mathrm{q}, \mathrm{ArC}), 163.5(\mathrm{q}, \mathrm{OC}=\mathrm{O}), 161.5(\mathrm{q}, \mathrm{ArC}), 159.3(\mathrm{q}, \mathrm{ArC})$, 152.7 ($q, C=C-O), 135.6(q, A r C), 134.8(q, C=C-O), 132.14(t$, $4 \times \mathrm{ArC}), 132.09(\mathrm{t}, 2 \times \mathrm{ArC}), 129.6(\mathrm{t}, 2 \times \mathrm{ArC}), 129.2(\mathrm{q}, \mathrm{ArC})$, $129.0(\mathrm{t}, 2 \times \mathrm{ArC}), 128.9(\mathrm{q}, \mathrm{ArC}), 128.7(\mathrm{t}, \mathrm{ArCH}), 127.81(\mathrm{q}, \mathrm{ArC})$, $127.76(\mathrm{t}, 2 \times \mathrm{ArC}), 125.8(\mathrm{q}, \mathrm{ArC})$, 109.1 ($\mathrm{q}, \mathrm{ArC}), 97.0(\mathrm{t}, \mathrm{ArCH})$, $93.7(\mathrm{t}, \mathrm{ArCH}), 70.8\left(\mathrm{~s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 56.5\left(\mathrm{p}, \mathrm{OCH}_{3}\right)$. The analytical data are consistent with those reported in the literature. ${ }^{20}$

7-(Benzyloxy)-2-(4-bromophenyl)-3-hydroxy-5-methoxy-4H-chromen-4-one ($8 \mathbf{b b}$). A suspension of the benzoate $7 \mathbf{b b}(1.00 \mathrm{~g}$, $1.57 \mathrm{mmol}, 1.00$ equiv) in EtOH (20.8 mL) was treated with NaOH solution ($5 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}, 2.39 \mathrm{~mL}, 3.14 \mathrm{mmol}, 2.00$ equiv). The yellowish suspension was stirred at $80^{\circ} \mathrm{C}$ for 1.75 h . The reaction mixture was allowed to cool to rt and was neutralized with $\mathrm{HCl}(1.00$ M in $\mathrm{H}_{2} \mathrm{O}, 3.30 \mathrm{~mL}, 3.30 \mathrm{mmol}, 2.10$ equiv). The resulting suspension was filtered on a Büchner funnel and the precipitate was washed with a small amount of cold ethanol. The solid was dried under reduced pressure to constant weight to give the desired 3hydroxyflavone $\mathbf{8 b b}$ as a yellowish solid ($634 \mathrm{mg}, 1.40 \mathrm{mmol}$) in 89% yield. $R_{\mathrm{f}}=0.48$ (petroleum ether/EtOAc 2:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta[\mathrm{ppm}] 8.09(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.64(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.49-7.37(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{ArH}), 6.65(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Ar} H), 6.45(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 5.16\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 3.98(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 172.1(\mathrm{q}, \mathrm{C}=$ O), 163.9 (q, ArC), 160.8 (q, ArC), 159.0 (q, ArC), 141.0 ($q, C=$ $\mathrm{COH}), 138.6(\mathrm{q}, \mathrm{COH}), 135.6(\mathrm{q}, \mathrm{ArC}), 131.9(\mathrm{t}, 2 \times \mathrm{ArC}), 130.2(\mathrm{q}$, ArC), $129.0(\mathrm{t}, 2 \times \mathrm{ArC}), 128.8(\mathrm{t}, 2 \times \mathrm{ArC}), 128.7(\mathrm{t}, \mathrm{ArCH}), 127.8$ $(\mathrm{t}, 2 \times \operatorname{ArC}), 124.1(\mathrm{q}, \mathrm{ArC}), 106.5(\mathrm{q}, \mathrm{ArC}), 96.5(\mathrm{t}, \mathrm{ArCH}), 93.5(\mathrm{t}$, $\mathrm{ArCH}), 70.8\left(\mathrm{~s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 56.5\left(\mathrm{p}, \mathrm{OCH}_{3}\right)$. The analytical data are consistent with those reported in the literature. ${ }^{20}$
(\pm)-Methyl (1R,2R,3S,3aR,8bS)-6-(benzyloxy)-3a-(4-bromophen-yl)-1,8b-dihydroxy-8-methoxy-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxylate (9bb). Methyl cinnamate ($3.20 \mathrm{~g}, 19.7 \mathrm{mmol}, 14.2$ equiv) was added to a solution of flavonol $\mathbf{8 b b}(629 \mathrm{mg}, 1.39 \mathrm{mmol}, 1.00$ equiv) in dry chloroform (28.3 mL) and freshly distilled $2,2,2$-trifluoroethanol (11.3 mL). The reaction mixture was degassed for 30 min , then cooled to $-5^{\circ} \mathrm{C}$ and irradiated with UV light ($\lambda_{\max }=365 \mathrm{~nm}$) until it no longer fluoresced greenish (24 h). Subsequently, the solvent was removed under reduced pressure. The remaining amount of methyl cinnamate was then removed by column chromatography (petroleum ether/EtOAc 5.5:1 $\rightarrow 1: 1$). The desired cycloadduct was obtained as a mixture of isomers as a yellowish foam $(629 \mathrm{mg})$. Without any further purification the product of the first step ($629 \mathrm{mg}, 1.02 \mathrm{mmol}, 1.00$ equiv) was dissolved in $\mathrm{MeOH}(40.9 \mathrm{~mL}$). Then NaOMe solution ($25 \mathrm{wt} \%$ in $\mathrm{MeOH}, 799 \mu \mathrm{~L}, 3.37 \mathrm{mmol}, 3.30$ equiv) was added and the mixture was heated under refluxing conditions for 1 h . Subsequently, the reaction was terminated by the addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution (sat., aq.). The phases were separated and the aqueous phase was extracted with EtOAc $(3 \times)$. The organic phases were combined, dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. The desired keto ester was obtained as a mixture of isomers as a yellow, glassy foam (629 mg) and used directly for the next step. A mixture of $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}(\mathrm{OAc})_{3} \mathrm{BH}(1.73 \mathrm{~g}, 6.56 \mathrm{mmol}, 6.42$ equiv) and freshly distilled AcOH ($612 \mu \mathrm{~L}, 10.6 \mathrm{mmol}, 10.4$ equiv) in $\mathrm{MeCN}(9.00 \mathrm{~mL}$) was stirred for 5 min at rt . Then, a solution of the product of the second step ($629 \mathrm{mg}, 1.02 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{MeCN}(6.00 \mathrm{~mL})$ was added. The mixture was protected from light and stirred for 19 h at rt . The reaction was then terminated by adding $\mathrm{NH}_{4} \mathrm{Cl}$ solution (sat., aq.) and sodium potassium tartrate solution (aq., 2.00 M). The phases were separated and the aqueous layer was extracted with
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. Column chromatography (petroleum ether/EtOAc $5: 1 \rightarrow 1: 1$) was then performed to obtain the racemic endo-product $\mathbf{9 b b}$ as a pale-yellow solid ($293 \mathrm{mg}, 483 \mu \mathrm{~mol}, 35 \%$ over three steps). $R_{\mathrm{f}}=0.52$ (petroleum ether/EtOAc 1:1); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ [ppm] 7.47-7.34 (m, 5H, H-3"', H-4"', H-5"', H-6"', H-7"'), 7.26 (d, J = 8.7 Hz, H-3', $\left.H-5^{\prime}\right), 7.08-7.05$ (m, 5H, H-2', H-6', H-3", H-4", H-5"), 6.89-6.86 (m, 2H, H-2", H-6"), 6.36 (d, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, H-5$), 6.22 (d, $J=1.9$ $\mathrm{Hz}, 1 \mathrm{H}, H-7), 5.09\left(\mathrm{~s}, 2 \mathrm{H}, H-1^{\prime \prime \prime}\right), 5.01$ (dd, $\left.J=6.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}, H-1\right)$, $4.35(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}, H-3), 3.81(\mathrm{dd}, J=14.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}, H-2)$, 3.86 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}-8$), 3.66 ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}-11\right), 3.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}-8 \mathrm{~b})$, $1.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}-1) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 170.5$ ($q, C-11), 163.5$ (q, C-6), 160.8 ($q, C-4 a), 157.1$ ($q, C-8$), 136.6 (q, C-2"'), 136.5 ($q, C-1^{\prime \prime}$), 133.9 ($\left.q, C-1^{\prime}\right), 130.4$ (t, C-3', C-5'), 129.6 (t, C-2', C-6'), 128.9 ($\mathrm{t}, \mathrm{C}-4^{\prime \prime \prime}, C-6^{\prime \prime \prime}$), 128.4 ($\mathrm{t}, \mathrm{C}-5^{\prime \prime \prime}$), 128.0 ($\mathrm{t}, \mathrm{C}-3^{\prime \prime}, \mathrm{C}-$ $\left.5^{\prime \prime}\right), 127.8\left(\mathrm{t}, C-2^{\prime \prime}, C-6^{\prime \prime}\right), 127.7\left(\mathrm{t}, C-3^{\prime \prime \prime}, C-7^{\prime \prime \prime}\right), 126.9\left(\mathrm{t}, C-4^{\prime \prime}\right)$, 121.8 (q. C-4'), 107.6 (q, C-8a), 101.8 (q, C-3a), 93.9 (q, C-8b), 93.6 (t, C-7), 90.6 (t, C-5), 79.7 (t, C-1), 70.7 (s, C-1"'), 55.9 (p, H3CO-8), 55.1 ($\mathrm{t}, \mathrm{C}-3$), 52.2 ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-11$), 50.5 ($\mathrm{t}, \mathrm{C}-2$). The analytical data are consistent with those reported in the literature. ${ }^{20}$
(\pm)-Methyl (1R,2R,3S,3aR,8bS)-3a-(4-bromophenyl)-1,6,8b-trihy-droxy-8-methoxy-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta-[b]benzofuran-2-carboxylate (10bb). Palladium-on-carbon (10 wt\%, $78.2 \mathrm{mg}, 73.5 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%)$ was added to a solution of endobenzyl ether 9bb ($227 \mathrm{mg}, 368 \mu \mathrm{~mol}, 1.00$ equiv) in dry THF (7.35 mL) under an argon atmosphere. The atmosphere was replaced by hydrogen and an additional balloon of hydrogen was placed on the flask. The reaction mixture was stirred for 50 min at rt and then filtered over Celite. The filtrate was concentrated to dryness and gave the desired phenol 10bb as a colorless solid ($177 \mathrm{mg}, 336 \mu \mathrm{~mol}$, $91 \%) . \mathbf{R}_{\mathrm{f}}=0.27\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 19: 1\right) ;{ }^{1} \mathbf{H}$ NMR (acetone-d ${ }_{6}, 400$ MHz): $\delta[\mathrm{ppm}] 7.22\left(\mathrm{dt}, \mathrm{J}=9.1,2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 7.14$ (dt, J $\left.=9.1,2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 7.07-6.95\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-4^{\prime \prime}\right.$, H-5", H-6" $), 6.17$ (d, J = $1.8 \mathrm{~Hz}, \mathrm{H}-5), 6.10(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, \mathrm{H}-7), 4.90$ (d, J = 5.8 Hz, H-1), 4.37 (d, J = $14.1 \mathrm{~Hz}, \mathrm{H}-3$), 4.26 (bs, $1 \mathrm{H}, \mathrm{OH}-$ $8 \mathrm{~b}), 4.01(\mathrm{dd}, \mathrm{J}=14.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}-8\right), 3.56$ (s, 3H, $\left.\mathrm{CH}_{3} \mathrm{O}-11\right) ;{ }^{13} \mathrm{C}$ NMR (acetone- $\left.\mathrm{d}_{6}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 170.9$ (q, C-11), 162.4 (q, C-6), 161.6 (q, C-4a), 158.7 ($q, C-8$), 138.9 (q, $\mathrm{C}-1^{\prime \prime}$), 136.9 ($q, \mathrm{C}-1^{\prime}$), 130.9 ($\mathrm{t}, \mathrm{C}-3^{\prime}, \mathrm{C}-5^{\prime}$), 130.3 ($\mathrm{t}, \mathrm{C}-2^{\prime}, \mathrm{C}-6^{\prime}$), 128.7 ($\mathrm{t}, \mathrm{C}-3^{\prime \prime}, \mathrm{C}-\mathrm{S}^{\prime \prime}$), 128.4 ($\mathrm{t}, \mathrm{C}-2^{\prime \prime}, \mathrm{C}-6^{\prime \prime}$), 127.0 ($\mathrm{t}, \mathrm{C}-4^{\prime \prime}$), 121.0 (q. C-4'), 107.6 (q, C-8a), 102.4 (q, C-3a), 94.6 (q, C-8b), 93.4 (t, C-7), 91.7 (t, C-5), $80.6(\mathrm{t}, \mathrm{C}-1), 55.8\left(\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-8\right), 55.7(\mathrm{t}, \mathrm{C}-3), 51.70(\mathrm{p}$, $\mathrm{H}_{3} \mathrm{CO}-11$), 51.67 ($\mathrm{t}, \mathrm{C}-2$); HRMS (ESI $\left.{ }^{-}\right) \mathrm{m} / z$ calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{BrO}_{7}$ $[\mathrm{M}-\mathrm{H}]^{-}$525.0549, found 525.0562 .
(\pm)-Methyl ($1 R, 2 R, 3 S, 3 \mathrm{aR}, 8 \mathrm{~b} S$)-3a-(4-bromophenyl)-1,8b-dihy-droxy-6,8-dimethoxy-3-phenyl-2,3,3a, 8 b-tetrahydro- $1 H$-cyclopenta-[b]benzofuran-2-carboxylate (11bb) A solution of the phenol 10bb ($166 \mathrm{mg}, 315 \mu \mathrm{~mol}, 1.00$ equiv) in toluene $(10.5 \mathrm{~mL}$) and MeOH $(10.5 \mathrm{~mL})$ was treated with trimethylsilyldiazomethane $(2.00 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}, 1.57 \mathrm{~mL}, 3.15 \mathrm{mmol}, 10.0$ equiv) and stirred for 4 h at rt . The solvents were removed under reduced pressure. The residue was purified using silica gel chromatography (petroleum ether/EtOAc $2: 1)$ to give the desired rocaglate $\mathbf{1 1 b b}$ as a colorless foam (135 mg , $249 \mu \mathrm{~mol}, 79 \%$). $\mathbf{R}_{\mathrm{f}}=0.41$ (petroleum ether/EtOAc 1:1); ${ }^{1} \mathbf{H}$ NMR (DMSO-d $d_{6}, 400 \mathrm{MHz}$): $\delta[\mathrm{ppm}] 7.20\left(\mathrm{dt}, \mathrm{J}=9.4,2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right.$, H-5'), 7.08-7.04 (m, 4H, H-2', H-6', H-2", H-6"), 7.01-6.97 (m, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 6.93$ (d, J = 7.4 Hz, 2H, H-3", H-5"), 6.28 (d, J = 2.0 Hz , $1 \mathrm{H}, \mathrm{H}-5), 6.11(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 5.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}-8 \mathrm{~b}), 5.12$ $(\mathrm{d}, \mathrm{J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}-1), 4.65(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.24(\mathrm{~d}, \mathrm{~J}=$ $14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.00$ (dd, J = 14.0, $5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 3.78 (s, 3H, $\left.\mathrm{CH}_{3} \mathrm{O}-6\right), 3.72$ ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}-8\right), 3.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}-11\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 170.3$ (q, C-11), 162.7 (q, C-6), 160.4 (q, C-4a), 157.8 (q, C-8), 138.0 (q, C-1"), 136.3 (q, C-1'), 129.8 (t, C-3', C-5'), 129.2 (t, C-2', C-6'), 127.7 (t, C-3", C-5"), 127.6 (t, C-2", C-6"), 126.0 (t, C-4"), 119.6 (q. C-4'), 107.8 (q, C8a), 101.2 ($q, C-3 a$), 93.4 ($q, C-8 b$), 91.9 (t, C-7), 88.3 (t, C-5), 78.7 (t, C-1), 55.5 (p, H3CO-6), 55.3 (p, H3CO-8), 54.7 (t, C-3), 51.3 (p, $\mathrm{H}_{3} \mathrm{CO}-11$), 51.1 ($\mathrm{t}, \mathrm{C}-2$); HRMS (ESI ${ }^{+}$) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{O}_{7} \mathrm{BrNa}[\mathrm{M}+\mathrm{Na}]^{+} 563.0681$, found 563.0680; HPLC purity
99.69%. The analytical data are consistent with those reported in the literature. ${ }^{16}$

Synthesis of (+)-Methyl (1 R,2R,3S,3aR,8bS)-1,8b-dihydroxy-6,8-dimethoxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tet-rahydro-1H-cyclopenta[b]benzofuran-2-carboxylate (11bc).

2-(4-(Benzyloxy)-2-methoxy-6-((4-methoxybenzoyl)oxy)phenyl)-2oxoethyl 4-methoxybenzoate (5bc). A solution of the α-hydroxy ketone $\mathbf{4 b}\left(4.27 \mathrm{~g}, 14.8 \mathrm{mmol}, 1.00\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40.0 \mathrm{~mL})$ was treated with 4 -DMAP ($90.4 \mathrm{mg}, 740 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) and triethylamine ($6.19 \mathrm{~mL}, 44.4 \mathrm{mmol}, 3.00$ equiv). The mixture was cooled to $0^{\circ} \mathrm{C}$ and 4-methoxybenzoyl chloride ($4.01 \mathrm{~mL}, 29.6 \mathrm{mmol}$, 2.00 equiv) was added and stirred at rt for 3 h . The solution was terminated by the addition of $\mathrm{HCl}\left(1.00 \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}.\right)$ and the phases were separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{x})$. The combined organic phases were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The desired bisbenzoate 5bc was obtained as a yellow foam (8.24 g) and was used directly for the next step. $R_{\mathrm{f}}=0.28$ (petroleum ether/EtOAc 2:1).

1-(4-(Benzyloxy)-2-hydroxy-6-methoxyphenyl)-3-(4-methoxy-phenyl)-1,3-dioxopropan-2-yl 4-methoxybenzoate (6bc). A solution of crude bisbenzoate $5 \mathbf{b c}(8.24 \mathrm{~g}, 14.8 \mathrm{mmol}, 1.00$ equiv $)$ in THF $(80.0 \mathrm{~mL})$ was cooled to $-20^{\circ} \mathrm{C}$ and treated with LiHMDS $(1.00 \mathrm{M}$ in THF, $44.4 \mathrm{~mL}, 44.4 \mathrm{mmol}, 3.00$ equiv). The mixture was stirred at $-20^{\circ} \mathrm{C}$ for 1 h . Then, the reaction was terminated by the addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution (sat., aq.) and warmed to rt. The aqueous phase was extracted with EtOAc ($3 \times$) and the combined organic phases were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The desired phenol $\mathbf{6 b c}$ was obtained as a yellow foam (8.24 g) and used directly for the next step. $R_{\mathrm{f}}=0.30$ (petroleum ether/EtOAc 2:1).

7-(Benzyloxy)-5-methoxy-2-(4-methoxyphenyl)-4-oxo-4H-chro-men-3-yl 4-methoxybenzoate (7bc). A suspension of crude phenol $\mathbf{6 b c}(8.24 \mathrm{~g}, 14.8 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{AcOH}(170 \mathrm{~mL})$ was treated with $\mathrm{H}_{2} \mathrm{SO}_{4}$ ($96 \mathrm{wt} \%, 4.11 \mathrm{~mL}, 74.0 \mathrm{mmol}, 5.00$ equiv) and stirred at rt for 15 h . The reaction mixture was poured into ice-cold $\mathrm{H}_{2} \mathrm{O}$ and stirred for 15 min . Thereby, a pale-pink precipitate was formed. The mixture was filtered on a Büchner funnel and the precipitate was washed with $\mathrm{H}_{2} \mathrm{O}$. The wet solid was suspended in a minimal amount of ethanol and heated to reflux for 1 h . The mixture was allowed to cool to rt, filtered on a Büchner funnel and washed with a small amount of cold ethanol. The solid was dried under reduced pressure to constant weight to give the desired 3-benzyloxyflavonate $7 \mathbf{b c}$ as a colorless solid ($5.85 \mathrm{~g}, 10.9 \mathrm{mmol}, 73 \%$ over three steps). $R_{\mathrm{f}}=0.28$ (petroleum ether/EtOAc 1:2; ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}]$ $8.16(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.87(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Ar} H)$, 7.48-7.38 (m, 5H, 5× ArH), 6.97-6.93 (m, 4H, 4× ArH), 6.63 (d, J $=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.44(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 5.16\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 170.9(\mathrm{q}, \mathrm{C}=\mathrm{O}), 164.0(\mathrm{q}, \mathrm{ArC})$, $163.9(\mathrm{q}, \operatorname{ArC}), 163.4(\mathrm{q}, \mathrm{OC}=\mathrm{O}), 161.7(\mathrm{q}, \operatorname{ArC}), 161.5(\mathrm{q}, \operatorname{ArC})$, 159.3 (q, ArC), $153.5(q, C=C-C=O), 135.8(q, \operatorname{ArC}), 134.1(q, O$ $=\mathrm{C}-\mathrm{C}=\mathrm{C}), 132.9(\mathrm{t}, 2 \times \mathrm{ArC}), 129.8(\mathrm{t}, 2 \times \mathrm{ArC}), 129.0(\mathrm{t}, 2 \times \mathrm{ArC})$, $128.6(\mathrm{t}, \mathrm{ArCH}), 127.8(\mathrm{t}, 2 \times \operatorname{ArC}), 122.5(\mathrm{q}, \operatorname{ArC}), 121.6(\mathrm{q}, \mathrm{ArC})$, 114.2 (t, $2 \times \operatorname{ArC}$), 113.9 ($\mathrm{t}, 2 \times \mathrm{ArCH}$), 109.2 (q, ArC), 96.7 (t , $\mathrm{ArCH}), 93.6(\mathrm{t}, \mathrm{ArCH}), 70.7\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 56.4\left(\mathrm{p}, \mathrm{OCH}_{3}\right), 55.6(\mathrm{p}$, $\left.\mathrm{OCH}_{3}\right), 55.5\left(\mathrm{p}, \mathrm{OCH}_{3}\right)$. The analytical data are consistent with those reported in the literature. ${ }^{20}$

7-(Benzyloxy)-3-hydroxy-5-methoxy-2-(4-methoxyphenyl)-4H-chromen-4-one (8bc). A suspension of the benzoate $7 \mathrm{bc}(5.85 \mathrm{~g}$, 10.9 mmol, 1.00 equiv) in EtOH $(135 \mathrm{~mL})$ was treated with NaOH solution ($5 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}, 15.5 \mathrm{~mL}, 20.4 \mathrm{mmol}, 1.88$ equiv). The yellowish suspension was stirred at $80{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was allowed to cool to rt and was neutralized with $\mathrm{HCl}(1.00$

M in $\mathrm{H}_{2} \mathrm{O}, 20.4 \mathrm{~mL}, 20.4 \mathrm{mmol}, 1.88$ equiv). The resulting suspension was filtered on a Büchner funnel and the precipitate was washed with a small amount of cold ethanol. The solid was dried under reduced pressure to constant weight to give the desired 3hydroxyflavone $\mathbf{8 b c}$ as a yellowish solid ($4.05 \mathrm{~g}, 10.0 \mathrm{mmol}, 92 \%$). R_{f} $=0.35$ (petroleum ether/EtOAc 1:2); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$: $\delta[\mathrm{ppm}] 8.17(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.48-7.38(\mathrm{~m}, 5 \mathrm{H}, 5 \times$ ArH), 7.36 (bs, $1 \mathrm{H}, \mathrm{OH}), 7.03(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}$), $6.63(\mathrm{~d}, J$ $=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.43(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 5.15\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta[\mathrm{ppm}] 172.0(\mathrm{q}, \mathrm{C}=\mathrm{O}), 163.5(\mathrm{q}, \mathrm{ArC}), 160.8(\mathrm{q}, \mathrm{ArC})$, 160.7 (q, ArC), 158.9 ($q, \operatorname{ArC),~} 142.4$ ($q, C=C O H), 137.6$ (q, $\mathrm{COH}), 135.7(\mathrm{q}, \mathrm{ArC}), 129.0(\mathrm{t}, 2 \times \mathrm{ArC}), 128.9(\mathrm{t}, 2 \times \mathrm{ArC}), 128.6$ $(\mathrm{t}, \mathrm{ArCH}), 127.8(\mathrm{t}, 2 \times \mathrm{ArC}), 123.7$ ($\mathrm{q} . \mathrm{ArC}$), 114.1 ($\mathrm{t}, 2 \times \mathrm{ArC}$), $106.5(\mathrm{q}, \mathrm{ArC}), 96.3(\mathrm{t}, \mathrm{ArCH}), 93.5(\mathrm{t}, \mathrm{ArCH}), 70.7\left(\mathrm{~s} . \mathrm{CH}_{2}\right), 56.6$ $\left(\mathrm{p}, \mathrm{OCH}_{3}\right), 55.5\left(\mathrm{p}, \mathrm{OCH}_{3}\right)$. The analytical data are consistent with those reported in the literature. ${ }^{20}$
(\pm)-Methyl (1R,2R,3S,3aR,8bS)-6-(benzyloxy)-1,8b-dihydroxy-8-methoxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro1 H -cyclopenta[b]benzofuran-2-carboxylate ($9 b \mathrm{bc}$). Methyl cinnamate ($6.14 \mathrm{~g}, 37.9 \mathrm{mmol}, 14.2$ equiv) was added to a solution of flavonol $102(1.01 \mathrm{~g}, 2.67 \mathrm{mmol}, 1.00$ equiv) in dry chloroform (51.2 mL) and freshly distilled 2,2,2-trifluoroethanol (22.0 mL). The reaction mixture was degassed for 30 min , then cooled to $-5^{\circ} \mathrm{C}$ and irradiated with UV light ($\lambda_{\text {max }}=365 \mathrm{~nm}$) until it no longer fluoresced greenish (20 h). Subsequently, the solvent was removed under reduced pressure and the remaining amount of methyl cinnamate was removed by column chromatography (petroleum ether/EtOAc 4:1 \rightarrow $1: 1$). The desired cycloadduct was obtained as a mixture of isomers as a yellowish foam (1.37 g). Without any further purification the product of the first step ($1.37 \mathrm{~g}, 2.41 \mathrm{mmol}, 1.00$ equiv) was dissolved in $\mathrm{MeOH}(80.0 \mathrm{~mL})$. Then, NaOMe solution ($25 \mathrm{wt} \%$ in MeOH , $1.10 \mathrm{~mL}, 6.85 \mathrm{mmol}, 2.84$ equiv) was added and the mixture was heated under refluxing conditions for 1 h . Subsequently, the reaction was terminated by the addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution (sat., aq.). The phases were separated and the aqueous phase was extracted with EtOAc ($3 \times$). The organic phases were combined, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The desired keto ester was obtained as a mixture of isomers as a yellow, glassy foam $(1.33 \mathrm{~g})$. About half of the product $(697 \mathrm{mg})$ was used for the next step without further purification. A mixture of $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}(\mathrm{OAc})_{3} \mathrm{BH}$ ($2.08 \mathrm{~g}, 7.90 \mathrm{mmol}, 6.42$ equiv) and freshly distilled $\mathrm{AcOH}(732 \mu \mathrm{~L}$, $12.8 \mathrm{mmol}, 10.4$ equiv) in $\mathrm{MeCN}(32.0 \mathrm{~mL})$ was stirred for 5 min at rt . Then, a solution of the product of the second step $(697 \mathrm{mg}, 1.23$ mmol, 1.00 equiv) in $\mathrm{MeCN}(21.3 \mathrm{~mL})$ was added. The mixture was protected from light and stirred for 19 h at rt . The reaction was then terminated by adding $\mathrm{NH}_{4} \mathrm{Cl}$ solution (sat., aq.) and sodium potassium tartrate solution (aq., 2.00 M). The phases were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. Column chromatography (petroleum ether/EtOAc 3:2) was then performed to obtain the racemic endo-product 9bc as a pale-yellow solid ($423 \mathrm{mg}, 744 \mu \mathrm{~mol}$, 56% yield over three steps). $R_{\mathrm{f}}=0.63$ (petroleum ether/EtOAc 1:2); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 7.47-7.35\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}, \mathrm{H}-\right.$ $\left.4^{\prime \prime \prime}, H-5^{\prime \prime \prime}, H-6^{\prime \prime \prime}, H-7^{\prime \prime \prime}\right), 7.11\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, H-6^{\prime}\right), 7.08-$ 7.05 (m, 3H, H-3", H-4", H-5"), 6.88-6.86 (m, 2H, H-2", H-6"), 6.68 (d, $\left.J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, H-3^{\prime}, H-5^{\prime}\right), 6.36(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, H-5)$, 6.22 (d, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, H-7$), 5.09 ($\left.\mathrm{s}, 2 \mathrm{H}, H-1^{\prime \prime \prime}\right), 5.03$ (dd, $J=6.7$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), $4.31(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 3.90(\mathrm{dd}, J=14.4$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 3.86 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}-8$), 3.71 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}-4^{\prime}$), 3.67 (br, $1 \mathrm{H}, \mathrm{OH}-8 \mathrm{~b}$), 3.65 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}-11$), $1.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}-1) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 170.7$ (q, C-11), 163.4 (q, C-6), 161.0 ($q, C-4 \mathfrak{a}), 158.9$ ($\left.q, C-4^{\prime}\right), 157.1(q, C-8), 137.0\left(q, C-1^{\prime \prime}\right)$, 136.6 (q, C-2"'), 129.1 (t, C-3', C-5'), 128.8 (t, C-4"', C-6"'), 128.3 (t, C-5"'), 128.0 ($\mathrm{t}, \mathrm{C}-3^{\prime \prime}, \mathrm{C}-5^{\prime \prime}$), 127.9 ($\left.\mathrm{t}, \mathrm{C}-2^{\prime \prime}, \mathrm{C}-6^{\prime \prime}\right), 127.7$ ($\mathrm{t}, \mathrm{C}-3^{\prime \prime \prime}, \mathrm{C}-$ $7^{\prime \prime \prime}$), 126.7 (t, C-4"), 126.5 (q. C-1'), 112.9 (t, C-3', C-5'), 108.1 (q, C-8a), 102.0 ($q, C-3 a$), 93.8 ($q, C-8 b), 93.5$ (t, C-7), 90.6 (t, C-5), 79.7 (t, C-1), 70.6 ($\mathrm{s}, \mathrm{C}-1^{\prime \prime \prime}$), 55.9 (p, H3CO-8), 55.3 (p, $\left.\mathrm{H}_{3} \mathrm{CO}-4^{\prime}\right)$, 55.1 ($\mathrm{t}, \mathrm{C}-3$), 52.1 ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-11$), 50.6 ($\mathrm{t}, \mathrm{C}-2$); HRMS (ESI ${ }^{+}$) m / z
calcd for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$591.1995, found 591.1987. The analytical data are consistent with those reported in the literature. ${ }^{20}$
(\pm)-Methyl (1R,2R,3S,3aR,8bS)-1,6,8b-trihydroxy-8-methoxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta-[b]benzofuran-2-carboxylate (10bc). Palladium-on-carbon (10 wt\%, $58.8 \mathrm{mg}, 55.2 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$) was added to a solution of benzyl ether $9 \mathbf{b c}(314 \mathrm{mg}, 552 \mu \mathrm{~mol}, 1.00$ equiv) in dry THF (5.52 mL) under an argon atmosphere. The atmosphere was replaced by hydrogen and an additional balloon of hydrogen was placed on the flask. The reaction mixture was stirred for 200 min at rt and then filtered over Celite. The filtrate was concentrated to dryness and gave the desired phenol 10bc as a colorless foam ($255 \mathrm{mg}, 533 \mu \mathrm{~mol}$) in 97% yield. $R_{\mathrm{f}}=0.16$ (petroleum ether/EtOAc 1:1); ${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 400 \mathrm{MHz}$): δ [ppm] 8.61 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}-6$), 7.12 (d, $J=9.0$ Hz, 2H, H-2', H-6'), 7.06-6.92 (m, 3H, H-3", H-4", H-5'), 6.926.90 (m, 2H, H-2", H-6"), 6.63 (d, J = $\left.9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, H-5^{\prime}\right), 6.16$ (d, J=1.9 Hz, 1H, H-5), $6.11(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, H-7), 4.93(\mathrm{dd}, J=$ $6.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}, H-1), 4.28(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}, H-3), 3.97(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}-8 \mathrm{~b}$), 3.94 (ddd, $J=14.1,6.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 3.83 ($\mathrm{s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{O}-4^{\prime}\right), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}-8\right), 3.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}-11\right) ;{ }^{13} \mathrm{C}$ NMR (acetone- $\left.d_{6}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 170.8$ (q, C-11), 162.1 (q, C-6), 161.8 ($q, C-4 a$), 159.3 ($q, C-4^{\prime}$), 158.7 ($q, C-8$), 139.2 ($q, C-1^{\prime \prime}$), 130.0 (t, C-2', C-6'), 128.9 ($q, C^{\prime}-1^{\prime}$), 128.8 ($\mathrm{t}, \mathrm{C}-3^{\prime \prime}, \mathrm{C}-5^{\prime \prime}$), 128.2 (t , C-2", C-6"), 126.8 ($\mathrm{t}, \mathrm{C}-4^{\prime \prime}$), 112.8 ($\mathrm{t}, \mathrm{C}-3^{\prime}, \mathrm{C}-5^{\prime}$), 108.4 ($\mathrm{q}, \mathrm{C}-8 \mathrm{a}$), 102.6 ($q, C-3 a$), 94.5 ($q, C-8 b$), $93.2(t, C-7), 91.9(t, C-5), 80.8(t, C-$ 1), 55.9 ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-8$), 55.7 ($\mathrm{t}, \mathrm{C}-3$), 55.2 ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-4^{\prime}$), 52.6 (p , $\left.\mathrm{H}_{3} \mathrm{CO}-11\right), 51.2(\mathrm{t}, \mathrm{C}-2)$. The analytical data are consistent with those reported in the literature. ${ }^{42}$
(\pm)-Methyl (1R,2R,3S,3aR,8bS)-1,8b-dihydroxy-6,8-dimethoxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1 H-cyclopenta[b]benzofuran-2-carboxylate (11bc). A solution of the phenol $\mathbf{1 0 b c}(75.0 \mathrm{mg}, 157 \mu \mathrm{~mol}, 1.00$ equiv) in toluene (5.22 mL) and methanol (5.22 mL) was treated with trimethylsilyldiazomethane (2.00 M in $\mathrm{Et}_{2} \mathrm{O}, 1.25 \mathrm{~mL}, 2.51 \mathrm{mmol}, 16.0$ equiv) and stirred for 150 \min at rt . The solvents were removed under reduced pressure. The residue was purified using silica gel chromatography (petroleum ether/EtOAc 6:4) to give the desired rocaglate 11bc as a pale-yellow foam ($70.0 \mathrm{mg}, 142 \mu \mathrm{~mol}$) in 91% yield. $R_{\mathrm{f}}=0.34$ (petroleum ether/ EtOAc 2:3); ${ }^{1} \mathbf{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$): δ [ppm] 7.06-6.96 (m, 5H, H-2', H-6', H-3", H-4", H-5"), 6.87 (d, J = $7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}$, $\left.H-6^{\prime \prime}\right), 6.59$ (d, $\left.J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, H-3^{\prime}, H-5^{\prime}\right), 6.28$ (bs, 1H, H-5), 6.11 (bs, 1H, H-7), 5.07 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}-8 \mathrm{~b}), 5.01(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}-1$), $4.69(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.14(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 3.91$ (dd, $J=14.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}, H-2$), 3.78 ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-6$), 3.73 ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-8$), 3.60 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-4^{\prime}$), 3.54 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-11$); ${ }^{13} \mathrm{C}$ NMR (DMSO$\left.d_{6}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 170.3(\mathrm{q}, \mathrm{C}-11), 162.7(\mathrm{q}, \mathrm{C}-6), 160.4(\mathrm{q}, \mathrm{C}-$ 4a), 157.8 ($q, C-8$), 157.5 ($q, C-4^{\prime}$), 138.3 ($q, C-1^{\prime \prime}$), 128.7 (t, C-2', C-6'), 128.5 (q. C-1'), 127.7 (t, C-3", C-5"), 127.4 (t, C-2", C-6"), 125.8 (t, C-4"), 111.8 (t, C-3', C-5'), 108.3 (q, C-8a), 101.3 (q, C-3a), 93.2 ($q, C-8 b$), 91.8 (t, C-7), 88.4 (t, C-5), 78.9 (t, C-1), 55.5 (p, $\mathrm{H}_{3} \mathrm{CO}-6$), 55.3 ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-8$), 54.7 ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-4^{\prime}$), 54.6 ($\mathrm{t}, \mathrm{C}-3$), 51.3 ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-11$), 50.6 ($\mathrm{t}, \mathrm{C}-2$); HRMS (ESI ${ }^{+}$) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 515.1682$, found 515.1681 . HPLC purity 98.15\%: The analytical data are consistent with those reported in the literature. ${ }^{43}$

Synthesis of (\pm)-Methyl ($1 R, 2 R, 3 S, 3 \mathrm{aR}, 8 \mathrm{bS}$)-6,8-difluoro-1,8b-dihydroxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxylate (9c).

(E)-1-(2,4-Difluoro-6-hydroxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (12c). A solution of NaOEt ($378 \mathrm{mg}, 5.56 \mathrm{mmol}, 3.00$ equiv) in $\mathrm{EtOH}(6 \mathrm{~mL})$ was prepared and cooled down to rt. To this solution was added 1-(2,4-difluoro-6-hydroxyphenyl)ethan-1-one ($319 \mathrm{mg}, 1.85 \mathrm{mmol}$) and stirred for 1 h at rt . To the yellow
solution was added p-methoxybenzaldehyde ($0.23 \mathrm{~mL}, 1.85 \mathrm{mmol}$, 1.00 equiv) and stirred for 16 h at rt . The suspension was then poured to water and acidified to $\mathrm{pH}=1$ with HCl solution (aq., 1 M). The resulting yellow precipitate was filtered, washed with cold water and dried under high vacuum. The desired product chalcone 12c was afforded ($502 \mathrm{mg}, 1.67 \mathrm{mmol}, 89 \%$) as a yellow solid. $R_{\mathrm{f}}=0.40$ (petroleum ether/EtOAc 3:1); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ [ppm] $13.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.94(\mathrm{dd}, J=15,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}=$ $\mathrm{CH}), 7.61(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.50(\mathrm{dd}, J=15,1.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{CH}), 6.95(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 6.52(\mathrm{ddd}, J=10$, $2.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.40 (ddd, $J=12,9.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 3.87 $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 191.4(\mathrm{q}, d, J$ $=4.9 \mathrm{~Hz}, C=\mathrm{O}), 167.9(\mathrm{q}, d, J=18 \mathrm{~Hz}, \mathrm{ArC}), 165.3(\mathrm{q}, d, J=18 \mathrm{~Hz}$, $\operatorname{ArC}), 162.9(\mathrm{q}, d, J=17 \mathrm{~Hz}, \operatorname{ArC}), 162.2(\mathrm{q}, \operatorname{ArC}), 146.2(\mathrm{t}, d, J=2.0$ $\mathrm{Hz}, \mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{CH}), 130.9(\mathrm{t}, 2 \times \mathrm{ArC}), 127.3(\mathrm{q}, \mathrm{ArC}), 122.3$ $(\mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{CH}), 114.5(\mathrm{t}, 2 \times \mathrm{ArC}), 107.7(\mathrm{q}, \mathrm{dd}, J=14,3.2 \mathrm{~Hz}$, ArC) 101.5 (t, dd, $J=23,3.7 \mathrm{~Hz}, \mathrm{ArC}$), 95.9 (t, dd, $J=30,27 \mathrm{~Hz}$, $\mathrm{ArC}), 55.5\left(\mathrm{p}, \mathrm{OCH}_{3}\right)$; HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / z$ calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}_{3}[\mathrm{M}$ $+\mathrm{H}]^{+}$291.0833, found 291.0838.

5,7-Difluoro-3-hydroxy-2-(4-methoxyphenyl)-4H-chromen-4one (8c). Chalcone 12c ($495 \mathrm{mg}, 2.69 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(32 \mathrm{~mL})$ and NaOH solution (aq., $30 \mathrm{wt} \%, 4.48 \mathrm{~mL}, 13.4$ $\mathrm{mmol}, 5.00$ equiv) and cooled down to $0{ }^{\circ} \mathrm{C}$. To the dark orange solution was added $\mathrm{H}_{2} \mathrm{O}_{2}$ (aq., $30 \%, 0.62 \mathrm{~mL}, 26.9 \mathrm{mmol}$, 10.0 equiv). The thick yellow suspension was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , warmed to rt and continued stirring for 16 h . After the chalcone was fully consumed, the reaction mixture was poured into HCl solution (aq., 1 M) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The collected organic layers were washed with brine, dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was recrystallized from EtOH to afford clean product 8 c ($221 \mathrm{mg}, 0.69 \mathrm{mmol}, 26 \%$) as yellow crystals/solids. $R_{\mathrm{f}}=0.20$ (petroleum ether/EtOAc 3:1); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta[\mathrm{ppm}] 8.17(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.08(\mathrm{dt}, 1 \mathrm{H}, J=$ $9.1,1.9 \mathrm{~Hz}, \mathrm{ArH}$), 7.05 (d, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}$), $6.88-6.83$ (m, $1 \mathrm{H}, \mathrm{ArH}), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ [ppm] $170.7(\mathrm{q}, \mathrm{C}=\mathrm{O}), 164.9(\mathrm{q}, \mathrm{dd}, J=255,14 \mathrm{~Hz}, \operatorname{ArC}), 161.4(\mathrm{q}$, dd, $J=267,15 \mathrm{~Hz}, \operatorname{ArC}$), 161.3 (q, ArC), 156.8 (q, dd, $J=16,6.5 \mathrm{~Hz}$, $\operatorname{ArC}), 144.8(\mathrm{q}, \mathrm{COH}), 137.6(\mathrm{q}, \mathrm{C}=\mathrm{COH}), 130.1(\mathrm{q}, d, J=246 \mathrm{~Hz}$, $1 \mathrm{C}, \operatorname{ArC}$), 129.4 (t, $2 \times \operatorname{ArC}$), 122.7 (q, ArC), 114.2 ($\mathrm{t}, 2 \times \operatorname{ArC}$), 101.3 ($\mathrm{t}, \mathrm{dd}, J=27,24 \mathrm{~Hz}, \mathrm{ArC}), 101.1(\mathrm{t}, \mathrm{dd}, J=25,5 \mathrm{~Hz}, \operatorname{ArC}), 55.5(\mathrm{p}$, OCH_{3}); HRMS (ESI ${ }^{+}$) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 327.0445, found 327.0430.
(\pm)-Methyl (1R,2R,3S,3aR,8bS)-6,8-difluoro-1,8b-dihydroxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta-[b]benzofuran-2-carboxylate (9c). To a solution of $\mathbf{8 b}$ ($210 \mathrm{mg}, 0.69$ $\mathrm{mmol}, 1.00$ equiv) in dry 2,2,2-TFE (5.8 mL) and dry $\mathrm{CHCl}_{3}(14$ mL) was added methyl cinnamate ($1.59 \mathrm{~g}, 9.80 \mathrm{mmol}, 14.2$ equiv). The clear solution was degassed with argon for 15 min , followed by UV-irradiation ($100 \mathrm{~W}, 365 \mathrm{~nm}$) at $-5{ }^{\circ} \mathrm{C}$ for $10-16 \mathrm{~h}$. After the reaction was finished, the solvent was removed in vacuo and the excess of methyl cinnamate was removed by silica gel purification (petroleum ether/EtOAc 4:1, then EtOAc). The cycloadduct mixture was used directly for the next step. To the solution of crude cycloadduct (309 mg) in $\mathrm{MeOH}(22 \mathrm{~mL})$ was added NaOMe solution ($25 \mathrm{wt} \%$ in $\mathrm{MeOH}, 406 \mu \mathrm{~L}, 1.88 \mathrm{mmol}, 2.84$ equiv) and stirred under refluxing conditions for 1 h . The reaction was terminated by the addition of $\mathrm{NH}_{4} \mathrm{Cl}$ (sat., aq.). The aqueous layers were extracted with EtOAc and the collected organic layers were washed with NaCl (sat., aq.), dried over MgSO_{4}, filtered and concentrated in vacuo. The foamy ketone crude product was directly used for the next step. A solution of $\mathrm{Me}_{4} \mathrm{NBH}(\mathrm{OAc})_{3}(467 \mathrm{mg}, 1.78 \mathrm{mmol}, 6.42$ equiv) and freshly distilled $\mathrm{AcOH}(167 \mu \mathrm{~L}, 2.88 \mathrm{mmol}, 10.4$ equiv) in dry MeCN (7 mL) was prepared and stirred at rt for 10 min . To this solution was added ketone crude product $(129 \mathrm{mg})$ in dry $\mathrm{MeCN}(4.5 \mathrm{~mL})$. The reaction was carried out under light exclusion and stirred for 19 h at rt . The reaction was terminated by the addition of NaK-tartrate (sat., aq.) and $\mathrm{NH}_{4} \mathrm{Cl}$ (sat., aq.). The layers were separated and the aqueous layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The collected organic layers were washed with water and NaCl (sat., aq.), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by silica
gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA}=10: 1\right)$ to yield $9 \mathrm{c}(56 \mathrm{mg}$, $0.12 \mathrm{mmol}, 42 \%$) as a pale-yellow foam. $R_{\mathrm{f}}=0.54$ (petroleum ether/ EtOAc 1:1); ${ }^{1} \mathbf{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$): δ [ppm] 7.11-7.05 (m, 5H, H-2" $\left., H-3^{\prime \prime}, H-4^{\prime \prime}, H 5^{\prime \prime}, H-6^{\prime \prime}\right), 6.99\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, H-2^{\prime}\right.$, $\left.H-6^{\prime}\right), 6.66\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, H-3^{\prime}, H-5^{\prime}\right), 6.61(\mathrm{dd}, J=8.9,1.2 \mathrm{~Hz}$, $1 \mathrm{H}, H-5), 6.46(\mathrm{td}, J=9.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, H-7), 4.91(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}$, $H-1), 4.47(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}, H-3), 4.00(\mathrm{dd}, J=14.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}$, H-2), 3.70 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}-4^{\prime}$), $3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}-11\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 170.5(\mathrm{q}, \mathrm{C}-11), 164.3(\mathrm{q}, \mathrm{dd}, J=$ $244,14 \mathrm{~Hz}, C-6), 161.0$ (q, dd, $J=16,12 \mathrm{~Hz}, C-4 \mathrm{a}), 160.2(\mathrm{q}, \mathrm{dd}, J=$ $252,16 \mathrm{~Hz}, \mathrm{C}-8$), 158.2 (q, C-4'), 138.2 (q, C-1"), 129.1 (t, C-3", C$\left.5^{\prime \prime}\right), 128.5\left(\mathrm{q}, \mathrm{C}^{\prime} 1^{\prime}\right), 128.1\left(\mathrm{t}, \mathrm{C}-2^{\prime \prime}, C-6^{\prime \prime}\right), 127.9$ (t, C-3', C-5' $), 126.4$ ($\mathrm{t}, \mathrm{C}-4^{\prime \prime}$), 113.1 (q, dd, $\left.J=20,3.1 \mathrm{~Hz}, C-8 \mathrm{a}\right), 112.5$ (2C, C-2', C-5'), $102.8(\mathrm{q}, C-3 \mathrm{a}), 96.8(\mathrm{t}, t, J=26 \mathrm{~Hz}, C-7), 95.0(\mathrm{t}, \mathrm{dd}, J=26,3.8 \mathrm{~Hz}$, 1C, C-5), 93.5 (q, $d, J=2.5 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}-8 \mathrm{~b}), 78.8$ (t, C-1), 55.3 (C-3), $55.2\left(\mathrm{C}-7^{\prime}\right), 51.9\left(-\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 51.6(\mathrm{C}-2)$; HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{~F}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$491.1282, found 491.1279; HPLC purity 95.26%.

Synthesis of (\pm)-Methyl ($1 R, 2 R, 3 S, 3 \mathrm{a} R, 8 \mathrm{bS}$)-6,8-dichloro-1,8b-dihydroxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxylate (9da).

(E)-1-(2,4-Dichloro-6-hydroxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (12da). Acetophenone $3 \mathrm{~d}(500 \mathrm{mg}, 2.44 \mathrm{mmol}, 1.00$ equiv) was added to a solution of $\mathrm{NaOEt}(498 \mathrm{mg}, 7.32 \mathrm{mmol}, 3.00$ equiv) in $\mathrm{EtOH}(8.41 \mathrm{~mL})$. After stirring for 1 h at rt , 4-methoxybenzaldehyde ($296 \mu \mathrm{~L}, 2.44 \mathrm{mmol}, 1.00$ equiv) was added and the reaction mixture was stirred overnight. The resulting yellow suspension was poured into $\mathrm{H}_{2} \mathrm{O}$ and acidified to $\mathrm{pH}=1$ with $\mathrm{HCl}\left(10 \mathrm{wt} \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$. The yellow precipitate was filtered, washed with $\mathrm{H}_{2} \mathrm{O}$ and dried under reduced pressure. The desired chalcone 12da was obtained as a yellow solid ($744 \mathrm{mg}, 2.30 \mathrm{mmol}, 94 \%$). $R_{\mathrm{f}}=0.43$ (petroleum ether/EtOAc 3:1); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 11.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.82$ $(\mathrm{d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{CH}), 7.60(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times$ ArH), 7.51 (d, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}), 7.01-6.94(\mathrm{~m}, 4 \mathrm{H}, 4 \times$ $\mathrm{ArH}), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}]$ $193.6(\mathrm{q}, \mathrm{C}=\mathrm{O}), 162.8(\mathrm{q}, \operatorname{ArC}), 162.4(\mathrm{q}, \operatorname{ArC}), 144.9(\mathrm{t}$, $\mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{CH}), 139.7$ (q, ArC), 134.7 (q, ArC), 130.9 (t, $2 \times$ $\mathrm{ArCH}), 127.4(\mathrm{q}, \mathrm{ArC}), 123.6(\mathrm{t}, \mathrm{C}(\mathrm{O}) \mathrm{CH}), 122.3(\mathrm{t}, \mathrm{ArCH}), 120.3$ $(\mathrm{q}, \mathrm{ArC}), 117.3(\mathrm{t}, \mathrm{ArCH}), 114.7(\mathrm{t}, 2 \times \mathrm{ArCH}), 55.6\left(\mathrm{p}, \mathrm{OCH}_{3}\right)$. The analytical data are consistent with those reported in the literature. ${ }^{44}$

5,7-Dichloro-3-hydroxy-2-(4-methoxyphenyl)-4H-chromen-4one (8da). To a suspension of chalcone $12 \mathrm{da}(646 \mathrm{mg}, 2.00 \mathrm{mmol}$, 1.00 equiv) in $\mathrm{MeOH}(17.2 \mathrm{~mL}), \mathrm{NaOH}(3.00 \mathrm{M}$, aq., $2.58 \mathrm{~mL}, 7.74$ mmol, 3.87 equiv) was added and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}_{2}(30 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}, 652 \mu \mathrm{~L}, 6.40 \mathrm{mmol}, 3.20$ equiv) was then added dropwise and the solution was stirred at $0^{\circ} \mathrm{C}$ for 3 h . Subsequently, the cooling bath was removed and the mixture was stirred for another 20 h . Then, HCl ($10 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}$) was added, leading to the formation of a yellow precipitate. The suspension was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times)$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was purified by recrystallization from EtOAc to give the desired product 8da as a pale-yellowish solid ($172 \mathrm{mg}, 510 \mu \mathrm{~mol}, 26 \%$). $R_{\mathrm{f}}=0.42$ (petroleum ether/EtOAc 4:1); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 8.18$ (d, J $=9.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.53(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.40(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.05(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH})$, $3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 171.7$ $(\mathrm{q}, \mathrm{C}=\mathrm{O}), 161.5(\mathrm{q}, \mathrm{Ar} C), 156.6(\mathrm{q}, \operatorname{ArC}), 144.2(\mathrm{q}, \mathrm{C}=\mathrm{COH})$, 138.6 (q, ArC), 138.2 ($q, C O H), 134.5$ ($q, \operatorname{ArC),~} 129.5$ (t, $2 \times \operatorname{ArCH})$, 127.6 ($\mathrm{t}, \mathrm{ArCH}$), 122.7 (q, ArC), 117.6 ($\mathrm{t}, \mathrm{ArCH}), 116.6$ (q, ArC), $114.4(\mathrm{t}, 2 \times \mathrm{ArCH}), 55.6\left(\mathrm{p}, \mathrm{OCH}_{3}\right)$; HRMS (EI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{4}[\mathrm{M}]^{+}$335.9956, found 335.9971.
(\pm)-Methyl (1R,2R,3S,3aR,8bS)-6,8-dichloro-1,8b-dihydroxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta-[b]benzofuran-2-carboxylate (9da). Methyl cinnamate ($1.14 \mathrm{~g}, 7.03$ mmol, 14.2 equiv) was added to a solution of flavonol 8 da (167 mg , $495 \mu \mathrm{~mol}, 1.00$ equiv) in dry chloroform (9.71 mL) and freshly distilled $2,2,2$-trifluoroethanol (4.13 mL). The reaction mixture was degassed for 30 min , then cooled to $-5{ }^{\circ} \mathrm{C}$ and irradiated with UV light ($\lambda_{\text {max }}=365 \mathrm{~nm}$) until it no longer fluoresced greenish (20 h). Subsequently, the solvent was removed under reduced pressure. The remaining amount of methyl cinnamate was then removed by column chromatography (petroleum ether/EtOAc 9:1 \rightarrow 1:1). The desired cycloadduct was obtained as a mixture of isomers as a yellowish foam (185 mg). Without any further purification the product of the first step ($185 \mathrm{mg}, 370 \mu \mathrm{~mol}, 1.00$ equiv) was dissolved in MeOH (13.7 mL). Then, NaOMe solution ($200 \mu \mathrm{~L}, 25 \mathrm{wt} \%$ in $\mathrm{MeOH}, 1.20 \mathrm{mmol}$, 3.25 equiv) was added and the mixture was heated under refluxing conditions for 1 h . Subsequently, the reaction was terminated by the addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution (sat., aq.). The phases were separated and the aqueous phase was extracted with EtOAc ($3 \times$). The organic phases were combined, dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. The desired keto ester was obtained as a mixture of isomers as an orange solid (185 mg) and used directly for the next step. A mixture of $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}(\mathrm{OAc})_{3} \mathrm{BH}(626$ $\mathrm{mg}, 2.38 \mathrm{mmol}, 6.42$ equiv) and freshly distilled AcOH ($221 \mu \mathrm{~L}, 3.86$ mmol, 10.4 equiv) in $\mathrm{MeCN}(9.62 \mathrm{~mL}$) was stirred for 5 min at rt . Then, a solution of the product of the second step ($185 \mathrm{mg}, 370$ $\mu \mathrm{mol}, 1.00$ equiv $)$ in $\mathrm{MeCN}(6.39 \mathrm{~mL})$ was added. The mixture was protected from light and stirred for 19 h at rt . The reaction was then terminated by adding $\mathrm{NH}_{4} \mathrm{Cl}$ solution (sat., aq.) and sodium potassium tartrate solution (aq., 2.00 M). The phases were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. Column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}\right.$ 1:0 \rightarrow 9:1) was then performed to obtain the racemic endo-product 9da as a colorless foam ($119 \mathrm{mg}, 237 \mu \mathrm{~mol}$, 48% over three steps). $R_{\mathrm{f}}=0.21$ (petroleum ether/EtOAc 7:3); ${ }^{1} \mathbf{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 7.14(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5)$, 7.07-6.95 (m, 8H, H-7, H-2', H-6', H-2", H-3", H-4", H-5", H-6"), 6.57 (d, $\left.J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, H-3^{\prime}, H-5^{\prime}\right), 5.72(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}-1)$, 5.69 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}-8 \mathrm{~b}$), 4.69 (dd, $J=5.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.38 (d, $J=$ $14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 4.06 (dd, $J=14.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}, H-2$), 3.59 ($\mathrm{s}, 3 \mathrm{H}$, $\mathrm{H}_{3} \mathrm{CO}-11$), 3.58 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-4^{\prime \prime}$); ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 100$ MHz): $\delta[\mathrm{ppm}] 170.2(\mathrm{q}, \mathrm{C}-11), 160.6$ (q, C-4a), 157.6 (q, C-4'), 138.0 ($q, C-1^{\prime \prime}$), 134.3 ($q, C-6$), 132.5 ($q, C-8 a$), 128.5 ($\mathrm{t}, \mathrm{C}-2^{\prime}, \mathrm{C}-6^{\prime}$), 128.0 ($q, C-1^{\prime}$), 127.9 ($\mathrm{t}, \mathrm{C}-3^{\prime \prime}, \mathrm{C}-5^{\prime \prime}$), 127.5 (t, C-2", C-6"), 125.8 (t , C-4"), 125.6 ($q, C-8$), 120.9 (t, C-7), 111.9 (t, C-3', C-5'), 109.2 (t, C-5), 102.3 ($q, C-3 \mathrm{a}$), 93.5 ($q, C-8 b), 78.2$ (t, C-1), 54.9 (t, C-3), 54.7 ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-4^{\prime}$), 51.7 (t, C-2), 51.5 ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-11$); HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 523.0691$ found 523.0676 . HPLC purity 98.31%.
Synthesis of (\pm)-Methyl (1R,2R,3S,3aR,8bS)-3a-(4-bromo-phenyl)-6,8-dichloro-1,8b-dihydroxy-3-phenyl-2,3,3a,8b-tet-rahydro-1 H -cyclopenta[b]benzofuran-2-carboxylate (9db).

(E)-3-(4-Bromophenyl)-1-(2,4-dichloro-6-hydroxyphenyl)prop-2-en-1-one (12db). Acetophenone $3 \mathrm{~d}(500 \mathrm{mg}, 2.44 \mathrm{mmol}, 1.00$ equiv) was added to a solution of $\mathrm{NaOEt}(498 \mathrm{mg}, 7.32 \mathrm{mmol}, 3.00$ equiv) in EtOH (8.41 mL). After stirring for 1 h at rt , 4bromobenzaldehyde ($451 \mathrm{mg}, 2.44 \mathrm{mmol}, 1.00$ equiv) was added and the reaction mixture was stirred overnight. The resulting yellow suspension was poured into $\mathrm{H}_{2} \mathrm{O}$ and acidified to $\mathrm{pH}=1$ with HCl ($10 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}$). The yellow precipitate was filtered, washed with $\mathrm{H}_{2} \mathrm{O}$ and dried under reduced pressure. The desired compound 12db was obtained as a yellow solid ($856 \mathrm{mg}, 2.30 \mathrm{mmol}, 94 \%$). $R_{\mathrm{f}}=0.57$
(petroleum ether/EtOAc 3:1); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ [ppm] $11.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.73(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{CH})$, 7.61 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times$ ArH), 7.48 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.02(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArH}), 6.98(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$: $\delta[\mathrm{ppm}] 193.7(\mathrm{q}, \mathrm{C}=\mathrm{O}), 163.0(\mathrm{q}, \mathrm{ArC}), 143.1(\mathrm{t}, \mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{CH})$, $140.3(\mathrm{q}, \mathrm{ArC}), 134.8(\mathrm{q}, \operatorname{ArC}), 133.5(\mathrm{q}, \operatorname{ArC}), 132.51(\mathrm{t}, 2 \times \operatorname{ArCH})$, $130.2(\mathrm{t}, 2 \times \mathrm{ArCH}), 126.5(\mathrm{t}, \mathrm{C}(\mathrm{O}) \mathrm{CH}), 125.6(\mathrm{q}, \mathrm{ArC}), 122.5(\mathrm{t}$, ArCH), 119.9 (q, ArC), 117.5 ($\mathrm{t}, \mathrm{ArCH}$); HRMS (ESI-) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{BrCl}_{2} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-} 368.9085$, found 368.9085 .

2-(4-Bromophenyl)-5,7-dichloro-3-hydroxy-4H-chromen-4-one (8db). To a suspension of chalcone $\mathbf{1 2 d b}(744 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{MeOH}(17.2 \mathrm{~mL}$), NaOH (3.00 M , aq., $2.58 \mathrm{~mL}, 7.74$ $\mathrm{mmol}, 3.87$ equiv) was added and cooled to $0^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}_{2}(30 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}, 652 \mu \mathrm{~L}, 6.40 \mathrm{mmol}, 3.20$ equiv) was then added dropwise and the solution was stirred at $0^{\circ} \mathrm{C}$ for 3 h . Subsequently, the cooling bath was removed and the mixture was stirred for another 20 h . Then, HCl ($10 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}$) was added, leading to the formation of a yellow precipitate. Subsequently, the suspension was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4 \times)$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was purified by recrystallization from EtOAc to give the desired product 8 db as a pale-yellowish solid ($155 \mathrm{mg}, 402 \mu \mathrm{~mol}, 20 \%$). $R_{\mathrm{f}}=0.57$ (petroleum ether/EtOAc 4:1); ${ }^{1} \mathbf{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ [ppm] $8.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.67(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times$ $\operatorname{ArH}), 7.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ MHz): δ [ppm] 171.9 (q, C=O), 156.7 (q, ArC), 142.7 ($\mathrm{q}, \mathrm{C}=$ COH), 139.2 (q, ArC), $139.0(\mathrm{q}, \mathrm{COH}), 134.7$ ($\mathrm{q}, \mathrm{ArC}), 132.2$ (t, $2 \times$ $\mathrm{ArCH}), 129.3$ (q, ArC), 129.1 ($\mathrm{t}, 2 \times \mathrm{ArCH}$), 127.8 ($\mathrm{t}, \mathrm{ArCH}$), 125.3 (q, ArC), 117.6 (t, ArCH), 116.5 ($q, \operatorname{ArC);~HRMS~(EI)~} m / z$ calcd for $\mathrm{C}_{15} \mathrm{H}_{7} \mathrm{BrCl}_{2} \mathrm{O}_{3}[\mathrm{M}]^{+}$335.9956, found 335.8955 .
(\pm)-Methyl (1R,2R,3S,3aR,8bS)-3a-(4-bromophenyl)-6,8-di-chloro-1,8b-dihydroxy-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxylate (9db). Methyl cinnamate ($1.29 \mathrm{~g}, 7.98 \mathrm{mmol}, 14.2$ equiv) was added to a solution of flavonol $8 \mathrm{db}(217 \mathrm{mg}, 562 \mu \mathrm{~mol}, 1.00$ equiv) in dry chloroform (11.0 mL) and freshly distilled $2,2,2$-trifluoroethanol (4.68 mL). The reaction mixture was degassed for 30 min , then cooled to $-5^{\circ} \mathrm{C}$ and irradiated with UV light ($\lambda_{\text {max }}=365 \mathrm{~nm}$) until it no longer fluoresced greenish (20 h). Subsequently, the solvent was removed under reduced pressure. The remaining amount of methyl cinnamate was then removed by column chromatography (petroleum ether/EtOAc 1:0 \rightarrow $3: 1$). The desired cycloadduct was obtained as a mixture of isomers as a yellowish oil (235 mg). Without any further purification the product of the first step ($235 \mathrm{mg}, 429 \mu \mathrm{~mol}, 1.00$ equiv) was dissolved in $\mathrm{MeOH}(15.9 \mathrm{~mL})$. Then, NaOMe solution ($232 \mu \mathrm{~L}, 25 \mathrm{wt} \%$ in $\mathrm{MeOH}, 1.39 \mathrm{mmol}, 3.25$ equiv) was added and the mixture was heated under refluxing conditions for 1 h . Subsequently, the reaction was terminated by the addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution (sat., aq.). The phases were separated and the aqueous phase was extracted with EtOAc ($3 \times$). The organic phases were combined, dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. The desired keto ester was obtained as a mixture of isomers as a yellowish solid (155 mg) and used directly for the next step. A mixture of $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}(\mathrm{OAc})_{3} \mathrm{BH}(478 \mathrm{mg}, 1.82 \mathrm{mmol}, 6.42$ equiv) and freshly distilled AcOH ($168 \mu \mathrm{~L}, 2.94 \mathrm{mmol}, 10.4$ equiv) in $\mathrm{MeCN}(7.34 \mathrm{~mL})$ was stirred for 5 min at rt . Then, a solution of the product of the second step ($155 \mathrm{mg}, 283 \mu \mathrm{~mol}, 1.00$ equiv) in $\mathrm{MeCN}(4.87 \mathrm{~mL})$ was added. The mixture was protected from light and stirred for 19 h at rt . The reaction was then terminated by adding $\mathrm{NH}_{4} \mathrm{Cl}$ solution (sat., aq.) and sodium potassium tartrate solution (aq., 2.00 M). The phases were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times)$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. Column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 1: 0 \rightarrow 9: 1\right)$ was then performed to obtain the racemic endo-product 9 db as a colorless foam ($12.0 \mathrm{mg}, 21.8 \mu \mathrm{~mol}$, 4% over three steps). $R_{\mathrm{f}}=0.38$ (petroleum ether/EtOAc 7:3); ${ }^{1} \mathbf{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 7.20\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right.$, H-5'), 7.17 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), $7.09-6.97$ (m, 8H, H-7, H-2', H-6', H-2" $\left., H-3^{\prime \prime}, H-4^{\prime \prime}, H-5^{\prime \prime}, H-6^{\prime \prime}\right), 5.85$ (s, 1H, HO-8b), 5.77 (d, J
$=6.1 \mathrm{~Hz}, 1 \mathrm{H}, H \mathrm{H}-1), 4.68(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, H-1), 4.43(\mathrm{~d}, J=13.9$ $\mathrm{Hz}, 1 \mathrm{H}, H-3), 4.11(\mathrm{dd}, J=13.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}, H-2), 3.59(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{O}-11$); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 170.1$ (q, C11), 160.4 ($q, C-4 a$), 137.6 ($q, C-1^{\prime \prime}$), 135.6 ($\left.q, C-1^{\prime}\right), 134.4$ ($q, C-6$), 132.3 ($q, C-8 a$), 129.6 (t, C-2', C-6'), 129.3 (t, C-3', C-5'), 127.8 (t, C-3", C-5 ${ }^{\prime \prime}$), 127.6 ($\left.\mathrm{t}, \mathrm{C}-2^{\prime \prime}, C-6^{\prime \prime}\right), 126.0\left(\mathrm{t}, \mathrm{C}-4^{\prime \prime}\right), 125.3$ ($\mathrm{q}, \mathrm{C}-8$), 121.1 (t, C-7), 119.9 (q, C-4'), 109.3 (t, C-5), 102.1 ($q, C-3 a), 93.7$ (q, C-8b), 78.1 (t, C-1), 54.9 (t, C-3), 51.7 (t, C-2), 51.6 (p, H3CO11); HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{BrCl}_{2} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 570.9702 found 570.9691; HPLC Purity 97.03%.

Synthesis of (\pm)-Methyl ($1 R, 2 R, 3 S, 3 \mathrm{aR}, 8 \mathrm{bS}$)-6,8-dibromo-1,8b-dihydroxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxylate (9e).

(E)-1-(2,4-Dibromo-6-hydroxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (12e). Acetophenone 3e $(717 \mathrm{mg}, 2.44 \mathrm{mmol}, 1.00$ equiv) was added to a solution of $\mathrm{NaOEt}(498 \mathrm{mg}, 7.32 \mathrm{mmol}, 3.00$ equiv) in EtOH (8.41 mL). After stirring for 1 h at rt , 4methoxybenzaldehyde ($296 \mu \mathrm{~L}, 2.44 \mathrm{mmol}, 1.00$ equiv) was added and the reaction mixture was stirred overnight. The resulting yellow suspension was poured into $\mathrm{H}_{2} \mathrm{O}$ and acidified to $\mathrm{pH}=1$ with HCl ($10 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}$). The yellow precipitate was filtered, washed with $\mathrm{H}_{2} \mathrm{O}$ and dried under reduced pressure. The desired compound 12e was obtained as a yellow solid ($923 \mathrm{mg}, 2.24 \mathrm{mmol}, 92 \%$). $R_{\mathrm{f}}=0.36$ (petroleum ether/EtOAc 3:1); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ [ppm] $10.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.78(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{CH})$, $7.60(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.46(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}(\mathrm{O}) \mathrm{CH}), 7.38(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.17(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArH}), 6.95(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 194.2(\mathrm{q}, \mathrm{C}=\mathrm{O}), 162.4(\mathrm{q}, \mathrm{ArC})$, $161.8(\mathrm{q}, \mathrm{ArC}), 144.6(\mathrm{t}, \mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{CH}), 131.0(\mathrm{t}, 2 \times \mathrm{ArCH}), 128.3$ ($\mathrm{t}, \mathrm{ArCH}$), $127.8(\mathrm{q}, \mathrm{ArC}), 127.4(\mathrm{q}, \mathrm{ArC}), 123.5(\mathrm{t}, \mathrm{C}(\mathrm{O}) \mathrm{CH}), 122.9$ ($q, \operatorname{ArC}), 122.5(\mathrm{q}, \mathrm{ArC}), 120.7(\mathrm{t}, \mathrm{ArCH}), 114.8(\mathrm{t}, 2 \times \mathrm{ArCH}), 55.6$ $\left(\mathrm{p}, \mathrm{OCH}_{3}\right)$; HRMS (ESI') m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{Br}[\mathrm{M}-\mathrm{H}]^{-}$ 408.9075, found 408.9068.

5,7-Dibromo-3-hydroxy-2-(4-methoxyphenyl)-4H-chromen-4one (8e). To a suspension of chalcone $12 \mathrm{e}(824 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{MeOH}(17.2 \mathrm{~mL}), \mathrm{NaOH}(3.00 \mathrm{M}$, aq., $2.58 \mathrm{~mL}, 7.74$ $\mathrm{mmol}, 3.87$ equiv) was added and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}_{2}$ ($30 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}, 652 \mu \mathrm{~L}, 6.40 \mathrm{mmol}, 3.20$ equiv) was then added dropwise and the solution was stirred at $0^{\circ} \mathrm{C}$ for 3 h . Subsequently, the cooling bath was removed and the mixture was stirred for another 20 h . Then, HCl ($10 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}$) was added, leading to the formation of a yellow precipitate. Subsequently, the suspension was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4 \times)$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was purified by recrystallization from EtOAc to give the desired product $8 \mathbf{e}$ as a pale-yellowish solid ($125 \mathrm{mg}, 293 \mu \mathrm{~mol}, 15 \%) . R_{\mathrm{f}}=0.39$ (petroleum ether/EtOAc 4:1); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ $[\mathrm{ppm}] 8.18(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.78(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\operatorname{ArH}), 7.75(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArH}), 7.04(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times$ $\mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 171.7(\mathrm{q}, \mathrm{C}=\mathrm{O})$, 161.5 (q, ArC), 156.3 ($q, A r C$), $144.1(q, C=C O H), 138.0(q$, COH), 133.7 ($\mathrm{t}, \mathrm{ArCH}$), 129.5 ($\mathrm{t}, 2 \times \mathrm{ArCH}), 126.9$ ($\mathrm{q}, \mathrm{ArC}), 122.7$ (q, ArC), 121.3 (t, $\operatorname{ArCH}), 121.2$ ($q, \operatorname{ArC),~} 117.6$ ($q, \operatorname{ArC),~} 114.4$ (q, $2 \times \mathrm{ArCH}), 55.6\left(\mathrm{p}, \mathrm{OCH}_{3}\right) ;$ HRMS (EI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{4}$ $[\mathrm{M}]^{+} 423.8946$, found 423.8943. The analytical data are consistent with those reported in the literature. ${ }^{45}$
(\pm)-Methyl (1R,2R,3S,3aR,8bS)-6,8-dibromo-1,8b-dihydroxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta-[b]benzofuran-2-carboxylate (9e). Methyl cinnamate ($665 \mathrm{mg}, 4.10$ $\mathrm{mmol}, 14.2$ equiv) was added to a solution of flavonol $8 \mathbf{e}(123 \mathrm{mg}$, $289 \mu \mathrm{~mol}, 1.00$ equiv) in dry chloroform $(5.66 \mathrm{~mL})$ and freshly distilled 2,2,2-trifluoroethanol (2.41 mL). The reaction mixture was
degassed for 30 min , then cooled to $-5{ }^{\circ} \mathrm{C}$ and irradiated with UV light ($\lambda_{\max }=365 \mathrm{~nm}$) until it no longer fluoresced greenish (20 h). Subsequently, the solvent was removed under reduced pressure. The remaining amount of methyl cinnamate was then removed by column chromatography (petroleum ether/EtOAc 9:1 \rightarrow 1:1). The desired cycloadduct was obtained as a mixture of isomers as a yellowish solid (170 mg). Without any further purification the product of the first step ($170 \mathrm{mg}, 289 \mu \mathrm{~mol}, 1.00$ equiv) was dissolved in MeOH (10.7 mL). Then, NaOMe solution ($156 \mu \mathrm{~L}, 25 \mathrm{wt} \%$ in $\mathrm{MeOH}, 939 \mu \mathrm{~mol}$, 3.25 equiv) was added and the mixture was heated under refluxing conditions for 1 h . Subsequently, the reaction was terminated by the addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution (sat., aq.). The phases were separated and the aqueous phase was extracted with EtOAc $(3 \times)$. The organic phases were combined, dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. The desired keto ester was obtained as a mixture of isomers as an orange solid $(158 \mathrm{mg})$ and used directly for the next step. A mixture of $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}(\mathrm{OAc})_{3} \mathrm{BH}(454$ $\mathrm{mg}, 1.72 \mathrm{mmol}, 6.42$ equiv) and freshly distilled $\mathrm{AcOH}(160 \mu \mathrm{~L}, 2.80$ mmol, 10.4 equiv) in $\mathrm{MeCN}(6.98 \mathrm{~mL})$ was stirred for 5 min at rt . Then, a solution of the product of the second step $(158 \mathrm{mg}, 269$ $\mu \mathrm{mol}, 1.00$ equiv) in $\mathrm{MeCN}(4.63 \mathrm{~mL})$ was added. The mixture was protected from light and stirred for 19 h at rt . The reaction was then terminated by adding $\mathrm{NH}_{4} \mathrm{Cl}$ solution (sat., aq.) and sodium potassium tartrate solution (aq., 2.00 M). The phases were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. Column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}\right.$ 1:0 $\left.\rightarrow 9: 1\right)$ was then performed to obtain the racemic endo-product $9 \mathbf{e}$ as a pale-yellow foam ($84.8 \mathrm{mg}, 144 \mu \mathrm{~mol}$, 50% over three steps). $R_{f}=0.26$ (petroleum ether/EtOAc 7:3); ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 7.30(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, H-5)$, 7.26 (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, H-7$), $7.07-7.03$ (m, 2H, H-2", H-6"), 6.996.96 (m, 5H, H-2', H-6', H-3", H-4", H-5" $), 6.56$ (dt, J = 9.9, 2.5 Hz , $2 \mathrm{H}, H-3^{\prime}, H-5^{\prime}$), 5.65 (t, $J=3.0 \mathrm{~Hz}, 2 \mathrm{H}, H \mathrm{O}-1, H \mathrm{O}-8 \mathrm{~b}$), 4.68 (dd, $J=$ 5.9, $4.4 \mathrm{~Hz}, 1 \mathrm{H}, H-1), 4.41(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}, H-3), 4.05(\mathrm{dd}, J=$ 14.0, $4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 3.59 (s, $3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-11$), 3.56 (s, $3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-$ $\left.4^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 170.3(\mathrm{q}, \mathrm{C}-11)$, 160.9 ($q, C-4 a$), 157.6 ($\left.q, C-4^{\prime}\right), 138.0$ ($q, C-1^{\prime \prime}$), 128.5 (t, C-2', C$\left.6^{\prime}\right), 128.1$ ($q, C-1^{\prime}$), 127.9 (t, C-3",$C-5^{\prime \prime}$), 127.7 ($q, C-8 a$), 127.5 (t, C-2", C-6" $), 126.3$ ($\mathrm{t}, \mathrm{C}-7$), 125.8 ($\mathrm{t}, \mathrm{C}-4^{\prime \prime}$), 122.3 ($\mathrm{q}, \mathrm{C}-6$), 121.1 (q , C-8), 112.3 (t, C-5), 111.8 (t, C-3', C-5'), 102.3 (q, C-3a), 94.0 (q, C8b), 77.9 (t, C-1), 54.9 (t, C-3), 54.7 ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-4^{\prime}$), 51.57 (t, C-2), $51.5\left(\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-11\right)$; HRMS (ESI ${ }^{+}$) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}$ $+\mathrm{Na}]^{+} 610.9681$ found 610.9686 ; HPLC purity $\sim 100.00 \%$.

Synthesis of (\pm)-Methyl ($1 R, 2 R, 3 S, 3 \mathrm{aR}, 8 \mathrm{bS}$)-6-bromo-8-chloro-1,8b-dihydroxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxylate (9f).

(E)-1-(4-Bromo-2-chloro-6-hydroxyphenyl)-3-(4-methoxyphenyl)-prop-2-en-1-one (12f). Acetophenone $3 \mathrm{f}(1.19 \mathrm{~g}, 4.77 \mathrm{mmol}, 1.00$ equiv) was added to a solution of $\mathrm{NaOEt}(970 \mathrm{mg}, 14.3 \mathrm{mmol}, 3.00$ equiv) in $\mathrm{EtOH}(16.0 \mathrm{~mL})$. After stirring for 1 h at rt , 4methoxybenzaldehyde ($580 \mu \mathrm{~L}, 4.77 \mathrm{mmol}, 1.00$ equiv) was added and the reaction mixture was stirred overnight. The resulting yellow suspension was poured into $\mathrm{H}_{2} \mathrm{O}$ and acidified to $\mathrm{pH}=1$ with HCl ($10 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}$). The yellow precipitate was filtered, washed with $\mathrm{H}_{2} \mathrm{O}$ and dried under reduced pressure. The desired compound 12 f was obtained as a yellow solid ($1.62 \mathrm{~g}, 4.59 \mathrm{mmol}, 96 \%) . R_{\mathrm{f}}=0.33$ (petroleum ether/EtOAc 3:1); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ $[\mathrm{ppm}] 11.49(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 7.81(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}=$ $\mathrm{CH}), 7.59(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.49(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}(\mathrm{O}) \mathrm{CH}), 7.16(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArH}), 7.13(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 6.94 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}$), $3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$

NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 193.7(\mathrm{q}, \mathrm{C}=\mathrm{O}), 162.6(\mathrm{q}, \mathrm{ArC})$, $162.4(\mathrm{q}, \mathrm{ArC}), 144.9(\mathrm{t}, \mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{CH}), 134.6(\mathrm{q}, \mathrm{ArC}), 131.0(\mathrm{t}$, $2 \times \mathrm{ArCH}), 127.8(\mathrm{q}, \mathrm{ArC}), 127.4(\mathrm{q}, \mathrm{ArC}), 125.0(\mathrm{t}, \mathrm{ArCH}), 123.6(\mathrm{t}$, $\mathrm{C}(\mathrm{O}) \mathrm{CH}), 120.7(\mathrm{q}, \mathrm{ArC}), 120.3(\mathrm{t}, \mathrm{ArCH}), 114.7(\mathrm{t}, 2 \times \mathrm{ArCH})$, $55.6\left(\mathrm{p}, \mathrm{OCH}_{3}\right)$; HRMS (ESI $) \mathrm{m} / z$ calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{ClBr}$ [M-$\mathrm{H}]^{-}$364.9580, found 364.9582 .

7-Bromo-5-chloro-3-hydroxy-2-(4-methoxyphenyl)-4H-chro-men-4-one (8 f). To a suspension of chalcone $12 \mathrm{f}(1.62 \mathrm{~g}, 4.42 \mathrm{mmol}$, 1.00 equiv) in $\mathrm{MeOH}(53.3 \mathrm{~mL}), \mathrm{NaOH}(3.00 \mathrm{M}$, aq., $7.58 \mathrm{~mL}, 22.7$ $\mathrm{mmol}, 5.15$ equiv) was added and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}_{2}$ ($35 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O} ., 1.46 \mathrm{~mL}, 17.0 \mathrm{mmol}, 3.84$ equiv) was then added dropwise and the solution was stirred at $0^{\circ} \mathrm{C}$ for 3 h . Subsequently, the cooling bath was removed and the mixture was stirred for another 18 h . Then, HCl ($10 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}$) was added, leading to the formation of a yellow precipitate. Subsequently, the suspension was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4 \times)$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was purified by recrystallization from EtOH to give the desired product $\mathbf{8 f}$ as a yellow solid ($203 \mathrm{mg}, 531 \mu \mathrm{~mol}, 12 \%$). $R_{\mathrm{f}}=0.30$ (petroleum ether/EtOAc 4:1); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 8.18(\mathrm{dt}, J$ $=9.9,2.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.71(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArH}), 7.54(\mathrm{~d}, J$ $=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.17(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 7.04(\mathrm{dt}, J=9.9,2.6 \mathrm{~Hz}, 2 \mathrm{H}$, $2 \times \mathrm{ArH}), 3.90\left(3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta[\mathrm{ppm}]$ $171.7(\mathrm{q}, C=\mathrm{O}), 161.5(\mathrm{q}, \operatorname{ArC}), 156.5(\mathrm{q}, \operatorname{ArC}), 144.1(\mathrm{q}, C=$ $\mathrm{COH}), 138.2(\mathrm{q}, \mathrm{COH}), 134.4(\mathrm{q}, \mathrm{ArC}), 130.2(\mathrm{t}, \mathrm{ArCH}), 129.6(\mathrm{t}$, $2 \times \mathrm{ArCH}), 126.4$ (q, ArC), 122.7 (q, ArC), 120.6 ($\mathrm{t}, \mathrm{ArCH}$), 116.9 (q, ArC), $114.4(\mathrm{t}, 2 \times \mathrm{ArCH}), 55.6\left(\mathrm{p}, \mathrm{OCH}_{3}\right)$; HRMS (EI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{ClO}_{4} \mathrm{Br}[\mathrm{M}]^{+}$379.9451, found 379.9469.
(\pm)-Methyl (1R,2R,3S,3aR,8bS)-6-bromo-8-chloro-1,8b-dihy-droxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxylate (9f). Methyl cinnamate $(1.17 \mathrm{~g}, 7.20 \mathrm{mmol}, 14.2$ equiv) was added to a solution of flavonol $8 f(194 \mathrm{mg}, 507 \mu \mathrm{~mol}, 1.00$ equiv) in dry chloroform (10.4 mL) and freshly distilled 2,2,2-trifluoroethanol (4.14 mL). The reaction mixture was degassed for 30 min , then cooled to $-5{ }^{\circ} \mathrm{C}$ and irradiated with UV light $\left(\lambda_{\max }=365 \mathrm{~nm}\right)$ until it no longer fluoresced greenish (14 h). Subsequently, the solvent was removed under reduced pressure. The remaining amount of methyl cinnamate was then removed by column chromatography (petroleum ether/EtOAc $5: 1 \rightarrow 1: 1$). The desired cycloadduct was obtained as a mixture of isomers as a yellowish solid (262 mg). Without any further purification the product of the first step $(262 \mathrm{mg}, 482 \mu \mathrm{~mol}, 1.00$ equiv) was dissolved in $\mathrm{MeOH}(19.3 \mathrm{~mL})$. Then, NaOMe solution ($377 \mu \mathrm{~L}, 25 \mathrm{wt} \%$ in $\mathrm{MeOH}, 1.59 \mathrm{mmol}, 3.30$ equiv) was added and the mixture was heated under refluxing conditions for 1 h . Subsequently, the reaction was terminated by the addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution (sat., aq.). The phases were separated and the aqueous phase was extracted with $\mathrm{EtOAc}(3 \times)$. The organic phases were combined, dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. Product E21 was obtained as a mixture of isomers as an orange solid (262 mg) and used directly for the next step. The desired keto ester was obtained as a mixture of isomers as an orange solid (262 mg) and used directly for the next step. A mixture of $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}(\mathrm{OAc})_{3} \mathrm{BH}(814 \mathrm{mg}, 3.09 \mathrm{mmol}, 6.42$ equiv) and freshly distilled $\mathrm{AcOH}(288 \mu \mathrm{~L}, 5.02 \mathrm{mmol}, 10.4$ equiv) in $\mathrm{MeCN}(4.25 \mathrm{~mL})$ was stirred for 5 min at rt . Then, a solution of the product of the second step ($262 \mathrm{mg}, 482 \mu \mathrm{~mol}, 1.00$ equiv) in MeCN $(2.83 \mathrm{~mL})$ was added. The mixture was protected from light and stirred for 19 h at rt . The reaction was then terminated by adding $\mathrm{NH}_{4} \mathrm{Cl}$ solution (sat., aq.) and sodium potassium tartrate solution (aq., 2.00 M). The phases were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. Column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 1: 0 \rightarrow 9: 1\right)$ was then performed to obtain the racemic endo-product 9 f as a colorless foam ($153 \mathrm{mg}, 280 \mu \mathrm{~mol}, 55 \%$ over three steps). $R_{\mathrm{f}}=0.32$ (petroleum ether/EtOAc 7:3); ${ }^{1} \mathbf{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$): $\delta[\mathrm{ppm}] 7.27$ (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, H-5$), 7.14 (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, H-7$), 7.07-6.95 (m, $\left.7 \mathrm{H}, H-2^{\prime}, H-6^{\prime}, H-2^{\prime \prime}, H-3^{\prime \prime}, H-4^{\prime \prime}, H-5^{\prime \prime}, H-6^{\prime \prime}\right), 6.57(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}, H-3^{\prime}, H-5^{\prime}$), 5.72 (d, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, H \mathrm{O}-1$), 5.69 (s, 1H, HO-

8b), 4.69 (dd, $J=6.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}, H-1), 4.37(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 3), 4.05 (dd, $J=14.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2)$, 3.59 ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-11\right), 3.58$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-4^{\prime}$); ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 100 \mathrm{MHz}$): $\delta[\mathrm{ppm}] 170.2$ ($q, C-11$), 160.8 ($q, C-4 a), 157.6\left(q, C-4^{\prime}\right), 138.0\left(q, C-1^{\prime \prime}\right), 132.8$ (q, C-8a), 128.5 ($\mathrm{t}, \mathrm{C}^{\prime} \mathbf{2}^{\prime}, C-6^{\prime}$), 128.0 ($\mathrm{q}, \mathrm{C}-1^{\prime}$), 127.9 ($\left.\mathrm{t}, \mathrm{C}-3^{\prime \prime}, C-5^{\prime \prime}\right)$, 127.5 (t, C-2", C-6"), 126.1 (t, C-8), 125.8 (t, C-4"), 123.5 (q, C-7), 122.2 ($q, C-6$), 112.0 (t, C-5), 111.9 (t, C-3', C-5'), 102.2 ($q, C-3 \mathrm{a}$), 93.6 ($q, C-8 b), 78.1(\mathrm{t}, \mathrm{C}-1), 54.9(\mathrm{t}, \mathrm{C}-3), 54.7\left(\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-4^{\prime}\right), 51.7(\mathrm{t}$, C-2), 51.5 ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-11$); HRMS (ESI ${ }^{+}$) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{BrClO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 567.0186$ found 567.0181 ; HPLC purity 99.72\%.

Synthesis of (\pm)-Methyl ($1 R, 2 R, 3 S, 3 \mathrm{aR}, 8 \mathrm{bS}$)-8-bromo-6-chloro-1,8b-dihydroxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxylate $(9 \mathrm{~g})$.

(E)-1-(2-Bromo-4-chloro-6-hydroxyphenyl)-3-(4-methoxyphenyl)-prop-2-en-1-one (12g). Acetophenone 3 g ($900 \mathrm{mg}, 3.61 \mathrm{mmol}$, 1.00 equiv) was added to a solution of $\mathrm{NaOEt}(736 \mathrm{mg}, 10.8 \mathrm{mmol}$, 3.00 equiv) in $\mathrm{EtOH}(68.5 \mathrm{~mL})$. After stirring for 1 h at rt, 4methoxybenzaldehyde ($439 \mu \mathrm{~L}, 3.61 \mathrm{mmol}, 1.00$ equiv) was added and the reaction mixture was stirred overnight. The resulting yellow suspension was poured into $\mathrm{H}_{2} \mathrm{O}$ and acidified to $\mathrm{pH}=1$ with HCl ($10 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}$). The yellow precipitate was filtered, washed with $\mathrm{H}_{2} \mathrm{O}$ and dried under reduced pressure. The desired compound $\mathbf{1 2 g}$ was obtained as a yellow solid ($287 \mathrm{mg}, 781 \mu \mathrm{~mol}, 22 \%$). $R_{\mathrm{f}}=0.62$ (petroleum ether/EtOAc 3:2); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta$ [ppm] $11.04(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 7.78(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}=$ $\mathrm{CH}), 7.60(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.47(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}(\mathrm{O}) \mathrm{CH}), 7.23(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.00(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 6.95 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}$), $3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 194.1(\mathrm{q}, \mathrm{C}=\mathrm{O}), 162.4(\mathrm{q}, \mathrm{ArC})$, $162.0(\mathrm{q}, \mathrm{ArC}), 144.5(\mathrm{t}, \mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{CH}), 139.7(\mathrm{q}, \mathrm{ArC}), 131.0(\mathrm{t}$, $2 \times \mathrm{ArCH}), 127.5(\mathrm{q}, \mathrm{ArC}), 125.6(\mathrm{t}, \mathrm{ArCH}), 123.6(\mathrm{t}, \mathrm{C}(\mathrm{O}) \mathrm{CH})$, 122.54 (q, ArC), 122.53 (q, ArC), 120.7 (t, ArCH), 117.7 (t, ArCH), $114.8(\mathrm{t}, 2 \times \mathrm{ArCH})$, $55.6\left(\mathrm{p}, \mathrm{OCH}_{3}\right)$; HRMS (ESI ${ }^{+}$) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{NaClBr}[\mathrm{M}+\mathrm{Na}]^{+} 388.9556$, found 388.9551 .

5-Bromo-7-chloro-3-hydroxy-2-(4-methoxyphenyl)-4H-chro-men-4-one (8 g). To a suspension of chalcone $12 \mathrm{~g}(287 \mathrm{mg}, 781$ $\mu \mathrm{mol}, 1.00$ equiv) in $\mathrm{MeOH}(9.25 \mathrm{~mL}), \mathrm{NaOH}(3.00 \mathrm{M}$, aq., 1.34 $\mathrm{mL}, 4.02 \mathrm{mmol}, 5.15$ equiv) was added and cooled to $0^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}_{2}(35$ $\mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}, 257 \mu \mathrm{~L}, 3.00 \mathrm{mmol}, 3.84$ equiv) was then added dropwise and the solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h . Subsequently, the cooling bath was removed and the mixture was stirred for another 16 h . Then, $\mathrm{HCl}\left(10 \mathrm{wt} \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ was added, leading to the formation of a yellow precipitate. The suspension was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times)$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was purified by recrystallization from EtOH to give the desired product 8 g as a yellow solid $(65.0 \mathrm{mg}, 170 \mu \mathrm{~mol}, 22 \%) . R_{\mathrm{f}}=0.31$ (petroleum ether/EtOAc 4:1); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta$ [ppm] $8.18(\mathrm{dt}, J=9.9,2.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.64(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), $7.59(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.05(\mathrm{dt}, J=$ $9.9,2.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $150 \mathrm{MHz}): \delta[\mathrm{ppm}] 171.7(\mathrm{q}, \mathrm{C}=\mathrm{O}), 161.5(\mathrm{q}, \operatorname{ArC}), 156.4(\mathrm{q}$, $\operatorname{ArC}), 144.2(\mathrm{q}, \mathrm{C}=\mathrm{COH}), 138.9(\mathrm{q}, \mathrm{ArC}), 137.9(\mathrm{q}, \mathrm{COH}), 131.2(\mathrm{t}$, $\mathrm{ArCH}), 129.5$ ($\mathrm{t}, 2 \times \mathrm{ArCH}), 122.8$ (q, ArC), 121.2 (q, ArC), 118.2 (t , $\mathrm{ArCH}), 117.3$ (q, ArC), 114.4 (t, $2 \times \mathrm{ArCH}$), 55.6 (p, OCH_{3}); HRMS (EI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{ClO}_{4} \mathrm{Br}[\mathrm{M}]^{+}$379.9451, found 379.9453.
(\pm)-Methyl (1R,2R,3S,3aR,8bS)-8-bromo-6-chloro-1,8b-dihy-droxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxylate (9g). Methyl cinnamate ($392 \mathrm{mg}, 2.42 \mathrm{mmol}, 14.2$ equiv) was added to a solution of flavonol $8 \mathrm{~g}(65.0 \mathrm{mg}, 170 \mu \mathrm{~mol}, 1.00$ equiv) in dry chloroform (3.48 mL) and
freshly distilled 2,2,2-trifluoroethanol (1.39 mL). The reaction mixture was degassed for 30 min , then cooled to $-5{ }^{\circ} \mathrm{C}$ and irradiated with UV light $\left(\lambda_{\max }=365 \mathrm{~nm}\right)$ until it no longer fluoresced greenish (22 h). Subsequently, the solvent was removed under reduced pressure and the remaining amount of methyl cinnamate was removed by column chromatography (petroleum ether/EtOAc 5:1 \rightarrow $1: 1)$. The crude cycloadduct was obtained as a mixture of isomers as a yellowish solid (110 mg). Without any further purification the product of the first step $(110 \mathrm{mg})$ was dissolved in $\mathrm{MeOH}(6.81 \mathrm{~mL})$. Then, NaOMe solution ($133 \mu \mathrm{~L}, 25 \mathrm{wt} \%$ in $\mathrm{MeOH}, 562 \mu \mathrm{~mol}, 3.30$ equiv) was added and the mixture was heated under refluxing conditions for 1 h . Subsequently, the reaction was terminated by the addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution (sat., aq.). The phases were separated and the aqueous phase was extracted with EtOAc $(3 \times)$. The organic phases were combined, dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. The product was obtained as a mixture of isomers as an orange solid (110 mg) and used directly for the next step. The crude keto ester was obtained as a mixture of isomers as an orange solid (110 mg) and used directly for the next step. A mixture of $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}(\mathrm{OAc})_{3} \mathrm{BH}(288 \mathrm{mg}, 1.09 \mathrm{mmol}, 6.42$ equiv) and freshly distilled $\mathrm{AcOH}(102 \mu \mathrm{~L}, 1.77 \mathrm{mmol}, 10.4$ equiv) in $\mathrm{MeCN}(1.50 \mathrm{~mL})$ was stirred for 5 min at rt . Then, a solution of the product of the second step $(110 \mathrm{mg})$ in $\mathrm{MeCN}(1.00 \mathrm{~mL})$ was added. The mixture was protected from light and stirred for 19 h at rt . The reaction was then terminated by adding $\mathrm{NH}_{4} \mathrm{Cl}$ solution (sat., aq.) and sodium potassium tartrate solution (aq., 2.00 M). The phases were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times)$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. Column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 1: 0 \rightarrow 9: 1\right)$ was then performed to obtain the racemic endo-product 9 g as a pale-yellow foam ($38.0 \mathrm{mg}, 69.6 \mu \mathrm{~mol}$, 41% over three steps). $R_{\mathrm{f}}=0.55\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 9: 1\right) ;{ }^{1} \mathbf{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 7.18(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, H-5), 7.15$ (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, H-7$), $7.07-7.03$ (m, 2H, H-2", H-6"), 7.00-6.95 (m, 5H, H-2', H-6', H-3", H-4", H-5"), 6.56 (dt, $J=10.1,2.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.H-3^{\prime}, H-5^{\prime}\right), 5.65$ (t, J = 3.0 Hz, 2H, HO-1, HO-8b), 4.68 (dd, $J=5.9$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}, H-1), 4.41(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}, H-3), 4.05(\mathrm{dd}, J=13.9$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.59$ (s, 3H, $\mathrm{H}_{3} \mathrm{CO}-11$), 3.57 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-4{ }^{\prime}$); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 170.3(\mathrm{q}, \mathrm{C}-11), 160.8(\mathrm{q}$, C-4a), 157.6 ($q, C-4^{\prime}$), 138.0 ($q, C-1^{\prime \prime}$), 134.4 ($q, C-6$), 128.5 (t, C-2', C-6'), 128.1 ($q, C-1^{\prime}$), 127.9 (t, C-3",$\left.C-5^{\prime \prime}\right), 127.5$ (t, C-2", C-6"), 127.2 ($q, C-8 \mathrm{a}$), 125.8 (t, C-4" $), 123.7$ (t, C-7), 120.8 ($q, C-8$), 111.9 (t, C-3', C-5'), 109.5 (t, C-5), 102.4 (q, C-3a), 93.9 (q, C-8b), 78.0 (t, C-1), 54.9 (t, C-3), 54.7 (p, H H CO-4'), 51.7 (t, C-2), 51.5 (p, H3CO11); HRMS (ESI ${ }^{+}$) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{BrClO}_{6} \mathrm{Na} \quad[\mathrm{M}+\mathrm{Na}]^{+}$ 567.0186 found 567.0172 ; HPLC purity 99.77%.

Synthesis of (\pm)-Methyl ($1 R, 2 R, 3 S, 3 \mathrm{aR}, 8 \mathrm{bS}$)-8-fluoro-1,8b-dihydroxy-6-methoxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxylate (9h).

(E)-1-(2-Fluoro-6-hydroxy-4-methoxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (12h). A suspension of NaOEt $(221 \mathrm{mg}, 3.26 \mathrm{mmol}, 3.00$ equiv) in dry EtOH (3.6 mL) was cooled down to rt, followed by the addition of 1-(2,4-difluoro-6-hydroxyphenyl)ethan-1-one ($200 \mathrm{mg}, 1.09 \mathrm{mmol}, 1.00$ equiv) at the same temperature. The suspension was stirred for 1 h , before p anisaldehyde ($132 \mu \mathrm{~L}, 1.09 \mathrm{mmol}, 1.00$ equiv) was added. The orange solution was stirred for 16 h at rt . The resulting orange suspension was poured into cold water and acidified to $\mathrm{pH}=1$ with HCl solution (aq., 1 M). The precipitate was filtered, washed with water and dried in vacuo. The crude was purified over silica gel chromatography (petroleum ether/EtOAc $10: 1$) to afford chalcone $\mathbf{1 2 h}$ as a yelloworange solid ($221 \mathrm{mg}, 0.73 \mathrm{mmol}, 67 \%$). $R_{\mathrm{f}}=0.31$ (petroleum ether/

EtOAc 4:1); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 13.97(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}), 7.89(\mathrm{dd}, J=15,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{CH}), 7.60(\mathrm{dt}, J=9.5$, $2.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Ar} H), 7.52(\mathrm{td}, J=15,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{CH})$, 6.28 (dd, $J=2.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.20(\mathrm{dd}, J=14,2.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArH}), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}): \delta[\mathrm{ppm}] 190.8(\mathrm{q}, d, J=14 \mathrm{~Hz}, C=\mathrm{O}), 167.2(\mathrm{q}, d, J=$ $7.7 \mathrm{~Hz}, \operatorname{ArC}), 165.7(\mathrm{q}, d, J=17 \mathrm{~Hz}, \operatorname{ArC}), 164.2(\mathrm{q}, d, J=253 \mathrm{~Hz}$, $\mathrm{ArC}), 161.9(\mathrm{q}, \mathrm{ArC}), 144.9(\mathrm{t}, d, J=1.7 \mathrm{~Hz}, \mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{CH}), 130.6$ $(\mathrm{t}, 2 \times \operatorname{ArC}), 127.6(\mathrm{q}, \operatorname{ArC}), 122.8(\mathrm{t}, d, J=17 \mathrm{~Hz}, \operatorname{ArC}), 114.5(\mathrm{t}, 2 \times$ $\operatorname{ArC}), 104.9(\mathrm{q}, d, J=14 \mathrm{~Hz}, \mathrm{ArC}), 97.6(\mathrm{t}, d, J=2.7 \mathrm{~Hz}, \mathrm{ArC}), 95.4$ ($\mathrm{t}, d, J=29 \mathrm{~Hz}, \mathrm{ArC}$), $55.9\left(\mathrm{p}, \mathrm{CH}_{3}\right), 55.4\left(\mathrm{p}, \mathrm{CH}_{3} \mathrm{O}\right)$; HRMS (ESI $\left.{ }^{+}\right)$ m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}$303.1033, found 303.1034.

5-Fluoro-3-hydroxy-7-methoxy-2-(4-methoxyphenyl)-4H-chro-men-4-one ($8 h$). Chalcone 12 i ($41 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.00$ equiv) was suspended in $\mathrm{MeOH}(1.6 \mathrm{~mL})$ and NaOH (aq., $3 \mathrm{M}, 0.67 \mathrm{mmol}, 5.00$ equiv). The mixture was sonicated for 5 min until everything was dissolved, then cooled down to $0{ }^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}_{2}$ (aq., $30 \%, 34 \mu \mathrm{~L}, 0.30$ mmol, 2.25 equiv) was then added to the cooled down mixture. The resulting yellow suspension was stirred at rt for 16 h . The reaction was terminated by the addition of HCl solution (aq., 1 M). The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were washed with brine, dried over MgSO_{4}, filtered and concentrated in vacuo. The crude was precipitated in EtOH to give $\mathbf{8 h}$ as a yellow solid (14 mg , $0.04 \mathrm{mmol}, 32 \%) . R_{\mathrm{f}}=0.25$ (petroleum ether/EtOAc 2:1); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 8.18(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.04$ $(\mathrm{d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 6.66(\mathrm{dd}, J=12,2.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}), 3.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] ; 170.9(\mathrm{q}, d, J=1.7 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}), 163.8$ $(\mathrm{q}, d, J=14 \mathrm{~Hz}, \mathrm{ArC}), 161.3(\mathrm{q}, d, J=262 \mathrm{~Hz}, \mathrm{ArC}), 160.9(\mathrm{q}, \mathrm{ArC})$, $157.5(\mathrm{q}, d, J=6.9 \mathrm{~Hz}, \mathrm{ArC}), 143.9(\mathrm{q}, \mathrm{ArC}), 137.4(\mathrm{C}=\mathrm{COH})$, 129.2 ($\mathrm{t}, 2 \times \mathrm{ArC}$), $123.2(\mathrm{C}=\mathrm{COH}), 114.1(2 \times \mathrm{ArC}), 105.8(\mathrm{q}, d, J$ $=13 \mathrm{~Hz}, \mathrm{ArC}), 100.9(\mathrm{t}, d, J=23 \mathrm{~Hz}, \mathrm{ArC}), 96.7(\mathrm{t}, d, J=3.7 \mathrm{~Hz}$, ArC), $56.1\left(\mathrm{p}, \mathrm{CH}_{3} \mathrm{O}\right), 55.4\left(\mathrm{p}, \mathrm{CH}_{3} \mathrm{O}\right)$; HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{5} \mathrm{FNa}[\mathrm{M}+\mathrm{Na}]^{+}$339.0645, found 339.0650.
(\pm)-Methyl (1R,2R,3S,3aR,8bS)-8-fluoro-1,8b-dihydroxy-6-me-thoxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxylate (9h). Methyl cinnamate ($635 \mathrm{mg}, 3.91 \mathrm{mmol}, 14.20$ equiv) was added to flavonol 8 h (87.2 $\mathrm{mg}, 0.28 \mathrm{mmol})$ in dry $\mathrm{CHCl}_{3}(5.5 \mathrm{~mL})$ and freshly distilled 2,2,2trifluoroethanol (2.3 mL). The solution was degassed with argon for 20 min and irradiated ($100 \mathrm{~W}, 365 \mathrm{~nm}$) at $-10^{\circ} \mathrm{C}$ under argon atmosphere for $16-40 \mathrm{~h}$. After the starting material was fully consumed, the reaction mixture was concentrated in vacuo and purified by silica gel column chromatography (petroleum ether/ EtOAc 4:1, then $1: 1$) to give cycloadduct mixture as a pale-yellow foam. To cycloadduct mixture (131 mg) in dry $\mathrm{MeOH}(9.1 \mathrm{~mL}$) was added $\mathrm{NaOMe}(25 \mathrm{wt} \%$ in $\mathrm{MeOH}, 168 \mu \mathrm{~L}, 0.78 \mathrm{mmol}, 2.84$ equiv). The orange solution was stirred under refluxing conditions for 1 h . The reaction was terminated by the addition of $\mathrm{NH}_{4} \mathrm{Cl}$ (sat., aq.) and extracted with EtOAc. The organic layers were washed with water and NaCl (sat., aq.), dried over MgSO_{4}, filtered and concentrated in vacuo to give the ketone crude as a yellow foam. A solution of $\mathrm{Me}_{4} \mathrm{NBH}(\mathrm{OAc})_{3}(423 \mathrm{mg}, 1.61 \mathrm{mmol}, 6.42$ equiv) and freshly distilled $\mathrm{CH}_{3} \mathrm{COOH}(158 \mu \mathrm{~L}, 2.60 \mathrm{mmol}, 10.41$ equiv $)$ were stirred in dry $\mathrm{MeCN}(6.4 \mathrm{~mL})$ at rt for 5 min . A solution of ketone crude $(120 \mathrm{mg})$ crude in dry $\mathrm{MeCN}(4.2 \mathrm{~mL})$ was added to the suspension and stirred for 16 h at rt under light protection. The reaction was terminated by the addition of $\mathrm{NH}_{4} \mathrm{Cl}$ and NaK -tartrate (sat., aq.) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The organic layers were washed with water and NaCl (sat., aq.), dried over MgSO_{4} and concentrated in vacuo. The crude extract was purified by silica column chromatography (petroleum ether/EtOAc 5:1, then 3:1) to give 9c as a pale-yellow foam ($45 \mathrm{mg}, 0.09 \mathrm{mmol}, 37 \%$ over three steps). $R_{\mathrm{f}}=$ 0.53 (petroleum ether/EtOAc 3:2); ${ }^{1} \mathbf{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$): $\delta[\mathrm{ppm}] 7.10-7.04\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, H-4^{\prime \prime}, H-6^{\prime \prime}\right), 7.09-7.05(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ $\left.2^{\prime}, H-6^{\prime}\right), 7.00-6.98\left(\mathrm{~m}, 2 \mathrm{H}, H-3^{\prime \prime}, H-5^{\prime \prime}\right), 6.67-6.63(\mathrm{dt}, J=9.9,2.6$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}^{\prime} 5^{\prime}$), 6.42 (dd, $J=11,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 6.28 (dd, $J=$ 11, $2.9 \mathrm{~Hz}, 1 \mathrm{H}, H-7$), 4.90 (d, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, H-1$), 4.47 (d, $J=14$ $\mathrm{Hz}, 1 \mathrm{H}, H-3), 3.98(\mathrm{dd}, J=14,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}-\right.$ $\left.6^{\prime}\right)$, 3.69 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}-11$), 3.68 ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}-4^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR
(DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 171.5(\mathrm{q}, \mathrm{C}-11), 163.8(\mathrm{q}, d, J=13$ $\mathrm{Hz}, C-6), 161.6(\mathrm{q}, d, J=12 \mathrm{~Hz}, C-4 \mathrm{a}), 160.5(\mathrm{q}, \mathrm{d}, J=249 \mathrm{~Hz}, C-8)$, 158.9 ($q, C-4^{\prime}$), 136.6 ($q, C-1^{\prime \prime}$), 128.7 (t, C-1",$C-2^{\prime \prime}$), 127.9 (t, C-2', C-6'), 127.8 ($\left.\mathrm{t}, \mathrm{C}-3^{\prime \prime}, C-5^{\prime \prime}\right), 126.6$ ($\mathrm{t}, \mathrm{C}-4^{\prime \prime}$), 126.1 ($\left.q, C-1^{\prime}\right), 112.9(\mathrm{t}$, $\left.C-3^{\prime}, C-5^{\prime}\right), 106.5$ (q, $\left.d, J=20 \mathrm{~Hz}, C-8 \mathrm{a}\right), 102.3$ ($q, C-3 \mathrm{a}$), 95.7 (t, d, J $=24 \mathrm{~Hz}, C-7), 93.5(\mathrm{t}, d, J=2.2 \mathrm{~Hz}, C-8 \mathrm{~b}), 92.7(\mathrm{t}, d, J=3.8 \mathrm{~Hz}, C-$ 5), $78.6(\mathrm{t}, \mathrm{C}-1), 55.9\left(\mathrm{p}, \mathrm{CH}_{3} \mathrm{O}-6\right), 55.8(\mathrm{t}, \mathrm{C}-3), 55.1\left(\mathrm{p}, \mathrm{CH}_{3} \mathrm{O}-4^{\prime}\right)$, $52.3\left(\mathrm{p}, \mathrm{CH}_{3} \mathrm{O}-11\right), 50.7(\mathrm{t}, \mathrm{C}-2)$; HRMS (ESI ${ }^{+}$) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{O}_{7} \mathrm{NaF}[\mathrm{M}+\mathrm{Na}]^{+}$503.1482; found 503.1461; HPLC purity 96.04\%.

Synthesis of (\pm)-Methyl ($1 R, 2 R, 3 S, 3 \mathrm{aR}, 8 \mathrm{bS}$)-6-fluoro-1,8b-dihydroxy-8-methoxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1 H-cyclopenta[b]benzofuran-2-carboxylate (9i).

(E)-1-(4-Fluoro-2-hydroxy-6-methoxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (12i). A suspension of NaOEt ($221 \mathrm{mg}, 3.26 \mathrm{mmol}, 3.00$ equiv) in dry EtOH (3.6 mL) was cooled down to rt, followed by the addition of 1-(4-fluoro-2-hydroxy-6-methoxyphenyl)ethan-1-one ($200 \mathrm{mg}, 1.09 \mathrm{mmol}, 1.00$ equiv) at the same temperature. The suspension was stirred for 1 h , before p anisaldehyde ($132 \mu \mathrm{~L}, 1.09 \mathrm{mmol}, 1.00$ equiv) was added. The orange solution was stirred for 16 h at rt . The resulting orange suspension was poured into cold water and acidified to $\mathrm{pH}=1$ with HCl (aq., 1 M). The precipitate was filtered, washed with water, dissolved in EtOAc, dried over MgSO_{4}, filtered and concentrated in vacuo. The crude was purified over silica gel chromatography (petroleum ether/ EtOAc 10:1) to afford $\mathbf{1 2 i}$ as a yellow-orange solid ($149 \mathrm{mg}, 0.49$ mmol, 45\%). $R_{\mathrm{f}}=0.29$ (petroleum ether/EtOAc 3:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 7.83(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}=$ $\mathrm{CH}), 7.73(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{CH}), 7.57(\mathrm{dt}, J=9.6,2.4$ $\mathrm{Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 6.94(\mathrm{dt}, J=9.7,2.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}$), 6.31 (dd, J $=10,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.16(\mathrm{dd}, J=11,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $3.95(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ [ppm] 193.3 ($q, C=O$), $167.5(q, d, J=253 \mathrm{~Hz}, \operatorname{ArC}), 167.5(q, d, J$ $=17 \mathrm{~Hz}, \mathrm{ArC}), 162.9(\mathrm{q}, d, J=14 \mathrm{~Hz}, \mathrm{ArC}), 161.7(\mathrm{q}, \mathrm{ArC}), 143.6(\mathrm{t}$, $\mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{CH}), 130.3(\mathrm{t}, 2 \times \mathrm{ArC}), 127.9(\mathrm{q}, \mathrm{ArC}), 122.8(\mathrm{t}, \mathrm{C}(\mathrm{O})$ $\mathrm{CH}=\mathrm{CH}), 114.3(\mathrm{t}, 2 \times \mathrm{ArC}), 108.8(\mathrm{q}, \mathrm{ArC}), 97.8(\mathrm{t}, d, J=24 \mathrm{~Hz}$, $\mathrm{ArC}), 90.9(\mathrm{t}, d, J=27 \mathrm{~Hz}, \mathrm{ArC}), 56.2\left(\mathrm{CH}_{3} \mathrm{O}\right), 55.8\left(\mathrm{CH}_{3} \mathrm{O}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{FNa}[\mathrm{M}+\mathrm{Na}]^{+}$325.0852; found: 325.0868.

7-Fluoro-3-hydroxy-5-methoxy-2-(4-methoxyphenyl)-4H-chro-men-4-one (8i). Chalcone 12 i ($36 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.00$ equiv) was suspended in $\mathrm{MeOH}(1.4 \mathrm{~mL})$ and NaOH (aq., $3 \mathrm{M}, 0.59 \mathrm{mmol}, 5.00$ equiv). The mixture was sonicated for 5 min until dissolved, then cooled down to $0^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}_{2}$ (aq., $30 \%, 30 \mu \mathrm{~L}, 0.26 \mathrm{mmol}, 2.25$ equiv) was then added to the cool mixture. The resulting yellow suspension was stirred at rt for 16 h . The reaction was terminated by the addition of HCl (aq., 1 M). The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were washed with NaCl (sat., aq.), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude was reprecipitated in EtOH to give $8 \mathbf{i}$ as a yellow solid ($11.4 \mathrm{mg}, 0.04 \mathrm{mmol}, 30 \%$). $R_{\mathrm{f}}=$ 0.78 (petroleum ether/EtOAc 1:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ [ppm] $8.17(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}$), $7.04(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times$ $\operatorname{ArH}), 6.84(\mathrm{dd}, J=9.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.55(\mathrm{dd}, J=11,2.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}$), $4.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 171.2(\mathrm{q}, \mathrm{C}=\mathrm{O}), 165.9(\mathrm{q}, d, J=252$ $\mathrm{Hz}, \operatorname{ArC}), 161.4(\mathrm{q}, d, J=13 \mathrm{~Hz}, \mathrm{ArC}), 160.9$ ($q, \operatorname{ArC}), 158.0(\mathrm{q}, d, J$ $=17 \mathrm{~Hz}, \operatorname{ArC}), 143.2(\mathrm{q}, d, J=2.0 \mathrm{~Hz}, \mathrm{ArC}), 137.7(\mathrm{q}, \mathrm{COH}), 129.1$ $(\mathrm{t}, 2 \times \operatorname{ArC}), 123.1(\mathrm{q}, \mathrm{C}=\mathrm{COH}), 114.1(\mathrm{t}, 2 \times \operatorname{ArC}), 108.6(\mathrm{q}, d, J=$ $2.3 \mathrm{~Hz}, \mathrm{ArC}), 96.4(\mathrm{t}, d, J=25 \mathrm{~Hz}, \mathrm{ArC}), 95.1(\mathrm{t}, d, J=27 \mathrm{~Hz}, \mathrm{ArC})$, $56.8\left(\mathrm{CH}_{3} \mathrm{O}\right), 55.4\left(\mathrm{CH}_{3} \mathrm{O}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{FO}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+} 317.0825$, found 317.0814.
(\pm)-Methyl (1R,2R,3S,3aR,8bS)-6-fluoro-1,8b-dihydroxy-8-me-thoxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxylate (9i). To a solution of $8 \mathbf{i}$ (47 $\mathrm{mg}, 0.15 \mathrm{mmol}, 1.00$ equiv) in dry $2,2,2-\mathrm{TFE}(1.2 \mathrm{~mL})$ and dry $\mathrm{CHCl}_{3}(3 \mathrm{~mL})$ was added methyl cinnamate ($342 \mathrm{mg}, 2.11 \mathrm{mmol}$, 14.2 equiv). The clear solution was degassed with argon for 15 min , followed by UV-irradiation ($100 \mathrm{~W}, 365 \mathrm{~nm}$) at $-5^{\circ} \mathrm{C}$ for $10-16 \mathrm{~h}$. After the starting material was fully consumed, the solvent was removed in vacuo and the excess of methyl cinnamate was removed by silica gel purification (petroleum ether/EtOAc 4:1, then EtOAc). The cycloadduct mixture was used directly for the next step. To a solution of the cycloadduct mixture (39.7 mg) in $\mathrm{MeOH}(3 \mathrm{~mL})$ was added NaOMe solution ($25 \mathrm{wt} \%$ in $\mathrm{MeOH}, 51 \mu \mathrm{~L}, 0.24 \mathrm{mmol}, 2.84$ equiv) and refluxed for 1 h . The reaction was terminated by the addition of $\mathrm{NH}_{4} \mathrm{Cl}$ (sat., aq.). The aqueous layers were extracted with EtOAc. The collected organic layers were washed with NaCl (sat., aq.), dried over MgSO_{4}, filtered and concentrated in vacuo. The foamy ketone crude was directly used for the next step. A solution of $\mathrm{Me}_{4} \mathrm{NBH}-$ $(\mathrm{OAc})_{3}(140 \mathrm{mg}, 0.53 \mathrm{mmol}, 6.42$ equiv) and freshly distilled AcOH ($50 \mu \mathrm{~L}, 0.86 \mathrm{mmol}, 10.4$ equiv) in dry $\mathrm{MeCN}(2 \mathrm{~mL})$ was prepared and stirred at rt for 10 min . To this solution was added ketone crude $(40.0 \mathrm{mg})$ in dry $\mathrm{MeCN}(1.4 \mathrm{~mL})$. The reaction was carried out under light exclusion and stirred for 19 h at rt . The reaction was terminated by the addition of NaK -tartrate (sat., aq.) and $\mathrm{NH}_{4} \mathrm{Cl}$ (sat., aq.). The layers were separated and the aqueous layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The collected organic layers were washed with water and NaCl (sat., aq.), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude was purified by silica gel column chromatography (petroleum ether/EtOAc 3:2) to yield 91 (20 mg , $0.04 \mathrm{mmol}, 50 \%$) as a pale-yellow foam. $R_{\mathrm{f}}=0.38$ (petroleum ether/ EtOAc 1:1); ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$): δ [ppm] 7.05-6.97 (m, 3H, H-3", H-4", H-5"), 7.01-6.98 (m, 2H, H-2', H-6'), 6.916.88 (m, 2H, H-2", H-6"), 6.57 (dt, $J=9.9,2.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, H-5^{\prime}$), 6.50 (dd, $J=9.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}, H-7$), $6.41(\mathrm{dd}, J=12,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 5), $5.24(\mathrm{~s}, \mathrm{OH}), 4.66(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.19(\mathrm{~d}, J=14 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-3$), 3.95 (dd, $J=14,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 3.74 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-8$), $3.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-4^{\prime}\right), 3.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-11\right)$; ${ }^{13} \mathrm{C}$ NMR (DMSO$\left.d_{6}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 170.3(\mathrm{q}, \mathrm{C}-11), 164.6(\mathrm{q}, d, J=241 \mathrm{~Hz}, C-$ 6), 160.1 ($q, d, J=17 \mathrm{~Hz}, C-4 \mathrm{a}), 158.2(\mathrm{q}, \mathrm{d}, J=145 \mathrm{~Hz}, \mathrm{C}-8), 157.6$ ($q, C-4^{\prime}$), 138.2 ($q, C-1^{\prime \prime}$), 128.6 ($\left.\mathrm{t}, \mathrm{C}-2, \mathrm{C}-6^{\prime}\right), 127.7$ ($\mathrm{t}, \mathrm{C}-2^{\prime \prime}, \mathrm{C}-6^{\prime \prime}$), 127.5 (t, C-3"', C-5"), 125.6 (t, C-4"), 111.8 (t, C-3', C-5'), 111.7 (q, d, $J=2.5 \mathrm{~Hz}, C-8 \mathrm{a}), 101.9$ ($\mathrm{q}, \mathrm{C}-3 \mathrm{a}$), 93.0 ($\mathrm{q}, \mathrm{C}-8 \mathrm{~b}$), $92.2(\mathrm{t}, \mathrm{d}, J=27$ $\mathrm{Hz}, \mathrm{C}-5), 90.2(\mathrm{t}, d, J=27 \mathrm{~Hz}, \mathrm{C}-7), 78.7(\mathrm{t}, \mathrm{C}-1), 55.8\left(\mathrm{p}, \mathrm{CH}_{3} \mathrm{O}-8\right)$ $54.8\left(\mathrm{CH}_{3} \mathrm{O}-4^{\prime}\right), 54.7(\mathrm{t}, \mathrm{C}-3), 51.4(\mathrm{t}, \mathrm{C}-2), 51.1\left(\mathrm{CH}_{3} \mathrm{O}-11\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / z$ calc for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{FO}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$503.1477, found: 503.1482; HPLC purity 96.60%.

Synthesis of (\pm)-Methyl (1 R,2R,3S,3aR,8bS)-8-chloro-1,8b-dihydroxy-6-methoxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1 H -cyclopenta[b]benzofuran-2-carboxylate (9j).

(E)-1-(2-Chloro-6-hydroxy-4-methoxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (12j). Acetophenone 3 j (979 mg , $4.88 \mathrm{mmol}, 1.00$ equiv) was added to a solution of $\mathrm{NaOEt}(996 \mathrm{mg}$, $14.6 \mathrm{mmol}, 3.00$ equiv) in $\mathrm{EtOH}(16.8 \mathrm{~mL})$. After stirring for 1 h at rt, 4-methoxybenzaldehyde ($593 \mu \mathrm{~L}, 4.88 \mathrm{mmol}, 1.00$ equiv) was added and the reaction mixture was stirred overnight. The resulting yellow suspension was poured into $\mathrm{H}_{2} \mathrm{O}$ and acidified to $\mathrm{pH}=1$ with HCl ($10 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}$). The yellow precipitate was filtered, washed with $\mathrm{H}_{2} \mathrm{O}$ and dried under reduced pressure. The desired compound 12 j was obtained as a yellow solid ($1.49 \mathrm{~g}, 4.67 \mathrm{mmol}, 96 \%$). $R_{\mathrm{f}}=0.31$ (petroleum ether/EtOAc 4:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ [ppm] $12.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.76(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{CH})$, $7.63(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}), 7.59(\mathrm{dt}, J=8.7,2.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{X}$
$\operatorname{ArH}), 6.95(\mathrm{dt}, J=8.8,2.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \operatorname{ArH}), 6.58(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArH}), 6.41(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.84(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 193.3(\mathrm{q}, \mathrm{C}=\mathrm{O})$, 165.8 (q, ArC), $164.0(q, \operatorname{ArC}), 163.0(q, \operatorname{ArC}), 143.2(\mathrm{t}, \mathrm{C}(\mathrm{O}) \mathrm{CH}=$ CH), 135.6 (q, ArC), 130.6 (t, $2 \times \operatorname{ArCH}$), 127.8 ($q, \operatorname{ArC),~} 124.3$ (t, $\mathrm{C}(\mathrm{O}) \mathrm{CH}), 115.0(\mathrm{q}, \mathrm{ArC}), 114.6(\mathrm{t}, 2 \times \mathrm{ArCH}), 110.9(\mathrm{t}, \mathrm{ArCH})$, $100.4(\mathrm{t}, \operatorname{ArCH}), 55.9\left(\mathrm{p}, \mathrm{OCH}_{3}\right), 55.6\left(\mathrm{p}, \mathrm{OCH}_{3}\right)$; HRMS (ESI $\left.{ }^{-}\right) \mathrm{m} /$ z calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClO}_{4}[\mathrm{M}-\mathrm{H}]^{-} 317.0581$, found 317.0593.

5-Chloro-3-hydroxy-7-methoxy-2-(4-methoxyphenyl)-4H-chro-men-4-one (8 j). To a suspension of chalcone $\mathbf{1 2 j}$ ($1.49 \mathrm{~g}, 4.67 \mathrm{mmol}$, 1.00 equiv) in $\mathrm{MeOH}(40.2 \mathrm{~mL}), \mathrm{NaOH}(3.00 \mathrm{M}$, aq., $6.03 \mathrm{~mL}, 18.1$ mmol, 3.87 equiv) was added and cooled to $0^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}_{2}$ ($30 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}, 1.52 \mathrm{~mL}, 15.0 \mathrm{mmol}, 3.20$ equiv) was then added dropwise and the solution was stirred at $0^{\circ} \mathrm{C}$ for 3 h . Subsequently, the cooling bath was removed and the mixture was stirred for another 20 h . Then, HCl ($10 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}$) was added, leading to the formation of a yellow precipitate. The suspension was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times)$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was purified by recrystallization from EtOH to give the desired product $\mathbf{8 j}$ as a yellowish solid ($192 \mathrm{mg}, 595 \mu \mathrm{~mol}, 13 \%) . R_{\mathrm{f}}=0.33$ (petroleum ether/EtOAc 3:2); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 8.16$ (dt, J $=9.1,2.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.03(\mathrm{dt}, J=9.1,2.4$ $\mathrm{Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 6.98(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.87(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 171.8(\mathrm{q}, \mathrm{C}=\mathrm{O}), 162.7(\mathrm{q}, \mathrm{ArC}), 161.1$ $(\mathrm{q}, \mathrm{ArC}), 158.3(\mathrm{q}, \operatorname{ArC}), 143.3(\mathrm{q}, \mathrm{C}=\mathrm{COH}), 137.6(\mathrm{q}, \mathrm{COH})$, $134.4(\mathrm{q}, \mathrm{ArC}), 129.2(\mathrm{t}, 2 \times \mathrm{ArCH}), 123.3(\mathrm{q}, \mathrm{ArC}), 116.9(\mathrm{t}, \mathrm{ArCH})$, $114.2(\mathrm{t}, 2 \times \mathrm{ArCH}), 112.0(\mathrm{q}, \mathrm{ArC}), 99.8(\mathrm{t}, \mathrm{ArCH}), 56.2\left(\mathrm{p}, \mathrm{OCH}_{3}\right)$, $55.5\left(\mathrm{p}, \mathrm{OCH}_{3}\right)$; HRMS $\left(\mathbf{C I}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$ 333.0530, found 333.0514.
(\pm)-Methyl (1R,2R,3S,3aR,8bS)-8-chloro-1,8b-dihydroxy-6-me-thoxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxylate (9j). Methyl cinnamate ($1.37 \mathrm{~g}, 8.45 \mathrm{mmol}, 14.2$ equiv) was added to a solution of flavonol $\mathbf{8 j}$ (192 mg , $595 \mu \mathrm{~mol}, 1.00$ equiv) in dry chloroform $(11.7 \mathrm{~mL})$ and freshly distilled 2,2,2-trifluoroethanol (4.96 mL). The reaction mixture was degassed for 30 min , then cooled to $-5{ }^{\circ} \mathrm{C}$ and irradiated with UV light $\left(\lambda_{\text {max }}=365 \mathrm{~nm}\right)$ until it no longer fluoresced greenish (20 h). Subsequently, the solvent was removed under reduced pressure. The remaining amount of methyl cinnamate was then removed by column chromatography (petroleum ether/EtOAc $9: 1 \rightarrow 1: 1$). The desired cycloadduct was obtained as a mixture of isomers as a yellowish solid (289 mg). Without any further purification the product of the first step $(289 \mathrm{mg}, 584 \mu \mathrm{~mol}, 1.00$ equiv) was dissolved in $\mathrm{MeOH}(21.6 \mathrm{~mL})$. Then NaOMe solution ($315 \mu \mathrm{~L}, 25 \mathrm{wt} \%$ in $\mathrm{MeOH}, 1.90 \mathrm{mmol}, 3.25$ equiv) was added and the mixture was heated under refluxing conditions for 1 h . Subsequently, the reaction was terminated by the addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution (sat., aq.). The phases were separated and the aqueous phase was extracted with EtOAc $(3 \times)$. The organic phases were combined, dried over MgSO_{4}, filtered and concentrated under reduced pressure. Product E27 was obtained as a mixture of isomers as a yellow foam (289 mg) and used directly for the next step. The desired keto ester was obtained as a mixture of isomers as a yellow foam (289 mg) and used directly for the next step. A mixture of $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}(\mathrm{OAc})_{3} \mathrm{BH}(986 \mathrm{mg}, 3.75 \mathrm{mmol}, 6.42$ equiv) and freshly distilled $\mathrm{AcOH}(348 \mu \mathrm{~L}, 6.08 \mathrm{mmol}, 10.4$ equiv) in $\mathrm{MeCN}(15.2 \mathrm{~mL})$ was stirred for 5 min at rt . Then, a solution of the product of the second step ($289 \mathrm{mg}, 584 \mu \mathrm{~mol}, 1.00$ equiv) in $\mathrm{MeCN}(10.1 \mathrm{~mL}$) was added. The mixture was protected from light and stirred for 19 h at rt. The reaction was then terminated by adding $\mathrm{NH}_{4} \mathrm{Cl}$ solution (sat., aq.) and sodium potassium tartrate solution (aq., 2.00 M). The phases were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times)$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. Column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}\right.$ 1:0 $\left.\rightarrow 9: 1\right)$ was then performed to obtain the racemic endo-product $9 \mathbf{j}$ as a colorless foam ($160 \mathrm{mg}, 323 \mu \mathrm{~mol}, 54 \%$ over three steps). $R_{\mathrm{f}}=0.46\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 19: 1\right) ;{ }^{1} \mathbf{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$): $\delta[\mathrm{ppm}] 7.07-6.94\left(\mathrm{~m}, 7 \mathrm{H}, H-7, H-2^{\prime}, \mathrm{H}^{\prime} \mathbf{6}^{\prime}\right.$,
$\left.H-2^{\prime \prime}, H-3^{\prime \prime}, H-4^{\prime \prime}, H-5^{\prime \prime}, H-6^{\prime \prime}\right), 6.61(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, H-5), 6.56$ (d, $\left.J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, H-3^{\prime}, H-5^{\prime}\right), 6.49(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, H-7), 5.56$ (d, $J=$ $6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}-1), 5.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}-8 \mathrm{~b}), 4.65(\mathrm{dd}, J=5.6,4.9 \mathrm{~Hz}$, $1 \mathrm{H}, H-1), 4.34(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}, H-3), 4.02(\mathrm{dd}, J=14.0,4.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-2$), 3.78 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-8$), 3.58 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-11, \mathrm{H}_{3} \mathrm{CO}-4^{\prime}$); ${ }^{13}$ C NMR (DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 170.4(\mathrm{q}, \mathrm{C}-11), 161.6(\mathrm{q}$, C-6), 161.1 ($q, C-4 a$), 157.5 ($q, C-4^{\prime}$), 138.3 ($q, C-1^{\prime \prime}$), 131.9 ($q, C-$ 8), 128.6 ($q, C-1^{\prime}$), 128.6 ($\left.\mathrm{t}, \mathrm{C}-2^{\prime}, C-6^{\prime}\right), 127.8\left(\mathrm{t}, \mathrm{C}-3^{\prime \prime}, C-5^{\prime \prime}\right), 127.5$ ($\mathrm{t}, \mathrm{C}-2^{\prime \prime}, \mathrm{C}^{\prime \prime} 6^{\prime \prime}$), 125.8 ($\left.\mathrm{t}, \mathrm{C}-4^{\prime \prime}\right), 118.5$ ($\left.\mathrm{q}, \mathrm{C}-8 \mathrm{a}\right), 111.8\left(\mathrm{t}, \mathrm{C}-3^{\prime}, \mathrm{C}-5^{\prime}\right)$, 107.6 (t, C-7), 101.9 (q, C-3a), 94.8 (t, C-5), 93.6 (q, C-8b), $78.2(\mathrm{t}$, $\mathrm{C}-1$), 55.9 ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-6$), 54.9 ($\mathrm{t}, \mathrm{C}-3$), 54.7 ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-4^{\prime}$), 51.7 ($\mathrm{t}, \mathrm{C}-$ 2), 51.5 ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-11$); HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{ClO}_{7} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 519.1187$ found 519.1182; HPLC purity 99.76%.

Synthesis of (\pm)-Methyl ($1 R, 2 R, 3 S, 3 \mathrm{aR}, 8 \mathrm{bS}$)-6-chloro-1,8b-dihydroxy-8-methoxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1 H-cyclopenta[b]benzofuran-2-carboxylate (9k).

(E)-1-(4-Chloro-2-hydroxy-6-methoxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (12k). Acetophenone 3k (814 $\mathrm{mg}, 4.06 \mathrm{mmol}, 1.00$ equiv) was added to a solution of NaOEt ($828 \mathrm{mg}, 12.2 \mathrm{mmol}, 3.00$ equiv) in $\mathrm{EtOH}(14.0 \mathrm{~mL}$). After stirring for 1 h at rt , 4-methoxybenzaldehyde ($493 \mu \mathrm{~L}, 4.05 \mathrm{mmol}, 1.00$ equiv) was added and the reaction mixture was stirred overnight. The resulting yellow suspension was poured into $\mathrm{H}_{2} \mathrm{O}$ and acidified to pH $=1$ with $\mathrm{HCl}\left(10 \mathrm{wt} \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$. The yellow precipitate was filtered, washed with $\mathrm{H}_{2} \mathrm{O}$ and dried under reduced pressure. The desired compound $\mathbf{1 2 k}$ was obtained as a yellow solid ($1.22 \mathrm{~g}, 3.92 \mathrm{mmol}$, $94 \%) . R_{\mathrm{f}}=0.28$ (petroleum ether/EtOAc $\left.4: 1\right)$; ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta[\mathrm{ppm}] 13.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.83(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{CH}), 7.72(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}), 7.58(\mathrm{dt}, J=$ $8.8,2.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 6.95(\mathrm{dt}, J=8.8,2.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 6.58$ $(\mathrm{d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.41(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 3.96(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}]$ 193.7 ($q, C=O), 165.7(q, \operatorname{ArC}), 161.9(q, \operatorname{ArC}), 161.5(q, \operatorname{ArC})$, $144.0(\mathrm{t}, \mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{CH}), 141.8(\mathrm{q}, \mathrm{ArC}), 130.5(\mathrm{t}, 2 \times \mathrm{ArCH}), 128.0$ (q, ArC), $124.7(\mathrm{t}, \mathrm{C}(\mathrm{O}) \mathrm{CH}), 114.7(\mathrm{t}, 2 \times \mathrm{ArCH}), 111.5(\mathrm{t}, \mathrm{ArCH})$, 110.6 (q, ArC), 102.9 (t, ArCH), $56.4\left(\mathrm{p}, \mathrm{OCH}_{3}\right), 55.6\left(\mathrm{p}, \mathrm{OCH}_{3}\right)$; HRMS (ESI ${ }^{-}$) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClO}_{4}[\mathrm{M}-\mathrm{H}]^{-} 317.0578$, found 317.0593.

7-Chloro-3-hydroxy-5-methoxy-2-(4-methoxyphenyl)-4H-chro-men-4-one (8k). To a suspension of chalcone $\mathbf{1 2 k}(935 \mathrm{mg}, 2.93$ mmol, 1.00 equiv) in $\mathrm{MeOH}(25.2 \mathrm{~mL}), \mathrm{NaOH}(3.00 \mathrm{M}$, aq., 3.78 $\mathrm{mL}, 11.4 \mathrm{mmol}, 3.87$ equiv) was added and cooled to $0^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}_{2}(30$ wt\% in $\mathrm{H}_{2} \mathrm{O}, 957 \mu \mathrm{~L}, 9.39 \mathrm{mmol}, 3.20$ equiv) was then added dropwise and the solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h . Subsequently, the cooling bath was removed and the mixture was stirred for another 20 h . Then, $\mathrm{HCl}\left(10 \mathrm{wt} \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ was added, leading to the formation of a yellow precipitate. The suspension was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times)$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was purified by recrystallization from EtOH to give the desired product $\mathbf{8 k}$ as a bright orange solid (305 mg , $945 \mu \mathrm{~mol}, 32 \%$). $R_{\mathrm{f}}=0.21$ (petroleum ether/EtOAc 3:2); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta[\mathrm{ppm}] 8.16(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \operatorname{ArH}), 7.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, $7.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.03(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 6.75(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{ArH}), 4.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}): \delta[\mathrm{ppm}] 172.1(\mathrm{q}, \mathrm{C}=\mathrm{O}), 161.1(\mathrm{q}, \mathrm{ArC}), 160.1$ (q, $\operatorname{ArC}), 157.1(\mathrm{q}, \operatorname{ArC}), 143.1(\mathrm{q}, \mathrm{C}=\mathrm{COH}), 139.9(\mathrm{q}, \operatorname{ArC}), 138.0(\mathrm{q}$, $\mathrm{COH}), 129.3(\mathrm{t}, 2 \times \mathrm{ArCH}), 123.1(\mathrm{q}, \mathrm{ArC}), 114.2(\mathrm{t}, 2 \times \mathrm{ArCH})$, $110.6(\mathrm{t}, \mathrm{ArCH}), 110.2(\mathrm{q}, \mathrm{ArC}), 106.5(\mathrm{t}, \mathrm{ArCH}), 56.9\left(\mathrm{p}, \mathrm{OCH}_{3}\right)$, $55.5\left(\mathrm{p}, \mathrm{OCH}_{3}\right)$; HRMS $\left(\mathrm{CI}^{+}\right) \mathrm{m} / z$ calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$ 333.0530, found 333.0515.
(\pm)-Methyl (1R,2R,3S,3aR,8bS)-6-chloro-1,8b-dihydroxy-8-me-thoxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxylate (9 k). Methyl cinnamate $(2.18 \mathrm{~g}, 13.4 \mathrm{mmol}, 14.2$ equiv) was added to a solution of flavonol $8 \mathbf{k}(305 \mathrm{mg}, 945 \mu \mathrm{~mol}, 1.00$ equiv) in dry chloroform $(18.5 \mathrm{~mL})$ and freshly distilled $2,2,2$-trifluoroethanol (7.88 mL). The reaction mixture was degassed for 30 min , then cooled to $-5{ }^{\circ} \mathrm{C}$ and irradiated with UV light ($\lambda_{\text {max }}=365 \mathrm{~nm}$) until it no longer fluoresced greenish (20 h). Subsequently, the solvent was removed under reduced pressure. The remaining amount of methyl cinnamate was then removed by column chromatography (petroleum ether/EtOAc $9: 1 \rightarrow 1: 1$). The desired cycloadduct was obtained as a mixture of isomers as a yellowish solid (421 mg). Without any further purification the product of the first step ($421 \mathrm{mg}, 850 \mu \mathrm{~mol}, 1.00$ equiv) was dissolved in $\mathrm{MeOH}(31.5 \mathrm{~mL})$. Then NaOMe solution ($459 \mu \mathrm{~L}, 25 \mathrm{wt} \%$ in $\mathrm{MeOH}, 2.76 \mathrm{mmol}, 3.25$ equiv) was added and the mixture was heated under refluxing conditions for 1 h . Subsequently, the reaction was terminated by the addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution (sat., aq.). The phases were separated and the aqueous phase was extracted with $\mathrm{EtOAc}(3 \times)$. The organic phases were combined, dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. The desired keto ester was obtained as a mixture of isomers as a yellow foam (421 mg) and used directly for the next step. A mixture of $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}(\mathrm{OAc})_{3} \mathrm{BH}(1.44 \mathrm{~g}, 5.45$ mmol, 6.42 equiv) and freshly distilled AcOH ($506 \mu \mathrm{~L}, 8.84 \mathrm{mmol}$, 10.4 equiv) in $\mathrm{MeCN}(22.1 \mathrm{~mL}$) was stirred for 5 min at rt . Then, a solution of the product of the second step ($421 \mathrm{mg}, 850 \mu \mathrm{~mol}, 1.00$ equiv) in MeCN (14.7 mL) was added. The mixture was protected from light and stirred for 19 h at rt. The reaction was then terminated by adding $\mathrm{NH}_{4} \mathrm{Cl}$ solution (sat., aq.) and sodium potassium tartrate solution (aq., 2.00 M). The phases were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. Column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 1: 0 \rightarrow 9: 1\right)$ was then performed to obtain the racemic endo-product 9 k as a yellowish foam ($225 \mathrm{mg}, 452 \mu \mathrm{~mol}, 48 \%$ over three steps). $R_{\mathrm{f}}=0.31\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ EtOAc 19:1); ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$): δ [ppm] 7.06-6.95 (m, 5H, H-7, H-2', H-6', H-2", H-4", H-6"), 6.91 (d, J = $7.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.H-3^{\prime \prime}, H-5^{\prime \prime}\right), 6.74(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, H-7), 6.59(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$, H-5), 6.57 (d, $\left.J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, H-5^{\prime}\right), 5.33-5.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OH}-1$, $\mathrm{OH}-8 \mathrm{~b}), 4.69(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.22(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3)$, 3.97 (dd, $J=14.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2)$, 3.75 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-8$), 3.58 (s , $3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-4^{\prime \prime}$), 3.55 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-11$); ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 100$ $\mathrm{MHz}): \delta[\mathrm{ppm}] 170.4(\mathrm{q}, \mathrm{C}-11), 160.2(\mathrm{q}, \mathrm{C}-4 \mathrm{a}), 158.1(\mathrm{q}, \mathrm{C}-8)$, 157.6 ($q, C-4^{\prime}$), 138.2 ($q, C-1^{\prime \prime}$), 134.8 ($q, C-6$), 128.7 ($\left.\mathrm{t}, \mathrm{C}-2^{\prime}, C-6^{\prime}\right)$, 128.3 ($q, C-1^{\prime}$), 127.8 ($\left.\mathrm{t}, \mathrm{C}-3^{\prime \prime}, \mathrm{C}-\mathrm{s}^{\prime \prime}\right), 127.5$ ($\left.\mathrm{t}, \mathrm{C}-2^{\prime \prime}, \mathrm{C}-6^{\prime \prime}\right)$, 125.9 (t, C-4"), 114.8 (q, C-8a), 111.9 ($\mathrm{t}, \mathrm{C}-3^{\prime}, ~ C-55^{\prime}$), 104.5 (t, C-5), 103.4 (t , C-7), 101.8 ($q, C-3 \mathrm{a}$), 93.2 ($q, C-8 b), 78.6$ (t, C-1), 55.9 (p, H3CO-8), 54.85 ($\mathrm{t}, \mathrm{C}-3$), 54.81 ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-4$ '), 51.5 ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-11$), 51.3 ($\mathrm{t}, \mathrm{C}-2$); HRMS (ESI ${ }^{+}$) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{ClO}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 519.1187$ found 519.1173; HPLC purity 99.66%. The analytical data are consistent with those reported in the literature. ${ }^{20}$

Synthesis of (\pm)-Methyl ($1 R, 2 R, 3 S, 3 \mathrm{aR}, 8 \mathrm{bS}$)-8-bromo-1,8b-dihydroxy-6-methoxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1 H-cyclopenta[b]benzofuran-2-carboxylate (91).

(E)-1-(2-Bromo-6-hydroxy-4-methoxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (12l). Acetophenone 31 (430 mg , $1.75 \mathrm{mmol}, 1.00$ equiv) was added to a solution of $\mathrm{NaOEt}(358 \mathrm{mg}$, $5.26 \mathrm{mmol}, 3.00$ equiv) in $\mathrm{EtOH}(6.05 \mathrm{~mL})$. After stirring for 1 h at rt, 4-methoxybenzaldehyde ($213 \mu \mathrm{~L}, 1.75 \mathrm{mmol}, 1.00$ equiv) was added and the reaction mixture was stirred overnight. The resulting yellow suspension was poured into $\mathrm{H}_{2} \mathrm{O}$ and acidified to $\mathrm{pH}=1$ with HCl
($10 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}$). The yellow precipitate was filtered, washed with $\mathrm{H}_{2} \mathrm{O}$ and dried under reduced pressure. The desired compound 121 was obtained as a yellow solid ($617 \mathrm{mg}, 1.70 \mathrm{mmol}, 97 \%$). $R_{\mathrm{f}}=0.34$ (petroleum ether/EtOAc 4:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ [ppm] $12.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.74(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{CH})$, $7.62(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}), 7.59(\mathrm{~d}, J=8.6,2 \mathrm{H}, 2 \times \mathrm{ArH})$, $6.94(\mathrm{dt}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 6.82(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.45$ $(\mathrm{d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 193.9(\mathrm{q}, \mathrm{C}=\mathrm{O}), 165.1(\mathrm{q}$, ArC), $164.0(\mathrm{q}, \mathrm{ArC}), 162.0(\mathrm{q}, \mathrm{ArC}), 142.7(\mathrm{t}, \mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{CH})$, $130.6(\mathrm{t}, 2 \times \mathrm{ArCH}), 127.9(\mathrm{q}, \mathrm{ArC}), 124.3(\mathrm{t}, \mathrm{C}(\mathrm{O}) \mathrm{CH}), 123.6(\mathrm{q}$, ArC), 117.0 (q, ArC), 114.7 ($\mathrm{t}, 2 \times \mathrm{ArCH}$), 114.5 ($\mathrm{t}, \mathrm{ArCH}$), 100.9 (t , $\mathrm{ArCH}), 55.9\left(\mathrm{p}, \mathrm{OCH}_{3}\right), 55.6\left(\mathrm{p}, \mathrm{OCH}_{3}\right)$; HRMS (ESI $\left.{ }^{-}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrO}_{4}[\mathrm{M}-\mathrm{H}]^{-}$361.0075, found 361.0071.

5-Bromo-3-hydroxy-7-methoxy-2-(4-methoxyphenyl)-4H-chro-men-4-one (8). To a suspension of chalcone $121(617 \mathrm{mg}, 1.70$ mmol, 1.00 equiv) in $\mathrm{MeOH}(14.6 \mathrm{~mL}), \mathrm{NaOH}(3.00 \mathrm{M}$, aq., 2.19 $\mathrm{mL}, 6.57 \mathrm{mmol}, 3.87$ equiv) was added and the mixture was stirred for 1 h at rt. Subsequently, the solution was cooled to $0^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{O}_{2}(30 \mathrm{wt}$ $\%$ in $\mathrm{H}_{2} \mathrm{O}, 554 \mu \mathrm{~L}, 5.44 \mathrm{mmol}, 3.20$ equiv) was added dropwise. After 3 h stirring at the same temperature, the cooling bath was removed and the mixture was stirred for another $20 \mathrm{~h} . \mathrm{HCl}\left(10 \mathrm{wt} \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ was then added leading to the formation of a yellow precipitate. The suspension was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was purified by recrystallization from EtOH to give the desired product $\mathbf{8 1}$ as a bright yellow solid ($135 \mathrm{mg}, 358 \mu \mathrm{~mol}, 21 \%$). $R_{\mathrm{f}}=0.52$ (petroleum ether/EtOAc 1:1); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 8.18$ (d, J $=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})), 7.04$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 6.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 3.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 171.8$ $(\mathrm{q}, \mathrm{C}=\mathrm{O}), 162.8(\mathrm{q}, \operatorname{ArC}), 161.1(\mathrm{q}, \operatorname{ArC}), 158.1(\mathrm{q}, \operatorname{ArC}), 143.3(\mathrm{q}$, $\mathrm{C}=\mathrm{COH}), 137.3(\mathrm{q}, \mathrm{COH}), 129.2(\mathrm{t}, 2 \times \mathrm{ArCH}), 123.3(\mathrm{q}, \mathrm{ArC})$, $121.1(\mathrm{q}, \mathrm{ArC}), 120.7(\mathrm{t}, \mathrm{ArCH}), 114.2(\mathrm{t}, 2 \times \mathrm{ArCH}), 112.6(\mathrm{q}, \mathrm{ArC})$, $100.5(\mathrm{t}, \mathrm{ArCH}), 56.2\left(\mathrm{p}, \mathrm{OCH}_{3}\right), 55.6\left(\mathrm{p}, \mathrm{OCH}_{3}\right)$; HRMS (EI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrO}_{5}[\mathrm{M}]^{+} 375.9946$, found 375.9948 .
(\pm)-Methyl ($1 R, 2 R, 3 S, 3 a R, 8 b S$)-8-bromo-1,8b-dihydroxy-6-me-thoxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxylate (91). Methyl cinnamate ($1.08 \mathrm{~g}, 6.63 \mathrm{mmol}, 14.2$ equiv) was added to a solution of flavonol 81 ($176 \mathrm{mg}, 467 \mu \mathrm{~mol}, 1.00$ equiv) in dry chloroform (9.15 mL) and freshly distilled $2,2,2$-trifluoroethanol $(3.89 \mathrm{~mL})$. The reaction mixture was degassed for 30 min , then cooled to $-5{ }^{\circ} \mathrm{C}$ and irradiated with UV light ($\lambda_{\text {max }}=365 \mathrm{~nm}$) until it no longer fluoresced greenish (20 h). Subsequently, the solvent was removed under reduced pressure. The remaining amount of methyl cinnamate was then removed by column chromatography (petroleum ether/EtOAc 9:1 $\rightarrow 1: 1$). The desired cycloadduct was obtained as a mixture of isomers as a yellowish solid (252 mg). Without any further purification the product of the first step ($252 \mathrm{mg}, 467 \mu \mathrm{~mol}, 1.00$ equiv) was dissolved in $\mathrm{MeOH}(17.3 \mathrm{~mL}$). Then NaOMe solution ($252 \mu \mathrm{~L}, 25 \mathrm{wt} \%$ in $\mathrm{MeOH}, 1.52 \mathrm{mmol}, 3.25$ equiv) was added and the mixture was heated under refluxing conditions for 1 h . Subsequently, the reaction was terminated by the addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution (sat., aq.). The phases were separated and the aqueous phase was extracted with EtOAc ($3 \times$). The organic phases were combined, dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. The desired keto ester was obtained as a mixture of isomers as a yellow foam (233 mg) and used directly for the next step. A mixture of $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}(\mathrm{OAc})_{3} \mathrm{BH}(730 \mathrm{mg}, 2.77$ mmol, 6.42 equiv) and freshly distilled $\mathrm{AcOH}(257 \mu \mathrm{~L}, 4.50 \mathrm{mmol}$, 10.4 equiv) in $\mathrm{MeCN}(11.2 \mathrm{~mL})$ was stirred for 5 min at rt . Then, a solution of the product of the second step ($233 \mathrm{mg}, 432 \mu \mathrm{~mol}, 1.00$ equiv) in MeCN (14.7 mL) was added. The mixture was protected from light and stirred for 19 h at rt . The reaction was then terminated by adding $\mathrm{NH}_{4} \mathrm{Cl}$ solution (sat., aq.) and sodium potassium tartrate solution (aq., 2.00 M). The phases were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced
pressure. Column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 1: 0 \rightarrow 9: 1\right)$ was then performed to obtain the racemic endo-product 91 as a yellow foam ($92.4 \mathrm{mg}, 171 \mu \mathrm{~mol}, 37 \%$ over three steps). $R_{\mathrm{f}}=0.41\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ EtOAc 19:1); ${ }^{1} \mathbf{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$): δ [ppm] 7.07-6.94 (m, 7H, H-7, H-2', H-6', H-2", H-3", H-4", H-5", H-6"), 6.65 (d, J = $2.1 \mathrm{~Hz}, 1 \mathrm{H}, H-5), 6.63(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, H-7), 6.55(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $\left.2 \mathrm{H}, H-3^{\prime}, H-5^{\prime}\right), 5.48(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}-1), 5.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}-$ $8 \mathrm{~b}), 4.65$ (dd, $J=5.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}, H-1), 4.39(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}, H-$ 3), 4.02 (dd, $J=13.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}, H-2$), 3.78 (s, $3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-8$), 3.59 (s, 3H, $\left.H_{3} \mathrm{CO}-11\right), 3.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-4^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}, $100 \mathrm{MHz}): \delta[\mathrm{ppm}] 170.4(\mathrm{q}, \mathrm{C}-11), 161.6(\mathrm{q}, \mathrm{C}-6), 161.3(\mathrm{q}, \mathrm{C}-4 \mathrm{a})$, 157.5 ($q, C-4^{\prime}$), 138.3 (q, C-1"), 128.7 ($q, C-1^{\prime}$), 128.6 (t, C-2', C-6'), 127.8 ($\mathrm{t}, \mathrm{C}-3^{\prime \prime}, C-5^{\prime \prime}$), 127.5 ($\left.\mathrm{t}, \mathrm{C}-2^{\prime \prime}, C-6^{\prime \prime}\right), 125.7$ ($\mathrm{t}, \mathrm{C}-4^{\prime \prime}$), 120.3 (q , $C-8), 120.1$ (q, C-8a), 111.8 (t, C-3', C-5'), 110.5 (t, C-7), 102.0 (q, C-3a), 95.2 (t, C-5), 94.0 ($q, C-8 b$), 78.1 (t, C-1), 55.8 (p, H ${ }_{3} \mathrm{CO}-8$), 54.8 ($\mathrm{t}, \mathrm{C}-3$), 54.7 ($\left.\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-4^{\prime}\right), 51.7(\mathrm{t}, \mathrm{C}-2), 51.5\left(\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-11\right)$; HRMS (ESI ${ }^{+}$) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{BrO}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 563.0681$ found 563.0663; HPLC purity 99.70%.

Synthesis of (\pm)-Methyl ($1 R, 2 R, 3 S, 3 \mathrm{a} R, 8 \mathrm{bS}$)-6-bromo-1,8b-dihydroxy-8-methoxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1 H-cyclopenta[b]benzofuran-2-carboxylate (9m).

(E)-1-(4-Bromo-2-hydroxy-6-methoxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (12m). Acetophenone 3m (926 $\mathrm{mg}, 3.78 \mathrm{mmol}, 1.00$ equiv) was added to a solution of $\mathrm{NaOEt}(771$ $\mathrm{mg}, 11.3 \mathrm{mmol}, 3.00$ equiv) in $\mathrm{EtOH}(13.0 \mathrm{~mL})$. After stirring for 1 h at rt, 4-methoxybenzaldehyde ($459 \mu \mathrm{~L}, 3.78 \mathrm{mmol}, 1.00$ equiv) was added and the reaction mixture was stirred overnight. The resulting yellow suspension was poured into $\mathrm{H}_{2} \mathrm{O}$ and acidified to $\mathrm{pH}=1$ with $\mathrm{HCl}\left(10 \mathrm{wt} \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$. The yellow precipitate was filtered, washed with $\mathrm{H}_{2} \mathrm{O}$ and dried under reduced pressure. The desired compound $\mathbf{1 2 m}$ was obtained as a yellow solid ($970 \mathrm{mg}, 2.67 \mathrm{mmol}, 71 \%$). $R_{\mathrm{f}}=$ 0.29 (petroleum ether/EtOAc 4:1); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ [ppm] $13.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.83(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{CH})$, $7.71(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}), 7.57(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times$ $\operatorname{ArH}), 6.94(\mathrm{dt}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \operatorname{ArH}), 6.81(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArH}), 6.58(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.86(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 193.9(\mathrm{q}, \mathrm{C}=\mathrm{O})$, 165.5 (q, ArC), $161.9(q, \operatorname{ArC}), 161.2(q, \operatorname{ArC}), 144.0(\mathrm{t}, \mathrm{C}(\mathrm{O}) \mathrm{CH}=$ CH), 130.5 (t, $2 \times \operatorname{ArCH}$), 130.2 (q, ArC), 128.0 ($\mathrm{q}, \operatorname{ArC),~} 124.7$ (t, $\mathrm{C}(\mathrm{O}) \mathrm{CH}), 114.61(\mathrm{t}, \mathrm{ArCH}), 114.59(\mathrm{t}, 2 \times \mathrm{ArCH}), 110.9(\mathrm{q}, \mathrm{ArC})$, $105.8(\mathrm{t}, \mathrm{ArCH}), 56.4\left(\mathrm{p}, \mathrm{OCH}_{3}\right), 55.6\left(\mathrm{p}, \mathrm{OCH}_{3}\right)$; HRMS (ESI $\left.{ }^{-}\right) \mathrm{m} /$ z calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrO}_{4}[\mathrm{M}-\mathrm{H}]^{-} 361.0075$, found 361.0076 .

7-Bromo-3-hydroxy-5-methoxy-2-(4-methoxyphenyl)-4H-chro-men-4-one (8 m). To a suspension of chalcone $12 \mathrm{~m}(960 \mathrm{mg}, 2.64$ mmol, 1.00 equiv) in $\mathrm{MeOH}(22.7 \mathrm{~mL}), \mathrm{NaOH}(3.00 \mathrm{M}$, aq., 3.41 $\mathrm{mL}, 10.2 \mathrm{mmol}, 3.87$ equiv) was added and the mixture was stirred for 1 h at rt. Subsequently, the solution was cooled to $0{ }^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{O}_{2}$ (30 wt $\%$ in $\mathrm{H}_{2} \mathrm{O}, 862 \mu \mathrm{~L}, 8.46 \mathrm{mmol}, 3.20$ equiv) was added dropwise. After 3 h stirring at the same temperature, the cooling bath was removed and the mixture was stirred for another $20 \mathrm{~h} . \mathrm{HCl}\left(10 \mathrm{wt} \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ was then added leading to the formation of a yellow precipitate. The suspension was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was purified by recrystallization from EtOH to give the desired product 8 m as a bright yellow solid ($396 \mathrm{mg}, 1.05 \mathrm{mmol}$) in 40% yield. $R_{\mathrm{f}}=0.25$ (petroleum ether/EtOAc 1:1); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ $[\mathrm{ppm}] 8.15(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.33(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\operatorname{ArH}), 7.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.02(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \operatorname{ArH}), 6.89(\mathrm{~d}, J$ $=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 4.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 172.1(\mathrm{q}, \mathrm{C}=\mathrm{O}), 161.1(\mathrm{q}, \mathrm{ArC})$, 159.9 (q, ArC), $157.0(\mathrm{q}, \operatorname{ArC}), 143.1(\mathrm{q}, C=\mathrm{COH}), 138.1$ (q ,
$\mathrm{COH}), 129.3(\mathrm{t}, 2 \times \mathrm{ArCH}), 127.9$ ($\mathrm{q}, \mathrm{ArC}), 123.1(\mathrm{q}, \mathrm{ArC}), 114.2(\mathrm{t}$, $2 \times \mathrm{ArCH}), 113.7$ ($\mathrm{t}, \mathrm{ArCH}$), 110.5 ($\mathrm{q}, \mathrm{ArC)}$,109.3 ($\mathrm{t}, \mathrm{ArCH}), 56.9$ $\left(\mathrm{p}, \mathrm{OCH}_{3}\right), 55.5\left(\mathrm{p}, \mathrm{OCH}_{3}\right)$; HRMS (EI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrO}_{5}$ $[\mathrm{M}]^{+}$375.9946, found 375.9938 .
(\pm)-Methyl (1R,2R,3S,3aR,8bS)-6-bromo-1,8b-dihydroxy-8-me-thoxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxylate (9m). Methyl cinnamate ($2.20 \mathrm{~g}, 13.6 \mathrm{mmol}, 14.2$ equiv) was added to a solution of flavonol $\mathbf{8 m}(360 \mathrm{mg}$, $954 \mu \mathrm{~mol}, 1.00$ equiv) in dry chloroform $(18.7 \mathrm{~mL})$ and freshly distilled 2,2,2-trifluoroethanol (7.95 mL). The reaction mixture was degassed for 30 min , then cooled to $-5{ }^{\circ} \mathrm{C}$ and irradiated with UV light ($\lambda_{\max }=365 \mathrm{~nm}$) until it no longer fluoresced greenish (20 h). Subsequently, the solvent was removed under reduced pressure. The remaining amount of methyl cinnamate was then removed by column chromatography (petroleum ether/EtOAc $9: 1 \rightarrow 1: 1$). Product E32 was obtained as a mixture of isomers as a yellowish solid (498 mg) and used directly for the next step. The desired cycloadduct was obtained as a mixture of isomers as a yellowish solid (498 mg). Without any further purification the product of the first step ($498 \mathrm{mg}, 923 \mu \mathrm{~mol}, 1.00$ equiv) was dissolved in $\mathrm{MeOH}(34.2 \mathrm{~mL})$. Then NaOMe solution (499 $\mu \mathrm{L}, 25 \mathrm{wt} \%$ in $\mathrm{MeOH}, 3.00 \mathrm{mmol}, 3.25$ equiv) was added and the mixture was heated under refluxing conditions for 1 h . Subsequently, the reaction was terminated by the addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution (sat., aq.). The phases were separated and the aqueous phase was extracted with EtOAc ($3 \times$). The organic phases were combined, dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. The desired keto ester was obtained as a mixture of isomers as a yellow solid (451 mg) and used directly for the next step. A mixture of $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}(\mathrm{OAc})_{3} \mathrm{BH}(1.41 \mathrm{~g}, 5.37 \mathrm{mmol}, 6.42$ equiv) and freshly distilled $\mathrm{AcOH}(498 \mu \mathrm{~L}, 8.70 \mathrm{mmol}, 10.4$ equiv) in $\mathrm{MeCN}(21.7 \mathrm{~mL})$ was stirred for 5 min at rt . Then, a solution of the product of the second step (451 mg , $836 \mu \mathrm{~mol}, 1.00$ equiv) in $\mathrm{MeCN}(14.4 \mathrm{~mL}$) was added. The mixture was protected from light and stirred for 19 h at rt . The reaction was then terminated by adding $\mathrm{NH}_{4} \mathrm{Cl}$ solution (sat., aq.) and sodium potassium tartrate solution (aq., 2.00 M). The phases were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times)$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. Column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 1: 0 \rightarrow 9: 1\right)$ was then performed to obtain the racemic endo-product 9 m as a yellow foam ($228 \mathrm{mg}, 421 \mu \mathrm{~mol}, 44 \%$ over three steps). $R_{\mathrm{f}}=0.30\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 19: 1\right) ;{ }^{1} \mathbf{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$) : δ [ppm] 7.07-6.96 (m, 5H, H-2', H-6', H$\left.2^{\prime \prime}, H-4^{\prime \prime}, H-6^{\prime \prime}\right), 6.91$ (d, $\left.J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, H-3^{\prime \prime}, H-5^{\prime \prime}\right), 6.87$ (d, $J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}, H-5), 6.71(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, H-7), 6.57(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.H-3^{\prime}, H-5^{\prime}\right), 5.32-5.31(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OH}-1, \mathrm{OH}-8 \mathrm{~b}), 4.66(\mathrm{t}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}, H-1), 4.22(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}, H-3), 3.97(\mathrm{dd}, J=14.0,5.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-2)$, 3.76 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-8$), $3.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-4^{\prime}\right), 3.56(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{H}_{3} \mathrm{CO}-11$); ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 100 \mathrm{MHz}$): $\delta[\mathrm{ppm}] 170.3$ (q, C11), 160.4 ($q, C-4 a$), 158.2 ($q, C-8$), 157.5 ($q, C-4^{\prime}$), 138.1 ($\left.q, C-1^{\prime \prime}\right)$, 128.6 (t, C-2', C-6'), 128.2 (q, C-1'), 127.8 (t, C-3",$\left.C-5^{\prime \prime}\right), 127.5(t$, C-2", C-6"), 125.8 ($\mathrm{t}, \mathrm{C}-4^{\prime \prime}$), 122.8 ($q, C-6$), 115.2 (q, C-8a), 111.8 (t, C-3', C-5'), 107.2 (t, C-7), 106.3 (t, C-5), 101.7 (q, C-3a), 93.2 (q, C8b), 78.6 (t, C-1), 55.8 (p, H ${ }_{3} \mathrm{CO}-8$), $54.8(\mathrm{t}, \mathrm{C}-3), 54.7\left(\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-\right.$ 4^{\prime}), 51.4 ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-11$), $51.2(\mathrm{t}, \mathrm{C}-2)$; HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{BrO}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 563.0681$ found 563.0665 ; HPLC purity 99.12\%.

Synthesis of (\pm)-Methyl ($1 R, 2 R, 3 S, 3 \mathrm{aR}, 8 \mathrm{bS}$)-8-fluoro-1,8b-dihydroxy-6-(methoxymethoxy)-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2carboxylate (9na).

(E)-1-(2-Fluoro-6-hydroxy-4-(methoxymethoxy)phenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (12na). A suspension of NaOEt
($191 \mathrm{mg}, 2.80 \mathrm{mmol}, 3.00$ equiv) in dry EtOH (3.1 mL) was cooled down to rt, followed by the addition of 1-(2-fluoro-6-hydroxy-4-(methoxymethoxy)phenyl)ethan-1-one ($200 \mathrm{mg}, 0.93 \mathrm{mmol}, 1.00$ equiv) at the same temperature. The suspension was stirred for 1 h , before p-anisaldehyde ($114 \mu \mathrm{~L}, 0.93 \mathrm{mmol}, 1.00$ equiv) was added. The orange solution was stirred for 16 h at rt . The resulting orange suspension was poured into cold water and acidified to $\mathrm{pH}=1$ with HCl (aq., 1 M). The precipitate was filtered, washed with water, dissolved in EtOAc, dried over MgSO_{4}, filtered and concentrated in vacuo. The crude was purified over silica gel chromatography (petroleum ether/EtOAc 10:1) to afford 12na as a yellow-orange solid ($214 \mathrm{mg}, 0.64 \mathrm{mmol}, 69 \%$). $R_{\mathrm{f}}=0.20$ (petroleum ether/EtOAc 6:1); ${ }^{1}$ H NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 13.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.90$ (dd, $J=15,3.6 \mathrm{~Hz}, \mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{CH}), 7.60(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times$ ArH), $7.52(\mathrm{dd}, J=15,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{CH}), 6.94(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 6.44(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 6.32(\mathrm{dd}, J=14,2.4 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 5.19 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}$), $3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.48$ (s , $\left.3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 191.1(1, d, J=$ $5.0 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}), 166.7(\mathrm{q}, d, J=7.6 \mathrm{~Hz}, \mathrm{ArC}), 164.2(\mathrm{q}, d, J=254 \mathrm{~Hz}$, $\operatorname{ArC}), 163.2(\mathrm{q}, d, J=17 \mathrm{~Hz}, \operatorname{ArC}), 160.5(\mathrm{q}, ~ \mathrm{ArC}), 145.0(\mathrm{t}, d, J=1.7$ $\mathrm{Hz}, \mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{CH}), 130.6(\mathrm{t}, 2 \times \mathrm{ArC}), 122.8(\mathrm{t}, d, J=17 \mathrm{~Hz}, \mathrm{C}(\mathrm{O})$ $\mathrm{CH}=\mathrm{CH}), 114.5(\mathrm{t}, 2 \times \mathrm{ArC}), 105.7(\mathrm{q}, d, J=14 \mathrm{~Hz}, \mathrm{ArC}), 100.3(\mathrm{t}$, $d, J=2.9 \mathrm{~Hz}, \mathrm{ArC}), 96.2(\mathrm{t}, d, J=29 \mathrm{~Hz}, \operatorname{ArC}), 94.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 56.5(\mathrm{p}$, $\mathrm{H}_{3} \mathrm{CO}$), $55.4\left(\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}\right)$; HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{FNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 355.0958$, found 355.0952 .

5-Fluoro-3-hydroxy-7-(methoxymethoxy)-2-(4-methoxyphenyl)4 H -chromen-4-one (8 na). To suspension of chalcone $\mathbf{1 2 n a}$ (214 mg , $0.64 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{MeOH}(7.6 \mathrm{~mL}$) and NaOH (aq., 3 M , $1.08 \mathrm{~mL}, 3.22 \mathrm{mmol}, 5.00$ equiv) was added $\mathrm{H}_{2} \mathrm{O}_{2}$ (aq., $30 \%, 149 \mu \mathrm{~L}$, $6.44 \mathrm{mmol}, 10.0$ equiv) at $0{ }^{\circ} \mathrm{C}$. The bright orange solution was stirred for 3 h at the same temperature. The reaction was stirred for further 16 h at rt . The resulting yellow suspension was poured into a cold aqueous HCl (aq., 1 M) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The collected organic layers were washed with water, brine, dried over MgSO_{4}, filtered and concentrated in vacuo. The crude was recrystallized in MeOH to afford flavonol 8na ($95 \mathrm{mg}, 0.27 \mathrm{mmol}$, 42%) as pale-yellow needle crystals. $R_{\mathrm{f}}=0.50$ (petroleum ether/ EtOAc 1:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 8.18(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}$), $7.04(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.00(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{Ar} H), 6.76(\mathrm{dd}, J=12,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 5.28\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.85(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}$), $3.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ [ppm] $170.9(\mathrm{q}, d, J=1.6 \mathrm{~Hz}, C=\mathrm{O}), 161.3(\mathrm{q}, d, J=14 \mathrm{~Hz}, \mathrm{ArC})$, $161.2(\mathrm{q}, d, J=262 \mathrm{~Hz}, \operatorname{ArC}), 161.0(\mathrm{q}, \mathrm{ArC}), 157.3(\mathrm{q}, d, J=6.8 \mathrm{~Hz}$, ArC), 144.0 (q, ArC), 137.4 (q, COH), 129.2 ($\mathrm{t}, 2 \times \mathrm{ArC}$), 123.2 (q , $C=\mathrm{COH}), 114.1(\mathrm{t}, 2 \times \mathrm{ArC}), 106.4(\mathrm{q}, d, J=13 \mathrm{~Hz}, \mathrm{ArC}), 101.9(\mathrm{t}$, $d, J=23 \mathrm{~Hz}, \mathrm{ArC}), 99.4(\mathrm{t}, d, J=4.0 \mathrm{~Hz}, \mathrm{ArC}), 94.6\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 56.6(\mathrm{p}$, $\mathrm{CH}_{3} \mathrm{O}$), $55.4\left(\mathrm{p}, \mathrm{CH}_{3} \mathrm{O}\right)$; HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{6} \mathrm{FNa}$ $[\mathrm{M}+\mathrm{Na}]^{+} 369.0750$, found 369.0750 .
(\pm)-Methyl (1R,2R,3S,3aR,8bS)-8-fluoro-1,8b-dihydroxy-6-(me-thoxymethoxy)-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahy-dro-1H-cyclopenta[b]benzofuran-2-carboxylate (9na). To a solution of flavonol $8 \mathbf{n b}(96 \mathrm{mg}, 0.28 \mathrm{mmol}, 1.00$ equiv) in dry $2,2,2$ TFE (2.3 mL) and dry $\mathrm{CHCl}_{3}(5.6 \mathrm{~mL})$ was added methyl cinnamate ($641 \mathrm{mg}, 3.95 \mathrm{mmol}, 14.20$ equiv). The clear solution was degassed with argon for 15 min , followed by UV-irradiation ($100 \mathrm{~W}, 365 \mathrm{~nm}$) at $-5^{\circ} \mathrm{C}$ for $10-16 \mathrm{~h}$. After the flavonol was fully consumed, the solvent was removed in vacuo and the excess of methyl cinnamate was removed by silica gel purification (petroleum ether/EtOAc 10:1, then, 4:1, then EtOAc). The cycloadduct mixture was used directly for the next step. To the solution of cycloadduct mixture (142 mg) in MeOH $(9.3 \mathrm{~mL}$) was added NaOMe solution ($25 \mathrm{wt} \%$ in $\mathrm{MeOH}, 171 \mu \mathrm{~L}$, $0.79 \mathrm{mmol}, 2.84$ equiv) and stirred under refluxing conditions for 1 h . The reaction was terminated by the addition of $\mathrm{NH}_{4} \mathrm{Cl}$ (sat., aq.). The aqueous layers were extracted with EtOAc. The collected organic layers were washed with NaCl (sat., aq.), dried over MgSO_{4}, filtered and concentrated in vacuo. The yellow foam crude product was directly used for the next step without further purification. A solution of $\mathrm{Me}_{4} \mathrm{NBH}(\mathrm{OAc})_{3}(365 \mathrm{mg}, 2.25 \mathrm{mmol}, 6.42$ equiv) and freshly distilled $\mathrm{AcOH}(131 \mu \mathrm{~L}, 2.25 \mathrm{mmol}, 10.4$ equiv) in dry MeCN (5.6 mL) was prepared and stirred at rt for 10 min . To this solution was
added crude of the ketone from the previous step (110 mg) in dry $\mathrm{MeCN}(3.6 \mathrm{~mL})$. The reaction was carried out under light exclusion and stirred for 19 h at rt . The reaction was terminated by the addition of NaK -tartrate (sat., aq.) and $\mathrm{NH}_{4} \mathrm{Cl}$ (sat., aq.). The layers were separated and the aqueous layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The collected organic layers were washed with water and NaCl (sat., aq.), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by silica gel column chromatography (petroleum ether/EtOAc 3:1, then 2:1), followed by HPLC purification to yield 9 nb ($71 \mathrm{mg}, 0.14 \mathrm{mmol}, 49 \%$ over three steps) as a pale-yellow foam. $R_{\mathrm{f}}=0.29\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 10: 1\right)$;); ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$): δ [ppm] 7.09-6.98 (m, 5H, H-2", H-3", H-4", H-5", H-6"), 6.88 (d, J $=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}$ and $\left.H-6^{\prime}\right), 6.62\left(\mathrm{dt}, J=10,2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right.$ and $\left.H-5^{\prime}\right), 6.56$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, H-5$), 6.38 (dd, $J=11,2.0 \mathrm{~Hz}, 1 \mathrm{H}, H-$ 7), $5.83(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 5.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.22(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 4.69(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.13(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3$), 3.94 (dd, $J=14,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 3.62 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-4{ }^{\prime}$), 3.55 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-11$), $3.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d d_{6}, 100 MHz): $\delta[\mathrm{ppm}] 170.6$ (q, C-11), 161.1 ($q, d, J=12 \mathrm{~Hz}, C-6$), $160.5(\mathrm{q}, d, J=249 \mathrm{~Hz}, C-8), 160.0(\mathrm{q}, d, J=12 \mathrm{~Hz}, C-4 \mathrm{a}), 158.1(\mathrm{q}$, C-4'), 134.4 ($q, C-1^{\prime \prime}$), 129.1 ($\left.\mathrm{t}, \mathrm{C}-2^{\prime}, \mathrm{C}-6^{\prime}\right), 128.3$ ($\mathrm{q}, \mathrm{C}-1^{\prime}$), 128.1 (t , C-3", C-5"), 127.9 ($\left.\mathrm{t}, \mathrm{C}-2^{\prime \prime}, \mathrm{C}-6^{\prime \prime}\right), 126.4$ ($\left.\mathrm{t}, \mathrm{C} 4^{\prime \prime}\right)$, 112.4 ($\mathrm{t}, \mathrm{C}-3^{\prime}, \mathrm{C}-$ $\left.5^{\prime}\right), 110.2(\mathrm{q}, d, J=20 \mathrm{~Hz}, \mathrm{C}-8 \mathrm{a}), 102.2(\mathrm{q}, \mathrm{C}-3 \mathrm{a}), 97.1(\mathrm{t}, d, J=25$ $\mathrm{Hz}, \mathrm{C}-7), 94.8(\mathrm{t}, d, J=3.3 \mathrm{~Hz}, \mathrm{C}-5)$, $94.5\left(\mathrm{~s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 93.6(\mathrm{q}$, $d, J=2.5 \mathrm{~Hz}, \mathrm{C}-8 \mathrm{~b}), 78.8(\mathrm{t}, \mathrm{C}-1), 56.2\left(\mathrm{p}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 55.3(\mathrm{p}$, $\mathrm{CH}_{3} \mathrm{O}-4^{\prime}$), 55.2 (t, C-3), 51.9 (p, $\mathrm{CH}_{3} \mathrm{O}-11$), 51.7 (t, C-2); HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{O}_{8} \mathrm{FNa}[\mathrm{M}+\mathrm{Na}]^{+} 533.1588$, found 533.1586 . HPLC purity 99.49%.

Synthesis of (\pm)-Methyl ($1 R, 2 R, 3 S, 3 \mathrm{a} R, 8 \mathrm{bS}$)-3a-(4-bromo-phenyl)-8-fluoro-1,8b-dihydroxy-6-(methoxymethoxy)-3-phe-nyl-2,3,3a,8b-tetrahydro-1 H -cyclopenta[b]benzofuran-2-carboxylate (9nb).

(E)-3-(4-Bromophenyl)-1-(2-fluoro-6-hydroxy-4-(methoxymethoxy)phenyl)prop-2-en-1-one (12nb). A suspension of $\mathrm{NaOEt}(286 \mathrm{mg}, 4.20 \mathrm{mmol}, 3.00$ equiv) in dry EtOH (4.7 mL) was cooled down to rt, followed by the addition of 1-(2-fluoro-6-hydroxy-4-(methoxymethoxy)phenyl)ethan-1-one ($300 \mathrm{mg}, 1.40$ mmol, 1.00 equiv) at the same temperature. The suspension was stirred for 1 h , before 4-bromobenzaldehyde ($256 \mathrm{mg}, 1.40 \mathrm{mmol}$, 1.00 equiv) was added. The orange solution was stirred for 16 h at rt. The resulting orange suspension was poured into cold water and acidified to $\mathrm{pH}=1 \mathrm{HCl}$ (aq., 1 M). The precipitate was filtered, washed with water, dissolved in EtOAc, dried over MgSO_{4}, filtered, concentrated and dried in vacuo. The crude product 12nb (500 mg , $1.31 \mathrm{mmol}, 93 \%$) as a yellow-orange solid was used for next step without further purification. $R_{\mathrm{f}}=0.73$ (petroleum ether/EtOAc 1:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 13.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.82(\mathrm{dd}$, $J=15,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{CH}), 7.61(\mathrm{dd}, J=15,1.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{CH}), 7.55(\mathrm{dt}, J=8.6,1.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.49(\mathrm{dt}$, $2 \mathrm{H}, J=8.6,1.9 \mathrm{~Hz}, 2 \times \mathrm{ArH}), 6.45(\mathrm{q}, 1 \mathrm{H}, J=1.1 \mathrm{~Hz}, \mathrm{ArH}), 6.33(\mathrm{dd}$, $J=14,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $5.20\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}\right), 3.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 190.9(\mathrm{q}, d, J=4.9 \mathrm{~Hz}, \mathrm{C}=$ O), $166.8(\mathrm{q}, d, J=7.4 \mathrm{~Hz}, \operatorname{ArC}), 164.2(\mathrm{q}, d, J=254 \mathrm{~Hz}, \mathrm{ArC}), 143.5$ $(\mathrm{t}, d, J=1.7 \mathrm{~Hz}, \mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{CH}), 133.7(\mathrm{q}, \mathrm{ArC}), 132.3(\mathrm{t}, 2 \times \mathrm{ArC})$, $130.0(\mathrm{t}, 2 \times \mathrm{ArC}), 125.7(\mathrm{t}, d, J=17 \mathrm{~Hz}, \mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{CH}), 125.1(\mathrm{q}$, ArC), $105.1(\mathrm{q}, d, J=14 \mathrm{~Hz}, \mathrm{ArC}), 100.3(\mathrm{t}, d, J=2.9 \mathrm{~Hz}, \mathrm{ArC}), 96.3$ ($\mathrm{t}, d, J=29 \mathrm{~Hz}, \mathrm{ArC}$), $94.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 56.6\left(\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}\right)$; HRMS (ESI $\left.{ }^{+}\right)$ m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{FBr}[\mathrm{M}+\mathrm{H}]^{+}$381.0138, found 381.0128.

2-(4-Bromophenyl)-5-fluoro-3-hydroxy-7-(methoxymetho-xy)4 H -chromen-4-one (8 nb). To suspension of chalcone $\mathbf{1 2 n b}$ (500 mg , $1.31 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{MeOH}(15.4 \mathrm{~mL})$ and NaOH (aq., 3 M , $2.18 \mathrm{~mL}, 6.56 \mathrm{mmol}, 5.00$ equiv) was added $\mathrm{H}_{2} \mathrm{O}_{2}$ (aq., $30 \%, 304 \mu \mathrm{~L}$, $6.44 \mathrm{mmol}, 10.0$ equiv) at $0{ }^{\circ} \mathrm{C}$. The bright orange solution was
stirred for 3 h at the same temperature. The resulting yellow suspension was stirred for further 16 h at rt . The resulting yellow suspension was poured into cold HCl (aq., 1 M) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The collected organic layers were washed with water, NaCl (sat., aq.), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude was recrystallized in MeOH to afford flavonol $8 \mathbf{n b}$ as paleyellow crystals ($170 \mathrm{mg}, 0.43 \mathrm{mmol}, 33 \%$). $R_{\mathrm{f}}=0.60$ (petroleum ether/EtOAc 1:1); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 8.10(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.65(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArH}), 7.01(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{ArH}), 6.78$ (dd, $J=12,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 5.29 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 3.53 $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 171.1(\mathrm{q}, d, J$ $=1.7 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}), 161.7(\mathrm{q}, d, J=14 \mathrm{~Hz}, \mathrm{ArC}), 161.2(\mathrm{q}, d, J=263$ $\mathrm{Hz}, \mathrm{ArC}), 157.3(\mathrm{q}, d, J=6.55 \mathrm{~Hz}, \operatorname{ArC}), 142.3(\mathrm{q}, \operatorname{ArC}), 138.3(\mathrm{q}$, COH), 131.9 ($\mathrm{t}, 2 \times \mathrm{ArC}$), 129.6 (q, ArC) 128.9 ($\mathrm{t}, 2 \times \mathrm{ArC}$), 124.6 $(\mathrm{q}, C=\mathrm{COH}), 106.4(\mathrm{q}, d, J=13 \mathrm{~Hz}, \operatorname{ArC}), 102.2(\mathrm{t}, d, J=23 \mathrm{~Hz}$, $\operatorname{ArC}), 99.4(\mathrm{t}, d, J=3.9 \mathrm{~Hz}, \mathrm{ArC}), 94.8\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 56.5\left(\mathrm{p}, \mathrm{CH}_{3} \mathrm{O}\right)$; HRMS (ESI ${ }^{+}$) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{O}_{5} \mathrm{BrF}[\mathrm{M}+\mathrm{H}]^{+}$394.9930, found 394.9926.
(\pm)-Methyl (1R,2R,3S,3aR,8bS)-3a-(4-bromophenyl)-8-fluoro-1,8b-dihydroxy-6-(methoxymethoxy)-3-phenyl-2,3, 3a,8b-tetrahy-dro-1H-cyclopenta[b]benzofuran-2-carboxylate (9nb). To a solution of flavonol $8 \mathbf{n b}(170 \mathrm{mg}, 0.43 \mathrm{mmol}, 1.00$ equiv) in dry 2,2,2TFE $(3.6 \mathrm{~mL})$ and dry $\mathrm{CHCl}_{3}(8.6 \mathrm{~mL})$ was added methyl cinnamate ($991 \mathrm{mg}, 6.11 \mathrm{mmol}, 14.20$ equiv). The clear solution was degassed with argon for 15 min , followed by UV-irradiation ($100 \mathrm{~W}, 365 \mathrm{~nm}$) at $-5{ }^{\circ} \mathrm{C}$ for $10-16 \mathrm{~h}$. After the flavonol was fully consumed, the solvent was removed in vacuo and the excess of methyl cinnamate was removed by silica gel purification (petroleum ether/EtOAc 4:1, then EtOAc). The cycloadduct mixture was used directly for the next step. To a solution of cycloadduct mixture $(239 \mathrm{mg})$ in $\mathrm{MeOH}(14 \mathrm{~mL})$ was added NaOMe solution ($25 \mathrm{wt} \%$ in $\mathrm{MeOH}, 264 \mu \mathrm{~L}, 1.22 \mathrm{mmol}$, 2.84 equiv) and stirred under refluxing conditions for 1 h . The reaction was terminated by the addition of $\mathrm{NH}_{4} \mathrm{Cl}$ (sat., aq.). The aqueous layers were extracted with EtOAc. The collected organic layers were washed with water and NaCl (sat., aq.), dried over MgSO_{4}, filtered and concentrated in vacuo. The yellow foam ketone crude product was directly used for the next step without further purification. A solution of $\mathrm{Me}_{4} \mathrm{NBH}(\mathrm{OAc})_{3}(569 \mathrm{mg}, 2.17 \mathrm{mmol}, 6.42$ equiv) and freshly distilled $\mathrm{AcOH}(204 \mu \mathrm{~L}, 2.17 \mathrm{mmol}, 10.4$ equiv) in dry $\mathrm{MeCN}(8.7 \mathrm{~mL})$ was prepared and stirred at rt for 10 min . To this solution was added ketone crude ($188 \mathrm{mg}, 0.34 \mathrm{mmol}$) in dry MeCN $(5.6 \mathrm{~mL})$. The reaction was carried out under light exclusion and stirred for 19 h at rt . The reaction was terminated by the addition of NaK -tartrate (sat., aq.) and a $\mathrm{NH}_{4} \mathrm{Cl}$ solution (sat, aq.). The layers were separated and the aqueous layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 $\times 20 \mathrm{~mL})$. The collected organic layers were washed with water and brine, dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by silica gel column chromatography (petroleum ether/EtOAc 3:1, then 2:1), followed by HPLC purification to yield $9 \mathbf{n b}$ as a colorless foam ($103 \mathrm{mg}, 0.17 \mathrm{mmol}$, 18% over three steps). $R_{\mathrm{f}}=0.33\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 10: 1\right)$; ${ }^{1} \mathbf{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 7.23\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, H-3^{\prime}, H-5^{\prime}\right)$, 7.08-7.02 (m, 4H, H-2", H3", H-5", H-6"), 7.01-6.98 (m, 1H, H$\left.4^{\prime \prime}\right), 6.92$ (d, $\left.J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, H-2^{\prime}, H-6^{\prime}\right), 6.57(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, H-$ 5), 6.39 (dd, $J=10.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}, H-7), 5.86(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH})$, $5.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.22\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right) 4.67(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}$, $H-1), 4.21(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}, H-3), 4.03(\mathrm{dd}, J=14,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 2), $3.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-11\right), 3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 170.5(\mathrm{q}, C-11), 161.0(\mathrm{q}, d, J=12$ $\mathrm{Hz}, C-6), 160.6(\mathrm{q}, d, J=291 \mathrm{~Hz}, C-8), 160.1(\mathrm{q}, d, J=12 \mathrm{~Hz}, C-4 \mathrm{a})$, 138.1 ($q, C-1^{\prime \prime}$), 136.0 ($q, C-4^{\prime}$), 130.1 (t, C-2', C-6'), 129.8 (t, C-3', C-5' $), 128.11\left(\mathrm{t}, \mathrm{C}-2^{\prime \prime}, C-6^{\prime \prime}\right), 128.09\left(\mathrm{t}, \mathrm{C}-3^{\prime \prime}, C-5^{\prime \prime}\right), 126.6\left(\mathrm{t}, \mathrm{C}-4^{\prime \prime}\right)$, 120.4 ($q, C-1^{\prime}$), 109.7 ($\left.q, d, J=20 \mathrm{~Hz}, C-8 \mathrm{a}\right), 102.1$ ($\left.q, C-3 \mathrm{a}\right), 97.3$ $(\mathrm{q}, d, J=24 \mathrm{~Hz}, C-7), 94.9(\mathrm{t}, d, J=3.6 \mathrm{~Hz}, \mathrm{C}-5) 94.5\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)$, $93.8(\mathrm{t}, d, J=2.4 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}-8 \mathrm{~b}), 78.9(\mathrm{t}, \mathrm{C}-1), 56.2\left(\mathrm{p}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)$, 55.3 (t, C-3), 51.9 (p, CH3O-11), 51.6 (t, C-2); HRMS (ESI ${ }^{+}$) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{O}_{7} \mathrm{BrFNa}[\mathrm{M}+\mathrm{Na}]^{+}$581.0587, found: 581.0577; HPLC purity 99.23%.

Synthesis of $(\pm)-(1 R, 2 R, 3 S, 3 a R, 8 b S)$-3a-(4-chlorophenyl)-1,8b-dihydroxy-6,8-dimethoxy-N,N-dimethyl-3-phenyl-

2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxamide (14aa).

(\pm)-(1R,2R,3S,3aR,8bS)-3a-(4-Chlorophenyl)-1,8b-dihydroxy-6,8-dimethoxy-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]-benzofuran-2-carboxylic acid (13a). To a solution of 9 a (48 mg , $0.10 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{MeOH}(1.5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.25 \mathrm{~mL})$ was added $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(21 \mathrm{mg}, 0.49 \mathrm{mmol}, 5.10$ equiv). The reaction was stirred for 2 h at $50^{\circ} \mathrm{C}$ and terminated by cooling down and acidified to $\mathrm{pH}=1-2$. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water. The aqueous layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the collected organic layers were washed with NaCl (sat., aq.), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product (42 mg) was used directly for the next step. $R_{\mathrm{f}}=0.43\left(8 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(\pm)-(1R,2R,3S,3aR,8bS)-3a-(4-chlorophenyl)-1,8b-dihydroxy-6,8-dimethoxy-N,N-dimethyl-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxamide (14aa). To a mixture of crude 13a ($20 \mathrm{mg}, 0.04 \mathrm{mmol}, 1.00$ equiv), $\mathrm{EDC} \cdot \mathrm{HCl}(12 \mathrm{mg}, 0.06$ $\mathrm{mmol}, 1.50$ equiv), $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}(8.5 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.30$ equiv) and $\mathrm{HNMe}_{2} \cdot \mathrm{HCl}\left(17 \mathrm{mg}, 0.21 \mathrm{mmol}, 5.00\right.$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.5 $\mathrm{mL})$ was added freshly distilled $\mathrm{Et}_{3} \mathrm{~N}(29 \mu \mathrm{~L}, 0.21 \mathrm{mmol}, 5.00$ equiv) dropwise at $0{ }^{\circ} \mathrm{C}$ and stirred at the same temperature for 10 min . The reaction was stirred at rt for 12 h . The reaction was terminated by the addition of HCl (aq., 1 M), followed by dilution with MeOH and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated, the aqueous layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the collected organic layers were washed with NaCl (sat., aq.), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by silica gel column with $100 \% \mathrm{EtOAc}$ to give 14aa as a light-yellow foam $(6.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 31 \%$ over two steps). $R_{\mathrm{f}}=0.66\left(8 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathbf{H}$ NMR (DMSO- $d_{6}, 400$ $\mathrm{MHz}): \delta[\mathrm{ppm}] 7.14\left(\mathrm{dt}, J=9.0,2.2 \mathrm{~Hz}, 2 \mathrm{H}, H-3^{\prime}, H-5^{\prime}\right), 7.08(\mathrm{dt}, J$ $\left.=8.9,2.1 \mathrm{~Hz}, 2 \mathrm{H}, H-2^{\prime \prime}, H-6^{\prime \prime}\right)$, $7.04-7.01$ (m, 2H, H-2', H-6'), 6.98-6.94 (m, 1H,H-4"), $6.85\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, H-3^{\prime \prime}, H-5^{\prime \prime}\right), 6.31$ (d, J=1.9 Hz, 1H, H-5), $6.14(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, H-7), 5.20(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}), 4.77(\mathrm{dd}, J=6.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}, H-1), 4.65(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OH}), 4.31(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}, H-3), 4.08(\mathrm{dd}, J=13,6.1 \mathrm{~Hz}, 1 \mathrm{H}, H-$ 2), 3.78 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-8$), 3.75 ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-6\right), 3.26$ ($\mathrm{s}, 3 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 100$ $\mathrm{MHz}): \delta[\mathrm{ppm}] 168.8$ ($\mathrm{q}, \mathrm{C}-11$), 163.2 ($\mathrm{q}, \mathrm{C}-6$), 160.7 (q, C-4a), 158.2 ($q, C-8$), 139.4 ($q, C-1^{\prime}$), 136.5 ($q, C-1^{\prime \prime}$), 131.2 ($\left.q, C-4^{\prime}\right)$, 129.9 ($\mathrm{t}, \mathrm{C}-3^{\prime}, C^{\prime}-5^{\prime}$), 128.1 (t, C-2"', C-6" $), 127.8$ (t, C-2', C-6' $), 126.8$ (t, C-3", C-5"), 126.1 (t, C-4"), 108.9 (q, C-8b), 101.4 (q, C-3a), 94.2 ($\mathrm{q}, \mathrm{C}-8 \mathrm{a}), 92.5(\mathrm{t}, \mathrm{C}-7), 89.1(\mathrm{t}, \mathrm{C}-5), 78.4(\mathrm{t}, \mathrm{C}-1), 55.97(\mathrm{t}, \mathrm{C}-3)$, $55.97\left(\mathrm{CH}_{3} \mathrm{O}-6 / 8\right), 55.8\left(\mathrm{CH}_{3} \mathrm{O}-6 / 8\right), 48.6(\mathrm{t}, \mathrm{C}-2), 36.9(\mathrm{p}$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $35.6\left(\mathrm{p}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$; HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{ClNO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$532.1506, found 532.1503; HPLC purity 99.88\%.

Synthesis of (\pm)-($1 R, 2 R, 3 S, 3 \mathrm{aR}, 8 \mathrm{bS})$-3a-(4-chlorophenyl)-1,8b-dihydroxy-N,6,8-trimethoxy-3-phenyl-2,3,3a,8b-tetrahy-dro-1H-cyclopenta[b]benzofuran-2-carboxamide (14ab).

To a mixture of crude carboxylic acid 13 a ($20 \mathrm{mg}, 0.04 \mathrm{mmol}, 1.00$ equiv), $\mathrm{EDC} \cdot \mathrm{HCl}\left(12 \mathrm{mg}, 0.06 \mathrm{mmol}, 1.50\right.$ equiv), $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}(8.5$ $\mathrm{mg}, 0.05 \mathrm{mmol}, 1.30$ equiv) and $\mathrm{H}_{2} \mathrm{NOMe} \cdot \mathrm{HCl}(17 \mathrm{mg}, 0.21 \mathrm{mmol}$, 5.00 equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ was added freshly distilled $\mathrm{Et}_{3} \mathrm{~N}$ ($29 \mu \mathrm{~L}, 0.21 \mathrm{mmol}, 5.00$ equiv) dropwise at $0^{\circ} \mathrm{C}$ and stirred at the same temperature for 10 min . The reaction was stirred at rt for 12 h .

The reaction was terminated by the addition of HCl (aq., 1 M), diluted with MeOH and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated, the aqueous layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the collected organic layers were washed with NaCl (sat., aq.), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by silica gel column with $100 \% \mathrm{EtOAc}$ to give 14ab ($7.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 34 \%$ over two steps) as a light-yellow foam. $R_{\mathrm{f}}=0.57(8 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathbf{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$): $\delta[\mathrm{ppm}] 7.10-7.08(\mathrm{~m}$, 4H, H-2', H-3', H-5', H-6'), 7.07-7.05 (m, 2H, H-2", H-6"), 7.016.98 (m, 1H, H-4"), 6.94-6.92 (m, 2H, H-3", H-5"), 6.29 (d, J = 1.9 $\mathrm{Hz}, 1 \mathrm{H}, H-5), 6.13(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, H-7), 5.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.77$ $(\mathrm{d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 4.54(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, H-1), 4.29(\mathrm{~d}, J=14$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-8\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-6\right), 3.63$ (dd, $J=14,5.2 \mathrm{~Hz}, 1 \mathrm{H}, H-2), 3.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CONH}\left(\mathrm{OCH}_{3}\right)\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 166.8(\mathrm{q}, \mathrm{C}-11), 163.2$ (q, C-6), 160.9 ($q, C-4 a$), 158.3 ($q, C-8$), 138.5 ($\left.q, C-1^{\prime \prime}\right), 136.5$ ($\left.q, C-1^{\prime}\right)$, 131.4 ($q, C-4^{\prime}$), 129.8 ($\mathrm{t}, \mathrm{C}-3^{\prime}, C-5^{\prime}$), 128.1 (C-3" ${ }^{\prime \prime}, C-5^{\prime \prime}$), 127.9 ($\mathrm{t}, \mathrm{C}-$ $2^{\prime \prime}, \mathrm{C}^{\prime \prime}$), 126.7 (t, C-2', C-6'), 126.4 (C-4"), 108.4 (q, C-8a), 101.4 ($q, C-3 \mathrm{a}), 94.2$ ($q, C-8 \mathrm{~b}$), 92.4 (t, C-7), 88.8 (t, C-5), 79.3 (t, C-1), 63.6 (p, $\left.\mathrm{CONH}\left(\mathrm{OCH}_{3}\right)\right), 55.9\left(\mathrm{p}, \mathrm{CH}_{3} \mathrm{O}-6\right), 55.8\left(\mathrm{p}, \mathrm{CH}_{3} \mathrm{O}-8\right), 54.9$ ($\mathrm{t}, \mathrm{C}-3$); HRMS $\left(\right.$ ESI $\left.^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{ClNO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 532.1506, found 532.1503; HPLC purity 99.51%.

Synthesis of (\pm)-(1R,2R,3S,3aR,8bS)-3a-(4-fluorophenyl)-1,8b-dihydroxy-6,8-dimethoxy-N,N-dimethyl-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxamide (14baa).

(1R,2R,3S,3aR,8bS)-3a-(4-Fluorophenyl)-1,8b-dihydroxy-6,8 -dime-thoxy-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta [b]-benzofuran-2-carboxylic acid (13ba). LiOH solution (aq. Two M, $212 \mu \mathrm{~L}, 0.42 \mathrm{mmol}, 5.30$ equiv) was added to $9 \mathbf{b a}(35 \mathrm{mg}, 0.08 \mathrm{mmol}$, 1.00 equiv) in $\mathrm{MeOH}(1.2 \mathrm{~mL})$ and stirred at $50{ }^{\circ} \mathrm{C}$ for 6 h . The reaction was monitored by TLC, after the reaction was finished, the mixture was acidified to $\mathrm{pH}=1-2$ with HCl (aq., 1 M) and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were washed with water and NaCl (sat., aq.), dried over MgSO_{4}, filtered and concentrated in vacuo. The carboxylic acid crude 13ba (34 mg) was used directly for the next step. $R_{\mathrm{f}}=0.11$ (EtOAc).
(\pm)-(1R,2R,3S,3aR,8bS)-3a-(4-fluorophenyl)-1,8b-dihydroxy-6,8-dimethoxy-N,N-dimethyl-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxamide (14baa). To a solution of 13ba ($17 \mathrm{mg}, 0.037 \mathrm{mmol}, 1.00$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.2 \mathrm{~mL})$ were added $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}(7.66 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.30$ equiv $), \mathrm{EDC} \cdot \mathrm{HCl}(10.8$ $\mathrm{mg}, 0.06 \mathrm{mmol}, 1.50$ equiv) and $\mathrm{HNMe}_{2} \cdot \mathrm{HCl}(15.3 \mathrm{mg}, 0.19 \mathrm{mmol}$, 5.00 equiv) and cooled down to $0^{\circ} \mathrm{C}$ for 5 min . Freshly distilled $\mathrm{Et}_{3} \mathrm{~N}$ ($33 \mu \mathrm{~L}, 0.19 \mathrm{mmol}, 5.00$ equiv) was added dropwise at $0^{\circ} \mathrm{C}$ and stirred further at the same temperature for 10 min . The reaction mixture was warmed to rt and stirred for 16 h . After the reaction was finished, the mixture was concentrated in vacuo and purified by silica gel column chromatography (petroleum ether/EtOAc 2:1, then 1:1) to afford 14baa as a colorless oil ($14 \mathrm{mg}, 0.028 \mathrm{mmol}, 75 \%$ over two steps). $R_{\mathrm{f}}=0.25$ (EtOAc); ${ }^{1} \mathbf{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}]$ 7.15 (dd, $\left.J=8.8,5.6 \mathrm{~Hz}, 2 \mathrm{H}, H-2^{\prime}, H-6^{\prime}\right), 7.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, H-$ $\left.2^{\prime \prime}, H-6^{\prime \prime}\right), 7.01-6.96\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, H-4^{\prime \prime}\right), 6.84(\mathrm{q}, J=9.0 \mathrm{~Hz}$, 4H, H-3', H-5', H-3", H-5"), 6.31 (d, J=1.9 Hz, 1H, H-5), 6.14 (d, J $=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 5.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.78(\mathrm{dd}, J=6.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}$, $H-1), 4.64(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 4.27(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}, H-3)$, 4.05 (dd, $J=13,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-6\right), 3.75(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{H}_{3} \mathrm{CO}-8\right), 3.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.74\left(\mathrm{~s}, 3 \mathrm{H},-\left(\mathrm{NCH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 168.9$ (q, C-11), 163.2 (q, C-5), $161.1\left(\mathrm{q}, d, J=242 \mathrm{~Hz}, C-4^{\prime}\right), 160.7$ (q, C-4a), 158.1 (q,C-8), 139.4 $\left(\mathrm{q}, C-1^{\prime \prime}\right), 133.5\left(\mathrm{q}, d, J=2.9 \mathrm{~Hz}, C-1^{\prime}\right), 130.1\left(\mathrm{t}, d, J=7.8 \mathrm{~Hz}, C-2^{\prime}\right.$, C-6'), 128.1 ($\left.\mathrm{t}, \mathrm{C}-2^{\prime \prime}, C-6^{\prime \prime}\right), 127.8\left(\mathrm{t}, \mathrm{C}-3^{\prime \prime}, C-5^{\prime \prime}\right), 126.1\left(\mathrm{t}, \mathrm{C}-4^{\prime \prime}\right)$, 113.5 (d, $\left.J=21 \mathrm{~Hz}, C-3^{\prime}, C-5^{\prime}\right), 109.0$ (q, C-8a), 101.4 (q, C-3a), 94.0
(q, C-8b), 92.5 (t, C-7), 89.2 (t, C-5), 78.8 (t, C-1), $55.97\left(\mathrm{p}, \mathrm{CH}_{3} \mathrm{O}-\right.$ 6), $55.95(\mathrm{t}, \mathrm{C}-3), 55.93\left(\mathrm{p}, \mathrm{CH}_{3} \mathrm{O}-8\right), 48.5(\mathrm{t}, \mathrm{C}-2), 36.9(\mathrm{p}$, $\left.\operatorname{CON}\left(\mathrm{CH}_{3}\right)_{2}\right), 35.6\left(\mathrm{p}, \mathrm{CON}\left(\mathrm{CH}_{3}\right)_{2}\right)$; HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / z$ calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{6} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}$494.1979, found 494.1978; HPLC purity 97.65\%.

Synthesis of $(\pm)-(1 R, 2 R, 3 S, 3 \mathrm{aR}, 8 \mathrm{bS})-3 \mathrm{a}-(4$-fluorophenyl)-1,8b-dihydroxy-N,6,8-trimethoxy-3-phenyl-2,3,3a,8b-tetrahy-dro-1H-cyclopenta[b]benzofuran-2-carboxamide (14bab).

To a solution of 13 ba ($18 \mathrm{mg}, 0.037 \mathrm{mmol}, 1.00$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.2 \mathrm{~mL})$ were added $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}(7.7 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.30$ equiv), $\mathrm{EDC} \cdot \mathrm{HCl}\left(11 \mathrm{mg}, 0.06 \mathrm{mmol}, 1.50\right.$ equiv) and $\mathrm{H}_{2} \mathrm{NOMe} \cdot \mathrm{HCl}$ ($16 \mathrm{mg}, 0.19 \mathrm{mmol}, 5.00$ equiv) and cooled down to $0^{\circ} \mathrm{C}$ for 5 min . Freshly distilled $\mathrm{Et}_{3} \mathrm{~N}(33 \mu \mathrm{~L}, 0.19 \mathrm{mmol}, 5.00$ equiv) was added dropwise at $0{ }^{\circ} \mathrm{C}$ and stirred further at the same temperature for 10 min. The reaction mixture was warmed to rt and stirred for 16 h . The mixture was then concentrated in vacuo and purified by silica gel column chromatography (petroleum ether/EtOAc 2:1 $\rightarrow 1: 1$) to afford 14bab as a colorless oil $(6.4 \mathrm{mg}, 0.013 \mathrm{mmol}, 34 \%$ over two steps). $R_{\mathrm{f}}=0.21(\mathrm{EtOAc}) ;{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{DMSO}-d_{6}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}]$ 7.10 (dd, $\left.J=9.0,5.6 \mathrm{~Hz}, 2 \mathrm{H}, H-2^{\prime}, H-6^{\prime}\right), 7.04(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, H-$ $\left.2^{\prime \prime}, H-6^{\prime \prime}\right), 6.97\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, H-4^{\prime \prime}\right), 6.90-6.84\left(\mathrm{~m}, 4 \mathrm{H}, H-3^{\prime}, H-\right.$ $\left.5^{\prime}, H-3^{\prime \prime}, H-5^{\prime \prime}\right), 6.28$ (d, $\left.J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, H-5\right), 6.10(\mathrm{~d}, J=1.9 \mathrm{~Hz}$, $1 \mathrm{H}, H-7), 5.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.73(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 4.54(\mathrm{t}, J=$ $4.6 \mathrm{~Hz}, 1 \mathrm{H}, H-1), 4.24(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}, H-3), 3.59(\mathrm{dd}, J=14,5.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 3.78 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-6$), 3.73 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-8$), 3.49 (s , $3 \mathrm{H}, \mathrm{NHOCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 166.8$ ($q, C-11), 163.2(q, C-6), 161.2\left(q, d, J=242 \mathrm{~Hz}, C-4^{\prime}\right), 160.9$ ($q, C-$ $4 \mathrm{a}), 158.3$ ($\mathrm{q}, C-8), 138.6\left(\mathrm{q}, C-1^{\prime \prime}\right), 133.5\left(\mathrm{q}, d, J=3.0 \mathrm{~Hz}, C-1^{\prime}\right)$, 129.9 ($\mathrm{t}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, C-2^{\prime}, C-6^{\prime}$), 128.1 ($\mathrm{t}, \mathrm{C}-2^{\prime \prime}, C 6^{\prime \prime}$), 127.9 ($\mathrm{t}, \mathrm{C}-$ $\left.3^{\prime \prime}, C-5^{\prime \prime}\right), 126.4$ ($\mathrm{t}, \mathrm{C}-4^{\prime \prime}$), $113.5\left(\mathrm{t}, d, J=21 \mathrm{~Hz}, C-3^{\prime}, C-5^{\prime}\right), 108.6$ (q, C-8a), 101.4 ($q, C-3 \mathrm{a}$), 94.0 ($q, C-8 b$), 92.4 (t, C-7), 88.9 (t, C-5), $79.4(\mathrm{t}, \mathrm{C}-1), 63.6\left(\mathrm{CONH}\left(\mathrm{OCH}_{3}\right)\right), 55.9\left(\mathrm{t}, \mathrm{C}-3 ; \mathrm{p}, \mathrm{CH}_{3} \mathrm{O}-6\right), 55.8$ (p, $\mathrm{CH}_{3}-8$), $48.7(\mathrm{t}, \mathrm{C}-2)$; HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / z$ calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{O}_{7} \mathrm{NF}$ $[\mathrm{M}+\mathrm{H}]^{+}$496.1772, found 496.1783; HPLC purity 99.43%.

Synthesis of $(\pm)-(1 R, 2 R, 3 S, 3 a R, 8 b S)-1,8 b-D i h y d r o x y-6,8-d i-$ methoxy-3a-(4-methoxyphenyl)-N,N-dimethyl-3-phenyl-2,3,3a,8b-tetrahydro-1 H -cyclopenta[b]benzofuran-2-carboxamide ((\pm)-Rocaglamide, rac-1b).

(\pm)-(1R,2R,3S,3aR,8bS)-1,8b-Dihydroxy-6,8-dimethoxy-3a-(4-me-thoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]-benzofuran-2-carboxylic acid (13bc). A solution of methyl ester $\mathbf{1 1 b c}(54.0 \mathrm{mg}, 110 \mu \mathrm{~mol}, 1.00$ equiv) and lithium hydroxide $(2.00 \mathrm{M}$ in $\mathrm{H}_{2} \mathrm{O}, 280 \mu \mathrm{~L}, 559 \mu \mathrm{~mol}, 5.10$ equiv) in $\mathrm{MeOH}(1.71 \mathrm{~mL})$ was heated at $50{ }^{\circ} \mathrm{C}$ for 200 min . The solution was allowed to cool to rt, acidified with $\mathrm{HCl}\left(1.00 \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ to $\mathrm{pH}=1-2$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.00 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5.00 \mathrm{~mL})$. The organic layer was collected. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times)$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure to give the rocagloic acid (13bc) as a yellowish solid ($52.0 \mathrm{mg}, 109 \mu \mathrm{~mol}, 99 \%$). $R_{\mathrm{f}}=0.25$ (EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 7.05-6.93(\mathrm{~m}, 5 \mathrm{H}$, $\left.H-2^{\prime}, H-6^{\prime}, H-3^{\prime \prime}, H-4^{\prime \prime}, H-5^{\prime \prime}\right), 6.81\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, H-2^{\prime \prime}, H-6^{\prime \prime}\right)$, $6.61\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, H-3^{\prime}, H-5^{\prime}\right), 6.31(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, H-5)$, $6.14(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, H-7), 5.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}-8 \mathrm{~b}), 4.80(\mathrm{dd}, J=6.5$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}, H-1), 4.58(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}-1), 4.21(\mathrm{~d}, J=13.5$
$\mathrm{Hz}, 1 \mathrm{H}, H-3), 4.01$ (dd, $J=13.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.79\left(\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-8\right)$, 3.76 (p, H3CO-6), 3.61 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-4^{\prime}$), 3.23 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 174.8(\mathrm{q}, \mathrm{C}-11), 164.2(\mathrm{q}, \mathrm{C}-6)$, 161.0 ($q, C-4 a), 158.9$ ($\left.q, C-4^{\prime}\right), 157.1$ ($q, C-8$), 136.9 ($\left.q, C-1^{\prime \prime}\right)$, 129.1 (t, C-2', C-6'), 128.0 (t, C-3",$C-5^{\prime \prime}$), 127.9 (t, C-2",$\left.~ C-6^{\prime \prime}\right)$, 126.7 (t, C-4"), 126.5 (q. C-1'), 112.9 (t, C-3', C-5'), 107.6 (q, C-8a), 102.0 ($q, C-3 \mathrm{a}$), 93.8 ($\mathrm{q}, \mathrm{C}-8 \mathrm{~b}$), 92.8 (t, C-7), 89.6 (t, C-5), 79.5 (t, C1), 55.9 (p, H $\mathrm{H}_{3} \mathrm{CO}-8$), 55.8 ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-6$), 55.2 ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-4^{\prime}$), $55.1(\mathrm{t}$, $C-3$), 50.4 ($\mathrm{t}, \mathrm{C}-2$). The analytical data are consistent with those reported in the literature. ${ }^{46}$
(\pm)-(1R,2R,3S,3aR,8bS)-1,8b-Dihydroxy-6,8-dimethoxy-3a-(4-methoxyphenyl)-N,N-dimethyl-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxamide ((\pm)-Rocaglamide, rac1b). To a solution of rocagloic acid $(13 \mathrm{bc})(25.0 \mathrm{mg}, 52.2 \mu \mathrm{~mol}, 1.00$ equiv) in DMF (1.52 mL) was added dimethylamine hydrochloride $(5.1 \mathrm{mg}, 62.7 \mu \mathrm{~mol}, 1.20$ equiv) and $4-\mathrm{DMAP}(7.7 \mathrm{mg}, 62.7 \mu \mathrm{~mol}$, 1.20 equiv). After cooling the reaction mixture to $0{ }^{\circ} \mathrm{C}, \mathrm{EDC} \cdot \mathrm{HCl}$ $(12.0 \mathrm{mg}, 62.7 \mu \mathrm{~mol}, 1.20$ equiv) was added in portions over 5 min . After stirring for 30 min , triethylamine $(8.7 \mu \mathrm{~L}, 62.7 \mu \mathrm{~mol}, 1.20$ equiv) was added and the cooling bath was removed. When the starting material was fully consumed (13 h), $\mathrm{HCl}\left(1.00 \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times)$. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by preparative $\mathrm{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\right)$ to afford (\pm)-rocaglamide ($\mathrm{rac}-\mathbf{1 b}$) as a colorless solid $(2.4 \mathrm{mg}, 4.75 \mu \mathrm{~mol}$, $9 \%) . R_{\mathrm{f}}=0.45\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\right) ;{ }^{1} \mathbf{H}$ NMR (DMSO- $d_{6}, 400$ $\mathrm{MHz}): \delta[\mathrm{ppm}] 7.05-6.93$ (m, 5H, H-2', H-6', H-3", H-4",$\left.H-5^{\prime \prime}\right)$, $6.81\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, H-2^{\prime \prime}, H-6^{\prime \prime}\right), 6.61\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, H-3^{\prime}, H-\right.$ $\left.5^{\prime}\right), 6.31(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, H-5), 6.14(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, H-7), 5.03$ (s, 1H, OH-8b), 4.80 (dd, $J=6.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}, H-1$), 4.58 (d, $J=3.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{OH}-1), 4.21(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, H-3), 4.01(\mathrm{dd}, J=13.4,6.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 3.79 (p, H3CO-8), 3.76 (p, H3CO-6), 3.61 ($\mathrm{s}, 3 \mathrm{H}$, $\left.\mathrm{H}_{3} \mathrm{CO}-4^{\prime}\right), 3.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 168.5$ (q, C-11), 162.7 (q, C-6), 160.3 (q, C-4a), 157.6 (q, C-8), 157.4 ($q, C-4^{\prime}$), 139.2 ($q, C-1^{\prime \prime}$), 128.8 (t, C-2', C-6'), 128.6 (q. C-1'), 127.7 (t, C-3"', C-5 ${ }^{\prime \prime}$), 127.2 (t, C-2", C-6" $), 125.5$ (t, C-4"), 111.9 (t, C-3', C-5'), 108.9 (q, C-8a), 101.1 ($q, C-3 \mathrm{a}), 93.5(\mathrm{q}, \mathrm{C}-8 \mathrm{~b}), 91.9(\mathrm{t}, \mathrm{C}-7), 88.8(\mathrm{t}, C-5), 78.2(\mathrm{t}, \mathrm{C}-$ 1), 55.5 ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-8$), 55.4 ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-6$), 55.3 ($\mathrm{t}, \mathrm{C}-3$), 54.7 (p , $\left.\mathrm{H}_{3} \mathrm{CO}-4^{\prime}\right), 47.8$ ($\mathrm{t}, \mathrm{C}-2$), $36.4\left(\mathrm{p}, \mathrm{NCH}_{3}\right), 35.1$ ($\mathrm{p}, \mathrm{NCH}_{3}$); HPLC purity 95.65%. The analytical data are consistent with those reported in the literature. ${ }^{47}$
Synthesis of (\pm)-($1 R, 2 R, 3 S, 3 \mathrm{a} R, 8 \mathrm{bS})-1,8 \mathrm{~b}-$ Dihydroxy $-N, 6,8-$ trimethoxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetra-hydro-1 H -cyclopenta[b]benzofuran-2-carboxamide ((\pm)-CR-31-B, rac-1c).

(\pm)-(1R,2R,3S,3aR,8bS)-1,8b-Dihydroxy-N,6,8-trimethoxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]-benzofuran-2-carboxamide ((\pm)-CR-31-B, rac-1c). To a solution of rocagloic acid (13bc) $\left(25.0 \mathrm{mg}, 52.2 \mu \mathrm{~mol}, 1.00\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3.71 \mathrm{~mL}) \mathrm{EDC} \cdot \mathrm{HCl}\left(15.0 \mathrm{mg}, 78.4 \mu \mathrm{~mol}, 1.50\right.$ equiv), $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}$ ($10.7 \mathrm{mg}, 67.9 \mu \mathrm{~mol}, 1.30$ equiv), methoxylamine hydrochloride (21.8 $\mathrm{mg}, 261 \mu \mathrm{~mol}, 5.00$ equiv) and triethylamine ($36.2 \mu \mathrm{~L}, 261 \mu \mathrm{~mol}$, 5.00 equiv) were added. The mixture was then stirred at rt for 12 h . Subsequently, the reaction was terminated by the addition of HCl (1.00 M in $\mathrm{H}_{2} \mathrm{O}$), extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$, dried over MgSO_{4}, filtered, concentrated and purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ $\mathrm{MeOH} 95: 5)$. $(\pm$)-CR-31-B (rac-1c) was obtained as a colorless solid ($11.8 \mathrm{mg}, 23.2 \mu \mathrm{~mol}, 44 \%) . R_{\mathrm{f}}=0.48\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right) ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 500 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 11.15(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.06-6.96$ (m, 5H, H-2', H-6', H-3" $\left., H-4^{\prime \prime}, H-5^{\prime \prime}\right), 6.89$ (d, J=7.5 Hz, 2H, H-2", $\left.H-6^{\prime \prime}\right), 6.60\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, H-3^{\prime}, H-5^{\prime}\right), 6.28(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$,

H-5), 6.12 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), $5.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}-8 \mathrm{~b}), 4.65(\mathrm{~d}, J=$ $3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}-1), 4.57-4.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 4.18(\mathrm{~d}, J=14.1 \mathrm{~Hz}$, 1H, H-3), 3.78 ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-8$), 3.74 ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-6$), 3.61 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}-$ 4^{\prime}), 3.58 (dd, $\left.J=14.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NHOCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 125 \mathrm{MHz}$): δ [ppm] 166.4 ($\mathrm{q}, \mathrm{C}-11$), 162.7 ($\mathrm{q}, \mathrm{C}-$ 6), 160.5 ($q, C-4 a), 157.8$ ($q, C-8$), 157.5 ($\left.q, C-4^{\prime}\right), 138.3$ ($q, C-1^{\prime \prime}$), 128.7 ($\mathrm{t}, \mathrm{C}-2^{\prime}, \mathrm{C}-6^{\prime}$), 128.6 ($\mathrm{q}, \mathrm{C}-1^{\prime}$), 127.8 ($\mathrm{t}, \mathrm{C}-3^{\prime \prime}, \mathrm{C}-5^{\prime \prime}$), 127.3 (t , C-2", C-6" $)$, 125.8 (t, C-4"), 111.8 (t, C-3', C-5'), 108.5 (q, C-8a), 101.1 ($q, C-3 \mathrm{a}$), 93.4 ($q, C-8 b$), 91.8 (t, C-7), 88.5 ($\mathrm{t}, \mathrm{C}-5$), 79.0 (t, C1), 63.1 ($\mathrm{p}, \mathrm{NHOCH}_{3}$), 55.5 ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-8$), 55.4 ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-6$), 54.8 (p, H3CO-4'), 54.4 (t, C-3), 48.0 (t, C-2); HRMS (ESI ${ }^{+}$) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$530.1791, found 530.1792; HPLC purity 98.08%. The analytical data are consistent with those reported in the literature. ${ }^{17}$

Synthesis of (\pm)-($1 R, 2 R, 3 S, 3 \mathrm{a} R, 8 \mathrm{bS})$-6,8-Dichloro-1,8b-dihy-droxy- N -methoxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1 H -cyclopenta[b]benzofuran-2-carboxamide (14da).

(\pm)-(1R,2R,3S,3aR,8bS)-6,8-Dichloro-1,8b-dihydroxy-3a-(4-me-thoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]-benzofuran-2-carboxylic acid (13da). A solution of methyl ester 9da ($40.0 \mathrm{mg}, 79.8 \mu \mathrm{~mol}, 1.00$ equiv) and lithium hydroxide solution (2.00 M in $\mathrm{H}_{2} \mathrm{O}, 203 \mu \mathrm{~L}, 407 \mu \mathrm{~mol}, 5.10$ equiv) in $\mathrm{MeOH}(1.25 \mathrm{~mL}$) was heated at $50{ }^{\circ} \mathrm{C}$ for 2 h . As only a low conversion could be detected by TLC, more lithium hydroxide solution (2.00 M in $\mathrm{H}_{2} \mathrm{O}$, $203 \mu \mathrm{~L}, 407 \mu \mathrm{~mol}, 5.10$ equiv) was added and the mixture was stirred for additional 18 h at $50^{\circ} \mathrm{C}$. The solution was then cooled, acidified with $\mathrm{HCl}\left(1.00 \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ to $\mathrm{pH}=1-2$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5.00 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5.00 \mathrm{~mL})$. The organic layer was collected. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times)$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure to give the rocagloic acid 13da as a yellowish solid ($33.0 \mathrm{mg}, 67.7 \mu \mathrm{~mol}, 85 \%$). $R_{\mathrm{f}}=0.52(\mathrm{EtOAc}) ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$): $\delta[\mathrm{ppm}] 7.12(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.07-$ 6.89 (m, 8H, H-7, H-2', H-6', H-2", H-3", H-4", H-5", H-6"), 6.56 (d, $\left.J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, H-5^{\prime}\right), 5.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}-8 \mathrm{~b}), 4.63(\mathrm{~d}, J=4.2 \mathrm{~Hz}$, $1 \mathrm{H}, H-1$), 4.34 (d, $J=13.9 \mathrm{~Hz}, 1 \mathrm{H}, H-3$), 3.85 (dd, $J=13.8,3.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-2$), 3.57 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-4^{\prime}$); ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 100 \mathrm{MHz}$): $\delta[\mathrm{ppm}] 172.5(\mathrm{q}, \mathrm{C}-11), 160.8(\mathrm{q}, \mathrm{C}-4 \mathrm{a}), 157.6$ ($\left.\mathrm{q}, \mathrm{C}-4^{\prime}\right), 138.5$ (q , C-1"), 134.2 ($q, C-6$), 132.5 ($q, C-8 a$), 128.5 (t, C-2', C-6'), 128.4 (q, C-1'), 128.1 ($\mathrm{t}, \mathrm{C}-3^{\prime \prime}, \mathrm{C}-5^{\prime \prime}$), 127.4 ($\mathrm{t}, \mathrm{C}-2^{\prime \prime}, \mathrm{C}-6^{\prime \prime}$), 126.0 ($\mathfrak{q}, \mathrm{C}-8$), 125.7 (t, C-4"), 120.8 (t, C-7), 111.9 (t, C-3', C-5'), 109.1 ($\mathrm{t}, \mathrm{C}-5$), 102.7 ($q, C-3 a$), 93.7 (q, C-8b), 78.1 (t, C-1), 55.7 (t, C-3), 54.8 (p, $\mathrm{H}_{3} \mathrm{CO}-4^{\prime}$), 51.9 ($\mathrm{t}, \mathrm{C}-2$); HRMS (ESI $) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{O}_{6}$ [M-H] ${ }^{-}$485.0559, found 485.0575.
(\pm)-(1R,2R,3S,3aR,8bS)-6,8-Dichloro-1,8b-dihydroxy-N-methoxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1 H-cyclopenta[b]benzofuran-2-carboxamide (14da). To a solution of rocagloic acid 13da ($17.6 \mathrm{mg}, 36.1 \mu \mathrm{~mol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.58$ $\mathrm{mL}) \mathrm{EDC} \cdot \mathrm{HCl}\left(10.4 \mathrm{mg}, 54.2 \mu \mathrm{~mol}, 1.50\right.$ equiv), $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}$ (7.7 $\mathrm{mg}, 48.4 \mu \mathrm{~mol}, 1.35$ equiv), methoxylamine hydrochloride (15.1 mg , $181 \mu \mathrm{~mol}, 5.00$ equiv) and triethylamine ($25.0 \mu \mathrm{~L}, 181 \mu \mathrm{~mol}, 5.00$ equiv) were added. The mixture was stirred at rt for 12 h . Subsequently, the reaction was terminated by the addition of HCl (1.00 M in $\mathrm{H}_{2} \mathrm{O}$), extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ 100:0 \rightarrow 95:5). The desired rocagloic amide 14da was obtained as a colorless solid (5.7 mg , $11.0 \mu \mathrm{~mol}, 31 \%) . R_{\mathrm{f}}=0.48\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\right) ;{ }^{1} \mathbf{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$): $\delta[\mathrm{ppm}] 11.27\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHOCH}_{3}\right), 7.14$ (d, J $=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.07-6.95\left(\mathrm{~m}, 8 \mathrm{H}, H-7, H-2^{\prime}, \mathrm{H}^{\prime}, \mathrm{H}^{\prime \prime} \mathrm{L}^{\prime \prime}, H-3^{\prime \prime}\right.$, $\left.H-4^{\prime \prime}, H-5^{\prime \prime}, H-6^{\prime \prime}\right), 6.59\left(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, H-3^{\prime}, H-5^{\prime}\right), 5.60(\mathrm{~s}, 1 \mathrm{H}$,
$\mathrm{OH}-8 \mathrm{~b}), 5.34(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}-1), 4.55(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 1), $4.40(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}, H-3), 3.67(\mathrm{dd}, J=14.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 2), 3.59 ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-4^{\prime}\right), 3.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NHOCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 166.3(\mathrm{q}, \mathrm{C}-11), 160.7$ (q, C-4a), 157.7 ($\left.q, C-4^{\prime}\right), 137.9$ ($\left.q, C-1^{\prime \prime}\right), 134.2$ ($q, C-6$), 132.6 ($q, C-8 a$), 128.4 (t, C-2', C-6'), 128.1 ($q, C-1^{\prime}$), 127.9 (t, C-3",$\left.C-5^{\prime \prime}\right), 127.4(t$, C-2", C-6"), 126.9 ($\mathrm{t}, \mathrm{C}^{\prime \prime} \mathrm{4}^{\prime \prime}$), 125.8 ($\mathrm{q}, \mathrm{C}-8$), 120.8 ($\mathrm{t}, \mathrm{C}-7$), 111.9 (t , C-3', C-5'), 109.1 (t, C-5), 102.0 ($q, C-3 \mathrm{a}$), 93.8 ($\mathrm{q}, \mathrm{C}-8 \mathrm{~b}$), 78.4 (t, C1), 63.2 ($\mathrm{p}, \mathrm{NHOCH}_{3}$), 54.9 ($\mathrm{t}, \mathrm{C}-3$), 54.8 ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-4^{\prime}$), 48.9 ($\mathrm{t}, \mathrm{C}-$ 2); HRMS (ESI ${ }^{+}$) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{NO}_{6} \mathrm{Na} \quad[\mathrm{M}+\mathrm{Na}]^{+}$ 538.0800, found 538.0794; HPLC purity 95.70%.

Synthesis of (\pm)-(1R,2R,3S,3aR,8bS)-6-Bromo-8-chloro-1,8b-dihydroxy-N-methoxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxamide (14f).

(\pm)-(1R,2R,3S,3aR,8bS)-6-Bromo-8-chloro-1,8b-dihydroxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]-benzofuran-2-carboxylic acid (13f). A solution of methyl ester 9 f ($68.2 \mathrm{mg}, 125 \mu \mathrm{~mol}, 1.00$ equiv) and lithium hydroxide solution (2.00 M in $\mathrm{H}_{2} \mathrm{O}, 319 \mu \mathrm{~L}, 637 \mu \mathrm{~mol}, 5.10$ equiv) in $\mathrm{MeOH}(10.1 \mathrm{~mL})$ was heated at $50^{\circ} \mathrm{C}$ for 28 h . Then, the solution was cooled, acidified with $\mathrm{HCl}\left(1.00 \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ to $\mathrm{pH}=1-2$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0$ $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(10.0 \mathrm{~mL})$. The organic layer was collected. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times)$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure to give the rocagloic acid 13 f as a yellowish solid ($59.6 \mathrm{mg}, 112 \mu \mathrm{~mol}, 90 \%) . R_{\mathrm{f}}=0.56$ (EtOAc); ${ }^{1} \mathbf{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 12.20\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{CO}_{2} H\right), 7.25(\mathrm{~d}, J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}, H-5), 7.12(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, H-7), 7.07-6.94(\mathrm{~m}, 7 \mathrm{H}$, $\left.H-2^{\prime}, H-6^{\prime}, H-2^{\prime \prime}, H-3^{\prime \prime}, H-4^{\prime \prime}, H-5^{\prime \prime}, H-6^{\prime \prime}\right), 6.56$ (d, J = 9.0 Hz, 2H, $\left.H-3^{\prime}, H-5^{\prime}\right), 5.60(\mathrm{~s}, 1 \mathrm{H}, H \mathrm{O}-8 \mathrm{~b}), 4.65(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, H-1), 4.34$ (d, $J=13.9 \mathrm{~Hz}, 1 \mathrm{H}, H-3$), 3.89 (dd, $J=13.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}, H-2$), 3.58 (s, $3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-4^{\prime}$); ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 100 \mathrm{MHz}$): $\delta[\mathrm{ppm}] 171.8$ ($q, C-11$), 160.9 ($q, C-4 a$), 157.6 ($q, C-4^{\prime}$), 138.5 ($q, C-1^{\prime \prime}$), 132.7 (q, C-8a), 128.5 (t, C-2', C-6'), 128.3 (q, C-1'), 128.0 (t, C-3",$C-5^{\prime \prime}$), 127.4 ($\mathrm{t}, \mathrm{C}-2^{\prime \prime}, \mathrm{C}^{\prime \prime}$) , 126.3 ($\mathrm{q}, \mathrm{C}-8$), 125.7 ($\mathrm{t}, \mathrm{C}-4^{\prime \prime}$), 123.4 ($\mathrm{t}, \mathrm{C}-7$), 122.0 (q, C-6), 111.8 (t, C-5, C-3', C-5'), 102.5 (q, C-3a), 93.7 (q, C$8 \mathrm{~b}), 78.1(\mathrm{t}, \mathrm{C}-1), 55.3(\mathrm{t}, \mathrm{C}-3), 54.7\left(\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-4^{\prime}\right), 51.8(\mathrm{t}, \mathrm{C}-2)$. HRMS (ESI $\left.{ }^{-}\right) m / z$ calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{ClBrO}_{6}[\mathrm{M}-\mathrm{H}]^{-} 529.0054$, found 529.0057.
(\pm)-(1R,2R,3S,3aR,8bS)-6-Bromo-8-chloro-1,8b-dihydroxy-N-me-thoxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxamide (14f). To a solution of rocagloic acid $13 \mathrm{f}\left(70.0 \mathrm{mg}\right.$, $132 \mu \mathrm{~mol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.08$ $\mathrm{mL}) \mathrm{EDC} \cdot \mathrm{HCl}\left(37.9 \mathrm{mg}, 197 \mu \mathrm{~mol}, 1.50\right.$ equiv), $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}(31.6$ $\mathrm{mg}, 178 \mu \mathrm{~mol}, 1.35$ equiv) and triethylamine $(91.7 \mu \mathrm{~L}, 658 \mu \mathrm{~mol}$, 5.00 equiv) were added and was stirred at rt. After 1 h , methoxylamine hydrochloride ($55.0 \mathrm{mg}, 658 \mu \mathrm{~mol}, 5.00$ equiv) was added and reaction mixture was stirred for additional 18 h . The reaction was terminated by addition of $\mathrm{HCl}\left(1.00 \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ 98:2). The desired rocagloic amide $\mathbf{1 4 f}$ was obtained as a colorless solid ($58.0 \mathrm{mg}, 103 \mu \mathrm{~mol}, 79 \%$). $R_{\mathrm{f}}=0.32\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\right)$; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 11.28\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHOCH}_{3}\right)$, $7.26(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, H-5), 7.13(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, H-7), 7.07-$ 6.95 (m, 7H, H-2', H-6', H-2", H-3", H-4", H-5" , H-6"), 6.59 (d, J = $\left.9.0 \mathrm{~Hz}, 2 \mathrm{H}, H-3^{\prime}, H-5^{\prime}\right), 5.60(\mathrm{~s}, 1 \mathrm{H}, H \mathrm{O}-8 \mathrm{~b}), 5.34(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}$, $H O-1), 4.55(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, H-1), 4.30(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}, H-3)$, 3.68 (dd, $J=14.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}, H-2$), 3.59 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-4$), 3.52 (s , $\left.3 \mathrm{H}, \mathrm{NHOCH}_{3}\right)$; ${ }^{13} \mathbf{C}$ NMR (DMSO- $d_{6}, 100 \mathrm{MHz}$): $\delta[\mathrm{ppm}] 166.3$ (q, C-11), 160.8 ($q, C-4 a$), 157.7 ($q, C-4^{\prime}$), 137.9 ($q, C-1^{\prime \prime}$), 132.9 (q,

C-8a), 128.5 ($\left.\mathrm{t}, \mathrm{C}-2^{\prime}, C-6^{\prime}\right), 128.1$ ($\left.q, C-1^{\prime}\right), 127.9$ (t, C-3",$\left.C-5^{\prime \prime}\right)$, 127.4 (t, C-2", C-6"), 126.2 ($q, C-8$), 125.9 (t, C-4"), 123.5 ($q, C-7$), 122.1 ($q, C-6$), 112.0 (t, C-5), 111.9 (t, C-3', C-5'), 101.9 (q, C-3a), 93.9 (q, C-8b), 78.4 (t, C-1), $63.2\left(\mathrm{p}, \mathrm{NHOCH}_{3}\right), 54.9(\mathrm{t}, \mathrm{C}-3), 54.8$ ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-4^{\prime}$), 48.9 ($\mathrm{t}, \mathrm{C}-2$); HRMS (ESI ${ }^{+}$) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{ClBrNa} \quad[\mathrm{M}+\mathrm{Na}]^{+}$582.0295, found 582.0272; HPLC purity $\sim 100.00 \%$.

Synthesis of $(\pm)-(1 R, 2 R, 3 S, 3 \mathrm{aR}, 8 \mathrm{bS})-8$-Bromo-6-chloro-1,8b-dihydroxy-N-methoxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1 H-cyclopenta[b]benzofuran-2-carboxamide (14 g).

(\pm)-(1R,2R,3S,3aR,8bS)-8-Bromo-6-chloro-1,8b-dihydroxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]-benzofuran-2-carboxylic acid (13g). A solution of methyl ester 9 g ($34.4 \mathrm{mg}, 63.0 \mu \mathrm{~mol}, 1.00$ equiv) and lithium hydroxide solution (2.00 M in $\mathrm{H}_{2} \mathrm{O}, 327 \mu \mathrm{~L}, 653 \mu \mathrm{~mol}, 10.4$ equiv) in $\mathrm{MeOH}(5.08 \mathrm{~mL})$ was heated at $50^{\circ} \mathrm{C}$ for 21 h . Subsequently, the solution was allowed to cool to rt, acidified with $\mathrm{HCl}\left(1.00 \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ to $\mathrm{pH}=1-2$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10.0 \mathrm{~mL})$. The organic layer was collected. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times$ 10.0 mL). The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure to give the rocagloic acid 13 g as a yellowish solid $(29.5 \mathrm{mg}, 55.5 \mu \mathrm{~mol}, 88 \%) . R_{\mathrm{f}}=0.56$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 600 \mathrm{MHz}$): $\delta[\mathrm{ppm}] 12.04$ (bs, 1 H , $\left.\mathrm{CO}_{2} H\right), 7.17(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, H-5), 7.14(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, H-7)$, 7.07-6.94 (m, 7H, H-2', H-6', H-2", H-3", H-4", H-5",$\left.H-6^{\prime \prime}\right), 6.55$ (d, J = 8.9 Hz, 2H, H-3', H-5'), 5.58 (s, $1 \mathrm{H}, H \mathrm{O}-8 \mathrm{~b}), 4.67$ (d, J = 3.7 $\mathrm{Hz}, 1 \mathrm{H}, H-1), 4.39(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}, H-3), 3.92$ (dd, $J=14.1,3.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2$), $3.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-4^{\prime}\right)$; ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 150$ $\mathrm{MHz}): \delta[\mathrm{ppm}] 172.5$ (q, C-11), 160.9 (q, C-4a), 157.5 (q, C-4'), $138.6\left(\mathrm{q}, \mathrm{C}^{\prime \prime} \mathbf{1}^{\prime \prime}\right), 134.2(\mathrm{q}, C-6), 128.5\left(\mathrm{t}, \mathrm{C}^{\prime} \mathbf{2}^{\prime}, C-6^{\prime}\right), 128.2\left(\mathrm{q}, \mathrm{C}-1^{\prime}\right)$, 128.1 (t, C-3", C-5"), 127.34 (t, C-2", C-6"), 127.28 (q, C-8a), 125.6 ($\mathrm{t}, \mathrm{C}-4^{\prime \prime}$), 123.5 ($\mathrm{t}, \mathrm{C}-7$), 120.7 ($\mathrm{q}, \mathrm{C}-8$), 111.8 ($\left.\mathrm{t}, \mathrm{C}-3^{\prime}, \mathrm{C}-5^{\prime}\right), 109.4$ (t, C-5), 102.8 ($q, C-3 \mathrm{a}), 94.1(\mathrm{q}, \mathrm{C}-8 \mathrm{~b}), 77.9(\mathrm{t}, \mathrm{C}-1), 55.0(\mathrm{t}, \mathrm{C}-3)$, 54.7 (p, H3CO-4'), 51.9 ($\mathrm{t}, \mathrm{C}-2$); HRMS (ESI ${ }^{-}$) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{ClBrO}_{6}[\mathrm{M}-\mathrm{H}]^{-}$529.0054, found 529.0065.
(\pm)-(1R,2R,3S,3aR,8bS)-8-Bromo-6-chloro-1,8b-dihydroxy-N-me-thoxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxamide (14g). To a solution of rocagloic acid $13 \mathrm{~g}\left(16.5 \mathrm{mg}\right.$, $31.0 \mu \mathrm{~mol}$, 1.00 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.14$ $\mathrm{mL}) \mathrm{EDC} \cdot \mathrm{HCl}(8.9 \mathrm{mg}, 46.5 \mu \mathrm{~mol}, 1.50$ equiv $), \mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}(7.5 \mathrm{mg}$, $41.9 \mu \mathrm{~mol}, 1.35$ equiv) and triethylamine $(21.6 \mu \mathrm{~L}, 155 \mu \mathrm{~mol}, 5.00$ equiv) were added and was stirred at rt. After 1 h , methoxylamine hydrochloride ($13.0 \mathrm{mg}, 155 \mu \mathrm{~mol}, 5.00$ equiv) was added and the reaction mixture was stirred for additional 18 h . The reaction was terminated by addition of $\mathrm{HCl}\left(1.00 \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 100: 0 \rightarrow\right.$ 95:5). The desired rocagloic amide $\mathbf{1 4 g}$ was obtained as a colorless solid ($4.0 \mathrm{mg}, 7.1 \mu \mathrm{~mol}, 23 \%$). $R_{\mathrm{f}}=0.30\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\right) ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 11.30\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHOCH}_{3}\right)$, 7.17 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, H-5), 7.15(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, H-7), 7.07-$ 7.04 (m, 2H, H-2", H-6"), 7.00-6.95 (m, 5H, H-2', H-6', H-3", H-4", $\left.H-5^{\prime \prime}\right), 6.58\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, H-3^{\prime}, H-5^{\prime}\right), 5.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}-8 \mathrm{~b}), 5.28$ $(\mathrm{d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}-1), 4.55(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, H-1), 4.44(\mathrm{~d}, J=$ $14.1 \mathrm{~Hz}, 1 \mathrm{H}, H-3$), 3.68 (dd, $J=14.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}, H-2$), 3.58 ($\mathrm{s}, 3 \mathrm{H}$, s, $\left.3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-4^{\prime}\right), 3.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NHOCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 100$ MHz): $\delta[\mathrm{ppm}] 166.4$ (q, C-11), 160.8 (q, C-4a), 157.6 (q, C-4'), 138.0 ($q, C-1^{\prime \prime}$), 134.3 ($q, C-6$), 128.4 ($\left.\mathrm{t}, \mathrm{C}-2^{\prime}, C^{\prime} 6^{\prime}\right), 128.2$ ($\left.q, C-1^{\prime}\right)$, 127.9 (t, C-3", C-5" $), 127.43$ ($q, C-8 a$), 127.42 ($\left.t, C-2^{\prime \prime}, C-6^{\prime \prime}\right), 125.9$ (t, C 4" ${ }^{\prime \prime}$), $123.6(\mathrm{t}, \mathrm{C}-7), 120.9(\mathrm{q}, \mathrm{C}-8), 111.9\left(\mathrm{t}, \mathrm{C}-3^{\prime}, C-5^{\prime}\right), 109.5$ (t, C-5), 102.1 ($q, C-3 \mathrm{a}), 94.2$ ($\mathrm{q}, \mathrm{C}-8 \mathrm{~b}$), 78.2 (t, C-1), 63.2 (p,
NHOCH_{3}), 54.9 ($\mathrm{t}, \mathrm{C}-3$), 54.8 ($\mathrm{p}, \mathrm{H}_{3} \mathrm{CO}-4^{\prime}$), 48.9 ($\mathrm{t}, \mathrm{C}-2$); HRMS (ESI') $\mathrm{m} / \boldsymbol{z}$ calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{ClBrNa}[\mathrm{M}+\mathrm{Na}]^{+} 582.0295$, found 582.0307; HPLC purity 98.49%.

Synthesis of $(\pm)-(1 R, 2 R, 3 S, 3 \mathrm{aR}, 8 \mathrm{bS})$-8-Fluoro-3a-(4-fluoro-phenyl)-1,8b-dihydroxy-6-methoxy- N, N-dimethyl-3-phenyl-2,3,3a,8b-tetrahydro-1 H-cyclopenta[b]benzofuran-2-carboxamide (14ha).

8-Fluoro-1,8b-dihydroxy-6-methoxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxylic acid (13 h). LiOH (aq., $2 \mathrm{M}, 0.19 \mathrm{~mL}, 0.37 \mathrm{mmol}, 5.10$ equiv) was added to 9 h ($35 \mathrm{mg}, 0.07 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{MeOH}(1.2 \mathrm{~mL}$) and stirred for 2.5 h at $50^{\circ} \mathrm{C}$. After the ester was fully consumed, the mixture was acidified with $\mathrm{HCl}(\mathrm{aq} ., 1 \mathrm{M})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were washed with water and NaCl (sat., aq.), dried over MgSO_{4} and concentrated in vacuo. The carbo-xylic acid crude $13 \mathrm{~h}(31 \mathrm{mg})$ was used directly for the next step without further purification. $R_{\mathrm{f}}=0.47$ (EtOAc).
(\pm)-(1R,2R,3S,3aR,8bS)-8-Fluoro-3a-(4-fluorophenyl)-1,8b-dihy-droxy-6-methoxy-N,N-dimethyl-3-phenyl-2,3,3a,8b-tetrahydro-1 H -cyclopenta[b]benzofuran-2-carboxamide (14ha). To carboxylic acid 13 h ($10 \mathrm{mg}, 0.02 \mathrm{mmol}, 1.00$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.3 \mathrm{~mL})$ were added $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}(4.4 \mathrm{mg}, 0.03 \mathrm{mmol}, 1.30$ equiv), EDC•HCl $\left(6.2 \mathrm{mg}, 0.03 \mathrm{mmol}, 1.50\right.$ equiv) and $\mathrm{HNMe}_{2} \cdot \mathrm{HCl}(8.8 \mathrm{mg}, 0.11$ mmol, 5.00 equiv) and cooled down to $0{ }^{\circ} \mathrm{C}$ for $5 \mathrm{~min} . \mathrm{Et}_{3} \mathrm{~N}(15 \mu \mathrm{~L}$, $0.11 \mathrm{mmol}, 5.00$ equiv) was added dropwise at $0{ }^{\circ} \mathrm{C}$ and stirred further at the same temperature for 10 min . The reaction mixture was warmed up to rt and stirred for 16 h . After the starting material was fully consumed, the mixture was concentrated in vacuo and purified by silica gel column chromatography ($5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford 14ha ($3.8 \mathrm{mg}, 7.7 \mu \mathrm{~mol}, 33 \%$ over two steps) as a colorless oil. $R_{\mathrm{f}}=$ 0.47 (EtOAc); ${ }^{1} \mathbf{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$): δ [ppm] 7.06 (dt, J $=10,2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}$ and $\left.H-6^{\prime}\right), 7.02-7.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, H-6^{\prime \prime}\right)$, 6.97-6.94 (m, 1H, H-4"), 6.83-6.82 (m, 2H, H-3", H-5"), 6.63 (dt, J = 9.9, $\left.2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, H-5^{\prime}\right), 6.50(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, H-5), 6.29$ (dd, $J=11,2.9 \mathrm{~Hz}, 1 \mathrm{H}, H-7), 5.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.36(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OH}), 4.76(\mathrm{t}, J=6.4,1 \mathrm{H}, H-1), 4.19(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3)$, $4.04(\mathrm{dd}, \mathrm{J}=14,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2)$, 3.78 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-6$), 3.62 ($\mathrm{s}, 3 \mathrm{H}$, $\left.\mathrm{H}_{3} \mathrm{CO}-4^{\prime}\right), 3.23\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.74\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 168.9(\mathrm{q}, \mathrm{C}-11), 162.8(\mathrm{q}, d, J$ $=13 \mathrm{~Hz}, C-6), 161.2(\mathrm{q}, d, J=12 \mathrm{~Hz}, C-4 \mathrm{a}), 160.8(\mathrm{q}, d, J=249 \mathrm{~Hz}$, C-8), 158.0 ($q, C-4 a$), 154.1 ($\left.q, C-4^{\prime}\right), 139.4$ ($\left.q, C-1^{\prime \prime}\right), 129.2\left(t, C-2^{\prime}\right.$, C-6'), 128.7 ($q, C-1^{\prime}$), 128.2 (t, C-3", C-5"), 127.2 ($\left.t, C-2^{\prime \prime}, C-6^{\prime \prime}\right)$, 126.1 ($\mathrm{t}, \mathrm{C}-4^{\prime \prime}$), 112.5 ($\left.\mathrm{t}, \mathrm{C}-3^{\prime}, \mathrm{C}-5^{\prime}\right), 109.5$ ($\mathrm{q}, ~ d, J=20 \mathrm{~Hz}, \mathrm{C}-8 \mathrm{a}$), 101.9 (q, C-3a), $95.4(\mathrm{t}, d, J=25 \mathrm{~Hz}, \mathrm{C}-7), 93.9(\mathrm{t}, d, J=2.5 \mathrm{~Hz}, \mathrm{C}-$ 5), 92.7 ($\mathrm{q}, d, J=2.9 \mathrm{~Hz}, \mathrm{C}-8 \mathrm{~b}$), $77.7(\mathrm{t}, \mathrm{C}-1), 56.3\left(\mathrm{p}, \mathrm{CH}_{3} \mathrm{O}-6\right), 55.9$ (t, C-3), $55.2\left(\mathrm{p}, \mathrm{CH}_{3} \mathrm{O}-4^{\prime}\right), 48.6(\mathrm{t}, \mathrm{C}-2), 36.9\left(\mathrm{p}, \mathrm{CON}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $35.6\left(\mathrm{p}, \mathrm{CON}\left(\mathrm{CH}_{3}\right)_{2}\right)$; HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{FNO}_{6} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 516.1798$, found 516.1786 ; HPLC purity 98.44%.
Synthesis of $(\pm)-(1 R, 2 R, 3 S, 3 \mathrm{a} R, 8 \mathrm{bS})-8$-Fluoro- $1,8 \mathrm{~b}$-dihy-droxy-N,6-dimethoxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxamide (14hb).

To $\mathbf{1 3 h}\left(10 \mathrm{mg}, 0.02 \mathrm{mmol}, 1.00\right.$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.2 \mathrm{~mL})$ were added $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}(4.4 \mathrm{mg}, 0.03 \mathrm{mmol}, 1.30$ equiv), $\mathrm{EDC} \cdot \mathrm{HCl}(6.2$ $\mathrm{mg}, 0.03 \mathrm{mmol}, 1.50$ equiv) and $\mathrm{H}_{2} \mathrm{NOMe} \cdot \mathrm{HCl}(8.9 \mathrm{mg}, 0.11 \mathrm{mmol}$, 5.00 equiv) and cooled down to $0{ }^{\circ} \mathrm{C} . \mathrm{Et}_{3} \mathrm{~N}(15 \mu \mathrm{~L}, 0.11 \mathrm{mmol}, 5.00$
equiv) was added dropwise at $0{ }^{\circ} \mathrm{C}$ and the mixture stirred at the same temperature for 10 min . The reaction mixture was warmed up to rt and stirred for 16 h . After the reaction was finished, the mixture was concentrated in vacuo and purified by silica gel column chromatography ($85 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $\mathbf{1 4 h b}$ as a colorless oil (3.6 $\mathrm{mg}, 7.3 \mu \mathrm{~mol}, 34 \%$ over two steps). $R_{\mathrm{f}}=0.48$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 11.16\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CONH}\left(\mathrm{OCH}_{3}\right)\right)$, 7.06-6.97 (m, 3H, H-2", H-4", H-6"), 7.03-7.00 (m, 2H, H-2', H 6^{\prime}), 6.88 (d, $\left.J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, H-3^{\prime \prime}, H-5^{\prime \prime}\right), 6.62(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, H-$ $\left.3^{\prime}, H-5^{\prime}\right), 6.49(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, H-5), 6.29$ (dd, $J=11,2.0 \mathrm{~Hz}, 1 \mathrm{H}$, H-7), $5.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.35(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 4.55(\mathrm{~d}, J=5.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.16 (d, $J=14 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$), 3.78 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-4^{\prime}$), $3.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-6\right), 3.58(\mathrm{dd}, J=14,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.48(\mathrm{~s}, 3 \mathrm{H}$, $\left.\operatorname{CONH}\left(\mathrm{OCH}_{3}\right)\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\right.$ DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}] 166.8$ ($\mathrm{q}, \mathrm{C}-11$), $162.9(\mathrm{q}, d, J=13 \mathrm{~Hz}, C-6), 161.4(\mathrm{q}, d, J=12 \mathrm{~Hz}, C-4)$, 160.7 ($q, d, J=249 \mathrm{~Hz}, C-8), 158.1\left(\mathfrak{q}, C-4^{\prime}\right), 138.5\left(q, C-1^{\prime \prime}\right), 129.1$ ($\mathrm{t}, \mathrm{C}-2^{\prime}, \mathrm{C}-6^{\prime}$), 128.6 ($\mathrm{q}, \mathrm{C}-1^{\prime}$), 128.2 ($\left.\mathrm{t}, \mathrm{C}-2^{\prime}, \mathrm{C}-6^{\prime}\right), 126.4$ ($\mathrm{t}, \mathrm{C}-4^{\prime \prime}$), 112.4 ($\mathrm{t}, \mathrm{C}-3^{\prime}, \mathrm{C}-\mathrm{s}^{\prime}$), 109.1 ($\mathrm{q}, \mathrm{d}, \mathrm{J}=25 \mathrm{~Hz}, \mathrm{C}-7$), 93.9 ($\mathrm{q}, \mathrm{C}-8 \mathrm{~b}$), 92.6 ($\mathrm{t}, \mathrm{d}, \mathrm{J}=2.7 \mathrm{~Hz}, \mathrm{C}-5$), $79.0(\mathrm{t}, \mathrm{C}-1), 63.6\left(\mathrm{p}, \mathrm{CONH}\left(\mathrm{OCH}_{3}\right)\right), 56.3$ ($\mathrm{p}, \mathrm{CH}_{3} \mathrm{O}-6$), $55.3\left(\mathrm{p}, \mathrm{CH}_{3} \mathrm{O}-4^{\prime}\right), 55.0(\mathrm{t}, \mathrm{C}-3), 48.7(\mathrm{t}, \mathrm{C}-2)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{FNO}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$518.1591, found 518.1592; HPLC purity 98.26%.

Synthesis of $(\pm)-(1 R, 2 R, 3 S, 3 \mathrm{a} R, 8 \mathrm{bS})-6$-Bromo- $1,8 \mathrm{~b}$-dihy-droxy-N,8-dimethoxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-carboxamide (14 m).

(\pm)-(1R,2R,3S,3aR,8bS)-6-Bromo-1,8b-dihydroxy-8-methoxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]-benzofuran-2-carboxylic acid (13m). A solution of methyl ester 9 m ($139 \mathrm{mg}, 257 \mu \mathrm{~mol}, 1.00$ equiv) and lithium hydroxide solution (2.00 M in $\mathrm{H}_{2} \mathrm{O}, 257 \mu \mathrm{~L}, 513 \mu \mathrm{~mol}, 2.00$ equiv) in $\mathrm{MeOH}(4.01 \mathrm{~mL})$ was heated at $50{ }^{\circ} \mathrm{C}$ for 2 h . Subsequently, the solution was allowed to cool to rt, acidified with $\mathrm{HCl}\left(1.00 \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ to $\mathrm{pH}=1-2$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10.0 \mathrm{~mL})$. The organic layer was collected. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \times)$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure to give crude rocagloic acid 13 m as a yellowish solid (135 mg) and used directly for the next step. $R_{\mathrm{f}}=0.39$ (EtOAc).
(\pm)-(1R,2R,3S,3aR,8bS)-6-Bromo-1,8b-dihydroxy-N,8-dimethoxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1 H-cyclopenta[b]benzofuran-2-carboxamide (14m). To a solution of rocagloic acid $13 \mathrm{f}\left(135 \mathrm{mg}\right.$, $257 \mu \mathrm{~mol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18.3$ mL) $\mathrm{EDC} \cdot \mathrm{HCl}\left(73.8 \mathrm{mg}, 385 \mu \mathrm{~mol}, 1.50\right.$ equiv), $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}(54.5$ $\mathrm{mg}, 347 \mu \mathrm{~mol}, 1.35$ equiv) and triethylamine ($642 \mu \mathrm{~L}, 1.28 \mathrm{mmol}$, 5.00 equiv) were added and was stirred at rt. After 1 h , methoxylamine hydrochloride ($107 \mathrm{mg}, 1.28 \mathrm{mmol}, 5.00$ equiv) was added and reaction mixture was stirred for additional 5 h . The reaction was terminated by addition of $\mathrm{HCl}\left(1.00 \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ 100:0 $\rightarrow 95: 5$). The desired rocagloic amide $\mathbf{1 4 m}$ was obtained as a colorless solid (40.8 mg , $73.3 \mu \mathrm{~mol}$, 29% over two steps). $R_{\mathrm{f}}=0.33$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5$); ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$): δ [ppm] 11.18 (s, 1H, NHOCH 3), $7.06-7.03$ (m, 2H, H-2", H-6"), 7.00-6.91 (m, 5H, H-2', H-6', H-3"' $\left.H-4^{\prime \prime}, H-5^{\prime \prime}\right), 6.87(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, H-5)$, 6.72 (d, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, H-7,6.59$ (d, $\left.J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, H-3^{\prime}, H-5^{\prime}\right)$, $5.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}-8 \mathrm{~b}), 4.94(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}-1), 4.53(\mathrm{t}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}, H-1), 4.26(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}, H-3), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-8\right)$, 3.62 (dd, $J=14.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 3.59 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CO}-4^{\prime}$), $3.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NHOCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right): \delta[\mathrm{ppm}]$ 166.4 ($q, C-11$), 160.4 ($q, C-4 a$), 158.2 ($q, C-8$), 157.6 ($q, C-4$),
$138.1\left(\mathrm{q}, \mathrm{C}-1^{\prime \prime}\right), 128.6\left(\mathrm{t}, \mathrm{C}-2^{\prime}, C-6^{\prime}\right), 128.2\left(\mathrm{q}, C-1^{\prime}\right), 127.8\left(\mathrm{t}, \mathrm{C}-3^{\prime \prime}\right.$, C $5^{\prime \prime}$), 127.5 (t, C-2", C-6" $), 125.8$ (t, C-4"), 122.7 (q, C-6), 115.4 (q, C-8a), 111.8 ($\mathrm{t}, \mathrm{C}^{\prime} \mathrm{B}^{\prime}, C-5^{\prime}$), 107.3 ($\mathrm{t}, \mathrm{C}-7$), 106.3 ($\mathrm{t}, \mathrm{C}-5$), 101.4 (q , C-3a), 93.4 ($q, C-8 b$), 78.8 (t, C-1), 63.1 (p, NHOCH $)_{3}$, 55.9 (p, $\mathrm{H}_{3} \mathrm{CO}-8$), 54.8 (p, $\mathrm{H}_{3} \mathrm{CO}-4^{\prime}$), 54.6 (t, C-3), 48.5 (t, C-2); HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{NO}_{7} \mathrm{BrNa}[\mathrm{M}+\mathrm{Na}]^{+}$578.0790, found 578.0784; HPLC purity 99.69%.

Biological Evaluation: Virus Infection and Cytotoxicity. Cell Culture. Human hepatoma cells (HepG2) were cultured in Dulbecco's modified Eagle's medium (DMEM) (Invitrogen, Karlsruhe, Germany) supplemented with 10% fetal calf serum (FCS) (GE Healthcare), $100 \mu \mathrm{~g} / \mathrm{mL}$ of streptomycin, $100 \mathrm{IU} / \mathrm{mL}$ of penicillin (Invitrogen), 2 mM L-glutamine and 1% non-essential amino acids (Invitrogen) at $37^{\circ} \mathrm{C}$ in a 5% (v/v) CO_{2} incubator. Cells were grown on sterile collagen-coated (SERVA Electrophoresis GmbH, Heidelberg, Germany) culture plates. Huh7 cells were maintained in DMEM supplemented with 10% FCS, 2 mM L-glutamine, 0.1 mM nonessential amino acids and 1% penicillin/streptomycin.

African green monkey (Chlorocebus sp.) kidney cells (Vero E6, Collection of Cell Lines in Veterinary Medicine CCLV, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany) were grown and maintained in Eagle's minimal essential medium (MEM; Biochrom GmbH, Berlin, Germany) supplemented with 10% FCS (Biochrom GmbH, Berlin, Germany) and kept under a $5 \% \mathrm{CO}_{2}$ atmosphere at $37^{\circ} \mathrm{C}$.

Virus Isolates. SARS-CoV-2 isolate 2019 nnCoV Muc-IMB-1 (accession no. LR824570) ${ }^{48}$ was kindly provided by German Armed Forces Institute of Microbiology (Munich, Germany) and propagated on Vero E6 cells. The RVFV strain MP-12 (accession nos. DQ380154, DQ380208, DQ75404) ${ }^{49}$ was kindly provided by Richard Elliot (University of Glasgow, Centre for virus research, United Kingdom) and propagated on Vero E6 cells (Collection of Cell Lines in Veterinary Medicine, Friedrich-Loeffler-Institut, Germany). Viruses were cultivated and titrated on Vero E6 cells, and stock titers of approximately 10^{6} TCID50 mL^{-1} were achieved.

Plasmids and In Vitro Transcription. For HEV in vitro replication experiments, a plasmid construct harboring the HEV-3 Kernow-C1 p6 sequence coupled with a Gaussia luciferase reporter gene (here referred to as p6-Gluc; a kind gift of Suzanne Emmerson, National Institutes of Health, USA) was in vitro transcribed according to refs 50 and 51. In brief, $2 \mu \mathrm{~g}$ of linearized plasmid DNA was transcribed with T7 Polymerase (Promega) and capped using Ribom7G Cap Analog (Promega, Madison, WI) at $37^{\circ} \mathrm{C}$ for 4 h . Purified in vitro transcript was stored at $-80{ }^{\circ} \mathrm{C}$. For CHIKV assays, the infectious clone CHIKV LR2006-OPY1 (ECSA genotype) expressing GFP under the control of a subgenomic promoter was used as described previously. ${ }^{52}$ In brief, infectious virus was produced by in vitro transcription followed by electroporation of RNA into BHK-21 cells. Supernatant was collected 48 h after electroporation and titrated on HEK 293T.

Dose-Dependent Replication Assay (HEV). For transfection of the p6-Gluc replicon, HepG2 cells were electroporated as previously reported. ${ }^{53}$ Briefly, 5×10^{6} cells were electroporated in $400 \mu \mathrm{~L}$ Cytomix containing 2 mM adenosine triphosphate and 5 mM glutathione with $5 \mu \mathrm{~g}$ of in vitro transcribed HEV RNA using the Gene Pulser Xcell system (Bio-Rad, Munich, Germany). Afterward, transfected cells were transferred into 12.1 mL fresh DMEM culture medium and seeded onto 96 -well plates at a nonconfluent density of 2×10^{4} cells/well (in $50 \mu \mathrm{~L}$ volume) or at confluency (4×10^{4} cells/ well). Four hours post transfection (p.t.), cells were treated with various compound concentrations ranging from 0.15 nM to 1000 nM in a 3 -fold serial dilution. At indicated time points p.t., the supernatant was collected and used to examine the effect of rocaglamides derivatives on HEV replication. Samples were stored at $4{ }^{\circ} \mathrm{C}$ until luminometer reading.

Gaussia Luciferase Assay. To determine Gaussia luciferase activity, $20 \mu \mathrm{~L}$ of harvested supernatant was added per well on a 96 -well LUMITRAC 600 plate, followed by the addition of $60 \mu \mathrm{~L}$ of Coelenterazine. Luminescence was detected for 1 s with a Centro XS^{3} LB 960 luminometer (Berthold Technologies) after shaking for 2 s . Samples were measured in triplicate and read sequentially.

Antiviral Assay (SARS-CoV-2 and RVF). To evaluate the efficiency of the described derivates in vitro, Vero E6 cells from overnight cultures were infected with SARS-CoV-2 or RVFV strain MP-12 at a multiplicity of infection (MOI) of 0.1. After infection, the wells were incubated at $37{ }^{\circ} \mathrm{C}$ under a $5 \% \mathrm{CO}_{2}$ atmosphere for 60 min and were then washed with phosphate-buffered saline. Fresh culture medium (MEM supplemented with 5\% FCS) containing different compound dilution levels ($1: 3$ dilution; start concentration $1 \mu \mathrm{M}$) was added. The supernatants were collected at 24 h post infection (hpi) or 48 hpi including four biological replicates.

Quantitative Real-Time RT-PCR (RT-qPCR) Assay. RNA from SARS-CoV-2 and RVFV MP-12 was extracted from all supernatants using the NucleoMag Vet kit (MachereyNagel, Düren, Germany) for a magnetic-bead based isolation of viral RNA according to the manufacturer's instructions in an elution volume of $100 \mu \mathrm{~L}$. SARS-CoV-2 RNA was detected by the E-gene Sarbeco 6-carboxyfluorescein RT-qPCR, ${ }^{54}$ detection limit 1 genome copy per $\mu \mathrm{L}$ RNA eluate. The presence of RVF MP-12-derived RNA was analyzed with qRT-PCR ${ }^{55}$ using the QuantiTect Probe RT-PCR Kit (Qiagen, Hilden, Germany).

Infection Assay (CHIKV). For infections assays, 2×10^{4} Huh7 cells per well in a 96-well plate were seeded 24 h prior to infection. $100 \mu \mathrm{~L}$ CHIKV ECSA 3'-GFP was added at a MOI 2.5 (based on HEK 293T TCID50) to each well and incubated for 1 h at $37{ }^{\circ} \mathrm{C}$. Meanwhile, compounds were serially diluted in growth medium from 2000 nM to 0.3 nM and $100 \mu \mathrm{~L}$ of compound dilution was added to the designated wells containing virus inoculum in triplicates. GFP expression was documented ($10 \times$ magnification, 300 ms exposure) until 48 h post infection using the IncuCyte S3 imaging platform (Sartorius). Images were analyzed for total GFP fluorescence intensity per well at 24 and 48 hpi using the manufacturer's basic analyzer tool.

Cell Viability Assay. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Therefore, $0.5 \mathrm{mg} / \mathrm{mL}$ MTT substrate (Sigma) diluted in DMEM was added to cells and incubated at $37{ }^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$ for $1-2 \mathrm{~h}$. To solubilize MTT reduction product, medium was removed and replaced with $50 \mu \mathrm{~L}$ DMSO/well. Absorbance was measured at 570 nm with a micro-absorbance reader (Tecan). As background control, cells were treated with 70% ethanol for 10 min .

To measure cellular metabolic activity in SARS-CoV-2 and RVFV infected cells, MTT assay was performed with the Cell Proliferation Kit (Roche, Basel, Schweiz) according to manufacturer's recommendations. Briefly, Vero E6 cells (1.8×10^{5} cells $/ \mathrm{mL}$) were seated on a 96-well plate, and after 24 h the different dilutions of the compounds were added and incubated for 24 or 48 h . Afterward, $10 \mu \mathrm{~L}$ MTT was added and incubated for another 4 h , then the solubilization solution was added and the spectrophotometrical absorbance was measured after overnight incubation.

Statistics. Data on dose-dependent inhibition of HEV replication were fitted using a nonlinear regression model and $\mathrm{EC}_{90} / \mathrm{CC}_{50}$ values were calculated according to a four-parameter log-logistic model. For compounds that did not reach the half-maximum cytotoxic concentration in the dose-response assay, their CC_{50} values were assigned a default value of 1000 (which was the highest concentration tested). These values were then used to calculate selective indices. To determine EC_{50} and EC_{90} values, Prism GraphPad calculated best-fit values, which were then used to determine SI values. To calculate EC_{90} values in SARS-CoV-2 and RVFV experiments, the virus RNA load determined for nontreated virus-infected cells was set to 100% and RNA values obtained for treated cells were normalized to this value. Data analysis was performed in GraphPad Prism v9.3.1 (La Jolla, California, USA, www.graphpad.com).

ASSOCIATED CONTENT

(s) Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jmedchem.3c01357.

Detailed description of chemical synthesis, analytic description of new compounds and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{NMR}$ spectra (PDF)
Biodata for the halogenated rocaglates (CSV)

- AUTHOR INFORMATION

Corresponding Authors

Andreas Kirschning - Institute of Organic Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; © orcid.org/0000-0001-5431-6930;
Email: andreas.kirschning@oci.uni-hannover.de
Eike Steinmann - Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany; Email: eike.steinmann@ruhr-uni-bochum.de

Authors

Catherine Victoria - Institute of Organic Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
Göran Schulz - Institute of Organic Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; © orcid.org/0000-0002-0659-8854
Mara Klöhn - Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany
Saskia Weber - Federal Research Institute in Animal Health (FLI), 17493 Greifswald, Insel Riems, Germany
Cora M. Holicki - Federal Research Institute in Animal Health (FLI), 17493 Greifswald, Insel Riems, Germany
Yannick Brüggemann - Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany
Miriam Becker - Institute for Biochemistry and Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
Gisa Gerold - Institute for Biochemistry and Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Wallenberg Centre for Molecular Medicine (WCMM) and Department of Clinical Microbiology, Virology, Umeå University, 90187 Umeå, Sweden
Martin Eiden - Federal Research Institute in Animal Health (FLI), 17493 Greifswald, Insel Riems, Germany
Martin H. Groschup - Federal Research Institute in Animal Health (FLI), 17493 Greifswald, Insel Riems, Germany
Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jmedchem.3c01357

Author Contributions

${ }^{\ddagger}$ C.V. and G.S. contributed equally. E.S., M.H.G. and A.K. conceived the core of the study. A.K. supervised the chemical syntheses and C.V. and G.S. designed and carried them out. E.S., M.H.G., M.E., G.G., and Y.B. supervised the biological studies. M.K. carried out in vitro testing with the hepatitis E virus. M.B. carried out in vitro testing with the CHIKV virus. S.W. and C.M.H. carried out in vitro testing with the SARS-CoV-2 virus and RVF. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Funding

E.S. was supported by the German Federal Ministry of Health (ZMVI1-2518FSB705) and a grant of the German Centre for Infection Diseases (DZIF). E.S., M.H.G. and A.K. were
supported by the German Ministry of Education and Research (BMBF, project SILVIR: 16GW0202). G.G. received funding from the Lower Saxony Ministry of Science and Culture (15-76251-1-2/23 (511/2023)).

Notes

None of the funding organizations were involved in the collection, analysis and interpretation of data, writing of the research article, or the decision to submit the article for publication.
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Joey Reverey, Johannes Kühn, Matthias Schrader, David Berger and Nils Bode for their expert assistance in the synthesis of new rocaglates. We would also like to thank Laura Schmid, Birke Lange and Jasmin Nowacki for their excellent technical assistance. A.K. thanks the Wenner-Gren Foundation for funding a sabbatical stay at Uppsala University (Sweden). The foundation supported the collaboration with Prof. Mate Erdelyi, who provided helpful ideas on halogen bonding.

ABBREVIATIONS USED

4-DMAP, 4-dimethylaminopyridine; Ac, acetyl; APCI, atmos-pheric-pressure chemical ionization; Bn, benzyl; BHK-21, baby hamster kidney cells; Bz, benzoyl; CHIKV, Chikungunya virus; DMEM, Dulbecco's modified Eagle medium; DMSO, dimethyl sulfoxide; EDC, 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide; EI, electron ionization; ESI, electrospray ionization; GC, gas chromatography; GFP, green fluorescent protein; Gluc, Gaussia luciferase; HEV, hepatitis E virus; HEK 293T, human embryonic kidney cells; HOBt , hydroxybenzotriazole; HPLC, high-pressure liquid chromatography; Pr , isopropyl; LiHMDS, lithium bis(trimethylsilyl)amide; mCPBA, metachloroperoxybenzoic acid; Me, methyl; MOM, methoxymethyl; MS, mass spectrometry; MTT, 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide; NMR, nuclear magnetic resonance; OTf, triflate; Ph , phenyl; $p \mathrm{TsOH}$, paratoluenesulfonic acid; R_{f}, retention factor; RNA, ribonucleic acid; RVF, Rift Valley fever virus; Sars-CoV-2, severe acute respiratory syndrome coronavirus type 2 ; TBS, tert-butyldimethylsilyl; TCID50, tissue culture infection dose 50; THF, tetrahydrofuran; TMS, trimethylsilyl; TFE, 2,2,2-trifluoroethanol; TLC, thin-layer chromatography; UV, ultraviolet

- REFERENCES

(1) Pan, L.; Woodard, J. L.; Lucas, D. M.; Fuchs, J. R.; Kinghorn, A. D. Rocaglamide, silvestrol and structurally related bioactive compounds from Aglaia species. Nat. Prod. Rep. 2014, 31, 924-939.
(2) Ebada, S. S.; Lajkiewicz, N.; Porco, J. A.; Li-Weber, M.; Proksch, P. Chemistry and biology of rocaglamides (= flavaglines) and related derivatives from aglaia species (meliaceae). Prog. Chem. Org. Nat. Prod. 2011, 94, 1-58.
(3) Schulz, G.; Victoria, C.; Kirschning, A.; Steinmann, E. Rocaglamide and silvestrol: a long story from anti-tumor to anticoronavirus compounds. Nat. Prod. Rep. 2021, 38, 18-23.
(4) Pannell; Aglaia, C. M.. In Tree flora of Sabah and Sarawak, Vol. 6; Soepadmo, E., Saw, L. G., Chung, R. C. K., Kiew, R., Eds.; Forest Research Institute Malaysia: Selangor, 2007; pp 24-107.
(5) Lu King, M.; Chiang, C.-C.; Ling, H.-C.; Fujita, E.; Ochiai, M.; McPhail, A. T. X-Ray crystal structure of rocaglamide, a novel antileulemic 1 H -cyclopenta[b]benzofuran from Aglaia elliptifolia. J. Chem. Soc., Chem. Commun. 1982, 1150.
(6) Babbar, O. P.; Joshi, M. N.; Chowdhury, B. L. Protection induced in chick embryos against Ranikhet disease virus by some
plant extracts or their fractions. Indian J. Exp. Biol. 1983, 21, 637638.
(7) Biedenkopf, N.; Lange-Grünweller, K.; Schulte, F. W.; Weißer, A.; Müller, C.; Becker, D.; Becker, S.; Hartmann, R. K.; Grünweller, A. The natural compound silvestrol is a potent inhibitor of Ebola virus replication. Antivir. Res. 2017, 137, 76-81.
(8) Müller, C.; Schulte, F. W.; Lange-Grünweller, K.; Obermann, W.; Madhugiri, R.; Pleschka, S.; Ziebuhr, J.; Hartmann, R. K.; Grünweller, A. Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. Antivir. Res. 2018, 150, 123-129.
(9) Bordeleau, M.-E.; Robert, F.; Gerard, B.; Lindqvist, L.; Chen, S. M. H.; Wendel, H.-G.; Brem, B.; Greger, H.; Lowe, S. W.; Porco, J. A.; Pelletier, J. Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model. J. Clin. Invest. 2008, 118, 2651-2660.
(10) Iwasaki, S.; Iwasaki, W.; Takahashi, M.; Sakamoto, A.; Watanabe, C.; Shichino, Y.; Floor, S. N.; Fujiwara, K.; Mito, M.; Dodo, K.; Sodeoka, M.; Imataka, H.; Honma, T.; Fukuzawa, K.; Ito, T.; Ingolia, N. T. The Translation Inhibitor Rocaglamide Targets a Bimolecular Cavity between eIF4A and Polypurine RNA. Mol. Cell 2019, 73, 738-748.
(11) Elgner, F.; Sabino, C.; Basic, M.; Ploen, D.; Grünweller, A.; Hildt, E. Inhibition of Zika Virus Replication by Silvestrol. Viruses 2018, 10, 149.
(12) Günther, S.; Asper, M.; Röser, C.; Luna, L. K. S.; Drosten, C.; Becker-Ziaja, B.; Borowski, P.; Chen, H.-M.; Hosmane, R. S. Application of real-time PCR for testing antiviral compounds against Lassa virus, SARS coronavirus and Ebola virus in vitro. Antiviral Res. 2004, 63, 209-215.
(13) Müller, C.; Obermann, W.; Karl, N.; Wendel, H.-G.; Taroncher-Oldenburg, G.; Pleschka, S.; Hartmann, R. K.; Grünweller, A.; Ziebuhr, J. The rocaglate CR-31-B (-) inhibits SARS-CoV-2 replication at non-cytotoxic, low nanomolar concentrations in vitro and ex vivo. Antivir. Res. 2021, 186, 105012.
(14) Trost, B. M.; Greenspan, P. D.; Yang, B. V.; Saulnier, M. G. An unusual oxidative cyclization. A synthesis and absolute stereochemical assignment of (-)-rocaglamide. J. Am. Chem. Soc. 1990, 112, 90229024.
(15) Thuaud, F.; Bernard, Y.; Türkeri, G.; Dirr, R.; Aubert, G.; Cresteil, T.; Baguet, A.; Tomasetto, C.; Svitkin, Y.; Sonenberg, N.; Nebigil, C. G.; Désaubry, L. Synthetic analogue of rocaglaol displays a potent and selective cytotoxicity in cancer cells: involvement of apoptosis inducing factor and caspase-12. J. Med. Chem. 2009, 52, 5176-5187.
(16) Thuaud, F.; Ribeiro, N.; Gaiddon, C.; Cresteil, T.; Désaubry, L. Novel flavaglines displaying improved cytotoxicity. J. Med. Chem. 2011, 54, 411-415.
(17) Ribeiro, N.; Thuaud, F.; Bernard, Y.; Gaiddon, C.; Cresteil, T.; Hild, A.; Hirsch, E. C.; Michel, P. P.; Nebigil, C. G.; Désaubry, L. Flavaglines as potent anticancer and cytoprotective agents. J. Med. Chem. 2012, 55, 10064-10073.
(18) Rodrigo, C. M.; Cencic, R.; Roche, S. P.; Pelletier, J.; Porco, J. A. Synthesis of rocaglamide hydroxamates and related compounds as eukaryotic translation inhibitors: synthetic and biological studies. J. Med. Chem. 2012, 55, 558-562.
(19) Zhang, W.; Liu, S.; Maiga, R. I.; Pelletier, J.; Brown, L. E.; Wang, T. T.; Porco, J. A. Chemical Synthesis Enables Structural Reengineering of Aglaroxin C Leading to Inhibition Bias for Hepatitis C Viral Infection. J. Am. Chem. Soc. 2019, 141, 1312-1323.
(20) Liu, T.; Nair, S. J.; Lescarbeau, A.; Belani, J.; Peluso, S.; Conley, J.; Tillotson, B.; O'Hearn, P.; Smith, S.; Slocum, K.; West, K.; Helble, J.; Douglas, M.; Bahadoor, A.; Ali, J.; McGovern, K.; Fritz, C.; Palombella, V. J.; Wylie, A.; Castro, A. C.; Tremblay, M. R. Synthetic silvestrol analogues as potent and selective protein synthesis inhibitors. J. Med. Chem. 2012, 55, 8859-8878.
(21) Hawkins, B. C.; Lindqvist, L. M.; Nhu, D.; Sharp, P. P.; Segal, D.; Powell, A. K.; Campbell, M.; Ryan, E.; Chambers, J. M.; White, J. M.; Rizzacasa, M. A.; Lessene, G.; Huang, D. C. S.; Burns, C. J.

Simplified silvestrol analogues with potent cytotoxic activity. ChemMedChem. 2014, 9, 1556-1566.
(22) Arai, M. A.; Kofuji, Y.; Tanaka, Y.; Yanase, N.; Yamaku, K.; Fuentes, R. G.; Karmakar, U. K.; Ishibashi, M. Synthesis of rocaglamide derivatives and evaluation of their Wnt signal inhibitory activities. Org. Biomol. Chem. 2016, 14, 3061-3068.
(23) Ernst, J. T.; Thompson, P. A.; Nilewski, C.; Sprengeler, P. A.; Sperry, S.; Packard, G.; Michels, T.; Xiang, A.; Tran, C.; Wegerski, C. J.; Eam, B.; Young, N. P.; Fish, S.; Chen, J.; Howard, H.; Staunton, J.; Molter, J.; Clarine, J.; Nevarez, A.; Chiang, G. G.; Appleman, J. R.; Webster, K. R.; Reich, S. H. Design of Development Candidate eFT226, a First in Class Inhibitor of Eukaryotic Initiation Factor 4A RNA Helicase. J. Med. Chem. 2020, 63, 5879-5955.
(24) Ho, P. S. Halogen bonding in medicinal chemistry: from observation to prediction. Future Med. Chem. 2017, 9, 637-640.
(25) Xu, Z.; Yang, Z.; Liu, Y.; Lu, Y.; Chen, K.; Zhu, W. Halogen bond: its role beyond drug-target binding affinity for drug discovery and development. J. Chem. Inf. Model. 2014, 54, 69-78.
(26) Wilcken, R.; Zimmermann, M. O.; Lange, A.; Joerger, A. C.; Boeckler, F. M. Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J. Med. Chem. 2013, 56, 1363-1388.
(27) Chu, J.; Zhang, W.; Cencic, R.; Devine, W. G.; Beglov, D.; Henkel, T.; Brown, L. E.; Vajda, S.; Porco, J. A.; Pelletier, J. AmidinoRocaglates: A Potent Class of eIF4A Inhibitors. Cell Chem. Biol. 2019, 26, 1586-1593.e3.
(28) Praditya, D. F.; Klöhn, M.; Brüggemann, Y.; Brown, L. E.; Porco, J. A.; Zhang, W.; Kinast, V.; Kirschning, A.; Vondran, F. W. R.; Todt, D.; Steinmann, E. Identification of structurally re-engineered rocaglates as inhibitors against hepatitis E virus replication. Antivir. Res. 2022, 204, 105359.
(29) Gerard, B.; Jones, G., II; Porco, J. A. A biomimetic approach to the rocaglamides employing photogeneration of oxidopyryliums derived from 3-hydroxyflavones. J. Am. Chem. Soc. 2004, 126, 13620-13621.
(30) Gerard, B.; Cencic, R.; Pelletier, J.; Porco, J. A. Enantioselective synthesis of the complex rocaglate (-)-silvestrol. Angew. Chem., Int. Ed. Engl. 2007, 46, 7831-7834.
(31) Gormley, T. R.; O'Sullivan, W. I. Flavanoid epoxides-XIII. Tetrahedron 1973, 29, 369-373.
(32) Shen, X.; Zhou, Q.; Xiong, W.; Pu, W.; Zhang, W.; Zhang, G.; Wang, C. Synthesis of 5 -subsituted flavonols via the Algar-FlynnOyamada (AFO) reaction: The mechanistic implication. Tetrahedron 2017, 73, 4822-4829.
(33) The alphanumeric numbering of structures was done according to the numbering of the molecules of the previous step. In cases where multiple products emerge from one starting material, an additional letter was added.
(34) Chambers, J. M.; Huang, D. C. S.; Lindqvist, L. M.; Savage, G. P.; White, J. M.; Rizzacasa, M. A. Total synthesis of $2^{\prime \prime \prime}, 5^{\prime \prime \prime}$ diepisilvestrol and its C 1 "' epimer: key structure activity relationships at $\mathrm{C}^{\prime \prime \prime \prime}$ and C2"'. J. Nat. Prod. 2012, 75, 1500-1504.
(35) Britton, R. G.; Horner-Glister, E.; Pomenya, O. A.; Smith, E. E.; Denton, R.; Jenkins, P. R.; Steward, W. P.; Brown, K.; Gescher, A.; Sale, S. Synthesis and biological evaluation of novel flavonols as potential anti-prostate cancer agents. Eur. J. Med. Chem. 2012, 54, 952-958.
(36) Nimgaonkar, I.; Ding, Q.; Schwartz, R.; et al. Hepatitis E virus: advances and challenges. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 96-110.
(37) Toribio, R.; Díaz-López, I.; Ventoso, I. New insights into the topology of the scanning ribosome during translation initiation: Lessons from viruses. RNA Biol. 2016, 13, 1223-1227.
(38) Taroncher-Oldenburg, G.; Müller, C.; Obermann, W.; Ziebuhr, J.; Hartmann, R. K.; Grünweller, A. Targeting the DEAD-Box RNA Helicase eIF4A with Rocaglates-A Pan-Antiviral Strategy for Minimizing the Impact of Future RNA Virus Pandemics. Microorganisms 2021, 9, 540.
(39) Erdélyi, M. Halogen bonding in solution. Chem. Soc. Rev. 2012, 41, 3547-3557.
(40) Kolář, M. H.; Tabarrini, O. Halogen Bonding in Nucleic Acid ComplexesMiniperspective. J. Med. Chem. 2017, 60, 8681-869.
(41) Tu, D.; Blaha, G.; Moore, P. B.; Steitz, T. A. Structures of MLSB K antibiotics bound to mutated large ribosomal subunits provide astructural explanation for resistance. Cell 2005, 121, 257270.
(42) Adams, T. E.; El Sous, M.; Hawkins, B. C.; Hirner, S.; Holloway, G.; Khoo, M. L.; Owen, D. J.; Savage, G. P.; Scammells, P. J.; Rizzacasa, M. A. Total synthesis of the potent anticancer Aglaia metabolites (- -silvestrol and (-)-episilvestrol and the active analogue (-)-4'-desmethoxyepisilvestrol. J. Am. Chem. Soc. 2009, 131, 1607-1616.
(43) Malona, J. A.; Cariou, K.; Spencer, W. T.; Frontier, A. J. Total synthesis of (\pm)-rocaglamide via oxidation-initiated Nazarov cyclization. J. Org. Chem. 2012, 77, 1891-1908.
(44) Zhao, X.; Liu, J.; Xie, Z.; Li, Y. A One-Pot Synthesis of Aurones from Substituted Acetophenones and Benzaldehydes: A Concise Synthesis of Aureusidin. Synthesis 2012, 44, 2217-2224.
(45) Ashraf, J.; Mughal, E. U.; Sadiq, A.; Naeem, N.; Muhammad, S. A.; Qousain, T.; Zafar, M. N.; Khan, B. A.; Anees, M. Design and synthesis of new flavonols as dual α-amylase and α-glucosidase inhibitors: Structure-activity relationship, drug-likeness, in vitro and in silico studies. J. Mol. Struct. 2020, 1218, 128458.
(46) Chambers, J. M.; Lindqvist, L. M.; Savage, G. P.; Rizzacasa, M. A. Total synthesis of a biotinylated rocaglate: Selective targeting of the translation factors eIF4AI/II. Bioorg. Med. Chem. Lett. 2016, 26, $262-$ 264.
(47) Gerard, B.; Sangji, S.; O'Leary, D. J.; Porco, J. A. Enantioselective photocycloaddition mediated by chiral Brønsted acids: asymmetric synthesis of the rocaglamides. J. Am. Chem. Soc. 2006, 128, 7754-7755.
(48) Wölfel, R.; Corman, V. M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M. A.; Niemeyer, D.; Jones, T. C.; Vollmar, P.; Rothe, C.; Hoelscher, M.; Bleicker, T.; Brünink, S.; Schneider, J.; Ehmann, R.; Zwirglmaier, K.; Drosten, c.; Wendtner, C. Virological assessment of hospitalized patients with COVID-2019. Nature 2020, 581, 465-469.
(49) Caplen, H.; Peters, C. J.; Bishop, D. H. Mutagen-directed attenuation of Rift Valley fever virus as a method for vaccine development. J. Gen. Virol. 1985, 66, 2271-2277.
(50) Todt, D.; Friesland, M.; Moeller, N.; Praditya, D.; Kinast, V.; Brüggemann, Y.; Knegendorf, L.; Burkard, T.; Steinmann, J.; Burm, R.; Verhoye, L.; Wahid, A.; Meister, T. L.; Engelmann, M.; Pfankuche, V. M.; Puff, C.; Vondran, F. W. R.; Baumgärtner, W.; Meuleman, P.; Behrendt, P.; Steinmann, E. Robust hepatitis E virus infection and transcriptional response in human hepatocytes. Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 1731-1741.
(51) Meister, T. L.; Klöhn, M.; Steinmann, E.; Todt, D. A Cell Culture Model for Producing High Titer Hepatitis E Virus Stocks. J. Vis. Exp. 2020, DOI: 10.3791/61373-v.
(52) Tsetsarkin, K.; Higgs, S.; McGee, C. E.; Lamballerie, X. de; Charrel, R. N.; Vanlandingham, D. L. Infectious clones of Chikungunya virus (La Réunion isolate) for vector competence studies. Vector Borne Zoonotic Dis. 2006, 6, 325-337.
(53) Koutsoudakis, G.; Kaul, A.; Steinmann, E.; Kallis, S.; Lohmann, V.; Pietschmann, T.; Bartenschlager, R. Characterization of the early steps of hepatitis C virus infection by using luciferase reporter viruses. J. Virol. 2006, 80, 5308-5320.
(54) Corman, V. M; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D. K.; Bleicker, T.; Brunink, S.; Schneider, J.; Schmidt, M. L.; Mulders, D. G.; Haagmans, B. L; van der Veer, B.; van den Brink, S.; Wijsman, L.; Goderski, G.; Romette, J.-L.; Ellis, J.; Zambon, M.; Peiris, M.; Goossens, H.; Reusken, C.; Koopmans, M. P.; Drosten, C. Detection of 2019 novel coronavirus ($2019-\mathrm{nCoV}$) by real-time RTPCR. Euro. Surveill. 2020, 25, 23-30.
(55) Bird, B. H.; Bawiec, D. A.; Ksiazek, T. G.; Shoemaker, T. R.; Nichol, S. T. Highly Sensitive and Broadly Reactive Quantitative

Reverse Transcription-PCR for High-Throughput Detection of Rift Valley Fever Virus. J. Clin. Microbiol. 2007, 45, 3506-3513.

Recommended by ACS

Design, Synthesis, and Evaluation of Cephamycin-Based Antisporulation Agents targeting Clostridioides difficile
Wendy Y. Cun, Stephen G. Pyne, et al.
DECEMBER 19, 2023
JOURNAL OF MEDICINAL CHEMISTRY READ ['
Discovery of 5-(Pyrimidin-2-ylamino)-1H-indole-2carboxamide Derivatives as Nur77 Modulators with Selective and Potent Activity Against Triple-Negative Breast Cancer

Jingbo Qin, Meijuan Fang, et al.
NOVEMBER 20, 2023
JOURNAL OF MEDICINAL CHEMISTRY

Design and Synthesis of 4-Fluorophenyl-5-methylene-2(5H)furanone Derivatives as Potent Quorum Sensing Inhibitors
Panpan Zhang, Shutao Ma, et al.
JUNE 13, 2023
JOURNAL OF MEDICINAL CHEMISTRY
READ [']
N-Acylated Ciprofloxacin Derivatives: Synthesis and In Vitro Biological Evaluation as Antibacterial and Anticancer Agents

> Marta Struga, Małgorzata Wrzosek, et al. MAY 18,2023 ACS OMEGA

Get More Suggestions >

[^0]: Received: July 27, 2023
 Revised: November 4, 2023
 Accepted: November 20, 2023
 Published: December 21, 2023

[^1]: ${ }^{a}$ Reagents and conditions: a) $\mathrm{LiOH}, \mathrm{MeOH}, 45^{\circ} \mathrm{C}$. b) $\mathrm{HNMe}_{2} \cdot \mathrm{HCl}$ or MeONH•HCl, EDC $\cdot \mathrm{HCl}, \mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}, i \mathrm{Pr} 2 \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt or for rac-1b $\mathrm{HNMe}_{2} \cdot \mathrm{HCl}, \mathrm{Et}_{3} \mathrm{~N}, 4$-DMAP, EDC $\cdot \mathrm{HCl}, \mathrm{DMF}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$. EDC $=1$-ethyl-3-(3-dimethylaminopropyl)carbodiimide.

