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Abstract. Accurate spatio-temporal prediction is essential for captur-
ing city dynamics and planning mobility services. State-of-the-art deep
spatio-temporal predictive models depend on rich and representative
training data for target regions and tasks. However, the availability of
such data is typically limited. Furthermore, existing predictive models
fail to utilize cross-correlations across tasks and cities. In this paper,
we propose MetaCitta, a novel deep meta-learning approach that
addresses the critical challenges of data scarcity and model generaliza-
tion. MetaCitta adopts the data from different cities and tasks in a
generalizable spatio-temporal deep neural network. We propose a novel
meta-learning algorithm that minimizes the discrepancy between spatio-
temporal representations across tasks and cities. Our experiments with
real-world data demonstrate that the proposed MetaCitta approach
outperforms state-of-the-art prediction methods for zero-shot learning
and pre-training plus fine-tuning. Furthermore, MetaCitta is compu-
tationally more efficient than the existing meta-learning approaches.

Keywords: Spatio-Temporal Prediction · Meta-Learning ·
Pre-training

1 Introduction

Spatio-temporal predictions are critically important for planning and further
developing smart cities. For instance, accurate bike and taxi demand predic-
tion can enhance mobility services and city traffic management. Recently, deep
learning-based approaches achieved high effectiveness in various spatio-temporal
prediction tasks, including traffic forecasting and crowd flow prediction [1,15].
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Fig. 1. (a) and (b) depict bike usage patterns in Chicago (CHI) and New York City
(NYC), whereas (c) and (d) illustrate the bike and taxi usage in Washington, D.C.
(DC), between 9 and 10 am.

The effectiveness of such approaches depends heavily on the availability of large
amounts of training data. However, spatio-temporal data is typically (i) locked
in organizational silos and rarely available across different cities and tasks and
(ii) not sufficiently exploited for pre-training generalizable models. Consequently,
we identify two crucial challenges in the spatio-temporal domain:

– Lack of data of the target city and prediction task: Spatio-temporal
prediction typically requires data from the specific target city and the task
of interest. However, while rich data is available for a few selected cities and
tasks, data for the specific city and task of interest is often unavailable.

– Lack of pre-training strategy in the spatio-temporal domain: Pre-
training requires a large amount of data from different tasks to learn an
initialization for the target task, to converge better and faster. However, the
adoption of pre-training in the spatio-temporal domain is currently limited.

Meta-learning is typically used to transfer knowledge from multiple cities (e.g.,
MetaStore [10] and MetaST [13]). However, existing approaches only learn
from a specific task (e.g., bike demand prediction) and do not exploit the corre-
lations between the tasks (e.g., taxi and bike demand prediction) and geographic
regions. Examples of such correlations are illustrated in Fig. 1a and Fig. 1b, which
indicate similar bike usage trends in central business areas in Chicago and New
York City. Similarly, Fig. 1c and Fig. 1d indicate similar demand for bikes and taxis
across regions. Therefore, we aim to build a predictive model that benefits from
incorporating such correlations across tasks and cities.

In this paper, we propose MetaCitta, a novel deep meta-learning app-
roach for spatio-temporal predictions across cities and tasks. In contrast to other
approaches [10,13],MetaCitta adopts the knowledge not only from several cities
but also different tasks. As mentioned above, different tasks in the same city can
exhibit spatial correlations, and a task across cities can exhibit task-specific cor-
relations. Therefore, we learn spatially invariant and task invariant feature repre-
sentations using the Maximum Mean Discrepancy (MMD) [4]. These representa-
tions enable MetaCitta to make accurate predictions when data is unavailable
for the target city and task. We also demonstrate how to adopt MetaCitta as a
pre-training strategy when some target data is available for fine-tuning.
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In summary, our contributions are as follows:

– We propose MetaCitta1, a novel deep meta-learning algorithm for predic-
tion in spatio-temporal networks.

– To the best of our knowledge, we are the first to utilize the knowledge of
multiple tasks and cities to improve spatio-temporal prediction.

– MetaCitta outperforms best-performing baselines by 9.39% (zero-shot) and
3.86% (pre-training + data-abundant fine-tuning) on average on six real-
world datasets regarding RMSE and is more efficient than state-of-the-art
meta-learning methods regarding training time.

2 Problem Statement

In the following, we provide a formal definition of the problem of spatio-temporal
prediction (based on [12,15]) via meta-learning from multiple cities and tasks.

Definition 1 (City and Region). We represent a city c as an m × n grid
map [12] with equally sized cells. We refer to each cell as a region.

For example, we can split the city of Chicago into 20× 20 equally sized regions,
where each region represents a squared area.

Definition 2 (Spatio-Temporal Image). A spatio-temporal image (as coined
in [12], an image in short) xc,τ

t of a city c and a task τ is a multi-channel image
having the dimension R

q×m×n where q is the number of observations relevant
for the task τ at a given time point t.

For example, an image of Chicago for the taxi prediction task contains q = 2
observations (taxi pickup and drop-off) for each region at a time point t.

Definition 3 (Spatio-Temporal Prediction). Given a sequence of spatio-
temporal images of length i, Xc,τ = 〈xc,τ

t−i−1, x
c,τ
t−i, . . . , x

c,τ
t−1〉, where t − i − 1, t −

i, . . . , t − 1 are consecutive time points, spatio-temporal prediction estimates the
image at the next time point t, i.e., xc,τ

t ∈ R
q×m×n.

Given Chicago’s spatio-temporal images for the taxi prediction in a given period,
we aim to predict the image, i.e., taxi drop-off and pickup, at the next time point.

Definition 4 (Meta-learning from Multiple Cities and Tasks). Given
are a set of cities C = {c1, c2, . . . }, a target city ctarget ∈ C, as well as a set of
tasks T = {τ1, τ2, . . . } and a target task τtarget ∈ T . Training data is available
in the form of image sequences for each combination of a city c ∈ C and a task
τ ∈ T except for the target task τtarget of the target city ctarget: D = {Xc,τ |c ∈
C, τ ∈ T } \ {Xctarget,τtarget

}. The goal is to predict x
ctarget,τtarget

t based on D.

As an example, consider three cities (Chicago (CHI ), Washington, D.C. (DC )
and New York City (NYC )) and two tasks (bike demand prediction (bike)
and taxi demand prediction (taxi)). With NYC as the target city ctarget and
taxi as the target task τtarget, the following image sequences are available:
1 https://github.com/ashusao/MetaCitta.

https://github.com/ashusao/MetaCitta
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Fig. 2. Training procedure of MetaCitta with three cities (c1, c2 and c3) and two
tasks (τ1 and τ2). c3 is the target city and τ2 is the target task. The fully connected
layers fc1, fc2 and fc3 follow Eqs. (1), (2) and (3).

D = {XDC,bike,XCHI,bike,XDC,taxi,XCHI,taxi,XNYC,bike}. Based on these image
sequences, the goal of meta-learning from multiple cities and tasks is to predict
the image xNYC,taxi

t .
We also consider a variation of Definition 4 where limited data for the target

task of the target city is available, specifically D = {Xc,τ |c ∈ C, τ ∈ T } with
Xctarget,τtarget

restricted to only a few days.

3 The MetaCitta Approach

MetaCitta extends a typical spatio-temporal network (ST-Net) which has a
spatial encoder, a temporal encoder, and a prediction component. Figure 2 illus-
trates MetaCitta’s training with an example of three cities and two tasks.
Spatio-temporal image sequences for each city-task pair are encoded by the spa-
tial and temporal encoder. Spatial and task alignment is achieved through align-
ment losses (MMD loss). The outer optimization step trains on data from the
target city (c3) but not the target task (τ2).

3.1 Spatial Encoder

The spatial encoder fs captures the spatial dependencies between regions (see
Fig. 1c and Fig. 1d). Given an image xc,τ

t of a city c and a task τ at the time t,
F c,τ

s,t = fs(x
c,τ
t ) is the encoded representation of the input image xc,τ

t . In Meta-
Citta, the spatial encoder fs is a CNN consisting of three blocks where each
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block contains a convolution layer, followed by batch normalization and a ReLU
activation layer. We reduce the dimensionality of the spatial encoder’s output
F c,τ

s,t by using a linear layer fc1:

F c,τ
fc1,t = ReLU(Wfc1F c,τ

s,t + bfc1), (1)

where Wfc1 and bfc1 are trainable parameters, and F c,τ
fc1,t is the spatial represen-

tation of city c for the task τ at the time t.

3.2 Temporal Encoder

The temporal encoder fg captures the temporal dependencies (see Fig. 1a and
Fig. 1b). Given the spatial representations F c,τ

fc1,t−i−1, F
c,τ
fc1,t−i, . . . , F

c,τ
fc1,t−1 of a

city c and a task τ over time, F c,τ
g,t = fg (F

c,τ
fc1,t−i−1, F

c,τ
fc1,t−i, . . . , F

c,τ
fc1,t−1), is the

encoded temporal representation at a time t. In MetaCitta, we use a GRU
as the temporal encoder fg . The task-specific representation is generated by
applying a linear layer fc2 on F c,τ

g,t :

F c,τ
fc2,t = ReLU(Wfc2F c,τ

g,t + bfc2), (2)

where Wfc2 and bfc2 are trainable parameters.

3.3 Prediction

In an ST-Net, a linear operation and activation function transform the output
into the desired shape and range. Then, a task-specific loss function is applied
to train the network. MetaCitta’s ST-Net uses a linear layer fc3 and the tanh
activation on the task-specific representation F c,τ

fc2,t of a city c and a task τ :

x̂c,τ
t = tanh(Wfc3F c,τ

fc2,t + bfc3), (3)

where Wfc3 and bfc3 are trainable parameters, and x̂c,τ
t ∈ R

q×m×n is the pre-
diction at time t. We utilize the mean squared error as the task-specific loss:

Lc,τ =
1
N

N∑

i=1

(x̂c,τ
t − xc,τ

t )2, (4)

where N is the number of images, x̂c,τ
t and xc,τ

t are the predicted and ground
truth labels, respectively.

3.4 Training Procedure

Different tasks originate from different distributions. MetaCitta should learn
the distribution-invariant properties from the tasks across the cities to perform
well on an unseen task. To learn distribution-invariant properties, we use the
Maximum Mean Discrepancy (MMD) [4] to minimize the distance between two
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Algorithm 1. MetaCitta Training
1: Input: Data (D), step size (α), cities (C), tasks (T ), target city (ctarget), target

task (τ target), randomly initialized model parameters (θ)
2: while not converged do
3: for each ci ∈ C \ {ctarget} do � Spatial Alignment
4: for each τj , τk ∈ T do
5: Extract pairs (Xci,τj , Xci,τk) from D
6: Compute Lspatial

mmd , Lci,τj , Lci,τk using Equations (1, 3, 4, 5)
7: θ = θ − α(∇θLci,τj + ∇θL

ci,τk + ∇θsLspatial
mmd )

8: for each τi ∈ T do � Task Alignment
9: for each cj , ck ∈ C \ {ctarget} do

10: Extract pairs (Xcj ,τi , Xck,τi) from D
11: Compute Lcj ,τi , Lck,τi , Ltask

mmd using Equations (2, 3, 4, 6)
12: θ = θ − α(∇θL

ci,τj + ∇θL
ci,τk + ∇θτ Ltask

mmd)

13: for each τi ∈ T \ {τtarget} do � Outer Optimization
14: Extract Xctarget,τi from D
15: Compute Lctarget,τi using Equation (4)
16: θ = θ − α∇θL

ctarget,τi

distributions. In this way, the network learns the common or invariant properties
between the distributions and thus better generalizes to unseen distributions.

Different tasks of a city have the same underlying regions and thus share
similar spatial characteristics. Therefore, to extract the spatially invariant rep-
resentation between the tasks τ1 and τ2 in a city c, we apply the MMD constraint
to the spatial representations generated by the spatial encoder. As a result, we
compute the spatial alignment loss Lspatial

mmd :

Lspatial
mmd = MMD(F c,τ1

fc1,t, F
c,τ2
fc1,t). (5)

Similarly, to extract the task-invariant features from the task τ in two different
cities, c1 and c2, we apply the MMD constraint on the task-specific represen-
tations generated by the temporal encoder. As a result, we compute the task
alignment loss Ltask

mmd:

Ltask
mmd = MMD(F c1,τ

fc2,t , F
c2,τ
fc2,t). (6)

Finally, to enrich the model with the target city features, we perform knowledge
transfer from all available tasks of the target city.

The MetaCitta training procedure is depicted in Fig. 2 and described in
Algorithm 1. The algorithm takes the training data D, a set of cities C, a set
of tasks T , the target city ctarget and target task τ target as input. The goal is
to learn the model parameters θ, where θs are the parameters responsible for
generating the spatial representation and θτ for the task-specific representation.
The algorithm performs the following three steps:
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1. The Spatial Alignment (lines 3–7) is performed between different tasks
of a city on pairs of examples (line 5) and by updating the model parameters
using the spatial alignment loss and the task-specific loss (lines 6–7).

2. The Task Alignment (lines 8–12) happens by extracting example pairs
from the same task but of different cities (line 10), and with an update step
using the task-alignment loss and the task-specific loss (lines 10–12).

3. The Outer Optimization (lines 13–16) step is done by directly performing
an update step on all the available tasks of the target city.

Using the example from Sect. 2 with NYC as ctarget and taxi as τtarget, the
spatial alignment considers (XDC,bike,XDC,taxi) and (XCHI,bike,XCHI,taxi), while
the task alignment involves (XCHI,bike,XDC,bike), and (XCHI,taxi,XDC,taxi). The
outer alignment updates using XNYC,bike.

Pre-training. Following Definition 4, MetaCitta is tailored towards cases
where no data from the target task τtarget in the target city ctarget is available.
However, if such data Xctarget,τtarget

is (partially) available, MetaCitta can
also be used for pre-training and fine-tuning, i.e., it first learns initialization
weights from available data of other cities and tasks ({Xc,τ |c ∈ C, τ ∈ T } \
{Xctarget,τtarget

}) and is then fine-tuned on data of the target task Xctarget,τtarget
.

To use MetaCitta for pre-training, we skip the task alignment and instead
perform spatial alignment between all available pairs of source cities and tasks.
This method extracts the more general properties of the input data typically
captured in the initial layers of a network [8,14], which is required for pre-
training.

4 Evaluation Setup

This section describes the datasets, baselines, and experimental settings used to
evaluate MetaCitta.

4.1 Datasets

We utilize two tasks (taxi and bike demand) from three cities: NYC, CHI, and
DC. Each dataset consists of six months of data, with five months used for train-
ing and one month used as a test set. The data for TaxiNYC2 (36M), TaxiCHI3
(7M), TaxiDC4 (3M), and BikeNYC5 (9M) is from 01/2019 to 06/2019. The
data for BikeCHI6 (2.5M) and BikeDC7 (1.2M) is from 07/2020 to 12/2020.

2 https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.
3 https://data.cityofchicago.org/Transportation/Taxi-Trips-2019/h4cq-z3dy.
4 https://opendata.dc.gov/documents/taxi-trips-in-2019/explore.
5 https://ride.citibikenyc.com/system-data.
6 https://www.divvybikes.com/system-data.
7 https://www.capitalbikeshare.com/system-data.

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://data.cityofchicago.org/Transportation/Taxi-Trips-2019/h4cq-z3dy
https://opendata.dc.gov/documents/taxi-trips-in-2019/explore
https://ride.citibikenyc.com/system-data
https://www.divvybikes.com/system-data
https://www.capitalbikeshare.com/system-data
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4.2 Baselines

We compare MetaCitta to the following seven baselines:

– The Historical Average (HA) is calculated by taking the mean value regard-
ing the specific hour for the specific region.

– No pre-training (NoPretrain): The network is initialized with random
weights and fine-tuned on the target task.

– Joint: The model is trained jointly by mixing all the samples.
– MAML [3] is a meta-learning method that learns an initialization from

multiple tasks. We use the same underlying ST-Net as in MetaCitta.
– MetaStore [10] is a MAML-based approach that learns to generate the

city-specific parameters based on the city’s encoding during training.
– MetaST [13] is also based on MAML and learns a pattern-based spatio-

temporal memory from source cities.
– MLDG [9] extends MAML for domain generalization. It randomly leaves

one task out and updates its parameters on the left-out task during training.

4.3 Experimental Settings

In our experiments, each city is divided into 20×20 grid cells of size 1km2 each.
We use the same underlying ST-Net and parameters for MetaCitta and the
baselines (except for HA) to allow for a fair comparison. As spatial encoders, we
use CNNs with 32 filters of size 3×3. As temporal encoders, we use GRUs where
the input and hidden sizes are set to 256. Their input sequence length is 12 at
an interval of 1 hour. The size of the fully connected layers (fc1, fc2) is 256. The
batch size is 64, and each model is trained for 500 epochs on an NVIDIA GeForce
GTX 1080 Ti (11 GB) at a learning rate of 1e−5 using an Adam optimizer. For
the MAML-based approaches, the inner and outer learning rates are set to 1e−5,
and there are 5 update steps.

5 Evaluation

In this section, we evaluate MetaCitta by comparing it to the baselines, by
conducting an ablation study, and by training time comparison.

5.1 Comparison with Baselines

MetaCitta was evaluated in two settings: zero-shot and fine-tuning. Fine-
tuning was done in two conditions: data-limited (15 days of target data) and
data-abundant (5 months of target data). Results in Table 1 demonstrate that
MetaCitta performs best in both settings and all datasets regarding RMSE.

In the zero-shot setting, HA performs worst, indicating that a simple heuris-
tic approach cannot correctly capture the city’s complex spatio-temporal dyna-
mics. In this setting, MLDG is the best-performing baseline in terms of the
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Table 1. Comparison of MetaCitta to the baselines, where RMSE is the Root Mean
Squared Error and MAE is the Mean Absolute Error. Improv. (%) is the relative
improvement of MetaCitta over the best baseline (underlined).

Approach TaxiNYC TaxiDC TaxiCHI BikeNYC BikeDC BikeCHI
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Zero-shot (no data from the target task of the target city used)
HA 23.76 104.95 8.20 27.20 10.29 40.30 7.95 24.32 7.11 24.95 7.00 24.78
Joint 32.11 98.75 1.72 10.89 4.54 29.34 6.78 24.29 0.34 1.55 0.41 1.56
MAML 31.25 93.99 1.80 10.95 4.86 27.76 6.54 22.95 0.37 1.60 0.42 1.47
MetaStore 30.51 99.91 1.82 9.76 4.81 27.49 8.14 27.90 0.47 1.85 0.41 1.43
MetaST 25.64 85.72 1.78 10.62 5.20 25.16 6.84 23.91 0.40 1.63 0.43 1.51
MLDG 21.87 85.08 1.81 10.51 6.04 26.46 6.99 24.27 0.37 1.51 0.48 1.52
MetaCitta 21.26 79.77 1.85 9.20 5.34 22.91 6.29 21.75 0.32 1.40 0.39 1.42
Improv. (%) 2.79 6.24 -2.21 12.46 11.59 13.41 10.01 10.38 13.51 7.28 18.75 6.58
Fine-tuning (data-limited: 15 days of data from target task of target city)
NoPretrain 170.60 220.13 52.61 72.70 130.39 169.89 55.58 73.18 11.65 4.75 15.53 19.63
Joint 5.39 22.29 0.89 4.34 1.79 9.10 4.28 15.54 0.35 1.05 0.48 1.50
MAML 5.66 23.32 0.89 4.18 1.91 10.26 4.23 15.36 0.57 1.34 0.78 1.55
MetaStore 8.54 38.01 0.99 5.12 2.16 13.74 5.87 20.45 0.45 1.36 0.53 1.68
MetaST 6.41 22.58 0.94 4.23 2.02 9.53 4.24 15.17 0.37 1.06 0.66 1.51
MLDG 6.21 24.61 0.94 4.46 2.21 12.87 4.70 17.15 0.57 1.41 0.51 1.56
MetaCitta 5.14 20.95 0.85 4.09 1.81 8.96 4.14 14.76 0.31 1.03 0.45 1.35
Improv. (%) 4.64 6.01 4.49 5.76 -1.12 1.54 3.28 5.02 11.42 1.90 6.25 10.0
Fine-tuning (data-abundant: 5 months of data from target task of target city)
NoPretrain 21.89 40.57 4.60 9.48 7.94 22.05 7.48 19.77 1.10 1.99 2.09 4.01
Joint 3.43 14.01 0.61 2.78 1.09 6.21 2.09 7.11 0.27 0.87 0.34 0.94
MAML 3.38 14.11 0.70 2.80 1.21 6.19 2.18 7.01 0.31 0.92 0.35 0.96
MetaStore 5.42 24.81 0.77 3.81 1.52 10.19 3.11 11.30 0.31 0.96 0.39 1.17
MetaST 3.49 14.40 0.63 2.76 1.19 6.31 2.13 7.02 0.27 0.86 0.34 0.95
MLDG 3.52 14.73 0.66 2.93 1.16 6.42 2.12 7.23 0.29 0.92 0.37 1.05
MetaCitta 3.24 13.24 0.55 2.65 1.05 5.91 1.95 6.92 0.25 0.85 0.31 0.91
Improv. (%) 5.54 5.49 9.83 4.68 3.70 4.83 6.69 2.67 7.41 2.29 8.82 3.19

RMSE because it is trained to perform particularly well on an unseen task by
updating its parameters based on the left-out task.

MetaCitta and the pre-trained baselines outperform NoPretrain in fine-
tuning due to their ability to extract generic spatio-temporal properties that
aid in convergence to the target task. These properties include traffic behavior,
such as high demand during peak hours (morning and evening) and low off-peak
demand (e.g., after midnight). Joint, MAML, and MetaST perform better
than MLDG as they are trained to perform well on all source tasks and adapt
quickly to new tasks. MetaStore performs relatively worse in fine-tuning than
in the zero-shot setting, as it only fine-tunes the final prediction layers (fc2 and
fc3), reducing its adaptability to the target task.

On average across datasets, compared to the respective best baselines, Meta-
Citta is 9.39% better than MLDG in the zero-shot setting, 5.04% better than
Joint in the data-limited fine-tuning setting, and 3.86% better than Joint in
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Fig. 3. Comparison of Joint and MetaCitta on taxi pickup prediction of Chicago,
June 6th 2019, between 4 and 5 am. Nine selected regions and their number of taxi
pickups in the mentioned hour are shown in detail.

the data-abundant fine-tuning setting regarding the RMSE. According to the
MAE, MetaCitta exceeds the baselines in all cases except three (e.g., zero-
shot on TaxiCHI), where Joint performs better. Since MetaCitta consistently
has a lower RMSE, we conclude that MetaCitta performs better in predicting
extreme values, such as high or low demand values during or after peak periods,
while Joint mainly predicts average values for each region.

To further investigate this behavior, we visualize the predictions of Joint
and MetaCitta in the data-limited fine-tuning setting on the TaxiCHI dataset.
Figure 3 illustrates the ground truth and the predicted pickup demands in dif-
ferent city regions between 4 and 5 am. The regions to the south and southwest
of the zoomed area represent the Chicago Loop area, which is Chicago’s central
business district. The Northwest region is Chicago’s Near North Side, a residen-
tial area. While the taxi demand in the Chicago Loop area is high during the
day, it is low during off-peak hours. On the other hand, the demand for taxis
in the residential area is higher compared to the business area. This is because
people use taxis, as public transport does not run at 4 am. While MetaCitta
correctly captures this shift in demand, as illustrated in Fig. 3c, Joint continues
to forecast average high values in the business district, as observed in Fig. 3b.

5.2 Ablation Study

We analyze the contribution of MetaCitta’s training components: spatial align-
ment, task alignment, and outer optimization. By removing one component at
a time, we evaluate their effectiveness and present the results in Table 2.

Removing MetaCitta’s outer optimization step leads to the most significant
drop in performance, indicating the importance of having some knowledge of the
target city, even if from another task. This knowledge can be obtained directly
from other tasks, as observed in Fig. 2a and 2b, where similar regions indicate
similar spatio-temporal behavior. Also, the performance decreases when spatial
and task alignment is removed, indicating the impact of adding the MMD losses.
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Table 2. Change in performance after removal of a component from MetaCitta.

Approach TaxiNYC TaxiDC TaxiCHI BikeNYC BikeDC BikeCHI
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

MetaCitta 21.26 79.77 1.85 9.20 5.34 22.91 6.29 21.75 0.32 1.40 0.39 1.42
no spatial align 23.61 86.75 2.22 9.35 5.02 23.96 6.45 22.55 0.42 1.43 0.38 1.43
no task align 46.58 126.72 1.68 10.80 4.65 27.04 6.30 22.39 0.32 1.42 0.39 1.49
no outer optim 31.64 108.38 6.56 18.26 14.52 43.00 9.99 28.06 1.35 3.41 0.77 2.08

5.3 Training Time Comparison

The training times for MetaST, MAML, MLDG, MetaStore, MetaCitta
and Joint on the Chicago bike prediction task are 107.21, 106.68, 87.71, 7.99,
5.65 and 3.18 hours, respectively. As MetaCitta applies an extra alignment
loss to extract invariant features, it needs slightly more training time than
Joint, which has a simplified design. MetaCitta requires less training time
than MetaST (94.73%), MAML (94.70%), MLDG (93.56%) and MetaStore
(29.28%), as these baselines perform a two-stage optimization requiring time-
consuming calculation of higher-order derivatives. Overall, MetaCitta performs
most precisely and trains much faster than state-of-the-art meta-learning.

6 Related Work

Deep learning has recently shown great success and is widely adopted for spatio-
temporal predictions [1,15]. However, the success of these approaches depends
on the availability of large amounts of data, which is typically a bottleneck.

Typically, transfer learning is used to deal with data scarcity, where a network
trained for a specific task is fine-tuned on the target task. Recently, meta-learning
has gained popularity as a way to learn from multiple tasks. Unlike transfer
learning, meta-learning does not specialize in a specific task. Instead, it focuses
on finding the parameters from the source tasks, so it can be quickly adapted
to the target task (i.e., learn to learn) [6]. Model Agnostic Meta Learning [3]
(MAML) and Meta Learning for Domain Generalization [9] (MLDG) are state-
of-the-art meta-learning approaches widely used in different domains. MAML
performs two optimization steps: task-specific updates on the inner step and
global meta-updates on the outer step. MLDG extends MAML by leaving out a
task at the inner level and performing meta-updates based on the left-out task.

Motivated by these approaches, several attempts have been made to transfer
knowledge in the spatio-temporal domain. [2,5,7,11,12], use transfer learning
to transfer knowledge from a data-rich source city to a data-poor target city.
MetaStore [10] and MetaST [13] are MAML-based approaches to transfer
knowledge from multiple cities to a target city. However, existing approaches
transfer the knowledge for a specific task, introduce additional parameters and
require small amounts of data from the target city and target task.

In contrast to these methods, MetaCitta learns from different tasks in
multiple cities and can be effectively used in zero-shot and fine-tuning settings.
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7 Conclusion

In this paper, we presented MetaCitta, a novel deep meta-learning approach
for spatio-temporal predictions in cases where no or only limited training data of
a target city and the task is available. MetaCitta leverages knowledge across
cities and tasks by learning spatial and task-invariant feature representations.
MetaCitta outperforms state-of-the-art meta-learning approaches regarding
the RMSE in zero-shot and fine-tuning settings and requires 94.70% less training
time compared to the state-of-the-art meta-learning approach MAML.
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