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Abstract. Spatio-temporal traffic patterns reflecting the mobility
behavior of road users are essential for learning effective general-purpose
road representations. Such patterns are largely neglected in state-of-the-
art road representation learning, mainly focusing on modeling road topo-
logy and static road features. Incorporating traffic patterns into road net-
work representation learning is particularly challenging due to the com-
plex relationship between road network structure and mobility behavior
of road users. In this paper, we present TrajRNE — a novel trajectory-
based road embedding model incorporating vehicle trajectory informa-
tion into road network representation learning. Our experiments on two
real-world datasets demonstrate that TrajRNE outperforms state-of-the-
art road representation learning baselines on various downstream tasks.

1 Introduction

Effective general-purpose representations of road networks are essential for crit-
ical machine learning applications in mobility and smart cities, such as traf-
fic inference, travel time estimation, and destination prediction. This demand
has recently inspired numerous research works on road network representation
learning (e.g., [1,16,17,19]). Whereas existing approaches primarily utilize road
network topology and static road features, they often fail to capture complex
traffic patterns and mobility behavior of road users. A rich source of complex
spatio-temporal traffic patterns, traffic flows, actual-driven speed, and driver
road preferences are vehicle trajectories. Thus, integrating vehicle trajectory
information into the road network representation can provide valuable informa-
tion for mobility and smart city applications.

Previous road representation learning approaches (e.g., [1,16,17,19]) have
two substantial shortcomings. First, state-of-the-art methods utilize conventional
graph representations (e.g., [9,13,15]), which do not consider complex road rela-
tionships. For example, for a road leading to an intersection, the importance of
the following roads is not equal and depends on user mobility behavior. Second,
state-of-the-art road representation models learn static road features, e.g., road
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type and speed limit, to infer traffic patterns. However, these features do not
directly reflect dynamic traffic conditions. For example, roads with the same
speed limit can have vastly different traffic patterns depending on the traffic vol-
ume. Recently, few approaches attempted to incorporate trajectories into road
network representation learning. Wang et al. [16,17] supplemented random walks
with real-world trajectories for learning geo-locality. Wu et al. [19] utilized tra-
jectory data as a supervision signal for graph reconstruction. Further, Chen et
al. [1] refined previously learned road embeddings with a route recovery and
trajectory discrimination supervision objective using a transformer model. How-
ever, existing approaches do not explicitly incorporate trajectory data into their
model design and thus fail to incorporate complex traffic and mobility patterns.

We observe two substantial challenges for general-purpose road represen-
tation learning. First, conventional graph representation learning methods
[9,13,15] are inadequate for road network modeling, as they assume network
homophily and do not consider heterogeneous properties of connected roads and
complex road relationships. In contrast, connected roads, e.g., a secondary road
connected to a primary road, can exhibit highly diverse traffic patterns. Thus,
the first challenge is to adapt graph representation methods to road networks
with heterogeneous traffic patterns on connected roads. Second, a challenge is to
systematically incorporate vehicle trajectories into road representation learning
to extract and represent dynamic traffic patterns and complex mobility behavior.

In this paper, we propose a novel Trajectory-based Road Network Embed-
ding model (TrajRNE). TrajRNE includes two modules. First, we propose a
novel Spatial Flow Convolution (SFC). SFC aggregates road feature representa-
tions based on transition probabilities extracted from vehicle trajectories. Thus,
SFC automatically differentiates between relevant and irrelevant road network
nodes indicated by the mobility behavior. Moreover, we increase the SFC recep-
tive field by considering the traffic flow of k-hop neighbors. This approach facil-
itates aggregation of relevant neighbors located at a longer distance without
over smoothing with non-relevant neighbors. Second, we propose a novel Struc-
tural Road Encoder (SRE) leveraging multitask learning to capture topology,
structure, and dynamic traffic. Whereas state-of-the-art road embeddings learn
topology using random walks or shortest paths, they do not effectively capture
mobility behavior. In contrast, TrajRNE adopts random walks based on the tran-
sition probability extracted from real-world trajectories to capture geo-locality
and mobility patterns.

In summary, the contributions of our work are as follows:

— We introduce Spatial Flow Convolution and Structural Road Encoder to cap-
ture traffic characteristics of road networks from vehicle trajectories.

— We propose TrajRNE! — a novel road network representation learning app-
roach, effectively capturing traffic patterns with SFC and SRE methods.

— Our evaluation demonstrates that TrajRNE enables effective general-purpose
road network representations. TrajRNE consistently outperforms state-of-
the-art baselines on four downstream tasks and two real-world datasets.

! Code awailable at: https://github.com /sonout/TrajRNE.
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2 Problem Definition

In this section, we first present the notations and then formally define our task.

Definition 1. (Road Network). We define a road network as a directed graph
G =W, AF).V is a set of nodes, where each node v; € V represents a road
segment. A is the adjacency matriz, where A;; = 1 implies that a road segment
v; directly follows a road segment v;, and A;; = 0 otherwise. A road network has
a feature set F € RIVIXT representing road segment features with dimension f.

Definition 2. (Trajectory). A trajectory T is a sequence of points representing
geographic coordinates from the route driven by a vehicle: T' = [p1,pa2, ..., D))
where p; = (lon, lat;) is the i-th point with the longitude lon; and latitude lat;
and |T| is the trajectory length.

Given a road network G, we can map a trajectory T to the road network using
a map matching algorithm [20], thus obtaining a sequence of road segments.

Definition 3. (Road Segment Sequence). A road segment sequence R =
[v1,v2,...,vN] represents the underlying route of a trajectory on a road network,
where each v; € V denotes a road segment in the road network G = (V, A, F).

In this work, we target the problem of learning a general-purpose represen-
tation of road networks beneficial for various downstream tasks.

Definition 4. (Road Network Representation Learning). Given a road
network G = (V, A, F) and a set of trajectories T = {T;}i—12,...|7|, our objective
s to learn a representation r; for each road segment through an unsupervised
model F. As a result, we obtain the set of all road representations S = F(G,T) €
RIVIXd with dimension d.

3 TrajRNE Approach

In this section, we introduce our proposed Trajectory Road Network Embed-
ding Model (TrajRNE) to learn effective, general-purpose embeddings of road
segments in an unsupervised manner. As illustrated in Fig. 1, TrajRNE incor-
porates two modules, the Spatial Flow Convolution (SFC) and the Structural
Road Encoder (SRE). In the following, we present these modules in more detail.

3.1 Spatial Flow Convolution

The Spatial Flow Convolution aggregates roads based on the flow probabilities
provided by trajectories. Moreover, we designed the SFC to aggregate over a
k-hop neighborhood to leverage distant dependencies. Standard Graph Convo-
lutional Networks (GCNs) commonly assume network homophily, i.e., connected
nodes are more similar than distant nodes. However, road networks possess com-
plex dependencies between roads. On the one hand, consecutive roads can indi-
cate different traffic patterns. On the other hand, traffic patterns on distant road
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Fig. 1. The proposed TrajRNE architecture incorporating two modules: Spatial Flow
Convolution and Structural Road Encoder.

segments can be correlated. Therefore, GCNs are not suitable for learning road
network representations.

Inspired by Li et al. [10], who utilized trajectory flows to aggregate spatial
traffic information for flow prediction, we design the Spatial Flow Convolution.
In contrast to [10], we increase the receptive field by considering the traffic flow
of k-hop neighbors and aggregating them within a single layer. This enables us
to design an aggregation function, which selectively aggregates local and distant
roads based on their importance provided by trajectory flows. We depict our
Spatial Flow Convolution in Fig.2 and compare it to a two-layer GCN. The
GCN (left) aggregates all neighbors equally and needs to be stacked, which can
lead to over smoothing [12]. The Spatial Flow Convolution (right) aggregates
roads based on the vehicle flows (indicated by the thickness of the edges) and
thus can weight the aggregation of roads based on their importance. Thus, we
consider even distant relationships and tackle the issue of over smoothing by
considering only important roads for aggregation.

To obtain the vehicle flow between the roads, we introduce the road transition
probability p. Given two road segments v; and v;, the road transition probability
is the probability of visiting v; when v; has been visited. We formally define the
road transition probability by:

p(v]05) = p(p(“)) (1)

We estimate p by aggregating the number of transitions in historical trajectories:

#transitions(v; — v;) + A; j
#total visits(v;) + ZLV:‘() A i ’

(2)

p(ujlvi) =

where A is the adjacency matrix and A; ; is 1 when the road segment v; directly
follows v;. That way we keep road segment connections, even in case of sparsity of
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Fig. 2. Left: Graph convolution with two layers, aggregating each node with equal
importance. Right: Our proposed approach of aggregating nodes based on traffic flow
and hop distance for a maximum hop distance of two.

trajectories. Further, we build a road transition probability matrix P € RIVI*IVI

containing the transition probability of every road segment pair, i.e., P;; =
p(v;lv;). The superscript k indicates that for the construction of P we consider
all road segment pairs (v;,v;) within a k-hop distance, e.g., for P3 we consider
the transition probabilities for roads up to three hops away.

We leverage the transition probability matrix P* to perform graph convolu-
tions over road networks. We define the spatial flow convolution formally as

SSFC — o(PFFW), (3)

where W is a trainable weight matrix, F is the set of road features, ¢ an acti-
vation function and S°FC are the obtained road representations.

To train this module in an unsupervised way, we employ the graph recon-
struction task. Thus, having obtained the road representations SSFC, we try
reconstructing the original adjacency matrix A:

A = sigmoid(SSFC . §5FC T, (4)

We employ mean squared error loss to compute the reconstruction loss:

l:rec = ||"4_"Zt||2 (5)

The advantage of the reconstruction loss is that it forces the road representa-
tions S°FC to learn effective road characteristics and the road network topology.

3.2 Structural Road Encoder

The Structural Road Encoder encodes structural and dynamic traffic proper-
ties by training on a multitask prediction objective in a contrastive way. More
precisely, we predict whether two road segments are similar regarding three cha-
racteristics: topology, network structure, and traffic.
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— Topology (top): To learn the topology, we predict whether two road seg-
ments co-occur on a random walk. However, random walks do not represent
typical road users. Therefore, we propose to weight the random walks based on
the transition probabilities provided by vehicle trajectories. More specifically,
we utilize the transition probability matrix P! for the first-degree neighbor-
hood and use this matrix as the transition probability source for the random
walk generation. The resulting trajectory-weighted random walks reflect the
geo-locality of the road network and user mobility behavior.

— Network structure (struc): In this task, we predict if the node degree of
two road segments is the same. The node degree is an essential structural
road network feature. It helps to distinguish roads with only one consecutive
road segment from, e.g., roads followed by complex intersections.

— Traffic (¢rf): For the third task, we predict whether two road segments have
similar traffic. For the traffic label, we utilize a traffic feature extracted from
trajectories, i.e., mean traffic speed or volume. As those features are contin-
uous, we divide them into ten equally sized categories and predict whether
two road segments fall into the same category. In contrast to previous works
learning static road features, we train on features extracted from trajectories,
which reflect real-world traffic patterns.

For the training data generation, we sample n trajectory-weighted random
walks per road segment, with a walk length of [ and a context window of w. For
each pair within a window, we set the topology label Y;,, to 1 and obtain the
structure label Yy and traffic label Y3, . Further, for each positive sample, we
create npey negative samples by randomly selecting road segment pairs, setting
Yiop = 0 and obtaining Yy and Y z.

For the SRE training, we input two one-hot-encoded vectors v;,v; € RIVI
indicating the index of the road segment and encode the input into dense vectors.

SPTE = Bmb(vy), (6)

where Sis EE ig the dense vector representation of the road segment v; and Emb
is the embedding layer, modeled as a fully connected layer. To predict the task
labels, we employ the Hadamard product to aggregate the two road embeddings
SiS RE and S JS RE and input the resulting vector into a task-specific decoder. Then
for each task € {top, struc,trf} we obtain a probability output P:

Ptask(via Uj) - Dectask<S§SRE O] SJSRE), (7)
where ® represents the Hadamard product, and Dec is a task-specific decoder,
which we model using a fully connected layer and a sigmoid activation function,
i.e., Dec(z) = sigmoid(FC(x)). Given the task labels, we can formulate the loss
functions for each task as the binary cross-entropy loss:

Ltask(vi; Uj) = 7[Eask : log(Ptask) + (1 - Y%ask) : 10g(1 - Ptask)]~ (8)

The overall loss function of the SRE is defined as the weighted sum of L,
Lgtruc and Ly r with the corresponding weights Aiop + Astrue + Atrp = 1t

'CSRE = )\top . ‘Ctop + )\struc : ‘Cstruc + )\trf . ‘Ctrf- (9)
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3.3 TrajRNE Overview

In our proposed TrajRNE model, we train the SFC and SRE modules inde-
pendently with distinct training objectives. We concatenate the module repre-
sentations to obtain the final road representation: S = S5FC @ SSEE  where
@ is the concatenation operator. As the SFC and SRE representations contain
complementary information, they induce more information into the final road
representations, making them more effective and general-purpose. Moreover, in
contrast to previous work, we incorporate traffic and mobility behavior into the
TrajRNE model design, which is essential for various downstream tasks.

4 Experimental Evaluation

The aim of the evaluation is threefold. First, we aim to compare TrajRNE with
state-of-the-art unsupervised road embedding models on various road network-
related downstream tasks. Second, we aim to evaluate ablation versions of Tra-
jRNE. Third, we aim to assess the impact of the k parameter of SFC, as it
influences the receptive field.

4.1 Datasets

We select the trajectory and road network datasets for two cities, namely Porto?
and San Francisco®. The road networks are extracted from OpenStreetMap*. We
preprocess the trajectory data. In particular, we prune trajectories outside the
bounding box of the respective city and remove trajectories containing less than
10 points. Further, we map-match the trajectories [20] to obtain the road segment
sequences. Table 1 summarizes the dataset statistics.

4.2 Baselines

We employ state-of-the-art road network representation models and graph rep-
resentation learning approaches as baselines. For road network representation
models, we evaluate RFN [7], IRN2Vec [16], HRNR [19] and Toast [1] as
baselines. For graph representation learning approaches, we select GCN [9],
and GAT [15] as baselines. We employ the graph reconstruction task proposed
in [8] to train GCN and GAT in an unsupervised fashion. We use the parameter
values given in the original papers. Note that as we aim to create general-purpose
representations enabling a variety of tasks, a comparison with specialized task-
specific models is not possible due to task-specific model designs.

2 https://www.kaggle.com/competitions/pkdd- 15-taxi-trip-time-prediction-ii.
3 https://ieee-dataport.org/open-access/crawdad-epflmobility.
4 https://www.openstreetmap.org/.
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Table 1. Statistics of the road network and trajectory datasets.
Road Network Trajectory
F#Intersections | #Road-Segments | Avg. Degree | #GPS-Points | #Trajectories | Coverage
Porto 5,358 11,331 2.4 74,269,739 | 1,544,234 97.9%
San Francisco | 9,739 27,039 3.1 11,219,955 | 406,456 94.4%

4.3 Downstream Tasks and Evaluation Metrics

We consider four downstream tasks proposed in previous works [1,16,19]. For
all downstream tasks, we pre-train the road representation models in an unsu-
pervised manner and use the frozen embeddings to train a simple prediction
model for each task. For Label Classification (LC) we select the road type
as the label. For the road embedding models using the road type feature in the
pre-training phase, we leave out that feature to evaluate prediction performance
on unseen labels. We adopt a logistic regression classifier as the prediction model
and report micro and macro F1 scores, denoted as Mi-F1 and Ma-F1. For Traffic
Inference (TI), we predict the average speed on the road segments. We adopt
an MLP with a fully connected layer as the prediction model and report Root
Mean Squared Error (RMSE) and Mean Absolute Error (MAE). For Travel
Time Estimation (TTE) given a route, we input the sequence of road embed-
dings representing the route into a two-layer LSTM and predict the travel time
of that route. For evaluation, we adopt RMSE and MAE. Finally, for the Des-
tination Prediction (DP) task, we take the first 70% of the trajectory and
input the corresponding sequence of road embeddings into a two-layer LSTM to
predict the last visited location of the trajectory. We adopt the top-1 and top-5
prediction accuracy, denoted as ACC@1 and ACC@5.

4.4 Experimental Settings

We randomly selected 70% of the trajectory dataset for the representation learn-
ing. We used the remaining 30% for the training and evaluation of the trajectory-
based downstream tasks TTE and DP. For those tasks, we further split the
remaining trajectory set into 70% for training the prediction models and 30%
for evaluation. For the road segment-based tasks LC and TI, we employed 5-
fold cross-validation. We set the embedding dimension to 128 each for the SFC
and SRE modules and employed the Adam optimizer with a learning rate of
0.001. For SRE, we used traffic volume for the traffic prediction task and set the
weights Aiop = Astrue = Atrf = % We set | = 25, w = 5, npeg = 3 and performed
1000 walks per node. We trained SRE for ten epochs. For SFC, we set k = 2
and trained for 5000 epochs. We discuss parameter selection later in Sect. 4.7.

4.5 Performance Results

Table 2 summarizes the evaluation results for both datasets. As we can observe,
our proposed TrajRNE approach consistently outperforms all the baselines on
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Table 2. TrajRNE and baselines performance on two datasets and four tasks.

Task LC TI TTE DP

Metric Mi-F1 |Ma-F1 MAE |RMSE MAE |RMSE |ACCaQl|ACCQ@5
Porto GCN 0.660 |0.411 |14.175 |20.361 |77.490 |110.589 |0.246 0.502

GAT 0.651 |0.393 |14.238 |20.388 |77.170 |111.562 |0.250 0.501

RFN 0.498 |0.087 |15.088 |20.908 |83.125 |116.160 |0.246 0.492
IRN2Vec | 0.487 |0.055 |17.366 |23.176 |77.910 |110.606 |0.263 0.529
HRNR 0.540 1 0.132 |[13.733 |19.798 |77.851 |113.382 | 0.254 0.514
Toast 0.440 |0.206 |13.793 |19.543 |78.807 |111.270 |0.265 0.534
TrajRNE | 0.682 | 0.496 | 13.228 19.215 75.495 | 109.067  0.270 |0.546
San Francisco | GCN 0.663 |0.070 |10.435 |16.294 |118.832|273.111 |0.027 0.071
GAT 0.676 |0.131 |10.113 |15.730 |109.511|267.021 |0.057 0.143
RFN 0.672 |0.125 |9.819 |15.660 |113.185 266.541 |0.042 0.112
IRN2Vec | 0.658 |0.057 |13.336 |19.307 |104.667|267.479 |0.073 0.186
HRNR 0.692 |0.147 |10.068 |15.265 |104.980|263.578 |0.078 0.201
Toast 0.662 |0.068 |10.122 |15.631 |109.057 |265.514 |0.046 0.121
TrajRNE | 0.759 | 0.475 | 8.437 |13.334 97.776 256.812|0.097 |0.238

both datasets and all tasks, demonstrating that incorporating trajectory infor-
mation into road representation learning is essential for downstream application.
Especially on the LC task, where the baselines predict only the most frequent
labels, i.e., “residential”, with high accuracy, our TrajRNE approach outper-
forms the baselines by a large margin, in particular on the less frequent classes,
as reflected by Ma-F1. It is worth noting that without learning road types expli-
citly, road embeddings created by TrajRNE enable us to predict the less frequent
road types in the dataset with high precision. Comparing both datasets, San
Francisco has many more road segments with fewer trajectory data, making the
prediction for the most downstream tasks even more challenging. We observe
that our approach outperforms the baselines on the San Francisco dataset by a
larger margin. This result indicates that our TrajRNE approach can generate
more robust road representations even with fewer trajectory data available.

Regarding the baselines, we can observe that road embedding baselines
mostly outperform graph representation methods, indicating that generic graph
representation methods are unsuitable for road networks. Regarding the road
representation baselines, Toast and HRNR outperform IRN2Vec and RFN in
many cases, as the former utilize more specific road network-related informa-
tion, e.g., extracting function zones or traveling semantics.

4.6 Ablation Study

To demonstrate the impact of the TrajRNE modules, we evaluate each module
separately, i.e., TraJRNE(SFC) and TrajRNE(SRE). Table 3 presents the abla-
tion study results. As we can observe, the modules indicate different strengths
regarding specific tasks. While TrajRNE(SRE) outperforms TrajRNE(SFC) on
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Table 3. Ablation study on different tasks on the Porto dataset.

Task LC TI TTE DP
Metric Mi-F1 | Ma-F1 | MAE |RMSE |[MAE |RMSE |ACC@1|ACCQ@5
TrajRNE 0.682 |0.496 | 13.228|19.215|75.495|109.067 | 0.270 |0.546

TrajRNE(SFC) | 0.689 | 0.458 |13.353 |19.719 |77.449 |113.828 |0.255 0.515
TrajRNE(SRE) | 0.511 | 0.254 |13.692 |19.549 | 76.609 | 109.599 |0.269 0.544
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1045 s 5 5026
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(a) LC (b) TI (¢) TTE (d) DP

Fig. 3. Impact of the k parameter of the TrajRNE(SFC) module for the Porto dataset
on all tasks. Figures with light gray bars indicate the higher values are better, and for
the dark gray bars, lower values are better.

the TTE and DP tasks, TrajRNE(SFC) achieves higher performance on the
LC task. TrajRNE adopting both modules performs better than the modules
isolated, except for the Mi-F1 score on the LC task. Regarding LC, the slight
performance reduction of 1.0% for Mi-F1 is compensated by the increase in Ma-
F1 by 8.3%. Overall, these results confirm that the TrajRNE modules provide
complementary information and jointly provide the best performance.

4.7 Parameter Study

We examine the k parameter of the SFC module, which influences the receptive
field of the method. Thus, with a higher k value, the module can observe a
broader neighborhood. We evaluate the SFC module on all selected downstream
tasks with varying k. The results are depicted in Fig.3. We observe that the
hyperparameter influence depends on the task. While for the DP task higher
k value is better, for TI, lower k yields better performance. This is because,
for DP, the distant neighborhood can be more important, as the destination
will not typically be located in the local neighborhood. For traffic inference, the
direct neighborhood contains the traffic most similar to the target road segment.
We select k = 2 to balance across the downstream tasks.

5 Related Work

We discuss related work in road network representation and trajectory mining.
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Road Network Representation Learning. As road networks are typically
modeled as graphs, a natural way to learn representations is to use graph rep-
resentation learning methods, e.g., GCN [9], and GAT [15]. REN [7] adapted
GCNs to road networks by proposing a relational fusion layer. IRN2Vec [16]
used shortest paths to learn the geo-locality and was trained to predict road
network tags. HRNR [19] extended graph convolutions by constructing a three-
level hierarchical architecture to model road segments, functional, and structural
zones. Toast [1] utilized the skip-gram model to learn the graph structure and
refined the embeddings using a transformer-based model and an adapted pre-
training objective. However, previous works relied on road network topology and
static road features to learn road embeddings, which is insufficient for reflecting
complex and dynamic traffic patterns and mobility behavior. To overcome these
limitations, we extract traffic features and mobility behavior from vehicle tra-
jectories and incorporate this information deeply into our model design. Thus,
TrajRNE can learn the complex and dynamic behavior of road users observed
in the network. We experimentally demonstrated that TrajRNE outperforms
mentioned works on various downstream tasks.

Trajectory Mining. Vehicle trajectories are mined for many road network
related tasks [4,18], e.g., functional zones [14, 21], travel time on road networks [5]
and next location prediction [2,3,11]. Some recent work incorporated trajectories
into their model design for different tasks on road networks. Hong et al. [5]
created a trajectory-based graph next to a road network graph to learn traffic
behavior for travel time estimation jointly. Further, Li et al. [10] integrated flows
from historical vehicle trajectories into their Trajectory-based Graph Neural
Network model for traffic flow prediction. For short-term traffic speed prediction,
Hui et al. [6] replaced the graph convolution networks by sampling trajectories
and aggregating features along them. Inspired by Li et al. [10], we designed a
graph convolution based on traffic flows and extended the idea by considering
the traffic flow of the k-hop neighbors, thus increasing the receptive field.

6 Conclusion

In this paper, we presented TrajRNE — a novel road network representation
learning approach incorporating information extracted from trajectories into its
model design. TrajRNE comprises static road features, topology, traffic, and
user mobility behavior. Specifically, we proposed the Spatial Flow Convolution,
aggregating local and distant neighborhoods based on traffic flows. Further, we
proposed the Structural Road Encoder, which learns the network topology, struc-
ture, and traffic, employing a multitask prediction objective. We incorporated
user mobility behavior by weighting random walks with transition probabilities
extracted from trajectories. We conducted extensive experiments on real-world
datasets and evaluated TrajRNE against state-of-the-art road representation
learning and graph representation methods. We demonstrated that TrajRNE
consistently outperforms the baselines on four downstream tasks.
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The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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