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ABSTRACT

Calculating correlation coefficients is one of the most used mea-
sures in data science. Although linear correlations are fast and
easy to calculate, they lack robustness and effectiveness in the
existence of non-linear associations. Rank-based coefficients such
as Spearman’s are more suitable. However, rank-based measures
first require to sort the values and obtain the ranks, making their
calculation super-linear. One of the use-cases that is affected by
this is data enrichment for Machine Learning (ML) through fea-
ture extraction from large databases. Finding the most promising
features from millions of candidates to increase the ML accu-
racy requires billions of correlation calculations. In this paper,
we introduce an index structure that ensures rank-based corre-
lation calculation in a linear time. Our solution accelerates the
correlation calculation up to 500 times in the data enrichment
setting.

1 INTRODUCTION

The correlation coefficient is one of the extensively used statisti-
cal measures in data science. Data scientists use the correlation
coefficient to find dependencies in the data and identify possible
causal relationships. In machine learning (ML) tasks, correlations
can be used to evaluate the relevance of features. Correlating
features expose redundancy. Thus, one can remove redundant
features to avoid the curse of dimensionality. Also, a correlation
between a feature and a target value can serve as a heuristic
for the importance of a feature. This is exactly what filter-based
feature selections are aiming for [4]: They leverage correlation
to find informative and drop redundant features to achieve high
accuracy in the following ML task.

Various correlation coefficients can be used to identify correla-
tions between features in datasets. The most prominent one is the
Pearson Correlation Coefficient (Pcc). Although calculating the
Pcc is fairly simple and linear in the size of the compared datasets,
there are several situations where a non-linear coefficient, such
as the Spearman’s correlation coefficient (Scc) is preferred.
Robustness. Linear correlations such as Pcc are very sensitive
to outliers. As an example, Table 1 compares robustness of Pcc
and Scc. Although there is no clear correlation between the two
columns, the calculated Pcc identifies them as correlated, because
of one outlier point (shown in red). A correlation of 1.0 is clearly
misleading. Scc shows a more fitting correlation of only 0.1. This
robustness makes Scc to be a better fit for noisy and dirty data
such as webtables that are likely to contain outliers [7, 14].
Effectiveness. Linear correlations are not effective in capturing
more complex dependencies. They are only able to find linear
associations between two features. This can be useful in the
case of feature selection for linear models such as linear regres-
sion. However, for complex ML models such as Random Forest
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Table 1: Correlation in the existence of outlier.

Area (Million sq. miles) Calling Code

0.29 56
0.3 90
3.8 1
0.5 51
600 9800
Pearson = 1.0 Spearman’s = 0.1

or Neural Network that can train non-linear patterns, linear
correlation-based feature selections can miss features with non-
linear dependencies harming the achievable accuracy [23].

The disadvantage of non-linear approaches, such as Scc and
Kendall tau [13] is that they are rank-based and as such require
a sortation of values, which poses a higher time complexity, i.e.
𝑂 (𝑚 · log(𝑚)) where𝑚 is the size of the variable, for calculation
than their linear counterparts. The time complexity increases
when we want to calculate non-linear correlation for categorical
columns. The Rank-biserial correlation coefficient Rbc can be ap-
plied on one-hot encoded columns, so Rbc has a time complexity
of 𝑂 (𝑚2) [7, 14]. This computation overhead negatively impacts
the analysis pipeline when a large number of features have to be
analyzed. For instance, to detect the redundant features, the corre-
lation computation between each possible pair is required, which
inherently leads to 𝑂 (𝑁 2) correlation computations for 𝑁 differ-
ent features [23]. For datasets with several hundreds of potential
features, the runtime overhead impedes live analysis and fast
model building. For example in data enrichment [2, 17, 22, 24, 26],
one aims to detect features that correlate to the given target fea-
ture from millions of extracted candidates. At this scale, runtime
overhead for rank-based correlations becomes evidently a hurdle.

In this paper, we introduce a light-weight indexing structure
to compute the non-linear correlation coefficient in a linear time
for large-scale data enrichment tasks. It avoids the𝑂 (𝑚 · log(𝑚))
sorting operation for numerical columns, benefiting the Scc cal-
culation, and avoiding the 𝑂 (𝑚2) complexity of dealing with
the one-hot encoding of categorical columns for Rbc. Our light-
weight index also enables Cocoa (our system) to scale to the
massive number of external tables. Furthermore, the nature of
the correlation calculation also enables Cocoa to perform light-
weight joins instead of full materialization of joins with candidate
columns. In summary, we make three major contributions:

(1) We introduce a new index structure that enables us to com-
pute the non-linear correlation coefficient in linear time and gen-
eralizes also for enrichment through partial joins where ranks
are missing and have to be adapted.
(2) We propose algorithms that leverage our index structure to
detect correlations between numerical and categorical columns
to a target column in linear time.
(3) We introduce a correlation-based data enrichment solution
that increases the accuracy of the ML model for a user-defined
task compared to other enrichment solutions.
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2 PROBLEM STATEMENT

Given an input dataset 𝐷 with𝑚 rows, two explicitly selected
columns 𝑞 and 𝑡 from 𝐷 , so-called query and target columns
respectively, and a corpus of external tables 𝑇 = {𝑇1, ...,𝑇𝑛},
the goal is to enrich 𝐷 with the top-𝑘𝑐 columns from any table
𝑇𝑖 ∈ 𝑇 that correlate with 𝑡 . As we focus on regression tasks, 𝑡
is a numerical column while features can be either numerical or
categorical. The query column 𝑞 is used to find the related tables,
i.e., tables that are joinable with 𝐷 on 𝑞. Ideally, 𝑞 is an identity
exposing column, such as name or ID. Without loss of generality,
we thus assume 𝑞 is selected explicitly by the user.

Depending on whether an extracted feature is numerical or
categorical, one has to use Scc or Rbc, respectively. Equation 1
shows the formula of Scc where 𝑥𝑖 and𝑦𝑖 are the 𝑖𝑡ℎ values in the
first and second column respectively. Both columns are of size
𝑚. 𝑅(𝑥𝑖 ) represents the rank of value 𝑥𝑖 . For instance, 𝑅(8) = 2
in list [8, 11, 4, 9] because the value 8 is second in the sorted list
[4, 8, 9, 11]. 𝑅(𝑥) and 𝑅(𝑦) represent the average of ranks in the
first and the second column respectively.

Scc =

∑𝑚
𝑖=1 (𝑅(𝑥𝑖 ) − 𝑅(𝑥)) (𝑅(𝑦𝑖 ) − 𝑅(𝑦))√∑𝑚
𝑖=1 (𝑅(𝑥𝑖 ) − 𝑅(𝑥))2 (𝑅(𝑦𝑖 ) − 𝑅(𝑦))2

(1)

The Scc calculation for numerical columns is in 𝑂 (𝑚 · log𝑚)
because one has to obtain the ranks through sortation.

To compute the correlation between categorical columns and
𝑡 , the Rbc calculates the Scc between each one-hot feature of the
categorical column and 𝑡 [3, 9, 18]:

Rbc =
𝑀1 −𝑀0

𝑠𝑡𝑑

√
𝑛1𝑛0
𝑚2 (2)

𝑀1 and𝑀0 represent the average target rank for 1s and 0s in a
one-hot feature, 𝑛0, 𝑛1 are the number of ones and zeros in the
one-hot feature, and 𝑠𝑡𝑑 and𝑚 define the standard deviation of
target ranks and the number of values in columns, respectively.
In our case,𝑚 is the number of rows in the input dataset. The
overall correlation is then the maximum Rbc between each one-
hot feature and 𝑡 Based on Equation 2, we can calculate the Rbc
in 𝑂 (𝑚) time complexity per one-hot feature. As a column can
have up to𝑚 unique values, thus the overall complexity is𝑂 (𝑚2).

If the join operation is implemented as a hash-based join, the
join task has a time complexity of 𝑂 (𝑚) per table. The follow-
up correlation calculation per column has either a complexity
of 𝑂 (𝑚 · log𝑚) or 𝑂 (𝑚2) depending on whether the feature is
numerical or categorical. In retrieval tasks with large databases,
we can observe the runtime is dominated by the correlation
calculation.
Problem We are thus looking for an index structure that allows
us to calculate both Scc and Rbc in linear time. To be able to index
data repositories in the scale of web tables, our index structure
should be simple and light-weight.

3 COCOA SYSTEM

Figure 1 depicts the abstract view of the components designed
in our system Cocoa. The main components are Table Finder,
Join Mapper, and Data Augmenter. A user provides Cocoa with a
dataset 𝐷 and specifies its query column 𝑞 and ML target column
𝑡 . At last, it returns the top-𝑘𝑐 most correlating columns as the
output of the system. Now, we describe each of these components.

Table Finder. This component uses 𝑞 and the inverted index
of the DataXformer system [1] to obtain top-𝑘𝑡 joinable tables.

JoinMaps

Table 
Finder

Join 
Mapper

+
T'  T⊂D

Data 
Augmenter

Order 
Index

Inverted 
Index

Q = { D, qc, tc, kt, kc}

D+

T

Table 
Corpus 

COCOA

Figure 1: The overall architecture of Cocoa

A table is joinable if it contains at least one column that over-
laps values with 𝑞. For each value 𝑣𝑖 in external tables, the in-
verted index lists the coordinates of its containing tables: 𝑣𝑖 ↦→
{(𝑇𝑖1, 𝐶𝑖1, 𝑃𝑖1), (𝑇𝑖2, 𝐶𝑖2, 𝑃𝑖2), ...}, where 𝑇𝑖 𝑗 , 𝐶𝑖 𝑗 , and 𝑃𝑖 𝑗 are
identifiers of tables, columns, and rows in the table corpus, re-
spectively. We store the inverted indices inside a column store
and generate a SQL query to find joinable external tables in paral-
lel and using database-level optimizations. This approach allows
to push the process of finding the joinable tables down to the
database itself. The SQL query calculates the overlap between
each external column and 𝑞 and then selects the top-𝑘𝑡 tables by
sorting them based on the overlap score.

Running example Figure 2(a) depicts a user-provided dataset
𝐷 for the task of predicting the population of a country. The
column with the country names will serve as the query column 𝑞
and the population as the ML target column 𝑡 . Figure 2(b) depicts
an external table (𝑇1) that contains three columns: Country, Area,
and Calling Code. In our example, the index entry for the values
“Germany” in Country would be:𝐺𝑒𝑟𝑚𝑎𝑛𝑦 ↦→ {(𝑇1,𝐶𝑜𝑢𝑛𝑡𝑟𝑦, 5)}.

Join Mapper. The Join Mapper receives a set of joinable tables
𝑇 ′ as input and virtually joins them with the input dataset 𝐷 . To
enrich the input dataset with external tables, we have to apply a
LEFT JOIN because we need to keep information in 𝐷 and add
only overlapping information from the external tables [6]. Instead
of a complete materialized LEFT JOIN, our Join Mapper generates
a lightweight JoinMap, which is inspired by P.Valduriez’s “Join
Indices” [19]. Using our Order index, we can use the light-weight
join to also calculate the correlations before materializing the
join. Thus we limit the join materialization for relevant columns
with high correlation and further speed up the process.

Figure 3 depicts the JoinMap for the example in Figure 2. Coun-
try column in 𝑇1 is overlapping with 𝑞 in 𝐷 . The corresponding
map shows which row in Country has the same respective value
in 𝑞. As it is shown, the value “Switzerland” in row 2 of Country
appears in row 3 of 𝑞. In the case of duplicates in 𝑞, respective
cells in the JoinMap will contain more than one value.

Data Augmenter. This component receives the JoinMaps as
input and uses a novel structure, called Order index, to efficiently
compute the Scc and Rbc. It evaluates the external columns based
on their correlation with 𝑡 and enriches the input dataset 𝐷 with
the top-𝑘𝑐 correlating columns to generate the final dataset 𝐷+.
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Figure 2: Running example: (a) Input dataset 𝐷; (b) External table 𝑇1; (c) Joined result of 𝐷 and 𝑇1

row in 𝐶1 1 2 3 4 5 6 7 8 9

row in q ∅ 3 ∅ ∅ ∅ 5 1 4 2

Figure 3: An example of JoinMap

4 CORRELATION CALCULATION

The main goal of the Data Augmenter is to calculate the Scc and
Rbc between each provided external column and the target col-
umn 𝑡 in𝑂 (𝑚). Thus, we want to refrain from sorting the values
of every potential numerical column and the generation of one-
hot encodings for every categorical column during the extraction
time. One might think of a simple solution that calculates the
ranks and one-hot encodings offline and maintains them as part
of the inverted index. However, maintaining the ranks will lead
to calculation errors of the Scc when related tables are only par-
tially joinable. Columns Area (Rank) and Calling Code (Rank) in
Figure 2(c) show this error in obtaining the ranks after the partial
join. Non-consecutive ranks lead to incorrect Scc. For instance,
the correct Scc between Calling Code and 𝑡 is −0.1, but using the
incomplete ranks returns the Scc of +0.117. Furthermore, storing
the one-hot encoding of all columns would unnecessarily blow
up the index size. Therefore, we propose algorithms based on a
new Order index that keeps track of the order of each value in the
numerical columns and efficiently generates one-hot encodings
for categorical columns.

4.1 Order Index Structure

We now introduce the simple, yet effective, Order index structure.
Instead of the actual ranks, it stores the relative order of column
values enabling the system to compute Scc and Rbc in a linear
time. Keeping track of the order of values enables us to calculate
the correct ranks on-demand despite partial joins. Also, keeping
relative orders enables us to walk through all non-zero values
in one-hot features in the right order to calculate the Rbc for
categorical columns. To maintain the order information in a
concise way, the Order index maps each pair of a table identifier
𝑇𝑖𝑑 and a column identifier 𝐶𝑖𝑑 to the column values as follows:

𝑇𝑖𝑑 ,𝐶𝑖𝑑 ↦→ {𝑠, (𝑜1, ..., 𝑜𝑟 ), (𝑏1, ..., 𝑏𝑟 )} (3)

𝑠 ← 𝛼, 𝑤ℎ𝑒𝑟𝑒 𝑅(𝑣𝛼 ) = 1 (4)

𝑏𝑖 =

{
𝐹𝑎𝑙𝑠𝑒, 𝑅(𝑣𝑖 ) = 𝑅(𝑣𝑜𝑖 )
𝑇𝑟𝑢𝑒, 𝑅(𝑣𝑖 ) ≠ 𝑅(𝑣𝑜𝑖 )

(5)

Each entry in the Order index consists of the starting point 𝑠 ,
which represents the row id of the minimum value in the column
(𝛼 in Equation 4). 𝑣𝑖 is the value located in the 𝑖𝑡ℎ row. The rank
of the minimum value is always 1. In categorical columns, the
minimum is the first value in the alphabetically sorted list. The
second item (order list), contains a list of values where 𝑜𝑖 is the

row id of the next greater value than 𝑣𝑖 . In case of having repet-
itive values, 𝑜𝑖 is the row id of the next equal value. If 𝑣𝑖 is the
last value in the sorted list, 𝑜𝑖 = −1. The item 𝑏𝑖 denotes whether
𝑣𝑜𝑖 is greater than its predecessor 𝑣𝑖 or not (Equation 5). We use
the same index for both numerical and categorical columns. To
distinguish the numerical and categorical columns during the
correlation calculation, we use a simple heuristic: a column is
considered as categorical if it contains at least one non-numeric
value. We store it as an additional bit per column. The Order index
of the column Area in our running example in Figure 2(b) would
be:
{2, (9, 5, 4, 6, 8, 7, −1, 1, 3), (𝑇, 𝑇 , 𝑇 , 𝑇 , 𝑇 , 𝑇 , ∅, 𝑇 , 𝑇 )}

In column Area, the minimum is located in row 2 (0.01), so, 𝑠 = 2.
The second element of the index represents a list of pointers to
the next greater (or equal) values. The first item in this list 𝑜1
points to row id 9 and it means that the next greater value “0.3”
after the first value “0.29” is stored in the 9𝑡ℎ row. Likewise, the
9𝑡ℎ pointer 𝑜9 in the order list is 3, which means that the next
greater value “0.5” is located in row 3. Notice that as there are
no repetitive values in column Area, all of the binary values in
the third index element, except for the maximum value pointer,
are True.

Figure 4 shows the visualized representation of the Order index
for the columnArea in𝑇1. Each square represents one value in the
external column. The blue square represents the minimum value
and the red one shows the maximum. Each edge that connects
one square to another depicts the relative order 𝑜𝑖 . Small numbers
in the circles are the row ids of the values in the column Area.
Each value has an outgoing edge except the maximum value.
Labels on each edge represent the index values stored for the
source value. For example, the outgoing edge from the 4𝑡ℎ item
in the list, is [6,𝑇 ], which translates to 𝑜4 = 6 and 𝑏4 = 𝑇 .

The Order index is the most basic index structure that supports
correlation calculation in 𝑂 (𝑚). A more complex B+ tree adapta-
tion can be used if frequent corpus updates are expected. Here,
we exclude the tree benefits for a more space-efficient index.

4.2 SCC for Numerical Columns

We use an example to describe how we leverage the underlying
Order index to calculate the Scc between numerical columns of
an external table and 𝑡 . Figure 4 shows the Order index of the
Area column and the JoinMap of the table 𝑇1 from our running
example. Assume that p is a pointer and in the beginning, p
references the minimum value in the column. In each iteration,
p traverses through the available links until it reaches the red
square which means that the ranking process is finished.

Starting from the minimum value “0.01”, the algorithm checks
the JoinMap for any mapping from the value in Area to a value in
𝑞. There is a mapping from “0.01” to the value in the 3𝑟𝑑 row of
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Figure 4: Visual representation of the Order index for the

column Area from the running example in Figure 2.

𝑞. Therefore, initial rank, which is 1, is assigned to the 3𝑟𝑑 value
of Area (see Area (Correct Rank) in Figure 2(c)). Then, p will be
updated to the next greater value. Here, “0.01” is linked to the 5𝑡ℎ
value, which is “0.14”. However, there is no map from “0.14” to
any value in 𝑞. Thus, pwill be updated based on the outgoing link
from “0.14” to the next greater value located in the 8𝑡ℎ square
with the value of “0.17”. There is a mapping from the value “0.17”
to the row with id 4, so the next rank, which currently is 2, will
be assigned to the 4𝑡ℎ value in Area. This process continues until
the pointer p reaches the 7𝑡ℎ and the maximum value. Since there
are no outgoing links, the iteration is finished. The ranks for both
Area and Calling Code columns are shown in the Figure 2(c) as
Area (Correct Rank) and Calling Code (Correct Rank), respectively.

According to Equation 1, we can indeed compute the Scc in
𝑂 (𝑚) by having correct ranks. Obtaining the ranks is now also
possible in 𝑂 (𝑚). The algorithm iterates over the values in the
ordered list only once. Therefore, if the time complexity of the
operations per value is constant and the path from the minimum
to the maximum value is cycle-free, we conclude that the Scc
calculation is done in 𝑂 (𝑚). First, all operations of reading the
JoinMap, assigning/updating current rank, and updating p to the
next value are done in a constant time because the JoinMap and
the Order index items are implemented using array structure and
accessing the array cells is performed in a constant time using
the available cell index. We also know that each 𝑜𝑖 value, which
is represented by an edge, refers to a unique row id even in the
existence of repetitive values. Thus, the path from the minimum
to the maximum value is cycle-free. The path length is 𝑟 , i.e.,
the average number of rows in the external columns. External
tables are often smaller than the input datasets (𝑟 << 𝑚), e.g., the
average external table size is 10 for DWTC and 1540 for open
data [26]. Thus, the complexity is typically bound by𝑚.

4.3 RBC for Categorical Columns

To calculate the dependency between external categorical columns
and 𝑡 , we have to generate the one-hot features of the column and
calculate the Rbc between each generated feature and the target
rank column. Using our index we can avoid this and simulate
the calculation in linear time. The Order index allows us to walk
through the non-zero values in the one-hot features, one feature
at a time. By iterating non-zero values of each one-hot feature
consecutively we can compute the Rbc for all possible feature in
one pass of reading the categorical column using the following
derived Equation 6, which is obtained by replacing𝑀0 and 𝑛0 in
Equation 2 with 𝑆−𝑀1𝑛1

𝑛0
and𝑚 −𝑚1 respectively:

Rbc =
𝑚 · 𝑠1 − 𝑛1 · 𝑆

𝑠𝑡𝑑 ·𝑚 ·
√
𝑛1 (𝑚 − 𝑛1))

(6)

In Equation 6, 𝑆 is the sum of all the ranks in the target column
and 𝑠1 the sum of the ranks where the corresponding one-hot

Row Candiate Column Target Rank

1 Asia 1.1 5

2 Europe 9.6 8

3 Europe 0.08 1

4 Asia 0.3 3

5 South_America 1.2 6

6 South_America 0.1 2

7 South_America 3.2 7

8 Europe 0.75 4

Min

Figure 5: Categorical candidate column example.

value is one. Using Equation 6, variables𝑚, 𝑆 , and 𝑠𝑡𝑑 are calcu-
lated once. To compute the Rbc between each one-hot feature
and 𝑡 , it is enough to compute 𝑠1 and 𝑛1 for each one-hot feature.

Cocoa uses the Order index to iterate over the sorted list of
categorical values. It is able to compute 𝑠1 and 𝑛1 per one-hot
feature without generating the features because the Order index
allows to read the repetitions of the values consecutively. Once
the iteration reaches a different value,𝑏𝑖 announces the end of the
current one-hot feature. At this point, the Rbc is calculated based
on Equation 6. In the end, the maximum Rbc will be reported.

Figure 5 shows an example for Rbc calculation. It depicts a
categorical column “Candidate Column” and the target column
“Target”. Wewould like to compute the Rbc of all one-hot features
in one pass of reading the values. The ranks of the target values
are shown in the “Rank” column. The location of the minimum
value is represented in blue and each link depicts the location of
the next value. The red-colored links show that the next value
is greater, i.e., different, than the current value. Obtaining the
standard deviation of the “Rank” column and𝑚, we only need to
calculate 𝑠1 and 𝑛1 for each unique value.

Starting with the minimum value, as long as the followed
arrow is not red, we continue reading rank values and adding
them to 𝑠1, increasing 𝑛1 by 1 in each iteration. After reading the
value in row number 1, 𝑠1 and 𝑛1 are equal to 5 and 1 respectively.
Following the links gets us to the 4𝑡ℎ row. Reading the rank value,
𝑠1 is increased to 5+3 = 8 and𝑛1 to 1+1 = 2. The next arrow is red
and it means that the following value is different from the current
one. Therefore, we calculate the correlation using Equation 6.
Repeating this process, another correlation is calculated in row
number 7. Reaching the last row, we compute the final correlation
and report the maximum Rbc. Rbc calculation is done in 𝑂 (𝑚)
as the algorithm iterates over the ordered list only once.

5 EXPERIMENTS

We carried out a series of experiments to evaluate Cocoa with
the following questions in mind: (i) What is the performance
gain through Order index for calculating feature correlations on
large corpora? (ii) How efficient is the light-weight virtual join?
(iii) How scalable is Cocoa? Before we delve into the detail, we
first describe the setup of our experimental evaluation.

5.1 Data and Experimental Setup

We tested our approach on top of several open databases. The
Dresden webtable corpus (DWTC)1 contains more than 145𝑀
tables and 870𝑀 unique columns. The Canada, US, and Uk Open
Data corpus used in prior work [26] contains more than 745,000
columns and 14,000 tables. It is noteworthy that the Open Data

1https://wwwdb.inf.tu-dresden.de/misc/dwtc/
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Table 2: Experimental datasets.

Dataset Query Column Target Instances

Kaggle Open Food Facts Product Name Energy per 100g 356,000
Kaggle NYC Airbnb Place Name Price 48,000
Cities City Name Population 40,000
Kaggle Video Game Sales Game Global Sales 16,599
PageView Name Visit 11,000
Kaggle IMDB Movie Title IMDB Score 5,043
Presidential County Votes 3,000
Kaggle Craft Beers Name Alcoholic content 2,400
Kaggle Human Freedom Index Country Homicide Index 1,450
Kaggle World Happiness Report Country/Region Score 157
University Name World Ranking 100

corpus only contains numerical data. We ran our experiments
on a server with 28 CPU cores and 250GBs of main memory.
We implemented our solution in Python 3.7 and used Vertica
v9.1.1-0 [16] as the storage. Implementations and datasets are
available in our GitHub repository2. All compared approaches
use the same table retrieval module. They only differ with regard
to the join, filtering, and correlation calculation steps.

Table 2 shows the datasets that we chose from different do-
mains as query datasets. For the Open Data corpus, we use the
benchmark query columns provided in the Josie paper [26].
Baselines. For these experiments, we compare Cocoawith three
baselines and two combined versions of Cocoa:
(1) Sort-based enrichment (Sbe). Sbe calculates the Scc and
Rbc without using the provided order index. It has to sort online
and create one-hot encoding of categorical columns. The com-
parison with this baseline allows us to evaluate the efficiency of
the Order index in the enrichment pipeline.
(2) TR. It is a rule-based method that skips joins with non-
informative tables before any further calculation [15].
(3) TR+Cocoa. TR is a complementary approach to Cocoa. TR
drops the non-informative tables before joining. Then, Cocoa
extracts the correlating columns from the tables.
(4) RF. Here, we apply the random forest feature selection (RF)
on top of the overlap-based enrichment method [26]. In this
method, we join 𝑘𝑡 related tables and RF picks the most informa-
tive features with respect to the ML task.
(5) Cocoa+RF. Here, Cocoa enriches the input data with the
top 100 correlated columns and delivers to RF.

5.2 Results

We start with the DWTC experiments. Figure 6(a) shows the
average runtime of Cocoa, Sbe, and TR applied on all query
datasets. The average runtime is shown for varied 𝑘𝑡 values. In
this experiment, we drop the break-down based on 𝑘𝑐 because
it has only a negligible improvement on the runtime of Cocoa
and no impact on the other approaches. The depicted runtime
includes the time for joining tables and calculating the Scc/Rbc.
In the case of TR, runtime represents joining and rule validation
time. Note that the runtime is depicted in logarithmic scale.

Cocoa outperforms Sbe on all datasets and for all different
𝑘𝑡 values and ultimately, we see better performance on average.
Cocoa can be up to 520𝑋 faster than Sbe using the introduced
Order index. Cocoa, on average, is slower than TR. TR applies a
rule-based table filter before joining the tables. It computes the
cardinality of the tables and decides whether the join is safe to
skip or not. Rules in TR - unlike Cocoa- are applied per external
table and not per columns. Therefore, the rule verification in TR
is computationally less expensive. The coarse-granular filtering
comes at the cost of effectiveness [6]. According to Figure 6(a),
the runtime of all approaches increases with 𝑘𝑡 because more
external tables have to be processed for the Scc calculation.
2https://github.com/BigDaMa/COCOA

Figure 6(b) shows the runtime experiment on Open Data. Here,
𝑘𝑡 has a lower impact compared to the DWTC corpus, because
of the small number of tables. So, we consider all tables that have
overlap with 𝑞 as candidate join tables. As expected, similar to
the DWTC, Cocoa is faster than Sbe due to the fast correlation
calculation through our introduced index structure. However, TR
is surprisingly slower than the other two systems. The reason
is that in comparison to DWTC, the tables in the Open Data
benchmark, are not sparse and yield higher overlap between
queries and the tables. Therefore, the TR rule is passed and most
of the tables are joint. In this case not only does TR not provide
any additional runtime benefits but also it introduces cardinality
calculation overhead with almost zero pruned external table.

Figure 6(c) compares Cocoa to three hybrid system on DTWC
with 𝑘𝑡 = 1000. We build these hybrid systems to evaluate the im-
pact of the feature pre-filtering on the runtime of the systems and
determine the fastest system combination that considers feature-
target association for the ML task. The combination TR+Cocoa
results in better performance than every other strategy. TR drops
the non-informative tables and reduces the search space for Co-
coa to find the correlating features in a faster way. This experi-
ment shows that although TR does not perform well with regard
to effectiveness [6], it can be a complementary heuristic for Co-
coa to reduce the search space and enrich the input dataset much
faster than any other solutions at hand.

RF is the slowest approach on all datasets except the University
dataset. This is due to the tremendous number of features that
are delivered to RF. Note that experiments that are not finished
within 8 hours are underestimated with 8 hours in the runtime.
RF fails to terminate for 4 datasets: Cities, IMDB, Food, and NYC
Airbnb. Pruning the search space using Cocoa improves runtime
for RF. Cocoa +RF only fails to finish on the Food dataset.

We notice that TR+Cocoa performs even better than TR on
larger datasets, such as Food. The reason is that TR materializes
all joins but Cocoa uses the light-weight virtual joins that are
much faster because only the top-𝑘𝑐 columns are materialized.
Scalability. To better evaluate the scalability of Sbe- and Co-
coa-based solutions with regard to the dataset size, we measure
the average runtime for a single correlation calculation in both
approaches. Figure 7 shows this experiment on the City dataset
scaling the number of rows. The average calculation time in-
creases much faster for Sbe than for Cocoa. On a dataset with
1𝑀 rows, the runtime difference between the two approaches
for one correlation calculation is about 118 seconds. This differ-
ence is crucial in the scale of thousands of external tables. In our
experiments, for the City dataset the number of correlation cal-
culations easily exceeds 52, 000 calculations to enrich the dataset,
thus this scalability issue will lead to serious runtime problems.
In this case, Sbe would need 71 days to complete the task while
Cocoa would require only 9.5 minutes. Notably, the variances in
the graph are negligible and at most 0.0001 milliseconds.
Index Size. We only store the row ids and bits instead of actual
values, therefore, indexing the DWTC corpus requires less than
12GB disk storage compared to almost 300GB database size.

6 RELATEDWORK

Data enrichment It is referred to the line of research that ex-
pands an input dataset using external sources such as webta-
bles [11, 22, 24], Open data [17, 26], or knowledge bases [5].

Most pieces of work from the database community focus on
finding joinable tables. For this purpose, some heuristics, such as
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overlap similarity [21, 25, 26] or a combination of the coverage
and value consistency [8, 11] is used to find candidate tables for
enrichment. These works do not consider the downstream ML
task for the retrieval process and only rely on the joinability of
the extracted tables. Furthermore, they assume that the exter-
nal tables can fit in the main memory. Kumar et al. address the
problem of data enrichment by defining a set of decision rules
to prevent the joins that will not contribute to higher accuracy
in the downstream ML models [15]. Their approach skips the
joins to achieve the minimum information loss. Therefore, the
dropping rate is quite low and in the scale of a large corpus of ta-
bles, the final enriched dataset will still contain a large number of
columns, that have to be handled in the time-consuming feature
selection process [23]. In Cocoa, we propose an ML-aware data
enrichment solution. It leverages the Scc/Rbc to find the most
promising columns for the downstream ML task. ARDA [6] is an
enrichment system that leverages sampling techniques to find
the informative joins and then uses an ensemble feature selection
method to select the best features. Its feature selection algorithm
RF focuses on accuracy and is not efficient when it comes to a
large number of external tables.
Feature Selection Feature selection algorithms [6, 10, 12, 20]
are designed to find the best feature set for a specific ML task
after the enrichment process. In this paper, we aim to blend the
feature selection with the extraction phase that can speed up
the traditional Extract-Then-Select pipeline. We also discussed a
combination of Cocoa with the most promising feature selection
method [6] in our experiments.

7 CONCLUSION

We presented Cocoa, a new data enrichment system. It enables
the efficient calculation of non-linear correlation coefficients to
select the most correlating features for a user-defined ML task. In
particular, we introduced an index structure that allows to calcu-
late non-linear correlation coefficients in linear time complexity.
Cocoa is designed to be general and hence it can be comple-
mented with other table-based filters or used for any analytic
task that depends on value rankings and rank-based scores.
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