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1. Introduction

Monitoring systems are used to prevent machine component 
damages during machining and to ensure compliance with 
quality requirements [1]. Achieving of the defined quality 
requirements is necessary for the subsequent functionality of 
the manufactured workpiece [2]. A distinction is made between 
process and condition monitoring. In process monitoring, the 
tool condition, the workpiece surface quality and the chip 
condition are monitored. In addition, chatter vibrations are 
detected [3-6]. The subject of condition monitoring is the 
detection of damages of machine components such as linear 
drives or spindles, which in turn impact the workpiece quality 
[1]. 

Monitoring approaches are divided into continuous or 
intermittent. Continuous monitoring takes place in parallel with 
the manufacturing process. In contrast, intermittent monitoring 
is carried out at intervals [10]. Furthermore, direct and indirect 
monitoring approaches are distinguished. In the case of direct 
monitoring, physical condition variables are monitored directly 
using a suitable sensor. In indirect monitoring, auxiliary 

variables such as machine-internal signals from the machine 
control system and external sensors (dynamometer, acoustic 
emission, acceleration) are utilized to evaluate conditions [3-
5]. Sensory components such as sensory spindles, sensory tool 
holders and sensory workpiece holders have also been 
developed for process monitoring [7,8]. Indirect monitoring is 
used in applications where an explicit determination of 
machine and process conditions is time consuming or 
impossible due to the nature of the process [2,9].

After data acquisition and signal processing, segmentation 
and feature generation are performed [3-5]. Feature generation
is often necessary to perform evaluations to cope with high 
sampling rates of sensors like acoustic emission [6].

When selecting the monitoring approach, the presence of 
fault data must be taken into account. In the context of semi-
supervised anomaly detection, it is assumed that only data 
describing the normal condition of processes or machine 
components are available [11]. For example, fixed boundaries, 
tolerance bands and dynamic thresholds have been developed 
for process monitoring [12]. These methods are suitable for the 
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detection of anomalies with abrupt signal changes like tool 
breakages but less suitable for the detection of continuous 
process changes like tool wear [6]. Semi-supervised anomaly 
detection methods output a binary state variable (fault 
detection) and the root cause of the anomaly is unknown [13].

Given a labeled data set that contains information about 
anomalies, supervised anomaly detection methods are 
applicable [11]. In machining, labels are discrete condition 
classes or measured quantities that describe the quality of 
workpieces or the tool condition. Machine Learning (ML) 
methods have been used frequently to link the generated 
features to discrete condition classes or continuous 
measurands. These methods can generate rules based on the 
data automatically, either implicitly (black-box) or explicitly 
(white-box) [14,15]. The application of ML-methods requires 
usually a two-step procedure. In the offline phase, the data is 
collected and subsequently labeled. Further steps include time 
series segmentation, feature generation as well as choosing the 
most suitable ML-pipeline. In this context, a ML-pipeline 
comprises data preprocessing, feature extraction and selection,
ML-model selection and the optimization of their 
hyperparameters. In the online phase, the trained model is 
applied to detect anomalies.

Table 1 provides an overview of typical objectives in 
machine condition and process monitoring. ML-methods are 
used in the context of supervised anomaly detection scenarios 
to solve regression and classification problems (see Figure 1).
A typical application of regression models is the indirect 
determination of continuous target variables (such as 
measurands to classify process states based on a threshold 
value). Frequently predicted target variables include, for 
example, the tool flank wear or the surface roughness [3-5]. 
These quantities belong to the industry-relevant quantities [16].

Fig. 1. Procedures for supervised anomaly detection using ML-methods.

Other approaches assign a discrete condition value to the
sensor signals or the generated features (classifier). In contrast 
to semi-supervised anomaly detection methods, classifiers not 
only output a binary condition class but determine different 
fault classes once the fault root cause is known (fault diagnosis 
[13]). To ensure a broad applicability of the model in process 

monitoring, machining experiments with different process 
parameters, materials etc. are often carried out during the
offline phase. To reduce the number of time-consuming 
experiments a design of experiments should be performed [4].
In process monitoring, sliding windows are often employed.
Monitoring approaches used in condition monitoring are often
intermittent and usually evaluate signals based on a predefined 
test cycle. For example, a test cycle may include the movement 
of a linear actuator in one direction and back to the origin.

However, lacking expertise in the applicability of ML-based 
approaches for given monitoring problems represents a barrier 
for domain experts in practice. To assess the applicability of 
ML-based monitoring systems, boundary conditions must be 
known which have to be satisfied. In the context of machining, 
there is a lack of explicit description of such boundary 
conditions in the literature. Therefore, we address the following 
question: Which boundary conditions exist to check the 
principal applicability of ML-based monitoring systems in the 
machining environment?

For this purpose, we first analyse monitoring approaches 
from literature and identify deficits of existing approaches. In 
the next step, factors influencing the monitoring quality are 
identified. Based on these factors, we derive boundary 
conditions and present challenges for practical applications.

2. Typical shortcomings of existing monitoring approaches

The presented literature approaches depicted in Table 1 
show shortcomings with respect to the usage of ML-methods. 
Table 2 provides an overview of the type of data partitioning,
hyperparameter optimization, data preprocessing,
dimensionality reduction as well as the ML-model chosen.
These studies arbitrarily select the algorithms at the respective 
stages of data preprocessing, dimensionality reduction and 
regression / classification. In many cases, only a single ML-
model is used. However, numerous studies [29] demonstrated 
that no single ML-method provides the best results for all data 
sets. Moreover, some authors (see [17,20]) do not perform data
preprocessing or dimensionality reduction. In this context, 
automated machine learning (AutoML) offers the possibility to 
systematically support the practical user in the selection of 
methods at the respective stages. In short, AutoML refers to 
methods for the optimization, automation and analysis of 
design decisions regarding the complete ML-Pipeline in order 
to obtain a model with peak performance. In addition, past 
studies have shown that AutoML tools like Auto-Sklearn 
achieve the most robust classification performances compared 
to various other classifiers [29].

Table 1. Overview on objectives of machine learning based indirect monitoring systems for supervised anomaly detection in machining.
Monitoring 
scope

Machining Process Machine Tool Component

Approach Output of a continuous quality or tool 
condition variable:
 Regressor

Output of a discrete quality or tool condition class:
 Classifier

Output of a discrete machine 
component condition class: 
 Classifier

Monitoring 
target

Tool condition:
 Flank wear [17]
 Flank wear and remaining useful 

life (RUL) [18]
Workpiece quality:
 Roughness [2,19,20]
 Shape deviation [2]

Tool condition:
 Tool chipping [21]
 Tool breakage [9,21]
 Tool wear [21,22]
 Missing tool [9]

Workpiece quality:
 Chatter [22]
 Material determination 

[24]
Chip condition:
 Chip disposal [25]
 Chip form [26]

Condition of:
 Ball screw drive [27]
 Spindle bearing [28]
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Table 2. Used methods of machine learning based indirect monitoring systems in accordance with literature approaches from table 1.
Ref. Data splitting mode Hyperparameter 

optimization
Data preprocessing / Dim. 
Reduction

Classifier/Regressor

[17] Hold out (train, test) None, Change of neurons 
in hidden layer (grid)

None Neural Network, Support Vector 
Regression, Random Forest

[19] Hold out (train, test, validation) Trial-and-error Normalization Feed-forward Neural Network
[2] Hold out (train, test) Three types of network 

architectures
Normalization, Main effect 
plot, Model trained with 
different feature subsets

Neural Network

[23] Hold out (train, test, validation) None Normalization Convolutional Neural Network
[20] Inner cross-validation, outer hold 

out
Grid-search None Support Vector Regression

[21] Repeated cross validation Grid-search Normalization, Correlation 
based feature selection; 
backward elimination

Ensemble (based on three classifiers)

[24] Hold out (train, test, validation) Grid-search Normalization Neural Network
[9] Hold out (train, test) None Principal Component Analysis Neural Network
[27] Hold out (train, test) None Feature Scaling, Feature 

Selection (Fisher-Score, 
Sequential Forward Selection)

Support Vector Machine

[25] Hold out (train, test) None Normalization Neural Network
[18] Inner hold out, outer cross-

validation
Grid-search Principal Component Analysis, 

ISOMAP
Support Vector Regression

[24] Hold out (train, test, validation) Grid-search Normalization, Feature 
Selection (Statistical overlap 
factor)

Neural Network

In addition, the performance depends usually on the chosen 
hyperparameters [29]. Several literature approaches (see 
[9,17,25,27]) do not adjust the hyperparameters of the chosen 
ML-model. Often, only the hyperparameters of the classifier or 
regression model are optimized. Though, data preprocessing, 
feature selection and extraction methods often also possess 
adjustable hyperparameters.

To produce high prediction performances on unseen data 
(which is called generalization ability) overfitting needs to be 
avoided. Overfitting is an open problem in hyperparameter 
optimization. To assess the ability of the model to generalize 
well, data partitioning is crucial. Therefore, a separate holdout 
set should be used to tune the hyperparameters [30]. In contrast, 
some literature approaches (see [2]) use the same part of the 
data set for model training and hyperparameter optimization. 
Other literature approaches (see [17]) utilise the same part of 
the data set for hyperparameter optimization and model 
comparison. 

With regard to the practical application of tool condition 
monitoring systems, Jemielniak [5] mentions further deficits. 
For example, signal features are often selected arbitrarily. In 
addition, required working memory and computing times are 
usually neglected.

The choice of the generated signal features is often 
connected with the adjustment of corresponding parameters of 
feature libraries, which influence the monitoring quality. In the 
literature, these parameters are often not systematically 
adjusted. For example, Teti et al. [3] note that when extracting 
signal features from the time-frequency domain using 
wavelets, authors select the wavelet type without providing a 
reason.

3. Factors influencing the monitoring quality

Based on the literature approaches analyzed in Chapter 2,
we first identify influencing factors on the monitoring quality 
to derive boundary conditions. According to Brophy et al. [9], 

two factors are decisive for the successful application of
monitoring systems in machining: the quality of the sensor data 
and the method used for condition assessment. However, for 
the practical use of ML-based monitoring systems these criteria 
are general and highly depend on the given application. In 
addition to the steps presented by Abellan-Nebot and Subirón
[4] for developing process monitoring systems in machining,
the main factors influencing monitoring quality are depicted in
Figure 2.

The monitoring quality depends on the type and position of 
the selected sensors, the measuring chain, and the signal 
preprocessing. As described earlier, the selected part of the 
monitoring signal (segmentation) and the selected signal 
features possess a significant impact.

Another influencing factor is the quality of labels (accuracy
of the measuring instrument, accuracy of class assignment). 
For classification tasks, the class balance plays an important 
role. Apart from samples representing the normal state, 
sufficient number of samples of the fault classes need to be 
available. In contrast, the range of values of the target variable 
represented in the data set regarding the desired alarm threshold 
plays an essential role for regression problems.

The variance of condition independent influencing factors
on monitoring signals not represented in the data set influences
the monitoring quality. For example, the signal course of the 
cutting forces in the milling process changes not only with the 
tool wear but with the selected process parameters and the 
cutting conditions as well. In addition, the tool condition is also 
affected by the process parameters. As a result, process 
parameters should be considered by the model unless the 
process parameters are guaranteed to be constant (for example 
in a mass production scenario).
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Fig. 2. Factors influencing the quality of machine learning based indirect monitoring systems for supervised anomaly detection in machining.

The selected features are the inputs for the ML-pipeline
which requires the adjustment of a large number of 
hyperparameters. Model selection and hyperparameter 
optimization can be done manually or using optimizers 
including Auto-ML tools. Depending on the selected Auto-ML 
tool and the utilized optimizers, the performance of the ML-
pipeline varies. In addition, the performance depends on the 
selected time budget for searching for an optimal pipeline and 
the size of the provided working memory. Auto-ML tools like 
Auto-Sklearn [29] introduce further hyperparameters like the 
number of models in an ensemble or the use of meta-learning
which increases the complexity of the optimization problem. In 
addition, Auto-Sklearn uses Bayesian optimization for 
hyperparameter optimization which in turn has own 
hyperparameters [31]. Another important factor is data 
partitioning for model training, fitting the hyperparameters and 
determining the generalization error of the ML-pipeline.

4. Boundary conditions to assess the principal
applicability of ML-based monitoring systems

In literature, it is not explained which boundary conditions
need to be considered to use ML-based monitoring systems for 
supervised anomaly detection in machining. Boundary 
conditions are needed to examine the principal applicability 
prior starting the implementation. These boundary conditions
are described as follows:

4.1 Uncertainty about the quantitative relationship between 
the inputs of the ML-model (represented by the features)
and the monitoring target.

A common characteristic of the monitoring tasks described 
in Table 1 is the uncertainty about the exact quantitative 
relationship between the derived features and the target 
variables of the respective monitoring task. Machining 
processes are complex and the relationship of the generated 
signal features to specific measurands and condition classes in 
the machining process is non-linear. Theoretical model-based 
approaches attempt to link the input variables to the output 
variable through mathematical formulas. To derive these 
mathematical formulas, a precise understanding of the 
underlying physical relationships of the system dynamics is 
required. However, in practice idealizations and conventions 
are utilized which degrade the prediction performance 
[2,18,32]. In machining, industry-relevant variables like the 
surface roughness are influenced by a large number of 
influencing factors and the cause-effect relationships are not 
known [32]. This knowledge is not necessary in data-based 
approaches such as ML-methods [17,18,32]. Another feature of
ML-methods is that these methods can also deal with noisy and 
incomplete data [32].
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4.2 The monitoring target can be explicitly determined or 
measured with sufficient accuracy (as a discrete condition 
class or as a continuous measurand).

If the target variable is a measurand, the accuracy of the 
measuring instrument needs to be sufficiently high. The 
traceability of products plays an important role for predicting 
workpiece related quality outcomes in process monitoring. In
the case of the prediction of discrete state variables using a 
classifier, it is necessary to be able to assign each time series to 
a condition class.

4.3 Data are available that a) describe fault conditions
(classification) or b) include values of the monitored target 
variable up to the predefined alarm threshold (regression).

For classification tasks, fault classes need to be available. In 
contrast, machining processes are designed to run without 
errors in industrial practice. In addition, machine components 
such as ball screw drives or spindle bearings are designed to 
maximize the service life. As a result, class imbalance is often 
observed in industrial practice. Anomalous conditions are often 
artificially generated by scientists. Usually, assumptions are 
made about faults and their progressions, which are not 
necessarily transferable to practice.

When monitoring a continuous measurand using a 
regression model, the alarm threshold needs to be within the 
value range of the target variable in the data set. In the absence 
of these data, further experiments must be carried out in the 
offline phase.

4.4 Factors influencing the monitoring target variable are 
known and included in the data set (represented by the
features).

For indirect monitoring, condition changes of processes and 
machine components must be detectable by monitoring signals
[2]. When using machine-internal sensors, interfaces for data 
acquisition must be available. The type and position of the 
selected external sensors and the quality of the measuring chain 
is important to detect condition changes. To derive a condition 
assessment based on monitoring signals, signal features that 
correlate with the process or the machine component condition
must be extracted [3,4]. The quality of the selected features 
cannot be estimated a priori. Therefore, the largest possible set 
of features should be considered [5].

In addition to sensor signals or derived features, further 
process-specific input variables must taken into account in 
process monitoring. This is because process-specific input 
variables (such as varying process parameters) influence the 
tool condition and the workpiece quality. Especially in 
machining, the challenge consists of a large number of 
influencing factors on the workpiece quality (see Figure 3). In 
the literature, monitoring approaches are usually limited to a 
few influencing variables. The applicability of ML-models 
depends on the input variables contained in the data set and 
their value range [16]. When producing small lot sizes the 
cutting conditions, the tool type and tool geometry used change 
frequently. In this case, the broad applicability of the ML-

model requires a time-consuming and costly data acquisition in 
the offline phase. In addition, defect patterns such as cutting 
edge breakouts also change [6]. 

4.5 The variance of the monitoring signals course is explained 
sufficiently in normal condition by the features in the data 
set.

Many factors influence the course of monitoring signals 
during machining without changing the process state or causing 
anomalies [9,12,33]. In the literature, influencing factors such 
as material inhomogeneities, different clamping lengths of 
milling tools, and tolerances in the manufacture of milling tools 
are often not taken into account, since these factors are costly 
to measure [9]. Consequently, the course of monitoring signals 
vary even with constant process parameters [5]. The influence
of unknown or undeterminable influencing variables on 
monitoring signals, which is not explained by features of the 
data set, influences the monitoring quality.

In machine condition monitoring, data from a test cycle 
separated from the machining process is often used. Likewise,
many approaches exist where scientists evaluate the condition 
of machine components using an isolated test rig. In practice,
monitoring signals may be influenced by other machine 
components. This limits the transferability of literature
approaches for practical applications.

4.6 Sufficient number of training samples are available to 
produce low generalization errors.

The amount of required data depends on the complexity of 
the monitoring task. It is impossible to predict the amount of 
data needed to achieve the desired model quality [34]. In 
process monitoring, a broader validity and an increasing 
number of input variables considered by the model (across 
different process parameters, tools, materials, etc.) are also 
associated with a greater effort in data acquisition in the offline 
phase. 

Fig. 3. Factors influencing part quality [2,12,35].

5. Conclusions

Machine learning based monitoring systems are suitable for 
many different monitoring scenarios. In this paper, boundary 
conditions are described which must be fulfilled to perform 
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supervised anomaly detection tasks in machining. Monitoring 
objectives and deficits of existing approaches are identified,
and influencing factors on the monitoring quality are described
to derive the constraints. In addition, challenges for industrial 
application are discussed. The derived boundary conditions
assist practitioners in industrial practice in systematically
evaluating the suitability of ML-methods for monitoring tasks.
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