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We describe a setup for obtaining uncertainty relations for arbitrary pairs of observables related by a
Fourier transform. The physical examples discussed here are the standard position and momentum,
number and angle, finite qudit systems, and strings of qubits for quantum information applications.
The uncertainty relations allow for an arbitrary choice of metric for the outcome distance, and the
choice of an exponent distinguishing, e.g., absolute and root mean square deviations. The emphasis
of this article is on developing a unified treatment, in which one observable takes on values in an
arbitrary locally compact Abelian group and the other in the dual group. In all cases, the phase
space symmetry implies the equality of measurement and preparation uncertainty bounds. There is
also a straightforward method for determining the optimal bounds.
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1 Introduction

Uncertainty relations are quantitative expressions of two
fundamental features of quantum mechanics. The first
feature is the observation that there are no dispersion-
free states [1, Sec. IV.1]. That is, we cannot find states
that give fixed (non-statistical) results for all observ-
ables. This is already seen for many pairs of observables,
most famously for position and momentum. The well-
known Heisenberg-Kennard relation is a “preparation
uncertainty relation”, i.e., a quantitative expression of
the observation that there is no quantum state for which
both the position distribution and the momentum distri-
bution are sharp. The second feature is loosely referred
to as complementarity, or the existence of mutually ex-
clusive experimental arrangements. More precisely, there
are measurements that cannot be simulated as marginals
of a joint measurement device. The word “simulated”
here indicates that complementarity runs much deeper
than the trivial impossibility of building two different
experiments in the same space, like setting the same po-
larizer simultaneously at 0 and 45 degrees. The basic
impossibility statement is in terms of observables (pos-
itive operator valued measures), which encode just the
statistical “quantum input to classical output” behavior
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of a device. Two measurement devices A and B may thus
be incompatible or “not jointly measurable” in the sense
that it is impossible to build a new device C with out-
come pairs c = (a, b), such that ignoring the b-outcomes
leaves one with a device statistically equivalent to A,
and similarly for a and B. There is a particular way of
attempting such a joint measurement, namely by mea-
suring first one observable, and then trying to retrieve
the other from the post-measurement state. For com-
plementary observables, this is bound to fail, which is
another way of saying that the first measurement neces-
sarily disturbs the system. A “measurement uncertainty
relation” is a quantitative expression of the non-existence
of joint measurements, and hence also encodes the error-
disturbance trade-off associated with measurements.

The preparation and the measurement aspect of un-
certainty are logically independent because they refer
to quite different experimental scenarios. An experiment
verifying a preparation uncertainty relation between ob-
servables A and B will determine separately the distribu-
tions of A and B, so that no individual particle is subject
to both kinds of measurement. The minimum uncertainty
objects in this case are states. In contrast, for a measure-
ment uncertainty an A-value and a B-value is obtained
for each particle, often in succession as in the error-
disturbance scenario. The minimum uncertainty objects
are approximate joint measurements of A and B. There
is no direct operational link between these scenarios,
and the quantitative bounds for preparation and mea-
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surement uncertainty are, in general, different. Indeed,
for two projection-valued (standard) observables, which
are for this purpose mainly specified by their eigenbases,
preparation uncertainty is zero if the two bases share one
eigenvector, whereas measurement uncertainty vanishes
when the observables commute, i.e., when they share all
eigenvectors. The distinction is also borne out by the de-
tailed study of angular momentum uncertainty [2], where
the preparation and measurement uncertainties require
quite different methods. It is therefore somewhat surpris-
ing that for the case of position and momentum [3–5], the
measurement uncertainty relations are quantitatively the
same as the preparation uncertainty relations. The ab-
stract reason for this is phase space symmetry.

However, this type of symmetry and the result men-
tioned are by no means restricted to the standard posi-
tion/momentum case. The purpose of this paper is to re-
view the application of these ideas to other phase spaces.
The common features of the systems considered are the
following: One has a pair of observables, which we will
continue to call position and momentum, related to each
other by a Fourier transform. Position will take values
in a space X (generalizing X = R

n), on which trans-
lations make sense. Hence, we view it as an Abelian
group. The unitary operators implementing translations
in position space will be functions of momentum. Sym-
metrically, there is a momentum space ̂X whose trans-
lations are generated by unitary operators, which are
functions of position. Such pairs appear in many tradi-
tional systems in physics, e.g., number/phase, or lattice
site/quasi-momentum. Quantum information has addi-
tionally generated a lot of interest in finite cases, like
qudit systems or qubit strings. For qubit strings, the
position and momentum observables are the readout of
strings in Z and X basis, respectively. A typical uncer-
tainty question would be how accurately an eavesdrop-
per can possibly measure a string in one basis without
disturbing the readouts in another basis, when both er-
rors are ascertained, for example, from the Hamming
distance.

Because we claim a quantitative agreement between
measurement and preparation uncertainty bounds, we
need to express the bounds by a uniform set of criteria.
It turns out that all it takes is to fix, for each observable,
a metric on the outcome space together with a certain ex-
ponent. This allows closely connected definitions of vari-
ances for the preparation uncertainties and the distance
of probability distributions needed for the measurement
uncertainty. To summarize, each case of the theory de-
veloped here involves the following choices:

• a phase space Ξ = X × ̂X , which is given in terms

of a locally compact Abelian group X and its dual
̂X. We will refer to X and ̂X as the position and
momentum space, respectively.

• a translation invariant metric on the space X , and
another one on ̂X .

• error exponents 1 � α, β � ∞, which determine
whether the error measures emphasize small or
large distances.

We will develop the theory in full generality for any
such choice. This includes the equality of the measure-
ment and preparation uncertainty bounds. The bounds
are best expressed in terms of the set of achievable
pairs (ΔP,ΔQ) of uncertainties, especially in terms of
the trade-off curve of pairs, along which neither un-
certainty can be reduced without increasing the other.
There is a concrete prescription on how to calculate this
curve: Each point on the curve is determined by find-
ing the ground state of a certain operator and this solu-
tion gives the corresponding minimum uncertainty state
(resp. minimum uncertainty joint measurement). Some-
times the ground state problem is very simple. For ex-
ample, the standard position/momentum case leads to
the problem of finding the ground state of a harmonic
oscillator, making the minimum uncertainty states pure
Gaussians. This case also has an additional dilatation
symmetry, so that with each achievable uncertainty pair
also the hyperbola (λΔP, λ−1ΔQ) is achievable. There-
fore, the uncertainty region is completely described by
the lowest lying hyperbola, i.e., by the lowest product
ΔP ΔQ. However, this is the only case in which an uncer-
tainty product adequately describes the trade-off curve.
The general ground state problem cannot be solved in
such a simple form. Therefore, we look at concrete cases,
listed in Table 1, selected in part for their physical in-
terest and in part to illustrate some of the features that
may occur.

The paper is organized as follows: We will review the
basic theory of phase space quantum mechanics in the
next section and the relevant notions of uncertainty in
Section 3. This is followed in Section 5 by a discussion
of the special instances, as summarized in Table 1.

Table 1 Phase spaces and parameters considered in this paper.

System X bX Metrics α, β Section Ref.

Canonical pair R R abs all [4]

Mechanics R
n

R
n Euclidean 1,2 5.1

Angle/number T arc or chordal 2 [6]

Z discrete or abs 1,2 5.2

Qudit Zd Zd discrete 1 5.3

Qubit string Z
N
2 Z

N
2 Hamming all 5.4
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2 Phase spaces

Here, we outline phase space quantum mechanics in
the general setting outlined above. The generality forces
us to use a relatively abstract (i.e., mathematical) lan-
guage. Physicists not feeling comfortable with this level
of abstraction should read this section and the next
with two concrete examples from Table 1 in mind, one
of which should be the “standard” case of the posi-
tion/momentum pair.

The origin of the theory outlined here is in Ref. [7, 8],
where it is carried out for the standard phase spaces
R

n × R
n. The generalization to general phase spaces

is straightforward for the parts we need for the cur-
rent context, and only needs some standard results of
the harmonic analysis (Fourier theory) of locally com-
pact Abelian groups [9, 10]. A detailed treatment, in-
cluding the fine points, is in preparation together with
Jussi Schultz.

From now on we assume that a group X of “position
shifts” is given. Technically, any locally compact Abelian
group is allowed, but in physical or quantum information
applications, we will be talking about one of the groups
from Table 1. Apart from one or more canonical degrees
of freedom, like position/momentum of quantum opti-
cal field quadratures, we may also have angle or phase
variables with an intrinsic periodicity given by the group
T of phases (complex numbers with modulus 1 under
multiplication) or, equivalently, T = R/(2πZ). Further-
more, there may be discrete variables given by integers,
either unbounded (X = Z) or modulo some number d
(X = Zd). Furthermore, arbitrary combinations of these
choices are allowed.

We will denote integration with respect to the Haar
measure on X by “

∫

dx”. This measure is unique up to
a constant and is characterized by its translation invari-
ance, i.e., by the possibility to substitute a shifted vari-
able without functional determinant factors. In the dis-
crete cases, it is often natural to give each point unit
measure. Integrals with respect to this “counting mea-
sure” are just sums over x. In the compact cases (T and
Zd and their products) the total Haar measure is finite,
and it is often convenient to take it as a probability mea-
sure, i.e., normalized to 1. Note that these natural choices
are in conflict for Zd, which means that we have to make
decisions analogous to the choice about where to put the
normalization factors 2π for the standard Fourier trans-
form.

The basic Hilbert space of our systems will now be
H = L2(X, dx), the square integrable functions on X . In
this space, the projection-valued position observable acts

by multiplication operators, i.e., the position probability
density associated with a vector ψ will be |ψ(x)|2. The
unitary shift operators (Uxψ)(y) = ψ(y − x) are clearly
not functions of position. However, because the under-
lying group X is Abelian, the operators commute and
the group can therefore be diagonalized jointly, i.e., be
represented as multiplication operators in another repre-
sentation. Of course, this will be the momentum repre-
sentation reached by the Fourier transform. The Fourier
transform of a function ψ : X → C will be a function
Fψ : ̂X → C, where ̂X is the dual group of X . This is
abstractly the set of continuous multiplicative functions
from X to T. If p ∈ ̂X labels such a function, we write
it as x �→ �p|x�. By definition, �p|x1+x2� = �p|x1��p|x2�.
The sum in ̂X is defined by �p1+p2|x� = �p1|x��p2|x�.
Concretely, when X = R

n, we also have ̂X = R
n and

�p|x� = exp(ip · x), where the dot denotes the scalar
product. Similarly, for the pair Ξ = T × Z we have
�α|n� = exp(iαn). Note that changing α to α+2π (which
represents the same element in T) does not change the
value of �α|n� and this property is what forces n ∈ Z. The
same reasoning leads to the form �p|x� = exp(2πipx/d)
for Ξ = Zd × Zd. Now the Fourier transform and its
inverse are defined by

(Fψ)(p) =
∫

dx �p|x�ψ(x) and

(F∗φ)(x) =
∫

dp �p|x�φ(x). (1)

Here the bar means complex conjugation. Note that each
of these formulas fixes a normalization of the Haar mea-
sure on ̂X relative to that on X and a theorem says that
these two, potentially distinct, conventions do coincide
[10, Thm.4.4.14]. F is a unitary operator with inverse F∗

and the usual formulas relating the product of functions
to the convolution of their Fourier transforms hold, with
the pertinent powers of 2π absorbed into the definition of
the measures. The momentum observable acts by multi-
plication after the Fourier transform and the momentum
probability density associated with a state vector ψ is
just |(Fψ)(p)|2.

As an example, let us consider a qubit, which is usually
not done in these terms. The group is now X = {0, 1},
i.e., a single bit with addition mod 2. The dual group
̂X is the same with �p|x� = exp(2πipx/2) = (−1)px. The
Fourier transform acts on H = C

2 by a Hadamard ma-
trix. The position observable is given by the diagonal
matrices (functions of σz) and the momentum observ-
able is given by the functions of σx.

Momentum translations will act in the position repre-
sentation by multiplication with �p|x�. Combining these
with the position translations we get the phase space
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translation operators, or Weyl operators,

(W (q, p)ψ)(x) = �p|x�ψ(x+ q). (2)

These form a projective representation of the phase space
translation group Ξ = X × ̂X :

W (q1, p1)W (q2, p2) = �p1|q2�W (q1 + q2, p1 + p2). (3)

Sometimes it is customary to change each Weyl oper-
ator by a phase, particularly in the standard R

n × R
n

case where this simplifies the relation for the adjoint to
W (ξ)∗ = W (−ξ). With the choice (2) this reads instead

W (q, p)∗ = �p|q�W (−q,−p). (4)

The factor in (3) depends on phase conventions, but the
commutation phase

W (q1, p1)W (q2, p2) = �p1|q2��p2|q1�W (q2, p2)W (q1, p1)

(5)

does not.
For many purposes, it is not necessary that the nota-

tion refers separately to position and momentum, so we
will just write ξ ∈ Ξ for the pair ξ = (q, p) ∈ X × ̂X and
“dξ” for “dq dp”. With the above conventions about nor-
malizing the measures, this translates into dp dq/(2π) for
the standard phase space. Thus, the phase space volume
is measured in units of Planck’s constant h = 2π� = 2π.
It should be noted that while the normalizations of the
individual measures dq and dp contain a conventional
factor, the phase space measure is independent of such
conventions. The phase space translations of quantum
observables (operators A ∈ B(H)) and classical observ-
ables (functions f : Ξ → C) are now given by

αξ(A) = W (ξ)∗AW (ξ) and (αξf)(η) = f(η − ξ).

(6)

Similarly, we can define the operation of phase space in-
version by the parity operator (Πψ)(x) = ψ(−x) as

β(A) = ΠAΠ and (βf)(η) = f(−η). (7)

This notation is chosen to emphasize the quantum-
classical analogy and helps generalize the convolution
from phase space functions to operators [8]. Indeed, the
convolution of functions can be alternatively written as

(f ∗ g)(ξ) =
∫

dη f(η)g(ξ − η)

=
∫

dη f(η)(αηg)(ξ)=
∫

dη f(η)(αξβg)(η),

(f ∗ g) =
∫

dη f(η)(αηg), (8)

where the last line is just another version of the second,
read as an equation between functions. This version al-
lows the definition of the convolutions between functions
and operators (giving an operator). The second expres-
sion on the second line, with the trace of functions sub-
stituted for phase space integrals, suggests the convolu-
tion of two operators, which is then again a phase space
function:

f ∗A = A ∗ f =
∫

dη f(η)(αηA), (9)

(A ∗B)(ξ) = tr
(

A(αξβB)
)

. (10)

We have not specified the analytic conditions for these
integrals to exist. For functions on an infinite phase
space (like f = g = 1) the integral may diverge. A
crucial Lemma in this theory, based on the square in-
tegrability of matrix elements 〈φ,W (ξ)ψ〉, is that if
all factors involved are either integrable functions (i.e.,
‖f‖1 =

∫

dξ |f(ξ)| < ∞) or “trace class” operators (i.e.,
‖A‖1 = tr |A| < ∞), then the same holds for their con-
volution. Convolution is then a commutative and asso-
ciate product that determines a Banach algebra with the
1-norm. It also has the crucial property that the convo-
lution of positive factors is positive. The convolution can
also be extended to the case where one factor is just a
bounded function or operator. However, in this case the
result can only be guaranteed to be bounded, and in a
product of several factors we can usually only allow one
such factor.

The main upshot of this formalism for our purpose is
the characterization of covariant phase space observables.
By definition, these are normalized positive B(H)-valued
measures F that commute with phase space translations.
We use the compact notation F [f ] =

∫

F (dξ) f(ξ), i.e., F
with parentheses is a function on the subsets of Ξ, and F
with brackets is the linear operator F [·] : L∞(Ξ, dξ) →
B(H) one gets from this by integration. Because, con-
versely, F (σ) = F [χσ], with χσ the indicator function
of a measurable set σ ⊂ Ξ, we consider these two to
be essentially the same object. Covariance then means
that αξF [f ] = F [αξf ]. The basic theorem on the subject
[8, Prop.3.3] then states that the covariant phase space
observables are in one-to-one correspondence with the
density operators ρF on H, given by the formula

F [f ] = ρF ∗ f. (11)

That ρF is a density operator has a double meaning: On
one hand, it describes the conditions for the correspon-
dence F ↔ ρF , namely ρF � 0 and tr ρF = 1. Somewhat
accidentally, these are the conditions for an operator de-
scribing a mixed quantum state. On the other hand, the
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measure F (·) has an operator-valued density with respect
to dξ, namely the translated αξ(ρF ). This “accident” will
be crucial later for establishing the equivalence between
the measurement uncertainty relations for F and prepa-
ration uncertainty relations for a certain state, namely
ρF .

For the measurement uncertainty, we need the posi-
tion and momentum marginals of such observables, i.e.,
the expectations of functions of only position or only
momentum. So let f : X → C be some function on posi-
tion space. We can consider it either as a classical func-
tion on phase space fq : Ξ → C by fq(x, p) = f(x), or
as a quantum operator f(Q) ∈ B(H) as determined by
functional calculus. This is the multiplication operator
(f(Q)ψ)(x) = f(x)ψ(x). Then expectations can alterna-
tively be written as an integral over phase space (resp.
a trace) or as an integral over just X with respect to a
suitable “marginal.” Thus, if ρ is a density operator and
μ is a probability density on phase space, we define the
marginals μq and ρQ by

∫

dxμq(x)f(x) =
∫

dξμ(ξ)fq(ξ), (12)
∫

dxρQ(x)f(x) = tr ρf(Q). (13)

Thus, ρQ is just the position probability density associ-
ated with the quantum state ρ. Classically, μq arises from
μ by integrating out the momenta. Similarly, in the quan-
tum case, integrating over all momentum translates of ρ
produces an operator, namely

∫

dp α(0,p)(ρ) = (ρQ)(Q).
Now suppose we have prepared a quantum state ρ, mea-
sured the covariant observable F , and evaluated the ex-
pectation of a function fq depending on position only.
Then the overall expectation is

tr ρ(ρF ∗ fq) = ρ ∗β(ρF ∗ fq)(0) =
∫

dx (ρ ∗βρF )qf(x)

=
∫

dx μq(x)f(x) (14)

with μq = ρQ ∗ (βρF )Q. (15)

This has a remarkable interpretation, which is the basis
of the equivalence between measurement and prepara-
tion uncertainty in our setting: The probability density
for the position marginal of a covariant observable F in
the state ρ is the convolution of the density ρQ for the
ideal position observable in the same state and the corre-
sponding density of another state, βρF . Because convolu-
tion is an operation representing the sum of independent
random variables, we arrive at the following statement:

The position marginal of a covariant phase
space observable can be simulated by first mak-
ing an ideal position measurement and adding

to the outcome some random noise with a fixed
distribution, independent of the input state.
The distribution of the noise is the position dis-
tribution of another quantum state characteriz-
ing the observable.

Of course, the same holds mutatis mutandis for mo-
mentum (and letters p, P replacing q,Q), with the same
state βρF characterizing the observable. Thus, the prepa-
ration uncertainty trade-off of having either (βρF )Q or
(βρF )P sharp translates directly into the measurement
uncertainty trade-off of measuring either position or mo-
mentum precisely, but never both.

3 Measurement and preparation uncertainty

The statement that measurement and preparation un-
certainty bounds are quantitatively equal for phase space
observables presupposes that the errors and variances are
defined in a closely related way. This begins by choos-
ing, for each observable a metric d on the set X of out-
comes. This not only fixes the units in which all devi-
ations are measured, but also is an adaptation to the
concrete problem at hand. For example, for discrete out-
comes we might just be interested in whether outcomes
coincide, without assigning a numerical weight (other
than a constant) to their distance in case they do not.
This is then simply expressed by choosing the discrete
metric d(x, y) = 1 − δxy. For real valued observables
like position and momentum we always take the stan-
dard distance d(x, y) = |x − y|. The only requirement
on the metric will be that it is translation invariant, i.e.,
d(x+ z, y + z) = d(x, y).

In addition we will fix, for every observable, an error
exponent α with 1 � α � ∞. Then if μ is a probabil-
ity measure on X , we define its deviation from a point
x ∈ X as

d(μ, x) =
(∫

μ(dy)d(x, y)α

) 1
α

. (16)

Thus, for α = 2 we get the mean quadratic deviation,
for α = 1 the mean absolute deviation, and in the limit
α → ∞ the maximal deviation (discounting sets of μ-
measure zero). The spread of the probability measure,
which we just denote by d(μ) is its smallest deviation
from any point, i.e.,

d(μ) = min
x
d(μ, x). (17)

The notation (16) suggests that this expression somehow
extends the original metric on X to one on the probabil-
ity measures. This is intentional, and for the formulation
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of measurement uncertainty we actually also need the ex-
tension to the case where both arguments are probability
measures, say ν and μ. In this case, we set

d(ν, μ) = inf
γ

(∫

γ(dxdy)d(x, y)α

) 1
α

, (18)

where the infimum is over all “couplings” of μ and ν,
i.e., all joint distributions on X ×X such that the first
variable is distributed according to ν and the second ac-
cording to μ. When ν is concentrated on the point x
this expression reduces to (16). This metric is called the
transport metric [11] associated with d and α. It expresses
the minimal cost of converting ν into μ, when transfer-
ring one mass unit from x to y costs d(x, y)α. In partic-
ular, when μ = ν, the best coupling (= transport plan)
is to leave everything as is. Therefore it corresponds to γ
spread out on the diagonal of X×X , giving d(μ, μ) = 0.
Similarly, when μ arises from ν by a translation a of the
variable, we have d(μ, ν) = d(a, 0). Finally, for a convo-
lution of probability measures we get

d(μ ∗ ν, μ) � d(ν, 0). (19)

Using this notation, we can say that the preparation
uncertainty theory for the observables P and Q is the
study of the set of pairs

PUR =
{

(

d(ρP ), d(ρQ)
)

∣

∣

∣ ρ a state
}

, (20)

where ρP , ρQ denote the position and momentum distri-
butions of the state ρ. In particular, we want to show
that this “uncertainty region” contains no points near
the origin.

Measurement uncertainty is a property of any (approx-
imate) joint measurement F of two observables. For each
of them, i.e., in our case P and Q, we compare the out-
put marginal distributions in a state ρ, denoted by ρFQ

and ρFP , with what one would have got with the corre-
sponding ideal measurement. We want the result to be
uniformly good for all input states, i.e., we look at

d(FQ, Q) = sup
ρ
d
(

ρFQ, ρQ
)

(21)

and the corresponding quantity for P . This vanishes if
and only if the position distribution obtained by F is
the same as the usual one for arbitrary input states ρ.
In that case, Heisenberg [12] told us to expect that the
corresponding quantity fail badly for momentum. The
trade-off is thus given by the measurement uncertainty
region

MUR =
{

(

d(FP , P ), d(FQ, Q)
)

∣

∣

∣ F a joint measure-

ment
}

. (22)

For variants and a discussion of these notions, see Ref.
[3].

Now for a covariant measurement F it is easy to com-
pute both measurement uncertainties. Combining (14)
with (19) we get the bound in terms of the “noise gener-
ated by F”, i.e.,

d
(

ρFQ, ρQ
)

� d((βρF )Q, 0) � d
(

(βρF )Q
)

. (23)

Here the last inequality holds with equality iff the mean
of the position distribution (βρF )Q is zero, which can
be achieved easily by just shifting all position outcomes.
Any other choice of a constant offset would clearly be
sub-optimal, so we have equality in the optimal case.
Moreover, equality holds in (19) if μ is a point measure.
Therefore, because of the supremum in (21), we have

d(FP , P ) = d
(

(βρF )P
)

and

d(FQ, Q) = d
(

(βρF )Q
)

(24)

for all covariant (and centered) F . Hence, measurement
uncertainties for F are the same as the preparation un-
certainties for the state βρF . Ref. [4, 5] showed that the
general case can be reduced to the covariant one by an
averaging procedure. Hence, we have

MUR = PUR. (25)

4 How to compute the bounds from a ground
state problem

General methods for efficiently computing measurement
uncertainty relations are still scarce. We therefore use
the known methods for preparation uncertainty. First, it
is better to work with variances rather than with devi-
ations, i.e., to omit the root in definition (16). For the
purpose of drawing uncertainty diagrams this is just a
rescaling, but the linearity in ρ makes estimates more
straightforward. Second, we can reduce to the case of cen-
tered states, for which the minimum in (17) is attained
at x = 0 (resp. p = 0). This can always be achieved by a
translation. Hence, for the position variance we just have
to compute the expectation of the function x �→ d(x, 0)α,
or, when written in functional calculus, the expectation
of the unbounded operator d(Q, 0)α. The trade-off is
taken into account by considering linear combinations
of variances with positive weights, and minimizing these
over all states. That is, for t > 0:

d(ρP )β + td(ρQ)α = tr ρ
(

d(P, 0)β + t d(Q, 0)α
)

≡ tr ρHαβ(t). (26)

It is clear that the operatorHαβ(t) appearing here is usu-
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ally unbounded, but positive, so technically speaking we
mean its Friedrichs extension. In all cases it has a discrete
spectrum, and minimizing the above expression over ρ is
just finding its ground state “energy”Eαβ(t). Essentially,
this function is the Legendre transform of the trade-off
curve we want to determine: For a fixed value of d(ρQ)
we find the best otherwise state-independent bound on
d(ρP ) by treating t as a parameter to be optimized. This
gives the state independent bound

d(ρP )β � sup
t

{

Eαβ(t) − tΔ
}

if Δ = d(ρQ)α. (27)

This is the description of the trade-off curve (or rather:
its best convex approximation) and the following exam-
ples will all be based on this method.

5 Examples

Here we will provide some concrete examples of the the-
ory outlined in the previous sections.

5.1 The standard case: Ξ = R
n × R

n with Euclidean
distance

Due to the dilation symmetry (x, p) �→ (λx, λ−1p) the
uncertainty region will be bounded by a hyperbola, and
completely described by the best constant c in

d(ρQ) d(ρP ) � cα,β(n)�. (28)

This scaling symmetry is what makes “dimensional anal-
ysis” work. Thus, in the above relation we brought in
the dimensional constant � to make c dimensionless, but
will take � = 1 from now on. The textbook case is
c2,2(1) = 1/2. For n = 1 the constants (from Ref. [4])
are shown in Fig. 1.

Depending on the application there may be good rea-
sons to explore exponents other than 2. For example,

Fig. 1 Uncertainty constants cαβ(1). The axes have been scaled
non-linearly to represent the infinite range. We have c∞∞(1) = ∞,
because there are no states with strictly bounded support in both
position and momentum.

α = ∞ corresponds to the case of strict spatial confine-
ment, such as the lateral position when passing a slit.
If we are interested in the root mean square momentum
spread after the slit, the constant c∞,2 will give a much
better bound than first converting the slit information
to a constraint on the root mean square deviation in po-
sition and using c2,2 instead.

To relate the constants cα,β(n) to a ground state prob-
lem we consider the two-parameter family of Hamiltoni-
ans and ground states

Hαβ(a, b) = a
(

n
∑

i=1

Q2
i

) α
2

+ b
(

n
∑

i=1

P 2
i

)
β
2

� E(a, b)1I. (29)

Then E satisfies the identities E(μa, μb) = μE(a, b) from
homogeneity, and E(λαa, λ−βb) = E(a, b) from dilation
symmetry, so that

E(a, b) = a
β

α+β b
α

α+β E, (30)

with E = E(1, 1) for short. We now optimize λ on the
right hand side of the following inequality to get

E � λαd(ρQ)α + λ−βd(ρP )β

= (α + β) α− α
α+β β− β

α+β

(

d(ρQ)d(ρP )
)

αβ
α+β

, (31)

which shows (28).
The dimension dependence is straightforward in the

quadratic case, because variances just add up to give the
Euclidean variance, i.e., Hαβ separates in Cartesian co-
ordinates. We get E = n, and hence

c2,2(n) =
n

2
. (32)

In general we can still use the rotation symmetry to sim-
plify the problem, seeking joint eigenfunctions of Hαβ ,
and the angular Laplacian L2. If the eigenvalue for the
latter operator is λ, we have to find the smallest E for
which we can solve the radial equation

rαφ(r) +
(

− d2

dr2
+

4λ+ (n− 1)(n− 3)
4r2

)
β
2
φ(r)

= E φ(r). (33)

We have chosen to include the weight coming from the
integration in polar coordinates into the wave function,
so the radial Laplacian, i.e., the operator in parenthe-
ses, contains no first derivatives. Of course, unless β is
even, this is not a differential operator of finite order. No
general solution is then available.

However, e.g., the case α = ∞, β = 2 is tractable.
For α = ∞, d(ρQ) is the radius of the smallest ball con-
taining the support of the position distribution. We fix
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this to be r = 1, and include other values by scaling
symmetry. Then the “potential” term in (33) becomes
zero inside the ball, but diverges outside. Because we are
seeking wave functions with finite d(ρP ), we cannot have
a jump at the boundary and must impose a zero bound-
ary condition at r = 1. The bottom eigenvalue E of P 2

in (33) is then the lowest admissible value of d(ρP )2 and
we find E = c∞,2(n)2, either directly from (28) or from
(31). Clearly, E is the lowest for λ = 0, i.e., a purely ra-
dial function. At r = 0 the ground state wave function,
written in Cartesian coordinates goes to a constant, so
φ(r) ∼ r(n−1)/2. This singles out the Bessel function

φ(r) ∝ √
r Jn/2−1

(√
E r

)

. (34)

The scaling E in the argument then has to be chosen
such that we have the first zero z1(n/2− 1) of the Bessel
function at r = 1, which determines the bottom eigen-
value as E = z1(n/2 − 1)2. Hence

c∞,2(n) = z1

(n

2
− 1

)

≈ n

2
+ 1.47292n1/3 − 1 + o(1),

(35)

where the asymptotic expansion of z1 is taken from [13,
9.5.14]. The n-dependence of this expression is clearly
not as simple as (32), although it is asymptotically lin-
ear (see Fig. 2). A direct derivation of this observation
will be given below (Section 5.4).

5.2 Number and angle

This case is treated in detail in Ref. [6]. For definiteness,
we treat the discrete variable as a position Q, and the
angle-valued one as a momentum P . Two metrics natu-
rally suggest themselves for either side: For the discrete
variable, say two numbers x, y ∈ Z, we can look at |x−y|,
but we may just as well be interested in the probability
of two numbers coinciding, which is expressed by the
discrete metric 1− δxy. For two angles p, r we may either
measure angle along the unit circle, i.e., |p−r+2πn|, with

Fig. 2 The dots show the dimension dependence of the constant
in (28), for α = ∞, β = 2. The blue line is the asymptotic expan-
sion (35).

n chosen to minimize this expression, or the length of
the chord through the circle, 2| sin(p− r)/2|. The trade-
off curves are readily computed numerically, but there
are few analytic expressions. For example, for the dis-
crete metric on Z (α = 1), the chordal metric for angles
(β = 2) we have

d(ρQ)2 + d(ρP )2
(

4 − d(ρP )2
)

� 1. (36)

5.3 Qudits: Zn × Zn

In this case, the discrete metric is the natural one, espe-
cially when one is interested in quantum information cod-
ing problems. For the discrete metric d(x, x′)α = d(x, x′).
Therefore, changing the error exponent gives no new in-
formation and we take α = β = 1. In this space of dis-
crete distributions on n points,

Δ = 1 − 1/n (37)

is the “radius”, i.e., the distance from the totally mixed
state to a pure state and hence the largest possible vari-
ance. The “diameter”, i.e., the largest distance between
any distributions is 1, attained at a pair of distinct pure
states. It is clear that when the position is sharp, the
momentum has a flat distribution. Therefore, the points
(0,Δ), (Δ, 0) will be in the uncertainty region.

Now d(Q, 0) = 1I − |0〉〈0| and d(Q, 0) = 1I − |φ〉〈φ|,
with the zero-momentum eigenvector φ = n−1/2

∑

j |j〉.
The ground state of (26) is to be found in the
span of |0〉 and |φ〉. Hence, the pairs of expectations
(tr ρd(P, 0), tr ρd(Q, 0)) are an affine image of a qubit
state space and thus lie on an ellipse, joined with the
point (1, 1) for states orthogonal to both |0〉 and |φ〉. The
ellipse fits exactly into the unit square and also contains
the antipodal points (1−Δ, 1) and (1, 1−Δ). This fixes
the trade-off curve (see Fig. 3). The resulting uncertainty
relation is thus for all d(ρP ), d(ρQ) � Δ,

(

d(ρP ) − Δ
)2

+
(

d(ρP ) − Δ
)2

+
(

2 − 4
n

)

d(ρP )d(ρQ)

� Δ2. (38)

In this form it is easy to see that if one uncertainty van-
ishes, the other has to be equal to Δ.

It is interesting to compare this relation, in its version
as a measurement uncertainty relation, with a simple
ansatz for a joint measurement using the idea of ap-
proximate cloning (cf. also Ref. [14]). To this end, we
consider an asymmetric cloner, given by an isometry
V : H → H⊗H⊗H of the form

V φ = aφ⊗ Ω + bΩ ⊗ φ, with

1 = |a|2 + |b|2 + 2�e(ab)/n,
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Fig. 3 The uncertainty region (shaded) for a qudit as described
by (38), drawn for n = 3. The second ellipse inside the region shows
what can be achieved by universal cloning and measuring on the
clones.

Ω = n−1
∑

j

|jj〉. (39)

Thus, V maps systems to three copies of the systems, of
which the middle one is then traced out as an ancilla.
The parameters a, b determine which of the two output
copies is more faithful: When a = 1, the first copy is just
the original system, and the second is completely depo-
larized. This is reversed for a = 0. The distinguishing
feature of this one-parameter family of cloning maps is
the intertwining relation

V U = (U ⊗ U ⊗ U)V (40)

for arbitrary n-dimensional unitary operators. It implies
“universality” in the sense that no direction and no basis
in Hilbert space is singled out.

When F , E are arbitrary full basis projective measure-
ments, we get a joint measurement by

Gx,y = V ∗(Fx ⊗ 1I ⊗ Ey)V. (41)

Its marginals are readily computed to be

F ′
x :=

∑

y

Gx,y = (1 − |b|2)Fx +
|b|2
n

1I. (42)

Thus, F ′ differs from F by the admixture of state inde-
pendent noise with a flat distribution and “probability”
|b|2. Here the quotes are added as a warning that this
may fail to be a proper probability: when ab < 0, we can
have |b|2 > 1. The coefficient of Fx may thus negative,
but the coefficient of the noise term is always positive.
The largest distance between the output distributions of
F and F ′ is achieved at an eigenstate of F . This gives

d(F, F ′) = Δ |b|2. (43)

For position and momentum, we get a joint mea-
surement, which is also covariant because of (40). It
is therefore generated by a density operator, namely
ρF = nV ∗(|0〉〈0|⊗1I⊗|φ〉〈φ|)V . One readily verifies that
this is not pure and hence cannot be optimal. The com-
parison of the uncertainty pairs generated by cloning and
the optimal bound is given in Fig. 3.

This suggests relaxing the intertwining (40) to only
phase space shifts. In this way we arrive at a phase
space covariant cloning device (not to be confused with a
“phase covariant” cloner). Because the phase space struc-
ture is the main theme of this paper, we briefly describe
how to obtain such maps. It turns out to be convenient
to look, not at V , but at an operator ̂V with rearranged
matrix elements, which takes C

n ⊗ C
n to itself, namely

〈jkl|V |i〉 = 〈jl|̂V |ki〉. (44)

One then verifies easily that (40) is equivalent to [U ⊗
U, ̂V ] = 0 and that (41) becomes Gx,y = tr1 ̂V ∗(Fx ⊗
Ey)̂V , where tr1 denotes the partial trace over the first
factor. These relations are only demanded for U =
W (q, p). Therefore, ̂V lies in the algebra spanned by the
Weyl operators commuting with the group of operators
W (q, p) ⊗W (q, p). It is hence a linear combination

̂V =
∑

q,p

u(q, p)W (q, p) ⊗W (−q,−p), (45)

where u(q, p) are suitable complex coefficients. The nor-
malization condition is tr2 ̂V ∗

̂V = 1I, which can by guar-
anteed by adjusting an overall scalar factor, because the
left hand side commutes with all Weyl operators and is
hence a multiple of the identity. For the same reason as in
the case of the universal cloner, the phase space covari-
ant cloner will give a covariant observable. To explore the
possibilities, it suffices to determine the density opera-
tors ρF = nG0,0 obtained by various choices of u. Direct
computation gives (up to irrelevant constant factors)

ρF =
∑

q,p,q′,p′
u(q′, p′)u(q, p) δqq′ |p〉〈p′| =

∑

q

|ψq〉〈ψq|,

(46)

where ψq =
∑

p u(q, p)|p〉 and the kets |p〉 are eigenkets
of momentum. Clearly, we can choose u(q, p) so that the
ψq are the eigenvectors (times the square root of the
eigenvalue) of any density operator we choose. It follows
that every covariant observable can be realized by phase
space covariant cloning.

5.4 Qubit strings: Z
n
2 × Z

n
2

In this case “position” corresponds to the readout in the
computational basis, say the product of the Z eigenbases

Reinhard F. Werner, Front. Phys. 11(3), 110305 (2016) 110305-9



RESEARCH ARTICLE

for every qubit, and “momentum” is the readout in the
product of some conjugate eigenbases, say X . As the dis-
tance function, we take the Hamming distance per qubit:

d(x, x′) =
1
n

n
∑

i=1

|xi − x′i|. (47)

The Hamiltonian is now a many-body operator with non-
commuting terms. However, for large n the two terms
commute approximately, and the ground state problem is
within the scope of mean-field theory, as laid out in Ref.
[15]. The basic result is that the ground state energy is
obtained asymptotically by minimizing instead a classi-
cal function on the one-particle state space. We associate
a “classical Hamiltonian function” with the Hamiltonian
Hαβ(t) on the set of one-particle density matrices ρ1,
namely

(

hαβ(t)
)

(ρ1) =
(

tr ρ1d(P1, 0)
)α

+ t
(

tr ρ1d(Q1, 0)
)β

,

(48)

where P1, Q1 are the one-particle position and momen-
tum, respectively. In the limit n → ∞, the ground state
energy converges to the minimum of this function. We do
not have to compute this minimum explicitly, because we
are only interested in the uncertainty region that it out-
lines. This is given directly by the two terms in (48),
with ρ1 ranging over the one-particle state space. Taking
qubits with X and Z measurements, we parametrize ρ1

by its Bloch sphere coordinates, and find that the bound-
ary curve of the asymptotic uncertainty region PUR∞ is
given by

t �→
(

(1
2
(1 + cos t)

)α
,
(1
2
(1 + sin t)

)β
)

. (49)

This method works for all systems of a large number
of equal copies. We can also use it to get a handle on the
dimension dependence in Section 5.1. Let En(a, b) be the
constants in (29) and (30) with the n-dependence made
explicit. If we set a = n−α/2 and b = n−β/2, the resulting
ground state problem is of the mean field type, and we
get

lim
n
En(a, b) = min

ρ1

{

(

tr ρ1Q
2
1

)α/2 +
(

tr ρ1P
2
1

)β/2
}

= min
v

(

vα/2 + (4v)−β/2
)

= (α+ β) 2−
αβ

α+β α− α
α+β β− β

α+β .

(50)

On the other hand, from (30) we get En(a, b) = n− αβ
α+βE

and hence from (31) we have

En(a, b)=n− αβ
α+β (α+ β)α− α

α+β β− β
α+β cαβ(n)

αβ
α+β . (51)

Combining this we get the remarkably simple result that

lim
n
cαβ(n)

2
n

= 1, for all α, β � 1. (52)
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