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1 Introduction

It has proved surprisingly difficult to construct N=4 superconformal mechanics for more

than three particles [1]–[10].1 The Hamiltonian (or the action) of such models is deter-

mined by two scalar prepotentials, F and U , which are functions of the bosonic parti-

cle coordinates {xi} and obey two nonlinear differential equations, namely the celebrated

WDVV equation for F and a Killing-type equation for U in the F background. On top

of this, conformal invariance imposes some homogeneity conditions on U ′ and F ′′′. Each

solution to all equations produces a consistent many-particle model.

In the one dimension (time) of mechanical systems, four supercharges implies invari-

ance under the exceptional superalgebraD(2, 1;α), for some value of the real parameter α.2

For the special cases of D(2, 1; 0) ≃ su(1, 1|2) B su(2) and D(2, 1; 1) ≃ D(2, 1;−1
2 ) ≃

osp(4|2) some results were obtained [8, 9]. On the one hand, by gauging the U(n) isometry

of matrix superfield models, one can construct U(2) spin-extended mechanics for arbitrary

values of α [8, 14]. However, the particle coordinates parametrize a non-flat target space,

except for α=− 1
2 , i.e. the osp(4|2) case. On the other hand, for α=0 a superspace approach

produced an alternative formulation, which allowed for the construction of a few nontrivial

1For recent results on three-particle systems, see [11]. In principle, one may add also harmonic poten-

tials [12].
2Permuting the three sl(2) subalgebras of D(2, 1; α) relates α ↔ −1−α ↔

1

α
↔

−1−α
α

↔
−1

1+α
↔

−α
1+α

[13].
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four-particle solutions [9]. In this case, the ‘structure equations’ (writing W instead of U

here) can be cast in the form [10]

F̂ ∧ F̂ = 0 and (d̂ − F̂ ) |W 〉 = 0 , (1.1)

with the shorthand notation (i, j, k, . . . label the particles)

F̂ = dxkF̂k =
(
dxkFijk

)
, d̂ = dxk∂̂k =

(
dxk∂kδij

)
and |W 〉 =

(
Wi

)
(1.2)

packaging the derivatives of F and W in a matrix-valued one-form and a (ket) vector,

respectively. The question remains whether it is possible to construct D(2, 1;α) invariant

models with more than three particles for other values of α and perhaps without a spin

extension.

In this paper we answer this question in the affirmative. By introducing just a single

set of bosonic spin variables {ua, ūa| a=1, 2} with Poisson brackets

{
ua, ūb

}
= −i δa

b and su(2) currents Jab = i
2

(
uaūb + ubūa

)
, (1.3)

we slightly generalize the ansatz of [6] for the supersymmetry generators. As a consequence,

the structure equations (for any α) get modified to

F̂ ∧ F̂ = 0 and (d̂ − F̂ ) |U〉 = (d̂U) |U〉 , (1.4)

where |U〉 =
(
Ui

)
is distinguished from |W 〉. The WDVV equation is unchanged, and

the integrability of the Killing-type equation still yields (F̂ ∧ F̂ )|U〉 = 0. Despite being

nonlinear, the new term on the right-hand side is not a nuisance but actually a benefit,

because it greatly enhances the solvability of the equation! In addition, one still has (α-

dependent) homogeneity conditions for F and U . The new spin variables appear in the

Hamiltonian merely via its su(2) currents Jab.

Since we aim at describing a collection of identical particles, we are not interested

in arbitrary solutions of (1.4), but only those which are invariant under permutations of

the particle labels. We do allow for translation non-invariance, however, because of the

canonical relation between a translation-invariant system of n+1 particles to the reduced

n-dimensional system of their relative coordinates, after decoupling the center of mass. In

the next section, we derive the generic formulae for our new models, present the universal

ansatz for F and U in terms of a collection of (co)vectors and their orbits under the

permutation group and outline our strategy for solving (1.4). The following four sections

present our explicit solutions (F,U) for the A-type, BCD-type, EF -type and non-Coxeter-

type series of known WDVV configurations F . There exist families of solutions as well as

sporadic ones. Finally, we conclude with a summary and some observations. All irreducible

four-particle solutions are collected in an appendix.

2 D(2, 1; α) invariant many-particle system

We consider n+1 particles on a real line, with (bosonic) coordinates and mo-

menta {xi, pi| i=1, . . . , n+1} as well as associated complex pairs of fermionic variables
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{ψa
i , ψ̄ai| i=1, . . . , n+1, a=1, 2}.3 In addition, we introduce one set of (bosonic) spin vari-

ables {ua, ūa| a=1, 2} parametrizing an internal two-sphere. The basic Poisson brackets

read {
xi, pj

}
= δij ,

{
ψa

i , ψ̄bj

}
= i

2δ
a
bδij ,

{
ua, ūb

}
= −i δa

b . (2.1)

We would like to realize the N=4 superconformal algebra D(2, 1;α) on the (classical) phase

space of this mechanical system, thereby severely restricting the particle interactions. It is

convenient to start with an ansatz for the supercharges Qa and Q̄a. Previously [6], they

were chosen (in our normalization) as

Qa = piψ
a
i + iWi(x)ψ

a
i + iFijk(x)ψ

b
iψbjψ̄

a
k ,

Q̄a = piψ̄ai − iWi(x)ψ̄ai + iFijk(x)ψ̄biψ̄
b
jψak (2.2)

with Fijk being totally symmetric. This ansatz was successful for the algebra D(2, 1; 0) ≃
su(1, 1|2) B su(2) with a central charge C, upon solving some integrability conditions for

Wi and Fijk including the celebrated WDVV equation [15, 16]. However, it turned out to

be very hard to generate explicit solutions for Wi beyond three particles [9].

Here, we utilize the spin variables to slightly generalize this ansatz to

Qa = piψ
a
i + Ui(x)J

abψbi + iFijk(x)ψ
b
iψbjψ̄

a
k ,

Q̄a = piψ̄ai − Ui(x)Jabψ̄
b
i + iFijk(x)ψ̄biψ̄

b
jψak (2.3)

with the su(2) currents

Jab = i
2

(
uaūb + ubūa

)
⇒

{
Jab, Jcd

}
= −ǫacJbd − ǫbdJac . (2.4)

The spin variables just serve to produce these currents and do not appear by themselves.

Let us try to build the D(2, 1;α) algebra based on (2.3). Firstly, the N=4 super-

Poincaré subalgebra

{
Qa, Qb

}
= 0 and

{
Qa, Q̄b

}
= 2i δa

bH (2.5)

defines a Hamiltonian H and enforces the following conditions on our functions Vi and Fijk,

∂iUj − ∂jUi = 0 , ∂iFjkl − ∂jFikl = 0 , (2.6)

FkimFmjℓ − FkjmFmiℓ = 0 , (2.7)

−∂iUj + UiUj + FijkUk = 0 . (2.8)

The integrability conditions (2.6) are solved by

Ui = ∂iU and Fijk = ∂i∂j∂kF (2.9)

3Viewed as a one-particle system, the bosonic target is R
n+1. Its metric (δij) allows us to pull down

all particle indices. Spinor indices are raised and lowered with the invariant tensor εab and its inverse εba,

respectively.
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with two scalar prepotentials F (x) and U(x), and hence we read subscripts on U and F

as derivatives.4 Thus, the other two conditions become nonlinear differential equations

for F (x) and U(x), whose solutions define the various possible models. With the above

conditions fulfilled, the Hamiltonian acquires the form

H = 1
4pipi + 1

8J
abJab UiUi − iUij J

ab ψaiψ̄bj − 1
2Fijkℓ ψ

a
i ψaj ψ̄bkψ̄

b
ℓ . (2.10)

One may check that [H,JabJab] = 0, and thus the Casimir JabJab =: g2 appears as a

coupling constant in the bosonic potential

V = g2

8 UiUi . (2.11)

Secondly, for the full D(1, 2;α) superconformal invariance one has to realize the addi-

tional generators. This can be done via

D = −1
2xipi , K = xixi , Sa = −2xiψ

a
i , S̄a = −2xiψ̄ai , (2.12)

together with two sets of composite su(2) currents,

J ab = Jab + 2iψ
(a
i ψ̄

b)
i and I11 = iψa

i ψai , I22 = −iψ̄aiψ̄
a
i , I12 = iψa

i ψ̄ai , (2.13)

in the notation of [14]. Now, dilatation invariance requires homogeneity,

(xi∂i + 1)Uj = ∂j(xiUi) = 0 and (xi∂i + 1)Fjkℓ = ∂j(xiFikℓ) = 0 . (2.14)

Thirdly, the remaining superalgebra commutators only fix the integration constants to

xiUi = 2α and xiFijk = −(1+2α) δjk ⇒ (xi∂i − 2)F = −1
2(1+2α)xixi . (2.15)

It is instructive to compare our equations with the ones obtained in [6] with the

ansatz (2.2) for the case of α=0. The integrability condition (2.6) and the WDVV equa-

tion (2.7) emerged there as well, but the Killing-type equation lacked the term quadratic

in U . Still, we may map our equation to theirs by defining

W = e−U ⇒ Wij − FijkWk = 0 . (2.16)

The inhomogeneities of U and Fjk are also related: At α=0 we may introduce a central

charge C by extending the first equation of (2.15) to

xiUi = C eU ⇔ xiWi = −C . (2.17)

Here, U ≡ 0 is an option via C=0, but not so for α6=0.

For α6=0, no central charge is allowed, and the prepotentials take the form

U(x) ∼ α lnx2 + U0(x) and F (x) ∼ −1
4 (1+2α)x2 lnx2 + F0(x) , (2.18)

where U0 and F0 are homogeneous of degree 0 and 2, respectively. Clearly, the prepoten-

tials F for any two values of α are related by a mere rescaling as long as α6=−1
2 . The

4Note that U(x) and F (x) are defined only up to polynomials of degree zero and two, respectively.
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mathematical literature usually does not introduce a euclidean metric δjk but defines an

induced metric Gjk = −xiFijk which is constant and nondegenerate. Hence, for any α6=−1
2

we can import all known WDVV solutions [17]–[21] up to constant coordinate transforma-

tions. The special case of D(2, 1;− 1
2) ≃ D(2, 1; 1) ≃ osp(4|2) only appears as a singular

limit, where F can no longer be ‘normalized’ via (2.15) and the induced metric degenerates.

A global SO(n+1) coordinate transformation does not change the structure of a given

model but its physical interpretation, since xi denote the particle locations. For a system of

identical particles in the absence of an external potential we should also demand invariance

under permutations of the xi as well as global translation invariance, xi → xi+ξ. The latter

is related to the decoupling of the (free) center-of-mass motion. Introducing center-of-mass

and relative coordinates

X =
∑

ixi =: ρ · x and x⊥i = xi − 1
n+1X so that

∑
ix

⊥
i = 0 , (2.19)

we can project out the center-of-mass degree of freedom with

P ‖ = 1
n+1 ρ⊗ ρ and P⊥ = 1

n+1




n −1 ... −1
−1 n ... −1
...

...
. . .

...
−1 −1 ... n



 . (2.20)

One finds that

U(x) = U⊥(x⊥) and F (x) = F ‖(X)+F⊥(x⊥) with F ‖ = −1
4

1+2α
n+1 X

2 lnX2 , (2.21)

and our equations (2.6)–(2.8) are also valid for U⊥ and F⊥, while (2.15) projects to

xiU
⊥
i =2α and xiF

⊥
ijk =−(1+2α)P⊥

jk ⇒ (xi∂i − 2)F⊥ =−1
2(1+2α)xP⊥x , (2.22)

because
∑

i U
⊥
i = 0 and

∑
i F

⊥
ijk = 0.

However, the set {x⊥i } is linearly dependent. In order to select n independent relative

coordinates, one should apply an SO(n+1) transformation which rotates ρ = (1, 1, . . . , 1, 1)

to (0, 0, . . . , 0,
√
n+1). A possible (but by no means unique) choice for the resulting relative

coordinates y = {yi| i = 1, . . . , n} is




y1

y2

...

yn

y0





=





1√
1·2

−1√
1·2 0 . . . 0

1√
2·3

1√
2·3

−2√
2·3 . . . 0

...
...

...
. . .

...

1√
n·(n+1)

1√
n·(n+1)

1√
n·(n+1)

. . . −n√
n·(n+1)

1√
n+1

1√
n+1

1√
n+1

. . . 1√
n+1









x1

x2

...

xn

xn+1





, (2.23)

where the center of mass yn+1 ≡ y0 = 1√
n+1

X has been added again. Any global SO(n)

rotation of the yi yields an equivalent description. The relative-coordinate parametrization

of our n+1-particle model in terms of yi offers a second interpretation, by reading the yi

as the absolute coordinates of an n-particle system without translation invariance. By a

slight abuse of notation, we denote

U⊥(
x⊥(y)

)
= U(y) and F⊥(

x⊥(y)
)

= F (y) . (2.24)
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Surely, it is also possible to ‘oxidize’ an n-particle system without translation invariance

to a translation-invariant n+1-particle system, by adding a y0 coordinate and embedding

into R
n+1 via (2.23). Since the WDVV equation trivializes for n ≤ 2, it is relatively easy

to write down translation-non-invariant two-particle models or translation-invariant three-

particle models. In fact, there is a functional freedom in the choice [9]. Therefore, in this

paper we concentrate on the nontrivial cases of n ≥ 3.

All known WDVV solutions are of the form 5

F (x) =
∑

β

fβ K(β·x) with fβ ∈ R and β·x = βixi , (2.25)

where the sum runs over a collection {β} of p non-parallel (co)vectors, and the function K

is universal up to a quadratic polynomial,

K ′′′(z) = −1

z
⇒ K(z) = −1

4z
2 ln z2 in the rational case , (2.26)

K ′′′(z) = − cot z ⇒ K(z) = −1
4Li3(e

2iz) + i
6z

3 in the trigonometric case , (2.27)

K ′′′(z)=− ϑ′1(
z
π
|τ)

π ϑ1(
z
π
|τ) ⇒ K(z) = −1

4Li3(e2iz |τ) in the elliptic case , (2.28)

where Li3 is the trilogarithm and Li3 an elliptic generalization [23]–[26]. For the prepoten-

tial U we make an ansatz which matches the form of F ,6

U(x) =
∑

β

uβ L(β·x) with uβ ∈ R and L′(z) = −K ′′′(z) , (2.29)

thus

Lrat = 1
2 ln z2 , Ltri = 1

2 ln sin2z , Lell = lnϑ1(
z
π
|τ) . (2.30)

Note that not all vectors from {β} need to appear in F or U , because some fβ or uβ

may vanish. For illustration, we have given the ‘universal functions’ K and L also for the

trigonometric and elliptic models. However, the normalization conditions (2.15) imposed

by conformal invariance can only be satisfied in the rational case, and this is the only one

treated in this paper. Then, the normalizations (2.15) translate into simple conditions for

the coefficients uβ and fβ,

∑

β

uβ = 2α and
∑

β

fβ βjβk = (1+2α) δjk ⇒
∑

β

β2 fβ = (1+2α)n , (2.31)

and the bosonic potential becomes

V (x) = g2

8

∑

β,γ

uβuγ
β · γ

β·x γ·x . (2.32)

5We disregard here the possibility of ‘radial’ terms, where the argument of K is
p

P

i x2
i or

q

P

i<j(xi−xj)2 [6, 22].
6This may be very restrictive, as the solutions found in [9] demonstrate.
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We can actually employ the Killing-type equation (2.8) to solve for uβ in terms of fβ.

When inserting the forms (2.25) and (2.29) into (2.8), the vanishing of each double pole

(β·x)−2 yields

uβ(uβ+1) = β2fβ uβ ⇒ uβ = 0 or uβ = β2fβ − 1 (2.33)

for each (co)vector β, with β2 ≡ β·β. Inserting this into the ‘sum rule’ (2.31) for uβ , we

obtain a second necessary condition for {fβ}, namely
∑

β

δβ (β2fβ − 1) = 2α with δβ ∈ {0, 1} . (2.34)

It restricts the F solutions to those which may admit a U solution as well. However, by

no means it guarantees that the single-pole terms in (2.8) work out as well.

Since we are only interested in permutation-invariant models, we demand that the

collection {β} of p (co)vectors is closed under permutations and that the coefficients fβ

and uβ depend only on the orbit [β] of β. This suggests the notation (with square brackets)

Kn+1[β·x] :=
∑

π

K
(
π(β)·x

)
and Kn[β·y] :=

∑

π

K
(
π(β)·y

)
(2.35)

where the index indicates the particle number, and sum runs over all permutations which

alter ±β. To indicate a particular orbit in the square-bracket argument, we insert a typical

representative and omit the coordinate labels, e.g.

K3[3y−y−y] := K(3y1−y2−y3) +K(3y2−y3−y1) +K(3y3−y1−y2) , (2.36)

and likewise for the function L.

Finally, we comment on our solution strategy for the ‘structure equations’ (2.6)–(2.8).

Guided by the known WDVV solutions [20, 21], we select a (co)vector collection {β},
which gives us F and U via (2.25) and (2.29), with undetermined coefficients fβ and uβ.

Importing from the literature a particular solution for {fβ}, one remains with algebraic

relations for {uβ} which are very intricate, however. Therefore, it is preferable not to

start with some solution F , but to pick a structure only for U via (2.29) and then to

regard the WDVV and Killing-type equations (2.7) and (2.8) as algebraic equations for

the functions Fijk, disregarding their integrability condition for the moment. Beyond three

particles, the (algebraic) WDVV equation (2.7) becomes rather involved. Therefore, as a

detour, we first solve a simpler (linear) equation which follows from it and (2.8), namely7

(Uij − UiUj)Fjkℓ − (Ukj − UkUj)Fjiℓ = 0 . (2.37)

When {Fijk} has been constrained to obey this relation and also (2.8), it is much easier

to completely solve the WDVV equation. In fact, given {β} and {uβ}, one can always

construct a solution {Fijk} in the form

Fijk(x) = −
∑

β

fijk

β·x . (2.38)

7We thank A. Galajinsky for a similar suggestion.
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The crucial point then is the integrability of those functions, i.e.

∂[iFj]kℓ = 0 ⇔ fjkℓ =
∑

β

fβ βjβkβℓ , (2.39)

see (2.6) or (2.9). It is a very restrictive requirement, which in many cases completely

rules out any solution {uβ , fβ}. In other cases, it removes any freedom in these coefficients

(coming from WDVV-solution moduli) and may even fix the value of the parameter α.

3 A-type models

The simplest and most symmetric WDVV solutions take (the positive part of) the An root

system for {β}. The canonical representation lives in R
n+1 in the hyperplane orthogonal

to ρ,

F⊥(x) = 1+2α
n+1 Kn+1[x−x] . (3.1)

Unfortunately, for n > 3 we could not find a U solution, except when

2α = n : F⊥(x) = Kn+1[x−x] and U⊥(x) =

n∑

i=1

L(xi−xn+1) , (3.2)

which is not fully permutation invariant however.

It is known [19] that (3.1) is a special point in an n-parameter family of WDVV

solutions based on particular deformations of the An root system. These deformations

also break the permutation invariance of F⊥, but there exists a one-parameter subfamily

which is permutation symmetric in the relative coordinates yi. Therefore, let us reduce the

description to R
n and search for translation non-invariant n-particle solutions. With the

abbreviations Y =
∑

i yi and δ2 = n+1
1+nt

, the WDVV solution reads

Ft(y) = 1+2α
n+1

{
(1−t)Kn

[
y − y

]
+ 1+nt

n2 Kn

[
(ny − (1+δ)Y ]

}
, (3.3)

where the first term contains an An−1 subsystem and the remaining n roots are deformed

by changing their component in the direction of the subsystems center-of-mass vector

ρ = (1, 1, . . . , 1). As t ∈ [− 1
n
,∞], we cover the four cases

t = − 1
n

t = 0 t = 1 t = ∞
δ = ∞ δ =

√
n+1 δ = 1 δ = 0

An−1 ⊕A1 An An
1 An−1 ⊕ n (3.4)

where n denotes the fundamental (quark) weights of An−1.

Which of these F backgrounds admit a U solution? Permutation invariance applied

to (2.34) leaves us with three options, corresponding to the choices of δβ : U may contain

either only the first type of (co)vectors from (3.3), or only the second type of (co)vectors,

or both. In each case (2.31) yields an equation of the form hn(t, α) = 0. Numerical analysis

reveals that only the second option fully works out,

U(y) = uLn

[
(ny − (1+δ)Y

]
with u = 1−t

1+nt
= 2α

n
. (3.5)

– 8 –
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The corresponding condition from (2.34) is

(1+2α)(nt + 1) = n+ 1 ⇔ t =
1

n

n−2α

1+2α
⇔ 1+2α =

n+1

nt+1
. (3.6)

For t=0 (α=n
2 ) this yields an undeformed An solution where in U only n of the roots

appear:

F0(y) = Kn

[
y − y

]
+ 1

n2 Kn

[
(ny − (1+

√
n+1)Y

]
,

U0(y) = Ln

[
(ny − (1+

√
n+1)Y

]
,

(3.7)

which is the reduced form of (3.2). For n=3 it simplifies to

F0(y) = K3[y − y] + K3[y + y] and U0(y) = L3[y + y] . (3.8)

The limit t → ∞ (δ → 0) deserves special attention, because the induced metric G

degenerates. For this reason, this boundary of the WDVV solution space is normally

excluded in the mathematical literature (see, however, [26]). Also, (3.3) tells us that we

need to tune

1+2α = 0 : F∞(y) ∝ −Kn[y− y] + 1
n
Kn[ny−Y ] and U∞(y) = − 1

n
Ln[ny−Y ] , (3.9)

where the scale of F∞ is undetermined. In this limit, our deformed root system fits in

the hyperplane orthogonal to ρ, thus we recover translation invariance! Therefore, only for

osp(4|2) symmetry we have an n-particle solution which meets all physical requirements.

Its bosonic potential

V (y) =
g2

8

{
∑

i

1

(nyi−Y )2
− 1

n

(∑

i

1

(nyi−Y )

)2
}

(3.10)

however, is not of the Calogero type, because only the fundamental weights contribute to it.

Due to the isometry A3 ≃ D3, the reduction of the A4(∞) solution to R
3 remains

permutation invariant (see the following section),

F∞(y) ∝ −K4[y−y] + 1
4K4[3y−y−y−y] −→ −K3[y±y] + K3[y±y±y] , (3.11)

U∞(y) = −1
4L4[3y−y−y−y] −→ −1

4L3[y±y±y] . (3.12)

One may wonder whether further solutions can be produced by admitting other weights

to the ansätze (2.25) and (2.29). This is not the case, except for n ≤ 4, where accidents

happen due to the existence of F4 and the isometries A3 ≃ D3 and A3 ⊕ 6 ≃ B3. These

cases are more naturally described in the following sections.

4 BCD-type models

The Bn, Cn and Dn root systems do not yield permutation symmetric models in R
n+1, but

are naturally formulated in the relative coordinates yi ∈ R
n. Therefore, we consider the

reduced description, which trades translation invariance for permutation invariance. The

– 9 –
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WDVV equation (2.7) has an n-parameter family of solutions based on deformed BCDn

roots [19],

Ft,~s(y)=
1+2α

2(s2−δ2)

{∑

i<j

Kn

(
sjyi±siyj

)
+ 2

∑

i

Kn

(√
s2i−δ2 yi

)}
with δ2 =

1−nt
1−t , (4.1)

where t, si ∈ R for i = 1, . . . , n, and one parameter is redundant. To retain permutation

symmetry, we keep the roots undeformed, si = 1, but allow t to vary, so that

Ft(y) = lim
si→1

Ft,~s(y) = (1+2α)
{

1−t
2n−2 Kn[y±y] + tKn[y]

}
. (4.2)

By changing the parameter t, we reach four special cases in BCDn(t):

t = 0 t = 1
2n−1 t = 2

n+1 t = 1

Dn Bn Cn An
1 (4.3)

Similarly to the An(t) deformation, it turns out that most U solutions carry only the

short roots. For this case, (2.34) yields the relation8

(1+2α)(nt− 1) = n− 1 ⇔ t =
1

n

n+2α

1+2α
⇔ 1+2α =

n−1

nt−1
, (4.4)

which may be used to fix t = t(α) in the solution

F (y) = 1
n

{
αKn[y±y] + (n+2α)Kn[y]

}
and U(y) = 2α

n
Ln[y] . (4.5)

Again, only n of the roots appear in U . Of course, we may instead fix α = α(t) and read

off solutions for

Bn : 1+2α = 1−2n ⇒ F (y) = −Kn[y±y] −Kn[y] and U(y) = −2Ln[y] , (4.6)

Cn : 1+2α = 1+n ⇒ F (y) = 1
2Kn[y±y] + 2Kn[y] and U(y) = Ln[y] , (4.7)

Dn : 1+2α = 1−n ⇒ F (y) = −1
2Kn[y±y] and U(y) = −Ln[y] , (4.8)

where the Dn case employs the vector weights (v) in U .

For n=4 the triality automorphism T of D4 generates additional solutions from the

ones above, via





y1

y2

y3

y0




T7−→ 1

2





1 −1 −1 −1

1 −1 1 1

1 1 −1 1

1 1 1 −1









y1

y2

y3

y4




with T 3 = −1 , (4.9)

under which the vector (v), spinor (s) and conjugate spinor (c) representations get cycled

around. This allows us to find a couple of further solutions, in which U carries incomplete

Weyl orbits of roots. Since the fully deformed WDVV solution (4.1) breaks the Weyl

8It is remarkable that this BCDn(t) relations is obtained from the An(t) relation (3.6) by n → −n.
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symmetry of the Bn system, we may ignore it even in the limit si → 1. Making use of this

freedom, we single out y1 and find the n=4 solutions

1+2α = 6 : F (y) = K4[y±y] and U(y) = L4[y1±y] − L4(y1) , (4.10)

1+2α = 7 : F (y) = K4[y±y] +K4[y] and U(y) = L4[y1±y] , (4.11)

where [y1±y] stands for {y1±y2, y1±y3, y1±y4}. Acting with a triality transformation (4.9),

we obtain two permutation-invariant solutions with p=13 and p=16, respectively:

1+2α = 6 : F (y)=K4[y±y] and U(y)=L4[y+y] − L4(Y ) , (4.12)

1+2α = 7 : F (y)=K4[y±y] + 1
4K4[y+y±y±y]+ and U(y)=L4[y+y] , (4.13)

where [. . .]+ indicates an even number of minuses in the bracket.

The case of n=3 is also special. For α=1 it admits an isolated additional solution,

F (y) = 2
3 K3[y±y] + 1

3 K3[y] and U(y) = 1
3 L3[y±y] . (4.14)

Due to the isomorphy D3 ≃ A3, the oxidation of the BCD3 models to R
4 can be made

permutation invariant, by reading the D3 weights as A3 weights. With an SO(3) rotation

built from the triality map (4.9), the explicit coordinate relation reads (y4 ≡ y0)

yi = Tij xj , (4.15)

and we obtain the following translation scheme,

representation 4 6 15 45 64 · · ·
length of orbit 4 3 6 12 12 · · ·
argument [β·y] [y±y±y] [y] [y±y] [2y±y±y] [2y±y] · · ·
argument [β·x] 1

2 [3x−x−x−x] 1
2 [x+x−x−x] [x−x] [2x−x−x] 1

2 [3x−3x+x−x] · · · (4.16)

By oxidizing the 15 and 6 weights and usingKn[λβ·x] ≃ λ2Kn[β·x] and Ln[λβ·x] ≃ Ln[β·x],
we can formulate translation-invariant BCD3 models,

any α: F⊥(x)= α
3K4[x−x] − 3+2α

12 K4[x+x−x−x] and U⊥(x)= 2α
3 L4[x+x−x−x] , (4.17)

α=1 : F⊥(x)= 2
3K4[x−x] + 1

12K4[x+x−x−x] and U⊥(x)= 1
3L4[x−x] . (4.18)

Note that only the last model, which is invariant under D(2, 1; 1) ≃ osp(4|2), gives rise

to a Calogero potential V . Some Dn spinor weights occur in further solutions, but these

are more naturally obtained within the F -type models, which derive from E8 and are

discussed next.

5 EF -type models

Further WDVV solutions are based on the root systems of the exceptional simple Lie

algebras. For rank n > 2, they can all be obtained by reducing the E8 system in
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particular ways. Also exceptional deformed root systems appear in this way, as projections

of En or F4(t) along some parabolic subgroup [20].9 Among this variety, we restrict

ourselves to permutation-symmetric models for physical reasons. This leaves us with the

following possibilities.

With p=120 (co)vectors the E8 system is the largest exceptional one,

F (y)± = 1+2α
30

{
K8[y±y] + 1

4K8[y+y+y+y±y±y±y±y]±
}
, (5.1)

where the ‘±’ subscript indicates an even or odd number of minuses. The two solutions are

related by the standard spinor helicity flip. The E7 system with p=63 is more naturally

formulated as a translation-invariant eight-particle model,

F⊥(x) = 1+2α
18

{
K8[x− x] + 1

4K8[x+x+x+x−x−x−x−x]
}
. (5.2)

E6 is not permutation symmetric. Neither case allows for a U solution, so no such mod-

els exist.

Therefore, we pass to the Fn series as defined in [20] by the projection of the E8 system

along its D8−n subgroup, for n = 3, 4, 5, 6. First, F6 ≃ (D8, A
2
1) with p=68 yields

F (y) = 1+2α
30

{
K6[y±y] + 4K6[y] +

1
2K6[y+y+y±y±y±y]

}
, (5.3)

2α+1 = 15 : U(y)± = L6[y] + 1
2L6[y+y+y±y±y±y]± , (5.4)

with the same notation as above. Second, F5 ≃ (E8, A3) has p=41 and produces

F (y) = 1+2α
30

{
K5[y±y] + 6K5[y] +K5[y+y+y±y±y]

}
, (5.5)

2α+1 = 15
2 : U(y) = 1

2L5[y] + 1
4L5[y+y+y±y±y] . (5.6)

In the next reduction step, we meet (E8,D4) ≃ F4 with p=24 (co)vectors, which as a

Lie algebra with two Weyl orbits allows for a one-parameter deformation F4(t),

Ft(y) = (1+2α)
{

1−t
6 K4[y±y] + t

3K4[y] + t
12K4[y+y±y±y]

}
. (5.7)

It is invariant under the exchange of its two D4 subsystems while t→ 1−t. Special values

of t are

t = 0 t = 1
3 t = 1

D4 F4 D′
4

p=12 p=24 p=12 (5.8)

where the D4 and D′
4 systems are formed by the long and short roots of F4, respectively.

The three types of roots allow for more options in U than was the case in the An or BCDn

9Non-crystallographic Coxeter root systems do not produce permutation-invariant systems.
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models. On the corresponding curves hn(t, α) = 0, howver, only isolated U solutions

occur:10

1+2α = −3 & t = 0 : U(y) = −L4[y] or − L4[y+y±y±y]± , (5.9)

1+2α = +5 & t = 1
5 : U(y) = 1

3L4[y±y] , (5.10)

1+2α = +5 & t = 4
5 : U(y) = 1

3L4[y] +
1
3L4[y+y±y±y] , (5.11)

1+2α = +9 & t = 2
3 : U(y) = L4[y] + L4[y+y±y±y]± or L4[y+y±y±y] . (5.12)

The three solutions in the first line and also in the fourth one are related by triality (the

very first solution occurred already under D4). The D4↔D′
4 flip applied to lines one or

four yields permutation non-invariant configurations (which we ignore here), but relates

the solutions in the second and third lines, which are triality invariant by themselves.

The final reduction yields the F3(t) family with p=13 and

Ft(y) = (1+2α)
{

1−t
6 K3[y±y] + 1

3K3[y] + t
6K3[y±y±y]

}
, (5.13)

which connects the BCD3(t) family to the A4(t) one,

t = 0 t = 1 t = ∞
BCD3(

1
3 ) D(2, 1;α) A4(∞) = A3 ⊕ 4

p=9 p=7 p=10 (5.14)

In this case, U solutions occur in two subfamilies and one sporadic case:

(1+2α) t = 3 : U(y) = 2α−2
3 L3[y] + 1

2L3[y±y±y] , (5.15)

(1+2α)(2t−1) = 3 : U(y) = α
2L3[y±y±y] , (5.16)

t = 1
5 & 1+2α = 5 : U(y) = 1

3L3[y±y] + 2
3L3[y] . (5.17)

Indeed, at (t=0 , 1+2α=∞) the first family matches to the BCD3(
1
3 ) solution, and at

(t=∞ , 1+2α=0) the second family agrees with the A4(∞) one. Employing the embed-

ding (4.15) and the subsequent translation list, we can oxidize these systems to translation-

10We do expect families of solutions whose generic members, however, will not be permutation invariant.

The corresponding curves are (1+2α)(4t−3) = 9, (1+2α)(4t−3) = −11, (1+2α)(4t−1) = 11 and

(1+2α)(8t−3) = 21, respectively.
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invariant four-particle models,11





F⊥(x) = α−1

3 K4[x−x] + 1+2α
12 K4[x+x−x−x] + 1

8K4[3x−x−x−x]
U⊥(x) = 2α−2

3 L4[x+x−x−x] + 1
2L4[3x−x−x−x]

, (5.18)





F⊥(x) = α−1

6 K4[x−x] + 1+2α
12 K4[x+x−x−x] + 2+α

24 K4[3x−x−x−x]
U⊥(x) = α

2L4[3x−x−x−x]
, (5.19)





F⊥(x) = 2

3K4[x−x] + 5
12K4[x+x−x−x] + 1

24K4[3x−x−x−x]
U⊥(x) = 1

3L4[x−x] + 2
3L4[x+x−x−x]

. (5.20)

6 Non-Coxeter-type models

It is known that the root systems of some Lie superalgebras also give rise to WDVV so-

lutions [20, 27]. Of interest are one-parameter deformations of AB(1, 3) and G(1, 2) and

a two-parameter deformation of D(2, 1;α). The AB(1, 3) family admits two inequivalent

reductions to n=3, one of which yields a permutation-symmetric solution with p=10:

Ft(y)=
1+2α

27(t2+1)

{
9K3[y−y]+K3[ty+ty−2ty+2wY ]+2K3[ty+ty−2ty−wY ]+ 9

2(t2−1)K3[Y ]
}

(6.1)

with w2 = 1
4(t2+3) for t ∈ R+. At t=1 there exists a full solution for (F,U):

1+2α = 6 : F (y) = K3[y±y] + 2K3[y] and U(y) = L3[y+y] +L3[y]−L3[Y ] . (6.2)

We know of no other non-Coxeter-type permutation-invariant solutions.

7 Conclusions

By adding to the particle coordinates and their superpartners a single harmonic variable

(parametrizing a two-sphere), we have overcome the technical barrier for constructing N=4

superconformal mechanics models with more than three particles. The structure equations

determining the two prepotentials F and U admit simple solutions based on deformed

root systems, for an arbitrary number of particles and for the superconformal symmetry

algebra D(2, 1;α) at any value of α. We have restricted ourselves to permutation-invariant

prepotentials and performed a numerical survey of all permutation-symmetric (deformed)

root configurations, with and without translation invariance.

In each moduli space of WDVV solutions F based on a deformed An or BCDn root

system, we have identified a permutation-invariant one-parameter (t) subfamily. It turns

out that the solutions of the Killing-type equation for the second prepotential U in the

11For α=0, the first one yields a C=0 four-particle solution to (2.16), W = e−U =
Q

(x+x−x−x)2/3
×

Q

(3x−x−x−x)−1/2 in obvious notation, which was missed in [9].
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background of a given WDVV solution F live on a curve hn(t, α) = 0 in the (t, α) plane.

The An(t=∞) model, built on the roots and fundamental weights of An−1, is degenerate

but distinguished by its translation invariance. Since hn(∞,−1
2 ) = 0, this solution exists

only for the osp(4|2) case. Also, its bosonic potential is not of Calogero-type. All other

solutions lack translation invariance. Of course, one may reinterpret their variables as

relative particle coordinates and add the center of mass to reclaim translation invariance,

but permutation symmetry will usually be lost in the new variables.

An exception occurs at n=3 because of the A3 ≃ D3 isometry. Inside the F3 family

(with parameter t) of WDVV solutions (a reduction of the F4 family), we have identified

two curves h
(1,2)
3 (t, α) = 0 and one isolated point (t̂, α̂) for U solutions. The corresponding

models all lift to translation-invariant four-particle systems. For the n>3 exceptional root

systems (F4 and En and reductions thereof) and also for some super root system (a re-

duction of AB4), only sporadic solutions for particular values of α and without translation

invariance occur. We did not discuss the n=2 systems, because (for α=0) they have already

been investigated thoroughly and are much less restrictive. We have also constructed some

solutions for the trigonometric case, but not displayed them here.

Obviously lacking is a geometrical understanding of the ‘zoo’ of solutions. It would be

nice to find sufficient conditions on α or on (t, α) for the existence of U solutions in a given

F background. This may become more transparent if the requirement of permutation

symmetry is dropped, so that further (F,U) solutions can be revealed. Although this

requirement is physically reasonable (and this only for the full translation-invariant system),

it is mathematically unnatural. Perhaps a superspace reformulation of our models will shed

more light on this question.
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A Irreducible four-perticle solutions

For an overview of the ‘zoo’ of irreducible n=3 solutions, we collect them all,

namely (3.8), (4.5), (4.14), (5.15)–(5.17) and (6.2), in table 1. Except for the first

and last lines, all systems can be ‘oxidized’ to translation-invariant four-particle models,

see (4.17), (4.18) and (5.18)–(5.20).

– 15 –



J
H
E
P
0
2
(
2
0
1
1
)
0
4
2

coefficients f[β] for [β] = . . .
︷ ︸︸ ︷

coefficients u[β] for [β] = . . .
︷ ︸︸ ︷

system α [y−y] [y+y] [y] [y±y±y] [Y ] [y−y] [y+y] [y] [y±y±y] [Y ]

A3(0)
3
2 1 1 0 0 0 0 1 0 0 0

A4(∞) −1
2 −λ −λ 0 λ 0 0 0 0 −1

4 0

BCD3 α α
3

α
3

2α+3
3 0 0 0 0 2α

3 0 0

BCD3(
5
9) 1 2

3
2
3

1
3 0 0 1

2
1
2 0 0 0

F
(1)
3 α α−1

3
α−1

3
2α+1

3
1
2 0 0 0 2α−2

3
1
2 0

F
(2)
3 α α−1

6
α−1

6
2α+1

3
α+2

6 0 0 0 0 α
2 0

F3(
1
5 ) 2 2

3
2
3

5
3

1
6 0 1

3
1
3

2
3 0 0

AB3(1)
5
2 1 1 2 0 0 0 1 1 0 −1

Table 1. Irreducible n=3 solutions (F,U).
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