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Abstract
Hironaka’s characteristic polyhedron is an important combinatorial object reflecting the 
local nature of a singularity. We prove that it can be determined without passing to the 
completion if the local ring is a G-ring and if additionally either it is Henselian, or a certain 
polynomiality condition (Pol) holds, or a mild condition (*) on the singularity holds. For 
example, the latter is fulfilled if the residue field is perfect.

Keywords Singularities · Polyhedra · Hironaka’s characteristic polyhedron · Excellent 
rings

1 Introduction

Let (R,M, k = R∕M) be a regular local ring, J ⊂ R be a non-zero ideal and (u) = (u1,… , ue) 
be a regular R-sequence which is a regular (R/J)-sequence. In [15], Hironaka associates a 
polyhedron Δ(J;u) to this situation, the so called characteristic polyhedron of (J; u), which 
is an important tool for the study of singularities. (We refer to Sect. 1 for a detailed def-
inition). It appears in his proof for resolution of singularities of excellent hypersurfaces 
of dimension two [17] and also in the generalization to the case of arbitrary two dimen-
sional excellent schemes by Jannsen, Saito and the first named author [3], see also [10] and 
the first named author’s contribution in [2]. Moreover, in [22] the second named author 
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shows that the invariant introduced by Bierstone and Milman in order to give a proof for 
constructive resolution of singularities in characteristic zero can be purely determined by 
considering certain polyhedra, which are closely connected to Hironaka’s polyhedron and 
its projections. In [20], Mourtada and the first named author provide a characterization 
of quasi-ordinary hypersurfaces (defined over algebraically closed fields of characteristic 
zero) which involves re-embedding of a singularity constructed via a weighted version of 
Hironaka’s characteristic polyhedron. Furthermore, the characteristic polyhedron plays an 
essential role in recent work by Piltant and the first named author [5, 6, 8] on the resolution 
of singularities of (arithmetic) threefolds.

Let (y) = (y1,… , yr) be a system of elements in R extending (u) to a regular system of 
parameters for R. Every g ∈ M has a finite expansion

with coefficients CA,B ∈ R× ∪ {0} (see [8] Proposition  2.1). If we have g ∉ ⟨u⟩ , then 
� ∶= n(u)(g) ∶= inf{|B| ∣ C0,B ≠ 0} is a positive integer and the polyhedron associated to 
(g, u, y) , denoted by Δ(g;u;y) , is defined as the smallest closed convex set containing all 
points of the set (which may be empty)

Let (f ) = (f1,… , fm) be a (u)-standard basis for J (which is a particular system of genera-
tors, for which we have fi ∉ ⟨u⟩ in particular, see Definition 1.5). The polyhedron associ-
ated to (f, u, y) , denoted by Δ(f ;u;y) , is defined as the smallest closed convex set contain-
ing 

⋃m

i=1
Δ(fi;u;y) . One has Δ(f ;u;y) ⊇ Δ(J;u) and a natural questions arising is whether it 

is possible to obtain equality.
Suppose (y) determines the directrix of J� ∶= J ⋅ R∕⟨u⟩ (which is a technical condition 

that we explain below in more details). In this situation, Hironaka proves that one can mod-
ify a given (u)-standard basis (f ) = (f1,… , fm) for J and the system (y) in a systematic way 
such that for the resulting elements (̂f ;̂y) , we have

More precisely, (̂f ) and (̂y) are constructed by the process of “vertex preparation”. This pro-
cedure consists of two parts which are applied alternately: normalization of given genera-
tors and solving vertices of the associated polyhedron. While the first one concerns certain 
good choices of the generators, the latter are translations of the system (y) .

In general, solving vertices is not finite, see Example 1.26, and hence it may become 
necessary to pass to the completion of R. The goal of the present article is to investigate 
under which assumptions on (J,  R,  u) we may determine the characteristic polyhedron 
without having to pass to the completion.

In [7], Piltant and the first named author show that one can attain Hironaka’s character-
istic polyhedron if R is a G-ring, J is principal, and r = 1 . (Note that a regular local ring R 
is a G-ring if and only if R is excellent, by [7] Lemma 3.1, which we recall in Lemma 2.1). 
This turns out to be an essential tool in their proof for resolution of singularities in dimen-
sion three (see [8] Proposition 2.4). Therefore having in mind the goal of constructing an 
embedded resolution of singularities it is natural to ask whether this is true in a more gen-
eral situation.

g =
∑

(A,B)∈ℤe+r
≥0

CA,Bu
AyB

{
A

𝜈 − |B|
|||| CA,B ≠ 0 ∧ |B| < 𝜈

}
+ℝ

e
≥0
.

Δ(̂f ;u;̂y) = Δ(J;u) = Δ(JR̂;u).
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Let us provide more details for stating the precise results. Let us fix some technical 
notation. Set

Let (y) = (y1,… , yr) be a system of elements in R extending (u) to a regular system of 
parameters for R. The associated graded ring of R′ is

where Yj ∶= yj mod M�2 and yj ∶= yj mod ⟨u⟩ ∈ R� , for 1 ≤ j ≤ r.
Consider g ∈ J . Denote by n(u)(g) the order of g = g mod ⟨u⟩ at the ideal M′ . We define 

inM� (g) ∶= g mod (M�)n(u)(g)+1 , if g ≢ 0 , and inM� (g) ∶= 0 if g ≡ 0 . Let Cu(J) be the tan-
gent cone of J′ with respect to M′ , i.e., Cu(J) is the cone defined by the homogeneous ideal

The directrix Dir(C) of the cone C ∶= Cu(J) ⊂ Spec(grM� (R�)) ≅ �r
k
 (or, more generally, 

of any cone) is the biggest subvector space of �r
k
 leaving C stable under translation. Sup-

pose we can choose the elements (y) above such that the ideal of the directrix Dir(C) is 
⟨Y⟩ = ⟨Y1,…Yr⟩ . Then (Y) is a minimal set of variables needed to write generators of the 
homogeneous ideal inM� (J�) ⊂ grM� (R�) , i.e., there is no proper k-submodule T ⊂ gr1

M� (R
�) , 

T ≠ grM� (R�) , such that

(Here, gr1
M� (R

�) denotes the part homogeneous of degree 1). In the latter case, we will also 
say (y) determines the directrix of J′.

Theorem A (joint with O.  Piltant1) Let (R,  M,  k) be a regular local G-ring, J ⊂ R be a 
non-zero ideal, and (u) = (u1,… , ue) be a regular R-sequence which is a regular (R/J)-
sequence. Set R� = R∕⟨u⟩ and J� = J ⋅ R� . Let (y) = (y1,… , yr) be a system of elements in R 
extending (u) to a regular system of parameters for R and suppose that the directrix of J′ is 
determined by (y).

Suppose that R is Henselian. Then there exist (z) = (z1,… , zr) and (g) = (g1,… , gm) in 
R such that (u, z) is a regular system of parameters for R, the system (z) yields the directrix 
of J′ , (g) is a vertex-normalized (u)-standard basis of J, and

Another important object associated to a cone and closely related to the directrix, is the 
so called ridge: The ridge Rid(C) (faîte in French) of the cone C is the biggest group of 
translations of �r

k
 leaving C stable. The ideal of the ridge Rid(C) is generated by additive 

homogeneous polynomials Φ1,… ,Φs ∈ k[Y1,… ,Yr] , and we have (see [1] section 2.2, for 
example)

R� ∶= R∕⟨u⟩, M� ∶= M ⋅ R� and J� ∶= J ⋅ R�.

grM� (R�) ∶=
⨁
t≥0

(M�)t∕(M�)t+1 ≅ k[Y1,…Yr],

inM� (J�) ∶= ⟨ inM� (g) ∣ g ∈ J ⟩ ⊂ grM� (R�).

( inM� (J�) ∩ k[T] ) grM� (R�) = inM� (J�).

Δ(g;u;z) = Δ(J;u).

( inM� (J�) ∩ k[Φ1,… ,Φs] ) grM� (R�) = inM� (J�),

1 In the proof for the existence of the elements (z1,… , z
r
) (Sect.  5), we follow ideas outlined to us by 

Olivier Piltant during a private conversation on Theorems B and C.



 V. Cossart, B. Schober 

1 3

where we require s to be minimal with this property. (Recall that a polynomial Φ is called 
additive if Φ(x + y) = Φ(x) + Φ(y) ). After possible relabeling and linear changes in (Y) , 
we have Φi = Yi

qi
+
∑r

j=i+1
�i,jYj

qi
, where �i,j ∈ k ⧵ kqi and qi = pei , for some ei ∈ ℤ≥0 with 

ei ≤ ei+1 , 1 ≤ i < j ≤ s.

Definition (∗ ) We say that condition (∗) holds (for (J, R, u) ) if one of the following condi-
tions is true: 

(a) the dimension of the ridge of Cu(J) coincides with the dimension of its directrix,
(b) or char(k) ≥ dim(X)

2
+ 1 , where X ∶= Spec(R∕J).

Although assumption (∗) seems rather restrictive at first sight, it includes a large class of 
ideals and rings; e.g., (a) holds if the residue field k is perfect.

Theorem B Let (R,  M,  k) be a regular local G-ring, J ⊂ R be a non-zero ideal, and 
(u) = (u1,… , ue) be a regular R-sequence which is a regular (R/J)-sequence. Set 
R� = R∕⟨u⟩ and J� = J ⋅ R� . Let (y) = (y1,… , yr) be a system of elements in R extending (u) 
to a regular system of parameters for R and suppose that the directrix of J′ is determined 
by (y).

Suppose that condition (∗) holds. Then there exist (z) = (z1,… , zr) and (g) = (g1,… , gm) 
in R such that (u, z) is a regular system of parameters for R, the system (z) yields the direc-
trix of J′ , (g) is a vertex-normalized (u)-standard basis of J, and

Hironaka obtains the elements (̂y) determining the characteristic polyhedron as a trans-
lation by elements �̂1,… , �̂r ∈ ⟨u⟩R̂ , i.e., ŷj = yj + �̂j . In general, the elements (z) in The-
orem A and B cannot be obtained as such a translation of (y), see Example 1.26. Hence, it 
is natural to ask under which condition, this is possible, i.e., zj = yj + �j , for 𝜙i ∈ ⟨u⟩ ⊂ R 
and 1 ≤ j ≤ r . In [7] Corollary 3.4, this question is discussed for principal ideals such that 
r = 1.

In our general situation, we introduce the following which generalizes the hypothesis of 
[7] Corollary 3.4:

Definition (Pol ) Let (S, N, k) be a regular local G-ring contained in (R, M, k) and with the 
same residue field. Let J ⊂ R be a non-zero ideal. Suppose (u) = (u1,… , ue) is a regular 
system of parameters for S such that (u) is a regular (R/J) -sequence. Let (f ) = (f1,… , fm) 
be a (u)-standard basis of J. We say hypothesis (Pol) holds for (J,  R,  S,  f,  u,  y) if 
R = S[y1,… , yr]M , and fi ∈ S[y1,… , yr] with degy(fi) = n(u)(fi) , for 1 ≤ i ≤ m , and the 
directrix of J′ is determined by (y).

Remark As the reader maybe observes, (Pol) looks like a multi-variable “Weiertrass pre-
pared” condition, but be aware that we allow in fi terms of the form cByB with |B| = degy(fi) 
and where the coefficient cB ∈ S is not necessarily a unit.

The condition (Pol) naturally arises when studying singularities (Remark 3.1). In Prop-
osition 2.11, we show that (Pol) is always fulfilled when considering initial forms along 
compact faces of a polyhedron associated to (f; u; y) .

Δ(g;u;z) = Δ(J;u).



Characteristic polyhedra of singularities without completion:…

1 3

Theorem C Let (R, M, k) and (S, N, k) be regular local G-rings such that R = S[y1,… , yr]M . 
Let J ⊂ R be a non-zero ideal and (u) = (u1,… , ue) be a regular system of parameters for S 
which is a regular (R/J) -sequence. Let (f ) = (f1,… , fm) be a (u)-standard basis for J.

Suppose that (Pol) holds for (J, R, S, f, u, y). Then there exist 𝜙1,… ,𝜙r ∈ ⟨u⟩ ⊂ S and 
(g) = (g1,… , gm) in R such that, if we define zj ∶= yj + �j , for 1 ≤ j ≤ r , then (u,  z) is a 
regular system of parameters for R, the system (z) yields the directrix of J′ , (g) is a vertex-
normalized (u)-standard basis of J, and

The article is organized as follows: After providing background on Hironaka’s char-
acteristic polyhedron, we explain the reduction from a non-empty to an empty character-
istic polyhedron in Sect.  2, adapting the method of [7]. Then, we discuss the important 
case Theorem  C. In particular, we introduce a finite normalization procedure if hypoth-
esis (Pol) holds. In Sect. 4 (resp., Sect. 5), we show how to obtain suitable parameters (z) if 
Δ(J;u) = ∅ and if additionally hypothesis (∗) holds (resp., if R is Henselian). After that, in 
Sect. 6, we explain how to find appropriate generators for J once (z) are given. Finally, we 
provide remarks on the general case (e.g., Sects. 2 and 6 apply for any regular local G-ring) 
and discuss further examples.

2  Hironaka’s characteristic polyhedron

To begin with, let us recall the definition of Hironaka’s characteristic polyhedron. More 
detailed references are Sect.  7 of [3], section  2.2 of [22], or Hironaka’s original work 
[15]. Along this, we prove three new technical results (Lemmas 1.15 and 1.21 and Corol-
lary 1.22). We introduce some notations. Let

• (R,M, k = R∕M) be a regular local ring,
• J ⊂ R be a non-zero ideal contained in the maximal ideal M, and
• (u, y) = (u1,… , ue;y1,… , yr) be a regular system of parameters of R.

Furthermore, we set

While the choice of (u) is fixed, we will consider different choices for the system (y) . For 
the definition of the characteristic polyhedron, R is not necessarily a G-ring and (in the 
variant that we present) the partition of the regular system of parameters is arbitrary. The 
interesting situation later will be when (y) is chosen such that it yields the directrix of J′ 
and (u) is a regular (R/J)-sequence.

If we denote by Ui ∶= ui mod M2 (resp. Yj ∶= yj mod M2 ) the image of ui (resp. yj ) in 
the associated graded ring grM(R) of R, then we have

For g ∈ J , g ≠ 0 , the order at M is ordM(g) ∶= sup{a ∈ ℤ≥0 ∣ g ∈ Ma}.
The initial form of g with respect to  M is defined as

Δ(g;u;z) = Δ(J;u).

R� ∶= R∕⟨u⟩, M� ∶= M ⋅ R�, J� ∶= J ⋅ R�, yj ∶= yj mod ⟨u⟩ (1 ≤ j ≤ r).

grM(R) ∶=
⨁
t≥0

Mt∕Mt+1 ≅ k[U1,… ,Ue, Y1,… , Yr] = k[U, Y].
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The tangent cone of J with respect to  M is the cone C(J) ⊂ �
e+r
k

= Spec(grM(R)) defined 
by the homogeneous ideal

Similarly to above, using the notation Yj ∶= yj mod (M�)2 , we obtain

Let Cu(J) ∶= C(J�) ⊂ �r
k
 be the tangent cone of J′ with respect to M′.

Definition 1.1 

(1) Let L ∶ ℝe
→ ℝ be a semi-positive linear form on ℝe . This means there are ai ∈ ℝ≥0 

such that L(v1,… , ve) =
e∑

i=1

ai vi for v = (v1,… , ve) ∈ ℝe and at least one ai > 0 . Fur-

ther, L is called rational if ai ∈ ℚ≥0 , for 1 ≤ i ≤ e . If all ai are positive, then L is called 
a positive linear form. We set 

 The set of semi-positive (resp.  positive) linear forms on ℝe will be denoted by 
𝕃0 = 𝕃0(ℝ

e) (resp. 𝕃+ = 𝕃+(ℝ
e)).

(2) A subset Δ ⊂ ℝe
≥0

 is called a rational polyhedron if there are rational semi-positive 
linear forms L1,… , Lt ∈ 𝕃0(ℝ

e) , t < ∞ , such that 

(3) A point v ∈ ℝe
≥0

 is called a vertex of a convex set Δ ⊂ ℝe
≥0

 if there exists a positive 
linear form L ∈ 𝕃+(ℝ

e) such that 

 We denote the set of vertices of Δ by Vert(Δ).

Definition 1.2 

(1) Let g ∈ R be an element in R, g ∉ ⟨u⟩ . Since R is Noetherian and R → R̂ is faithfully 
flat, we can expand g in a finite sum 

 with coefficients CA,B ∈ R× ∪ {0} . Denote by � ∶= n(u)(g) the order of g = g mod ⟨u⟩ 
in the ideal generated by yj = yj mod ⟨u⟩ , j ∈ {1,… , r} . The polyhedron associated 
to (g, u, y) , denoted by Δ(g;u;y) , is defined to be the smallest closed convex set con-
taining all the points of the set 

inM(g) ∶= g mod MordM (g)+1 ∈ grM(R).

inM(J) ∶= ⟨inM(g) ∣ g ∈ J⟩ ⊂ grM(R).

grM� (R�) ≅ k[Y1,… ,Yr] = k[Y].

Δ(L) ∶= {v ∈ ℝ
e ∣ L(v) ≥ 1}.

Δ =

t⋂
i=1

Δ(Li).

{w ∈ ℝ
e ∣ L(w) = 1} = { v }.

(1.1)g =
∑

(A,B)∈ℤe+r
≥0

CA,B u
AyB
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(2) Let (f ) = (f1,… , fm) be elements in R with fi ∉ ⟨u⟩ for all i. The polyhedron associated 
to (f, u, y) , denoted by Δ(f ;u;y) , is defined to be the smallest closed convex set contain-
ing 

⋃m

i=1
Δ(fi;u;y)

In general, there are many choices for (1.1). But, as it is explained in [15] at the begin-
ning of §2, if we fix the regular system of parameters  (u, y) and if we require the number 
of appearing exponents to be minimal, then the set {(A,B) ∣ CA,B ≠ 0} is uniquely deter-
mined (and the corresponding inM(CA,B) are unique, even though the set {CA,B} may vary).

If we consider an ideal J ⊂ R and generators (f1,… , fm) , then the polyhedron Δ(f ;u;y) 
depends on the choice of the generators:

Example 1.3 Let R be a regular local ring with regular system of parameters (u1, u2, y1, y2) . 
Consider the ideal J = ⟨f ⟩ ⊂ R , where

Clearly, the following systems both generate J:

The vertices of the corresponding polyhedra are Vert(Δ(f ;u;y)) = { (
3

2
, 0); (0,

7

3
) } , 

Vert(Δ(g;u;y)) = { (
3

2
, 0); (0,

7

2
) } , and Vert(Δ(h;u;y)) = { (

3

2
, 0); (0, 2) } . Therefore, we have

In order to get hands on this dependence, we have to recall Hironaka’s notion of a (u)-
standard basis of an ideal J.

Definition 1.4 Let (R,  M,  k) be a regular local ring with regular system of parameters 
(u, y) = (u1,… , ue, y1,… , yr) . Consider g =

∑
CA,Bu

AyB ∈ R with an expansion as in (1.1). 

(1) ([3] Setup A) The 0-initial form of g is defined as 

 where C0,B = C0,B mod M.
(2) ([3] Definition 6.2(2)) Let L ∈ 𝕃+(ℝ

e) be a positive linear on ℝe and set 

 We define 

{
A

𝜈 − |B|
|||| CA,B ≠ 0 ∧ |B| < 𝜈

}
+ℝ

e
≥0
.

(f ) = (f1, f2) = ( y2
1
+ u3

1
, y3

2
+ u7

2
).

(g) = (g1, g2) = (f1, f2 + f1) = ( y2
1
+ u3

1
, y3

2
+ u7

2
+ y2

1
+ u3

1
),

(h) = (h1, h2) = (f1, f2 + u2
2
f1) = ( y2

1
+ u3

1
, y3

2
+ u7

2
+ u2

2
(y2

1
+ u3

1
) ).

Δ(g;u;y) ⊊ Δ(f ;u;y) ⊊ Δ(h;u;y).

in0(g) ∶= in0(g)(u,y) =
∑

B ∈ ℤr
≥0|B| = n(u)(g)

C0,B Y
B ∈ k[Y1,… , Yr],

vL(g) ∶= vL(g)(u,y) ∶= min{L(A) + |B| ∣ CA,B ≠ 0}.

inL(g) ∶= inL(g)(u,y) ∶=
∑

(A,B) ∈ ℤ
e+r
≥0

L(A) + |B| = vL(g)

CA,B U
A YB ∈ k[U, Y]
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 with CA,B = CA,B mod M.
(3) ([3] Definition 6.5) Let (f ) = (f1,… , fm) be a system of non-zero elements in R. A 

positive linear form L ∈ 𝕃+(ℝ
e) is called effective for (f, u, y) if inL(fi) ∈ k[Y] , for all 

i ∈ {1,… ,m}.

Definition 1.5 ([15] Definition (2.20)) Let J ⊂ R be a non-zero ideal and (u) = (u1,… , ue) 
be a regular R-sequence. Let (f ) = (f1,… , fm) be a system of non-zero elements in J. 

(1) We say that (f) is a standard basis of J, if the system (inM(f )) = (inM(f1),… , inM(fm)) 
is a standard basis of inM(J) , i.e., 

(a) inM(J) = ⟨inM(f1),… , inM(fm)⟩ ⊂ grM(R),
(b) n1 ≤ n2 ≤ … ≤ nm , if ni ∶= ordM(fi) , and
(c) for all i ≥ 1 , we have inM(fi) ∉ ⟨inM(f1),… , inM(fi−1)⟩.

(2) (f) is called a (u) -effective basis of J, if there exists a system of elements (y) = (y1,… , yr) 
extending (u) to a regular system of parameters and a positive linear form L ∈ 𝕃+(ℝ

e) 
such that inL(fi) = in0(fi) ∈ k[Y] , for all i ∈ {1,… ,m} , and 

(3) A (u) -effective basis (f) is called a (u)-standard basis of J, if additionally, (in0(f )) is a 
standard basis of inL(J) . In particular, 

(a) �1 ≤ �2 ≤ … ≤ �m , if �i ∶= n(u)(fi) = ordM(in0(fi)) , and
(b) for all i ≥ 1 , we have in0(fi) ∉ ⟨in0(f1),… , in0(fi−1)⟩.

The pair (y, L) is called a reference datum of the (u)-effective basis.
Since inL(fi) = in0(fi) ∈ k[Y] , for all i ∈ {1,… ,m} , L is effective for (f, u, y) . Further-

more, if (f) is a (u)-standard basis, then we have fi ∉ ⟨u⟩ , since inL(fi) ≠ 0 is a non-zero 
element in k[Y] , for 1 ≤ i ≤ m . Note that in the previous example the system (g) is not a 
(u)-standard basis for J.

Whenever we speak of a (u)-standard basis (f) and there are elements (y) fixed, we 
implicitly assume that there exists a positive linear form L ∈ 𝕃+(ℝ

e) such that (y, L) is a 
reference datum for (f).

Remark 1.6 Let (f ) = (f1,… , fm) be a standard basis for a non-zero ideal J ⊂ R . We can 
choose a regular system of parameters (u, y) = (u1,… , ue, y1,… , yr) of R such that 
inM(fi) ∈ k[Y1,… , Yr] , for 1 ≤ i ≤ m . Then (f) is a (u)-effective basis of J with reference 
datum (y, L) where L(v1,… , ve) = v1 +…+ ve.

Concerning the existence of a (u)-standard basis, Hironaka proved

Theorem 1.7 ([15] Lemma (2.23) and Theorem (2.24)) Let R be a regular local ring with 
maximal ideal M and let (u) = (u1,… , ue) be a regular R-sequence with ui ∈ M . Let J ⊂ M 
be a non zero ideal in R. The following conditions are equivalent:

inL(J) ∶= ⟨inL(g) ∣ g ∈ J⟩ = ⟨in0(f1),… , in0(fm)⟩.
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(1) There exists a (u)-standard basis of J.
(2) There exists a (u)-effective basis of J.
(3) (u) is a regular (R/J) -sequence.
(4) gr⟨u⟩(R∕J) is a polynomial ring in e variables over R∕(J + ⟨u⟩).
(5) ⟨u⟩R ∩ J = ⟨u⟩J.

Remark 1.8 

(1) The hypothesis R be a Noetherian local ring (not necessarily regular) suffices to get (3) 
⇔ (4) ⇔ (5), see [15] Lemma (2.23).

(2) Hironaka provided more equivalent conditions, but in order to avoid more technical 
definitions, we skip them here.

Let us recall the following important result on (u)-standard bases:

Theorem 1.9 ([3] Theorem 6.9) Let (f ) = (f1,… , fm) be a (u)-standard basis for an ideal 
J ⊂ R . If (y) = (y1,… , yr) is a system extending (u) to a regular system of parameters for 
R and L ∈ 𝕃+(ℝ

e) is a positive linear form which is effective for (f, u, y) , then (y, L) is a 
reference datum for (f) .

Definition 1.10 Let J ⊂ R be a non-zero ideal and (u) = (u1,… , ue) be a system of ele-
ments as before. Let (y) = (y1,… , yr) be a system of elements extending (u) to a regular 
system of parameters of R. We define

where the intersection runs over all possible (u)-standard bases (f) of J (in particular, there 
exists a positive linear form L ∈ 𝕃+(ℝ

e) such that (y, L) is a reference datum for (f) ). Fur-
ther, we set

where the intersection ranges over all systems (y) extending (u) to a regular system of 
parameters of R. The polyhedron Δ(J;u) is called the characteristic polyhedron of J with 
respect to  (u).

This is not Hironaka’s original definition, but the following result by Hironaka implies 
that the definitions coincide in the relevant setting.

Theorem  1.11 (Hironaka) Let R be a regular local ring, J ⊂ R be a non-zero ideal, 
and (u) = (u1,… , ue) be a regular R-sequence which is a regular (R/J)-sequence. Set 
R� = R∕⟨u⟩ and J� = J ⋅ R� . Let (y) = (y1,… , yr) be a system of elements in R extending (u) 
to a regular system of parameters of R and assume that (y) yields the ideal generating the 
directrix of J′.

There exists a (u)-standard basis (̂f ) = (̂f1,… , f̂m) in R̂ and a system of elements 
(̂y) = (̂y1,… , ŷr) such that (u, ŷ) is a regular system of parameters of R̂ , (̂y) determines the 
directrix of J′ and Δ(̂f ;u;̂y) = Δ(J;u).

Δ(J;u;y) ∶=
⋂
(f )

Δ(f ;u;y),

Δ(J;u) ∶=
⋂
(y)

Δ(J;u;y),
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This follows directly from [15] Theorems (3.17) and (4.8) that we recall as The-
orems  1.29 and 1.30 below, after introducing some notions. We use here the fact 
Δ(Ĵ;u) = Δ(J;u) ([15] Lemma (4.5)), where Ĵ = J ⋅ R̂ . Throughout the paper, we will 
make use of this without mentioning. In the proof of the theorem one obtains (̂f ) and (̂y) by 
applying the procedure of vertex preparation which consists of alternately normalizing the 
generators and solving the vertices of Δ(f ;u;y) . Let us recall these two processes.

We begin with normalization. For this, we introduce the following total ordering ⪯ on 
ℤr : for A,B ∈ ℤr , we define

where ≤lex denotes the lexicographical ordering on ℤr.
For a non-zero, homogeneous polynomial 0 ≠ G =

∑
�B Y

B ∈ k[Y1,… , Yr] , we define 
the (leading) exponent of G by

The (leading) exponent of a non-zero, homogeneous ideal I ⊂ k[Y1,… , Yr] is defined as the 
collection

If (f ) = (f1,… , fm) is a (u)-standard basis of the ideal that they generate, then we abbreviate 
exp(fi) ∶= exp(in0(fi)) and

for i ∈ {1,… ,m} . (Note that fi ∉ ⟨u⟩ and hence in0(fi) ≠ 0).

Definition 1.12 ([3] Definition  7.11) Assume given G1,… , ,G
m
∈ k[[U]][Y] =

k[[U1,… ,U
e
]][Y1,… , Y

r
],

where Fi(Y) ∈ k[Y] is homogeneous of degree ni and Pi,B(U) ∈ ⟨U⟩ . 

(1) (F1,… ,Fm) is normalized if writing 

Ci,B = 0 if B ∈ exp(F1,… ,Fi−1) for i ∈ {1,… ,m}.
(2) (G1,… ,Gm) is normalized if (F1,… ,Fm) is normalized and Pi,B ≡ 0 if 

B ∈ exp(F1,… ,Fi−1) for i ∈ {1,… ,m}.

Definition 1.13 Let (f ) = (f1,… , fm) be a (u)-standard basis of an ideal J ⊂ R . Set 
�i ∶= n(u)(fi) . Let fi =

∑
CA,B,i u

A yB be finite expansions as in (1.1) with CA,B,i ∈ R× ∪ {0} . 

(1) (f) is called 0-normalized if the corresponding system of 0-initial forms 
(in0(f1),… , in0(fm)) is normalized in the sense Definition 1.12(1) (with respect to 
(Y) = (Y1,… , Yr)).

(1.2)A ⪯ B
def.

⟺ |A| < |B| or (|A| = |B| and A >lex B),

(1.3)exp(G) ∶= min
⪯

{B ∈ ℤ
r ∣ �B ≠ 0}.

exp(I) ∶= {exp(G) ∣ 0 ≠ G ∈ I homogeneous }.

(1.4)exp(⟨f1,… , fi⟩) ∶= exp(⟨in0(f1),… , in0(fi)⟩),

Gi = Fi(Y) +
∑
|B|<ni

Pi,B(U)YB, (Pi,B(U) ∈ k[[U]]),

Fi(Y) =
∑
B

Ci,BY
B with Ci,B ∈ k,
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(2) Let v ∈ Vert(Δ(f ;u;y)) be a vertex of Δ(f ;u;y) . For 1 ≤ i ≤ m , the v-initial form of fi is 
defined as 

where the sum ranges over those (A,B) ∈ ℤe+r with A

�i−|B| = v , and 
CA,B,i = CA,B,i mod M.

  We say (f) is normalized at the vertex v if (inv(f1),… , inv(fm)) is normalized in the 
sense of Definition 1.12(2) with respect to (Y). If (f) is normalized at every vertex of 
Δ(f ;u;y) then we call (f) vertex-normalized (with respect to (u, y)).

Most of the time, if there is no possible confusion, we will skip the locutions “with respect 
to (u, y)” and “with respect to (Y) = (Y1,… , Yr)”.

Let us point out: although we mentioned it only in the last part of the definition, all 
these notions depend on the choice of the regular system of parameters  (u, y).

Lemma 1.14 ([15] Lemma (3.14)) Let (f ) = (f1,… , fm) be generators for J ⊂ R . Let 
(u, y) = (u1,… , ue, y1,… , yr) be a regular system of parameters of R and set �i ∶= n(u)(fi) , 
for 1 ≤ i ≤ m . Suppose (in0(f1),… , in0(fm)) is a standard basis for the ideal that it gener-
ates in k[Y1,… , Yr].

There exist elements di,j ∈ ⟨y⟩𝜈i−𝜈j ⊂ R , for 1 ≤ j < i ≤ m , such that if we set g1 = f1 and 
gi = fi −

∑i−1

j=1
di,jfj , for 2 ≤ i ≤ m , then

(1) (g1,… , gm) is 0-normalized (with respect to  (u, y) ),
(2) n(u)(gi) = n(u)(fi) , for i ∈ {1,… ,m} , and Δ(g;u;y) ⊂ Δ(f ;u;y).

Furthermore, if (f) is a (u)-standard basis, so is (g) .
Let us point out that if (f) is a (u)-standard basis, then the assumption on 

(in0(f1),… , in0(fm)) holds. Hence, given any (u)-standard basis, we can pass to a 0-normal-
ized one without passing to the completion.

Lemma 1.15 Let J ⊂ R be a non-zero ideal. Let (f ) = (f1,… , fm) and (g) = (g1,… , g
�
) be 

two 0-normalized (u) -standard bases for J. Then, we have

Furthermore, if we assume exp(fi) ⪯ exp(fi+1) and exp(gj) ⪯ exp(gj+1) , for 1 ≤ i < m and 
1 ≤ j < � . Then, we have

Remark 1.16 Without loss of generality, we may assume that the condition 
exp(fi) ⪯ exp(fi+1) , for 1 ≤ i < m , holds true for a given (u)-standard basis (f1,… , fm) (after 
a possible reordering of the elements). Without explicitly mentioning it, we assume from 
now on that the leading exponents of a given (u)-standard basis are ordered increasingly 
with respect to ⪯.

Proof of Lemma 1.15 The first assertion follows from the fact that, for any (i,  j), 
1 ≤ i ≤ j ≤ m such that n(u)(fi−1) < n(u)(fi) = n(u)(fj) < n(u)(fj+1) , then (in0(fi),… , in0(fj)) is 

inv(fi) ∶= inv(fi)(u,y) ∶= in0(fi) +
∑

CA,B,i U
A YB ∈ k[U, Y],

� = m and n(u)(fi) = n(u)(gi) for every i ∈ {1,… ,m}.

exp(fi) = exp(gi), for every i ∈ {1,… ,m}.
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a basis of the k-vector space inM� (J�)s modulo inM� (J�)s−1 with s ∶= n(u)(fi) , R� = R∕⟨u⟩ , 
M� = M∕⟨u⟩ and J� = J ⋅ R�.

Let Lf ∶ ℝe
→ ℝ , Lf (v) =

∑e

i=1
�ivi with �i ∈ ℝ+ , be a positive linear form such that 

(y,Lf ) is a reference datum for (f) and let Lg ∶ ℝe
→ ℝ , Lg(v) =

∑e

i=1
�ivi with �i ∈ ℝ+ , 

one such that (y,Lg) is a reference datum for (g) , where v = (v1,… , ve) ∈ ℝe . In particular, 
Lf  is effective for (f, u, y) and Lg is effective for (g, u, y) .

Set �i ∶= max{�i,�i} , for 1 ≤ i ≤ e , and define L ∶ ℝe
→ ℝ by L(v) =

∑e

i=1
�ivi . Then L 

is effective for both (f, u, y) and (g, u, y) , and Theorem 1.9 implies that (y, L) is a reference 
datum for (f) as well as for (g) . Thus,

Suppose exp(f1) ≠ exp(g1) ; without loss of generality, we then have exp(f1) ≺ exp(g1) . This 
contradicts in0(f1) ∈ ⟨in0(g1),… , in0(g�)⟩ . Hence, we have exp(f1) = exp(g1).

Assume exp(fi) = exp(gi) , for all i < j , and exp(fj) ≠ exp(gj) , for some j ≥ 2 ; without 
loss of generality exp(fj) ≺ exp(gj) . Since we do have in0(fj) ∈ ⟨in0(g1),… , in0(g�)⟩ and 
in0(fj) ∈ k[Y] , there is �1,… ,�

�
∈ k[Y] such that

As exp(fj) ≺ exp(gj) ≺ exp(gj+1) ≺ … ≺ exp(g
�
) there must exist i < j with �i ≠ 0 . This 

implies that there appear gi with exp(gi) = exp(fi) , for some i < j . But this contradicts the 
property that (in0(f )) is normalized.

Assume that the 0-normalized (u)-standard bases are of different length; without loss 
of generality, m > � . Then 0 ≠ in0(f�+1) ∈ ⟨in0(g1),… , in0(g�)⟩ . Since exp(gi) = exp(fi) , 
for all 1 ≤ i ≤ � , we obtain a contradiction to the hypothesis that (in0(f )) is normalized, as 
before.   ◻

Recall the following notion of [15] (2.3) and (2.6) (p. 260).

Definition 1.17 Let R be a regular local ring. We fix a regular system of parameters 
(u, y) = (u1,… , ue;y1,… , yr) . Let Δ ⊂ ℝe

≥0
 be a closed convex subset such that Δ +ℝe

≥0
= Δ 

and b ∈ ℝ+ . Set bΔ ∶= {bv ∈ ℝe
≥0

∣ v ∈ Δ} and W(b) ∶= {B ∈ ℝr
≥0

∣ |B| ≥ b} . 

(1) The symbol {Δ, b} denotes the smallest convex subset of ℝe+r
≥0

 containing (bΔ) ×ℝr
≥0

 
and ℝe

≥0
×W(b).

(2) The symbol I(Δ, b) ∶= I(Δ, b)(u,y) ∶= I({Δ, b})(u,y) denotes the monomial ideal in R 
generated by {uAyB ∣ (A,B) ∈ {Δ, b} ∩ℤ

e+r
≥0

}.

Remark 1.18 With notations as above, it is easy to verify:

Proposition 1.19 ([15] Lemma (3.15)) Let (f ) = (f1,… , fm) be a 0-normalized system of 
generators for J ⊂ R and let (u, y) be a regular system of parameters with (u) a regular 
(R/J)-sequence. Set �i ∶= n(u)(fi) , for 1 ≤ i ≤ m . Let v ∈ ℝe

≥0
 be a vertex of Δ(f ;u;y).

There exist xi,j ∈ ⟨u⟩ ∩ I(v +ℝe
≥0
, 𝜈i − 𝜈j)(u,y) ⊂ R such that if we set g1 = f1 and 

gi = fi −
∑i−1

j=1
xi,jfj , for 2 ≤ i ≤ m , then we have

⟨in0(f1),… , in0(fm)⟩ = inL(J) = ⟨in0(g1),… , in0(g�)⟩

in0(fj) = �1 ⋅ in0(g1) +… + �
𝓁
⋅ in0(g𝓁).

g ∈ I(Δ, b) ⇔ vL(g) ≥ b, for all L ∈ 𝕃+(ℝ
e), with L(v) ≥ 1 for every v ∈ Δ.
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(1) Δ(g;u;y) ⊂ Δ(f ;u;y),
(2) (g1,… , gm) is normalized at v if v is a vertex of Δ(g;u;y) , and
(3) Vert(Δ(f ;u;y)) ⧵ {v} ⊂ Vert(Δ(g;u;y)).

Remark 1.20 As xi,j ∈ ⟨u⟩ , we have in0(gi) = in0(fi) for 1 ≤ i ≤ m , Hironaka’s process pre-
serves the extra assumption exp(fi) ⪯ exp(fi+1) , for 1 ≤ i < m.

In Example 1.25 below we show how normalization can eliminate vertices.

Lemma 1.21 If (f ) = (f1,… , fm) and (g) = (g1,… , gm� ) are two vertex-normalized (u)-
standard basis of J with reference data respectively (y,L1) and (y,L2) , for some Li ∈ �+ , 
i = 1, 2 , then m = m� and

Proof By Lemma  1.15, both have the same number of elements, (f ) = (f1,… , fm) and 
(g) = (g1,… , gm) . Furthermore n(u)(fi) = n(u)(gi) =∶ �i , for every i ∈ {1,… ,m}.

Suppose equality (1.5) is wrong. Then the convex hull Δ ⊂ ℝe
≥0

 of Δ(f ;u;y) ∪ Δ(g;u;y) 
would be strictly greater than one of the associated polyhedra: say Δ(g;u;y) ⊊ Δ . Hence, 
there would exist a vertex v of Δ with v ∉ Δ(g;u;y) and a positive linear form Λ such that 
v = Δ ∩ {w ∈ ℝe ∣ Λ(w) = 1}. Therefore, we have

By Theorem 1.9, (y,Λ) is a reference datum for (g).
Let i ∈ {1,… ,m} be minimal such that Fi ∶= inΛ(fi) ≠ in0(fi) . In particular, 

inΛ(fi) ∉ K[Y] . Since (y;Λ) is a reference datum for the (u)-standard basis (g) , Defini-
tion  1.5(1) provides that Fi =

∑
�j≤�i

�jinΛ(gj) , for some �j ∈ grΛ(R) ≅ k[Y ,U] , �j = 0 or 
quasi-homogeneous for Λ of degree �i − �j . As inΛ(gj) = in0(gj) ∈ K[Y] and inΛ(fi) ∉ K[Y] , 
we obtain that Fi − in0(fi) =

∑
𝜈j<𝜈i

𝜆jinΛ(gj) ≠ 0 . This contradicts the assumption that Fi is 
v-normalized.   ◻

Let (f ) = (f1,… , fm) be any (u)-standard basis for J. By Hironaka’s procedure of 
normalization, we obtain a vertex-normalized (u)-standard basis (f �) (possibly in R̂ ) 
and Δ(f �;u;y) ⊆ Δ(f ;u;y) (Lemma  1.14 and Proposition  1.19). Combining this with 
Lemma 1.21, we get

Corollary 1.22 If (f ) = (f1,… , fm) is a vertex-normalized (u)-standard basis of J with refer-
ence datum (y, L) , for some L ∈ �+ , then

The previous result shows that for an arbitrary (u)-standard basis (f) of J the dif-
ference between Δ(f ;u;y) and Δ(J;u;y) reflects how far (f) is away from being 
vertex-normalized.

After normalizing the generators one has to check whether vertices of the associated 
polyhedron can be eliminated by changes in the elements (y) .

(1.5)Δ(f ;u;y) = Δ(g;u;y).

v = Δ(f ;u;y) ∩ {w ∈ ℝ
e ∣ Λ(w) = 1} and

Δ(g;u;y) ⊂ {w ∈ ℝ
e ∣ Λ(w) > 1}.

Δ(f ;u;y) = Δ(J;u;y).
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Definition 1.23 Let (f ) = (f1,… , fm) be generators of an ideal J ⊂ R . Let (u,  y) be a 
regular system of parameters for R such that (y) determines the directrix of J� = J ⋅ R� , 
where R� = R∕⟨u⟩ . A vertex v ∈ Δ(f ;u;y) is called solvable if v ∈ ℤe

≥0
 and there exist 

�j ∈ R× ∪ {0} , j ∈ {1,… , r} , such that we have, for the system (z) = (z1,… , zr) , given by 
zj ∶= yj − �ju

v,

The elements (�1uv,… , �ru
v) are then called a solution for v or simply v-solution.

In [15], Corollary (4.4.3) it is shown that, as (y) determines the directrix of J′ , if a 
vertex is solvable, then the residues �j mod M ∈ k are unique.

Note that (z) has still the property that it yields the directrix of J′ . Moreover, the 
other vertices of the polyhedron do not change under this translation. More precisely,

Proposition 1.24 ([15] Lemma (3.10)) Let (f) , J ⊂ R and (u,  y) be as in the previous 
definition. Let v ∈ Δ(f ;u;y) be a solvable vertex with v-solution (�1uv,… , �ru

v) . Define 
(z) = (z1,… , zr) by zj = yj − �ju

v , for 1 ≤ j ≤ r.
We have

(1) Δ(f ;u;z) ⊂ Δ(f ;u;y),
(2) v ∉ Δ(f ;u;z) , and
(3) Vert(Δ(f ;u;y)) ⧵ {v} ⊂ Vert(Δ(f ;u;z)).

In order to normalize and to solve the vertices in a systematic way one has to equip 
ℝe with a total ordering. Then one picks the vertex that is minimal with respect to this 
ordering, normalizes, and tests if it is solvable. After that one takes the new minimal 
vertex that has not been considered yet.

In the procedure it is important to apply alternately normalization and vertex solving. 
In the latter we only take care of vertices and not points in the interior of the polyhe-
dron. But still these points might be interesting after normalization.

Example 1.25 Let R be a regular local ring with regular system of parameters 
(u1,… , ue, y1, y2) . Assume that R contains a field of characteristic p > 0 . Consider the pol-
ynomials f1 = y

p

1
 and f2 = y

p2

2
+ uA

�

y
p

1
+ up

2A and suppose that A ∈ ℤe
≥0

∩ (
A�

p2−p
+ ℤe

≥0
) , 

A ≠
A�

p2−p
 . The only vertex of the associated polyhedron is given by v ∶= A�

p2−p
 and one sees 

easily that v cannot be solved. The normalization provides g2 ∶= f2 − uA
�

⋅ f1 = y
p2

2
+ up

2A . 
Therefore the vertex v vanishes and the new vertex A is solvable via z2 ∶= y2 + uA.

Example 1.26 Let R be a regular local ring with regular system of parameters (u1, u2, y) . 
Suppose R contains a field of characteristic p > 0 . Consider the singularity given by

for a, b ∈ ℤ+ coprime to p. The initial form at the vertex v0 ∶= (a, 0) is 
inv0 (f ) = Yp + U

ap

1
= (Y + Ua

1
)p . Following the above procedure we have to make the trans-

lation y ↦ w ∶= y + ua
1
 and get

v ∉ Δ(f ;u;z).

f = yp + yp
2

+ u
ap

1
+ ub

2
= 0,



Characteristic polyhedra of singularities without completion:…

1 3

The new vertex v1 ∶= (ap, 0) is solvable and clearly this is not a finite process. On the 
other hand, if we consider z ∶= y + yp + ua

1
 , then f = zp + ub

2
 and the associated polyhe-

dron coincides with the characteristic polyhedron.

For another example, which is valid in a more general setting, we refer the reader to 
Example 3.1 in [7], p. 165.

Hypothesis 1.27 From now on, we always assume the following:

(1) (u, y) is a regular system of parameters of R,
(2) u is a regular (R/J) -sequence, and
(3) there is no proper k-submodule T ⊂ gr1

M� (R
�) such that

with R� = R∕⟨u⟩ and J� = J ⋅ R� , J ⊂ R a non zero ideal.
Even if some statements below are true with less restrictive hypotheses.

Definition 1.28 ([3] Definition 7.15(1),(4)) Let J ⊂ R be a non-zero ideal and 
(u, y) = (u1,… , ue, y1,… , yr) be a system of elements a regular system of parameters of R 
verifying Hypothesis 1.27. 

(1) Let v ∈ Δ(f ;u;y) be a vertex. We say (f; y) is v-prepared with respect to  (u) if (f) is 
normalized at v and v is not solvable.

(2) If (f; y) is v-prepared with respect to (u) at every vertex of Δ(f ;u;y) , then (f) is called 
well prepared with respect to  (u).

Theorem  1.29 ([15] Theorem (3.17)) Let R be a regular local ring and let 
(u, y) = (u1,… , ue;y1,… , yr) and J ⊂ R verify Hypothesis 1.27. Let (f ) = (f1,… , fm) be a 
system generating J such that fi ∉ ⟨u⟩ , for 1 ≤ i ≤ m . Set �i ∶= n(u)(fi) . Let us assume that R 
is complete and that in0(f )(u,y) is a standard basis of the ideal which it generates in grM(R).

There exist xi,j ∈ I(Δ(f ;u;y);�i − �j)(u,y) , for 1 ≤ j < i ≤ m , and 
d𝛼 ∈ I(Δ(f ;u;y);1)(u,y) ∩ ⟨u⟩ ⊂ R , for 1 ≤ � ≤ r , such that (g;  z) is totally prepared with 
respect to  (u) , where (g) = (g1,… , gm) with gi = fi −

∑i−1

j=1
xi,jfj and (z) = (z1,… , zr) with 

z� = y� − d�.
Moreover, if (f) is 0-normalized (with respect to  (u, y) ), then we can choose those xi,j in 

the ideal I(Δ(f ;u;y);𝜈i − 𝜈j)(u,y) ∩ ⟨u⟩ ⊂ R , cf. Remark 1. 20.

The notion of (f; y) to be totally prepared which is slightly more restrictive than being 
well prepared (see [3] Definition 7.15 (5)). Nonetheless, the polyhedron does not change 
if we pass from a well prepared to a totally prepared (u)-standard basis, so we can avoid 
introducing more technical notions.

In the original formulation, there is also another additional remark on the choice of xi,j 
and d� if only a finite set of vertices of Δ(f ;u;y) is considered. Since this is not needed in 
our context, we skipped it.

f = wp + wp2 − u
ap2

1
+ ub

2
.

( inM� (J�) ∩ k[T] ) grM� (R�) = inM� (J�),
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Theorem  1.30 ([15] Theorem (4.8)) Let R be a regular local ring and let 
(u, y) = (u1,… , ue;y1,… , yr) and J ⊂ R verify Hypothesis 1.27. Further, let (f ) = (f1,… , fm) 
be a (u)-standard basis of J.

If v ∈ Δ(f ;u;y) is any vertex such that (f;  y) is v-prepared with respect to  (u), then v 
is also a vertex of Δ(J;u) . In particular, if (f; y) is well prepared with respect to  (u), then 
Δ(f ;u;y) = Δ(J;u).

3  Non‑empty characteristic polyhedron

We first show how to reduce the problem to the case of an empty characteristic polyhedron. 
Here, the assumption on R being a G-ring appears for the first time. Thus, let us recall the 
following result of [7]:

Lemma 2.1 ([7] Lemma 3.1) Let (R, M, k) be a regular local ring. Then

If R is a regular local G-ring, then we have:

(1) Let f ∈ M , f ≠ 0 , be such that R∕⟨f ⟩ is a domain. Then R̂ ∕ ⟨f ⟩ ⋅ R̂ is reduced.
(2) Any quotient of R, localization RP at a prime ideal P ⊂ R , or localization of a polyno-

mial ring R[T] at a maximal ideal is again a G-ring.

We assume that the following claim holds true:

Hypothesis 2.2 (Empty Case) Let R be a regular local G-ring and I ⊂ R a non-zero 
ideal. Let (t, x) = (t1,… , td;x1,… , xs) be a regular system of parameters for R such that 
Hypothesis 1.27 is true for (R, (t, x), I) . Let (P) = (P1,… ,Pm) be a 0-normalized (t)-stand-
ard basis for I and set �i ∶= n(u)(Pi) , for 1 ≤ i ≤ m.

We assume Δ(I;t) = ∅ . By Hironaka’s Theorem  1.11, there exist elements 
(̂x) = (̂x1,… , x̂s) such that (t, x̂) is a regular system of parameters for R̂ , (̂x) determines the 
directrix of I� ∶= I ⋅R∕⟨t⟩ , and Δ(I;t;̂x) = ∅.

Claim 2.3 Under Hypothesis  2.2, there exist a 0-normalized (t)-standard basis 
(Q) = (Q1,… ,Qm) of I in R and elements (z) = (z1,… , zs) in R such that 

(1) (t, z) is a regular system of parameters for R,
(2) (z) yields the directrix of I′,
(3) ⟨z⟩ ⋅ R̂ = ⟨x̂⟩,
(4) zj ∈ I(Δ(P;t;x);1) , for 1 ≤ j ≤ s,
(5) Q1 = P1 and Qi = Pi +

∑i−1

a=1
Hi,aPa , for Hi,a ∈ I(Δ(P;t;x);�i − �a) , for all i ∈ {2,… ,m} , 

and
(6) Δ(Q;t;z) = Δ(I;t;z) = Δ(I;t) = ∅.

(We switched the notations slightly since, most of the time, we apply the hypothesis 
and the claim in case of graded rings associated to J ⊂ R).

R is a G-ring ⟺ R is quasi-excellent ⟺ R is excellent.
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In the case of an empty polyhedron, a 0-normalized set of generators for (g) such that 
Δ(g;t;z) = ∅ is also vertex-normalized since the conditions in the definition are empty.

Remark 2.4 Unfortunately, this claim can be proven only with the supplementary hypoth-
esis (∗) or (Pol) or R Henselian, it is an open and challenging question to prove it with less 
restrictive conditions.

The setting in the proposition below is more general than in Theorems A, or B, or C 
since we do neither require R to be Henselian nor (∗) nor (Pol) to hold in Hypothesis 2.2 or 
in Claim 2.3: both authors hope that hypotheses will be skipped in the future.

In Proposition 2.13, we prove the stability of (∗) and (Pol) and discuss the Henselian 
case in order to conclude the proof of the main theorems modulo the Claim 2.3.

Theorem 2.5 Suppose Claim 2.3 is true. Let R be a regular local G-ring, J ⊂ R a non-zero 
ideal and (u, y) = (u1,… , ue;y1,… , yr) a regular system of parameters of R such that such 
that Hypothesis 1.27 is true for (R, (u, y), J) . Assume that Δ(J;u) ≠ ∅.

There exist a vertex-normalized (u)-standard basis (g) = (g1,… , gm) of J and elements 
(z) = (z1,… , zr) in R such that (u, z) is a regular system of parameters for R, (z) yields the 
directrix of J� = J ⋅ R∕⟨u⟩ , and

For the proof, we use the analogous measure for the difference between Δ(f ;u;y) and 
Δ(J;u) as it is used in the proof of Theorem 3.3 in [7].

Definition 2.6 

(1) Let L ∈ 𝕃0(ℝ
e) be any semi-positive linear forms on ℝe . For a non-empty subset 

Δ ⊂ ℝe
≥0

 we set 

(2) Let ∅ ≠ Δ0,Δ+ ⊂ ℝe
≥0

 be two non-empty rational polyhedra, where one is contained 
in the other, Δ+ ⊃ Δ0 . Let L1,… , Ln ∈ 𝕃0(ℝ

e) be rational semi-positive linear forms 
defining the faces of Δ0 , Δ0 =

⋂n

j=1
Δ(Lj). We set, for every j ∈ {1,… , n} , 

 By construction, 0 ≤ �j(Δ
+) ≤ 1 . If �j(Δ

+) = 1 , then the face of Δ0 defined by Lj is 
contained in the face of Δ defined by Lj . The measure for the total difference is the 
non-negative rational number 

where � denotes the biggest denominator appearing in the coordinates of the (finitely 
many) vertices of Δ+ and � is the biggest denominator appearing in the coefficients of 
L1,… , Ln.

(3) Suppose Δ0 = Δ(J;u) ≠ ∅ and Δ+ = Δ(f ;u;y) , for some 0-normalized (u)-standard basis 
(f ) = (f1,… , fm) . Then, we only write 

Δ(g;u;z) = Δ(J;u;z) = Δ(J;u).

𝛿L(Δ) ∶= min{L(v) ∣ v ∈ Δ} < ∞.

�j(Δ
+) ∶= �Lj (Δ

+).

ΛΔ0 (Δ+) ∶=

n∑
j=1

(
1 − �j(Δ

+)
)
∈

1

�! �!
ℤ≥0,
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As in [7], we follow Hironaka [15] (2.6) and use in our proof of Theorem 2.5. the ideal 
of initial forms associated to a linear form as in the previous definition. The latter arises 
from the following valuation that is very useful for the study of the polyhedron and which 
was already used in [7].

We fix: Let R be a regular local ring and J ⊂ R be a non-zero ideal. Let 
(u, y) = (u1,… , ue;y1,… , yr) be a regular system of parameters for R such that (y) deter-
mines the directrix of J′ . Let (f ) = (f1,… , fm) be a (u)-standard basis for J. Hence, 
Δ(f ;u;y) ⊂ ℝe

≥0
 is defined (Definition 1.2). Further, let L ∶ ℝe

→ ℝ be any non-zero rational 
semi-positive linear form, say defined by L(v) = a1v1 +…+ aeve , for v = (v1,… , ve) ∈ ℝe 
and a1,… , ae ∈ ℚ≥0 . We set �(f , u, y) ∶= �L(Δ(f ;u;y))

Definition 2.7 We introduce the monomial ideals

This provides a monomial valuation � ∶= �L,u,y,f  on R: for g ∈ R , g ≠ 0 , we define

and �(0) ∶= ∞ . The graded ring associated to � is defined as

where P𝜆 ∶= {g ∈ R ∣ 𝜈(g) ≥ 𝜆} ⊂ R and P+
𝜆 ∶= {g ∈ R ∣ 𝜈(g) > 𝜆} ⊂ R.

For g ∈ R, g ≠ 0 , the initial form of g with respect to  � , denoted by

is defined as the image of g under the canonical projection P�(g) → P�(g)∕P
+
�(g) . We set 

in�(0) ∶= in�L,u,y,f (0) ∶= 0 and gr�(R)� ∶= P�∕P
+
� , for � ≥ 0.

If we have a finite expansion g =
∑

(A,B) CA,Bu
AyB , for g ∈ R ⧵ {0} , then

Warning Do not confuse in�(g) with the initial form at a vertex, inv(g) , Definition 1.13(2). 
Also, let us point out that �L,u,y,f (g) is different from vL(g)(u,y) = inf{L(A) + |B| ∣ CA,B ≠ 0} 
(Definition  1.4(2)). Indeed, if �(f , u, y) = 0 , then �L,u,y,f (yj) = 0 , while vL(yj)(u,y) = 1 , 
for 1 ≤ j ≤ r . On the other hand, if � ∶= �(f ;u;y) ≠ 0 , we may introduce the semi-pos-
itive linear form L̃ ∶ ℝe

→ ℝ by L̃(v) ∶= 1

�
L(v) . Then �̃(f ;u;y) ∶= �L̃(Δ(f ;u;y)) = 1 and 

vL(g)(u,y) = �
L̃,u,y,f (g) =

1

𝓁
⋅ �L,u,y,f (g) , for g ∈ R.

For a given semi-positive linear form L on ℝe , as above, let

Further, let us introduce the notation

�j(f , u, y) ∶= �j(Δ(f ;u;y)), Λ(f , u, y) ∶= ΛΔ(J;u)(Δ(f ;u;y))

I𝜆 ∶= ⟨uAyB ∣ L(A) + 𝓁(f , u, y) ⋅ �B� ≥ 𝜆⟩ ⊂ R, for 𝜆 ≥ 0.

�(g) ∶= sup{� ∈ ℝ ∣ g ∈ I�}

gr�(R) ∶= gr�L,u,y,f (R) ∶=
⨁
�∈ℝ≥0

P�∕P
+
� ,

in𝜈(g) = in𝜈L,u,y,f (g) ∈ P𝜈(g)∕P
+
𝜈(g) ⊂ gr𝜈(R),

�L,u,y,f (g) = inf{L(A) + �(f , u, y)|B| ∣ CA,B ≠ 0}.

I ∶= {i ∈ {1,… , e} ∣ ai ≠ 0},

I
� ∶= {i ∈ {1,… , e} ∣ ai = 0} = {1,… , e} ⧵ I.
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Note that we have in�(ui) ∈ gr�(R)0 , for i ∈ I
� . Moreover, if �(f , u, y) = 0 then we also have 

Yj = in�(yj) ∈ gr�(R)0 , for 1 ≤ j ≤ r.

Proposition 2.8 ([7] Proposition 2.3) The graded ring gr�L,u,y,f (R) of R with respect to  �L,u,y,f  
is given by:
(1) If �(f , u, y) ≠ 0 , then gr�L,u,y,f (R) =

R

⟨{ui}i∈I, y⟩ [{Ui}i∈I, Y1,… , Yr];

(2) If �(f , u, y) = 0 , then gr�L,u,y,f (R) =
R

⟨{ui}i∈I⟩ [{Ui}i∈I];

In particular, we have gr�L,u,y,f (R) = k[U1,… ,Ue, Y1,… , Yr] whenever L is positive, where k 
denotes the residue field of R.

With this preparation we can give the

Proof of Theorem  2.5 (modulo Claim 2.3) We follow the proof of [7] Theorem  3.3. 
Let (f ) = (f1,… , fm) be a 0-normalized (u)-standard basis of J. Set �i ∶= n(u)(fi) , for 
1 ≤ i ≤ m . Hironaka’s preparation process (Theorem  1.11) provides (̂y) ∶= (̂y1,… , ŷr) 
and (̂f ) = (̂f1,… , f̂m) in R̂ such that (u, ŷ) is a regular system of parameters for R̂ , (̂y) yields 
Dir(J�) , and Δ(̂f ;u;̂y) = Δ(J;u).

Consider Λ(f , u, y) =
∑n

j=1

�
1 − �j(f , u, y)

�
≥ 0, the measure introduced in Defi-

nition  2.6, where L1,… , Ln are semi-positive linear forms on ℝe defining Δ(J;u) . Let 
aj,i ∈ ℚ≥0 be the rational numbers defining Lj . We have that

• Lj(v1,… , ve) = aj,1v1 +…+ aj,eve , for (v1,… , ve) ∈ ℝe , 1 ≤ j ≤ n.
• Δ(J;u) = {v = (v1,… , ve) ∈ ℝe

≥0
∣ Lj(v) ≥ 1, for 1 ≤ j ≤ n},

• Lj(Δ(J;u)) = [1,+∞[ , for all j ∈ {1,… , n}.

When Λ(f , u, y) = 0 , we have Δ(f ;u;y) = Δ(J;u) and we take (z) = (y) . Since Λ(f , u, y) = 0 , 
the vertex normalization process cannot eliminate any of the vertices. As there are only 
finitely many vertices, we obtain the desired vertex-normalized (u)-standard basis (g) from 
(f) using Proposition 1.19.

Suppose Λ(f , u, y) > 0 . Then there exists at least one j ∈ {1,… , n} such that

This means that the face of Δ(f ;u;y) defined by Lj is solvable by Hironaka’s process. We fix 
such a j. Let us denote by Δj the mentioned face,

As in Hironaka [15] (2.6), we consider the ideal of initial forms

where �j ∶= vLj ,u,y,f  is the valuation defined in Definition  2.7. Since we fixed j with this 
property, let us set

Ui ∶= in�(ui), for i ∈ I, Yj ∶= in�(yj), for 1 ≤ j ≤ r.

Lj(Δ(f ;u;y)) ⊋ [1,+∞[ or, equivalently, �j(f , u, y) < 1.

Δj = {v ∈ ℝ
e ∣ Lj(v) = �j(f , u, y)} ∩ Δ(f ;u;y).

in𝜈j (J) ∶= ⟨in𝜈j (g) ∣ g ∈ J⟩ ⊂ gr𝜈j (R),

L ∶= Lj, � ∶= �j, I� ∶= in�(J), and �(f , u, y) ∶= �j(f , u, y).
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We define ti ∶= in�(ui), for 1 ≤ i ≤ e , and introduce

Then R is a regular local ring with regular system of parame-
ters (t,Y) = (t1,… , te, Y1,… , Yr) and residue field R∕M = k = R∕M , where we denote by 
M ∶= ⟨t, Y⟩ the maximal ideal of R . We set

By Lemma 2.1, R is a G-ring. The graded structure of gr�(R) induces a monomial valua-
tion on R , again denoted by � . Moreover, � extends canonically to the M-adic completion 
R̂ of R.

We have inclusions R ⊆ gr𝜈(
�R)⟨t,Y⟩ ⊆ �R and an isomorphism (use Proposition 2.8)

We define

Claim 2.9 (P) = (P1,… ,Pm) is a 0-normalized (t)-standard basis of I.

Proof (i) Case �(f , u, y) ≠ 0 . Let Φ ∈ gr�(R)� ∩ I� , let g ∈ J be such that in�(g) = Φ , let 
Δ ∶= Δ(f ;u;y) . To simplify notations, we replace L by 1

�(f ,u,y)
L , then �(f , u, y) = 1 . We have 

g ∈ I(Δ,�) (Definition 1.17). By [15] Theorem (2.21), we can write g as

As {x ∈ ℝe
≥0

∣ L(x) = 1} ∩ Δ is a face of Δ , we have �(hi) ≥ � − �i . So, the class of hi in 
gr�(R)�−�i is defined,

and Φ =
∑m

i=1
HiPi, with Hi ∶= cl�−�i (hi) ∈ gr�(R)�−�i , 1 ≤ i ≤ m . The end is left to the 

reader.
(ii) Case �(f , u, y) = 0 . Let Φ ∈ gr�(R)� ∩ I� , let g ∈ J be such that in�(g) = Φ , 

let Δ ∶= Δ(f ;u;y) . Furthermore, let b ∈ ℚ+ be the largest rational number such that 
g ∈ I(Δ;b) and N ∶= {x ∈ ℤe

≥0
∣ L(x) ≥ �} . We have g ∈ I(Δ, b) ∩ I(N) , where 

I(N) ∶= I(N)u ∶= ⟨uA ∣ A ∈ N⟩ ⊂ R . Then, [15] Theorem (2.21) gives:

As 
⋂

c∈ℚ+
I(Δ;c) = ∅ , by faithful flatness, we can get g+ = 0 . Since we have 

hi ∈ I(N) , we get �(hi) ≥ � , while �(fi) = 0 , for 1 ≤ i ≤ m . Therefore, we obtain 

R ∶= gr�(R)⟨ t1,…,te,Y1,…,Yr ⟩.

I ∶= I𝜈 ⋅R ⊂ R.

R̂ ≅

{
gr�(R̂)0[[Y , {Ui}i∈I]], if �(f , u, y) ≠ 0,

gr�(R̂)0[[{Ui}i∈I]], if �(f , u, y) = 0.

P1 ∶= in�(f1),… ,Pm ∶= in�(fm) ∈ R.

g =

m∑
i=1

hifi + g+, for hi ∈ I(Δ;𝜇 − 𝜈i), 1 ≤ i ≤ m, and 𝜈(g+) > 𝜇.

cl𝜇−𝜈i (hi) ∶=

{
in𝜈(hi), if 𝜈(hi) = 𝜇 − 𝜈i,
0, if 𝜈(hi) > 𝜇 − 𝜈i,

g =

m∑
i=1

hifi + g+, for hi ∈ I(Δ;b − 𝜈i) ∩ I(N) ⊂ R, 1 ≤ i ≤ m,

and 𝜈(g+) ≥ 𝜇 with g+ ∈ I(Δ, b+), for some b+ > b.
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Φ =
∑m

i=1
HiPi, with Hi = cl�(hi) ∈ gr�(R)� , for 1 ≤ i ≤ m . (Here, the class of hi is defined 

analogously to above). The end is left to the reader.   ◻

Continuing the proof of Theorem 2.5. We define

By Hironaka’s construction, Ŷj ∈ gr�(R̂)�j(f ,u,y)
 , for every j ∈ {1,… , r} , and (t, Ŷ) is a regu-

lar system of parameters for R̂ , and Δ(�f ;u;�y) ⊊ Δ(f ;u;y).
By the choice of the linear form L and since Δ(̂f ;u;̂y) = Δ(J;u) , we have 

�(�f , u,�y) = 1 > �(f , u, y). If we consider expansions of f̂1,… , f̂r and use the definition of 
�(̂f , u, ŷ) , we obtain Δ(P̂;t;Ŷ) = ∅ which implies Δ(I;t) = ∅.

Furthermore, I ⊂ M , thus we can apply Hypothesis 2.2 and Claim 2.3. Therefore, there 
exist Z1,… , Zr ∈ M and a 0-normalized (t)-standard basis (Q) = (Q1,… ,Qm) such that 
Qi = Pi +

∑i−1

a=1
Hi,aPa ∈ R , for Hi,a ∈ I(Δ(P;t;x);�i − �a) , and (t, Z) is a regular system of 

parameters for R , ⟨Z⟩ ⋅ �R = ⟨�Y⟩ ⊂ �R , and

Since Zj ∈ I(Δ(P, t, Y);1) and ⟨Z⟩ ⋅ R̂ = ⟨Ŷ⟩ , we are able to choose lifts, zj = yj − �j ∈ R 
of Zj in R such that zj ∈ I(Δ(f , u, y);1) , for 1 ≤ j ≤ r . Analogously, we may assume with-
out loss of generality that Hi,a ∈ gr�(R) . We have that Hi,a are homogeneous (of degree 
�(f , u, y)(�i − �a) with respect to � ). So, we can choose lifts hi,a ∈ I(Δ(f ;u;y);�i − �a) ∈ R , 
for 1 ≤ a ≤ i ≤ m , and we define (g) = (g1,… , gm) by putting

Let L be a positive linear form on ℝe such that

Recall that vL( ) denotes the monomial valuation defined via vL(uAyB)(u,y) = L(A) + |B| 
(Definition  1.4(2)). In particular, we have vL(zj)(u,y) = vL(yj)(u,y) for every j ∈ {1,… , r} . 
Hence, vL(g)(u,z) = vL(g)(u,y) , for every g ∈ R , and we can drop the reference to the regular 
system of parameters. Since hi,a ∈ I(Δ(f ;u;y);�i − �a) , we have

Since (f) is 0-normalized, we must have equality, and, furthermore, we have 
⟨inL(g1),… , inL(gm)⟩ = inL(J) . Hence, (g1,… , gm) is a (u)-effective standard basis of J 
with reference datum (z,L) . This provides

and as this inequality holds for every positive L as above, we have an inclusion 
Δ(g;u;z) ⊆ Δ(f ;u;y).

On the other hand, (2.1) is equivalent ot �(g, u, z) > �(f , u, y) for our fixed linear form 
L. We conclude that

Ŷ1 ∶= in� (̂y1),… , Ŷr ∶= in� (̂yr) ∈ gr�(R̂), and

P̂1 ∶= in� (̂f1),… , P̂m ∶= in� (̂fm) ∈ R̂.

(2.1)Δ(Q;t;Z) = ∅.

gi ∶= fi +
∑i−1

a=1
hi,afa, for 1 ≤ i ≤ m.

𝛿L(f , u, y) = inf{L(v) ∣ v ∈ Δ(f ;u;y)} > 1.

vL(gi) = vL

(
fi +

∑i−1

a=1
hi,afa

)
≥ �i for 1 ≤ i ≤ m.

�L(g, u, z) ≥ �L(f , u, y)
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Since Λ(.) takes only values in a discrete subset of ℚ≥0 , the strict decrease can only happen 
finitely many times. We repeat the arguments of this proof for Δ(g;u;z) instead of Δ(f ;u;y) . 
Eventually, we obtain in finitely many steps a vertex-normalized (u)-standard basis (g∗) 
of J and elements (z∗) in R extending (u) to a regular system of parameters for R with all 
desired properties. In particular, Δ(g∗;u;z∗) = Δ(J;u).   ◻

Using the notation of the proof, we have

Lemma 2.10 The tangent cone Ct(I) ⊂ �r
k
 of I� ∶= I ⋅R∕⟨t⟩ with respect to  

M
� ∶= M ⋅R∕⟨t⟩ is isomorphic to the tangent cone Cu(J) ⊂ �r

k
 of J′ with respect to  

M� = M ⋅ R∕⟨u⟩ . In particular, their directrices (resp. ridges) are isomorphic. Hence, the 
following equalities hold:

Moreover, we have HS(Ct(I)) ≅ HS(Cu(J)).

Proof Let g ∈ R and put G ∶= in�(g) . If G denotes the image of G in R∕⟨t⟩ , then we 
observe that inM� (G) coincides with inM� (g) , where g = g mod ⟨u⟩ (up to renaming the 
variables). Therefore, Ct(I) ⊂ �r

k
 and Cu(J) ⊂ �r

k
 are isomorphic. The remaining part is 

clear.   ◻

In general, without assumptions (∗) , (Pol) , or R Henselian, we have

Proposition 2.11 Let R be a regular local G-ring and let J ⊂ R be a non-zero ideal. Let 
(u, y) be a regular system of parameters for R such that (u) is a regular (R/J) -sequence and 
(y) determines the directrix of J� = J ⋅ R∕⟨u⟩ . Let (f ) = (f1,… , fm) be a 0-normalized (u)-
standard basis for J.

Using the notation of the proof of Theorem 2.5, we have:

(1) If �(f , u, y) > 0 , then hypothesis (Pol) holds for (I,R,S,P, t,Y) , where

(2) If �(f , u, y) = 0 , then the important data of (I,R,P, t, Y) is contained in 
R0 ∶= gr�(R)0 = R∕⟨{ui}i∈I⟩ (Proposition 2.8) and we have dim(R0) < dim(R).

  More precisely, Pi = in�(fi), Yj = in�(yj) ∈ gr�(R)0 , for all i, j.

Proof Part (2) is an easy observation.
For (1), set S ∶= R∕⟨{ui}i∈I, y⟩ . Recall that R is the localization of 

gr�(R) = S[{Ui}i∈I, Y1,… , Yr] (Proposition 2.8) at the maximal ideal ⟨t, Y⟩ . Furthermore, 
for 1 ≤ i ≤ m , we have Pi = in𝜈(fi) ∈ gr𝜈(R) ⊂ S[Y] and we have seen in Claim  2.9 that 
(P1,… ,Pm) is a 0-normalized (t)-standard basis of I. Since 𝜈(y) = �(f , u, y) > 0 (Defini-
tion  2.7), we have degY (Pi) = n(u)(Pi) . Finally, Lemma  2.10 implies that (Y) determines 
the directrix of I′ , since (y) determines the directrix of J′ . In total, we obtain that condition 
(Pol) holds for (I,R, S,P, t,Y) .   ◻

0 ≤ Λ(g, u, z) < Λ(f , u, y).

dimDir(Ct(I)) = dimDir(Cu(J))

dimRid(Ct(I)) = dimRid(Cu(J))

S ∶=
R

⟨{ui}i∈I, y⟩ [{Ui}i∈I]⟨t⟩,
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Remark 2.12 As a consequence, if �(f , u, y) > 0 , it is sufficient if we can handle Claim 2.3 
under hypothesis (Pol) (which will follow from Theorems 3.3 and 3.12) in order to apply 
the techniques of the proof of Theorem 2.5 to get closer to the characteristic polyhedron.

On the other hand, if �(f , u, y) = 0 , an induction on the dimension of the ambient ring 
may be applied. Yet, we still have to require (∗) to hold for the original data J ⊂ R or R to 
be Henselian in order to be able to prove Claim 2.3.

Proposition 2.13 Let (J, R, f, u, y) and (I,R,P, t, Y) be as in the proof of Theorem 2.5. 

(1) Let (S, N, k) be a regular local G-ring contained in (R, M, k) . Suppose (u) is a regular 
system of parameters for S. If hypothesis (Pol) holds for (J, R, S, f, u, y) , then (Pol) also 
holds for (I,R,S,P, t,Y) , where (using the notation of Proposition 2.8)

(2) If (∗)(a) (resp. (∗)(b) ) holds for (J, R, u) , then (∗)(a) (resp. (∗)(b) ) holds for (I,R, t) , 
too.

(3) If R is Henselian, then either the important data of (I,R,P, t, Y) lies in gr�(R)0 , which 
is Henselian, or (Pol) holds for (I,R,S,P, t,Y) , for S as in part (1).

Proof Statement (1) an immediate consequence of Proposition 2.11. Its proof is left as an 
exercise to the reader. Further, if hypothesis (∗)(a) holds for (J, R, u) then (∗)(a) holds for 
(I,R, t) , by Lemma 2.10.

Let us come to (∗)(b) . Suppose that char(k) ≥ dim(X)

2
+ 1 , where X = Spec(R∕J) . Set 

X ∶= Spec(R∕I) . We claim that dim(X) ≤ dim(X) , from which we obtain immediately 
char(k) ≥

dim(X)

2
+ 1 . Every Pi = in�(fi) can be written as Pi = Fi(Y) +

∑
�B�<𝜈i 𝜆A,B,it

AYB, 
with �A,B,i invertible or zero, and inM(Fi(Y)) = in0(fi) ∈ k[Y] . By taking roots of the 
parameters  (t), we may suppose that ordM(tAyB) > n(u)(fi) = n(t)(Pi) , for 1 ≤ i ≤ m , if 
�A,B,i is invertible. Then (in0(f1),… , in0(fm)) ⊂ k[T , Y] (with some abuse of notation for Y) 
are in the ideal of the tangent cone of X  at the origin. This gives the claimed inequality 
dim(X) ≤ dim(X).

(3) Clearly, the property of being Henselian is not necessarily stable when passing to R , 
which is the localization of a polynomial ring at a maximal ideal. Since being a Henselian 
G-ring is stable by taking quotients, gr�(R)0 = R∕⟨{ui}i∈I⟩ is also a Henselian regular local 
G-ring, so Proposition 2.11 yields the assertion.   ◻

In conclusion, we have reduced the problem of determining the characteristic polyhe-
dron without passing to the completion to Claim  2.3, the case of an empty characteris-
tic polyhedron, Δ(J;u) = ∅ , where (u) is a regular (R/J) -sequence. While the reduction is 
valid without hypothesis (∗) or (Pol) or R Henselian, we need them to find suitable coordi-
nates (z) = (z1,… , zr).

S ∶=

⎧
⎪⎨⎪⎩

R

⟨{ui}i∈I, y⟩ [{Ui}i∈I]⟨t⟩, if �(f , u, y) > 0,

S

⟨{ui}i∈I⟩ [{Ui}i∈I]⟨t⟩, if �(f , u, y) = 0.
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4  Empty characteristic polyhedron I: hypothesis (Pol)

We begin our treatment of the case of an empty characteristic polyhedron with the situa-
tion, where hypothesis (Pol) holds. Here, we can prove slightly stronger results. We intro-
duce a stronger version of being normalized and show that it can also be achieved via a 
finite procedure. Furthermore, we prove, once obtained, it is stable under translations in 
the variables (y) = (y1,… , yr) . In the second subsection, we deduce that the desired coordi-
nates (z1,… , zr) can be obtained by a translation.

Suppose that (Pol) holds for (J, R, S, f, u, y). Recall that this means:

• (S, N, k) is a regular local G-ring contained in (R, M, k), with the same residue field, 
and (u) = (u1,… , ue) is a regular system of parameters for S,

• R = S[y1,… , yr]M , J ⊂ R is a non-zero ideal such that the directrix of J� = J ⋅ R∕⟨u⟩ is 
determined by (y), and Δ(J;u) = ∅,

• (f ) = (f1,… , fm) is a (u)-standard basis of J such that we have fi ∈ S[y1,… , yr] with 
degy(fi) = n(u)(fi) , for 1 ≤ i ≤ m . By Lemma 1.14, we may suppose that (f) is 0-normal-
ized and that the condition exp(fi) ⪯ exp(fi+1) , for 1 ≤ i < m , holds true, without loss of 
generality.

Remark 3.1 In Proposition  2.11(1), we have already seen that (Pol) is an essential case 
since it appears even in the general situation for R any regular local G-ring (without restric-
tions on J ⊂ R).

Let us note that in [6, 8] starting from section 5, the case (Pol) is automatically fulfilled 
and this helps the authors to control the behavior of the characteristic polyhedra after per-
missible blowing ups. In general, with the usual notations, blow up the origin and suppose 
there is a “very near point” of parameters (u1, v2,… , ve� ,

y1

u1
,… ,

yr

u1
) in the first chart

for suitable (v2,… , ve� ) . Set v1 ∶= u1 and y�
j
∶=

yj

u1
 , for 1 ≤ j ≤ r . For every face of the poly-

hedron Δ(f �;v;y�) ⊂ ℝe� of equation L(t1,… , te� ) = a1t1 +…+ ae� te� = �(f �, v, y�) with 
a1 > 0 positive, we have �(f �, v, y�) > 0 , i.e., we have (Pol) for gr�L,v,y� ,f � (R) . It appears that in 
[3, 6, 8, 10], the invariants are defined with these faces only.

4.1  Strong normalization for (Pol)

First, we discuss a finite normalization process in order to obtain suitable generators for the 
ideal J ⊂ R . Throughout the section, we assume that hypothesis (Pol) holds for some given 
(J, R, S, f, u, y).

Given h ∈ R , we have a finite expansion h =
∑

CA,Bu
AyB with coefficients 

CA,B ∈ R× ∪ {0} . For the purpose of this subsection, the expansion does not provide suffi-
cient control. Since R = S[y]M , we may assume h ∈ S[y] after multiplying by a unit. Hence, 
we have

R ⟶ R

[
u1,

u2

u1
,… ,

ue

u1
,
y1

u1
,… ,

yr

u1

]
⟨
u1, v2,… , ve� ,

y

u1

⟩ =∶ R�,
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Definition 3.2 Let S be a regular local ring with regular system of parameters 
(u) = (u1,… , ue) , let R = S[y1,… , yr]M , for M = ⟨u, y⟩ . Let (f ) = (f1,… , fm) be a 
0-normalized system of elements in S[y1,… , yr] with degy(fi) = n(u)(fi) =∶ �i , for 
1 ≤ i ≤ m . Let {�B,i ∈ S ∣ |B| ≤ �i} be the coefficients appearing in the expansion 
of fi of the form above, for i ∈ {1,… ,m} . We say (f ) = (f1,… , fm) is strongly nor-
malized (with respect to (y)) if we have �B,i ≡ 0 , for every i ∈ {2,… ,m} and every 
B ∈ exp(f1,… , fi−1) = exp(⟨in0(f1),… , in0(fi−1)⟩) (Definition 1.4).

Observe that we do not necessarily require S to be a G-ring in this subsection. The main 
result here is

Theorem  3.3 Let S be a regular local ring with regular system of parameters 
(u) = (u1,… , ue) , let R = S[y1,… , yr]M , for M = ⟨u, y⟩ and J ⊂ R be a non-zero ideal. 
Let (f ) = (f1,… , fm) be a 0-normalized (u)-standard basis for J with fi ∈ S[y] and 
degy(fi) = n(u)(fi) =∶ �i , for 1 ≤ i ≤ m.

There exist xi,j ∈ S[y] ∩ ⟨u⟩ with degy(xi,j) ≤ �i − �j , for 2 ≤ i < j ≤ m , such that, if we 
define g1 ∶= f1 and gi ∶= fi −

∑i−1

j=1
xi,jfj , for i ≥ 2 , then (g) = (g1,… , gm) is a (u)-standard 

basis for J that is strongly normalized with respect to (y) and degy(gi) = n(u)(gi) = �i.

We do not have to modify f1 and g1 = f1 . Thus, we have to show the following (using 
the notions of the theorem): Suppose (g1,… , gi−1) are strongly normalized. Then there is a 
finite process for constructing xi,j , with i < j such that (g1,… , gi−1, gi) are strongly normal-
ized (Proposition 3.4). After that, in Lemma 3.10, we prove that (g) remains a (u)-standard 
basis, which completes the proof of Theorem 3.3. The property on the degree of gi follows 
since (f) is 0-normalized and by the degree condition on xi,j.

Proposition 3.4 Let S be a regular local ring with regular system of parameters 
(u) = (u1,… , ue) , let R = S[y1,… , yr]M , for M = ⟨u, y⟩ . Let (g1,… , gi−1, fi) be a sys-
tem of elements in S[y] that is 0-normalized and for which degy(gj) = n(u)(gj) =∶ �j and 
degy(fi) = n(u)(fi) =∶ �i . Assume that (g1,… , gi−1) is strongly normalized.

There are elements xi,j ∈ S[y] ∩ ⟨u⟩ with degy(xi,j) ≤ �i − �j , for 2 ≤ i < j ≤ m , such that 
(g1,… , gi−1, gi) is strongly normalized with respect to (y) if we define gi ∶= fi −

∑i−1

j=1
xi,jgj.

As an immediate consequence, we see that degy(gi) = n(u)(gi) . For the proof, we intro-
duce the following measure.

Recall that the total ordering ⪯ on ℤr is defined by A ⪯ B if and only if |A| < |B| or if 
|A| = |B| and A >lex B (see (1.2)).

Definition 3.5 Let

Let f =
∑

�B�≤� �B y
B ∈ S[y] with �B ∈ S and � ∶= degy(f ) . Suppose that f ∉ ⟨u⟩ . We 

define

h =
∑

B∶|B|≤�
�B y

B, for �B = �B(u) ∈ S and � ∶= degy(h).

I ∶= ⟨in0(g1),… , in0(gi−1)⟩ ⊂ k[Y1,… , Yr].
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If D(f) does not exist, then (g1,… , gi−1, f ) is strongly normalized, and vice versa.

Lemma 3.6 For every D ∈ exp(I) with � ∶= |D| , there exists an element 
hD ∈ ⟨g1,… , gi−1⟩ ∩ S[y] such that exp(hD) = D and

Proof We argue by an increasing induction on D. We begin with the case 
D = exp(g1) = min⪯{exp(G) ∣ G ∈ I} . Since degy(g1) = n(u)(g1) = � , we have

and 𝜑1,B ∈ ⟨u⟩ ⊂ S if B ≺ D . (Without loss of generality, the coefficient of yD is 1). For 
B ≺ D , we have B ∉ exp(I) and therefore, we may take hD ∶= g1.

Suppose D ≻ exp(g1) and assume that the statement of the lemma is true for all B ≺ D 
with B ∈ exp(I) . Recall that we have exp(I) = exp(⟨in0(g1),… , in0(gi−1)⟩) , where the 
appearing ideal lies in k[Y1,… , Yr] . Since D ∈ exp(I) , there are PD,j ∈ k[Y] , which are 
homogeneous of degree |D| − �j (where �j = n(u)(gj) and 1 ≤ j < i ), such that exp(H) = D , 
for H ∶=

∑i−1

j=1
PD,j ⋅ in0(gj) . Note that degY (H) = |D|.

Write PD,j =
∑

C �C,D,jY
C , for �C,D,j ∈ k . By construction, �C,D,j ≠ 0 implies 

|C| = |D| − �j . For every �C,D,j ∈ k , we choose �C,D,j ∈ S such that �C,D,j ≡ �C,D,j mod ⟨u⟩ . 
We define �D,j ∶=

∑
C �C,D,jy

C . Clearly, �D,j ∈ S[y] and

Let h ∶=
∑i−1

j=1
�D,jgj ∈ S[y] . We have degy(h) = |D| = � and exp(h) = D . By definition of 

the leading exponent (see (1.3)), we have

where �D,B ∈ S and

(Without loss of generality, the coefficient of yD is 1). If the first sum is 0, we are done and 
define hD ∶= h and sD,j ∶= �D,j.

Assume this is not the case, i.e., B0 ∶= D(h) ≺ D (Definition  3.5). By the induction 
hypothesis, there exists hB0

 such that

D(f ) ∶= inf
⪯
{B ∈ ℤ

r
≥0

∣ �B ≠ 0 ∧ B ∈ exp(I)}.

hD =yD +
∑

|B| ≤ 𝜈
B ∈ exp(I)

B ≻ D

𝜓D,B y
B +

∑
|B| ≤ 𝜈

B ∉ exp(I)

𝜓D,B y
B, for 𝜓D,B ∈ S,

and hD =
∑i−1

j=1
sD,j gj, for sD,j ∈ S[y] with degy(sD,j) ≤ 𝜈 − 𝜈j.

g1 = yD +
∑

|B| ≤ 𝜈
B ≺ D

𝜑1,B y
B +

∑
|B| ≤ 𝜈
B ≻ D

𝜑1,B y
B, for 𝜑1,B ∈ S

(3.1)degy(�D,j) = |D| − �j = � − �j

h = yD +
∑

|B| ≤ 𝜈
B ∈ exp(I)

B ≺ D

𝜓D,B y
B +

∑
|B| ≤ 𝜈

B ∈ exp(I)

B ≻ D

𝜓D,B y
B +

∑
|B| ≤ 𝜈

B ∉ exp(I)

𝜓D,B y
B

(3.2)𝜓D,B ∈ ⟨u⟩, if B ≺ D.
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• hB0
= yB0 +

∑
�B� ≤ 𝜈

B ∈ exp(I)

B ≻ B0

𝜓B0,B
yB +

∑
�B� ≤ 𝜈

B ∉ exp(I)

𝜓B0,B
yB , for �B0,B

∈ S , and

• hB0
=
∑i−1

j=1
sB0,j

gj , for sB0,j
∈ S[y] with degy(sB0,j

) ≤ � − �j.

We eliminate the yB0-term in h using hB0
:

Since 1 − �D,B0
�B0,D

,�D,B − �D,B0
�B0,B

∈ S , we obtain

By (3.2), we have �D,B0
∈ ⟨u⟩ and hence 1 − �D,B0

�B0,D
∈ S× is a unit.

Furthermore, using h =
∑i−1

j=1
�D,jgj and hB0

=
∑i−1

j=1
sB0,j

gj , we have

where (3.1), �D,B0
∈ S , and degy(sB0,j

) ≤ � − �j imply degy(�
(1)

D,j
) ≤ � − �j.

Repeating the elimination step finitely many times, we eventually reach h(N) with 
D(h(N)) = D , for some N ∈ ℤ+ . Using (3.2), we see that the coefficient of yD in an 
expansion of h(N) is of the form � = 1 + �+ , for 𝜓+ ∈ ⟨u⟩ ⊂ S . Moreover, we have 
h(N) =

∑i−1

j=1
�(N)
D,j

gj , for �(N)
D,j

∈ S[y] with degy(�
(N)

D,j
) ≤ � − �j . Thus, hD ∶= �−1h(N) fulfills all 

desired properties.   ◻

Proof of Proposition 3.4 If (g1,… , gi−1, fi) is strongly normalized, then the statement 
holds for gi ∶= fi . Suppose this is not the case. Let f ∶= fi , � ∶= n(u)(f ) = degy(f ) , and 
D ∶= D(f ) . We have

h(1) ∶= h − 𝜓D,B0
hB0

=
(
yD + 𝜓D,B0

yB0 +
∑

|B| ≤ 𝜈
B ∈ exp(I)

B0 ≺ B ≺ D

𝜓D,B y
B +

∑
|B| ≤ 𝜈

B ∈ exp(I) and B ≻ D

or B ∉ exp(I)

𝜓D,B y
B
)
−

− 𝜓D,B0

(
yB0 +

∑
|B| ≤ 𝜈

B ∈ exp(I)

B ≻ B0

𝜓B0,B
yB +

∑
|B| ≤ 𝜈

B ∉ exp(I)

𝜓B0,B
yB
)

= (1 − 𝜓D,B0
𝜓B0,D

)yD +
∑

|B| ≤ 𝜈
B ∈ exp(I)

B0 ≺ B ≺ D

(𝜓D,B − 𝜓D,B0
𝜓B0,B

)yB

+
∑

|B| ≤ 𝜈
B ∈ exp(I) and B ≻ D

or B ∉ exp(I)

(𝜓D,B − 𝜓D,B0
𝜓B0,B

)yB

D(h(1)) ≻ D(h).

h(1) =
∑i−1

j=1
�D,jgj − �D,B0

(∑i−1

j=1
sB0,j

gj

)
=
∑i−1

j=1
(�D,j − �D,B0

sB0,j

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

=∶ �(1)
D,j

)gj,

f = 𝜑D yD +
∑

|B| ≤ 𝜈
B ∈ exp(I)

B ≻ D

𝜑B y
B +

∑
|B| ≤ 𝜈

B ∉ exp(I)

𝜑B y
B,



 V. Cossart, B. Schober 

1 3

where �D,�B ∈ S and �D ∈ ⟨u⟩ , �D ≠ 0.
Since D = D(f ) ∈ exp(I) , Lemma  3.6 implies that there exists an element 

hD ∈ ⟨g1,… , gi−1⟩ ∩ S[y] such that exp(hD) = D , 

 (i) hD = yD +
∑

�B� ≤ 𝜈
B ∈ exp(I)

B ≻ D

𝜓D,B y
B +

∑
�B� ≤ 𝜈

B ∉ exp(I)

𝜓D,B y
B, for �D,B ∈ S , and

 (ii) hD =
∑i−1

j=1
sD,jgj , for sD,j ∈ S[y] with degy(sD,j) ≤ � − �j.

We define

Since (g1,… , gi−1, fi) is 0-normalized, we have degy(f (1)) = degy(f ) = n(u)(f ).
If (g1,… , gi−1, f

(1)) is strongly normalized, we define gi ∶= f (1) and stop. Else, D(f (1)) is 
defined and D(f (1)) ≻ D as �B − �D �D,B ∈ S . We repeat the elimination step finitely many 
times to obtain f (N) such that (g1,… , gi−1, f

(N)) is strongly normalized. Set gi ∶= f (N).
By (ii) and since �D ∈ S , we have that gi = fi −

∑i−1

j=1
xi,jgj , for certain xi,j ∈ S[y] with 

degy(xi,j) ≤ �i − �j . As (g1,… , gi−1, fi) is 0-normalized, we have �D ∈ ⟨u⟩ , and hence, we 
get xi,j ∈ ⟨u⟩ .   ◻

Let us give an example illustrating why Lemma 3.6 is important in order to obtain a 
strict decrease for D( ) in the proof of Proposition 3.4 (and hence of Theorem 3.3).

Example 3.7 Let k be a field of characteristic two, char(k) = 2 and let a, b, c, d, e ∈ ℤ+ . 
Consider the regular local ring R ∶= k[u, y1, y2, z]⟨u,y1,y2,z⟩ and let J ∶= ⟨g1, g2, f ⟩ ⊂ R be the 
ideal generated by

We observe that (g1, g2, f ) is 0-normalized, but not strongly normalized. We have 
� = n(u)(f ) = 5 and D(f ) = (1, 4, 0) . If we use y1y2g1 = y1y

4
2
+ uay4

1
y2 + uby1y2 to eliminate 

uey1y
4
2
 in f, we obtain

We have D(f �(1)) = (4, 1, 0) ≺ (1, 4, 0) = D(f ) . Hence, the induction on the value of D(.) 
breaks.

The reason for this is that h ∶= y1y2g1 is not the appropriate element to eliminate uey1y42 
in f as there appears uay4

1
y2 and (4, 1, 0) ≺ (1, 4, 0) . We first have to modify h using g2 (and 

g1 ) in order to eliminate uay4
1
y2 (and the bad terms possibly appearing afterwards) as in the 

proof of Lemma 3.6. We leave the details and the end of the normalization process as an 
exercise to the reader.

f (1) ∶= f − 𝜑D hD

=
∑

|B| ≤ 𝜈
B ∈ exp(I)

B ≻ D

(𝜑B − 𝜑D𝜓D,B) y
B +

∑
|B| ≤ 𝜈

B ∉ exp(I)

(𝜑B − 𝜑D𝜓D,B) y
B.

g1 = y3
2
+ uay3

1
+ ub, g2 = y4

1
+ ucy2

1
y2
2
+ ud, f = z5 + uey1y

4
2
.

f �(1) ∶= f − uey1y2g1 = z5 + ua+ey4
1
y2 + ub+ey1y2.
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Even though, the controlling vector D( ) is not behaving well, one can check that apply-
ing Hironaka’s normalization procedure eventually leads to a strongly normalized system 
in the previous example.

The following example show that being polynomial in (y) is not enough for the strong 
normalization to exist. More precisely, we cannot skip the assumption degy(fi) = n(u)(fi).

Example 3.8 Let R be a regular local ring with regular system of parameters (u, y1, y2) , 
(e.g., R = k[u, y1, y2]⟨u,y1,y2⟩ , for any field k). Consider the ideal J ∶= ⟨f1, f2⟩ ⊂ R , where

Clearly, (f1, f2) is 0-normalized. The normalization process tells us to replace 
y3
1
= f1 + y4

1
u + y2

1
u2 + u5 in f2 and we obtain

The monomial y2
1
u3 yields the vertex 1 ∈ Δ(f1, g2;u;y1, y2) which does not vanish by further 

normalization and which is not solvable. Thus we have Δ(f1, g2;u;y1, y2) = Δ(J;u).
But (f1, g2) is not normalized in our stronger sense. Again we would have to replace 

y3
1
= f1 + y4

1
u + y2

1
u2 + u5 and get

Again, y3
1
 appears and we run into a loop. But the polyhedron does not change anymore.

Remark 3.9 In order to obtain the characteristic polyhedron, Hironaka only wants a sys-
tem of generators that is normalized at every vertex. Hence, the more restrictive notion of 
strongly normalization is not needed in the general case.

Let R be a regular local G-ring. Let (f, u, y) be such that Δ(f ;u;y) is defined and non-
empty. If we pass to the data given by the initial forms at any compact face of Δ(f ;u;y) , 
then hypothesis (Pol) holds. Hence, one can apply strong normalization there.

For the proof of Theorem 3.3, it remains to show

Lemma 3.10 Let R be a regular local ring, (u, y) = (u1,… , ue;y1,… , yr) be a regular sys-
tem of parameters of R, J ⊂ R a non-zero ideal, and (f ) = (f1,… , fm) be a 0-normalized 
(u)-standard basis of J. Let (g) = (g1,… , gm) be the strongly normalized elements obtained 
by the preceding normalization process. Then, (g1,… , gm) is also a (u)-standard basis for 
J.

Proof Let (y, L) be a reference datum for the (u)-standard basis (Definition 1.5). Since (f) 
is 0-normalized, our construction does not modify the 0-initial forms, in0(fi) = in0(gi) , 
for 1 ≤ i ≤ m . Hence, properties (3)(a) and (3)(b) in Definition  1.5 also hold for (g) . 
Further, the construction of the elements hD in the proof of Lemma 3.6 and the property 
inL(fi) = in0(fi) , for 1 ≤ i ≤ m , imply that we also have inL(gi) = in0(gi) . Hence, (g) is a (u) 
-effective basis, which remained to be proven. The assertion follows.   ◻

We end the subsection with a useful stability result.

f1 = y3
1
− y4

1
u − y2

1
u2 − u5 and f2 = y5

2
+ y3

1
u.

g2 = y5
2
+ y4

1
u2 + y2

1
u3 + u6.

h2 = y5
2
+ y5

1
u3 + y3

1
u4 + y1u

7 + y2
1
u3 + u6.
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Proposition 3.11 Let (S, N, k) be a regular local ring with regular system of parameters 
(u) = (u1,… , ue) , let R = S[y1,… , yr]M , for M = ⟨u, y⟩ and J ⊂ R be a non-zero ideal. Let 
(f ) = (f )(u,y) = (f1,… , fm) be a strongly normalized (u)-standard basis for J with fi ∈ S[y] 
and degy(fi) = n(u)(fi) , for 1 ≤ i ≤ m.

Consider elements (𝜙) = (𝜙1,… ,𝜙r) ∈ Nr ⊂ Sr . If we define

then (f )(u,z) is still a strongly normalized (u)-standard basis for J.

In particular, if (Pol) holds, then the property of being strongly normalized is stable 
under translations of (y) by elements in N.

Proof First, we observe, that the leading exponents do not change under such a translation. 
Let uAyB be a monomial appearing in fi+1 , for some 1 ≤ i ≤ m − 1 . It is mapped to

In particular, B ∈ (C1,… ,Cr) + ℤr
≥0

 , for every appearing C = (C1,… ,Cr) . So, if 
C ∈ exp(⟨f1,… , fi⟩) , then B ∈ exp(⟨f1,… , fi⟩) . Hence, this would contradict the assump-
tion that (f )(u,y) is strongly normalized.   ◻

4.2  Finding coordinates under hypothesis (Pol)

We come to the task of finding suitable coordinates (z1,… , zr) if the characteristic poly-
hedron is empty and (Pol) holds, i.e., such that Δ(J;u;z) = Δ(J;u) = ∅ . Hypothesis (Pol) 
allows to prove a slightly stronger result, namely, the elements (z1,… , zr) can be obtained 
by a translation in N ⊂ S . Using Proposition  3.11, we then obtain Δ(f ;u;z) = ∅ , for a 
strongly normalized standard basis (f) .

The following result generalizes [7] Corollary 3.4.

Theorem  3.12 (Claim 2.3 for (Pol) ) Let (S,  N,  k) be a regular local G-ring with regu-
lar system of parameters (u) = (u1,… , ue) . Let R = S[y1,… , yr]M and J ⊂ R be a non-
zero ideal such that the directrix of J′ be determined by (y) and such that (u) is a regu-
lar (R/J) -sequence. Let (f ) = (f1,… , fm) be a 0-normalized (u)-standard basis of J with 
fi ∈ S[y1,… , yr] and degy(fi) = n(u)(fi) =∶ �i , for 1 ≤ i ≤ m.

Suppose Δ(J;u) = ∅ and let (̂y) = (̂y1,… , ŷr) be the elements in R̂ such that Δ(J;u;̂y) = ∅ 
obtained by Hironaka’s vertex preparation. There exist xi,j ∈ I(Δ(f ;u;y);�i − �j) ∩ S[y] , 
with degy(xi,j) ≤ �i − �j , 2 ≤ j < i ≤ m , and (�) = (�1,… ,�r) in N ⊂ S such that, if we set

for i ∈ {1,… ,m} and a ∈ {1,… , r} , then the following properties hold:

zj ∶= yj + �j, for 1 ≤ j ≤ r,

uA(z1 + �1)
B1 ⋯ (zr + �r)

Br

= uA
∑B1

C1=0
…

∑Br

Cr=0

(
B1

C1

)
⋯

(
Br

Cr

)
�
B1−C1

1
⋯�Br−Cr

r
z
C1

1
⋯ zCr

r
.

gi = fi +
∑i−1

j=1
xi,jfj ∈ R and za ∶= ya + �a,
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(1) (u, z) is a regular system of parameters for R,
(2) (z) yields the directrix of J� = J ⋅ R∕⟨u⟩,
(3) ⟨z⟩ ⋅ R̂ = ⟨ŷ⟩,
(4) za ∈ I(Δ(f ;u;y);1) , for 1 ≤ a ≤ r,
(5) (g1,… , gm) is a strongly normalized (u)-standard basis, and
(6) Δ(g;u;z) = Δ(J;u;z) = Δ(J;u) = ∅.

Proof Without loss generality, we assume that (f1,… , fm) is strongly normalized. Suppose 
we could find (z) verifying (1)(2)(3)(4), as (z) is obtained as a translation by an element in 
S, by Proposition 3.11, the system (f1,… , fm) fulfills the property (5) and (6).

Therefore, it remains to find (z) fulfilling (1)(2)(3)(4).
Recall that k = S∕N denotes the residue field of S and that we fixed a strongly normal-

ized (u)-standard basis (f ) = (f1,… , fm) with fi ∈ S[y1,… , yr] and �i = degy(fi) = n(u)(fi) . 
Since the characteristic polyhedron is empty, applying finitely many times Hironaka’s pro-
cedure, we may suppose |v| > 1 for all v ∈ Δ(f ;u;y) : the elements (f) are also a standard 
basis for J in the sense of Definition 1.5 and their 0-initial forms coincide with the initial 
forms at the maximal ideal, in0(fi) = inM(fi) , for 1 ≤ i ≤ m . We have that

where sB,i ∈ S and Fi(y) =
∑

�B�=�i cB,iy
B ∈ S[y] are polynomials homogeneous of degree �i , 

with cB,i ∈ S (not all necessarily units).
We use the notation

Consider the homogenizations (f h) = (f h
1
,… , f h

m
) ∈ S[y, T]m as elements in �[y1,… , yr, T],

Recall that by Hironaka’s procedure ŷj = yj + �j , for 1 ≤ j ≤ r and where �1,… ,�r ∈ Ŝ . 
As there is no normalization to do, by Proposition 3.11, we get that

In other words, the ideal of the directrix of the cone over � defined by ∏
1≤i≤m f h

i
∈ �[y1,… , yr, T] is contained in ⟨y1 + �1T ,… , yr + �rT⟩ . By [3] Theo-

rem 2.7, applied for2 R = Ŝ[y1,… , yr]⟨u,y1,…,yr⟩ , the principal ideal J = ⟨f1 ⋯ fm⟩ ⊂ R , and 
� = ⟨ŷ1,… , ŷr⟩ , we have

where e( ) means the dimension of the directrix at the maximal ideal (cf. [3] Defini-
tion 1.18). As ⟨Y1,… , Yr⟩ is the ideal of the directrix at ⟨u, y⟩ of (f1,… , fm) (considered as 
elements in Ŝ[y1,… , yr]⟨u,y1,…,yr⟩ ), which is the same as the directrix of f1 ⋯ fm , the right 
hand side of the above inequality is zero. Hence, we have

fi = Fi(y) +
∑

B∈ℤr
≥0
∶|B|<𝜈i

sB,i y
B, for 1 ≤ i ≤ m,

� ∶= Quot(S) and � ∶= Quot(Ŝ).

f h
i
= Fi(y) +

∑
B∈ℤr

≥0
∶|B|<𝜈i

sB,i y
BT𝜈i−|B|, for 1 ≤ i ≤ m.

f h
i
= Fi(y1 + �1T ,… , yr + �rT) for 1 ≤ i ≤ m.

e(R�∕J�) ≤ e(R∕J) − dim(R∕�),

2 Here, we use the notation of [3] Theorem 2.7 for clarity in the reference. We warn the reader not to get 
confused with the notation of the present paper.
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In other words, the ideal of the directrix of f1 ⋯ fm at � must have r generators. There-
fore the ideal of the directrix of the cone defined by 

∏
1≤i≤m f h

i
∈ �[y1,⋯ , yr, T] is 

⟨y1 + �1T ,⋯ , yr + �rT⟩ . Therefore, the elements �1,… ,�r are uniquely determined in Ŝ.
Since S is a G-ring, the extension � ⊂ � is separable, so we have 

�1,… ,�r ∈ Ŝ ∩ � = Ŝ ∩ Quot(S) = S (the last equality holds by faithful flat-
ness). As �1,… ,�r are the one given by Hironaka’s procedure, the system 
(z) = (z1,… , zr) = (y1 + �1,… , yr + �r) , which lies in S[y]⟨u,y⟩ , fulfills (1)(2)(3)(4).   ◻

Let us emphasize that �1,… ,�r ∈ R are the elements that we obtain from Hironaka. In 
theory, as the directrix may be computed (see the appendix of [4]), there is a finite way to 
compute the elements �1,… ,�r given by Hironaka’s procedure that may be infinite.

Note that Theorems 2.5 and 3.12 imply Theorem C.

5  Empty characteristic polyhedron II: hypothesis (∗)

Our next goal is to show that we find suitable elements (z) = (z1,… , zr) in R extending (u) 
to a regular system of parameters, under the assumption that Δ(J;u) = ∅ and hypothesis (∗) 
is true.

Proposition 4.1 Let R be a regular local G-ring, J ⊂ R be a non-zero ideal and 
(u, y) = (u1,… , ue;y1,… , yr) be a regular system of parameters of R such that (u) is a 
regular (R/J) -sequence and (y) determines the directrix of J� = J ⋅ R� , where R� = R∕⟨u⟩ . 
Suppose Δ(J;u) = ∅ and let (̂y) = (̂y1,… , ŷr) be the elements in R̂ such that Δ(J;u;̂y) = ∅ 
obtained by Hironaka’s vertex preparation.

We assume that condition (∗) holds for (J, R, u), i.e., one of the following conditions is 
true:

(a) the dimension of the ridge of Cu(J) coincides with the dimension of its directrix,
(b) or char(k) ≥

dim(X)

2
+ 1 , where X ∶= Spec(R∕J).

There exist elements (z) = (z1,… , zr) in R such that (u, z) is a regular system of param-
eters for R, (z) yields the directrix of J′ , ⟨z⟩ ⋅ �R = ⟨�y⟩ ⊂ �R , and Δ(J;u;z) = Δ(J;u) = ∅.

Recall that a subscheme D ⊂ X ∶= Spec(R∕J) is called a permissible center for X if 
it is regular and X is normally flat along D at every point of D ([3] Definition 2.1). The 
latter holds if D is contained in the Hilbert-Samuel locus of X, D ⊂ HS(X) , see loc. cit., 
Theorem 2.3.

Proof of Proposition 4.1 Due to Hironaka (Theorem 1.11) there are (̂f , ŷ) in R̂ such that we 
have Δ(J;u;̂y) = Δ(̂f ;u;̂y) = ∅ . Since Δ(J;u;̂y) = ∅ we get that D̂ ∶= Spec(R̂∕⟨ŷ⟩) is a per-
missible center for X̂ ∶= Spec(R̂∕Ĵ) , Ĵ = J ⋅ R̂ . This follows from [3] Theorem 2.2(2) using 
(̂f ) and the definition of Δ(̂f ;u;̂y) (Definition 1.2) in part (iv) of the cited theorem.

Claim 4.2 Assumption (∗) implies that, after blowing up along D̂ , the Hilbert-Samuel func-
tion decreases at every point lying above the center.

e(R�∕J�) = 0.
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Take it for granted for the moment.
By Claim 4.2, the maximal value of the Hilbert-Samuel function strictly decreases after 

the blowing up with center D̂ . Since a blowing up is an isomorphism outside of the center, 
this may only happen if we have blown up the entire maximal Hilbert-Samuel stratum 
HS(X̂) of X̂ : I

HS(X̂)
= ⟨ ŷ ⟩R̂ , where I

HS(X̂)
 denotes the ideal of the Hilbert-Samuel stratum 

of X̂.
By [3] Lemma 1.37(2), the Hilbert-Samuel stratum of X̂ (which is given by Ĵ = JR̂ ) is 

solely determined by that of X = Spec(R∕J),

where IHS(X) denotes the ideal of the Hilbert-Samuel stratum of X. Hence there is an ideal 
I ⊂ R such that I ⋅ R̂ = ⟨ ŷ ⟩ . Since R is excellent (Lemma 2.1), R/I is regular and the height 
of I is r. Thus there exist regular elements (z) = (z1,… , zr) in R such that I = ⟨z1,… , zr⟩ . 
This implies

Therefore (u, z) is a regular system of parameters for R, (z) determines the directrix of J′ 
and we have the desired equality Δ(J;u;z) = Δ(J;u;̂y) = Δ(J;u) = ∅.

Proof of the Claim 4.2 Let Dirx̂(X̂) (resp. Ridx̂(X̂) ) be the directrix (resp.  the ridge) of the 
cone defined by in

M̂
(JR̂) , x̂ is the closed point in Spec(R̂).

If (∗)(a) holds, then

which follows using [12] Proposition 5.4(i), p.I-27.
It follows from [12] Corollaire 2.4, p.III-13 (see also [11] Theorem (9.2.2)) that if x̂′ is 

near to x̂ then x̂′ must be contained in the projective space associated to the quotient group 
Ridx̂(X̂)∕Tx̂(D) , where Tx̂(D) denotes the Zariski tangent space of D at x̂ . By (4.3), this pro-
jective space is empty.

In case (∗)(b) , this is a consequence of a result by Hironaka [16] Theorem 2 which was 
later improved by Mizutani [19] (see also [11] section 10.9). This is in connection with 
so called Hironaka group schemes (e.g., see [12] § 2, p.III-11, or [11] chapter 9). For a 
detailed statement and proof, we refer to [3] Theorem 2.14.   ◻

Note that this proves statements (1)(2)(3) of Claim 2.3 assuming hypothesis (∗) to be 
true, while (4)(5)(6) will follow from Proposition 6.1 below.

Observation 4.3 In fact, in order to apply the argument of the previous proof for finding 
the elements (z) = (z1,… , zr) , we only need that the ideal of the Hilbert Samuel stratum 
HS(X̂) is ⟨ŷ1,… , ŷr⟩ (and that R is a regular local G-ring).

This assumption is less restrictive than (∗) . For example, let R be a regular local G-ring 
containing a non-perfect field k of characteristic two, and let J = ⟨f ⟩ be a principal ideal 
such that dim(Spec(R∕J)) ≥ 3 . If f = ŷ2

1
+ �ŷ2

2
 in R̂ , for � ∈ k ⧵ k2 , then neither (∗)(a) nor 

(∗)(b) holds, while HS(X̂) = Spec(R̂∕⟨ŷ1, ŷ2⟩).

(4.1)I
HS(X̂)

= IHS(X) ⋅ R̂ = ⟨ ŷ ⟩R̂,

(4.2)⟨z⟩ ⋅ R̂ = I ⋅ R̂ = ⟨ŷ⟩.

(4.3)(Ridx̂(X̂))red = Dirx̂(X̂)
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6  Empty characteristic polyhedron III: Henselian rings (following O. 
Piltant)

In this section, we discuss Theorem  A, the case when R is a Henselian regular local 
G-ring. The arguments for the proof have been outlined to us by Olivier Piltant in a private 
conversation.

Analogous to the previous section, we prove

Theorem  5.1 Let R be a regular local G-ring, J ⊂ R be a non-zero ideal and 
(u, y) = (u1,… , ue;y1,… , yr) be a regular system of parameters of R such that (u) is a regu-
lar (R/J) -sequence and (y) determines the directrix of J� = J ⋅ R� , where R� = R∕⟨u⟩.

Suppose Δ(J;u) = ∅ and R is Henselian. Let (̂y) = (̂y1,… , ŷr) be the elements in R̂ such 
that Δ(J;u;̂y) = ∅ obtained by Hironaka’s vertex preparation.

There exist elements (z) = (z1,… , zr) in R such that (u, z) is a regular system of param-
eters for R, (z) yields the directrix of J′ , ⟨z⟩ ⋅ �R = ⟨�y⟩ ⊂ �R , and Δ(J;u;z) = Δ(J;u) = ∅.

The theorem provides statements (1)(2)(3) of Claim 2.3 under the assumption that R is 
Henselian. The remaining parts (4)(5)(6) will follow from Proposition 6.1 below.

Proof We already know how to prove the result if the reduced ridge coincides with 
the directrix (Proposition  4.1). Therefore we can exclude the case that the residue field 
k = R∕M is perfect (in particular, we may assume char(R∕M) > 0 ) in the following.

Due to Hironaka (Theorem 1.11) there are (̂y) = (̂y1,… , ŷr) in R̂ and a (u)-standard basis 
(̂f ) = (̂f1,… , f̂m) of Ĵ = J ⋅ R̂ such that

The latter implies that D̂ ∶= Spec(R∕⟨ŷ1,… , ŷr⟩) is a permissible center for 
X̂ ∶= Spec(R̂∕Ĵ) (i.e., D̂ is regular and X̂ is normally flat along D̂ at every point of D̂ , [3] 
Definition 2.1). In particular, D̂ is contained in the Hilbert-Samuel locus of X̂ , �D ⊂ HS(�X).

Moreover, Δ(̂f ;u;̂y) = ∅ provides that, for all 1 ≤ i ≤ m , we have

where �i ∶= ordM(fi) = n(u)(̂fi) , which follows using the definition of the polyhedron associ-
ated to (̂f , u, ŷ) (Definition 1.2).

We introduce the following ideals:

By [3] Lemma 1.37(2) the Hilbert-Samuel stratum of Ĵ = J ⋅ R̂ is solely determined by that 
of J. Therefore, we have P ≠ ⟨0⟩ . Furthermore, we have a unique decomposition

where the Qi are prime ideals, 1 ≤ i ≤ s ([13]  (7.8.3.1)(vii): as R∕P is reduced, the comple-
tion R̂∕PR̂ is reduced).

The uniqueness implies that there are no embedded components.

Δ(̂f ;u;̂y) = ∅.

f̂i ∈ ⟨ ŷ ⟩�i ,

�P ∶= ⟨�y1,… ,�yr⟩ ⊂ �R and P ∶= �P ∩ R = ⟨𝜑1,… ,𝜑d⟩ ⊂ R.

(5.1)P�R = Q1 ∩… ∩ Qs ⊂ �P.
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Since R is excellent (Lemma  2.1), the fiber Spec(R̂
P̂
∕PR̂

P̂
) is regular and thus 

there exists a regular system of parameters for R̂
P̂
∕PR̂

P̂
 . Moreover, a regular sys-

tem of parameters for �P ⋅ �R�P ⊂ �R�P can be picked as the set consisting of the pull back 
of a regular system of parameters for R̂

P̂
∕PR̂

P̂
 and a regular system of parameters for 

P ⋅ RP = ⟨𝜑1,… ,𝜑c⟩RP
⊂ RP , extracted from a system of generators ⟨�1,… ,�c,… ,�d⟩ of 

P ⊂ R . Therefore, we may assume, without loss of generality,

and

where �i ∶= inP(�i) , for 1 ≤ i ≤ c . We consider the polynomial ring

where Ŷj ∶= in
P̂
(̂yj) , for 1 ≤ j ≤ r , and �̃�i ∶= in�P(𝜑i) , for 1 ≤ i ≤ c . The natural map

sends �i to �̃�i , for 1 ≤ i ≤ c , so it is injective and homogeneous of degree 1. In particular, 
this implies that

But so far we only know:

Let us now come back to decomposition (5.1), P�R = Q1 ∩… ∩ Qs ⊂ �P.

Claim 5.2 The following properties hold: 

(1) We have Qi ∩ R = P , for all i ∈ {1,… , s}.
(2) There is at least one i0 , without loss of generality i0 = 1 , such that Q1 ⊂ �P.
(3) We have (PR̂ )

P̂
= P̂R̂

P̂
.

Proof 

(1) Suppose P ⊊ Qi ∩ R . The flatness of R → R̂ implies that we have the going down prop-
erty, i.e., there is an ideal Q′ ⊂ �R such that Q′ ⊊ Qi and Q� ∩ R = P . But this contradicts 
the uniqueness of the decomposition (5.1).

(2) If we have Qi ⊂ �P , for some i ∈ {2,… , s} , we obtain the assertion after renaming the 
components. Hence, suppose that Qi ⊄ �P , for 2 ≤ i ≤ s . Then, there exist elements 
ai ∈ Qi such that ai ∉ P̂ . For every element a ∈ Q1 , we have a ⋅ a2 ⋯ as ∈ P̂ and, since 
P̂ is a prime ideal, we must have a ∈ P̂ , which provides Q1 ⊂ �P as desired.

(3) As J ⊂ R , its directrix lies in grP(RP) = �(P)[�1,… ,�c] . By the minimality of the 
directrix, we have 

�P�R�P = ⟨𝜑1,… ,𝜑c, �yc+1,… ,�yr ⟩�R�P
⊂ �R�P.

grP(RP) = �(P)[�1,… ,�c],

gr�P(
�R�P) ≅ 𝜅(�P)[�̃�1,… , �̃�c,

�Yc+1,… , �Yr],

grP(RP) → gr
P̂
(R̂

P̂
)

deg�P(�̃�i) = ord�P(𝜑i) = 1, for all i ∈ {1,… , c}.

ordM(�i) ≥ 1.

e(R̂
P̂
∕JR̂

P̂
) ∶= dim(Dir(R̂

P̂
∕JR̂

P̂
)) ≥ r − c.
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 On the other hand, [3] Theorem 2.7 provides (Recall that P̂ = ⟨ŷ1,… , ŷr⟩ ) 

 So, we have c = r and Spec(R̂
P̂
∕PR̂

P̂
) is regular of dimension 0, i.e., R̂

P̂
∕PR̂

P̂
 is a 

field.
  ◻

Thus, since (PR̂ )
P̂
= P̂R̂

P̂
 and Q1 ⊂ �P (Claim 5.2(2) and (3)), we get

Since R is catenary, this implies dim(R̂∕P̂) = dim(R̂∕Q1) = dim(R∕P) . Hence, since 
Q1 ⊂ �P , we have

This means that (5.1) becomes

Up to this point, we have not used the property that R is Henselian yet. We claim that R 
Henselian implies s = 1 : First, A ∶= R∕P is a reduced Henselian excellent local ring and 
Spec(A) is irreducible. Thus, [14] Proposition (18.6.12) provides that A is unibranch and 
the latter is equivalent to Â being integral, by [13] Scholie (7.8.3)(vii). So, s = 1.

In other words, (5.2) is PR̂ = P̂ . With the notations of Proposition  4.1, we get: 
I
HS(X̂)

= ⟨ ŷ ⟩R̂.
Using the identical argument, (starting from (4.1)), the assumption that R is excellent 

finishes the proof of Theorem 5.1.   ◻

Again, let us emphasize that the previous proof provides the following result (without 
the assumption R Henselian)

Proposition 5.3 Let R be a regular local G-ring, J ⊂ R be a non-zero ideal and 
(u, y) = (u1,… , ue;y1,… , yr) be a regular system of parameters of R such that (u) is a regu-
lar (R/J) -sequence and (y) determines the directrix of J� = J ⋅ R� , where R� = R∕⟨u⟩.

Suppose Δ(J;u) = ∅ . Let (̂y) = (̂y1,… , ŷr) be the elements in R̂ such that Δ(J;u;̂y) = ∅ 
obtained by Hironaka’s vertex preparation. If we define

then we have a unique decomposition

for certain primes ideal Q2,… ,Qs ⊂ �R.

r − c ≤ e(R̂
P̂
∕JR̂

P̂
) ≤ e(R̂∕JR̂) − dim(R̂

P̂
∕P̂R̂

P̂
) = 0.

dim(R̂
P̂
∕P̂R̂

P̂
) = dim(R̂

P̂
∕Q1R̂P̂

) = dim(RP∕PRP).

Q1 = P̂.

(5.2)PR̂ = P̂ ∩ Q2 ∩… ∩ Qs.

�P ∶= ⟨�y1,… ,�yr⟩ ⊂ �R and P ∶= �P ∩ R ⊂ R,

PR̂ = P̂ ∩ Q2 ∩… ∩ Qs,
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7  Empty characteristic polyhedron IV: finding generators

In this section, we explain how to obtain suitable generators (g1,… , gm) for the ideal J ⊂ R 
such that Δ(g;u;z) = Δ(J;u) = ∅ , where (z) = (z1,… , zr) are the elements constructed in 
the previous subsections. For this step, it is not necessary to assume that any of the hypoth-
eses (∗) or R Henselian hold. (Recall that, if (Pol) holds, we obtained the appropriate gen-
erators in a different way).

Proposition 6.1 Let R be a regular local G-ring, J ⊂ R be a non-zero ideal and 
(u, y) = (u1,… , ue;y1,… , yr) be a regular system of parameters for R such that (u) is a 
regular (R/J) -sequence and (y) determines the directrix of J� = J ⋅ R� , where R� = R∕⟨u⟩ . 
Let (f ) = (f1,… , fm) be a 0-normalized (u)-standard basis for J.

Suppose Δ(J;u) = ∅ . Let (̂y) = (̂y1,… , ŷr) be the elements in R̂ obtained by Hironaka’s 
vertex preparation such that Δ(J;u;̂y) = ∅ . Assume there exist (z) = (z1,… , zr) in R such 
that (u, z) is a regular system of parameters for R with ⟨z⟩ ⋅ R̂ = ⟨ŷ⟩.

Then we have zj ∈ I(Δ(f ;u;y);1) (Definition 1.17), for 1 ≤ j ≤ r , and Δ(f ;u;z) ⊂ Δ(f ;u;y) . 
Furthermore, there exists a (u)-standard basis (g) = (g1,… , gm) for J in R such that 
Δ(g;u;z) = ∅ and

By Proposition 4.1 (resp. Theorem 5.1), the assumptions of the above theorem hold 
true if hypothesis (∗) is true (resp. if R is Henselian). Therefore, the mentioned proposi-
tion and the previous one imply Claim 2.3 if hypothesis (∗) holds (resp. if R is Hense-
lian). Together with Theorem 2.5, we then obtain Theorems B and A .

Proof Since the characteristic polyhedron is empty, we have �i = ordM(fi) , for all 
i ∈ {1,… ,m} , and the elements (y) = (y1,… , yr) determine the directrix of J. In particular, 
every standard basis for J is a (u)-standard basis, which follows by [3] Lemma 6.8.

As R → R̂ is faithfully flat, for any ideal I ⊂ R , we have IR̂ ∩ R = I . By Hironaka’s 
construction (Theorem  1.29), we have ŷj = yj + �̂j , for some �̂j ∈ ⟨u⟩ ⋅ R̂ , for every 
j ∈ {1,… , r} . In particular, ⟨�y⟩ ⊂ I(Δ(f ;u;y);1) ⋅ �R and therefore,

This gives the first assertion.
By Hironaka’s construction, applied to (f1,… , fm) and (y1,… , yr) , we find 

(ĝ) = (ĝ1,… , ĝm) ∈ R̂m , with

for 2 ≤ i ≤ m , with ĥi,a ∈ I(Δ(f ;u;y);�i − �a)R̂ and Δ(ĝ;u;̂y) = ∅.
As (f) is 0-normalized (which is stable under vertex preparation), we have 

inM(ĝi) = inM(fi) . Further, ĝi ∈ ⟨z⟩�i R̂ , so Δ(ĝ;u;z) = Δ(ĝ;u;̂y) = ∅.

gi = fi +

i−1∑
a=1

hi,afa ∈ R, hi,a ∈ I(Δ(f ;u;y);�i − �a), 1 ≤ i ≤ m.

⟨z⟩ = ⟨�y⟩ ∩ R ⊂ I(Δ(f ;u;y);1) ⋅ �R ∩ R = I(Δ(f ;u;y);1).

(6.1)ĝ1 = f1 ∈ ⟨z⟩�1 , ĝi = fi +

i−1�
a=1

ĥi,a fa ∈ ⟨z⟩�i R̂ = ⟨ŷ⟩�i ,
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Since ĝi ∈ ⟨z⟩�i R̂ , for all i ∈ {1,… ,m} , we obtain that Spec(R̂∕⟨z⟩R̂) is permissi-
ble for Spec(R̂∕JR̂) . Hence, since R → R̂ is faithfully flat, D ∶= Spec(R∕⟨z⟩) is permis-
sible for X ∶= Spec(R∕J) at the origin x = Spec(R∕M) ∈ D , by [3] Theorem  2.2(3). 
In particular, X is normally flat along D at x. By [3] Theorem  2.2(2)(iv), we can find 
(g�) = (g�

1
,… , g�

m
) ∈ Rm a standard basis of J, such that, for 1 ≤ i ≤ m,

As (g�) is a standard basis, ⟨inM(g�)⟩ = inM(J) = ⟨inM(f )⟩ and we can adapt the basis (g�) to 
get

In particular, we have Δ(g�;u;z) = ∅ and g�
1
= f1 = ĝ1 , without loss of generality. By (6.1), 

(6.2), and (6.3), we have ĝi ≡ g�
i
mod M⟨z⟩�i , and we get, for all i ∈ {2,… ,m},

As 
∑i−1

a=1
ĥi,a fa ∈

∑i−1

a=1
fa ⋅ I(Δ(f ;u;y);�i − �a)R̂ , by faithful flatness,

Hence, for 2 ≤ i ≤ m , there is an expansion:

Since ki ∈ M⟨z⟩�i , these ki cannot contribute to the polyhedron: Δ(g;u;z) = Δ(g�;u;z) = ∅ 
with g1 ∶= f1 , gi ∶= fi +

∑i−1

a=1
hi,afa , for 2 ≤ i ≤ m .   ◻

8  On the general case and more examples

We end with some remarks on the general case. First, let us summarize which of the results 
are valid for any regular local G-ring (without assuming R to be Henselian or hypothesis 
(∗) or (Pol) to hold):

• Theorem 2.5: The reduction from a non-empty characteristic polyhedron to the case of 
an empty one.

• Proposition 2.11: Along a given face of Δ(f ;u;y) ≠ ∅ , the data either fulfills hypothesis 
(Pol) (if �(f , u, y) > 0 ) or is contained in a smaller dimensional regular local G-ring (if 
�(f , u, y) = 0).

• Proposition  5.3: Let (̂y) = (̂y1,… , ŷr) be the coordinates obtained by Hironaka’s ver-
tex preparation. Suppose that Δ(J;u) = ∅ . If we set �P ∶= ⟨�y⟩ ⊂ �R and P ∶= �P ∩ R ⊂ R , 

(6.2)g�
i
=

m�
a=1

h�
i,a
fa ∈ ⟨z⟩�i , for h�

i,a
∈ R.

(6.3)inM(g
�
i
) = inM(fi), for 1 ≤ i ≤ m.

m�
a=1

h�
i,a
fa − fi = g�

i
− fi ≡ ĝi − fi =

i−1�
a=1

ĥi,a fa mod M⟨z⟩�i R̂.

g�
i
− fi =

m�
a=1

h�
i,a
fa − fi ∈

i−1�
a=1

fa I(Δ(f ;u;y);�i − �a) +M⟨z⟩�i .

g�
i
=fi +

i−1�
a=1

hi,afa + ki ∈ R,

for some ki ∈ M⟨z⟩𝜈i and hi,a ∈ I(Δ(f ;u;y);𝜈i − 𝜈a) ⊂ R.
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then we have a unique decomposition P ⋅ R̂ = P̂ ∩ Q2 ∩… ∩ Qs, for Q2,… ,Qs ⊂ �R 
prime ideals and s ≥ 1.

• Proposition 6.1: Once we have found appropriate coordinates (z) = (z1,… , zr) in R such 
that Δ(J;u;z) = ∅ , we can find a (u)-standard basis (g) = (g1,… , gm) for J such that 
Δ(g;u;z) = ∅.

Remark 7.1 An important step in the proof for the existence of (z) under hypothesis (∗) or R 
Henselian, was to construct an ideal I ⊂ R with the property I ⋅ R̂ = ⟨ŷ⟩ . The excellence of 
R then finished the proof. In case (∗) , this was obtain since I

HS(X̂)
= ⟨ŷ⟩ . In Example 7.5, we 

show that this property does not hold, in general.
Nonetheless, if we can find a measure for the complexity of a singularity (as an alterna-

tive to the Hilbert-Samuel function) defining a closed subscheme W ⊂ Spec(R) such that 
the ideal IW of W has the property IW ⋅ R̂ = ⟨ŷ⟩ , the same arguments can be applied to finish 
the proof.

One candidate to study is the extension of the Hilbert-Samuel function by the codimen-
sion of the ridge. In [9], a proof of the upper semi-continuity for this refinement is given, 
which is hidden in Giraud’s work [12]. Hence, the locus W, where it becomes maximal 
is closed. Furthermore, using [11] Main Theorem C, one can deduce that the ideal of the 
maximal locus of this invariant in R̂ is ⟨ŷ⟩ if dim(X) ≤ 5 . Dietel introduces a refinement of 
the ridge and makes use Oda’s classification of Hironaka schemes [21] (see also [11] sec-
tion 10.9). Due to increasing complexity, there is no classification of Hironaka schemes in 
higher dimension and more work is required.

We claim that the following result holds, which characterizes ⟨ŷ⟩ if the characteristic 
polyhedron is empty. Unfortunately, we could not make significant use of it so far, but 
we believe that it deserves to be mentioned.

Claim 7.2 Let R be a regular local G-ring, J ⊂ R be a non-zero ideal and 
(u, y) = (u1,… , ue;y1,… , yr) be a regular system of parameters for R such that (u) is a 
regular (R/J) -sequence and (y) determines the directrix of J� = J ⋅ R� , where R� = R∕⟨u⟩.

Suppose Δ(J;u) = ∅ . Let (̂y) = (̂y1,… , ŷr) be the elements in R̂ obtained by Hironaka’s 
vertex preparation such that Δ(J;u;̂y) = ∅ . Then, D̂ ∶= Spec(R̂∕⟨ŷ⟩) is the unique permis-
sible center for X̂ ∶= Spec(R̂∕JR̂) of maximal dimension, and every permissible center is 
contained in D̂.

Proof (outline) First of all, D̂ is permissible. If there is a larger center containing D̂ , then 
we get a contradiction to the minimality of the number of generators of the directrix. If 
there is a permissible center that is transversal to D̂ , then we get again a contradiction to 
the property that the system (̂y) yields the directrix. Suppose there is a permissible center 
that is tangent to D̂ and denote the corresponding ideal I′ . Then we get that the associated 
polyhedron cannot be empty and thus g ∉ I�n , i.e., Spec(R∕I�) is not a permissible center.  
 ◻

In general, (∗)(a) does only hold after a finite purely inseparable extension of the resi-
due field k. But by doing this the characteristic polyhedron may change drastically, as 
we illustrate in the following example.
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Furthermore, if differential operators map the ring R into itself, then one can deduce 
(∗)(a) by using them. But this is also not true in general (see [18] Nomura’s Theo-
rem 30.6, p. 237).

Example 7.3 Let R be a regular local ring containing a field k of characteristic p > 2 and 
set q = pe for some e ∈ ℤ+ . Suppose (u1, u2, y1, y2) is a regular system of parameters for R. 
Consider the element

where �, �2 ∈ k ⧵ kq are q-independent. If we pass to the field extension k� ∶= k[t]∕⟨tq − �⟩ 
over k, then f = y

q

1
+ tqy

q

2
+ tqu

aq

1
+ t2qu

bq

2
 in k′ . Hence, hypothesis (∗)(a) holds and the 

directrix is given by z0 ∶= y1 + ty2 . If we set z ∶= y1 + ty2 + tua
1
+ t2ub

2
 , we get f = zq and 

the characteristic polyhedron over k′ is empty.
Another way of deducing (∗)(a) is by applying the derivative �

��
 . In this example mini-

mizing the polyhedron for f is the same as minimizing the one of ⟨f , �f

��
⟩ . Further, we stay 

in the local ring R and get z1 = y1 and z2 = y2 + ub
1
 . In R we cannot solve the vertex corre-

sponding to the monomial �2ubq
2

 . Hence the characteristic polyhedron is non-empty.
In conclusion, it is not clear how using purely inseparable extensions shall provide 

information on the original characteristic polyhedron.

Here is another example, where the coordinates can be obtained using derivatives by 
constants, but this time with empty characteristic polyhedron.

Example 7.4 Let R be a regular local ring containing a field k of characteristic p > 0 . Sup-
pose (u1, u2, y1, y2) is a regular system of parameters for R. Consider the element

where � ∈ k ⧵ kp . By applying the derivative �

��
 , we see that the desired elements are 

z1 = y1 + u2
1
+ u2

2
 and z2 = y2 + u2

2
 . We get that f = z

p

1
+ �zp

2
.

The following example (which is based on an example by Hironaka, see [16] Theo-
rem 3, p.331) illustrates that Spec(R̂∕⟨ŷ1,… , ŷr⟩) is not necessarily equal to the Hilbert-
Samuel locus, in general. Moreover, it shows that the singular locus of the maximal Hil-
bert-Samuel locus does not characterize the ideal ⟨ŷ⟩.

Example 7.5 Consider the variety given by

over a field k, char(k) = 2 and [k2(�,�) ∶ k2] = 4 . The order at the origin is n = 2 , the ideal 
of the directrix is given by ⟨X, Y , Z,W⟩ and f ∈ ⟨x, y, z,w⟩2 . The derivatives are 
�f

�y
= zu11,

�f

�z
= yu11,

�f

��
= y2 + �w2 and �f

��
= z2 + �w2 . Therefore the locus of maximal 

order (which coincides with the maximal Hilbert-Samuel locus because we are considering 
a hypersurface) is

Note that the singular locus of this is the origin V(x, y, z, w, u).

f = y
q

1
+ �yq

2
+ �uaq

1
+ �2ubq

2
,

f = y
p

1
+ �yp

2
+ u

2p

1
+ (� + 1)u

2p

2
,

f = x2 + �y2 + �z2 + ��w2 + yzu11 ∈ R ∶= k[x, y, z,w, u]⟨x,y,z,w,u⟩,

V(x, y, z,w) ∪ V(u, x2 + ��w2, y2 + �w2, z2 + �w2).
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Example 7.6 Let R be a regular local ring containing a field k of characteristic p > 0 . Sup-
pose (u1, u2, y1, y2) is a regular system of parameters for R. Consider the element

where � ∈ k ⧵ kp . A possible idea would be to introduce a weight on the coordinate y2 such 
that we artificially create condition (∗)(a) . But if we do so, then we will never see that we 
have to solve yp

2

2
 because it will be in the interior of the corresponding polyhedron.

It is not hard to see that the characteristic polyhedron is empty and the desired param-
eters are z1 ∶= y1 + y

p

2
+ u

p2

1
 and z2 = y2 + y

p

1
+ u

p2

2
.
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