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N =4 supersymmetric Calogero-Sutherland models
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Starting from the Hamiltonian formulation of supersymmetric Calogero models associated with the
classical A,, B,,, C,, and D,, series we construct the N = 2 and A/ = 4 supersymmetric extensions of their
hyperbolic/trigonometric Calogero-Sutherland cousins. The bosonic core of these models are the standard
Calogero-Sutherland hyperbolic/trigonometric systems.
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I. INTRODUCTION

There is a lot of confirmation that N = 4 supersym-
metric extensions of Calogero-Moser systems must include
a large number of fermions—far more than the 4n fermions
expected within the standard (but not very successful)
approach [1-6]. The source of these fermions is the
supersymmetrization of the matrix models from which,
in the purely bosonic cases, the Calogero-Moser systems
can be obtained by a reduction (see, e.g., [7]).

A suitable approach to supersymmetric Calogero-like
models has been proposed in [1-3]. Starting from a
supersymmetrization of the Hermitian matrix model, the
resulting matrix fermionic degrees of freedom are packaged
in N = 4 superfields. In a recent paper [2], N' =2 and
N =4 supersymmetric extensions of the multiparticle
hyperbolic Calogero-Sutherland system were constructed
by applying a gauging procedure [8] to one-dimensional
matrix superfield systems. However, for A" =4 their
bosonic part does not reproduce the ordinary Calogero
systems but only spin-Calogero ones.'

In a series of papers [4-6] we developed a different
approach. Mainly working in the Hamiltonian formulation,
we worked out an ansatz for the supercharges which
accommodates all Calogero models associated with the
classical A,, B,, C, and D, Lie algebras. Here, the
supercharges contain the fermion-cube terms only through
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the combination fermion X fermion bilinear, where the
fermion bilinears span an s(u(n) @ u(n)) algebra.

In this paper we use this ansatz to construct N =4
supersymmetric extensions of the Calogero-Sutherland mod-
els associated with the classical A,, B,, C, and D, series
(Sec. II). As a separate application, we also find the N = 4
supersymmetric extensions of the trigonometric/hyperbolic
cousins of the Euler-Calogero-Moser system (Sec. III).

II. CALOGERO-SUTHERLAND MODELS

A. Basic ingredients

The starting point of our construction is the same set of
the fields as in the A -extended supersymmetric Calogero-
Moser model [4] which is nothing but a supersymmetric
extension of the Hermitian matrix model [7,9,10]. This set
of fields includes the following ones:

(a) n bosonic coordinates x;, which come from the
diagonal elements of the Hermitian matrix X, and
the corresponding momenta p; for i,j=1,...,n
which obey the standard brackets

{xivpj} = 5ij- (2-1)

(b) Fermionic matrices containing \'n? elements & 3 ija
fora=1,...,N/2 with (&))" = &;;, and brackets

{alj’ Ekmb} = _i525im§jk' (22)

Using these ingredients one may construct the fermionic
bilinears

N/2 n

;; = Z Z (Efhja + Eikally)s

a=1 k=1

(2.3)

> =0,
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N/2 n B B
Z Z ‘fkja - 5ikaézj‘)y (24)
a=1 k=
which form an s(u(n) @ u(n)) algebra,
{Hij’nkm} = {ﬁij’ I:Ikm} 1(51mnk] 6 Hzm) and
{Hij’ﬁkm} = i(éimﬁkj akjﬁ ) (25)

Using these ingredients in [6] the supercharges and
Hamiltonian have been constructed for arbitrary even-A
supersymmetric extensions of the A,, B,, C, and D,
rational Calogero models. In what follows we will use
the same ingredients to construct N = 2, 4 trigonometric/
hyperbolic Calogero-Sutherland models with the super-
charges and the Hamiltonian obeying the N =2,
4-extended super-Poincaré algebra.

B. N =2 supersymmetric A,_; ® A,
Calogero-Sutherland models

In this simplest case the supercharges have a quite simple
structure”

Q Zpgu IZ|: le (9+H )+§(ZZU)HU:|§/1’

i#j ( lj)
f@ﬂ
ZP fzz 1;{ Zij J(g+10 ) f(Zij) Hl]:| Sji-

(2.6)

Note that IT; ; does not appear here and the function f will
be specified in a moment.

These supercharges form an A =2 super-Poincaré
algebra

(0.0} =2 wd {0.0}={0.0}=0. (27)
together with the Hamiltonian
2Zpl 2;[ 9+ 10;;)f(zi) +%Hu}
[0 mrta) + 528 - ﬂzinz, I
(2.8)
Here, we abbreviated
G=xi— 29)

2We omit the indices a, b which all are equal to 1 in this case.

and the constant parameter f and the function f are given
as follows,

rational Calogero model

1 1
f(Zij):_: )

Zij Xi —X;j

p=0,

hyperbolic Calogero-Sutherland model
1 1
f (Zij) = =

Slnh(zu) - Sinh(x,- - .xj> ’

trigonometric Calogero-Sutherland model

1 1
f(Zij) = =

sin(z;;) a

p=1,

p=1,

e (2.10)

Thus, the supercharges (2.6) and the Hamiltonian (2.8)
describe an N = 2-extended supersymmetric Calogero-
Sutherland models of type A,_; @ A;.

It should be noted that when checking that the super-
charges form the superalgebra (2.7) it is not enough to know
the brackets between I1;; and the fermions &;;, E,-j. Instead,
the explicit expressions for I;; (2.3) have to be substituted
into Eq. (2.6). This makes the calculations slightly more
complicated as compared to those discussed in [6].

C. N =4 supersymmetric A,_; ® A,
Calogero-Sutherland models
Due to the absence of any guiding rules for construction
of N' = 4 supercharges, the reasonable starting point is the
straightforward generalization of the N = 2 supercharges
(2.6) to the N/ = 4 supersymmetry reads

zéimf }:[z” J+%%§H4?v

i#]
Qb_zngub IZ|: th (9+H )+Mnij:|éjib7
7 f(zi))
a.b=1,2. (2.11)

Unfortunately, this guess is not correct and the super-
charges (2.11) do not form the N = 4 superalgebra

{0 0y} = -2i64H and {0 0"} ={0,.0,} =0,
(2.12)

in contrast with their AV = 2 cousins (2.6). The possible
modification of the supercharges looks as follows:

Qa 1182511 Jis Qa = Qa"’iﬁzgzjaﬁji'
i.j

(2.13)
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The supercharges (2.13) form AN =4 super Poincaré
algebra (2.12) together with the Hamiltonian

H=33 o33 | e +
x{<g+n,~,~>f<z,~,~>+];( ;| - fjnl,

(2.14)

which has the same form as A/ = 2 Hamiltonian (2.8).

It should be mentioned that in the N =2 case the
additional, f-dependent terms in the supercharges (2.13)
are automatically nullified in virtue of the structure
of II; i (2.3)
|

ifa, b=1, (2.15)

Zgu Ji Zéijaﬁji =0
i

and thus, the supercharges (2.13) reduce to the super-
charges (2.6) in the limit a, b = 1.

Finally, all we said above is valid only for the functions f
from the list (2.10).

D. N =4 supersymmetric B,, C, and D,
Calogero-Sutherland models
It is strange but for the B-, C- and D-type models the
N = 4 supercharges take the same form as N = 2 ones.
Indeed, one may check that the following supercharges
(including 1)),

= 3 =i 3l ) + A 43 G0 ) =
i# Zij i ij
“Z{(g’+ﬂ-i)f(y~)—f/(y”)ﬁ-}
i L 2] f(y”) 13 11
f@) o [ i) }
IT;; I 0. | E..
Q szétta 1;|: g+ Zt]) T f(Zij) 1] é]ta 1; g+ f(yl]) f(yij) ij éjla
_IZ /4TI, _fl(yii)"’ %
i) f (Vi) o) i | iias (2.16)
form N = 4 super-Poincaré algebra (2.12) together with the Hamiltonian
i 2 — flzij) Y 7 flzy)
fl(yij) ~ ] [ f/(yij) ~ ]
IT;; )= 11 11 — ..
+5 ;[ 9+ S Oy) =70 ST | |9+ i) f(viy) o)
, f’()’zz) ] [ f/()’ii) ~ ]
Z I ) — I - I1..
#5326+ s - £ [ 17+ e -2,
2 n
- %Z (IT;;T; + 11,11 (2.17)
L.J
Here,
Yij = X +Xxj, (2.18)
and the function f is the same as in (2.10).
The bosonic sector of the Hamiltonian (2.17) reads
Hbos_zz +ZZ fz sz +f2 ylj + = ZfZ yll)‘ (219)

i#]
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Due to the presence of only two coupling constants, g and
¢, we may describe B-, C- and D-type models in the
rational case and C- and D- (but not B-) type models in the
hyperbolic/trigonometric case.

Finally, let us note that in the N' = 2 supersymmetric
case the last term in the Hamiltonian (2.17) nullified
automatically due to the structure of the IT;; and l:[,-j (2.3)

n

> (I + T101) = 0

ij

ifa,b=1.  (2.20)

E. Toward higher supersymmetries

It is interesting to note that the supercharges (2.13) obey
the relations

{Q4, 0"} =0 and {Q,Q,} =0 (221

for arbitrary range of the indices a, b running from 1 to

N /2. However, the anticommutators between these super-
charges have more complicated structure

{Qu. Q} = —2i(55H — pV5). (2.22)
where
b= i I We, + 1, th] (2.23)
ij
and
Wiy = z:: [&4Ekjp + Euwéi;]  and
Wiy = i: [£4 &k — Eunnli]- (2.24)

k

Thus, the algebra becomes a nonlinear one. Note that for
the N = 2 supersymmetry the unique term V} = 0, while
for the N =4 supersymmetry we have V| =)V3 and
VI =V? =0. Thus, in the N' =4 case these additional
terms just modified the Hamiltonian.

Finally, one should note that the purely fermionic objects
Vj (2.23) are, essentially, constants, because

{H.Ve} = 0. (2.25)

III. EULER-CALOGERO-MOSER MODELS

A. Basic ingredients

The construction of the supersymmetric extension [5] of
the Euler-Calogero-Moser systems [9] is more economical
as compared to the supersymmetric Calogero-Sutherland

systems we considered in the previous sections. Indeed, to
construct the corresponding N supercharges one needs to
introduce “only” N'1n(n + 1) fermions P Pija Symmetric
over indices i, j pf; = pfi.Paij = Paji and obeying the
brackets

{puvpkmh} (51m5]k + 51k51m) (31)

The internal degrees of freedom of Euler-Calogero-Moser
(ECM) models are encoded in the angular momenta

¢;; = —C;; with the Poisson brackets forming the so(n)
algebra

{fijvfkm}:_( lkl’ﬂ/m +51m2’ﬂlk 5 l’pzm 5szjk)' (32)
Similar to the construction of the supersymmetric

Calogero-Sutherland systems, our ansatz for the super-
charges includes the following fermionic bilinears:®

N/2 n

= —IZ Z ﬂ,kpk]a p]kpkla)

a=1 k=
N/2 n

ﬁf] = Z Z lkpk]a +pjkpk1a)

a=1 k=

(H’D )T = IT’.

l]’

(ﬁ?i)T - ﬁfx"
(3.3)

Finally, one may check that the N supercharges Q“, O,

¢ (¢ +10,)pS
N B pnasiiy
=1 [y xi—xj
(¢ +112)p;
Zplpua - 271111“ (34)
#o T

form N -extended super-Poincaré algebra (2.12) [5]
together with the Hamiltonian

1 n
:5; 2Z

(¢ + 10, )

X—X

(3.5)

B. NV =4 supersymmetry

The construction of the supersymmetric extension of
the hyperbolic/trigonometric ECM model is very similar
to the case of the Calogero model. Again, we succeeded in
the construction of the N = 4 supersymmetric extensions,
only. The main idea of our construction is to maximally
preserve the anzatz for the supercharges (3.4), i.e., we
admit the appearance of the three-linear fermionic terms in

These bilinears form a u(n) algebra [5].
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the supercharges only through the bilinears (3.3). Thus, our
ansatz for the supercharges reads

Qo :Zl’iﬂ?i —Z (f(Zij)fij—f (Zij)nfj_iﬂﬁfj>p?i’
P #] /()

5N - F'(@ij) s )

Qa—zpipiia_z f(zij)€ii— I +1p1L; ) Pjia-
P P f(zij)

(3.6)

Here, the function f(z;;) and the parameter « are defined in
the list (2.10).

In the rational case f(z;;) =1/z;;,f#=0 the super-
charges (3.6) form A -extended superalgebra (2.12) for
the indices a,b = 1,...N//2. However, one may easily
check that for the two other choices of f(z;;).f in
Eq. (2.10), the supercharges (2.11) form only the N' = 4
superalgebra (2.12) together with the Hamiltonian

1 ~ 1 - N u_f/(zij) /’)2
H = 2;]71' + 2; [(f(zzj)ftj f(zij) Hij
+ ﬁznf.’jnj?,.] . (3.7)

IV. CONCLUSIONS

In this paper we constructed A/ =4 supersymmetric
extensions of the Calogero-Sutherland models associated
with the classical A,, B,, C, and D, series. The guiding
principle was the structure of the supercharges in which
the fermion-cube terms are all built from fermionic bilin-
ears (2.3) spanning an s(u(n) @ u(n)) algebra. We also

described N =4 supersymmetric extensions of the
trigonometric/hyperbolic cousins of the Euler-Calogero-
Moser system.

In contrast with the rational Calogero-Moser and/or
Euler-Calogero-Moser system admitting an arbitrary num-
ber of supersymmetries [4-6], their trigonometric/
hyperbolic versions can so far be supersymmetrized up
to the A" =4 cases only. If we try to construct the
additional supercharges, they will span a soft variant of
the super-Poincaré algebra with purely fermionic conserved
R-charges in the commutator of Q¢ with Qb (2.22). 1t
would be interesting to understand the nature of these
R-charges and their algebra in more detail.

For a further development, one of the key questions is
the possible integrability or even superintegrability of the
constructed systems. It seems there is no serious problem
with the L — A pairs, which mostly mimic the pairs from
the bosonic case. However, the unusually large number of
fermions complicates the situation. It should be noted that
the Hamiltonians contain the fermions only through the
bilinears. Thus, the “efficient” number of the degrees of
freedom seems to be smaller that the “naive” number of
degrees of freedom. A qualitative example of such a
situation is provided by the Euler-Calogero-Moser models
[9], where the internal degrees of freedom are encoded in
currents spanning an so(n) algebra. We will consider the
integrability properties of the constructed supersymmetric
systems elsewhere.
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