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Kurzfassung

Der Einsatz von Servicerobotern kann die Effizienz, Produktivität und Sicherheit in Bereichen
wie dem Gesundheitswesen, Gastgewerbe oder der Logistik erheblich verbessern. Die Integration
der Roboter in komplexe von Menschen genutzte Umgebungen stellt jedoch eine wesentliche
Herausforderung für die langfristige Autonomie der Systeme dar. Eine wichtige Lösungsstrategie
dahingehend liegt in der Langzeitmodellierung der Umgebungscharakteristika, um eine proaktive
Navigation und Aufgabendurchführung zu ermöglichen. So könnten Roboter beispielsweise
das Wissen über die langfristige Variabilität menschlicher Aktivitäten dafür nutzen, um stark
frequentierte Bereiche während der Navigation zu meiden oder ihre Dienste zu verbessern.

In dieser Arbeit werden Methoden zur Verbesserung der Kartierung, Lokalisierung und Aufgaben-
durchführung von Servicerobotern im Kontext der Langzeitautonomie vorgestellt, welche diesen
Zusammenhang aufgreifen. Hierfür werden insbesondere multimodale Sensorinformationen und
(langfristige) Umgebungsmodellierung genutzt. Die gelernte Umgebungsdynamik wird aktiv
verwendet, um die Aufgabenerfüllung von Servicerobotern zu verbessern.

Als erster Beitrag wird ein neuer autonomer Langzeit-Serviceroboter vorgestellt, der sowohl
innerhalb als auch außerhalb von Gebäuden eingesetzt werden kann. Die multimodalen Sensorin-
formationen des Roboters bilden die Grundlage für nachfolgende Methoden zur Kartierung und
Modellierung menschlicher Aktivitätsmuster.

Es wird gezeigt, dass die Nutzung multimodaler Daten zur Lokalisierung sowie Kartierung die
langfristige Robustheit und Qualität der Karten verbessert. Dies gilt insbesondere für Umgebungen
unterschiedlicher Charakteristik, wie bspw. gemischte Innen- und Außenbereiche oder klein- und
großflächige Gebiete.

Ein weiterer Beitrag ist ein auf Langzeitbeobachtungen menschlicher Aktivitätsmuster basierendes
Regressionsmodell, welches eine räumlich-zeitliche Vorhersage dieser Aktivitäten ermöglicht.
Das Auftreten von Personen kann somit über lange Zeiträume prädiziert werden und es wird eine
proaktive Navigationsplanung ermöglicht.

Die Modellvorhersagen werden anschließend verwendet, um das Verhalten des Roboters umge-
bungsspezifisch anzupassen. Es wird ein reaktives Aufgabensteuerungssystem eingeführt, das im
Falle von Fehlern aktiv Wiederherstellungs- und Suchverhalten auslöst, um die Langzeitautonomie
zu verbessern. Softwarefehler können somit gezielt gelöst und potenzielle menschliche Helfer
effizient gefunden werden.

Schlagwörter: Langzeitautonomie, simultane Lokalisierung und Kartierung, Umgebungsmodel-
lierung, symbiotische Autonomie, Aufgabensteuerung
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Abstract

Utilizing service robots in real-world tasks can significantly improve efficiency, productivity, and
safety in various fields such as healthcare, hospitality, and transportation. However, integrating
these robots into complex, human-populated environments for continuous use is a significant
challenge. A key potential for addressing this challenge lies in long-term modeling capabilities to
navigate, understand, and proactively exploit these environments for increased safety and better
task performance. For example, robots may use this long-term knowledge of human activity to
avoid crowded spaces when navigating or improve their human-centric services.

This thesis proposes comprehensive approaches to improve the mapping, localization, and task
fulfillment capabilities of service robots by leveraging multi-modal sensor information and (long-
term) environment modeling. Learned environmental dynamics are actively exploited to improve
the task performance of service robots.

As a first contribution, a new long-term-autonomous service robot is presented, designed for both
inside and outside buildings. The multi-modal sensor information provided by the robot forms the
basis for subsequent methods to model human-centric environments and human activity.

It is shown that utilizing multi-modal data for localization and mapping improves long-term
robustness and map quality. This especially applies to environments of varying types, i.e., mixed
indoor and outdoor or small-scale and large-scale areas.

Another essential contribution is a regression model for spatio-temporal prediction of human
activity. The model is based on long-term observations of humans by a mobile robot. It is
demonstrated that the proposed model can effectively represent the distribution of detected people
resulting from moving robots and enables proactive navigation planning.

Such model predictions are then used to adapt the robot’s behavior by synthesizing a modular task
control model. A reactive executive system based on behavior trees is introduced, which actively
triggers recovery behaviors in the event of faults to improve the long-term autonomy. By explicitly
addressing failures of robot software components and more advanced problems, it is shown that
errors can be solved and potential human helpers can be found efficiently.

Keywords: long-term autonomy, simultaneous localization and mapping, environment modeling,
symbiotic autonomy, task control
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Nomenclature

Symbols used only in single sections are described exclusively in the text.

General conventions

a scalar or random variable
a vector or vector-valued random variable
A matrix or matrix-valued random variable
a1:n sequence containing exactly n elements, valued as a
A set

Latin Letters

Asbt tuple describing a stochastic behavior tree action
ci count of people detections in a spatio-temporal grid cell
Csbt tuple describing a stochastic behavior tree condition
D robot field of view (detection area)
Di detection area at xi
E1:p sequence of p edges
exp exponential function
f(x) Rd → R, latent mean function
g(x) Rd → R, latent variance function
GP GAUSSIAN process
kf (x,x

′) Rd → R, covariance function of the GAUSSIAN process prior for the mean
kg(x,x

′) Rd → R, covariance function of the GAUSSIAN process prior for the variance
ks(x, x

′) R→ R, spatial component of covariance function kf
kt(x, x

′) R→ R, temporal component of covariance function kf
lt,i lengthscale hyperparameter of one individual summative component of kt
lfail expected distance of the search action to fail
lsp length of the search path
L1:m sequence of m link points
log natural logarithm (base e)
mgrid number of person occurrence grid elements in horizontal direction
my posterior predictive mean



xii Nomenclature

M map of the environment
M1:n sequence of n metric maps
npl number of sampled places
nver number of verification nodes in neighborhood for global loop search
nstart number of successful loop closures before changing to local search
N normal distribution
N set of natural numbers
ogrid number of person occurrence grid elements in vertical direction
pmin probability threshold for point cloud classifier
ps(t) R→ R, time-dependent probability of an action/condition to succeed
pf(t) R→ R, time-dependent probability of an action/condition to fail
ps,T(t) R→ R, time-dependent probability of a behavior tree to succeed
p′s desired confidence value for the time to succeed
pf,T(t) R→ R, time-dependent probability of a behavior tree to fail
Pi point cloud at location xi
P̃i filtered point cloud at location xi
rmax maximum point range for feature computation
rver radius of neighborhood for global loop search
rmin minimal radius of the loop search sphere
rs spatial edge length of square-shaped grid cell
rD detection radius of a person detector
R set of real numbers
SA,i→j search action
Si→j tuple describing a search path
T set containing all sampled time series
tmax look-ahead time of a discrete-time MARKOV chain
v̄sp average velocity while searching
WA,i wait action
yi (observed) people rate in a spatio-temporal grid cell
dped,k spatio-temporal point representing a detected pedestrian
Dped matrix of 2D people detections taken at different points in time
f distribution over latent mean functions
g distribution over latent variance functions
Kff covariance matrix of the GAUSSIAN process prior for the mean
Kgg covariance matrix of the GAUSSIAN process prior for the variance

(j)mi normally distributed pose of link point Li on map Mj

(j)m̄i expected value corresponding to (j)mi

o candidate periods for FOURIER transform

(i)pj normally distributed origin of coordinate frame (CF)j relative to



xiii

coordinate frame (CF)i

(i)p̄j expected value corresponding to (i)pj
xi 2D point on a person occurrence map
Q infinitesimal generator matrix of a discrete time MARKOV chain
Sf,g covariance matrices of the approximate posterior variational distributions (normal)
iT j homogeneous transformation matrix expressing the configuration of

coordinate frame (CF)j relative to coordinate frame (CF)i
u1:K sequence of K control inputs
uf latent mean function values f (Z) at inducing locations
ug latent variance function values g (Z) at inducing locations
x1:K sequence of K locations
X training input dataset
y training observations
z1:K sequence of K measurements
zij virtual measurement between node i and node j
Z location of inducing inputs

Greek Letters

αind ratio the between number of inducing points and data points
αmin minimum ratio between local and global nodes for loop search
β scale factor for uncertainty-dependent loop search radius
γi period hyperparameter of one individual summative component of kt
∆i observation duration of a spatio-temporal grid cell
ζ (x) R→ R+, link function to guarantee positive values
λ rate parameter of exponential distribution
λmax largest eigenvalue of a covariance matrix
Λ number of sampled time series
µ expected success rate of an action
ν expected failure rate of an action
νf (x) Rd → R, mean function of the GAUSSIAN process prior for the mean
νg(x) Rd → R, mean function of the GAUSSIAN process prior for the variance
ρ servicing ratio
σ2
y posterior predictive variance
σ2
t,i variance hyperparameter of one individual summative component of kt
σ2
max maximum variance of all summative components of kt
τ temporal resolution of spatio-temporal grid cell
ψ number of summative components of kt
ψmax upper limit for ψ



xiv Nomenclature

µf,g mean functions of the approximate posterior variational distributions (normal)

(j)Σi covariance matrix corresponding to (j)mi

χi feature descriptor of point cloud Pi
χI
i feature descriptor containing real values

χII
i feature descriptor containing range histograms
p

(j)Σi covariance matrix corresponding to (i)pj
Ωij information matrix of virtual measurement zij

Acronyms

BT behavior tree
CoPA-Map continuous pedestrian activity map
DTMC discrete-time MARKOV chain
FOV field of view
GP GAUSSIAN process
GPR GAUSSIAN process regression
LTA long-term autonomy
MDP MARKOV decision process
NUDFT non-uniform discrete FOURIER transform
PSBT person search behavior tree
RMSE root mean square error
ROS robot operating system
RTAB-Map real-time appearance-based mapping
SBT stochastic behavior tree
SLAM simultaneous localization and mapping
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1 Introduction

What once was an idea of science-fiction writers like Isaac Asimov in the mid-20th century is
increasingly becoming a reality: robots that operate in everyday environments and perform work
for humans. No longer bound to the factory floor, autonomous machines advance into areas shared
with people, such as hotels, airports, shopping malls, and, not least, homes. After production
activities, the focus of automated applications and intelligent value creation is shifting to services.

The International Standardisation Organisation defines the term service robot as a “robot in personal
or professional use that performs useful tasks for humans or equipment" [Sec21]. Following this
definition, a robot generally requires a “degree of autonomy", which is the “ability to perform
intended tasks based on current state and sensing, without human intervention.” This human-centric
definition contrasts with classical industrial robotics, which focuses on industrial automation
applications in controlled environments. There is an increasing trend for robotics applications in
the service sector, which is reflected in particular in the development of revenue as depicted in
Figure 1.1.

2016 2017 2018 2019 2020 2021 2022* 2023* 2024* 2025*
0

10

20

30

40

5.88 6.92
9.1 9.44 8.88 8.53 8.23 8.86 9.38 9.81

12.59 13.83 15.1
17.39

19.58
21.97

24.18 26.09 28.12 29.85

*: Projection

W
or

ld
w

id
e

re
ve

nu
e

in
bi

lli
on

U
S$

Industrial robotics Service robotics

Figure 1.1: Development of worldwide revenue of service robotics compared to industrial robotics over
time. [Sta22]

Progress in sensor technology, computing power, and methodologies for robust localization,
mapping, and navigation enable deployments of autonomous service robots in a growing number of
domains. One of the most visible application areas is the domestic domain, for example, in the form
of cleaning robots or autonomous lawnmowers. In clinical environments, service robots can be
used for different applications such as disinfection, surgery, logistics, monitoring, or rehabilitation
[HKM+21]. In particular, logistics applications can also be found in other areas, such as for room
service robots in hotels [MGS18] or autonomous food delivery [VCP21]. The common feature of
the above topics is the need for autonomous task execution in human-populated environments.
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Figure 1.2: Service robotics sales volume by application area. [Sta21]

Applications in these environments represent a significant portion of service robotics, evident from
the category-based sales volume in Figure 1.2.

For a lasting successful application in human-centered environments, service robots must demon-
strate usefulness and user engagement in a long-term sense. This is a non-trivial problem, as
dynamic environments, unpredictable situations, and complex human-robot interaction scenarios
significantly complicate long-term deployments. Currently, commercially available robots are
developed with a focus on specific applications assuming structured environmental conditions,
limiting the robots’ actual utility. Technical solutions that might work under laboratory conditions
rarely prove robust and reliable in continuous use. The discontinuation of various (initially promis-
ing) commercial social service robots [Rob18; Sch19; Reu21]1, as well as retail robots [Nas20],
and delivery robots [Con22] underscores this issue. Autonomously acting, flexibly deployable
robots that provide real, lasting value are still rare in the real world. Therefore, achieving long-term
autonomy remains an essential goal in industry and research to steadily expand service robot
application areas.

1.1 Long-Term Autonomy in Robotics

Ensuring robot autonomy in real-world scenarios over long periods is a significant challenge.
This makes long-term autonomy (LTA) an important research area for robots in various domains,
including space, field, roads, or underwater. Opposed to robots in strictly controlled settings
(e.g., industrial robots), the requirements for LTA robots are broader regarding their hardware and
software, environment, and tasks. Requirements may also change over time, and the changes cannot
always be characterized or detected in advance. Robots acting in human-populated environments
might, for example, be subject to people moving in their field of view, parked cars changing their
positions, or long-term seasonal changes and surface wear. [KHD+18]

1As emphasized by commentators, many companies fall into the trap of “selling intentions as results" and “other than a
few robot vacuum companies (mainly iRobot), no company has developed a successful home robot." [Van19]
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In particular, service robots face several difficulties concerning LTA, briefly summarized in the
following. They perform tasks for or alongside humans in environments not explicitly customized
for them. These environments are spatially and temporally dynamic as people and obstacles move
or day-night changes occur. Dynamics lead to challenges in mapping and self-localization, as well
as in task planning and control. Similar to dynamics, environments can be heterogeneous, i.e., of
different types. Examples include areas consisting of narrow aisles and large open areas (e.g., in
shopping malls or airports) or mixed indoor and outdoor environments (e.g., campus-like areas).
Parts of the environment and its states may also not be fully known before deployment and could
not be completely traversable due to impassable objects (e.g., newly occurring obstacles or doors
that are opened or closed). Dealing with this open world requires reactive problem-solving and
potential changes in task specifications [KHD+18]. Therefore, the robot’s deliberation functions
should allow it to plan tasks, act according to the plan, refine actions into closed-loop commands,
and react to events [IG17]. Adapting to the environment’s particulars and continuous learning is
essential.

Several research initiatives have investigated LTA operations of service robots in offices [MMWG11;
BV16; HBJ+17], stores [GBS+09], hotels [PMF+16], museums [BCF+98; DBH19] or care
contexts [TVNB17]. The STRANDS [HBJ+17] and CoBot [BV16] projects focused on long-term
mapping, navigation, and human-robot interaction (HRI) for LTA applications. Their robots reached
multiple weeks of uninterrupted autonomy or cumulative traveled distances of more than 1,000 km,
respectively. Other LTA projects focus on types of interaction, for example, by voice and facial
recognition [Jon+18; WC18], specific environments (e.g., outdoors [CTW+08] or retirement homes
[LMR+19]), or perception and social navigation [Tri+16]. Research is often based on commercially
available robots, usually supplemented by additional hardware components. Many of those robots
are designed for either exclusive indoor [BV16; HBJ+17; DBH19; PMF+16; MMWG11; WC18;
LMR+19], or outdoor use [CTW+08].

Current Challenges

In addition to suitable hardware setups, appropriate mapping and localization methods represent
a current research challenge for heterogeneous and dynamic environments. Few simultaneous
localization and mapping (SLAM) approaches are suitable for long-term applications on real-world
service robots while maintaining desirable properties such as bounded computational complexity,
navigable maps, and multi-session operation.

Compared to autonomous mapping for self-localization and navigation, mapping other environ-
mental dynamics has taken a low priority in the context of LTA. Although human movements and
actions primarily cause the dynamics in the environment of service robots, long-term modeling
of these effects has been largely neglected. However, predicting human activity in the form of
movements and presence can improve navigation, task planning, and acceptance of service robots
in general. In a long-term context, logistics robots might then plan routes along areas with fewer
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people to increase efficiency and safety, or cleaning robots could actively avoid disturbing people.
As also described in the survey [KHD+18], one major future challenge for robots lies in human-
in-the-loop systems that “leverage human knowledge in unforeseen situations within long-term
scenarios". The robot’s task execution could be modified based on additional information provided
by humans when situations arise that were not anticipated at development time. When combining
this principle with models of human activity, opportunities arise to increase long-term applications
by anticipating human help in dynamic and heterogeneous environments.

Resultingly, this work aims to improve the LTA capabilities of mobile service robots by methods
of environment and task modeling. Given the typical case of a service robot with multi-modal
sensors, models are created that encode the heterogeneity and dynamics of the environment. Model
knowledge of these dynamics is then used to adapt the robot’s task execution to mitigate failures
actively, i.e., by improving the search for potential human helpers for problem-solving. Therefore,
the overarching structure of this work can be seen as a classic sense-think-act loop, where the
observation of dynamics results in an adjustment of robot behavior.

1.2 Research Questions and Contributions

In the following, the research questions of this thesis are formulated, and the main contributions are
presented. The main goal is to introduce environment models suitable for long-term-autonomous
applications in dynamic and heterogeneous environments and subsequent task synthesis. The
requirement for a known robot pose in these environments leads to the first research question:

Research Question 1. How can the robustness of current SLAM methods be improved in
heterogeneous and dynamic environments?

Methods are proposed to improve localization accuracy, robustness, and map generation for these
dynamic and heterogeneous environments. The methods are based on combining different sensor
modalities and exploiting environment-specific characteristics for algorithm parameterization. The
aim is to extend widely used SLAM methods to increase robustness and other criteria concerning
long-term autonomy. Given a sufficiently accurate self-localization and map, sensory detections
of people made by the robot can then be used for environment modeling, which leads to the next
research question:

Research Question 2. How can human activity be spatio-temporally modeled based on
long-term observations by mobile robots?

A method for the spatio-temporal prediction of human presence given data collected by a mo-
bile robot is introduced. Utilizing current non-parametric regression and variational inference
approaches, the model can process multi-week data to create continuous prediction courses. By
incorporating BAYESIAN stochastics, the model is capable of indicating predictive uncertainty.
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From this, conclusions can be drawn where and when the model should be extended, which is
particularly relevant for non-stationary robots. Finally, the model knowledge of human activity is
used to adapt and optimize the task execution of robotic systems, which leads to the last research
question:

Research Question 3. How can models of human activity be integrated with autonomous
executive systems and used to improve robots’ long-term capabilities?

Task execution systems for LTA robots are defined and specifically adapted based on environmental
knowledge. A task control system is introduced that aligns with requirements resulting from
LTA, such as modularity, reactiveness, and expandability. The system includes multi-stepped
problem-solving procedures to actively involve human help. Model knowledge of human activity is
incorporated by stochastic action primitives for efficient person search to maintain a readable and
expandable structure. All introduced methods are evaluated on real-world datasets. Great parts of
the evaluation are based on a social service robot system developed explicitly for LTA applications.

The main contributions of this work are outlined as follows, with corresponding publications:

• A novel service robot for LTA applications in heterogeneous (i.e., mixed indoor/outdoor)
environments is introduced. Opposed to commonly utilized commercial robots, all software
and hardware specifications are available as open source and published under a free license
(chapter 2, [SWSS21]).

• A widely used SLAM method is extended to utilize multi-modal sensor data for mapping and
localization in large-scale environments. Additionally, a map-management system is proposed
in order to improve map quality and computational complexity in heterogeneous environments
(chapter 3, [HSLS21; ESNO20]).

• Long-term prediction of human presence is realized by a novel regression model that actively
compensates for effects that result from a moving robot (chapter 4, [SS22]).

• A control system for LTA tasks is presented that is partially synthesized from environment
information directly at the task-description level (chapter 5, [SWSS21; SLPS21]).

1.3 Thesis Structure

This thesis is organized into one implementation-oriented chapter introducing the robot setup,
three method-oriented main chapters, and two accompanying chapters giving an introduction and
conclusion to the thesis. Figure 1.3 visualizes the structure and links between the different chapters.
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Figure 1.3: Graphical abstract showing the contents of the thesis.

Chapter 2 introduces the social service robot Sobi, developed for long-term-autonomous use
in indoor and partially autonomous use in outdoor environments. An overview of Sobi’s main
hardware components, software modules, and communication structure is given (section 2.1). Since
the robot serves as a test rig for the developed methods of this thesis, an evaluation of the field of
view and accuracy of the robot’s people detection modules is described (section 2.2).

Chapter 3 starts with an introduction to the general SLAM problem and related work in this
field (section 3.1). A method is presented that incorporates laser-scan-based loop closures into
graph-based SLAM approaches (section 3.2) to improve robustness and accuracy. The method
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relates to the typical use case of robots equipped with multi-modal sensors. The idea of using this
multi-modal information selectively is then extended in the form of a map-management system that
uses environment-specific parameterizations for automated mapping (section 3.3). Both methods
are evaluated using real-world datasets of public indoor, outdoor, and combined environments.

Chapter 4 introduces continuous pedestrian activity map (CoPA-Map), a method for long-term
modeling of spatio-temporal human activity. After an overview of related work on spatial and
temporal modeling in section 4.1, the method is described in section 4.2. The problem is addressed
via variational GAUSSIAN process regression (GPR), where a significant part is the definition of
prior information, particularly via frequency-based data preprocessing. In section 4.3 CoPA-Map
is evaluated on real-world datasets. In this regard, an emphasis is placed on application-oriented
evaluation to determine the model’s usefulness for path planning.

Chapter 5 presents an executive system for task control and monitoring of long-term-autonomous
service robots. Starting with section 5.1 on related work, motivation is given to the utilized method
behavior trees, which are further introduced in section 5.2. Subsequently, the execution system is
described and evaluated for general use in LTA applications in section 5.3. In section 5.4, it is then
extended to utilize environment knowledge given by a human activity model to realize an efficient
search for potential helpers in case of problems.

Finally, in chapter 6, the thesis is summarized and discussed critically. Limitations of the proposed
methods are described, and an outlook on possible future work is given.

Programming code for all methods presented in this thesis is available on the author’s GitHub
page2 and as part of the open-source project Sobi3.

2https://github.com/MarvinStuede
3https://marvinstuede.github.io/Sobi

https://github.com/MarvinStuede
https://marvinstuede.github.io/Sobi
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This chapter introduces a novel robot for autonomous and semi-autonomous service tasks. The
presented robot Sobi is designed for direct user interaction as part of info-terminal services and
guiding applications. It is aimed at long-term-autonomous use in heterogeneous open spaces,
multiple days and weeks indoors, and frequent partially supervised deployments outdoors. Contrary
to other LTA robots, not only the complete robot’s software is provided as open-source, but the
system is also available as an open-source hardware project, including 3D models and design data,
mechanical and electrical drawings and parts lists1.

The robot’s design and components are presented in section 2.1. After introducing the application
requirements, the consequently selected hardware components are described. Subsequently, the
software structure and its most important modules are presented, with the main focus being the
person detection method. This method forms the basis of models presented in later chapters.
Consequently, a targeted evaluation of its detection area and accuracy is carried out in section 2.2.

The contents of this chapter were partially published at the peer-reviewed “European Conference on
Mobile Robots" (ECMR) 2021 [SWSS21]. Several components of the robot’s guiding interface are

1https://marvinstuede.github.io/Sobi

https://marvinstuede.github.io/Sobi
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described in work published at the peer-reviewed “International Conference on Control, Automation
and Systems" (ICCAS) 2019 [SWTO19].

2.1 Robot Design and Components

As a social robot for info-terminal and guiding services, Sobi must answer voice- and touch-based
requests, e.g., directions, room plans, canteen menus, or small talk. It is supposed to operate in
various buildings and the outdoor area of the Faculty of Mechanical Engineering campus of Leibniz
University Hannover. This scenario requires a fully autonomous operation inside the robot’s home
building and a partially autonomous operation in other areas. Thus, the application area represents
a heterogeneous and dynamic environment. The following application demands and component
design are based on these conditions.

2.1.1 Application Demands and Design

Heterogeneous environments pose specific challenges due to their spatial structure and inhibited
dynamics. These challenges must be addressed by the robot’s design, selection of components, and
software structure.

The following requirements on mechanical and electrical design are integrated:

• For mixed indoor and outdoor use cases, the robot should have essential splash water
protection to withstand spills or brief drizzles.

• The exterior design should not only protect the robot’s components but also look approachable
and appealing due to its use case as a social robot.

• The kinematic and mechanic wheel structure should allow for applications on typical indoor
and outdoor surfaces (e.g., cobblestones, asphalt, concrete).

• To enable continuous long-term task execution and data collection, the battery should allow
for operation for multiple hours.

Based on these goals, the shape and color concept of the robot was developed in close cooperation
with the Hanover University of Applied Science and Arts.

Further requirements are implemented regarding the sensoric setup:

• Navigation in narrow spaces and long periods of dead reckoning (e.g., hallways) requires
good odometry.

• The sensors should allow for robust long-term mapping and localization under environmental
variations such as light changes, varying surface materials (e.g., glass and concrete), and
wide or narrow spaces.

• Due to frequent contact with humans, reliable person detection and tracking in a large area
around the robot should be possible.
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Specific requirements for human-robot interaction that influenced the robot’s design are not part of
this thesis but are described in [SWTO19; SWSS21]. As a result of all mentioned requirements,
Sobi is designed for mixed indoor and outdoor usage. This distinguishes the robot from state-
of-the-art systems, which are primarily designed for either exclusive indoor [BV16; HBJ+17;
DBH19; PMF+16; MMWG11; WC18; LMR+19] or outdoor use [CTW+08]. Their used sensors
and actuators would make them unsuitable for the respective other area.

2.1.2 Hardware Components

The selection of hardware components is based on the application requirements presented. The
robot’s exterior design aims at a futuristic appearance with simple geometric bodies to have an
inviting effect on users, avoid water build-up, and allow for easy sealing of transition points. Flat
elements are laser cut from aluminum and ABS plastic. The outer covers of the robot, except for
the base cover, are laser sintered and coated to repel water. All components mentioned and the
robot’s exterior design are shown in Fig. 2.1.

Mobile platform

Sonar sensors

2D Lidar

3D Lidar

Embedded computer

Additional batteries

IMU/AHRS

1-DoF arms

1-DoF ears

Tablet computer

Microphone array

LED matrix

RGB-D cameras

Speaker

Figure 2.1: Design of the robot Sobi with a description of its components (left: rear, right: front view)

The wheeled platform (MP-500, Neobotix GmbH) has a differential drive with one caster wheel
as the kinematic structure. Due to the relatively large front wheel diameter of 260 mm, the robot
can move on uneven surfaces such as paving stones. Additional components of the platform are an
onboard computer and a 2D Light detection and ranging (Lidar) sensor, which can trigger low-
level emergency stops for collision avoidance. It includes two 12 V absorbent-glass-mat (AGM)



12 2 Mobile Service Robot for Long-Term Autonomy

batteries in series with a total capacity of 50 Ah, retrospectively extended by two smaller batteries
for a total capacity of 75 Ah. This capacity gives a minimum time of four to five hours until a
recharge is required for heavy usage of the complete robotic system and over twelve hours of
standby time.

As a main computer (Vecow EVS-1010, Intel i7-7700T, 16 GB RAM, GeForce GTX1050 GPU)
serves an embedded system with wide-range voltage input, operated with battery voltage. It has
two built-in Wi-Fi modules to permanently connect to the internet and provide a Wi-Fi hotspot for
external access in field operation.

The robot includes the following sensors for localization, navigation, and interaction:

• An attitude heading reference system (AHRS) (MTi-30, Xsens), which includes an inertial
measurement unit (IMU) with built-in KALMAN filtering for pose estimation. The sensor is
mainly used to improve odometry calculation.

• Sonar Sensors (Parkpilot URF7, Bosch, 3×) for collision avoidance
• Microphone array (ReSpeaker v2.0, SEEED) for speech recognition
• 3D Lidar (Puck, Velodyne) for localization, people perception, and collision avoidance
• Two red green blue depth (RGB-D) cameras (RealSense D435, Intel), which are mounted

facing frontally and dorsally and used for localization and people perception. The cameras
are connected to an Nvidia Jetson Nano single board computer inside the robot’s head,
which provides the synchronized image data via network and thus reduces the load on the
main computer.

The only actuators beside the platform are brushless DC motors for arm movement and servo motors
for the ears. Like most state-of-the-art social service robots [HBJ+17; BV16; PMF+16; Tri+16;
LMR+19], Sobi lacks physical manipulators, which poses a disadvantage regarding long-term
autonomy. Methods to overcome this limitation make up a significant part of a later chapter of this
thesis (cf. section 5.4).

Long-term applications place variable demands on a robotic system, such as varying lighting
conditions or environments of different sizes and shapes. Therefore, a 3D Lidar sensor and two
RGB-D cameras are used as perceptual hardware to compensate for respective disadvantages. The
arrangement of the sensors covers a large field of view (FOV), as shown in Figure 2.2.

One camera covers the dorsal area of the robot since three support rods for mounting the head
structure restrict the FOV of the Lidar sensor in this area. However, due to beam divergence and
multiple reflections, this occlusion is only effective for the close range of the robot. As the coverage
area of the frontal camera overlaps with that of the Lidar sensor, redundant information can be
taken into account for person detection or self-localization.
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RGB-D camera
(frontal) RGB-D camera

(dorsal)

3D Lidar

(a) Perceptive sensors

1.57 m

30°

69.4°42.5°

(b) Sensor FOV side view

15°

(c) Sensor FOV top view

Figure 2.2: Arrangement of Lidar and camera sensors (a) covering the area around the robot (b). The Lidar
sensor is obstructed by three support rods, resulting in a partial occlusion shown in (c).

Hardware Communication Structure

To ensure a modular functional structure, all four computers in Sobi run Linux (Ubuntu) and
the robot operating system (ROS) as a framework for communication and control. Sensors and
controllers are mainly connected via universal serial bus (USB) and Ethernet. System clock times
of all participants of the ROS network are synchronized via the network time protocol (NTP). Since
all applications with hard real-time requirements (i.e., motor controllers and sensor interfaces) use
separate control hardware, this approach is sufficient to ensure measurement data synchronization.
Once the ROS network is active, defined sensor and processing data is continuously stored on an
external server running a MongoDB instance. An overview of the sensors, processing, and output
hardware and their essential communication is shown in Figure 2.3.
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Figure 2.3: Connections and communication between computers and hardware components.
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2.1.3 Software Architecture

Since the robot mainly relies on ROS for process communication, a modular software structure is
used. The various modules are arranged hierarchically and are based on self-developed solutions
and freely available ROS packages, partially adapted for the specific robot setup. Figure 2.4 shows
the layered architecture.
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Figure 2.4: The layered software structure of the robot. White boxes indicate self-developed programs;
dark grey boxes indicate third-party ROS programs, and light gray boxes indicate modified or
extended third-party ROS programs. ([SWSS21] ©2021 IEEE)

Components in the hardware driver layer provide raw sensor data or receive low-level controls.
This data is processed or sent by specific programs (skills), realizing the robot’s basic functionality,
such as self-localization, person detection, or speech output. Different skills are combined into
behaviors that accomplish goal-directed tasks. The autonomy and tangible utility of the service
robot is generated via applications, which consist of patrolling and information scenarios. The
central control unit in the application layer is a behavior tree (BT), partly composed of sub-trees of
the behavior layer. Since the robot must act purely reactively on immediate requests, modeling via
BTs is well-suited, and using a task scheduler is unnecessary. A concise introduction on BTs is
given in section 5.2.

People and Object Perception

In service robotics, detecting humans is particularly important for domestic and public environments
and an essential aspect of safe and valuable robot behaviors. Therefore, Sobi includes a people
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detection and tracking pipeline, allowing for the perception of humans in an area surrounding the
robot. People detection is conducted multi-modally by using both RGB-D cameras in conjunction
with the 3D Lidar sensor. Detection in the RGB image has the advantage that it functions robustly
even with partial occlusion. A disadvantage is the dependence on ambient light and the limited
range of active stereo-based depth detection technology [HSKV19].

In contrast, a Lidar sensor provides long-range and wide-angle measurements, which are usually
very accurate and not affected by lighting conditions [YDB17]. Combining the different sensor
modalities enables robust tracking in a large field of view. The people detection and tracking
pipeline consists of image-based and range-based detectors whose outputs are fused and then
combined with a motion model to obtain persistent people tracks throughout multiple consecutive
measurements. A schematic representation of the pipeline is shown in Figure 2.5.
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Figure 2.5: Person detection and tracking pipeline.

Detection in the RGB image is performed with the YOLOv3 system (1), which applies a single
neural network to the whole input image and is orders of magnitudes faster than other state-of-the-
art algorithms. This enables object detection in real-time while providing sufficient accuracy for the
given application [RF18]. The authors provide network weights trained on the large-scale object
recognition dataset COCO, which is commonly used and contains 80 object classes, including
a class for person [LMB+14]. A median filter obtains the centroid of the detected object in
three-dimensional space within the shrunk bounding box on the depth data of the respective camera.

People detection based on the Lidar data is a two-step process. The first step is clustering the
depth data, and the subsequent second step determines which clusters correspond to people. For
clustering (2), the approach presented in [BS16] is used, providing reliable segmentation and having
small computational demands, which is achieved by converting the point cloud to a cylindrical
range image. To determine which clusters correspond to people, an offline-trained support vector
machine (SVM) performs binary feature-based classification (3). In total, five features are used, a
subset of the features described in [NMH10] and [KMW+11]. The specific combination of these
features was proposed in [YDB17], aiming at decreasing the computational load while maintaining
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an almost similar classification performance. The features, e.g., describe the number of points in
the cluster, distance to the sensor, or the moment of the cluster’s inertia tensor.

Both the RGB and Lidar-based detectors operate in real-time with the frequency of incoming
measurements (30 Hz and 7 Hz, respectively). Enabling the robot to re-identify the same person
over multiple consecutive detections requires fusing the detections with a motion model. Fusion
has the additional advantage that tracks can also be maintained if a temporary occlusion of the
person occurs. The SPENCER tracking framework [LBLA16] is utilized for this task, which can
carry out the consecutive steps of fusion, aggregation, track estimation, and association (4). Fusion
is performed for the sensors with overlapping detection areas (frontal camera and 3D Lidar sensor,
cf. Figure 2.2) by taking the weighted average pairwise between the detections with minimum
EUCLIDEAN distance. The field of view of the dorsal camera and the 3D Lidar sensor are not
overlapping since the rear support rod carrying the robot’s head covers the scanner’s field of view.
Therefore, the corresponding measurements of the rear camera are aggregated with (i.e., appended
to) the fusioned data of the frontal and lateral areas. The motion of the target is then predicted by
maintaining an extendend KALMAN filter (EKF) for each person, where the associated model is a
constant velocity model with additive process noise [LGA15]. New incoming data is associated
with existing tracks by a global nearest-neighbor association based on the MAHALANOBIS distance.
The outputs of the complete pipeline are tracked people measurements, each consisting of a 2D
point with timestamp dped,k = (x1,k, x2,k, tk)

T, an ID iped,k ∈ N, and current velocity vped,k ∈ R2.

Localization and Navigation

Determining the mobile robot’s pose in the environment is a fundamental but challenging problem,
especially if the environment changes dynamically. Since Sobi is used in heterogeneous settings,
both inside and outside buildings, a suitable SLAM solution is required. In order to utilize
the multi-modal sensory system consisting of RGB-D and Lidar sensors, the SLAM framework
real-time appearance-based mapping (RTAB-Map) [LM19] is used (introduced in detail in sec-
tion 3.1.2). Methods to improve mapping and localization specifically in heterogeneous and
dynamic environments for long-term autonomy are presented in this thesis’s upcoming chapter 3.

The input of the SLAM front-end is wheel odometry, fused with inertial measurements via an
EKF. This approach enables locally robust odometry estimation, which is particularly beneficial
when moving in confined areas and feature-poor environments. Besides the estimated robot pose,
another output of the SLAM system is a globally referenced metric 2D occupancy grid map created
from the internal 3D representation via projection onto the ground plane. Navigation on this
map, respectively local and global path planning, is then implemented with standard planners of
the ROS framework (i.e., dynamic window approach [FBT97] and A* graph search [HNR68]).
Above the metric level, a topological map is created to account for the semantic structure of the
environment. Nodes represent relevant locations, such as specific rooms or facilities, or waypoints
between which the robot can navigate directly or move using problem-specific planners. Whereas
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regular movement between nodes is executed with metric navigation, specific nodes require custom
approaching behaviors, such as the charging station. Docking the charging station is based on a
triangular landmark that the 2D laser scanner can detect. A Dubins path consisting of circular
and linear segments is planned and subsequently followed with a pure pursuit controller [Cou92].
An advantage of this approach is low computational complexity and robust results, even when
deviations in the initial starting position occur [Har20].

Human-Robot Interaction

Sobi’s main task is to provide environment-specific information and guiding applications. The
human-robot interface consists of speech processing and touch-based operation with a graphical
user interface (GUI) to provide intuitive accessibility (see Figure 2.6). The system’s current status
is additionally indicated by the robot’s LED lights and ear movement (see Figure 2.7). Speech
processing is realized by a combination of Google’s Speech-to-Text and Text-to-Speech services
and the natural language processing pipeline Dialogflow [SWTO19]. All information can be
accessed via speech and touch interfaces, which include the following functions: queries and
display of a canteen menu, public transport timetables, staff offices, and room locations, as well as
options for small talk.

Figure 2.6: GUI of the tablet. ([SWSS21]
©2021 IEEE)

(a) Listening (b) Confused

(c) Error (d) Processing
Figure 2.7: LEDs and ears indicate the system status.

[Wes20]
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2.2 Results

This section contains a validation of the robot’s perceptive components required for people-centered
experiments of the following chapters. The focus is on the evaluation of person detection and
tracking, as later chapters contain results on mapping and localization (cf. chapter 3) as well as task
control and long-term autonomy (cf. chapter 5).

The 3D Lidar sensor, RGB-D cameras, and IMU are calibrated extrinsically [RNS+16] and are
referenced to the mobile platform based on CAD data. The training dataset for the Lidar-based
binary classifier consists of 2,000 clusters per class (human or non-human), resulting in a 1 to 1
ratio of positive and negative samples. Data collection is carried out in various areas inside and
outside of buildings, in particular in crowded areas (for example, a canteen) [Pet19]. Training is
then conducted via 10-fold cross validation, resulting in 98.5 % accuracy.

Due to the different viewing areas of the sensors and partial occlusion, a spatially-dependent people
tracking quality can be assumed. An accuracy and precision evaluation is performed to verify in
which area the pipeline can reliably track people. Measures commonly used for this purpose are
the CLEAR-MOT metrics [BS08], which aim at evaluating multi-object tracking performance and
define an aggregate error measure called multi-object tracking accuracy (MOTA) as

MOTA = 1−
∑

t (Mt + FPt +MMEt)∑
tGTt

, (2.1)

where Mt, FPt and MMEt are the number of misses, false positives, and mismatches, respectively,
for time t. The optimal MOTA value is 1.0, and the score can also reach negative values if the sum
of errors is larger than the number of ground truth objects GT. The ground truth is obtained by an
optical localization system consisting of six cameras and infrared light sources (Oqus 4, Qualisys
GmbH). For pose acquisition, reflective markers are placed in unique arrangements on the head of
one to two people and centrally above the robotic system. Due to the limited field of view of the
external cameras, a maximum distance of 4.5 m between marker arrangements can be used in the
present measurement setup. A total of 16 measurement runs are performed. As part of these runs, a
person moves towards the robot, moves laterally to the robot, follows a defined path, and performs
random movements with a second person [Ben21]. Figure 2.8 and Table 2.1 show the results of the
minimum achieved MOTA metric, which is given for the different fields of view of the respective
sensors. As a measure of precision, the root mean square error (RMSE) is also given. The MOTA
values are similar to the values reported in the literature [LGA15; LBLA16]. With regard to the
areas marked in green in Figure 2.8, it can be concluded that person tracking is possible according
to the state-of-the-art. This enables robust tracking in an approximately circular area with a radius
of ca. 4.4 m around the robot.
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Figure 2.8: Spatially dependent error of the people track-
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Area MOTA
(min.)

FP% M% RMSE
in m

89.7% 2.1% 3.3% 0.2

84.3% 4.6% 6.6% 0.25

70.1% 17.2% 8.6% 0.21

No detections

Table 2.1: Accuracy and precision metrics of
the different segments.

2.3 Conclusion

This chapter introduces Sobi, a social service robot developed for information and guiding applica-
tions. Besides a friendly-looking design for human-robot interaction [SWSS21], the robot features
hardware components that are intended to enable long-term use in heterogeneous environments.
This sets the robot apart from comparable state-of-the-art systems for long-term autonomy, which
are mainly designed for indoor use only. A modular and layered software structure utilizing the
ROS framework enables the standardized integration of the methods presented in the further course
of this work. The robot features multi-modal perceptual sensing, which allows sensor data to be
used with redundancy. This characteristic is particularly utilized for the presented person detection
and tracking pipeline. Its qualitative evaluation shows that a robust detection of persons near the
robot is possible.
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One key challenge for developing autonomous robots is solving the SLAM problem, which consid-
ers the creation of a map of the environment and localization therein. Since this knowledge is an
essential requirement for autonomous navigation, SLAM became a significant research area in the
robotics community in the last two decades [SLT16]. Whereas for static environments, the SLAM
problem can be viewed as solved [CCC+16], long-term applications in dynamic environments are
still an open problem. Especially for permanent application in service robots, the SLAM system
should fulfill additional requirements besides creating a map and enabling localization. These
requirements include execution under limited computational resources, expansion of existing maps,
applicability to different sensor modalities, and use of the map for robust navigation. However,
existing approaches often focus on only one mentioned aspect and usage in non-heterogeneous
environments.

Therefore, this chapter introduces methods to improve mapping and localization in dynamic and
heterogeneous environments. Section 3.1 first presents an overview of the SLAM problem and
state of the art for solving it using cameras, Lidar sensors, and in long-term applications. Then,
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in section 3.2, a method is presented that improves the long-term robustness of graph-based
SLAM by using multiple sensor modalities (cameras and Lidar sensors) in parallel. Finally, a
map-management system is introduced in section 3.3 to implement mapping for heterogeneous
environments (e.g., a mixture of indoor and outdoor areas) by dynamically selecting the appropriate
SLAM parameter configuration for each environment.

Section 3.2 of this chapter was in great part published at the peer-reviewed “IEEE/ASME Interna-
tional Conference on Advanced Intelligent Mechatronics" (AIM) 2021 [HSLS21]. The content
beginning with section 3.3 was published at the peer-reviewed “IEEE International Conference on
Robotics and Automation" (ICRA) 2020 [ESNO20].

3.1 Foundations and Related Work

In the following section 3.1.1, a general introduction to the SLAM problem is given, and the basic
solution strategies are presented. Subsequently, current state-of-the-art approaches are described in
section 3.1, particularly for long-term-autonomous use in dynamic environments and the service
robot context. Finally, a summary and critical discussion are given in section 3.1.3.

3.1.1 The SLAM problem

The objective of solving the SLAM problem is to build a representation (map) of the environment
while at the same time estimating the robot’s state (i.e., pose) with respect to this map. Due to noisy
sensor measurements, the problem is usually stated in a probabilistic fashion.

The robot is assumed to move along a trajectory described by a sequence of locations x1:K =

{x1, ...,xK}. Odometry characterizes the relative motion between two consecutive locations
with control inputs u1:K = {u1, ...,uK}, which might be derived, e.g., from the wheel encoders.
Perception of the environment is given via measurements z1:K = {z1, ..., zK}. Solving the full
SLAM problem then consists of estimating the posterior probability

p(x1:K ,M |z1:K ,u1:K) (3.1)

for all unknown locations x1:K and environmental map M based on the available sensor data. The
representation of M can, for example, be based on spatial landmarks or visual features and depends
on the sensor setup of the robot, the environment itself, and the specific SLAM algorithm.

As an estimation of the full trajectory x1:K can be difficult to handle in terms of computational
complexity, the online SLAM problem aims at estimating only the current state xk and map M
based on the posterior probability

p(xk,M |zk,uk), (3.2)
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which allows for solving the problem incrementally. Therefore, estimation techniques of the online
SLAM problem are generally filter-based. One other main category form graph-based approaches,
which usually address the full SLAM problem, albeit incremental techniques exist as well. Both
solution approaches are briefly presented in the following sections. Graphical representations of
the online and the full problem are shown in Figure 3.1.
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(a) The online SLAM problem as a BAYESIAN
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(b) Pose-graph representation of a SLAM pro-
cess, stated as a full problem.

Figure 3.1: Graphical depiction of SLAM problem formulations.

Filter-Based SLAM

The underlying principle of filter-based approaches is rooted in the BAYES theorem and consists
of a two-step process with successive iterations. In the first step, a prediction of the robot’s state
and the map is made based on an evolution model and control input uk. The second step uses the
current sensor measurement zk for comparison against the map, correcting the potential error of
the previously predicted state.

A major branch of filter-based techniques is EKF-SLAM [CSS87; SSC90], which optimally
linearizes the usually non-linear motion models around the actual value of the state vector. Despite
the decisive advantage of utilizing non-linear models, EKF approaches are unable to support
large-scale and long-term SLAM due to the adversely scaling of their update time as map sizes
grow [SLT16; BAYG17].

The other main category of filtering algorithms is based on particle filters, which sample the state
with a set of particles based on a probability density. The most widely used algorithm in this
category is FastSLAM [MTKW02], which maintains individual data association hypotheses for
landmarks and trajectories per particle. Particle-based approaches do not require GAUSSIAN pose
distribution and can solve both online and full SLAM problems. Due to its efficient implementation
and extensions to occupancy grid maps [GSB07], it is the de facto standard SLAM approach for
Lidar-based robots using the ROS. However, its estimation accuracy may suffer from particle
depletion and growing complexity for increasing dimensions [APSL08].
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Graph-Based SLAM

Graph-based methods view the SLAM problem as a graphical representation, where robot poses
and landmark locations are considered nodes in a graph. Consecutive locations xk−1,xk are
linked by an edge resulting from an odometry input uk. Collecting sensor data creates virtual
measurements (links) zij [GKSB10], which connect node i with node j by a transformation that
makes their respective observations overlap maximally. Identifying these problem constraints based
on control inputs and sensor data and using the latter for correspondence detection is referred to as
the SLAM front-end.

From the configuration of the nodes xi and xj an expected measurement ẑij(xi,xj) can be created,
which then forms the basis for an error function

eij(xi,xj) = zij − ẑij(xi,xj) = π
(

i

(z)
T−1
j

i

(x)
T j

)
. (3.3)

The rightmost term expresses the error through homogeneous transformations i

(z)
T j and i

(x)
T j

resulting from the observation and odometry, respectively. The mapping π : SE(3)→ R6 creates a
perturbation, and solving the SLAM problem can then be regarded as finding the minimum of a
cost function

F (x1:K) =
∑
ij

eT
ijΩijeij, (3.4)

where Ωij is the information matrix of the respective virtual measurement. The optimal trajectory
x∗
1:K can be obtained by optimization:

x∗
1:K = argmin

x1:K

F (x1:K). (3.5)

Refining the robot’s trajectory and the map given the constraints defines the second subsystem of
graph-based approaches (back-end). Due to the sparsity of the graph, eq. 3.5 results in a sparse
system of equations which can be solved by methods such as GAUSS-NEWTON, LEVENBERG-
MARQUARDT or gradient-descent [GKSB10; SLT16]. As the error function eij(xi,xj) directly
depends on measurements, significant constraints for the optimization result when the robot reenters
an already known area. The SLAM front-end then seeks matches of the current measurement data
with past measurements, a process called loop closing. If a match is found between the new node
and an existing node in the graph, a constraint is added, labeled with the relative transformation
that best overlaps the measured data of the two nodes (cf. Figure 3.1.b).

Compared to filter-based approaches, graph-based SLAM has the advantage of processing larger
mapping areas due to its sparse formulation. It can constantly linearize the error function, providing
equal or better accuracy and consistency than filters [APSL08; SMD12; BAYG17]. A drawback of
graph-based methods is the computational cost of graph optimization, especially for large graphs
with many constraints. Therefore, different approaches were presented to perform the optimization
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incrementally [OLT07; KJR+12] or to merge [JKFL13] or discard [LM11; CE13] nodes to decrease
the graph’s size. Their accuracy and flexibility make graph-based methods the primary choice for
applications in long-term scenarios or large-scale areas [BAYG17].

3.1.2 SLAM: State of the Art

Due to the high relevance of the SLAM problem in recent years, numerous approaches have been
presented that utilize filter-based and graph-based formulations as their underlying principle. The
topic has been fundamentally discussed in tutorials [DB06; BD06], as well as several reviews
in terms of mapping [Thr+02], autonomous driving [BAYG17], visual methods [FRR15], or in
general [HZL19]. A significant driving factor for the type of SLAM approaches is the available
underlying sensor hardware, making most methods Lidar or image data-based. For both types,
one current challenge is mapping and localization in non-static environments. Therefore, besides
presenting methods for Lidar-based and visual SLAM, this section introduces current strategies to
enable SLAM in long-term applications and dynamic environments. Special attention is given to
the RTAB-Map method [LM19], which allows robust usage in the context of long-term autonomy
and for service robot systems.

Lidar-based SLAM

Lidar determines ranges by emitting a laser and measuring the time it takes the reflected light
to return to the receiver. Lidar sensors can be divided into 2D Lidar and 3D Lidar, defined by
the presence and resolution of vertically oriented Lidar beams. One key advantage of Lidar is
that it is not affected by light variations and has a large angle of view and range [CTL+15]. The
technological threshold for deployment is comparably high due to cost and complexity. However,
reliable and adaptable applications can increasingly be achieved with miniaturization and the
development of solid-state Lidar systems [KZI+21].

The most popular Lidar-based 2D SLAM approach is GMapping [GSB07], which is based on
RAO-BLACKWELLIZED particle filtering and extends FastSLAM [MTKW02] with grid maps.
Examples for graph-based approaches are KartoSLAM [KGK+10] and LagoSLAM [CACB12].
By adopting sub-mapping and loop-closure capabilities, Google Cartographer [HKRA16] achieves
product-grade performance as a SLAM solution for 2D or 3D. 3D SLAM approaches have the
advantage that one more data dimension is available, and six degree of freedom (DoF) poses can
be estimated. A popular real-time method for 3D Lidar SLAM is LOAM [ZS14], which handles
the problems of odometry estimation and mapping separately.

An essential aspect of Lidar-based SLAM is the detection of loops using Lidar data, which has
been implemented through various approaches. Some methods transform the scan into an image
based on the range [SRGB11] or additional intensity data of points [MFB11]. Other approaches
reduce the dimension of the point cloud by creating regional point descriptors [BZ10], continuous
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functions using the normal distribution transform (NDT) [MANL09], or range and height data
of points [RMS15]. By azimuthal and radial binning of the Lidar data, an image-like descriptor
called scan context [KK18b] can be created, which is also useable for rough localization [KPK19].
In recent years (deep) learning-based approaches gained popularity to increase robustness and
accuracy, e.g., PointNetVLAD [UL18] for end-to-end descriptor computation, SegMap [DCD+18]
for segment extraction or L3-Net for localization [LZW+19].

Visual SLAM

Due to the increasing computational power of central processing units (CPUs) and graphical
processing units (GPUs) as well as cheap camera sensors, the past decade has seen the rapid
development of visual SLAM. Compared to Lidar, visual systems can be more lightweight and
cheaper, enabling the applicability even in smartphones [MMT15; LGQ+18; KPR+15].

Several approaches exist that use a monocular camera without depth measurements. Methods use
sparse features such as oriented FAST and rotated BRIEF (ORB) for ORB-SLAM [MMT15], semi
dense representations such as LSD-SLAM [ESC15] or SVO [FZG+16], or dense representations of
the full image, such as MLM SLAM [GOLR16] or REMODE [PFS14]. However, one problem of
monocular approaches is scale ambiguity and drift [FRR15], preventing the scale of the environment
from being estimated and limiting the use of the resulting map for robot navigation.

This problem can be mitigated by combining the camera with inertial measurements or using
stereo or RGB-D cameras. Popular visual-inertial graph-based SLAM approaches are VINS-Mono
[LGQ+18] and maplab [SDF+18], allowing for localization on large-scale environments. ORB-
SLAM2 [MT17] and S-PTAM [PFC+17] are state-of-the-art feature-based methods that can be
used with a stereo camera. Learning-based approaches also play an increasing role for visual
SLAM systems, for example, for depth estimation of monocular cameras (D3VO) [YSWC20]
combining SLAM with semantic mapping (Semanticfusion) [MHDL17] or object detection (Detect-
SLAM) [ZWZ+18]. As most visual-based approaches suffer from obstructions or feature-poor
environments, some approaches address this problem by using multiple cameras (MCPTAM)
[HTS15] or different odometry sources, such as RGBDSLAMv2 [EHS+14].

SLAM in Long-Term Applications

Deploying robots in real-world environments for extended time places high demands on their
SLAM approaches. Despite extensive progress in solving the SLAM problem, most approaches
assume a static world and do not consider long-term updates of the map or robustness regarding
environmental variations. Mapping and localization in changing environments is a current research
problem, and approaches to solving it are briefly presented in the following.

Various approaches are based on finding a robust map representation invariant to changes over
time. Examples include finding robust features [VL10; MUN15], using short-term and long-term
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databases [DCD11; LM18] or using sequences instead of single images [MW12; NBS18]. Feature
correspondences can be scored by semantic information [TSH+18] or chosen to be robust to
varying lighting conditions [RMI13; KCAK17], which is particularly important for visual-based
approaches. Lidar-based methods suffer from scene variations due to obstructions or shape changes
over long periods (e.g., trees across seasons). To counteract this, point clouds can be represented
by error distributions [WN17] or robust scan descriptors [KPK19].

A parallel strategy to using a robust map is to maintain multiple map representations and select the
most relevant model at the appropriate time and location. Dynamic maps can then handle changes
by using multiple timescales [BD05] or clustering of maps created at different times [SB05], or
with varying views [KB09]. Similar observations at the same spatial location may be summarized
and chosen by matching the data to the current sensory input for localization [CN13]. Particularly
for robot applications in large-scale environments [BFG08] or over several floors [SME+12],
segmenting the environment into multiple maps is appropriate. Sub-mapping SLAM approaches
create local metrical maps of the environment, which are connected by a topological graph for
efficient map organization [BNLT04], loop-closure detection [ENT05], or navigation [KMM11].
Spatial segmentation specifically requires detection of environmental transitions [BJL+16], e.g.,
through object detection [EKJ07], spectral clustering [BKR07], or VORONOI graphs [WSB08].
One common property of the approaches above for sub-mapping [BNLT04; ENT05; KMM11;
SME+12] and most SLAM approaches in general [CCC+16], is the need for manual, non-adaptive,
parametrization. For example, parameters for feature matching or outlier rejection are kept constant
for the complete map.

Contrary to learning the persistent elements of a scene, other approaches aim at modeling the
environmental dynamics. Specific indicators of the map, such as the occupancy of cells in an
occupancy map, might then distinguish between static and dynamic regions [TMB13] or represent
periodic processes [KFC+14]. Other approaches explicitly separate static and dynamic regions
[HDFF16]. A summary of state-of-the-art approaches in this field is included in section 4.1 since
this thesis’s next chapter 4 puts a particular emphasis on modeling environment dynamics.

RTAB-Map: Real-Time Appearance-Based Mapping

As previously described, most SLAM approaches are Lidar-based [HZL19] or visual-based
[FRR15], and only a subset of methods aim at long-term use, ongoing map extension, or ro-
bust localization. One graph-based method that flexibly combines different sensor modalities
and focuses on the long-term mapping of large environments is real-time appearance-based map-
ping (RTAB-Map) [LM19].

As one drawback of graph-based approaches is increasing computational demands for larger
graph sizes (cf. section 3.1.1), RTAB-Map implements loop-closure detection [LM13] with a
memory-management approach [LM11] as its core. Loop-closure detection is based on bag-of-
words representations of visual features [LM13]. When a new node is created, features [BETV08;
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Low04; CLSF10; RRKB11] are extracted from the RGB image and added to an incremental visual
vocabulary. A discrete BAYESIAN filter keeps track of loop-closure hypotheses, adding links with
associated transformations to the graph if required. If Lidar data is available, the transformation is
further refined via the iterative closest point algorithm (ICP) [BM92] for each loop closure.

RTAB-Map’s memory-management limits the graph size so that the processing time of loop-closure
detection and graph optimization stays within real-time constraints. The nodes in the memory are
assigned into a working memory (WM) and a long-term memory (LTM), where only the nodes
in the WM are considered for loop closure. When RTAB-Map’s update time exceeds a given
threshold, nodes from the WM are transferred to the LTM based on heuristically defined weights.
An overview of the method is shown in Figure 3.2.
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Figure 3.2: Overview of RTAB-Map’s main modules, input and output data.

Since appearance-based loop-closure detection is limited by the viewing angle and direction of the
utilized camera, RTAB-Map was extended with a proximity detection module to use Lidar data to
correct odometry drift [LM18]. It was mainly developed for situations where no appearance-based
loop closures may be detected, e.g., when mapping a long hall in two directions with a limited field
of view.

Besides the already mentioned advantages regarding RTAB-Map’s flexibility, it can be considered
the most suitable approach for long-term service robot applications due to the following aspects
[LM19]:

• Different modalities: RTAB-Map supports both visual and Lidar data for SLAM or as
odometry input. The latter may additionally consist of wheel-based or inertial data. This
flexibility allows for many sensor configurations and easy integration into different systems.

• Online processing: As RTAB-Map’s computing time is bounded, it can efficiently be used
with limited CPU time. Boundedness is especially important in a robotic system where
several other processing modules must be executed.
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• Multisession mapping: The approach allows relocalizing on an existing map and adding
new nodes to the graph using image data. In the long-term context, the map can thus be
frequently extended on large scales, and new (visual) features can be added.

• Occupancy map generation: Most navigation approaches are based on occupancy grid maps.
As opposed to many other current SLAM algorithms, RTAB-Map can directly generate such
maps, allowing for seamless integration of navigation algorithms.

• Accuracy: Compared to other state-of-the-art visual or Lidar-based SLAM approaches,
RTAB-Map delivers comparable accuracy while generally providing a larger flexibility.

3.1.3 Conclusion

In summary, it can be stated that Lidar- and visual-based SLAM approaches achieve promising
results, especially when static environments are assumed. Long-term applications in dynamic
environments are enabled by modeling environmental dynamics or maintaining one or multiple
robust maps. However, most approaches focus on single sensor modalities, such as exclusively
using Lidar or camera data, each with their respective disadvantages. Furthermore, while basic
SLAM functionality is demonstrated for many approaches, it is not always possible to use the
resulting map for navigation, which prevents its application in the context of service robotics.

A widely used method for real robot applications is RTAB-Map, which is useable with a wide
range of sensors in long-term and large-scale settings while maintaining a bounded computation
time. However, as it mainly relies on visual loop closures, the approach has drawbacks that can
limit its applicability to dynamic environments. The marginal use of Lidar data prevents global
loop-closure detection with heavy offsets, e.g., due to varying orientations or for relocalizations.
The constant loop search radius amplifies this, which does not capture increasing pose uncertainties
in long-term applications or for large loops. Applying RTAB-Map to dynamic environments may
benefit by extending the framework with Lidar-based loop-closure detection in an adaptive search
radius, which is addressed in the next section 3.2.

Another open problem in current SLAM approaches is their reliance on manual parametrizations,
whereby the parameters are kept constant for the complete map. Most approaches are fine-tuned
to a specific environment, which prevents a successful deployment in other areas (e.g., transitions
between indoor and outdoor or small-scale and large-scale areas). Automatically adapting the
specific SLAM method or configuration based on the type of environment and creating an efficient
map structure could be beneficial for (large-scale) heterogeneous environments. However, this is
still an open research problem that is addressed in section 3.3 of this chapter.
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3.2 Lidar-Based Loop-Closure Detection

The long-term autonomy of robots in dynamic environments has two main requirements: The
computational complexity of graph optimization (back-end) must be limited, and the process must
be robust against environmental changes. As stated in the previous section, most SLAM approaches
focus on single sensor modalities, and only very few use a combination, e.g., of both Lidar and
camera data. However, multiple modalities can be especially useful in dynamic and heterogeneous
environments. Appearance-based loop inferences, for example, are well suited for indoor areas
with distinctive features such as patterns on walls. On the other hand, loop detections with Lidar
data are not affected by light variations and are better at representing large-scale building structures.
Therefore, this section introduces an extension of the widely used graph-based RTAB-Map method
to improve long-term robustness by more extensive use of 3D Lidar data. The proposed method
consists of a multi-step process, where node pairs for possible loop closures are searched for in a
variable radius based on odometry data, scan descriptors, and binary classification (cf. section 3.2.1).
If a loop is detected, the respective point clouds are registered, and the graph is optimized with
the relative transformation (cf. section 3.2.2). A schematic overview of the extension is shown in
Figure 3.3.
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Figure 3.3: Schematic overview of the proposed Lidar-based extension for loop-closure detection.

3.2.1 Loop Classification

Consider a robot that is equipped with a 3D Lidar sensor and moves through the environment,
creating nodes in the SLAM graph at locations x1:K based on its odometry inputs u1:K (cf. sec-
tion 3.1.1). Each node i can then be assigned a point cloud

Pi =
{
pki
}N
k=1

, pki ∈ R3, (3.6)

containing N points representing the environment. To determine whether the robot revisits a known
location, the most recent point cloud Pj, j > K, is compared with point clouds P1:K in the graph.
Detecting a loop can then be viewed as a binary classification problem, where two point clouds
either represent the same environment or not. Due to the high data amount of point clouds (e.g.,
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N ≈ 45,000 with the robot presented in chapter 2), feature-based approaches are suitable for this
purpose. As introduced in [GS10], each point cloud Pi is described by global features

χi =
(
χI
i,χ

II
i

)T
, χi ∈ Rnχ , nχ � N, (3.7)

where χI
i and χII

i are two different types of features. The first type χI
i maps the point cloud to

a real number, typically geometric properties such as the point cloud’s average range, volume,
or centroid. For type χI

i, 32 features are computed. The second type of features χII
i are range

histograms with nine varying bin sizes b1:9. Using these two types of features is generally faster
than, e.g., computing the normal distribution transform (NDT) [MANL09] and more descriptive
than scan context [KK18b]. Starting at the sensor’s origin, its detection area is divided into annular
regions, each with ring size bj to create the range histograms (see Figure 3.4). The EUCLIDEAN

distance rk to the sensor’s origin is calculated for each point pk. If the range rk is above a maximum
defined range rmax, the point is translated towards the origin so that rk = rmax applies. With the
proposed parametrization from [GS10], the 41 used features result in a length of the feature vector
nχ = 843 � N , which is significantly lower than the dimension of the point cloud. Since the
descriptor is computed with basic mathematical operations, it is determined for each new point
cloud and assigned to each node in the graph. Additionally, the descriptor is rotationally invariant,
reducing the perspective-dependent data-association problem.
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Figure 3.4: Two-dimensional depiction of annular regions with bin size bj . Counting the points pk in the
different areas results in the respective range histograms.

Two difference metrics are used to compare a descriptor χj from a new point cloud with a descriptor
χi from the graph. For scalar features

{
χI
i,χ

I
j

}
, the element-wise absolute value of the feature

vector difference is computed. PEARSON’S correlation coefficient between the respective range
histograms

{
χII
i ,χ

II
j

}
is used for the second feature type. Comparing similar feature vectors results

in a vector with 32 entries close to 0 and the last nine entries close to 1. This vector then forms the
input of the classification problem. As the classification is considered binary, the output is defined
as iyc = {0, 1} for negative and positive loop pairs.
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Due to its performance and robustness against overfitting, [GCRN09] proposes to use an AdaBoost
classifier. AdaBoost [FS97] learns in an iterative procedure, forming a strong classifier from a
combination of T weak classifiers (decision stumps). In each learning round, the data is reweighted
based on the current prediction error, with incorrect classifications having higher prioritization.
With the choice of the specific value of T significantly influencing the accuracy, Granström et
al. [GS10] evaluate different combinations and recommend T = 50 training rounds for the used
descriptor in indoor and outdoor applications. To receive a binary output from the classifier, the
output probability ipc is thresholded with a parameter pmin, so only pairs with ipc > pmin are treated
as positive loop pairs.

Defining the Search Space

Although processing descriptors via the AdaBoost classifier is not computationally costly, com-
paring a new descriptor from each iteration with all existing ones from the graph is unnecessarily
expensive. This applies especially to long-term operations, which can lead to graphs with thousands
of nodes. A standard method in graph-based SLAM is to include heuristics, which only choose
a subset of all available nodes for loop-closure detection. Similar to RTAB-Map’s proximity
detection (cf. section 3.1.2), the current descriptor is only compared with other nodes within a
certain radius r around the estimated pose (see Figure 3.5.a).

However, searching in a constant radius is disadvantageous since the estimated pose might be
highly inaccurate in long phases without any loop closures. Therefore, a variable search space
depending on the pose accuracy is used. The search radius

r(λmax) = rmin + βgmax(λmax) with gmax(λmax) = 2
√
5.991λmax (3.8)

consists of two parts. The constant radius rmin defines the minimal size of the search circle, which
applies if the estimated pose can be assumed to be without errors. This is the case at the start of the
process and directly after a loop closure occurs. Between these events, the position of the created
nodes is subject to erroneous odometry estimates. Common error models for odometry estimation,
especially KALMAN-filter-based sensor fusion approaches, model the resulting odometry estimate
as normally distributed. Therefore, the second part of the search radius depends on the length
gmax of the longest major axis of the 95 % confidence ellipse, resulting from the largest eigenvalue
λmax of the odometry estimate’s covariance matrix [Hoo84]. The scale factor β determines the
overall influence of the second part and can be chosen heuristically, e.g., based on the scale of the
environment. Due to error propagation, the covariance matrix values are monotonically increasing
and are frequently reset when a loop closure occurs.

Searching loops locally is only possible when a new graph is created, at least one link has been
found, or an initial guess exists. For localization or extension of an existing map in a multi-session
operation (wake-up robot problem), a global search must be performed to connect the local (new)
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map with the existing map. This is detected by a ratio α = nlocal

nWM
, where nlocal is the number

of nodes in the local map and nWM the number of all nodes in working memory (WM) (see
Figure 3.5.b). A low ratio α indicates that the relative positions of many nodes in WM are unknown,
requiring searching within the entire WM for loop pairs until α ≥ αmin, with threshold αmin. The
fast detector enables processing hundreds of nodes in the WM. However, since adding a wrong
loop pair is fatal for the map’s integrity, for the first nstart detected loops, there must also exist a
pre-defined minimum number nver of detected pairs with nodes in the immediate neighborhood
with radius rver around the target node for verification.

Real robot pose

Erroneous
estimated pose xj

Positive loop pair
with pose xi
(a)

Point cloud Pj

gmax

r

Point cloud Pi

Global map

Local mapnlocal

nWM

Current
robot pose

(b)

Figure 3.5: Searching for loop pairs in the local (a) and global (b) case. The filled dots are nodes that are
considered for loop pairing.

3.2.2 Point-Cloud Registration

In the case of positive loop detection, the point clouds are registered, i.e., their respective ho-
mogeneous transformation iT j must be found. The transformation is computed by a two-step
registration, with an initial feature-based global alignment followed by a fine (local) registration
based on the ICP algorithm. The registration process is based on [HIT+15] and is illustrated in
Figure 3.6.a.

Registering raw point clouds is computationally expensive, and certain regions are uninformative for
correspondence detection. Examples are points on the ground or regions resulting from erroneous
laser beam multi-reflections on glass fronts. To encounter these effects, the following filters are
executed consecutively:

1. Voxel grid filter to consolidate points into box centroids,
2. Height filter to remove points below a specific height,
3. Intensity filter to remove points with low intensity, e.g., caused by multi-reflections,
4. Range filter to remove points far away from the sensor origin,
5. Random downsampling to randomly remove points down to a maximum number of points.

Next, features based on fast point feature histograms (FPFH) [RBB09] are computed. These are
robust multidimensional features describing a local spatial geometry around a point.
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Figure 3.6: Sequence of the registration (a). Registration result: shown are the relative positions with filtered
FPFH correspondences of downsampled point clouds in (b), and a detailed view of coarse (left)
and final (right) alignment in (c).

For robust correspondence estimation, features are computed for different support sizes (scales),
and only those are kept which prove to be persistent over multiple scales based on the χ2-distance
metric between feature vectors. Correspondences are then determined by nearest-neighbor search in
the feature space. As the point clouds overlap only partially, false correspondences are rejected via
random sample consensus (RANSAC) [FB81]. By reiteratively computing transformations, only
the correspondences leading to small distances between source and target points are accepted. The
coarse alignment is computed using singular-value decomposition based on the filtered correspon-
dences (see Figure 3.6.b). Coarse alignment provides an initial guess for the ICP-based refinement
to finally receive the transformation iT j . Since graph optimization requires an uncertainty estimate,
described by information matrix Ωij ∈ R6×6, a nearest-neighbor correspondence estimation is
carried out between the aligned clouds. The information matrix is then defined as Ωij = 1/σ̂2I ,
where the variance σ̂2 is estimated based on the median absolute deviation of correspondence
distances.



3.2 Lidar-Based Loop-Closure Detection 35

3.2.3 Results

The evaluation of the proposed RTAB-Map extension is divided into three parts: At first, the
detector is trained and tested on data from unseen environments. Secondly, multi-session experi-
ments are performed under challenging conditions to investigate the robustness to environmental
changes. The first two parts use the robot and sensor setup described in section 2.1.2. Lastly, the
general applicability of the proposed approach is demonstrated with the widely used KITTI dataset
[GLU12].

Detector Performance

Descriptors, calculated based on indoor and outdoor areas of a university campus, serve as training
data for the detector. Since there is no ground-truth position, the estimated poses from RTAB-Map
are used to generate 1,248 nodes with a total path length of 697 m. The data acquisition is performed
while keeping viewing areas and lighting conditions as constant as possible to obtain a robust
localization with the sole use of RTAB-Map. The mapping process for ground-truth creation is
conducted offline in order to avoid reduction of accuracy due to computing time restrictions. A
loop pair is treated as positive when the EUCLIDEAN distance between the two nodes is less than
3 m, and all other cases are treated as negative pairs. Due to the proportionally much higher number
of negative pairs, the data set is re-balanced by random subset selection so that there are equal
numbers of positive and negative pairs. As the specific random subset significantly influences the
classifiers’s performance, 50 AdaBoost classifiers are trained on different subsets, each via 10-fold
cross validation. For comparison, common criteria consisting of the true positive rate (TPR) and
false positive rate (FPR) are used:

TPR =
# Positive data pairs classified as positive

# Positive data pairs
,

FPR =
# Negative data pairs classified as positive

# Negative data pairs
.

Since adding incorrect loop closures is significantly more fatal than adding fewer correct loop
closures, FPR < 1% is set as the target, and the best classifiers with respect to the TPR is
chosen by incrementally increasing threshold parameter pmin. This target value for the FPR is
suitable because the proposed extension and RTAB-Map still verify every possible loop pair before
adding it to the graph. The best of the 50 detectors is tested on data from unseen indoor and
outdoor environments to make a specified statement about the choice of pmin in addition to cross
validation. The loop in the indoor hall is illustrated in Figure 3.7.a together with receiver operating
characteristic (ROC) curves for the indoor and outdoor test datasets in Figure 3.7.b.

The classification matrix visualizes the test results for the indoor data (see Figure 3.7.d) and distance
matrix (see Figure 3.7.e). The latter represents the ground truth since all pairs with a distance less
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Figure 3.7: Indoor test environment including nodes and true-positive detections in (a). ROC shows the
performance of the best detector for different thresholds pmin for both datasets. The two given
values of pmin indicate the performance at the desired boundary FPR < 1%. Thresholding the
probability matrix (c) with pmin = 52.4% results in the classification matrix (d) that can be
compared with the distance matrix (e) resulting from the ground truth. The matrices (c, d, e)
refer to the indoor dataset.

than 3 m are treated as a loop. These matrices are roughly similar, and all detected loops are located
in areas where the pairs are not far from each other. Generally, the classifier leads to better results
for the indoor case (TPR = 47.3%, FPR = 0.8%, pmin = 52.4%) than for the outdoor case
(TPR = 37.3%, FPR = 0.8%. pmin = 52.9%). This is mainly due to the challenging outdoor
environment used for testing, which consists of repetitive structures (mainly architectural pillars,
Figure 3.8 from the following section shows a similar environment). Holding the FPR < 1%

boundary then requires choosing the value of pmin more strictly.

Relocalization

This evaluation compares the complete detection and registration pipeline with RTAB-Map’s default
operation. The experiments involve mapping three environments (two indoor hallways and one
outdoor campus) and a subsequent map extension with data from another day at another time of day
(wake-up robot problem). Relocalization is performed on different paths, each with a two-minute
movement duration within each environment. Between the initial mapping and relocalization is a
timespan of eight weeks. The most significant changes between the time points are in the different
lighting conditions and the appearance/disappearance of various objects. The specific parameters
of the experiment are given in Appendix A, with the most crucial difference being the different
loop detection threshold pmin for indoor and outdoor environments. Figures 3.8 and 3.9 show the



3.2 Lidar-Based Loop-Closure Detection 37

outdoor and indoor environments as 3D maps and the paths for mapping and relocalization with
the name labels indicating the starting positions. Relocalization is successful if at least one loop
closure is found and a correct reference to the original map is calculated. Table 3.1 shows the result
of the experiment, with the proposed extension denoted as RTAB-Map+LL (LL=Lidar loop).

Method Campus (outdoor) Offices (indoor) Entry hall (indoor)
RTAB-Map 0 / 6 3 / 5 0 / 3
RTAB-Map+LL 5 / 6 4 / 5 3 / 3

Table 3.1: Results of the relocalization experiment (# successful / # total)

RTAB-Map’s original configuration struggles to detect correspondences, mainly influenced by
changes in sunlight and artificial light, people in the pictures, and different fields of view. Ad-
ditionally, observing the three-dimensional surrounding structure via RTAB-Map+LL leads to
significantly better results, especially in environments with strongly varying sunlight.

A major challenge, both for visual and Lidar-based approaches, are feature-poor environments
(e.g., long hallways) or strongly repetitive structures which result in two unsuccessful segments of
RTAB-Map+LL.

KITTI dataset

A final evaluation is done with the widely used KITTI [GLU12] odometry benchmark to demon-
strate the general applicability of the proposed extension. The dataset sequences containing loops
are mapped via RTAB-Map+LL using the RTAB-Map parameters for KITTI [LM19] with the
odometry being calculated based on the front stereo camera. Loops are detected using the same
trained detector with indoor and outdoor data from the previous section. The method’s parameters
are adjusted for the car and road traffic and are given in appendix A. The comparison of RTAB-Map
without and with the LL extension is based on the absolute trajectory error

ATE =

(
1

n

n∑
i=1

‖et,i‖2
) 1

2

, (3.9)

where et,i describes the translational offset between the i-th estimation and ground truth with the
same timestamp and a total number of n positions defining the trajectory. The results in Table 3.2
show a significant enhancement, especially for sequences with street sections that are traversed
multiple times in different directions, such as sequence 08 (see Figure 3.10). To summarize,
RTAB-Map generally benefits from the additional loop closures detected based on Lidar data.
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Sequence 00 02 05 06 07 08 09
w/o LL, ATE 1.01 4.4 0.51 0.74 0.48 3.85 2.77
with LL, ATE 0.93 4.19 0.63 0.72 0.47 2.9 2.6
# visual loops 156 51 88 54 18 0 3
# LiDAR loops 126 5 72 38 18 30 1

Table 3.2: Results for the KITTI odometry dataset. ATE given
in m.
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Figure 3.10: SLAM paths and ground

truth for sequence 08.

3.3 Modular Multi-Environment Mapping

Most SLAM algorithms generate maps based on specific sensor data, such as point clouds or images,
and parameter configurations specified by human experts in advance. As already indicated in the
results from the previous section 3.2.3, the configuration might only be suitable for a specific type
of environment. Once the environment changes while mapping (for example, an indoor/outdoor
change), the SLAM algorithm might produce suboptimal results. Since service robots often operate
in heterogeneous environments, such as airports or hospitals with small and large rooms, creating
a single (large) map with one specific parameter and sensor configuration is disadvantageous
concerning SLAM accuracy, scalability, and map quality.

Therefore, this section introduces a mapping approach, which detects transitions in the environment
to create individual, environment-specific maps to automatically choose the appropriate sensor and
SLAM configuration. It is not a SLAM algorithm but a map-management system, which organizes
maps created by arbitrary SLAM methods in a topological-metric form. This arrangement has the
advantage that there is still a global map, e.g., for navigation. Small specific maps are used in the
field to better represent the environment and use fewer computing resources. The graph structure
is presented in the next section 3.3.1, followed by the criteria to trigger new maps and choose
environment-specific map configurations in section 3.3.2. Individual maps are linked to create a
globally consistent structure in section 3.3.3, and the method is finally evaluated in section 3.3.4.

3.3.1 Graph Structure

The main idea of the map-management system is to create a higher-level graph structure that
spatially links different maps. Since the basic layout of the operational environments of service
robots can be considered structured and separated into rooms, doorways are chosen as transition
points between the different maps. The graph structure is described as a hybrid map H =

〈M1:n, L1:m, E1:p〉, where M1:n = {M1, ...,Mn} is a set of metric maps, L1:m = {L1, ..., Lm} is a
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set of nodes and E1:p = {E1, ..., Ep} ⊆ L1:m × L1:m is a set of edges. Each map in the set M1:n

represents a single room, corridor, or outdoor environment separated by doors. The graph’s nodes
L1:m are viewed as link points connecting adjacent maps in an overlapping area of both maps and
are placed directly in front of or behind doorways. Each link point’s pose is fully described by a
tuple 〈(j)m̄i, (k)m̄i〉 where (j)m̄i, (k)m̄i ∈ R3 represent 2D-poses in overlapping areas of maps
Mj and Mk (with j 6= k) so that (j)m̄i, (k)m̄i ∈Mj ∩Mk. The poses (j)m̄i = (j) (xi, yi, θi)

T and

(k)m̄i = (k) (xi, yi, θi)
T are defined relative to their respective map frames (CF)j and (CF)k and

are equal relative to the global coordinate frame (CF)0. The graph’s edges E1:p result by fully
connecting all link points that share the same map. Each edge Ei is assigned a weight based on the
EUCLIDEAN distance between the corresponding nodes, which enables the use of graph-search
algorithms for path planning and global tracking between different maps. Figure 3.11 shows an
exemplary arrangement of metric maps and their connection via link points. At every doorway is
an overlap between two adjacent maps and a connecting link point (see Figure 3.11.a), consisting
of the tuple 〈(j)m̄i, (k)m̄i〉 (see Figure 3.11.b).
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Figure 3.11: Topological map structure of areas with a different type (e.g., indoor, greenish and outdoor,
blueish) in (a). Coordinate frames of the first three corresponding metric maps and link points
are shown in (b).

3.3.2 Environment Transitions and Configuration Changes

An indicator signaling a doorway’s passing is required to place link points in overlapping areas
of adjacent maps directly in front of or behind doors. Regarding superordinate map management,
this can be an arbitrary detector, which, e.g., processes Lidar or visual data. Therefore, approaches
based on the peak signal-to-noise ratio, structural similarity [WBSS04], or image classifiers based
on indoor/outdoor datasets [ZLK+18] are conceivable. A simple but effective approach for doorway
detection with 360° 2D laser-scan data is presented in the following.

Three criteria to detect a doorway are considered where at least two must be met: (C1) front
door post detection, (C2) back door post detection, and (C3) significant change in wall distances.
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Door post detection utilizes the depth variation at the posts compared to the surrounding wall.
The transition is determined via the spatial derivative of the laser-scan ranges, resulting in two
characteristic range steps when the robot is in front of the door. The same applies after the doorway
has been traversed for the area behind the robot (C2). Doors that are close to orthogonal walls
may result in small derivatives of laser-scan data. To counteract this, the third criterion enhances
the robustness by average-low-pass filtering the laser-scan data and transforming it into the map
frame (CF)i. By placing a bounding box B around the filtered data, the rough shape of the room is
available and invariant to the robot’s orientation. Criterion (C3) is fulfilled if any of the bounding
boxes’ minimum and maximum derivative values in (i)x- or (i)y-direction change over a specific
time. Figure 3.12 illustrates the three criteria based on two robot positions in front of and behind
and door.
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Figure 3.12: Criteria to detect door passing and environment changes: In (a) high derivatives of range data
in front of and behind the robot are shown (criteria (C1) and (C2)). The respective bounding
boxes indicate abrupt changes in the scale of the environment (criterion (C3)). (b) shows an
exemplary range measurement in front of a door and its derivative with clearly visible peaks.

Changing SLAM Configurations

After door passing and before triggering a new mapping instance, the SLAM parameter config-
uration for the new map must be determined. The main difference between the configurations
in the proposed method is based on the dimensions of the respective environment, i.e., if the
environment is small- or large-scale. This is motivated by the fact that in small-area environments,
data distribution near the robot is denser, which means that other feature types could be suitable.
Furthermore, it allows using completely different sensors, e.g., camera-based RGB-D data in small
indoor areas and 3D Lidar data with a higher range in large outdoor areas. Since the distinguishing
feature is range-based, the previously introduced bounding boxes B around filtered range data
are again used to determine which SLAM configuration to select. If the width and height of the
bounding box are over a specified threshold after door passing, the configuration for large rooms
and high distances applies. The threshold can be empirically determined based on specific sensor
parameters, such as the accuracy or maximum range of an RGB-D camera.
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Besides changing common SLAM parameters, such as feature type, maximum ranges, or confidence
thresholds, the specific data source could also be changed. When a 3D Lidar is available in
conjunction with an RGB-D camera (cf. section 2.1.2), it might be suitable to replace the camera’s
depth data with the Lidar data as shown in Figure 3.13. The Lidar points are projected into the
camera sensor frame, and continuous depth information is generated by interpolation, resulting
in a smaller resolution. However, features can be extracted from distances up to 100 m (see
Figure 3.13.c) opposed to less than 10 m based on infrared-stereo data (see Figure 3.13.b), which
also suffers from sunlight [HSKV19]. In small-range (i.e., indoor) areas, the smaller field of
view resulting from the projection might be disadvantageous, and the RGB-D data could be used
(compare Figure 3.13.e and Figure 3.13.f).

(a) Outdoor scene, RGB im-
age.

(b) Outdoor, small-range con-
fig.

(c) Outdoor, long-range con-
fig.

(d) Indoor scene, RGB image. (e) Indoor, small-range config. (f) Indoor, long-range config.

Figure 3.13: RGB images overlaid with depth images and registered scale-invariant feature transform (SIFT)
features (white circles) created for two different scenes and configurations. The long-range
configuration uses the Lidar data registered with the RGB image, whereas the small-range
configuration uses the stereo-depth image from the RGB-D camera. Images (d)–(f) were
captured with a vertically oriented camera.

3.3.3 Global Graph Creation

When new link points are created, due to odometry drift it is not guaranteed that the currently
estimated robot pose corresponds to its actual pose. This error can accumulate when multiple maps
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are created, resulting in a graph not correctly representing the environment. Therefore, tracking the
robot pose globally and establishing a metric relation between the different maps is necessary. The
poses of the link points relative to the adjacent map origins are saved in the graph nodes.

Let Li be the link point which connects map Mi and map Mi+1, and iT Li
∈ SE(2) is a homo-

geneous transformation matrix describing the pose of Li in coordinate frame (CF)i and i+1T Li

equally describing the link point’s pose in (CF)i+1. The pose describing the translation and rotation
between both origins follows as

(i)p̄i+1 = π
(
iT i+1

)
= π

(
iT Li

(
i+1T Li

)−1
)
, (i)p̄i+1 ∈ R3, (3.10)

where π : SE(2) → R3 is a function that maps the homogeneous transformation to a 2D pose,
which is then regarded as the expected value (i)p̄i+1 of a normal distribution with covariance
matrix p

(i)Σi+1. Let the uncertain pose of a link point (i)mi ∼ N ((i)m̄i, (i)Σi) also be a normally
distributed random variable with expected value (i)m̄i and covariance matrix (i)Σi. Considering

(i)pi+1 and (i)mi as random variables enables to incorporate uncertainty resulting from erroneous
odometry estimates. Based on common error models, the odometry is estimated as normally
distributed, allowing to directly obtain monotonically increasing covariance matrices p

(i)Σi+1 and

(i)Σi, respectively. To define uncertainty propagation, the pose (i)mi+1 of link point Li+1 in
coordinate frame (CF)i is defined as

(i)mi+1 = (i)pi+1 ⊕ (i+1)mi+1, (3.11)

where the composition operator ⊕ concatenates the transformation of the second pose (i+1)mi+1 to
the reference system already transformed by the first pose (i)pi+1, as shown in Figure 3.14.
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Figure 3.14: Composition of link point poses and uncertainties over multiple maps.
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The uncertainty propagation is then obtained by a first-order TAYLOR expansion [SC86] of this
equation, thus,

(i)mi+1 ≈ (i)m̄i+1 + J1

(
(i)pi+1 − (i)p̄i+1

)
+ J2

(
(i+1)mi+1 − (i+1)m̄i+1

)
, (3.12)

with J1 =
∂((i)pi+1 ⊕ (i+1)mi+1)

∂(i)pi+1

and J2 =
∂((i)pi+1 ⊕ (i+1)mi+1)

∂(i+1)mi+1

.

Assuming uncorrelated noise sequences, which is given when the uncertainty is reset for each new
map, the estimated covariance matrix of (i)mi+1 is computed from eq. 3.12 as

(i)Σi+1 ≈ J1
p

(i)Σi+1J
T
1 + J2(i+1)Σi+1J

T
2 . (3.13)

The transform between the robot pose (k)pr on map Mk to the world origin (CF)0, which is usually
the origin of map M0, can then be determined by

(0)pr = (0)pk ⊕ (k)pr = (0)pv[1] ⊕ (v[1])pv[2] ⊕ ...⊕ (v[l−1])pk ⊕ (k)pr, (3.14)

where v ∈ Nl is a vector of length l which contains the map-indices of the shortest map path to
(CF)k and the equation is evaluated from left to right. The path is computed by Dijkstra’s algorithm
[Dij59] based on the graph structure introduced in section 3.3.1.

Loop Search and Graph Optimization

As explained in previous sections, loop closures must be made in graph-based mapping approaches
to prevent the estimation error from growing. The same applies to the presented approach for map
management, as this allows for correcting the relative poses of the maps to each other. During the
mapping process, all locations for potential link points with another map are marked by placing the
robot in front of opened doors to detect the door posts. Later on, this will allow for topological
loop closures. Environmental data, such as point clouds or camera images, are then saved as part of
a link point candidate LCi. By saving this data for every new map and link point created, existing
link points and candidates can be checked for loop closures. Loop-closure detection and registration
can then be conducted, e.g., vision-based [GO15; LM13] or Lidar-based as presented in section 3.2.
The search space is adjusted based on the longest major axis of the confidence ellipse of (0)Σi, as
in eq. 3.8. Similar to the approach described in section 3.2.1, this decreases the number of possible
loop pairs to be checked. As illustrated in Figure 3.15, only a subset of link points and link point
candidates will be checked for loop closure.

After successful loop detection, the graph is optimized by creating a cost function in the form of
eq. 3.4. The error function is created based on the relative map poses (i)pi+1, and the information
matrices follow from inverting the covariance matrices (0)Σi. Graph optimization is implemented
in C++ with the g2o framework [KGS+11].
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Figure 3.15: Global tracking of the robot’s position along a mapping path to find eligible loop closures. The
search radius r becomes larger when uncertainty increases. In this example, only the link point
candidate LC0 is checked for loop closure.

3.3.4 Results

The map-management system is evaluated on two real-world datasets consisting of small and
large-scale indoor and outdoor environments with a total area of several hundred square meters.
The data is collected with the mobile robot described in section 2.1.2, with the primary sensor
modalities being the front and rear-facing RGB-D cameras, 3D Lidar, and EKF-fused inertial and
wheel odometry. Again RTAB-Map is used as the basic SLAM method, which is especially suitable
for this purpose due to its memory-management [LM11] and multi-session [LM18] capability and
its applicability to multiple sensor modalities. However, like most SLAM methods, RTAB-Map
needs to be configured differently for each type of environment. The most important settings and
differences between the configuration for small and large-scale areas are shown in Table 3.3.

Parameter/Method Small-range Long-range

Depth source RealSense D435 Velodyne VLP-16
Vis/FeatureType GFTT/BRIEF SIFT
Grid/RangeMax 10 m 30 m
Grid/MaxObstacleHeight 1.7 m 3.5 m
Mem/STMSize 30 60

Reg/Force3DoF true true
Grid/FromDepth false false
Rtabmap/TimeThr 750 ms 750 ms

Table 3.3: Different RTAB-Map configurations for small and large-scale areas used in the experimental
evaluation
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Both configurations are set to 2D-SLAM (Reg/Force3DoF) and real-time execution (Rtabmap/
TimeThr). The long-range configuration is set to detect objects at longer distances (Grid/RangeMax)
and height (Grid/MaxObstacleHeight) which is not necessary indoors and saves memory. The
main difference between both configurations is the source of depth data, whose characteristics are
according to the explanations in section 3.3.2. The decision about which configuration to use is
solely based on the bounding box criterion (C3) introduced in section 3.3.2 since this indicates the
change in area of consecutive environments. In both evaluations, the ground floor of a university
building is mapped, with the first focusing on graph creation and the second on a comparison to the
single-map approach with RTAB-Map.

Modular Mapping of a University Campus

The first evaluation run consists of indoor areas of two buildings and outdoor areas in between,
mapped in a continuous path of 1,410 m length. A total of six maps are created with the proposed
map-management approach, as shown in Figure 3.16.
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(a) Metric occupancy maps, link points, and coordinate frames.
Greenish maps are created based on the small-range configu-
ration, blueish with the long-range configuration.

(b) Topological graph structure cre-
ated based on the map structure
in (a). Edge colors correlate
with maps.

Figure 3.16: Mapped heterogeneous university campus. Link points are marked with orange circles.

All doors and environment changes are automatically detected, with each sub-map’s appropriate
SLAM configuration selected. Each sub-map is illustrated in color based on the respective mapping
configuration. Note that the configuration setting does not distinguish between indoor and outdoor.
Although M3 is an outdoor map and M5 is an indoor map, the small-range configuration is used in
the first case and the long-range configuration in the second case. Due to the spatial dimensions of
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the respective environments, this is the appropriate choice for these cases and error-free maps can
be created. This demonstration shows the mapping result of a large area with indoor and outdoor
maps of different shapes and appearances. In addition, maps can be easily added, modified, or
deleted later. The topological structure (see Figure 3.16.b) also allows for efficient navigation over
multiple maps.

Comparison to Single-Map Approach

In the following, the proposed multi-map approach is compared to the single-map approach using
RTAB-Map. For this, a large loop is traveled twice, resulting in a total path length of 506 m to
detect loop closures, as shown in Figure 3.17. A total of three different mapping approaches are
then conducted on the same input data: the proposed multi-mapping (Figure 3.17.a), a single map
based on the small-range configuration (Figure 3.17.b), and a single map based on the long-range
configuration (Figure 3.17.c).

Although all depicted approaches result in a consistent map, there are some advantages in separating
the map. While the indoor area in Figure 3.17.b has about the same map quality compared to
Figure 3.17.a, the outdoor area is covered by a smaller map with less range. Additionally, a mapping
error occurs due to utilizing RGB-D data with only a few meters of reliable range measurements,
resulting in a skewed graph at the bottom of the map. However, if the indoor areas are mapped
with the long-range configuration, this leads to the errors shown in Figure 3.17.c. In this case,
parts of the ceiling and door frames are detected as obstacles, leading to an erroneous occupancy
map projection. All these map errors can be solved by using an appropriate configuration for the
environment, as presented in Figure 3.17.a.

3.4 Conclusion

In this chapter, methods for improving mapping and localization in dynamic and heterogeneous
environments are presented and evaluated. The popular RTAB-Map framework is extended with
a trained classifier and registration procedure to enable Lidar-based loop-closing in addition to
existing image-based methods. The method is validated on indoor and outdoor datasets from typical
service robot deployment environments and the freely available KITTI benchmark. The results
demonstrate an improvement in accuracy and robustness concerning environmental changes.

In addition, an approach for mapping large-scale environments of varying types with different
SLAM configurations is presented. The appropriate SLAM method or configuration can be chosen
by automatically analyzing environmental transitions and triggering new map creation. A metric-
topological representation allows the linking of small specific maps instead of using computationally
intensive large maps. Experiments show superior results compared to single map solutions and
significantly enhanced map quality.
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Figure 3.17: Maps created with large loops inside and outside of a building
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Environment models are a crucial requirement for the (long-term) autonomy of mobile robots, as
already shown in the last chapter. The ability for self-localization is a fundamental necessity. It
creates the basis for further applications like navigation and task planning. Explicitly considering
environmental information can help to improve localization – especially if the environments are
heterogeneous. However, environmental changes and dynamics have an impact not only on the
ability to localize but also on the applications based thereupon. Due to the direct relation of
robotic service tasks to humans, human behavior represents an extensive influencing factor in these
dynamics. In order to be socially accepted and not be perceived as disturbing, robots should adapt
to this behavior and intelligently decide where they move and how to schedule and perform their
tasks.

Accurate models of human activity, i.e., spatio-temporal occurrence, and movements of pedestrians
can help robots to achieve this purpose, for example, by improving navigation [OSAR11], task
planning [VYE+20], or human-centered task execution [RV12]. Human activity is subject to
routines, and it is evident that, for example, the number of people in shopping malls or restaurants
is different in the morning than at noon. As a result, it is crucial to consider temporal and spatial
variability in these models for LTA applications.
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This chapter presents a novel method for the long-term modeling of human activity based on an
existing (pre-captured) map of the environment. The focus is on the use in the field of mobile
robotics, which is characterized by varying dwell times of the robot at different locations. These
variations lead to an inhomogeneous and sparse distribution of the measurement data, which is
explicitly considered in the method.

After an overview of related work in section 4.1, section 4.2 introduces the method continuous
pedestrian activity map (CoPA-Map) as a GAUSSIAN process (GP)-based regression model. Sec-
tion 4.3 compares experimental results of CoPA-Map to several state-of-the-art baselines on two
publicly available datasets.

The work in this chapter was in great part published at the peer-reviewed “IEEE/RSJ International
Conference on Intelligent Robots and Systems" (IROS) 2022 [SS22].

4.1 Related Work

Historical knowledge of human behavior can be included in a map in different levels of detail
and abstraction. The underlying approaches generally consider spatial or temporal variations
or a combination of both. Purely spatial models without time dependency are presented in sec-
tion 4.1.1. Approaches introduced in section 4.1.2 include a temporal component but focus on
short-term predictions in the range of seconds. Extending this notion, section 4.1.3 presents
models for long-term spatio-temporal human-activity prediction. An overall conclusion is given in
section 4.1.4.

4.1.1 Spatial Modeling

There are two options to spatially encode the local variability of human behavior: discrete and
continuous. Uniformly discretizing the environment is a straightforward way that results in a
grid, where each cell is considered separately. Each cell may then represent an independent
Poisson process [LDA11] updated by a Bayesian rule and can also include the directions, speed,
and acceleration of pedestrians [NN19]. In [SR18], the authors introduce a directional grid
map that probabilistically models long-term human motion through angular directions. Angular
representations incorporating motion speed and partial observability are presented in [KMS+17].
These representations result in a vector field, which can be efficiently combined with a motion
planner to achieve natural trajectories [PKM+17]. Other discretization techniques divide the map
as a graph, for example, to predict corridor traversability [RRH+20], or consider separate semantic
locations such as specific stores [KMKI20].

As argued by [OR12], continuous spatial maps have better properties than discrete models for robot
navigation or sparse data distribution, as information from neighboring regions is not neglected.
They apply spatially continuous GP models for occupancy mapping of static objects based on
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range data. These non-parametric methods are kernel-based, can distinguish well between empty
and occupied space, and can also capture nonlinear or obstructed patterns. These principles are
subsequently used for spatially continuous navigational maps [OSAR11], trajectory prediction for
flow field creation [TL08; ESR09; KLE11], or planning of socially acceptable motion [CH10]. The
main drawback of GP-based methods is the adverse complexity scaling regarding the number of
data points. Therefore, later works [RO16; GVD18] develop techniques to counteract this by kernel
approximations or incremental updating.

4.1.2 Temporal Short-Term Modeling

The approaches above do not consider historical knowledge and do not model temporal changes
in the environment. Incorporating short-term temporal changes of the map by observations can
again be realized discretely by employing dynamic models separately for each cell. The paths of
pedestrians or cyclists can then be predicted by an input-output MARKOV model [WAJF14], or
individual MARKOV chains [SAL12].

Many methods exist for short-term trajectory prediction of pedestrians due to the strong relevance
in autonomous driving or navigation planning of mobile robots in general [RPH+20]. These
approaches are usually learning-based for complex environments with different participants instead
of employing specific motion dynamics models. In this field, long short-term memory (LSTM)
networks have become a widely popular modeling approach. By combining LSTM with contextual
information from multiple weeks of data, the authors of [SYM+18] realize 3-DoF pedestrian pose
trajectory predictions. In [SZDZ17] LSTM are combined with deep GPs to predict trajectories
in crowded scenarios based on surveillance imagery. Instead of individual trajectories, the crowd
density may be forecasted, as shown in [MYNU20] for prediction horizons of multiple seconds. A
combination of an intention-aware filtering process with LSTM is presented in [HHS+20] to allow
for robust predictions even under abnormal intention-changing scenarios.

4.1.3 Spatio-Temporal Long-Term Modeling

Most works in trajectory prediction focus on an immediate temporal horizon of a few seconds.
However, modeling the environment changes over long periods can be beneficial for global
navigation [VBR+22] and task planning purposes [HHK17]. Studies in the literature show that the
use of LSTMs for long-term predictions is limited [VMS+19; Mel21]. LSTM-based predictions of
occurrence counts or rates converge quickly to the mean, requiring specific methods for long-term
modeling.

Predicting long-term environmental dynamics requires analyzing time series gathered over long
periods. These may then be analyzed by seasonal windows, as in [VKS08] or encoded in seasonal
patterns to predict the time of occurrence of human activities via VON-MISES distributions
[CMHC17]. The time series of long-term temporal patterns usually combine trend, seasonal and
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cyclic effects. Due to their predominant influence, approaches primarily focus on periodic changes,
which can be modeled kernel-based [TR18] or with spectral analysis, e.g., by the frequency
map enhancement (FreMEn) method [KFSD17]. FreMEn is a method for non-uniform frequency
transforms with an application to mobile robotics and was initially developed to model the evolution
of binary states over time, such as the occupancy of grid cells. Extensions have been made to
model human activity quantitatively using spatially discrete POISSON processes for intensities
[JWHK16] or predominant directions of human flow [MCD19]. Like purely spatial discrete models,
restrictions apply since these methods only consider temporal variations [VKS08; CMHC17; TR18]
or neglect interdependencies of separate spatial regions [KFSD17; JWHK16; MCD19].

To overcome this, continuous spatio-temporal models can represent correlations between different
regions and sparse data inputs. For instance, based on a limited number of temporal periods, the
authors of [ZM15] predict the demand for ambulances by a GAUSSIAN mixture model (GMM).
GPs have been applied to the spread of disease prediction [SOR16], employing variational inference
and periodicities obtained by general knowledge. An estimation of periodic parameters in a GP
framework is realized in [JH18], also by a variational approach. The method is evaluated to
forecast the time and locations of taxi pickups over multiple hours. In the field of mobile robotics,
particularly human-activity recognition, the authors of [VYDK19] propose a spatio-temporal
continuous model extending the aforementioned FreMEn approach. The model is based on a
projection of data points to a circular space with subsequent clustering by GMMs and was later
extended to incorporate human flow [VMS+19]. However, since clustering is performed directly
on the data points (people detections), it is prone to erroneous predictions when the robotic system
moves through the environment and collects varying amounts of data at different locations.

4.1.4 Conclusion

Like occupancy mapping of static obstacles, many approaches for human-activity modeling spatially
discretize the environment. The resulting individual regions may then encode counts or rates of
people or movement direction and velocities. A significant drawback of discrete modeling is that
information from neighboring regions is neglected. However, this information may be beneficial
in case of occlusions and sparse data distribution resulting from the robot’s limited field of view.
Continuous models can better represent these properties.

Models that encode temporal variability mainly focus on short-term predictions of human trajec-
tories. LSTM-based approaches make up the majority but are inferior for long-term predictions.
Long-term temporal effects, such as periodicities in human behavior, can be captured by frequency-
based analyses to predict multiple hours and days in advance. In robotics, long-term spatio-temporal
models primarily utilize discretizations. Only one method [VMS+19] makes spatio-temporally
continuous predictions but focuses on stationary data collection.

To summarize, the state of research does not provide models that can predict human activity based
on data collected by mobile robots in the long term in a spatio-temporal continuous manner. As
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shown in related research areas, GPR can be used with sparse data distributions and account for a
priori known information. The application of variational approaches allows the use in large-scale
environments, which has been little investigated for human-activity models in the robotics domain.

4.2 Long-Term Spatio-Temporal Human-Activity Modeling

Following the research gap in terms of continuous models, this section presents a novel method
for the long-term prediction of person occurrence as a spatio-temporally continuous map. The
method, named continuous pedestrian activity map (CoPA-Map), aims at capturing the presence of
humans in a robot’s operational area. This data is then used to anticipate human presence in the
future as a function of location and time (see Figure 4.1). Its main idea is to model human activity
as a spatially and temporally varying rate function based on measurements collected by the mobile
robot.
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cf. section 4.2.5

Data processing
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cf. chapter 3

People detection
and tracking
cf. chapter 2

Extract training data
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cf. section 4.2.2
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Figure 4.1: Schematic overview of the proposed model CoPA-Map.

The SLAM system provides a map of the environment and the robot’s pose, given as a transforma-
tion 0T R. This allows to transform the detected pedestrian data into an inertial (map) coordinate
frame. The transformed data is converted by spatial and temporal binning to an input and output
dataset. The search of the rate function is then formulated as a regression problem, which is solved
in a GP framework. This allows continuous modeling with sparse data and provides an uncertainty
estimate for each prediction that indicates areas of the input space that require further exploration or
data collection. CoPA-Map exploits the idea that human activity is periodic in time. The number of
people at different locations is subject to regularity, for example, based on the time of day, working
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hours, or store opening hours. This characteristic can be assumed to influence the general time
course of human activity much more than trends and cyclic patterns. Therefore, these are neglected,
and the time-dependent person rate is specified to be subject to a number of ψ periodicities as prior
information. A multidimensional covariance function is defined for the GP prior and initialized
with parameters based on frequency analysis. Starting with a brief introduction to GAUSSIAN

process regression in the following section, the modules of CoPA-Map are introduced as illustrated
in Figure 4.1.

4.2.1 Gaussian Process Regression

For a dataset of n training inputs X =
{
xi ∈ Rd

}n
i=1

and observations y = {yi ∈ R}ni=1 GAUS-
SIAN process regression (GPR) aims at inferring a latent function f : Rd → R via a noisy
observation model

yi = f(xi) + ε, ε ∼ N (0, σ2). (4.1)

The GP is defined as a distribution over functions f = f(x) ∼ GP(νf (x), kf (x,x′)) with mean
function νf (x) and covariance function kf (x,x′). Given a GAUSSIAN likelihood p(y|f), the poste-
rior p(f |y) is inferred to obtain the predictive distribution p(f∗|X,y,x∗

i ) = N (f∗|m(x∗
i ), σ

2(x∗
i ))

at a test point x∗
i with mean and variance respectively expressed as

m (x∗
i ) = kf (x

∗
i ,X)

(
Kff + σ2I

)−1
y, (4.2)

σ2 (x∗
i ) = kf (x

∗
i ,x

∗
i )− kf (x∗

i ,X)
(
Kff + σ2I

)−1
kf (X,x∗

i ), (4.3)

where Kff = kf (X,X). Optimizing the regression model then aims at finding hyperparameters
inside the covariance matrix Kff by maximizing the marginal likelihood as

log p(y) = −n
2
log 2π − 1

2
log
∣∣Kff + σ2I

∣∣− 1

2
y> (Kff + σ2I

)−1
y. (4.4)

The required inversion of the n× n matrix Kff + σ2I gives rise to the most prominent weakness
of standard GPs, which is the cubic complexity in the number of training inputs O(n3) for the
corresponding CHOLESKY decomposition. This adverse scaling limits their usability, especially
for robotics applications and large datasets. A common approach to overcome this problem is to
sparsely approximate the kernel matrix Kff using the NYSTRÖM low-rank representation Kff ≈
Kfuf

K−1
ufuf

KT
fuf

. For this, a number of m � n inducing points (or pseudo-inputs) must be
chosen at locations Z =

{
zi ∈ Rd

}m
i=1

to represent the training data, decreasing the computational
cost to O(m2n) [WS00]. The corresponding function values are denoted as uf = f (Z). As the
quality of the approximation largely depends on the number and location of inducing inputs, it is
suitable to treat the inducing points as hyperparameters and optimize their locations Z with respect
to the marginal likelihood of eq. 4.4.
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4.2.2 Extraction of Training Data

The model’s input is formed based on a mobile robot with a sensor for people detection (e.g.,
as presented in section 2.1.3). A detected pedestrian is represented as a spatio-temporal point

(0)dped,k = (x1,k, x2,k, tk)
T in world coordinates (coordinate frame (CF)0) corresponding to a

measurement taken at time tk. For the transformation 0T R to (CF)0, the robot is assumed to act in
an environment with a known map and to be localized within this environment (cf. chapter 3). The
goal then is to model human activity as an intensity function of space and time based on the data
Dped = (dped,0, dped,1, ...). For this, people are counted within a spatio-temporal domain Si ⊂ R3

so that the people count is defined as ci = |{Dped ∩ Si}|. By partitioning the environment into
an evenly spaced grid of n cells, each domain Si is created as a cell with a square spatial shape
with edge length rs and temporal resolution τ . Since the robot moves through the environment,
each cell is visible for a different duration. This duration is calculated from the FOV of the sensor,
which is approximated by a geometrical shape. For example, the projected 2D detection area of a
3D-Lidar-based detector can be described by a circle. This circle is pruned at known obstacles in
the environment map based on a ray casting model, as shown in Figure 4.2.a.
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Figure 4.2: Illustration of the spatio-temporal model input and output data generation.

A people count ci ≥ 0 and observation duration 0 < ∆i ≤ τ is then assigned to each visible cell.
Consequently, the robot’s deployments over time generate the set of input data

X = {xi}ni=1 = {(x1,i, x2,i, ti)}
n
i=1 , (4.5)
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which are the center points of the spatio-temporal cells S1...Sn. The corresponding targets are the
observed rates

y = {yi}ni=1 =

{
ci
∆i

}n
i=1

(4.6)

of people in each cell.

Using relative rates instead of absolute counts is based on the following idea: Since a target value yi
can both be large due to a large ci or a small ∆i, it varies more smoothly at edges between areas with
shorter and longer observation periods ∆i. As people continuously move through the environment,
areas with consistent values yi indicate homogeneous activity, which merits greater weighting when
optimizing the model. However, irregular spatial patterns of the values in y indicate either short
observation durations or irregular occurrences of people, which in contrast, should be captured by
a more prominent input noise in the likelihood function to give less weight to these areas during
the model optimization. An exemplary distribution of input data resulting from real-world data is
shown in Figure 4.2.b.

4.2.3 Gaussian Process Model

As indicated in section 4.2.1, GPR infers a latent function between input and output data. After
introducing the required likelihood function in the following section, the covariance function of the
GP prior to modeling the interrelationships between data points is defined. Finally, the posterior
distribution is obtained by an approximation technique.

Likelihood Function

As part of the GPR, a likelihood function must be chosen to fit a model that represents the
distribution of observations y best. In other words, the likelihood function represents the probability
of observing the data points under a given hypothesis (e.g., that the data is normally distributed
with parameters following from the GP). Count data, such as person occurrences, may be viewed as
events from an inhomogeneous Poisson process [LDA11; JWHK16; JH18]. However, this requires
strong assumptions on the independence of events (e.g., people cannot arrive in groups), considers
discrete data instead of a continuous rate yi, and the variance of the POISSON distribution is directly
coupled to its rate parameter. In contrast, here the rate yi ∼ N (f(xi), σ

2
i ) is considered to be

normally distributed with input-dependent noise σ2
i to realize the aforementioned spatio-temporal

dependency of input weighting. This noise parameter can be defined independently from the latent
mean function f(xi) and leads to a heteroscedastic GP model. Heteroscedastic GPs have the
advantage that data gaps and inhomogeneous data distributions have stronger influence on the
predictive variance, exemplified in Figure 4.3.

To learn the noise parameter from data, it is defined as σ2
i = ζ (g(xi)), where g = g(x) ∼

GP(νg(x), kg(x,x′)) is a second latent function that is also modeled by a GP. The function
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Figure 4.3: Exemplary 1D dataset with gaps and noise, fitted with a GP model with different likelihoods.

ζ (x) : R→ R+ is a link function to guarantee positive values for the noise parameter, defined as
the softplus function ζ(x) = log (exp(x) + 1) in the present case. Resultingly, with the common
presumption of a zero-mean GP model, the full model is defined as

yi ∼ N (f(xi), ζ (g(xi))), f(x) ∼ GP(0, kf (x,x′)), g(x) ∼ GP(0, kg(x,x′)). (4.7)

Although the latent function f(xi) may result in negative values, the rescaled predictive output of a
tuned model contained very few zero-crossings on all tested datasets, making it sufficient to set
negative values of the model output to zero for predictions.

Covariance Functions

To fully describe the GP model, the covariance functions kf and kg of both latent models must be
defined. A covariance function (or kernel) allows encoding of prior beliefs about the latent function
of interest and can be viewed as a measure of how similar two functions are. Different suitable
covariance functions can also be connected as compositions. [Duv14]

To represent interdependencies of human activity through f(x), each data point is separated into
its spatial components xs1, xs2 ∈ R and temporal component xt ∈ R and the following covariance
function is defined:

kf (xs1, xs2, xt, x
′
s1, x

′
s2, x

′
t) = ks (xs1, x

′
s1) ks (xs2, x

′
s2) kt (xt, x

′
t) . (4.8)

This multidimensional product kernel connects a spatial covariance function ks with a temporal
covariance function kt, resulting in a prior over functions varying across all three dimensions.
Combining separate kernels that are defined on different inputs of the covariance functions is a
common way to ensure that the resulting kernel will have high value only if all base kernels have
high value (AND-operation). Additionally, if all of these base kernels are stationary (i.e., only
depending on the absolute difference |x− x′| instead if the inputs themselves) the resulting kernel
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is again stationary, which eases the optimization process. As the spatial kernel, the Matérn-5/2
covariance function

ks(x, x
′) = σ2

s

(
1 +

√
5|x− x′|
ls

+
5|x− x′|2

3l2s

)
exp

(
−
√
5|x− x′|
ls

)
(4.9)

is chosen, where the length scale ls and variance σ2
s are hyperparameters. This type of covariance

function is a common choice to model structural correlations, as it provides a good balance between
smoothness and capturing sudden changes [KK13].

The temporal periodicity of f(x), which commonly represents human-activity patterns, is realized
by a periodic kernel [Mac+98], that is defined as a sum of trigonometric functions

kt (x, x
′) =

ψ∑
i=0

σ2
t,i exp

(
−1

2

sin2
(
γ−1
i |x− x′|

)
l2t,i

)
(4.10)

where the variances σ2
t,i, periods γi and length scales lt,i are hyperparameters and ψ is the total

number of periodic components. The variances σ2
t,i determine the overall influence of the specific

component and lt,i controls the smoothness. As illustrated in Figure 4.4, the multiplication of
the spatial (here one-dimensional) and the temporal component results in a smooth and periodic
prior. Combining the kernels in this way allows for automatic relevance determination (ARD)
during optimization because the length scale (relevance) of the spatial and temporal dimensions are
estimated separately.

×

ks(xs1, x
′
s1)

=

kt(xt, x
′
t)

→

ks × kt
f (xs1, xt) drawn
from GP(0, ks × kt)

Figure 4.4: A product of one-dimensional spatial and temporal kernels gives rise to a spatio-temporal prior
over functions.

Regarding human activity, the kernel kf thus represents two important properties:

1.) Spatial continuity, i.e., if people are seen at a specific location, it is more likely to see people at
very close locations. Since humans continuously move through space, this property is desirable to
model.

2.) Temporal periodicity, i.e., when people are seen repeatedly at a specific location (e.g., every
morning at an entrance), people are expected to be there in the future at that time of day.
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Opposed to the problem-specific definition of kf , the kernel kg corresponding to the latent function
g(x) is realized by a radial-basis function (RBF) kernel

kg (x, x
′) = σ2

g exp

(
−(x− x′)2

2l2g

)
(4.11)

to let the predictive variances of different areas align for larger prediction horizons.

Posterior approximation

In a model with multiple latent functions, the marginal likelihood p(y) is not analytically tractable,
which prevents the application of eq. 4.4 and requires posterior approximations. Instead of calculat-
ing the intractable posterior p(f , g|y), it can be lower bounded with variational distributions q(f)
and q(g) of known form (e.g., GAUSSIAN), a technique called variational inference. Compared to
other techniques such as MARKOV Chain Monte Carlo (MCMC) sampling, variational inference
has significant advantages in computational complexity while maintaining desirable approximate
results [Tit09; LOSC20]. Its main principle is the estimation of the parameters of q(f) and q(g) by
minimizing their distance to the true posterior distribution p(f , g|y) measured by the Kullback-
Leibler-divergence KL (q(f)q(g) ‖ p(f , g|y)). Assuming that the latent functions f and g are a
priori independent for each data point, Saul et al. [SHVL16] derive the variational lower bound

L =
n∑
i=1

∫
q (f i) q (gi) log p (yi | f i, gi) df i dgi

−KL (q (uf ) ‖ p (uf ))−KL (q (ug) ‖ p (ug)) .
(4.12)

This bound leverages sparse approximations (cf. section 4.2.1) to calculate sparse approximate
posteriors as normal distributions q(uf ) = N

(
uf |µf ,Sf

)
and q(ug) = N

(
ug|µg,Sg

)
over

inducing functions uf and ug. For q(f) = N (f |mf ,Σf ) and q(g) = N (g|mg,Σg) follows

mf = Kfuf
K−1

ufuf
µf , (4.13)

Σf = Kff +Kfuf
K−1

ufuf
(Sf −Kufuf

)K−1
ufuf

Kuff , (4.14)

mg = KgugK
−1
ugug

µg, (4.15)

Σg = Kgg +KgugK
−1
ugug

(Sg −Kugug)K
−1
ugug

Kugg. (4.16)

Training the model is then realized by minimizing −L with respect to the variational parameters
µf,g and Sf,g as well as the hyperparameters in the covariance matrices K∗∗.
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4.2.4 Initialization of Hyperparameters

Due to the dependence on specific inducing point locations and hyperparameter guesses, the
objective function of the lower bound (eq. 4.12) is prone to local minima. A major influencing factor
is the initial guess of the hyperparameters of the temporal kernel kt (eq. 4.10), which are the periods
γi and variances σ2

t,i. As shown in [TR18], initializing these parameters with frequency-analysis-
based methods can reduce optimization time and the quality of the approximation. CoPA-Map
includes a method to obtain the distinct temporal periods of a spatial domain based on non-uniform
frequency analysis and a subsequent clustering step. The proposed initialization method (Algo-
rithm 4.1) builds on the idea [KFSD17] of transferring the time-dependent activities at different
locations into the frequency spectrum and making an approximation via a FOURIER series with a
reduced number of components. Figure 4.5 shows a schematic overview of the main steps of the
algorithm.

y0 y1 y2

y3 y4 y5

y6

Not visited region

y7

t
...

→

Use spatio-temporal grid

ys,0

ys,1 t
...

→

Sample Λ time series
o0

a0

ŷs,0(t)

t

y

o1

a1

ŷs,1(t)

t

y

ys,0

ys,1

...

Estimate harmonic
parameters

→
o

∝ a

γ̂1 γ̂2

∑
cluster 1 a → σ̂2

1∑
cluster 2 a → σ̂2

2

Cluster periods
(weighted k-means)

Figure 4.5: Periodic hyperparameter initialization routine.

The required time series for each spatial region (i.e., cell with shape rs × rs) results by squashing
the cells Si of the spatio-temporal grid along the temporal dimension, leading to a time series of
length J with values ys = (ys,0, · · · , ys,J−1) ⊂ y sampled at time-points ts = (ts,0, · · · , ts,J−1) for
each spatial cell. A subset T =

{
(ts,0,ys,0), · · · , (ts,Λ−1,ys,Λ−1)

}
, containing a predefined number

of Λ time series, is then taken by roulette wheel selection, where each time series is given a weight
of its total counts over all time steps. Hence, spatial regions with high activity are more likely to be
selected, but regions with lower activity are not excluded altogether. Due to the robot’s movement,
certain regions might not be visited for some time, resulting in a non-equidistant distribution of the
time samples ts. Therefore, the conversion of each time series to the frequency domain is made by
the non-uniform discrete FOURIER transform [DR93]

NUDFT(ts,ys,o) : ξk =
J−1∑
j=0

ys,j exp

(
−i 2π
Tok

ts,j

)
, 0 ≤ k ≤ J − 1, (4.17)
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with signal duration T and candidate period ok ∈ o. The set of candidate periods o is defined
to contain equally spaced periods within an interval (e.g., between one hour and seven days).
The signal is iteratively reconstructed with a reduced number b of the most prominent frequency
components as

Ψ(ξb,ob) : ŷs,j = |ξ0|+
b∑

u=1

|ξu|cos
(
2π

ou
ts,j + arg(ξu)

)
(4.18)

for each region and compared to the original signal via five-fold cross validation (Algorithm 4.1,
lines 2 to 9). The algorithm requires an upper limit ψmax of periods to check and a scaling factor
σ2
max as the maximum variance.

The total number of periods ψ of the whole domain is then calculated as the mean of all domain-
specific numbers of periods (line 13). The period’s respective values are calculated by weighted
k-means clustering, with the complex magnitudes as weights (line 14). Weighting ensures that
locations with a recurring number of people are more influential than cells with less activity.

Algorithm 4.1: Initialize the hyperparameters of the periodic kernel kt (cf. eq. 4.10)
Input :Set containing Λ time series T, set of candidate periods o
Output :Number of periods ψ, set of estimated periods γ̂1:ψ, set of variances (weights) for

each period σ̂21:ψ
Parameter :Upper limit for number of periods ψmax, maximum variance σ2max

1 for l = 0 to Λ− 1 do
2 Repeat lines 3 – 9 as cross validation for i = 1..5
3 Split ys,l into contiguous train/test sets ytr

s /y
ts
s

4 ξi ← NUDFT(ttrs ,y
tr
s ,o) // eq. 4.17. Complex components in freq. domain

5 for b = 0 to ψmax do
6 ξi,b ← b most prominent complex numbers in ξi w.r.t. magnitude
7 oi,b ← Set of periods, corresponding to ξi,b
8 ŷb ← Ψ(ξi,b,oi,b) // eq. 4.18. Reconstruct reduced signal

9 ei,b ← RMSE(ŷb,y
ts
s )

10 il, bl ← argmini,b(e1,0, ..., e5,ψmax)

11 al ← Element-wise magnitudes of ξil,bl
12 ol ← Periods, corresponding to ξil,bl

13 ψ ← bMean({b0, · · · , bΛ−1})c
14 γ̂1:ψ ← Obtain k-means centroids with k = ψ using o0:Λ−1 with weights a0:Λ−1

15 σ̂21:ψ ← Sum weights a0:Λ−1 in clusters and normalize to
[
0, σ2max

]
Another factor influencing the model quality is the positioning of the inducing points Z, as this
directly affects the approximation of the covariance matrix Kff . Although the inducing points
are treated as hyperparameters and are modified during optimization, proper initialization shortens
the time to find satisfactory solutions. Based on a user-defined ratio αind ∈ (0, 1], the number of
inducing points is selected as m = bαindnc. Their (spatio-temporal) location is then determined
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via k-means clustering (k = m) of the spatio-temporal training inputs X , where each input point
is weighted by its observation time ∆i. By weighting the inputs, the initial inducing points Ẑ are
placed primarily at locations that have been observed for extended periods, providing more reliable
data.

4.2.5 Model Optimization and Inference

Given the training inputs X , observations y, and initial hyperparameter configuration, the intro-
duced model (eq. 4.7) is optimized based on the variational lower bound (eq. 4.12). Subsequently, it
may be queried for new data inputs X∗. The procedure of both steps is described in the following.

Model Optimization

By introducing latent inducing locations Z, cubic scaling regarding the number n of training inputs
is avoided during optimization (cf. section 4.2.1). When the covariance matrices of the variational
distributions Sf ,Sg are defined by CHOLESKY decompositions Sf = LfL

T
f and Sg = LgL

T
g ,

optimizing the lower bound L (eq. 4.12) scales with O(nm2 + 2nm) [SHVL16]. Therefore,
especially for m� n, model optimization is significantly sped up compared to the standard GPR
case. In the present case, this can be realized by choosing αind � 1.

Model optimization is then executed for three types of parameters:

1. Variational parameters for q(uf ) = N
(
uf |µf ,Sf

)
and q(ug) = N

(
ug|µg,Sg

)
,

2. the length-scale, variance, and periodicity hyperparameters of the kernels kf and kg, and

3. the location of inducing inputs Z.

Two different optimization techniques based on stochastic gradient descent (SGD) are utilized for
the different parameter types. The variational parameters are optimized using the natural-gradient
method since the inherent minimization of KL-divergence integrates well with the variational
framework and leads to fast convergence [SEH18]. The kernel hyperparameters and inducing point
locations are optimized with the Adam optimizer [KB14]. Steps of both optimizers are executed
alternately, with the learning rate decaying linearly for the first 100 steps. The n integrals as part of
the lower bound L are solved by two-dimensional HERMITE-GAUSS quadratures. As the methods
utilize SGD, the optimization is separated into mini-batches for increased efficiency.
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Predicting with the Model

After maximization of the variational lower bound and optimization of hyperparameters, predictions
with the model can be made via its predictive distribution. For arbitrary new data inputs X∗ =

{x∗
i }
n∗

i=1 the predictive distribution is given as

p (y∗
i | yi,xi) =

∫
p (y∗

i | f ∗
i , g

∗
i ) q (f

∗
i ) q (g

∗
i ) df

∗
i dg

∗
i . (4.19)

This analytically intractable integral can be computed using HERMITE-GAUSS quadrature to obtain
the predictive mean my(x

∗
i ) and variance σ2

y(x
∗
i ). The specific values of the predictive mean

depend on the chosen spatial resolution rs and temporal resolution τ of the input grid. For a subset
X ′ ⊂X∗ of finite extend (e.g., the FOV of the robot and a given duration), the expected number
of people can then be calculated as a point estimate 1

r2s τ

∫
my dX

′. Model outputs of the mean my

and standard deviation σy on an exemplary dataset (same as for Figure 4.2.b) for two points in time
are shown in Figure 4.6. The predictive uncertainty σy increases outside the visible areas and in
regions with high variability in human activity. Consequently, in addition to indicating predictive
uncertainty, this suggests areas where further data collection might be useful.

1:
00

p.
m

.
to

2:
00

p.
m

.
8:

00
p.

m
.

to
9:

00
p.

m
.

Ground truth Model output: Mean Model output: Std. deviation

ygt

ygt

my

my

σy

σy

x1

x2

Figure 4.6: Model output compared to ground truth values of human occurrence rate. Only the areas within
the white boundaries were visible and used for training.

4.3 Results

CoPA-Map is evaluated on two real-world datasets (section 4.3.1) in comparison to different state-
of-the-art methods (section 4.3.2). Besides the evaluation of the hyperparameter initialization
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routine in section 4.3.3 and the predictive error in section 4.3.4, one focus is on the quantitative
assessment of the model as a basis for navigation tasks (section 4.3.5). All experiments are
performed with the same parameterization: number of sampled time series Λ = 10, maximum
number of periods ψmax = 10, maximum variance of each periodic kernel component σ2

max = 0.95,
and ratio between inducing points and data points αind = 0.02. The value for αind is empirically
chosen to obtain a good balance between computational speed and prediction quality on the
evaluated datasets. The initialization routine (Algorithm 4.1) was done with a fixed grid resolution
of 5 m × 5 m × 60 min, whereas the grid resolution resulting in X was varied for different
experiments (square spatial shape, respectively specified as rs × τ ). The method is implemented in
Python based on the GPflow library [GWN+17] to perform the training and inference GPU-based.

4.3.1 Datasets

The model is evaluated on two publicly available long-term datasets of real-world pedestrian
detections. Both datasets represent typical human-centered environments but vary in activity
patterns and the average number of pedestrians. Occupancy maps of both environments and
exemplary detections Dped are shown in Figure 4.7 with density visualization.

ATC Dataset [BKIM13]: This dataset contains measurements of tracked pedestrians in a shop-
ping center in Osaka, Japan, covering an area of ca. 900m2. Data collection was performed with
several permanently mounted 3D range sensors every week on Wednesdays and Sundays, resulting
in 92 days. The data is downsampled to a detection rate of 0.5 Hz, resulting in an average of about
1,700 entries per square meter and day. For evaluation, a subset of ten Wednesdays for training and
four days for testing is used.

Office Dataset [MCD21]: The second dataset contains tracks of people based on measurements
by a single stationary 3D Lidar sensor in an office environment of the University of Lincoln,
England, covering an area of ca. 85m2 with averagely about 300 entries per square meter and day.
The dataset consists of 22 consecutive days, of which ten weekdays are used for training and five
weekdays for testing.

Since both datasets contain measurements by stationary sensors, data acquisition by a moving
robotic system must be simulated. Nine robot trajectories per dataset are manually defined with
an average motion speed of 0.5m s−1 and stationary intermediate stops. Only the measurements
within the FOV of the simulated robot are processed, which is again (cf. section 2.1.2, section 4.2.2),
defined by a circle with a fixed radius. The circle is pruned based on the known occupancy maps of
the environments to filter out pedestrians obstructed by static obstacles, as depicted in Figure 4.7
with exemplary observation durations ∆i.
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Figure 4.7: Upper images: Occupancy maps and exemplary detections in a 15 min time window during
midday. The color-coded density is given by kernel density estimation with a GAUSSIAN kernel.
Lower images: Simulated robot paths and exemplary observation time ∆i for cumulated paths.

4.3.2 Evaluation Metrics and Baselines

Three criteria are used to measure the predictive quality of the model. The first criterion is
normalized root mean square error

NRMSE =

√√√√ 1

ȳ2gt ntest

ntest∑
i=1

(ŷi − ygt,i)2, (4.20)

between model predictions ŷi and ground truth ygt,i and normalized by the mean test data value ȳgt.
Normalization is necessary due to the varying length and area coverage of the different robot paths.

Ground truth is obtained similarly to the training data y as a quotient of people count and obser-
vation duration (cf. section 4.2.2), but ignoring the occupancy map and setting the observation
durations ∆i = τ . Thus, it represents the people count cgt,i during test time within the cells of the
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spatio-temporal grid visited during training, using the same spatial and temporal resolution rs and
τ , respectively. The second criterion is the Chi-square distance

χ2−distance =
ntest∑
i=1

(ŷi − ygt,i)2

(ŷi + ygt,i)
, (4.21)

which is a measure for histogram comparison, where larger values indicate less accurate predictions.
Normalized root mean square error and Chi-square distance can be regarded as the standard
metrics when comparing human-activity or flow models [JWHK16; MCD21; VMS+19; VYE+20].
However, these criteria have limited explanatory value in terms of the model’s usefulness, e.g., in
supporting unobstructed navigation or task planning. Vintr et al. [VYE+20] propose new criteria to
evaluate these models based on their ability to support human-aware navigation.

The main idea of the benchmark is to better score models that avoid disturbing humans by per-
forming robot movements outside their immediate walking paths. The third criterion considers a
number of nnav imaginary navigation scenarios in which a robot is supposed to navigate between a
set of destinations at different points in time. The navigation path is planned based on the output of
each model via a two-dimensional graph search, with higher activity indicating higher path costs.
All resulting paths are then ranked in ascending order by their total cost and the service disturbance

E(bnnavρc) =
bnnavρc∑
k=1

ek (4.22)

is defined as a sum of robot-human encounters ek during test time. The encounters ek are the
person detections that occur within a radius of 1 m around the robot as it simulatively travels the
path at a speed of 0.5 m s−1. The value ρ ∈ [0, 1] is referred to as the servicing ratio and defines
the relative number of navigation actions to be performed. A lower servicing ratio gives the robot
more freedom to discard paths with a high cost, e.g., when the number of expected people is large.

Besides CoPA-Map, the following methods are compared in the evaluation.

Maximum-likelihood (ML) model: Calculates the mean of all observed rates in each cell. As a
result, the rates are assumed to be constant over time.

FreMEn-Additional Amplitude Model (Fr-AAM) [JWHK16] is a state-of-the-art approach that
models human activity as an inhomogeneous POISSON process through a spatial grid with a
continuous-time rate function. For each cell of the grid, a spectral analysis based on the FreMEn
method [KFSD17] is repeatedly performed to obtain the most influential spectral components, from
which the predictive signal is then reconstructed. The method uses the training count data ci and
observation durations ∆i separately to infer the POISSON rate with a Gamma-distributed prior. The
model is trained via five-fold cross validation as it chooses the number of predictive components
based on test data.
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Warped-Hypertime (WHyTe) [VMS+19] is a state-of-the-art approach for continuous activity
and flow modeling. It is based on a frequency analysis by the FreMEn method and subsequent
projection into a circular space. As training data, it directly uses people detections Dped and
outputs the probability of occurrence given an input point. For this reason, the model output is not
directly compared to the quantitative value cgt,i, but is only included in the evaluation of service
disturbance. As the method uses a pre-defined number of clusters, models with up to seven clusters
are trained separately, and only the variant with the best result is included. WHyTe is also capable
of estimating movement direction and velocity, which is not used in the present evaluation to ensure
direct comparability to the other models.

Homoscedastic GAUSSIAN process (GP-Hom) model: Consists of the same modules as
CoPA-Map but is realized as a LOG-GAUSSIAN-COX process. Instead of a heteroscedastic
likelihood, the method uses a homoscedastic POISSON likelihood for inference using a single latent
function. The latent function is transformed with an exponential function to output only positive
values required for the POISSON distribution rate parameter.

4.3.3 Validating Hyperparameter Initialization

The importance of proper initialization of the hyperparameters of the temporal kernel kt is demon-
strated by training different periodic kernels and an RBF kernel for comparison. Besides the
proposed initialization method (cf. section 4.2.4), ten randomly initialized periodic kernels are used
with variances chosen randomly in (0, 1) and one to two random periods as multiples of 30 minutes
and smaller than 30 hours. Data input is taken from an 185 m2 area of the ATC dataset in 50 cm ×
60 min resolution.

The initialization procedure results in two periods of twelve and six hours with variances of 0.9
and 0.42, respectively. Figure 4.8 shows the negative log-likelihood (NLL) loss during training and
the RMSE relative to the ML model on four independent test days. Due to the high variance of the
training data, NLL shows slight variation for the periodicity parameter. However, suitable initial
parameters of kt lead to better extrapolations and shorter optimization time, which is reflected in
the evolution of the RMSE with respect to optimization steps. Completely neglecting periodicities
(RBF kernel) leads to unsatisfactory prediction results since long-term changes cannot be captured,
and the length scale parameter of the kernel limits the prediction horizon.

4.3.4 Spatio-Temporal Prediction

The predictive quality of CoPA-Map is evaluated in two different scenarios: a static and a moving
robot. The static scenario assumes a permanently motionless robot for five separately considered
positions and leads to a constant observation time of ∆i = τ for every cell. For the moving
case, nine different paths are created with varying spatial coverage of the robot’s FOV (between
40 m2–70 m2 for Office and 100 m2–200 m2 for ATC datasets) and varying waiting times along the
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Figure 4.8: NLL and relative RMSE for an RBF kernel, a periodic kernel with the proposed initialization
routine, and periodic kernels with randomly initialized parameters. ([SS22] ©2022 IEEE)

paths. The paths cover different cases, where some locations may constantly be in the robot’s FOV,
and others may be visited only a few times a day. Figures 4.9 and 4.10 show the results for NRMSE
and χ2-distance. Because of the dependence on the chosen spatial and temporal resolution (rs and
τ ), four different combinations are shown.

The results of the static case (Figure 4.9) illustrate dependency of the prediction quality on the
specific chosen location. While CoPA-Map performs better on the Office dataset, outliers in the
ATC dataset show that some locations are better represented by discrete models or the homogeneous
GP. These are mainly locations with a small area, where people stay for extended periods (e.g.,
queues in front of restaurants).

In the moving case (Figure 4.10), the advantage of CoPA-Map’s heteroscedastic modeling becomes
clear, as singularly occurring high target values (e.g., due to brief observation durations) are given
less weight during training. Discrete models such as Fr-AAM strongly approximate areas with
high numbers of people but suffer when people appear in slightly different locations in the test data.

The path with the largest area coverage results in 147,500 input points and 2,860 inducing points at
the smallest resolution (ATC, 50 cm × 30 min). In this case, training took 28 minutes to converge
(Nvidia GTX1070, i7-8700 CPU, 16 GB RAM). Thus, a training duration of this magnitude allows
the training to be repeated periodically with current data, e.g., while the mobile robot is charging.

4.3.5 Service Disturbance

Two scenarios investigate whether the model can actively avoid areas with high human activity
during navigation. The hallway scenario involves a strong flow of people along a corridor, and the
shops scenario represents an area in front of different stores, where people movement splits and
queues occur (both on the ATC dataset). The directional edges of the cost graph for navigation
result from the model outputs in the MOORE neighborhood of each cell. The navigation scenarios
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Figure 4.9: Evaluation of the static case.
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Figure 4.10: Evaluation of the moving case.
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are inspired by a security or logistics robot procedure, where the robot must visit four predefined
locations (A�B�C�D). Each scenario includes four patrols per hour between 9 a.m. and 9 p.m. for
four days, leading to nnav = 240 patrols per scenario. The paths for the scenarios are computed by
Dijkstra’s algorithm [Dij59] based on the cost graph resulting from each model.

As a baseline, the Occupancy Map model indicates how many encounters would occur if the
robot always chose the shortest route. Figure 4.11 shows the cumulated number of encounters
(service disturbance) over the servicing ratio ρ and Figure 4.12 gives exemplary model outputs and
navigational paths for two times of day with high and low people traffic.
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Figure 4.11: Service disturbance (cumulated encounters) for two navigation scenarios on the ATC dataset
(lower is better). ([SS22] ©2022 IEEE)

Spatially continuous models (CoPA-Map, WHyTe) capture the modality of human activity in
the hallway scenario significantly better than discrete models (e.g., Fr-AAM). Discrete models
often lead to sinuous paths, which increases the number of human encounters. CoPA-Map and
WHyTe perform well, particularly for small servicing ratios (< 40%) because navigation tasks are
performed only at times when few people are expected, such as in the morning and evening hours.
Compared to WHyTe, CoPA-Map has advantages when pedestrian activity varies multimodally,
e.g. with a constant people flow at one location and stationary stays at another, as evident in the
shops scenario. WHyTe directly incorporates the detections Dped without accounting for varying
observation times, resulting in underrepresentation in the prediction in areas with short stays and
thus fewer detections. For a servicing ratio of ρ = 1 (all paths must be driven) CoPA-Map leads
to ca. 32 % fewer encounters over all paths compared to the Occupancy Map model for both the
hallway and shops scenarios.
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Figure 4.12: Exemplary model predictions and resulting paths (purple) from the service disturbance experi-
ment. The social cost is scaled to the respective maximum model output. Actual pedestrian
data from a 15 min time window is shown as red dots in the occupancy map subfigures. Model
output outside the FOV is not displayed. Models requiring a grid representation are trained
with resolution 0.5 m × 60 min.
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4.4 Conclusion

This chapter introduces CoPA-Map, a non-parametric method for spatio-temporally continuous
modeling of human activity. By considering heterogeneous data distributions resulting from varying
dwell times as part of a heteroscedastic likelihood function, the method applies to data collected by
mobile robots. Two real-world datasets show that CoPA-Map outperforms the state of the art in
predictive accuracy. The predictive distribution is obtained by variational inference, which allows
model training with multi-week data within minutes.

An experiment that utilizes the novel service disturbance metric shows that CoPA-Map allows path
planning and scheduling outside areas heavily frequented by people, which actively avoids their
disturbance. Compared to commonly used occupancy map models, significantly fewer encounters
with humans occurred. This also emphasizes the reverse case: If people are to be proactively
searched for or should be approached (e.g., for info terminal services), using such a model can
increase the encounter probability.
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Learned long-term patterns of an environment may be used to forecast human movement dynamics,
as shown in the last chapter. This knowledge, inter alia, helps to productively plan paths through
areas with fewer people, which avoids disturbances and increases the acceptance of service robots.
However, planning paths is only one of many skills a long-term-autonomous mobile robot must
frequently perform.

Autonomous robots must deliberately decide on and control their actions to achieve their tasks,
which is realized by an executive system. To account for dynamics in the environment and tasks,
it must not only plan actions but also reactively adapt the robot’s behavior when problems arise.
However, the robot’s physical capabilities limit possible recovery strategies in failure cases. Many
service robots do not have physical manipulators due to cost and complexity, primarily when
focusing on tasks for human-robot interaction. In heterogeneous environments, this prevents them
from entirely using the environment, e.g., because closed doors cannot be opened or elevators are
not operated autonomously. To overcome this, integrating the knowledge of environment dynamics
into the acting system can improve the robot’s LTA capability in terms of reliability and robustness.
Given the potential locations of people, the robot could then search and actively ask humans for
help in case of failure.
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Starting from a general task-switching mechanism that controls the robot’s behavior, this chapter
introduces a monitoring system that provides fallback behaviors and recoveries to improve the
robot’s performance for LTA. It is based on the modular and reactive task-switching formalism
behavior trees (BTs), which allow for a stateless and extendable implementation. Firstly, an
overview of the state of the art is given (section 5.1), and the fundamentals of the BT formalism
are presented (section 5.2). After introducing the generally usable system-monitoring method in
section 5.3, it is extended to allow for an efficient people search. Model knowledge about the
spatio-temporal occurrence of people is integrated into the BT and used productively in section 5.4.

The first part of this chapter was partly published at the peer-reviewed “European Conference on
Mobile Robots" (ECMR) 2021 [SWSS21]. The content beginning with section 5.4 was published
at the peer-reviewed “IEEE International Conference on Robotics and Automation" (ICRA) 2021
[SLPS21].

5.1 Related Work

To achieve autonomy, service robots may have to act deliberately, which means performing
actions that are motivated by some intended objective and aimed and achieving these objectives
[IG17]. In the following section 5.1.1, a brief introduction to autonomous deliberation and its
major subdomains planning and acting is given. Subsequently, strategies to mitigate failures by
monitoring LTA system components are presented in section 5.1.2. Finally, a summary and critical
discussion are made in section 5.1.3.

5.1.1 Autonomous Deliberation

Service robots face dynamic environments, semantically rich tasks, and human interactions, requir-
ing them to act autonomously and deliberately. These demands are in stark contrast to robots in
fixed and controlled, i.e., industrial, settings.

Although there is no irrefutable definition of deliberation, its two significant aspects are commonly
referred to in the literature as planning and acting [GNT04; IG17]. It should be noted, however,
that boundaries between these functions are fluid and depend on specific tasks, implementations,
and utilized methods.

Planning and Acting

Based on an input and predictive model of the environment, task planning creates an output plan
expressed in some representation. Acting then refines the planned actions into specific commands
and reacts to external events. Whereas planning can be viewed as an open-loop search, acting must
be a closed-loop process. Executive systems that include both functionalities are part of almost



5.1 Related Work 75

every LTA system. For example, planning approaches are used to schedule tasks arrangements
for the Opportunity rover [BJMR05], delivery or patrolling applications [MLH15] or in logistics
systems to cope with varying orders and resources [BK21].

A planning system generally needs to consider spatial and temporal variations to allow for con-
current activities and synchronization. Since environments are dynamic, probabilistic planning
techniques may address the uncertainty in knowledge and environment variability. MARKOV

decision processes (MDPs) are a classical framework in this regard, which can be extended to
partially observable systems (POMDP). Successful implementations of this technique include
applications for navigation planning [FT07], multi-tasking SLAM [GP10] or people search [TA11].
However, MDP-based models suffer from the assumption that actions are applicable in every state,
restrictive model formulation, and specific tailoring of optimization problems [GNT16].

Whereas task planning creates a trajectory in an abstract action space and may be domain-
independent, acting needs to refine the planned actions into specific commands and react to
(unforeseen) events. Therefore, the acting system needs to be both reactive and modular. If a
system can be divided into separate building blocks and rearranged (i.e. when it is modular), this
reinforces independent development, testing, and reusability. One standard approach for acting
systems has long been the finite state machine (FSM), which models the task execution by a set of
states, transitions, and events [Mea55]. FSMs were used to successfully control LTA deployments
of service robots over multiple days [MMWG11] which lead the way to the widely used framework
SMACH [BC10], tour guide robots [WC18] or physical therapy of the elderly [HKG+16]. The
main drawbacks of FSMs are their complex maintainability, non-trivial scalability, and reusability,
which are particularly important for LTA applications. Although extensions to hierarchical finite
state machines (HFSMs) [Har87] exist to increase modularity, these formalisms are still hard to
maintain due to the need for redefinition of transitions when states are added or removed. behavior
trees (BTs) were introduced as a tool to improve on these aspects [CÖ18].

Originating in the computer-game industry, BTs found attention in the robotics community in recent
years [CN21; ISS+20]. Due to their tree structure and standardized task interfaces, modularity and
reactiveness are ensured. Additionally, they inherently support task hierarchies and can be automat-
ically synthesized by a planner [CAÖ19; MME+21; LPS+21; SIN+22]. These characteristics meet
the current challenges stated by the planning community that deliberation should be organized
hierarchically and be expandable online [GNT16]. Successful examples of BT implementation
include the navigation and planning frameworks for ROS 2 [MMWG20; MGMR21], the Boston
Dynamics’ Spot SDK [Bos22] to model the robot’s mission or non-expert programming via the
CoSTAR framework [PHJ+17].

5.1.2 Failure Mitigation

An executive control system that plans and acts on action sequences and responds to opportunities
and failures is an essential part of an LTA architecture [KHD+18]. In particular, variable and
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dynamic environments and temporal changes may lead to unforeseen situations. Therefore, an
important goal is the prevention of behavioral loops and providing recovery mechanisms, which
is realized by a monitoring system. Monitoring is closely intertwined with acting [IG17], as
recoveries may include specifically executed behaviors and even the involvement of humans in
problem-solving.

Monitoring Systems

The key responsibilities of execution monitoring systems are detecting discrepancies between pre-
dictions and observations, diagnosing their cause, and recovering from them [GNT16]. Monitoring
supervises and, if necessary, modifies the executed commands of acting subsystems. Modification
may happen on the sensory-motor level via control-theory by comparing the system and component
behavior with a nominal target [Ant14], by statistical methods, or outlier rejection techniques
[KK18a]. Concerning LTA this has been explored particularly for areas outside of service robotics,
such as underwater [XYZ17] or extraterrestrial applications [LC04].

Besides fault detection and diagnosis on the control level, the complex interplay of different software
components in LTA robots can lead to errors preventing their continuous deployment. This has
been especially highlighted in large-scale research initiatives with service robot deployments
over several weeks, namely, the STRANDS [HBJ+17], CoBot [BV16], and Willow Garage Office
Marathon [MMWG11] projects. One key strategy of the STRANDS executive system for delivering
long-term software robustness is continuously monitoring task and navigation execution, restarting
components on demand, and triggering recovery behaviors. It follows the widely employed
[HBJ+17; MMWG11; WC18] design principle that software components of mobile robots must
not be flawless but instead should tolerate and even enforce restarts in case of failures [BJPM16].
Frequent restarts and running as few processes as possible also lowers the probability of memory
leaks, internal deadlocks, and invalid state [MMWG11].

A recurring motif for fault recovery in this context is the involvement of humans as a last resort,
e.g., by sending emails, requesting teleoperation, or asking bystanders for help. As argued by
[MMWG11; BV16], maximum robustness may not be achieved by full autonomy or complete
human control alone but by combining both.

Symbiotic Autonomy

Overcoming the limitations of a robotic system by actively involving humans is referred to as
symbiotic autonomy and has been considered in various contexts. Malfunctions can be mitigated
by forewarning the users [LKF+10] or purposefully utilizing human collaboration in autonomous
plans [NI14]. This may also be included already in the planning stage to plan for task collaboration
[ACM+06] or contingency [Fra18]. An essential distinction of human-centered help is how
knowledgeable potential helpers are. System experts can usually only be requested for teleoperation
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and are not available in the immediate environment. Humans in the robot’s work environment are
present in higher numbers but can only be involved in tasks that can be done easily and quickly
[BV16].

When a situation occurs where the robot needs help, this must first be identified, e.g., by detecting
a closed door [SNTO19] or an elevator [LSG19]. Asking humans for help requires locating them
first, which may be based on greedy search [VG13], hidden MARKOV models [BN14], or periodic
GAUSSIAN mixture models [KKM+15]. In [TA11] people are searched based on a model of the
environment, by employing an individually defined MDP with lattice-like movement primitives.

The search during symbiotic autonomous tasks requires that people are not only found but then
accompany the robot to the location where assistance is needed. Since people are only willing to
travel a limited distance to help [RV12], this imposes an additional constraint on the search locations.
Most work in this context assumes that help is always available at the immediate help location,
e.g., by supervisors [TKL+14] or bystanders [WIT+10]. Only few authors consider proactively
searching and finding people to fulfill a task that the robot cannot achieve alone: Rosenthal et
al. [RVD12] show that navigating the environment to search for humans could decrease the time
until a potential helper is found. They employ an A*-based planner to decide where to seek help in
an office building based on the location of offices and availability of the person. However, their
method is only evaluated with static locations, using occupancy sensors installed in offices, and
does not apply to dynamically created locations based on people detections.

5.1.3 Conclusion

For service robots to act autonomously (in the long term), they need the ability to deliberate.
Deliberation includes task planning, reactively acting on the synthesized plan, and monitoring
its proper execution. Uncertainties resulting from dynamic environments can be addressed by
probabilistic techniques, such as MDPs or POMDPs. However, their model formulation is restrictive
and problem-dependent, complicating the implementation for robots that must execute various tasks.
The actual task execution is the responsibility of the acting system, which is often implemented
using FSM. The drawbacks of this technique concerning reactiveness, modularity, and expandability
are increasingly addressed by employing BTs. Due to their statelessness, BTs are also suitable for
monitoring systems to react deterministically to errors. However, this has not yet been implemented
in the state of research.

Besides autonomous recovery behaviors, monitoring systems of LTA robots may involve humans,
i.e., supervisors or bystanders. Since help is not always available at the robot’s immediate location,
deciding whether and where to search for people may be necessary. In the state of research, it
is usually assumed that help is directly available or that potential locations of helpers are static.
In other cases, only simulations are used for evaluation [TA11; RV12]. Hence, the application
of dynamically created models of person occurrence to symbiotic autonomy and a generally
applicable action description to find people are open problems. BTs are particularly suitable for
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this purpose since they can be synthesized stochastically and have a human-readable structure.
Compared to the otherwise used MDP or A*-based planners, this results in structures that can be
extended easily by additional task elements.

5.2 Preliminaries

This section introduces the methodology of behavior trees (BTs) and the subsequent extension
to stochastic behavior trees (SBTs). The following descriptions only cover the aspects that are
fundamentally necessary for understanding the developed methods and do not claim completeness.
For a comprehensive introduction to BTs, the reader is referred to [ISS+20] for applications,
[CN21] for implementations in robotics, and [CÖ18] for the general methodology.

5.2.1 Behavior Trees

A behavior tree (BT) is a directed rooted tree consisting of internal nodes for control flow and leaf
nodes for action execution or condition evaluation [CÖ18]. Pairs of adjacent nodes are denoted as
parent (outgoing) and child (incoming). The node without parents is called the root node, which
periodically sends an enabling signal (tick) through the tree, which is then propagated according
to the policies of different control flow nodes. A node is executed if, and only if, it receives ticks.
It then immediately returns one of three states: running (R, execution ongoing), success (S, goal
achieved), or failure (F). In the classical formulation of BTs, there are four types of control flow
nodes (sequence, fallback, parallel, decorator) and two types of leaf nodes (action, condition),
which are shortly introduced in the following.

The sequence node executes Algorithm 5.1 and routes the tick from left to right until a child returns
either F or R as status, which is then returned to the parent of the node. Only if all children return
S the sequence node returns S. It is denoted by a “→" symbol, as shown in Figure 5.1.

→

Child 1 Child 2 . . . Child n

Figure 5.1: Graphical representation of a sequence
node with n children.

Algorithm 5.1: Pseudocode of a sequence
node with n children.

1 for i← 1 to n do
2 childStatus← Tick(child(i))

3 if childStatus = R then
4 return R
5 else if childStatus = F then
6 return F

7 return S

The fallback node executes Algorithm 5.2 and routes the tick from left to right until a child returns
either S or R as status, which is then again returned to the parent of the fallback node. Only if all
children return F the fallback node returns F. It is denoted by a “?" symbol, as shown in Figure 5.2.
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?

Child 1 Child 2 . . . Child n

Figure 5.2: Graphical representation of a fallback
node with n children.

Algorithm 5.2: Pseudocode of a fallback
node with n children.

1 for i← 1 to n do
2 childStatus← Tick(child(i))

3 if childStatus = R then
4 return R
5 else if childStatus = S then
6 return S

7 return F

An action node executes a command when it is ticked, and it returns R during execution. At
completion, it returns either S if it succeeded or F if it failed. A condition node checks a specified
expression and returns S if it is satisfied and F if not. The condition node can not return R. A
decorator node is a node with a single child that modifies the output of its child node according to
a predefined policy. Decorator nodes can, e.g., be used to invert the output of a node (“¬") or stop
the tick propagation after a predefined time limit. The graphical representation of the decorator
node is depicted in Figure 5.3 together with the condition and action node. The labels describe
the verified condition or the performed action, respectively. Assemblies of different control flow
and leaf nodes may also be grouped as a single BT. This tree can be viewed as a subtree, whose
graphical representation is also shown in Figure 5.3. Various extensions of this basic set of node
types exist, e.g., nodes with memory or for asynchronous or parallel execution [CÖ18; CN21],
which are not covered in this work. An exemplary BT describing a recharging behavior of an
autonomous robot is shown in Figure 5.4. The charging behavior executes a docking, charging, and
undocking procedure if specific conditions based on the robot’s battery level are met. By adding
this behavior to a fallback node, arbitrary tasks can be extended by this charging functionality,
which will automatically interrupt the task execution if the robot needs to be charged. Thus, this
example emphasizes the reactiveness and modularity of the BT-framework.

Action

Condition

Subtree
Child

δ Decorator

Child

Root

Figure 5.3: Graphical representation of an action,
condition, subtree, decorator, and root
node.

?

→

?

Battery low →

Charging ¬

Undock charger

Dock & charge

Do task

Figure 5.4: Exemplary BT describing a recharging
behavior.
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5.2.2 Stochastic Behavior Trees

One drawback of the original formulation of BTs is the fixed execution order of fallback and
sequence nodes, which must be defined manually and is often non-trivial to choose. To overcome
this problem, SBTs are introduced in [CMÖ14]. In an SBT, each action is extended by a tuple
Asbt : 〈ps(t), pf(t), µ, ν〉 and each condition by a tuple Csbt : 〈ps(t), pf(t)〉, where ps(t) and pf(t)
are the probabilities to succeed and fail respectively, at any given time t. The time to succeed and
time to fail are random variables with exponential distribution and rates µ and ν, respectively. The
variables and probability distributions of the tuples can be defined individually for each action and
condition, e.g., based on expert or model knowledge. Interconnection of the stochastic nodes then
allows to specify success and failure probabilities for entire BTs and to prioritize them. To receive
an indication of the success and failure probabilities ps,T(t) and pf,T(t) of a complete BT, the inner
flow of an SBT is described as a discrete-time MARKOV chain (DTMC) with states S. A DTMC is
suitable to model state changes with given transition probabilities in a system without regarding
state history. The total probabilities follow by summing up the probabilities of being in one of the
DTMC success/failure states SS and SF as

ps,T(t) =
∑
i:si∈SS

πi(t), pf,T(t) =
∑
i:si∈SF

πi(t). (5.1)

The probability vector π(t) is obtained by solving the CAUCHY problem

π̇(t) = Q(t)π(t), π(0) = π0, (5.2)

with Q as the infinitesimal generator matrix of the DTMC and initial probability vector π0 assumed
to be known a priori. With the definition of transient states as ST = (S \ SS) \ SF, the success rate
µT of the tree is calculated as

µT = avg

(∑|SS|
i=1 u

S
i1(κ) log

(
hSi1(κ)

)∑|SS|
i=1 u

S
i1(κ)

)−1

(5.3)

with avg(·) as the average function over time and κ as a time step. The matrices HS(κ,Asbt,Csbt) ∈
R|SS|×|ST| and US(κ,Asbt,Csbt) ∈ R|SS|×|ST| depend on the transit times, the number of steps
between transient states and success states, and the success and failure probabilities and rates of
all actions Asbt and conditions Csbt. The sets Asbt and Csbt contain all individual actions Asbt and
conditions Csbt of the tree. The failure rate of the tree νT follows likewise based on the failure
states SF as

νT = avg

(∑|SF|
i=1 u

F
i1(κ) log

(
hFi1(κ)

)∑|SF|
i=1 u

F
i1(κ)

)−1

(5.4)

with matrices HF(κ,Asbt,Csbt) ∈ R|SF|×|ST| and UF(κ,Asbt,Csbt) ∈ R|SF|×|ST| [CMÖ14].
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5.3 Reactive Task Control and Monitoring System

Assuming a task-switching mechanism based on BTs, this section and the next section introduce a
new method to provide monitoring and recovery functionalities for technical and task errors. The
task execution BT may realize arbitrary behaviors, synthesized by a planner or specified manually
(see also Figure 2.4 for exemplary behaviors of the Sobi robot). The proposed monitoring system
acts as a reactive extension, which is not included in the planning stage of the respective tasks but
is activated by binary conditions in the acting stage. It will then block the task execution until the
problematic situation is resolved. The system consists of two main parts, depicted in Figure 5.5.
The first part is system monitoring, which describes the analysis of technical functions that may be
fixed automatically or by remote supervision in a failure case. The second part considers faults that
require manual help at the immediate location by bystanders and will be presented in section 5.4

Main task execution System Monitoring (this section) Symbiotic Recovery (section 5.4)

?

Charge
(e.g. Figure 5.4) ?

Blocked Do task

→

Process monitors ?

→

System error Recover system

→

Symbiotic error Search help

Monitors Human-activity model

Figure 5.5: Extension of a BT-controlled task by system monitoring and symbiotic recoveries. Dashed
connections indicate information flow. The task execution BT may realize, for example, a
patrolling or guiding task with charging when needed.

5.3.1 System Monitoring

The system monitoring consists of separate applications that monitor hardware- and ROS framework
parameters and a BT-based arbiter. Although BTs are mainly used for sequential control of
autonomous agents, their advantages in reactivity and modularity combined with intuitive modeling
are also applicable for monitoring purposes. Therefore, due to their statelessness and reactive
structure, it is possible to react immediately to errors that occur, without explicit state transition
modeling, as in the case of finite state machines. Before executing recovery behaviors, the system
temporarily blocks the main task execution by setting a condition that is reverted after the error is
corrected. Hardware-wise, the system monitoring continuously checks the CPU, random-access
memory (RAM) and network load and additionally the time differences based on NTP if different
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host computers are used as part of the robot. ROS nodes are continuously checked for if pings
are received and if actual topic publishing rates are within a tolerance band. Additionally, specific
monitors check whether there is a valid loop closure in the localization system and if there are error
cases in the navigation system. Each monitor includes an individual warning and error range, the
activation of which serves as an input to the BT-based arbiter that responds deterministically to the
different error cases. The structure of the monitoring system is shown in Fig. 5.6.

System entities (i.e. programs or ROS topics) to monitor are organized in configurations for differ-
ent use cases, such as regular operation, charging, or mapping. Configurations may be switched
autonomously or manually, with all currently unneeded programs from other configurations termi-
nating after the change. Monitor-specific detection signals determine whether an error is present
and all error messages are aggregated and fed into the BT. Table 5.1 summarizes these signals
together with the associated recovery reaction.
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Figure 5.6: Structure of the monitoring framework.

Name Detection Reaction
Node monitor Node not pingable Restart node

Topic monitor Publish frequency not
in tolerance band

Restart publishing
node

CPU, RAM, NTP,
Network Monitor

Not in tolerance band Send message

Navigation monitor No global path found
and MoveBase recov-
eries failed

1. Wait and retry

2. Move backwards

3. Ask Supervisor

Localization monitor No loop closure de-
tected

1. Slow rotate

2. Restart
localization

3. Slow rotate

4. Ask Supervisor

Table 5.1: Overview of the utilized monitors with
detection signal and reaction.

Similar to [MMWG11], the approach is that maximum robustness may not be achieved by full
autonomy alone but by planned interventions by supervisors in case of failures. Therefore, the last
resort for navigation and localization errors is a predefined request to a list of supervisors, in which
the robot sends an instant message with a URL. The linked website then allows for teleoperation
based on the camera views, or the current position on the map can be specified. This simple system
intervention usually takes less than a minute of the operator’s time but prevents a total failure of the
system. Once the problem is fixed, the operator confirms this, and an all-clear is sent to the other
supervisors.



5.3 Reactive Task Control and Monitoring System 83

5.3.2 Results

The system monitoring is validated in a 16-day deployment of the mobile robot Sobi, introduced
in chapter 2. In addition to the effectiveness of monitoring, the evaluation demonstrates the LTA
capabilities of Sobi and its components, such as localization (cf. section 3.2.1), navigation or
docking (cf. section 2.1.3).

The robot’s task is to permanently patrol one office floor during office hours (9 a.m. – 5 p.m.) on
weekdays. Part of the floor is a corridor connected to several offices, workshops, laboratories, and an
entrance area. The metric and topological maps of the environment are shown in Figure 5.7. Outside
office hours, and as soon as the battery level falls below a specific threshold, Sobi autonomously
approaches the charging station and performs the charging process.
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Figure 5.7: Environment used for validation. Dots indicate nodes, and blue lines indicate edges of the
topological map. The robot continuously patrols between the shown waypoints randomly.

Covid-19-related hygiene regulations are in place during the evaluation in the year 2021, requiring
employees and visitors to wear face masks inside the building. Therefore, visual mask recognition
is implemented as part of the patrol task. In addition to automated verbal requests to comply with
hygiene regulations, the number of detected faces is a measure of the environmental dynamics
since crowded environments pose a more significant challenge for LTA systems. The detection
is realized in a frequency of 0.5 Hz as a binary classification via the YOLO framework [RF18]
with 600 images containing both mask and no mask classes (Average precision on 100 validation
images: 92.9 % for the mask and 82.34 % for the no mask class).

Table 5.2 summarizes the number of detections together with typical LTA metrics and Table 5.3
gives an overview of the performed recovery behaviors. As in [HBJ+17], a recovery behavior is
considered successful if no further recovery of the same category needs to be performed within one
minute. An additional requirement for navigation recoveries is that no recovery must be performed
within a circle of 1 m radius within this time.

In total, the robot was undocked from the charging station for 71.2 h, of which 65.4 h were spent in
motion. The latter indicates the duration the robot performed its patrol task and was not in an error
or recovery state. Relative to an 8-hour workday, this yields an autonomy percentage A%(8 h) of
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Metric Value
Timespan 12 days
Mean time operating per day to 5.9 h
Mean time moving per day tm 5.5 h
A%(8 h) = tm/8 h 69 %
A%(to) = tm/to 93 %
Traveled distance 66.6 km
Mean TSL 56.7 h
Max TSL 90.6 h
Detected faces with mask 983
Detected faces w/o mask 101
Successful docking attempts 27/28

Table 5.2: Metrics of the deployment.
Weekend days are excluded.

Type Reaction # success
ROS Restart node 32 62.5 %

N
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Wait and retry 194 78.8 %
Move backwards 41 87.8 %
Ask supervisor for
teleoperation

5 100 %

L
oc

al
iz

at
io

n


Slow rotate 76 84.2 %
Restart localization &
rotate again

12 66.6 %

Ask supervisor for
relocalization

4 100 %

Table 5.3: Executed recovery behaviors sorted by cate-
gory.

69 %, which is an indicator of the percentage of available time that the robot uses to provide its
services (patrolling and mask checking). In this case, the parameter is mainly influenced by the
average additional charging time of 2 h during the day. With respect to the time the robot was active
(not charging), the autonomy percentage A%(to) is 93 %, which emphasizes the high availability of
the system.

As evident in Table 5.3, most occurring problems can already be solved by waiting and going back
(in case of navigation errors) or slow rotation and restarts (in case of localization errors). A typical
quantity for evaluating overall system robustness is the total system lifetime (TSL), which specifies
the time interval between interventions by supervisors that were not explicitly requested by the
robot in the event of a failure. Four of such interventions were necessary during the evaluation
period, resulting in the TSL values shown in Table 5.2.

5.4 Incorporating Symbiotic Autonomy

The results of the previous section indicate that system errors may often be fixed automatically
or by teleoperation, if necessary. However, these solution strategies are limited to problems that
do not require physical intervention. Many problems, such as blocked paths or closed doors,
require the direct help of people on site and the integration of symbiotically autonomous processes.
Therefore, this section introduces an approach to extend a BT by a search for help based on a
human-activity model through a combination of waiting and searching behaviors. It is assumed that
finding people faster will lead to faster problem-solving. Further steps of the symbiotic process,
such as verbally asking for help and solving the original problem, are strongly case-dependent and
are not considered part of this work.
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The goal of the BT extension is to set up a sequence of actions to maximize the probability of
meeting a person. To create the tree, wait and search actions are defined (cf. section 5.4.2) and
intelligently assembled to form a BT (cf. section 5.4.3) that performs waiting and searching at
different locations. Underlying the synthesis of these actions is a model that gives a spatio-temporal
indication of human activity and is required to follow a specific form, which is introduced in the
following section.

5.4.1 Integrating Models of Human Activity

The human-activity model is supposed to provide a temporally dependent estimation of the time
until a person arrives at a specific location xs ∈ R2. As commonly done [Ibe13], this interarrival
time is assumed to be of exponential distribution, which is entirely defined by a rate function
λ (xs, t). For stationary and independent increments with exponentially distributed interarrival
times the corresponding stochastic process modeling the count of people is the POISSON process.
With Poisson-distributed random variable N(X) (with spatio-temporal region X ⊆ D × R, where
D ⊂ R2 is a spatial region), the probability of N(X) being equal to a count c is given by

p (N(X) = c) =
(λ(t)t)c

c!
e−λ(t)t with c = 0, 1, 2, ..., (5.5)

where
λ(t) =

∫
D

λ (xs, t) dxs (5.6)

and counts are regarded as the sum of single, independent people occurrences. As learning the full
continuous rate function λ (xs, t) is an expensive process, it is often approximated by a 2D grid
representation [LDA11; TA11]

G : λ (xs, t) ≈
mgrid∑
i=1

ogrid∑
j=1

λijτ1ijτ (xs) (5.7)

with G : Rmgrid×ogrid → R, indicator function 1ijτ (x) and λijτ as the constant rate of a piece-wise
homogeneous Poisson process, valid in a time interval [tτ , tτ+1). Learning the constant rates λijτ
may then be achieved by Bayesian inference with Gamma-distributed prior λτ ∼ Γ (λτ ;ατ , βτ )

with ατ directly resulting from people detections and βτ by incrementation [LDA11].

As introduced in chapter 4, a spatio-temporally continuous rate function can also be obtained by
GAUSSIAN process regression (GPR). The model may either be realized as a LOG-GAUSSIAN-
COX Process (cf. section 4.3.2) or with a normally distributed likelihood, as done with the proposed
method CoPA-Map. The normal distribution as the limiting distribution of the POISSON distribution
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[GK20] approximates it for λ→∞. Following the notation from section 4.2.5, the expected value
and variance of the rate result as

E [N(X)] = Var [N(X)] = λ(t) ≈
∫
D

my (xs, t) dxs. (5.8)

In practice, this approximation may already be used for values λ ' 10 if continuity correction is
performed [GK20]. Here, values of this magnitude can be achieved by selecting an appropriately
large size for region X . Further introduced methods of this chapter are independent of the specific
formulation of the rate function λ. Regarding the notation, a continuous function λ (xs, t) is
assumed.

5.4.2 Definition of Atomic Actions

Based on a model of human activity, the goal is to set up a sequence of actions to maximize the
probability of meeting a person, or in other words, to determine if and where the robot should
search for or wait for people. These behaviors are realized by stochastic BT actions, i.e., by defining
nodes of an SBT (cf. section 5.2.2). To create the tree, the atomic actionsWA,i (Wait at place xi)
and SA,i→j (Search from place xi to place xj) are defined, where a place xi ∈ R2 refers to a point
on the map of the environment. As the robot perceives the environment only partially, the detection
area D defines the robot’s field of view. Following sections 2.1.2 and 4.2.2, this area can assumed
to be a circle with radius rD. Figure 5.8 illustrates the wait and search actions.

It is assumed that there is a number of npl known places the robot could move to and wait at,
including the robot’s position x0, which is the location where help is needed (section 5.4.3 shows
how npl and the corresponding places are determined). To decide between different behaviors (i.e.
behavior trees), the tuple Asbt : 〈ps(t), pf(t), µ, ν〉 must first be defined for each type of action.

x1

x2

D0

rD

Current robot pose

Human activity
modelλ

(a) Wait action

x1

x2

D1

S0→1

S1→2

x1

D2

tk

tk+1

x2

(b) Search action

Figure 5.8: Exemplary arrangement of different search locations xi and paths Si→j in case a robot needs to
enter a room. Detection areas with detection radius rD are denoted as Di.
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The wait actionWA,i returns S when a person is found and F when a maximum time has been
reached. The exponentially distributed success rate µw then results directly from the property that
the interarrival times of people are exponentially distributed. When the robot starts waiting at a
time t0 at a location xi, the probability density function of the exponential distribution

f(t;µw) =

{
µwe

−µwt t ≥ t0
0 t < t0

, with µw =

∫
Di

λ (xs, t = t0) dxs (5.9)

describes the waiting time. This assumes that the rate λ can be considered constant while waiting.
The corresponding cumulative distribution function

ps,w(t;µw) =

{
1− e−µwt t ≥ t0
0 t < t0

(5.10)

gives the probability of meeting a person. By manually specifying the desired confidence p′s >
ps,w(µ

−1
w ;µw), this equation can be rearranged to estimate the expected waiting time T ′ until the

next person appears. If no person appears after T ′, the wait action is considered as failed, resulting
in the mean time to fail:

ν−1
w = T ′ = − log(1− p′s)µ−1

w . (5.11)

Because the wait action will never fail before T ′ has passed, the failure probability is defined as

pf,w(t;µw) =

{
1− p′s t ≥ t0 + T ′

0 t < t0 + T ′ . (5.12)

For proactive search, a search path is defined as

Si→j : 〈xi,xj,G, lsp, v̄sp〉, i, j ∈ {0, 1, ..., npl}, i 6= j, (5.13)

where xi and xj are the start and end places, G ⊂ R2 is the geometric description, lsp is the length
of the path and v̄sp the average velocity of the robot while driving on the path (“sp" denotes search
path.). G and lsp result directly from a geometric path planner (such as the A* algorithm on an
occupancy grid map), and v̄sp can either be determined empirically or based on the settings of a
local path planner. Similar to the wait action, the search action SA,i→j = Asbt ∪ Si→j returns S as
soon as a person is found and F if the whole path was driven without finding anyone. Additionally,
this action can also return F if the navigation execution fails, e.g., due to an obstructed goal. While
the robot moves on the path, it observes different areas of the human-activity model, each for an
individual time. This imposes a time dependency on the success rate

µsp(t) =

∫
D(t)

λ (xs, t = t0) dxs. (5.14)
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The rate is calculated by discretizing the path with tk = k∆t and calculating the corresponding
rate µsp,k for each point in time. Figure 5.8.b illustrates this as an example of different paths in an
environment.

The minimal time until finding a person on the path results from the sum of the time tk and the
expected arrival time (as in eq. 5.11) to

µ−1
sp,tot = argmin

tk∈[t0,t0+lsp/v̄sp]

(
tk − log(1− p′s)µ−1

sp,k

)
. (5.15)

Here, p′s again is a confidence value, and t0 is the time when the search is started. The success
probability ps,sp(t) of finding a person on the path follows as the converse probability of not having
found anyone until time t to

ps,sp(t;µsp) = 1− exp

∫ t

t0

µsp(t̃)dt̃. (5.16)

If nobody has been found until the goal is reached or the navigation fails, the action search person
is considered as failed. The fail rate νsp is approximated by

νsp =
v̄sp
lsp

+
v̄sp
lfail

, (5.17)

where lfail is an expected distance the robot can move until a navigation failure occurs, which is also
assumed to be exponentially distributed. This value can, for instance, be estimated by observation.
Before the proactive search action is finished, the action can only fail due to the navigation and
only after it has been finished due to not finding a person. The probability pf,sp(t; νsp) to fail is,
therefore, defined as a piece-wise function:

pf,sp(t; νsp) =

{
1− ps,sp(ν−1

sp ;µsp), t ≥ ν−1
sp

1− exp(− v̄sp
lfail

t), t < ν−1
sp

. (5.18)

Introducing lfail into eq. 5.17 increases the probability of failure for longer search paths, giving
preference to shorter paths with an otherwise equal chance of finding a person. For eq. 5.18 to be
applicable, the condition

ps,sp(ν
−1
sp ) ≤ exp(− lsp

lfail + lsp
) (5.19)

must hold due to the law of total probability. This is fulfilled for lsp � lfail, which is the case for
the present application since all longer paths can be discarded to avoid searching far away from the
help location.
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5.4.3 Stochastic Behavior-Tree Synthesis

Based on the wait and search actions, an action rule must now be found that maximizes the
probability of finding a person, considering the return time to the help location. Therefore, the
person search behavior tree (PSBT) is defined as a sequence of actions that should be executed
when the robot faces a task that cannot be solved by itself. For this, a fallback behavior is defined,
with a general form as shown in Figure 5.9.

PSBT

→

?

WA,0 SA,0→1 →

Navigation
successful

WA,1

SA,1→2 →

Navigation
successful

WA,2

. . .

Move to x0

→

Symbiotic
error →

Build PSBT ?

PSBT Move to x0

Human-activity
model

Figure 5.9: General form of the PSBT. This tree is executed when the robot needs human help (Symbiotic
error← True), for example, when a door must be opened and the robot has no manipulators.

The tree contains a Move to x0 action, which describes the movement back to the start location
and is interpreted as a search action that can only fail due to the navigation. To create the PSBT,
λ (xs, t) is spatially discretized and a number of npl cells is sampled, where the probability p of a
cell to be selected is p ∝

∫
cell
λ (xs, t = t0) dxs.

If sampled cells are close to each other (the EUCLIDEAN distance is smaller than the radius rD
of the FOV D), only the cell with the larger rate λcell is kept. Also, only cells with variance and
distance to the robot below-specified thresholds can be sampled. Subsequently, all wait actions
WA,i and search paths SA,i→j (∀i, j ∈ {0, 1, ..., npl}, i 6= j) are calculated. The search order is
set by means of an open traveling salesman problem (OTSP) with places x0...npl

as nodes and the
inverse of the failure rates ν−1

s,i→j (expected times to fail) as costs for the corresponding graph. This
is required to reduce the complexity O(npl!) of investigating all possible sequences to search all
places x1...npl

The OTSP is solved by genetic algorithm [Dav10]. The next step is the stochastic
analysis of all possible BTs to obtain an estimate of the success probability ps,T(t) and success
rate µT of the tree (according to eq. 5.1 and eq. 5.3) as the basis for decision-making. Each tree’s
flow is decomposed as a DTMC by solving the CAUCHY problem in eq. 5.2 with the infinitesimal
generator matrix Q(Asbt,sp,Asbt,w) until a pre-defined look-ahead time tmax, with all search and
wait actions collected in Asbt,sp and Asbt,w, respectively. The decomposition is calculated for every
possible case, i.e., driving to specific places (or not), waiting there (or not), and finally returning
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to the help location, leading to a total number of 3npl + 1 executions. The preferred tree is then
chosen as the tree with maximum ps,T(tmax).

5.4.4 Results

The experimental evaluation is divided into two parts: firstly, the performance evaluation of PSBT
based on the human-activity model, and secondly, a comparison of the time to find people under
real-life conditions with other methods. The ground floor of a multi-story 50 m by 25 m university
building serves as the environment for evaluation, as depicted in Figure 5.10. The area includes
lecture halls, a cafeteria, several entrances, and sitting areas. For the real-world experiments, the
mobile social robot Sobi is used with the people perception and tracking pipeline presented in
section 2.1.3. A human-activity model is trained as a grid model (cf. eq. 5.7) with data from two
working days by moving the robot throughout the day to different places on the entire floor so
that the same locations are observed at different times of day. Only people tracks with a minimum
observed time of 3 s in a range of 5 m are used for training, resulting in a total number of 18,362
tracks. This relatively high number resides in the fact that the robot partly loses the same person for
a short time and then re-detects them as a new track. It is also considered a new track if a person
moves more than one meter or is detected for more than 20 s. The following parameters were
chosen for the experiments: mgrid = 50, ogrid = 25 (grid cell resolution of 1 m), detection radius
rD = 2m, confidence p′s = 0.9, path discretization ∆t = 1 s, expected distance lfail = 100m,
average velocity v̄sp = 0.5m s−1, sampled goals npl = 6, DTMC look-ahead time tmax = 200 s.

50 m

λ

Study area

Storage room Café

Lifts

Figure 5.10: Occupancy map and human-activity model of the evaluation environment.
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Model-based Evaluation

person search behavior tree (PSBT) is compared with five other strategies:

Greedy planning to the global maximum (GM) heuristically plans to the location with maximum
occurrence rate λ and waits there.

Greedy planning to a close maximum (GC) is similar to GM, but plans to the closest cell out of
the nλ cells with highest rate and waits there (nλ = 50 in this evaluation).

Uniform random sampling of goals (RND) samples the same number of goals npl like PSBT
without regarding the rates of the corresponding cells and randomly waits at the locations.

Wait at the help location (W) is the trivial approach as described.

Purely proactive (PP) samples the goals in the same manner as PSBT, but never waits at sampled
locations in order to only search proactively.

Firstly, the different methods are compared offline based on the trained human-activity model. Five
hundred accessible poses are sampled randomly on the occupancy grid map of the building as
starting poses for the search for helpers. Then, the probability of success ps,T(tk) is calculated
using the methods presented in section 5.4.2. The comparison is shown in Figure 5.11.a for seven
points in time (every 20 s).
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(a) Success probability distribution of the BT root nodes at seven points
in time for 500 randomly sampled starting poses on the map.
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Figure 5.11: Metrics for model-based evaluation

Although the observable variance shows a dependency on the starting pose, PSBT outperforms the
other methods, leading to an on average 5.7 % higher probability of success after 140 s than the
following best method (GM). The PSBT is always at least as good as waiting at the help location
(W) because the stochastic analysis also explicitly considers this case and can execute it accordingly.
Figure 5.11.b shows the expected time to success µ−1

T for the four best methods. The time µ−1
T

refers to the expected time to find a person and then return to the help location. Here, the expected
time for the PSBT is ca. 11 s higher on average than for GM, which is due to the property that
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the DTMC decomposition yields more conservative estimates of the success rate for an increasing
number of fallback child nodes. Additionally, the resulting probability distribution ps,T(tk) from
the DTMC is not exponential, so it is not precisely correlated to µ−1

T . The performance of the GC
method is strongly location dependent, which is reflected in its spread of data for µ−1

T . Figure 5.12
shows two exemplary help locations in front of doors and the corresponding BTs. The location
xstor (cf. Figures 5.12.a and 5.12.b) is in front of a door to a storage room without a large number
of people coming and going. While the greedy strategies aim for the closest (or global) maxima,
the PSBT strategy moves to the nearby building entrance (x1), waits there, and then proceeds to
move along the lifts to the global maximum (a sitting area). The second start location is one of the
entrances to the cafeteria xcafe (cf. Figures 5.12.c and 5.12.d), which is located in an area with a
higher volume of people. Here, the PSBT strategy first waits on site before proactively searching
for people, while the greedy strategies again aim for the maxima.

PSBT GC GM PP
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study area

(a) Search paths for location xstor.
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(b) Search BTs from xstor for PSBT and PP methods.
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(c) Search paths for location xcafe.
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(d) Search BTs from xcafe for PSBT and GC methods.

Figure 5.12: Exemplary search paths and corresponding BTs of PSBT and selected methods for comparison.
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Real-World Experiments

Additionally, real-world experiments are conducted to demonstrate the efficiency of the presented
approach. The aforementioned methods are tested over five working days for the two different
start locations from Figure 5.12. The same constant human-activity model is used for all methods,
which are tested alternatingly to compensate for biasing effects (e.g. events in the lecture halls or
the time of day).

A single run includes online planning according to the corresponding method and the subsequent
search for people. Instead of approaching the sampled goals directly, the closest reachable pose in
a radius of 2 m around the goal is chosen, allowing the sensors to be oriented towards the goal. A
person is considered as found if a detected track dped,k of a person is within the detection radius rD
in front of the robot for a period of at least 3 s. After a successful search, the robot returns to the
starting position, and the required time for the whole run tr is saved. A run is considered failed
when the search tree returns F, i.e., when all search and wait actions were executed without finding
anyone. Successful searches based on false-positive person detections are removed manually from
the evaluation.

The waiting time for all methods is determined according to eq. 5.11 based on the confidence value
p′s. Figure 5.13.a shows the results for xstor as the starting location. All proactive methods perform
significantly better than waiting at the help location (W). Table 5.4 summarizes the mean time t̄r
with standard deviation, which was calculated for the successful runs only.
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Figure 5.13: Run time tr for successful searches.

Although the greedy methods can be faster, PSBT-based search is successful in substantially more
cases. Since the greedy methods only approach one maximum and remain there, the success
depends strongly on whether people can be recognized at this specific location. For example,
the global maximum in this environment was a resting area, often occupied by people in slightly
different spots, which are then difficult to detect when using a static waiting location. This is also
reflected in the high success rate of the PP method, as it is more likely to detect a person directly in
front of the robot during the proactive search. A low success rate is also problematic in that it takes
time to determine that all actions have failed (here, always more than 200 s). Therefore, PSBT
would still be faster on average compared to GC/GM. An essential advantage of the PSBT method
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Experimental results Model estimation
Place Method Trials % successful t̄r in s µ̄−1

r in s p̄s,T(tmax)

xstor PSBT 86 98.8 % 120.5±61.2 139.5±8.7 0.87±0.01
PP 93 88.2 % 115.4±52.3 150.8±7.0 0.85±0.01
GM 86 62.8 % 101.1±22.4 121.5±0.0 0.81±0.00
GC 90 65.6 % 89.1±49.7 108.1±0.0 0.81±0.00

xcafe PSBT 112 91.1 % 35.5±28.2 49.9±0.0 0.99±0.00
PP 121 90.1 % 63.0±48.9 126.8±6.0 0.86±0.01

Total PSBT 198 94.4 % – – –

Table 5.4: Results of the experiments with averagely estimated expected time to success µ̄−1
r and averagely

estimated success probability p̄s,T(tmax). Quantitative results are given as mean ± std. deviation.

can be seen for highly frequented areas like xcafe (see Figure 5.13.b). Here the two best methods
from xstor are compared to emphasize the difference between exclusively proactive search (PP) and
intermittent waiting (PSBT). The exclusively proactive PP method takes longer on average to find
a person and return to the start location since PSBT correctly decides that it is more worthwhile to
wait on-site. Although not evaluated, it should be noted that the greedy strategy GC would lead to
similar results as PSBT here (see, e.g., the waiting location of GC in Figure 5.12.b).

Based on the expected time to success µ−1
r and success probability ps,T(tmax) the model gives an

estimate of the performance of the different methods and the necessary time to find a person, thus
providing a good estimation for decision making. It provides more conservative estimates for the
duration since cells with high variance are ignored in the calculation. Furthermore, the assumed
average velocity of the robot v̄sp during the movement was often exceeded in the test runs. The
calculation time of the PSBT averaged 4.8 s for all test runs (Intel i7-7700T CPU), which allows
for online execution. To summarize, in 198 trial runs, the proposed method PSBT can produce
suitable predictions of the time until success and found people in 94 % of all cases, which is a
higher rate than all other compared methods.

5.5 Conclusion

This chapter introduces a reactive task-control and monitoring system for long-term-autonomous
robots. Using behavior trees (BTs), a modular system extends arbitrary task-control mechanisms
by setting starting and stopping conditions and monitoring system variables. Since the reliability
of a robot’s software components is essential for long-term-autonomous applications, executed
programs and basic skills, such as localization and navigation, are monitored and recovered in
prioritized order. The system is evaluated in a continuous 16-day deployment of a service robot, and
typical LTA metrics are recorded. The results show that the automated failure recovery strategies
lead to uninterrupted autonomy for multiple days.
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For failure cases that can neither be solved autonomously nor by remote supervision, an approach
is introduced to involve humans in problem-solving proactively. With PSBT, a method is presented
to find potential helpers in problematic situations, such as blocked passages or closed doors. PSBT
automatically synthesizes a BT based on an activity model that indicates the occurrence rate of
people in an environment. Especially compared to purely proactive search, or not searching at
all, the search time can be significantly reduced by actively deciding for or against waiting at the
help location. Again, the BT framework enables a modular formulation of the search problem and
easy future expandability to include further actions, such as approaching and talking to people or
accompanied drives to the help location. This distinguishes PSBT from state-of-the-art methods,
which usually employ tailored low-level cost functions that are hard to extend with actions of a
different type. One limiting feature of PSBT is its O(3npl) complexity, constraining its application
to a few individual search locations. Although this is not necessarily a disadvantage in practice
(symbiotic search is only reasonable in close vicinity), heuristics or approximations could be
investigated to reduce complexity in large-scale environments.
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6 Conclusion and Future Work

Technological advances have enabled robotic systems to make their way into many new areas over
the past decades. They can be used in increasingly complex environments for extended periods.
Service robots that perform simple cleaning tasks at home, make hotel deliveries, or provide
information services in shopping malls are now part of many people’s everyday lives. To be helpful
and to relieve humans of tasks, these robots require a degree of autonomy. However, achieving
reliable autonomy over long periods is a significant challenge regarding the robot’s hardware and
software components. With the assumption of static environments, many methods exist in the
state of the art in areas like localization, environment modeling, navigation, and task planning.
In real applications with multiple moving people and objects, changes over time, and varying
environmental influences, such an assumption is no longer valid. Therefore, intelligent robots that
dynamically modify and expand their internal models, learn continuously, and adapt their behavior
are a highly relevant research topic.

6.1 Summary

This thesis proposes several approaches to improve the long-term autonomy of service robots. In
contrast to many works from the state-of-the-art, a holistic research effort with experiments based
on real-world data and an actual robot is chosen for this purpose. Besides introducing a new service
robot system, methods for simultaneous localization and mapping, modeling of human-induced
dynamics, and subsequent task execution are presented.

The basis for experimental investigations is the service robot Sobi, designed for applications inside
and outside buildings. These varying characteristics are considered in the component selection and
design, enabling robust sensory perception of environmental features. One focus is the person-
detection pipeline that uses multi-modal sensor information. Experimental results demonstrate its
suitability for further processing in terms of precision and accuracy.

The idea of using multi-modal sensor information is then carried forward to improve the robustness
and accuracy of localization and mapping. Research question 1 (cf. section 1.2) is answered in
summary by extending (graph-based) SLAM methods to further utilize multi-modal sensor data.
Initially, the V-SLAM method RTAB-Map is modified to include 3D Lidar data, as significantly
more environmental features and a larger field of view are taken into account. The combined
classification and registration routine allows improved mapping and localization in dynamic
environments. A map-management system efficiently captures heterogeneous environments by
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partitioning, specifically parameterizing, and graphically linking them. Resultingly, improvements
in terms of map quality are observed.

Based on the assumption of robust self-localization and a known map of the static areas of
the environment, chapter 4 then introduces the continuous pedestrian activity map (CoPA-Map).
As a regression model, the method allows spatio-temporal prediction of person occurrence in
a continuous representation. Consistent with research question 2, the regression is performed
based on long-term observations of humans by a mobile robot. As an answer to this research
question, it can be concluded that a heteroscedastic likelihood function can effectively represent the
heterogeneous distribution of detected people resulting from moving robots. Besides classical error
measures on the prediction quality, it is shown that CoPA-Map is especially suitable for effective
path planning.

Building on the idea of using human-activity models for effective path planning, an executive
system for LTA is introduced to actively search for people in the event of faults. First, it is shown
for the Behavior-Tree-based system that targeted recovery behaviors enable long-term-autonomous
performance using the robot Sobi as an example. The last research question 3 is then addressed
by synthesizing a behavior tree for efficient person search in case of problems based on a human-
activity model. It shows that people can be found faster than with other methods and that an
interpretable and extensible task description structure emerges.

6.2 Future Research Directions

The various approaches presented in robot design, SLAM, activity modeling, and task control
represent contributions to diverse areas of long-term autonomy. This diversity raises further research
questions in different categories summarized below.

6.2.1 Robotic Platform and SLAM

Long-term autonomy in mixed environments. Long-term tests with the service robot Sobi are
presented in section 5.3.2 for an indoor area. Although the robot was also designed for outdoor
areas and methodologically evaluated to some extent (cf. section 3.2.3, section 3.3.4), long-term
investigation of the autonomous system in these areas is an open problem. Varying weather and
temperature influences are particularly relevant. Extending the open source system [Stu22] with
additional sensors is conceivable. For instance, humidity and air pressure sensors could help in task
planning to avoid rain and to determine the current level in a building, respectively.

Absolute positioning. All presented localization and mapping techniques are based on relative
self-pose estimation via the robot’s perceptive sensors. Although this is a common approach, it
requires making certain assumptions in chapter 3. The search area for loop closures is generally
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defined based on the odometry’s uncertainty estimate, which is not feasible when an existing map
is extended. Additionally incorporating absolute position information would allow to limit the
search area globally, reduce errors in strongly repetitive areas, and select maps spatially. Depending
on the robot’s deployment area, WiFi mapping [AD19], Bluetooth beacons [GFFM18], or global
positioning system (GPS) are suitable options.

Dynamic map modification. In this work, an increase in the robustness and accuracy of SLAM
methods is generated primarily by a strong focus on multi-modal sensor properties to create a
robust map representation. For example, the fact that laser scans improve localization regardless of
ambient light is primarily inherent to the technology and not only to the method used. As presented
as part of related works (cf. section 3.1.2), map representations may be modified and extended
in a time-dependent manner. When the environment changes, already mapped areas could be
exchanged, subdivided [HDFF16], or recorded with a new configuration. Until now, the individual
configurations are manually parameterized to predefined conditions (short-range, long-range areas).
Parameterizing them automatically via feedback of map consistency and localization quality could
further reduce the need for expert knowledge.

6.2.2 Spatio-Temporal Human-Activity Map

Adding direction and speed. CoPA-Map is created as a single-output GAUSSIAN process
model that indicates human activity in terms of people occurrence rate. As seen in the last chapter 5,
a scalar-valued model is sufficient to find people efficiently. However, adding other output variables,
most importantly predicted mean velocity and direction of motion, offers advantages [VMS+19;
MCD21]. Mobile robot systems could thus adapt their path planning to the preferred walking
direction and act cautiously when there is a rapid flow of people. One approach to incorporate these
outputs into CoPA-Map could be to keep heterogeneous inputs and utilize multi-output GAUSSIAN

processes [MAA18]. However, the multi-modal characteristics of motion directions could be
challenging to capture with a single GP model. In this case, combining different GP experts or
Bayesian committee machines are potential research directions [LOSC20].

More prior information. An essential part of CoPA-Map is the introduction of prior informa-
tion like periodicities and smooth spatial interrelationships as part of the GP framework. The
implemented kernels are stationary, i.e., the covariance between input points depends solely on
their Euclidean distance. However, people’s movement is strongly non-stationary due to obsta-
cles, pre-defined walking paths, or grouping effects. Additional prior information, e.g., a map
of the static environment (walls), could be used to improve prediction quality further. Currently,
CoPA-Map utilizes occupancy map representations only to calculate observation durations as part
of the training dataset. These maps could also be incorporated to encode that people usually move
away from obstacles (and not through walls). Implementation could be realized by constraining the
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GP model spatially [SK19] or by a combination with pre-trained models that output predominant
directions given the map [VKK22].

Sparse data in large-scale. For the evaluation of CoPA-Map, different simulated paths are
used, which cover a maximum area of 100 m2–200 m2 (cf. section 4.3.4). Two properties mainly
limit the application in larger environments. First, increasing data would require more advanced
approximations of the GAUSSIAN process regression. In addition, very infrequent visits to certain
areas would make temporal reconstruction (frequency analysis) difficult. A combination with the
map management system (cf. section 3.3) could be explored for the first aspect. Separate GAUS-
SIAN processes could be investigated using Product-of-Expert, or Mixture-of-Experts approaches
[LOSC20]. One relevant question in the context of multi-layer map arrangements would be whether
the input resolution can be reduced to such an extent that single predictions are made, e.g., for
entire rooms. This would also reduce the need for the robot to visit all individual, small-spaced,
locations frequently.

6.2.3 Executive System for Long-Term Autonomy

Completing the symbiotic process. The method PSBT is introduced to efficiently search for
people as part of an LTA monitoring system. One assumption is that finding people faster will lead
to faster problem-solving. In further work, this assumption should be softened by implementing
further steps of actively asking for help. This includes approaching a person, verbally asking for
help, moving together back to the help location, and recognizing successful problem-solving. There
are many overlaps to the research area of human-robot interaction that could be investigated, e.g.,
in the form of social acceptance studies. In this regard, it should be noted that the influence of the
robot itself on the environment has yet to be considered in the methods presented. People behave
differently when a robot is present than when it is absent (wow-effect [FDO+20]), influencing
human-activity modeling and people search.

Integrating planning and scheduling. The presented Behavior-Tree-based monitoring system
acts reactively, inter alia, by utilizing a model of human activity. In long-term operation, it may
be desirable to actively extend this model, e.g. by employing CoPA-Map’s predictive uncertainty
estimation. The timing of exploration activities requires a combination with a task scheduling
system since the robot must continue to perform its services. Additionally, the model of human
activity could be used in problem cases and for active task planning. For example, an info-terminal
robot could offer its services when there is a high volume of people and make deliveries at other
times. Current research implies the suitability of planning-based synthesis of behavior trees for this
automated task generation [LPS+21; SIN+22].
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A Lidar-based Loop Closure Detection: Parameters for
Evaluation

Parameter Description Indoor Outdoor KITTI

Loop search
pmin Loop detection threshold 52.4 % 52.9 % 52.4 %
rmin Minimum loop search radius 3 m 3 m 7.5 m
β Scale factor for uncertainty-dependent search

radius
0.25 0.25 0 (n.a.)

Registration
lvox Voxel cube length for filtering pre-registration 0.03 m 0.03 m 0.2 m
rlim Maximum EUCLIDEAN distance from sensor

origin for filtering pre-registration
30 m 30 m 30 m

ilim Minimum point intensity for filtering pre-
registration

5 5 0 (n.a.)

zlim Minimum point height for filtering pre-
registration

0.3 m 0.3 m 1 m

np,max Maximum number of points after heuristic down-
sampling

7,000 7,000 7,000

tmax Maximum translation for registration 3 m 3 m 10 m

Verification
αmin Minimum ratio between local nodes and nodes

in WM to conduct local search
0.5 0.5 0.5

nstart Number of successful loop closures before
changing to local search

3 3 3

nver Number of verification nodes in neighborhood
for global search

2 2 2

rver Radius of neighborhood for global search 5 m 5 m 5 m
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