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Chapter 1

Introduction

The rapid development and widespread integration of Machine Learning (ML) and
Artificial Intelligence (AI) into various aspects of daily life are indicative of the tech-
nological revolution that has occurred in recent years. Once considered a non-core
area of computer science, these technologies have now become an essential element
of many industries influencing decision-making processes on a global scale [1]. With
the expansion of the use of ML, the number of critical decisions that are guided or
even made autonomously by ML algorithms is constantly growing. This trend is
reflected in a variety of different fields, from medicine to finance and engineering,
highlighting the huge impact and the disruptive potential of these technologies [2].
This reliance on automated decision-making systems raises the reliability and trace-
ability of their predictions as a key concern. Even though ML models and AI systems
demonstrate impressive capabilities in pattern recognition and prediction accuracy,
their interpretability remains one of the biggest challenges [3]. In particular, the
so-called ”black box models” - systems whose internal decision-making processes are
not directly transparent or understandable - pose a significant challenge for users
and researchers. The ability to interpret and explain the predictions provided by
these models is not only ethically desirable, but also essential for both practical
and legal reasons [4]. The current urgent need to interpret and explain ML pre-
dictions has led to the development of various interpretation tools [5]. Tools such
as LIME [6] and SHAP [7] offer approaches to gain more insight into the decision
making patterns of ML models. By breaking down the predictions into contributing
factors, they make it possible to capture and understand the significance of certain
features for the final result. The interpretability of ML models is of crucial impor-
tance, above all in the area of survival time analysis, an essential field of application
in medical research and reliability engineering. Survival ML models, predicting the
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Chapter 1. Introduction

lifespan or survival of patients under different conditions, offer valuable services for
decision-making in medical care and treatment. One such tool is SurvSHAP, which
was developed specifically for analyzing survival time data [8]. In the age of data
overload, the ability to effectively organize and understand complex information is
critical. This is where semantic web technologies come in by enabling a structured
and meaningful representation of data. In particular, knowledge graphs, which are
rich in structured information and relations, provide a unique opportunity to better
contextualize and interpret the decision making processes of ML models [9]. The
integration of semantic web technologies and knowledge graphs KGs into the inter-
pretation of survival ML models opens up a new era of model transparency and
explainability. The employment of knowledge graphs in the interpretation of sur-
vival ML models makes it feasible to visualize and analyze the relationships between
different influencing factors and predicted outcomes. This contributes not only to
understanding how certain features influence the predictions, but also why these
features are significant. By embedding the predictions and their interpretation in a
broader semantic context, researchers and users can better recognize and evaluate
the underlying patterns and dependencies that shape the predictions. use of semantic
web technologies promotes the development of interoperable and extensible systems.
By describing data and models in a standardized, semantically rich format, insights
and information can be more easily shared and reused between different systems and
studies. This is particularly relevant in precision medicine, where the integration
and analysis of heterogeneous data sources is essential for personalized treatment
approaches. This thesis focuses on the implementation of a new approach to apply
the SurvSHAP method and also introduces the InterpretME framework to the field
of survival analysis This makes it possible to perform survival data analyses and
semantify the results in order to create the InterpretME Knowledge Graph, which
describes the process and the results. This thesis is divided into five main chapters:
first, the introduction provides an overview of the topic and outlines the structure
of the thesis. This is followed by a chapter providing background information on
the main technologies and tools relevant to this work. The core of the work is the
implementation chapter, this is where a new approach of applying the SurvSHAP
process is introduced and discussed in addition to introducing InterpretME tool to
the world of survival analysis. This chapter describes precisely each step of the im-
plementation, introduces the developed components as well as the research questions
that guided this thesis. The final two chapters focus on the evaluation: here, the
test phases and the results of the implemented methods are presented and analyzed,
and the research questions posed previously are answered and discussed. Finally, the
conclusion provides a summary of the results achieved and draws final conclusions.
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Chapter 2

Background

This chapter introduces some basic concepts and technologies used in the scope of
this thesis. While this text provides foundational definitions, it does not claim to
be exhaustive. For a thorough and detailed understanding of the concepts, it is
recommended to consult the referenced literature.

2.1 Knowledge Graphs and Semantic Data

This section lays the groundwork for semantic data handling, focusing on Knowl-
edge Graphs, RDF, SPARQL, and the RML. Each concept is explored in detail,
highlighting its role and significance in the broader context of data interpretation
and management.

2.1.1 Knowledge Graphs Definition

A KG is a form of a heterogeneous graph, a directed graph in which each node is
assigned a type. A heterogeneous graph is described as a tuple G = (V,E, L, l),
where:

• V ⊆ Con represents the total number of nodes,

• L ⊆ Con represents the collection of all edge and node labels (Edge/Node
Labels),

• E ⊆ V ×L× V the complete set of edges that define the connections between
the nodes,
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Chapter 2. Background

• And l : V → L is what assigns a specific label to each node.

Within such a graph, the nodes (V) represent entities and the edges (E) represent
relationships between these entities. The labels (L) provide additional descriptions or
information about the types of nodes and edges. Knowledge graphs use this structure
to represent complex information and relationships in a way that is understandable
and accessible to both human users and machines. They are particularly useful for
applications that require rich semantic queries and data integration [10]. A KG can
be viewed as a network of various things related to a particular domain or area. KGs
are not limited to abstract concepts and relationships but can also contain instances
of things like documents and datasets. Figure 2.1 shows an example of a small KG,
if Germany is considered a node, ’capital’ could be an edge labeled ’is capital of’
connecting it to another node, Berlin, representing the capital city:

Figure 2.1: A simple example of a KG.

In the context of KG, ontologies are also frequently mentioned. Ontologies aim
to provide a formal representation of the entities in the graph. They are usually
based on a specific taxonomy, but since they can contain several taxonomies, they
are defined separately. Due to the fact that KGs and ontologies are both represented
in a similar way, i.e., by nodes and edges - and are based on the Resource Description
Framework (RDF) triple [11], they are usually similar in how they are visualized. For
example, the study of a specific venue such as the Camp Nou stadium in Barcelona
serves as an example of an ontology. Through an ontology, events in this stadium
are differentiated based on a variable such as time. A football club, such as Football
Club Barcelona, plays several matches in this stadium in a season. All of these
are football matches that take place at the same location. However, each event is
differentiated by date and time [11]. The term ”semanticdata” refers to a special
form of numeric data that provides additional information about the meaning of
the data entities besides the raw data value. This extra contextual information can
enhance the interoperability between different data sources and systems, leading to
a more efficient and accurate usage of data. To implement these improvements in
practice, various technologies such as the Protocol & Query Language (SPARQL)
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2.1. Knowledge Graphs and Semantic Data

query language and RDF play an important role in the Semantic Web community.
These techniques can make semantic relationships and meanings explicit so that they
can be used by machine learning and reasoning-based systems.

2.1.2 RDF and SPARQL

RDF was originally developed by the World Wide Web Consortium (W3C) as a stan-
dard for describing metadata [12]. It serves as a system for representing resources.
In practice, RDF is used on the Internet to formulate logical statements about vari-
ous objects, i.e., resources. Nowadays, RDF counts as a fundamental element of the
semantic web.RDFis similar to classical modelling methods such as Unified Modeling
Language (UML) class diagrams or entity-relationship models.RDF includes three
concepts: the subject, the predicate and the object. In RDF, the object is built by a
further resource or also by a further value. These three units form what is known as
a triple in RDF. This triple is also called a 3-tuple. In order to be able to perform
queries in the RDF data, various query languages have been developed. One example
of those query languages is SPARQL.

SPARQL is the query language for the Semantic Web, is adept at querying
RDF data, much like how Structured Query Language (SQL) is used for relational
data [13]. There are four primary types of SPARQL queries:. There are four primary
types of SPARQL queries:

• SELECT: This query specifies a table of all variables like X, Y , etc., that meet
certain conditions. It’s akin to selecting rows in a SQL query. The result is a
table where each row represents a set of variable bindings satisfying the query’s
conditions.

• CONSTRUCT: This type of query finds all variables such as X, Y , etc., that
satisfy specified conditions. It then places these variables into a predefined
template to generate new RDF statements. This process effectively creates a
new graph, which can be used for further data manipulation or visualization.

• DESCRIBE: This query is used to find all statements in the dataset that pro-
vide information about specified resources, identified either by their names or
descriptions. The result is a set of RDF triples that describe the attributes and
relationships of the resource(s) in question.

• ASK: This query type is used to check if there are any variables like X, Y ,
etc., that satisfy certain conditions. It returns a Boolean value – true if the
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Chapter 2. Background

conditions are met by at least one set of variables in the data, and false oth-
erwise. This is particularly useful for validating the existence or absence of
specific patterns or data points within the RDF dataset.

2.1.3 RDF Mapping Language (RML)

One more Term is to be explained in this context which is the RML (RDF Mapping
Language) [14]. RML is a language for mapping data into RDF records. While
RDF provides a general way to describe information, the actual data you want to
work with may be in a variety of formats such as XML, JavaScript Object Notation
(JSON), relational databases SQL, or others. RML provides a way to describe how
this source data should be transformed into an RDF graph. RML provides a way
to specify exactly how existing structured data should be transformed into RDF
triples [5]. This is important for integrating different data sources and making them
interpretable, especially in contexts such as data lakes, data hubs, or any system
that handles different types of structured and semi-structured data in this case the
InterpretME framework. The relationship between RDF and RML can be described
as follows: RDF provides the model for the data and describes how the resources
relate to each other. RML, on the other hand, provides the mechanism for translating
existing structured data into this RDF model [14]. Therefore, RML is often used as
a pre-processing step to transform data into RDF, which can then be queried with
SPARQL and integrated into other RDF-based systems.

2.1.4 SHapes Constraint Language (SHACL)

SHACL, serves as a verification tool that RDF graphs comply with certain criteria.
These criteria, defined as shapes and constructs, are represented within an RDF
graph. In the terminology of SHACL, the RDF graphs used for this purpose are
called ”shapes graphs”, while the ones evaluated against these shapes graphs are
known as ”data graphs”. Not only do shapes graphs in SHACL validate, but they
also provide a descriptive framework for the data graphs that fulfill these specific
criteria. Beyond validation, these descriptive frameworks have multiple applications,
including constructing user interfaces, generating code, and facilitating data integra-
tion [15].
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2.2. Machine Learning Interpretability

2.2 Machine Learning Interpretability

In recent years, ML has made an enormous progress, pushed by increasingly pow-
erful hardware, huge amounts of data and innovative algorithms. Today, ML has
the potential to change almost every aspect of our lives, from medicine to auto-
mated logistics and a whole lot more. However, while early ML models were often
considered ”white boxes” whose ways of functioning were clearly understandable
and interpretable, modern ML models, especially Deep Learning models, tend to be
”black boxes”. The term ”black box” is often used to describe models whose internal
workings are very complex to fully comprehend [6]. Users may input data into the
black box to receive an output (prediction), however the process by which the data
is processed and the utilization of this data by the ML model to finally deliver a
prediction remains largely unexplained and unknown. The black-box characteristics
of such models present a big challenge, especially when it comes to ethical, legal or
safety issues [16].

This leads to an urgent need for machine learning interpretability. Interpretability
goes far beyond academic discussions and has profound ethical and societal impacts,
and it implies the ability to answer the question ”what caused such a prediction?”.
The lack of interpretability of ML models could lead to incorrect medical diagnoses,
unjust legal judgments and even financial ruin. Therefore, it is essential to under-
stand the mechanisms behind predictions in order to minimize these risks and reap
the full benefits of the technology [6]. A scenario in which an advanced black-box
machine learning model is available to analyzeMagnetic Resonance Imaging (MRI)
scans and detect early signs of cancer cells. The model claims to be able to detect
cancer symptoms before any noticeable signs appear. Despite the model’s exceptional
accuracy rates, neurologists and radiologists are confused by its decision-making pro-
cess. This lack of transparency, despite the technology’s promising potential, could
ultimately prevent the technology from being widely adopted due to concerns about
its reliability and the impact on patient care.

ML Interpretability can address this issue by making the model’s decision-making
processes explainable and reveals the most important features for a prediction recog-
nizable. Interpretable ML models facilitates doctors to improve their understanding
of the results and now take appropriate early treatment actions. Thus, interpretabil-
ity is essential not only for physician’s trust in the technology, but also for compli-
ance with ethical and legal standards. Various techniques for interpreting black-box
models have evolved in the pursuit of transparency and interpretability in machine
learning. Among the most promising approaches are LIME and SHAP. [6]. Both
techniques offer unique ways to address the often-mysterious decision-making pro-
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Chapter 2. Background

cesses of modern machine learning models, each one offers theoretical and practical
advantages.

2.3 Local Interpretable Model Agnostic Explana-

tion (LIME)

Figure 2.2: LIME is a post-hoc explainable framework proposed by [6], that generates
local explanations for ML models [17].

LIME is a method for interpreting the predictions of sophisticated ML models,
where the prediction is difficult to interpret. LIME logo is shown in Figure 2.2.
LIME is based on the idea of approximating complex models by simpler local linear
models that are particularly close to a given observation [6]. This process involves
several sequential phases as follows:

• Sampling: Sampling of data points around the observations that is intended to
be explained, these data points are permutations of the original observation.

• Distance Calculation: The distance of all permuted observations to the original
observation should be determined for example using Euclidean distance.

• Weighting: Similarity measurement between the real observations and the sam-
pled data points must first take place. This can be achieved by converting the
distance values into similarity values, most likely using a kernel function (ex-
ponential kernel that converts the distance into a weight between 0 and 1) and
then weighting based on the similarity score.

8



2.3. LIME

• Model Fitting & Training: Fit a simple model (for example, a linear model) to
the permuted data. The similarity weights from the weighting step are used as
weights for the observations to train the simple model.

• Interpretation: Interpretation of the simple models that give insight into the
complex model now feature weights are more easily to be extracted from the
simple model. These features weights serve as explanations for the local behav-
ior of the complex model. For example, a high positive weight for a particular
feature may indicate that the feature has a strong positive influence on the
prediction of the complex model.

• Although LIME is one of the most popular methods of ML explanation, it
has some disadvantages like the fact that it is limited to local approximations
which may not be globally applicable [6].

9



Chapter 2. Background

Advantages of LIME [6]:

• Feature flexibility: explanations created using LIME can include differ-
ent features than the original black box model. This can be particularly
advantageous when the original features are difficult to interpret.

• Well-researched: the models that serve as local surrogates are well re-
searched in terms of their training and interpretation.

• Model agnostic: LIME is not tied to a specific model, which facilitates
changing the underlying black-box model.

• LIME is suitable for different types of data, including tabular data,
images, and text.

• Selectivity and contrast: when using methods such as Lasso or short
trees, the resulting explanations are selective and can be presented in
high contrast.

Disadvantages of LIME [6]:

• Sampling Challenge: Sampling of new data points is mainly done us-
ing estimated feature distributions through normal distributions. This
does not consider correlations between features, which can lead to the
generation of unrealistic data points.

• Core selection: Choosing the right local kernel is problematic because
explanations depend heavily on its parameterization.

• Instability: explanations for two very similar observations may differ
significantly.

• Linear regression, the interpretation depends strongly on the intercept.

10
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2.4 Shapley Additive Explanations (SHAP)

Shapley Additive Explanations is a method designed to help explaining the predic-
tions of complex machine learning models, icon shown in Figure 2.3. In fact, the
concept is based on the Shapley values from cooperative game theory [18].

Figure 2.3: SHAP is a post-hoc interpretability framework proposed by [7] that offers
local explanations for machine learning models [19].

As SHAP is model agnostic, it is capable to offer a consistent approach to quan-
tify the contribution of all features to a given prediction in any machine learning
model. Shapley values make it possible to analyze the predictions of the model in
such a way that the contribution of an individual feature to the model prediction
becomes transparent. As a result, it is possible to obtain a local explanation for each
observation. However, by aggregating the contribution of each feature over several
observations, the global average contribution of each feature to the model prediction
is obtained [20]. A simple illustrative example

f(s) = f(s1, s2, . . . , sn) = β0 + β1s1 + β2s2 + · · ·+ βnsn (1)

This equation represents a linear regression model, where S ∈ X refers to an
observation from the dataset X which has n different characteristics X. First the
aim is to explain the prediction for observation s locally [20]. In practice the most
important is how a particular feature effects the model prediction:

ϕi(s) = βisi − βiE [xi] (2)

The contribution is the difference between the feature effect and the average effect.
(fix) may also be rewritten as:

ϕi(s) = f(s1, s2, . . . , sn)− E [f(s1, s2, . . . , sn)] (3)

11



Chapter 2. Background

This equation represents the difference between the prediction for an observation and
the expected prediction for that observation in the case where the first characteristic
is unknown [21]. The Shapley values provide a way to calculate the ”fair” contri-
bution of a player in a cooperative game. With that in mind, if machine learning
model prediction was envisioned as such a game, Shapley values can be used to de-
termine the contribution of each feature to the prediction. Shapley values of a player
i ∈ X ⊂ N in a cooperative game (f,N) can be defined as follows [20]:

ϕi(f) =
∑

S⊂N\{i}

|S|! (|N | − |S| − 1)!

|N |!
(f (S ∪ {i})− f (s)) (4)

• All subsets that do not contain the player are summed.

• f(S)is the prediction of the model when only the features in the set S are
applied.

• |S| is the amount’s cardinality, i.e., the number of elements in S.

• |N | is the cardinality of the set N, i.e., the total number of features.

• The fraction serves as a weighting factor for every possible subset S of features.

SHAP presents an ML model interpretation method that provides consistent and
uniform explanations despite the high implementation complexity and computational
effort and can provide both global and local model interpretations [21]. It often
provides better accuracy than LIME as, unlike LIME, it examines the entire data
set. A real-life example is presented below to help better understand the essence and
importance of Shapley values.
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2.4. Shapley Additive Explanations (SHAP)

A hypothetical coalition consisting of three actors - Noah, Hisham, and 
Anna is considered. Each of these actors brings specific capabilities to the 
coalition that collectively generate a total gain of 11 units. To simplify the 
dynamics, it is assumed that the coalition is joined sequentially. The goal, 
based on the marginal contribution to the total gain, is to allocate the 
reward to each actor.
If Noah, was the initiator of the group and the initial group gain was 5 
units, which increased to 9 and 11 units through successive accessions by 
Hisham and Helena, respectively, this results in an initial payoff 
distribution of is derived. It is found that if Hisham 's and Helena's abilities 
are similar or overlapping, a different marginal contribution could be 
provided depending on the joining order. This implies that the order of 
joining the group has a substantial impact on the distribution of total 
output. To address this inequality, a methodological approach could be 
taken that considers all possible orders of entry. For this case, these would 
be six possible sequences (NHA, NAH, AHN, ANH, HNA, HAN). For each 
sequence, the marginal contributions of each actor could be calculated, 
summed, and then divided by the number of possible sequences. This 
would determine the average marginal contribution of each actor. In 
cooperative game theory, this procedure is formalized by the use of 
Shapley values. However, for larger numbers of actors or characteristics, 
this procedure is considered impractical because the number of sequences 
to consider is m! (m factorial) is.

Example: Shapley Values

Noah

Anna

Hisham

A hypothetical coalition consisting of three actors - Noah, Hisham, and 
Anna is considered. Each of these actors brings specific capabilities to the 
coalition that collectively generate a total gain of 11 units. To simplify the 
dynamics, it is assumed that the coalition is joined sequentially. The goal, 
based on the marginal contribution to the total gain, is to allocate the 
reward to each actor.
If Noah, was the initiator of the group and the initial group gain was 5 
units, which increased to 9 and 11 units through successive accessions by 
Hisham and Helena, respectively, this results in an initial payoff 
distribution of is derived. It is found that if Hisham 's and Helena's abilities 
are similar or overlapping, a different marginal contribution could be 
provided depending on the joining order. This implies that the order of 
joining the group has a substantial impact on the distribution of total 
output. To address this inequality, a methodological approach could be 
taken that considers all possible orders of entry. For this case, these would 
be six possible sequences (NHA, NAH, AHN, ANH, HNA, HAN). For each 
sequence, the marginal contributions of each actor could be calculated, 
summed, and then divided by the number of possible sequences. This 
would determine the average marginal contribution of each actor. In 
cooperative game theory, this procedure is formalized by the use of 
Shapley values. However, for larger numbers of actors or characteristics, 
this procedure is considered impractical because the number of sequences 
to consider is m! (m factorial) is.

Example: Shapley Values

Noah

Anna

Hisham

Figure 2.4: Illustrating example for Shapley Values with 3 actors.
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SHAP:

The calculation of Shapley values determines the relevance of a feature within
an observation and provides local explanations. The main idea of the method
is to simply compare the prediction of the ML model for every feature with
and without the features presence. However, the sequential ordering of the
features can affect the prediction, therefore all orders and combinations of
other variables must be considered. To provide a global view of the model
behavior this this calculation rule must be applied to all observations [7].
Advantages:

• Explanations range: Provides Local and global model explanations.

• Mathematically supported: Shapley values is based on solid mathemat-
ical foundation, based on principles such as efficiency, symmetry, and
linearity. LIME for example, is based on the heuristic assumption that
the model behavior is locally linear.

• Shapley values is model agnostic meaning it applied with any ML Model

• The deviation between the single prediction and the model mean is
distributed evenly over the feature values following the axioms. This is
ensured by the efficiency axiom.

Disadvantages:

• Selective explanations cannot be made, Shapley values explanations al-
ways involve all features.

• Shapley values can produce unrealistic feature values, especially if the
features are correlated.

• Only give one value per feature, rather than a full forecasting model.
Therefore, they cannot reflect changes in the forecast due to adjustments
to the features.

• Computationally intensive, which makes it a slow method.
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2.5. Survival Shapley Additive Exlanations

2.5 Survival Shapley Additive Exlanations

The term SurvSHAP was introduced in [21], and it focuses on the interpretability
of ML Models where time is a crucial element. In fact, both LIME and SHAP are
model agnostic methods that can deal with all machine learning models, but both are
lack the ability to deal with data sets that are time dependent. SurvSHAP extends
the SHAP concept and makes it applicable to survival analyses. The term survival
analyses, is concerned with predicting the time until a certain event occurs. This
event can for example be the heart failure of a patient, e.g., [8], the failure of a device
or any other expected event. A unique feature of survival analysis is its ability to
handle censored or observational data, for example, a data set which has a patient
information may not have the survival time of that patient. This means that in the
observed time the event (e.g., patient death) did not accrue. In other words, the
survival time is longer than the observe time. From a mathematical perspective [21]
an entity n in survival analysis can be represented as a triplet(xn, yn, δn), wherexn =
[x1

n, x
2
n, x

3
n, ....., x

p
n] ∈ Rp. xn is considered a collection of entities that are associated

with the survival time Tn, δn corresponds to the occurrence of the event and yn
represents the observation time, this time can either be the actual survival time Tn

when δn = 1 or, in case the event does not occur δn = 0 the censoring time Cn. Tn

is therefore an indeterminate value for censored observations. The role of survival
analysis in this mathematical context is the ability to predetermine the survival time
Tn for a new entity S with a triplet of (xs, ys, δs). A function of time is more likely to
be predicted instead of a single time event. In this context, two main time functions
are of concern [8]:

• Survival function S(t), describes the probability of an entity (e.g., patient)
surviving until a certain time without experiencing the event (i.e., death)

S(t) = P (T > t) = 1− P (T ≤ t) (5)

• Hazard function h(t), describes how high, the risk of an event occurrence, is over
a very short time interval, assuming the event in question has not happened
yet at that point in time.

h(t) = lim
t→0

P (t ≤ T < t+∆t |T ≥ t)

∆t
(6)

Both functions are related as:

h(t) =
f(t)

S(t)
(7)
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Where f(t) represents the Probability Density Function (PDF) of the studied
event, and it can be mathematically described as:

f(t) = −dS(t)

dt
= h(t) · S(t) (8)

This can be transformed to:

S(t) = exp(−H(t)) (9)

knowing that the cumulative hazard function is given as:

H(t) =

∫ t

0

h(s) ds (10)

When the survival function is combined with the right kind of data aggregation,
it’s possible to get precise predictions about individual characteristics. For
example, it can predict the amount of time before an important event is likely
to happen for each individual case. This process involves taking complex data
and breaking it down into clear, detailed insights about specific outcomes [8].

2.6 LIME vs SHAP vs SurvSHAP

To better understand the distinctions among LIME, SHAP, and SurvSHAP, we
present a comparative analysis in the table below.
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2.7. InterpretME

Attribute LIME SHAP SurvSHAP

Basic
principle

Local Approx-
imation

Game theory Game theory
in survival
analyses

Computational
complexity

Moderate High Very high due
to survival
analysis

Model
Agnostic

Yes Yes Yes

Explanation
type

Local Local &
Global

Local &
Global

Stability Unstable Stable Stable
Efficiency by
complex
models

Inefficient Efficient Efficient

Time
Dependency

No No Yes

Table 2.1: Comparison of Model Explanation Methods LIME, SHAP, and SurvSHAP
[22].

2.7 InterpretME

This section describes the InterpretME framework, delving into its functionality and
primary attributes. It presents the principal pipeline of InterpretME, outlining the
input and output parameters, configuration choices, and the description of each
stage in the pipeline. To conclude, a motivating example is presented, showcasing
the significance and real-world utility of InterpretME.

2.7.1 What is InterpretME?

InterpretME is a framework developed by the members of the Scientific Data Man-
agement group at the TIB Leibniz Information Centre for Science and Technology.
Figure 2.5 depicts the different layers of InterpretME. InterpretME integrates KGs
with machine learning techniques. InterpretME goal is to draw deep and inter-
pretable insights from data and ML models [23]. At its core, InterpretME enables
the integration of machine learning and semantic web technologies.
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Chapter 2. Background

Figure 2.5: InterpretME framework official logo and the different layers of Inter-
pretME [24], [23].

A key feature of InterpretME is its ability to produce decisions that are under-
standable by both humans and machines. This is especially important in an era
where transparency and explainability of algorithms is paramount. InterpretME ac-
cepts data in two forms, KGs (via SPARQL endpoints and queries) and standard
formats such as Comma− SeparatedV alues(csv) or JSON .The system is designed
to provide detailed visualizations of the main attributes of trained learning models
within a KG. This means that it doesn’t only analyze data, but also understands
the relationships and links between data points in the KG. InterpretME can extract
information such as feature details, classes and SHACL constraints from KGs. It
classifies the important features into different groups, making it easier to analyze the
data and make predictions later. Another notable feature is InterpretME’s ability
to accurately trace the origin of an attribute or feature in the KG. This provides an
additional layer of transparency and understanding for the end user. InterpretME
comprises three layers shown in Figure 2.5. The first layer is the training layer,
where the input data is taken in, processed, and thoroughly checked. Here, the ex-
amined features from the data are identified and used. This layer focuses on training
the machine learning model and includes all related tasks, such the hyperparameter
tuning. The Deduce layer, tasked with generating predictions using the trained ML
model and unveiling the most critical features. This layer is pivotal in translating
the model’s complex calculations into actionable insights. Upon the generation of
predictions, the Explain layer comes in. This layer is characterized by its ability to
make predictions interpretable and to trace the decision-making process of the ML
model. The output of this layer is the InterpretME Knowledge Graph (KG), which
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provides a detailed and structured interpretation of the whole process. The combi-
nation of the three layers simplifies data analysis for the user and enables seamless
tracking of the predicted entity with all associated attributes in the original KG. In
addition, the user gains access to various metrics such as accuracy, recall, and preci-
sion, which are presented in combination with LIME interpretations feature. Overall,
InterpretME provides a comprehensive solution to the interpretability challenges in
machine learning by combining the strengths of KGs and modern machine learning
and interpretability methods. It is a step towards more transparent, accountable,
and explainable AI.

2.7.2 InterpretME’s Inputs & Outputs

To further explain how InterpretME works, it is crucial to understand, what inputs
InterpretME expects and is capable of handling, and what kind of output is expect.
InterpretME can be used by calling its pipeline function, which is the core of Inter-
pretME. InterpretME’s pipeline requires the following inputs to start its process:

• Configuration file path: This input indicates the path pointing to a JSON file
which contains several parameters that directly affect the InterpretME pipeline
and allow users to add their configuration and preferred set of properties. These
parameters can be divided into the following categories:

– Data location: Path to where the input data is located, if this is a Server
URL, this means that the input is a KG, or it is a file path which indicated
that the input is a local dataset (i.e., csv file).

– Data structure and type:

∗ Type: type of data (e.g., patient).

∗ Index var: key or index variable.

∗ Independent variable: Features used for predictions.

∗ Dependent variable: Target variable or in other words what is to be
predicted.

∗ classes: Possible categories or classes of target variables (e.g., 0 =
Dead and 1 = Alive).

– Modeling and training: Enables the user to choose his preferable ML
model, which sampling strategy must be applied, number of important
features to be considered by the ML model, or even configuring the hy-
perparameter auto tuning using AutoML.
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• Result paths: Path to where the results of the used interpretation method
should be saved.

• Server-Details: In case data needs to be uploaded from an external server (e.g.,
SPARQL endpoint of the InterpretME KG, Credentials)

• Model parameters: In case the user doesn’t want to use the configuration JSON
file, this allows the user to specify various parameters for the machine learning
model, such as the sampling strategy, the number of cross-validation folds,
important features, and the ratio of training to test data.

InterpretME outputs a dictionary containing the results of the ML model interpreta-
tion process, the analyses and the made ML predictions. The user is also able to use
some of the plotting functions that are provided within the scope of InterpretME.
Now that all the inputs and outputs of InterpretME have been outlined, the following
will briefly explain how InterpretME works and what are its main functions.

2.7.3 Implementation & Pipeline

InterpretME runs as a pipeline, which is designed to perform several tasks related
to data processing, training of machine learning models, interpretation, and visual-
ization of result. In the following is a breakdown of the main functions and flow of
the pipeline, where every stage will be divided into tasks and those will be briefly
described:

1. Initialization:

a. Unique identifier: At the beginning of each pipeline run, a unique identifier
will be assigned. The identifier serves as a run ID for the current run, so
that the results and data from that run are later easily identified and
mapped.

b. Progress Bar: To provide a user-friendly experience and to keep track
of the progress of the different stages of the pipeline, a progress bar is
implemented. This bar keeps updating in real time and gives the user
visual feedback on how far the process has progressed and which tasks are
still pending.

c. Directory creation: Checks whether certain necessary directories for sav-
ing files exist. In case those directories are not present, they will be
created automatically. This ensures that all results and files are system-
atically stored in the defined directories.
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d. Statistics Initialization: Statistics collection is activated at the very be-
ginning of the pipeline to gather detailed information about the run. This
provides the ability to collect data such as run time, parameters used,
and other relevant information that could be useful for analysis and re-
view later.

2. Data Importation:

a. Configuration file: Configuration file: The pipeline begins by reading the
JSON configuration file. This file contains specific data details and set-
tings that determine the flow of the pipeline, as this is an expected input
for InterpretME which was described in 2.7.2. Based on the information
specified in the JSON configuration file, it will be determined whether the
data originates from a KG or a local data set. This is a crucial distinc-
tion, as the following pipeline stages vary depending on the data source.
In case the data source is a KG, this means that InterpretME will grab
the KG and extract the necessary data from it using SPARQL query to
construct a dataset that will be used in next stages or in case the data
source is already a dataset a direct move to the next stage is allowed.

b. User-specific parameters: The user might want to specify additional pa-
rameters alongside the configuration file settings when calling the pipeline.
InterpretME validates these parameters and utilizes them as needed. For
instance, if the user wants to use a different sampling strategy than the
default one specified in the configuration file, the pipeline will check if
those were provided, if not the default strategy will be used.

3. Data Preprocessing:

a. Data loading: This is where the data is actually loaded, either from a lo-
cally stored dataset or from an external SPARQL endpoint. InterpretME
ensures that the data is loaded without errors and in its entirety to guar-
antee seamless performance in the subsequent stages.

b. Data encoding: After data is loaded, encoding is often required, especially
if the data involves categorical values. Encoding converts categorical data
into a form that can be efficiently processed by machine learning models.
This could be achieved, for example, through ”one-hot coding” or by
assigning numeric values to categories.

c. Data Sampling: InterpretME offers several sampling strategies,e.g., over-
sampling, undersampling to obtain a representative dataset for machine

21



Chapter 2. Background

learning. This is the stage where data sampling takes place. This process
could include, for instance, randomly selecting a portion of the data, per-
forming subsampling or oversampling, etc. Once this process is complete,
relevant information about the strategy used and the resulting dataset are
stored, this is useful for later analyses.

4. ML Model Building & Classification:

a. Classifying data: Once the data has been prepared and sampled, it will be
classified using the selected machine learning model. The current version
supports an ensemble machine learning models like random forest or Gra-
dient Boosting, and the user can specify a specific model, or the default
model specified in the configuration file will be applied.

b. Model training and predictions: The goal of this step is training the ma-
chine learning model with the sampled dataset. Once the model training
process is complete, InterpretME utilizes the trained model to generate
predictions and evaluate the efficiency of the model. The classification
function is the core of this step. It selects the appropriate classification
strategy based on the number of classes specified by the user. The two
main strategies are briefly discussed below:

i. Binary classification (binary classification): This method is used when
there are only two classes in the dataset to be distinguished. Inter-
pretME uses a decision tree algorithm combined with hyperparameter
optimization by AutoML (uses the Optuna library) to select the best
model parameters. Those parameters will be applied to the user’s
model choice weather it is Random Forest, AdaBoost, or Gradient
Boosting. Another important part of this process is Feature Impor-
tance, where the most important features are selected for classifica-
tion. This process differs by model:

· Random Forest: The importance of a feature is calculated by
the average decrease in impurity (usually measured by the Gini
coefficient or entropy) that this feature causes when it is used in
the trees of the forest. A higher value indicates greater impor-
tance.

· AdaBoost: The feature importance is determined by the number
of times a feature is used as a decision threshold in the weighted
trees.
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· Gradient Boosting: Much like Random Forest, the importance
of a feature is determined by the average decrease in impurity
across all trees.

After the model is trained, feature weights are extracted. The features
are then sorted in descending order of importance. The plot feature
importance method takes the sorted feature weights and visualizes
them. This allows users to identify the most important features in
the dataset. In the provided features, the top X features (based on
number important features in the user’s defined JSON configuration
file) are selected for further analysis and model training.

ii. Multiclass classification (multiclass): This method is used when there are
more than two classes. After selecting the best model, ”Feature Impor-
tance” is performed to determine the most important features for classi-
fication.

The separation of binary and multiclass classification in model development
was necessary because of the obvious differences between these two types of
classification. Algorithms optimized for binary problems might not perform
optimally in a multiclass scenario and vice versa. In addition, the evaluation
metrics differ in the two contexts, which means that model evaluation must be
handled differently. Even though it is possible to combine the two functions
into one, this could make the code cluttered and difficult to maintain. Different
considerations of metrics, data imbalance, and optimization strategies for each
type would overload the code and make it unnecessary complex.

5. Model Interpretation: Depending on the pipeline input parameter survival,
either LIME or SurvSHAP will be used to interpret the model and enable the
user to understand why the model made certain decisions.

6. Preparing output for plotting: The results are processed and optimized for
subsequent visualization. The output data is expected to be useable directly
to create plots, statistics, or other visual representations.

7. Semantifying of results: Transforming data into a machine-readable format
such as RDF. This is the part where InterpretME outperforms other ML inter-
operability frameworks or tools, it is what gives InterpretME its unique nature.
This approach makes it possible to store and share the data in a standardized
format that can be easily understood and interpreted by both users and ma-
chines or applications.
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8. Upload to Virtuoso: After the data has been semantically enriched and con-
verted to a machine-readable RDF format, users have the ability to upload it to
the Virtuoso database in order to be stored. Virtuoso is a specialized database
management system designed for RDF data. By uploading data to Virtuoso,
it can be stored efficiently and easily queried through SPARQL endpoints.

9. Performance monitoring: Several metrics and statistics are captured during the
pipeline to monitor the performance and efficiency of the process. These include
time measurements for various stages of the pipeline, the number of data points
processed, and other relevant information. These collected statistics provide
valuable insight into how the pipeline is performing and can be used to identify
and make potential optimizations or adjustments in the future.

2.8 Motivating Example

There are many options to configure InterpretME as it offers its users multiple fea-
tures and gives them the freedom to choose from those features. To gain a better
understanding what those features offer, a motivation example, Figure 2.6, will be
described and discussed in this section.

The motivation behind InterpretME derives from the fact that there is an ob-
vious gap in the need for automated support around merging predictive machine
learning modeling systems with KGs. InterpretME focuses on providing orientation
by tracking and explaining the predictive models’s decisions. The recently devel-
oped automated machine learning systems that do have optimized and automated
predictive ML modeling processes, fall short when it comes to providing interpre-
tations for its predictions that are both understandable by humans and usable by
machines. While tools such as LIME are capable of generating interpretations for
specific prediction tasks, they do not provide concrete explanations of the target
entity’s interpretations and do not consider the characteristics of the target entity
within the prediction model, and they don’t take into consideration the input data
to be derived from KGs.
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I. Data 
Preprocessing

III. Interpretability 
(LIME)

IV. OutcomeII. ML predictive 
Modeling

Train Data

Test Data

Auto ML Optuna

{ 'classifier': 
'DecisionTreeClassifier', 
'random_state': 123, 
'min_samples_split': 2, 
'min_samples_leaf': 1, 
'min_weight_fraction_l
eaf': 0.0, 'ccp_alpha': 
0.0, 'criterion': 'gini', 
'splitter': 'best', 
'max_depth': 4 }

KG

Figure 2.6: Motivation example showing InterpretME’s pipeline stages and process.

Figure 2.6 depicts a pipeline in InterpretME. The stage I. Data Preprocessing
utilizes a dataset taken from a csv file containing radiology reports of various patients
in text form, indicating their length of stay in the hospital and an event indicating
whether a death occurred during their stay. The dataset includes key features that
detail the main characteristics of patients with pulmonary death, such as patient
identifier, gender, age, pleural effusion, pr firstorder MeanAbsoluteDeviation, and
other bio-markers detected by radiology. The input data is a csv file, this data must
first be prepared and preprocessed through different steps, like data sampling and
data splitting which will split the dataset into test and train, as LIMEis unable to deal
with time, the time column will be filtered in the scope of the data preprocessing.
The predictive task in this case is a binary classification that predicts the death
of the patient. Stage II. ML predictive Modelling is where AutoML performs the
hyperparameter optimization process, and based on its recommendations, models

25



Chapter 2. Background

such as random forests or decision trees are applied with the hyperparameters for
the classification task. In stage III. Interpretability LIME interpretability tool and
decision trees are used to provide localized interpretations for each patient in the test
dataset. Decision trees help to identify the significant features that contribute to the
model results. Stage IV. Outcome is where the LIME results are plotted, which will
help the user to understand the contribution of each feature in the predicted decision
in addition to transforming the results into a KG. Many questions arise with this
motivation example, most importantly:

• Can a specific patient be interpreted by LIME?

• What distinguishing features do patients possess?

• For this classification, what other features are of importance?

• How would the analysis be impacted if time dependency played a crucial and
significant role?

2.9 Chapter Summary

In the ”Background chapter”, the unique challenge posed by time-dependent data
(survival data), is identified as a significant limitation to the capabilities of Inter-
pretME. This type of data, which captures events in a temporal context, requires spe-
cialized treatment beyond what current tools such as AutoML or LIME can provide.
Given this limitation, there is an urgent need to fundamentally renew InterpretME
and develop it into a more versatile and widely applicable tool. By specifically
integrating capabilities to analyze time-dependent data, especially survival data, In-
terpretME will be revolutionized. This significant enhancement enables InterpretME
to address the complex demands of survival data analysis while adding new levels of
interpretability and clarity to predictions. The primary focus is to provide accurate
and reliable insights into survival data that are understandable to both profession-
als and non-experts. This innovation positions InterpretME as a leading tool in the
world of advanced data analytics, providing unparalleled support for decision-making
and strategic planning. This innovation positions InterpretME as a crucial compo-
nent in medical research and various other domains, effectively bridging the divide
between complex data processing and user-friendly, understandable interpretation.
Consequently, InterpretME establishes new benchmarks in data analysis and emerges
as an essential instrument for any user seeking to obtain profound insights from their
data.
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Implementation

In this chapter, the focus is on the implementation of the survival analysis and the
necessary adjustments that were carried out in InterpretME to integrate the survival
analysis. The integration of SurvSHAP into the existing code is of particular interest.
The implemented functions and mechanisms of SurvSHAP are covered and discussed
in detail. These explanations provide a description of the technical aspects of cus-
tomizing InterpretME to meet the demanding requirements of survival analysis. It
also discusses how this integration extends the functionality of InterpretME and sig-
nificantly enriches its scope. The implementation steps are described with precision
and detail to provide a comprehensive understanding of the technical challenges and
the applied solution strategies.

3.1 Comparison between regression and survival

analysis

Within the framework of this thesis, an overview comparison between regression
analysis and survival analysis is to be carried out, which highlights the most impor-
tant points of the two analysis methods, and these are described in more detail in
the following:

3.1.1 Definition and Areas of Application

Regression analysis is a statistical method used to model the relationship between
a dependent variable and one or more independent variables. It is used in various
areas like economics, social sciences, and ecology, while survival analysis is often
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used in fields where time is of the essence like medicine specially in survival studies
or in reliability engineering [25]. An illustrative example of survival analysis can be
found in medical research, where a dataset might be compiled to investigate patient
survival rates. Such datasets typically include features like age, medical conditions
(e.g., anaemia, diabetes), lifestyle factors (e.g., smoking status), and patient sex.
Additionally, they record the time until an event of interest occurs (often death or
relapse) and whether this event occurred during the study period.

In survival analysis, this data is used to model the time until the event, taking
into account the various recorded factors. This allows researchers to understand how
different variables influence patient outcomes over time, providing invaluable insights
into patient prognosis and treatment efficacy.

3.1.2 Input Data Types and Methodology

In regression analysis, continuous, discrete, ordinal, or categorical data are used. Lin-
ear regression and logistic regression are the most commonly used forms of regression,
in addition to that no consideration to data censoring (the case in which the event
has not yet occurred at the end of the study) takes place in the regression analysis.
When it comes to survival analysis, time-to-event data is often used. In contrast to
the regression analysis, censoring is a fundamental feature in survival analysis where
methods such as survival random forest or the Cox proportional hazards model are
often used [26].

3.1.3 Focus and Model Assumptions

While regression analysis explores the relationship between variables and evaluates
the strength and direction of such relationships, survival analysis is concerned with
examining the timing of events and identifying factors that are associated with risks.
The assumptions of the models also differ greatly between the two analysis methods.
In regression analysis, assumptions such as linearity, normal distribution of residuals,
independence, and homoscedasticity vary depending on the model type. On the other
hand, in survival analysis, the assumptions of the model are that survival times are
independent and that the hazard rate may vary over time [26].

3.2 Survival Analysis over InterpretME

Although approaches such as LIME are useful in providing interpretable models for
classical prediction tasks, they reach their limits when it comes to time-dependent
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events, which are common in survival analysis. While LIME can show the importance
of features for a prediction, it does not consider the time element, one that is critical
for survival data. This is where SurvSHAP steps in as it was specifically designed
to meet the needs of survival analysis. SurvSHAP provides an understanding of the
impact of various factors on patient survival over time. Figure 3.1 presents a running
example of InterpretME with SurvSHAP integrated, utilizing the same dataset as
referenced in section 2.8. However, in this example, the time column is included
(survival data).

I. Data 
Preprocessing

III. Interpretability 
(SurvSHAP)

IV. Outcome
II. Survival ML 

predictive Modeling

Train Data

Test Data

GridSearchCV

hyperparameter_grid= 
{
n_estimators':100 
'min_samples_split': 2, 
'min_samples_leaf': 4, 
'max_features': ['sqrt'],  
'max_depth': 3 
}

KG

Special 
survival 

Data 
encoding

Individual importance to time 
plot

Importance Ranking Bar plot

SurvSHAP 
Function

Combined 
SurvSHAP 

results 
processing

Figure 3.1: Running example of integrating SurvSHAP into InterpretME along with
InterpretME’s pipeline stages.

In stage I. Data Preprocessing, the processes are tailored to accommodate the
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unique characteristics of survival data. This involves a distinct method for encoding
the input data, details of which are elucidated in the coming sections. After encod-
ing, the dataset is partitioned into training and testing subsets. Stage II. Survival
ML predictive Modeling focuses on hyperparameter optimization (tuning) to identify
the most effective parameters for the survival machine learning model. For this pur-
pose, Grid Search Cross Validation is employed, a systematic approach for parameter
tuning to enhance model performance. In stage III. Interpretability, SurvSHAP is
employed to interpret the predictions made by the trained survival model. Unlike
LIME, which offers a static analysis, SurvSHAP incorporates the element of time
dependency in its interpretation. For instance, lung mass might be a significant
predictor at the onset of treatment but may decrease in influence over time, whereas
factors like age continue to be crucial throughout. SurvSHAP’s dynamic analysis,
as opposed to LIME’s static feature weighting, provides a more detailed understand-
ing of how predictive factors evolve over time. This depth of analysis is vital for a
better comprehension of survival patterns, aiding in the development of more effec-
tive treatment strategies. Finally, stage IV. Outcome involves the presentation of
SurvSHAP results. This visualization aims to address key questions regarding the
dynamic influence of various factors over time, offering insights that are critical for
informed decision-making in survival analysis, this thesis aims to answer following
research questions :

RQ1. How does each feature influence the predictions of the survival time model?

RQ2. How does the individual importance of features of a particular patient
develop over time?

RQ3. How does corrupting an input feature affect the interpretability of the
survival model?

In summary, SurvSHAP represents a significant enhancement to InterpretME by
enabling the analysis and interpretation of time-dependent survival data in a way
that was not accessible to previous methods such as LIME. This advance opens
new horizons in medical research and practice by bridging the gap between complex
survival models and practical, and a more intuitive interpretation.
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3.3 SurvSHAP implementation

The subsequent section presents the Python implementation and utilization of the
SurvSHAP tool, dedicated to interpreting survival models. Special python packages
like SurvSHAP and sksurv were utilized to provide a comprehensive workflow start-
ing from data preparation to model interpretation up to the present of results and
plotting those in an understandable and useful way.

3.3.1 Survival machine learning Model

Models such as the Random Forest, Gradient Boost and AdaBoost are very popular
machine learning models due to their powerful algorithms and ability to recognize
complex patterns in data. However, these models in their standard form are not able
to effectively handle time-dependent data found in survival analysis. The reason for
this is their primary focus on data sets where each sample is treated as an independent
observation, without considering the time dimension that plays a role in survival data.
To adequately analyze survival data, more specialized models such as the Random
Survival Forest (RSF) or Cox Proportional Hazards models (Cox) are required [27].

These ML models were developed specifically to handle timetoevent data, so they
are suitable for processing time-dependent data. The RSF extends the traditional
Random Forest approach by taking into account data censoring and estimating a sur-
vival function for each observation, allowing for time-dependent risk assessment [28].

The Cox model uses a semiparametric method to estimate the ratio of hazard
rates between observations, considering the time to occurrence of an event as a
baseline variable [29]. For evaluating survival machine learning models, the most used
performance metrics are brier score and the Concordance-Index (C-Index). The brier
score is a metric that measures the mean deviation between observed and predicted
events over a given period. It is particularly useful for survival time analyses [30].

It considers both the risk of an event and the temporal accuracy of the prediction.
A lower brier value indicates a higher accuracy of the model. The C-Index measures
how well the model predicts the sequence of event times. Specifically, it compares
whether the predicted survival times are in the same order as the observed survival
times. The C-Index can handle data censoring adequately and therefore provides a
reliable assessment of model accuracy even with censored data [31].

The C-Index is essentially a type of rank correlation measure. It corresponds
to the proportion of all possible pairs of observations where the predictions and the
actual events match. The C-Index ranges from 0.5 to 1.0. A score of 0.5 demonstrates
that the model’s predictions are simply no better than chance while a score of 1.0
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demonstrates that the model makes perfect predictions. Careful selection and tuning
of hyperparameters, which control the complexity of the model and its fit to the data,
is required for the configuration of such a machine learning model for survival time
analysis. The hyperparameters needed for the RSF and their respective roles are
described as follows:

• n estimators (Number of trees in the forest): This factor determines the number
of trees in the forest and has a large impact on the prediction accuracy of the
model.Increasing the number of estimators can improve model accuracy, but
also leads to a longer training time and possibly overfitting.

• max depth (maximum tree depth): Limitation of the maximum tree depth
that the tree can assume. This hyperparameter can be used to control the
complexity of the model and to avoid overfitting. An appropriate depth is
crucial for achieving an appropriate balance between bias and variance.

• max features: Determines the maximum number of features to be considered
when searching for the best separation.

• min samples leaf: Minimum number of observations required to form a leaf
node. It influences how the trees grow and can help to make the model smoother
and prevent overfitting from occurring.

• min samples split: The minimum number of observations required to further
split a node. A higher number prevents the formation of nodes that are too
specific for the training data and thus promotes generalizability.

• random state: Control the randomness of the results by setting a seed for the
random generator. This ensures reproducibility over different training cycles.

A designated hyperparameter grid was employed and defined to establish the bound-
aries for the hyperparameters. This grid outlines the spectrum from which the tuning
process seeks to determine the most effective hyperparameter values.

3.3.2 Tuning ML model

Choosing the best hyperparameters is critical to the performance of the model and
usually requires careful tuning. A model that is not optimally tuned can either be too
simple and fail to capture important data patterns Under-fitting or too complex
and over-fit to specific examples of the training dataset Under-fitting. Accurate
hyperparameter tuning helps to find the right balance and deliver a model that is
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accurate and adaptable when encountering new data. A common method to fit
hyperparameters is to use techniques like grid search [32]. Grid search is a method
for optimizing the hyperparameters of a machine learning model. It is based on
the brute-force approach [33], in which several possible values are specified for each
hyperparameter. These values form a ”grid” of parameter combinations. The model
is then trained and evaluated with each combination of these hyperparameter values.
The evaluation is usually carried out by cross-validation, whereby the data set is
divided into several smaller parts. The model is trained on one part of the dataset and
validated on another, which is repeated several times so that each part of the dataset
is both trained and validated. This method ensures that the evaluation of model
performance is not influenced by random data splits. At the end of the grid search
process, the combination of hyperparameters that has shown the best performance in
the validation process is selected. This optimized parameter combination is then used
to retrain the model on the entire available training dataset and finally to evaluate
the model performance on a separate test dataset. Using the function Grid Search
CV from the sklearn.model selection package a hyperparameter tuning was achieved
and the parameters are used in the RSF ML model [34].

3.3.3 Implementing the survshap interpretation function

This is the main function that will create SurvSHAPs interpretations, the function
is called upon fitting the Random Survival Model assigning it to the variable model.
Figure 3.2 shows the flow of the implemented survshap interpretation function along
with its necessary data preprocessing steps. This function takes 6 inputs:

• model: This is the trained survival machine learning model with the tuned
hyperparameters using Grid Search CV.

• X train: The same train data, that the survival machine learning model was
trained with.

• X test: The test data set, consisting of the features for which the SurvSHAP
values are to be calculated. These data are the new observations that were not
involved in training the model meaning.

• Y train: The data set with the target variables for training the survival model,
usually consisting of two columns: one for the events (e.g. death, failure, etc.),
which are displayed as Boolean values, and one for the survival time, which
indicates the time until the event.
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• Survshap results: The file path where the results of the SurvSHAP calculations
are to be saved as a pickle file in addition to as csv files. The pickle file makes
it possible to save the complex outputs of the function and load them again
later without having to perform the calculations again, while the csv files make
it easier to analyze the results and use them in other process.

capturing SurvSHAP files

Loading Data

PredictSurvSHAP.fit(explainer,xx)

Input
csv file

for i in
enumerate

(X_test.values)

0 < i < lenght of X_test i+1

SurvivalModelExplainer

Results

combining SurvSHAP files
&

returning pkl file

length of X_test < i 

Data PreprocessingSurvival Machine
Learning Model 

survshap_interpretation 
function

GridSearchCV

model X_train, y_train

Figure 3.2: The implemented survshap interpretation function along with its neces-
sary data preprocessing steps.

First action in the function would be calling SurvivalModelExplainer. This will
create an instance of the SurvivalModelExplainer class from the SurvSHAP package.
This means that a new explainer object is created that has the ability to interpret the
used survival model. SurvivalModelExplainer utilizes its input parameters (model,
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X train, Y train) to prepare for the calculation of explanations. The model and
training data are saved internally for the upcoming analysis. Once Explainer has
been created and initialized, it is ready to be used to analyze the contributions of
individual features to model prediction. Next step is the core of SurvSHAP, In a
for loop, a series of steps is performed to calculate and store the SurvSHAP values
for each observation in the test dataset (X test). For each observation in the test
dataset, a DataFrame is initially created to fit the observation data to the struc-
ture of the SurvivalModelExplainer. Next, a SurvSHAP weights calculation is per-
formed for each of these observations to calculate the SurvSHAP values. The resulted
SurvSHAP values for each observation are then saved in two ways, in a initialized
list and as an individual csv file in a predefined directory, the path of this directory
is the survshap results parameter. Once all observations have been processed, the
individual csv files are combined into one file, this step will be very beneficial and
will facilitate the coming mapping process. Finally, the entire SurvSHAP results are
stored in a pickle file. The loop ends with the return of these collected SurvSHAP
results. The PredictSurvSHAP is a class which when initialized, various parameters
can be set, those parameters affect the computation of the SurvSHAP values, the
most important parameters are:

• Function type: This parameter defines the type of the function to be evaluated
for explanation. Two Options are available for the user to choose from, first
one is the survival function (sf), and the other option is the cumulative hazard
function (chf). Survival function was chosen for implementation as It’s directly
interpretable and widely used in medical research applications.

• Calculation method: This parameter defines the way the SurvSHAP calcula-
tions are made. Two Options are here also available, first one is kernel SHAP
method and the other one is sampling. Kernel SHAPwas used for in this im-
plementation because Kernel-based methods, like KernelSHAP, are known for
providing accurate approximations of SHAP values. They offer a good balance
between computational efficiency and the accuracy of the explanations.

• Aggregation method: This parameter defines what the method will be used to
aggregate the SurvSHAP values, the options include, sum of squares, integral
and mean abs. integral is the method that was used in this implementation
because it aggregates SHAP values across the entire range of the survival func-
tion. This provides a comprehensive overview of the impact of features over
the entire time spectrum, rather than just focusing on specific points.

Before starting to work with the results, there must be a way to measure the accuracy.
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The calculate accuracy from survshap interpretations function was implemented to
serve this purpose. It calculates the local accuracy of SurvSHAP explanations for
a given set of predictions. This function is useful in the field of machine learning
and data analysis, specifically for assessing the reliability and precision of predic-
tive models [8]. In the calculate accuracy from survshap interpretations function,
the difference between three values is calculated, these differences are then squared
to determine the mean square difference. The three values are:

• Predicted function: This is the value that the model predicts for each instance
or time point.

• Baseline function: This is a reference value that serves as a starting point or
baseline for the predictions.

• Aggregated SurvSHAP values: These are the SHAP values that represent the
contributions of each feature to the deviation of the prediction from the base-
line.

Sigma(σ) may now be calculated, Sigma(σ) is a measure of local accuracy and is
calculated by dividing the square root of the mean squared difference by the square
root of the mean squared prediction [35]. Lower Sigma(σ) values generally indicate
higher accuracy. A low sigma value means that the SHAP values explain the results
of the model well for a particular case, since it implies less difference between the
three values. Now after implementing an accuracy measurement, next step would be
preparing the SurvSHAP process output. The output of the survshap interpretation
function must now undergo a process to extract useful information out of its re-
sults. The function calculate features order needed to be implemented, as it aims
to evaluate and summarize the importance of features determined by the conducted
SurvSHAP analyses. Figure 3.3 shows the flow of the function:
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Figure 3.3: The implemented survshap interpretation function along with its neces-
sary data preprocessing steps

For each SurvSHAP explanation in the explanations input, the cumulative change
is calculated over time for each feature. This is performed by taking the absolute
SHAPSHAP values and integrating them over time using the cumtrapz function.
After that the features are sorted in descending order based on their aggregated
changes. First after all the explanations have been calculated, the function returns
two DataFrames. The first contains the orders of importance of the features for each
explanation (Ordering), each column in this DataFrame corresponds to a specific
SurvSHAP explanation (analysis) from the explanations input. The values in each
column are the names of the features in the order of importance as determined by
the SurvSHAP analysis. The top feature in each column is the most important for
that specific explanation, followed by the second most important, and so on, and
the second output DataFrame is the summary of ranking, where each feature will
have value, that summarizes how many times this feature was the most important
feature in all explanations, how many times it was the 2nd most important features
and so on. After processing the results of SurvSHAP, several plotting functions were
implemented to present the SurvSHAP results. The tests that were carried out in
this part of the implementation will be discussed in Chapter 5. After implementing
the SurvSHAP method, a new challenge arises which is to integrate SurvSHAP in
InterpretME.
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3.4 Adaptation of InterpretME for Survival Anal-

ysis

Since InterpretME was originally developed to handle time-independent input data,
it does not have the ability to process survival data. As explained in 3.1, there are
significant differences between regression and survival analysis, each with its own
specific requirements and functionality. Extensive structural modifications to multi-
ple InterpretME pipeline stages discussed in 2.7.3 were necessary to fully integrate
SurvSHAP with InterpretME. Those changes and adjustments will be covered and
discussed here: There were no changes to the initial phases such as initialization and
data importation. The first modification had to be implemented in the Data prepro-
cessing phase. The reason for this is that standard data sampling methods, such as
oversampling and undersampling, cannot be applied to survival data because they
do not consider the unique characteristics of survival data. Survival data contain
information about the timing of a specific event (e.g., death, failure, or recovery)
and the censoring status of each observation [36]. These particularities require the
application of special sampling methods that differ from those used for conventional
data. The time-dependence of the data is therefore the main reasons why standard
sampling methods are inadequate for survival data. This time dependency compo-
nent is not addressed by techniques such as over-sampling (adding copies of minority
class observations) and under-sampling (removing majority class observations) [37].
For instance, generating duplicate events in the data may cause artificial distortions
in the time-distribution of events. Furthermore, the elimination of observations from
the majority class may result in the loss of important time-to-event information.
Censoring is also a critical issue when it comes to sampling survival data. Censor-
ing, as described in 2.5, plays an essential role in survival analysis as it provides
important information about the time to occurrence of an event. When traditional
sampling methods are applied to survival data, the resulted sampled datasets may
be biased because these methods do not adequately incorporate the censored data,
fitting ml models with biased data will then lead to inaccurate predictions. Special
sampling Methods like Surv-SMOTE (Synthetic Minority Over-sampling Technique
for Survival Analysis) are therefore used for survival data, this method takes into
consideration both the time dependency element and the censoring of data [38]. The
implementation of such sampling methods is very complex and time-consuming. For
this reason, no special sampling strategy was implemented as part of this thesis.
After several attempts to make all necessary adjustments within the InterpretME
functions for the survival analysis, it became clear that this effort would be large
and would unnecessarily complicate the code. Instead, a better approach was cho-
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sen, involving the implementation of two different modes for InterpretME.
To begin with, a new parameter had to be introduced into the InterpretME

pipeline: this is the survival parameter. Users of InterpretME must define this
parameter whenever they want to call the InterpretME pipeline. They can choose to
run InterpretME in non-survival mode or survival mode. The modes can be selected
by assigning a value to the survival parameter:

• survival = 0: This mode will run InterpretME in a non-survival mode, which
means that InterpretME expects its input data to be non-time dependent data
and therefore will allow users to apply standard sampling strategies like over-
sampling and use regression ML models like gradient boost, then the predic-
tions will be interpreted using LIME.

• survival = 1: This mode will run InterpretME in the survival mode, which
means that InterpretME expects its input data to be time dependent data
(survival data) and therefore no standard sampling strategy can be applied,
only survival machine learning models like survival random forest can be used
and their prediction will be interpreted using SurvSHAP.

Within the scope of this thesis, the survival path for InterpretME and all nec-
essary modifications to the Python source code of InterpretME were implemented.
These modifications are discussed in detail below.

First integrating the functions mentioned in 3.3.3 had to take place, a new Python
file ”survshap.py” was added to the InterpretME source code, after modifying all
the parameters to adapt them to InterpretME environment, some of InterpretME
features were not able to deal with survival data, this applies first of all on the
preprocessing of data, the main difference between survival and non-survival data
lies in the type of data processing and the preparation of the target variables.

While for non-survival data the focus is on classification, the processing of survival
data focuses on analyzing the time to the occurrence of a specific event, considering
the specific characteristics and requirements of survival data. For processing non-
survival data (if survival == 0), InterpretME preprocessing stage concentrates on
preparing data for typical classification tasks. Certain variables are first removed
from the list of independent variables. This involves adapting the data to make it
usable for machine learning models.

The focus here is on the prediction of class definitions based on the available
features. In contrary, when InterpretME is dealing with survival data (survival ==
1), it handles the data in a way that meets the unique requirements of survival
analysis. Here, the specific columns event and time, which are critical for survival
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analysis, are preserved in the process. A survival object would be therefore created,
it holds both the information about the occurrence of an event and the time until
that event occurs.

As the sampling strategies that are provided in InterpretME don’t support sur-
vival data, applying them to the survival data will just corrupt the data and lead to
wrong predictions. Therefor for now, no sampling strategy is applied when the sur-
vival mode is selected. The next change to the InterpretME source code was made
to the machine learning model building and classification stage. For non-survival
path, standard classification algorithms such as Random Forest, AdaBoost or
Gradient Boosting can be applied. The data is evaluated using techniques such
as Stratified Shuffle Split and Feature Importance to identify the most important
features. Next, hyperparameter optimization is performed to determine the best
model.

The accuracy of the model is then evaluated using conventional classification met-
rics. These include accuracy, i.e., the proportion of correctly classified observations,
and a classification report containing more detailed metrics such as precision, recall
and F1-score for each class. These steps are characteristic of standard classification
problems, which are primarily concerned with predicting a category based on in-
dependent variable. The new integrated path for survival analysis, however, shows
clear differences.

A special form ML models that suits survival analyses, must be used here, e.g., the
Random Survival Forest. The hyperparameter optimization method Grid Search
CV and training of the model are specifically adapted for survival analysis. The
classification report is also built differently from the non-survival mode. Instead
of focusing on class accuracy, precision, recall and F1-score, the report focuses on
survival analysis-specific metrics. These include the brier score and the Concor-
dance index. These metrics provide insights into the accuracy and reliability of the
model’s survival predictions.

After the ML model is trained and can make predictions and classification report
is generated, the model interpretation stage of InterpretME can begin. survshap
interpretation function has now all the required parameter and is called to in-
terpret the predictions made by the trained survival model. The results of the
SurvSHAP interpretation will be saved as pikel file and as csv files in the defined
survshap results path. Under the preparing output for plotting stage, functions like
calculate feature orderings, create ranking summary and make factors were used to
process the SurvSHAP output and prepare the output for plotting. The Next stage
of the pipeline that got big changes is the semantifying of results. The semantifica-
tion module in InterpretME had to be matched with the new implemented survival
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path of InterpretME [23]. New RML mappings were implemented to map the infor-
mations out of the SurvSHAP process and its results. These mappings transform the
data from the results csv file into a structure that is compatible with RDF and make
it possible to define relationships between different data points (such as features,
values, entities, etc.). The following example shows an implemented RMLs to set up
two of the mapping rules:

#Define a mapping configuration for SurvSHAPFeatures

<SurvSHAPFeatures>

rml:logicalSource [

rml:source "output/SurvSHAP/combined_SurvSHAP.csv";

rml:referenceFormulation ql:csv; ];

rr:subjectMap [

rr:template "http:// interpretme.org/entity /{ index}_{

Features}_{Values}_{run_id}_{tool}";

rr:class intr:SurvSHAPFeatures ];

rr:predicateObjectMap [

rr:predicate intr:hasEntity;

rr:objectMap [ rr:template "http:// interpretme.org/

entity /{index}"; ]

];

In this RML example, the process begins with the definition of the data source.
Subsequently, for each row in the csv file, an RDF subject is generated. These
subjects receive unique Uniform Resource Identifiers (URI)s based on a special
template that incorporates values from select columns in the csv file. Following
this, the predicate-object map comes into play. This map establishes diverse re-
lationships between the generated subjects and various objects. Every subject,
initially created in the subjectMap, is connected to one or more objects. A no-
table instance of this is the predicate intr:hasEntity, which forges a link between
a subject and an object, with the object being crafted according to the specified
schema. This mapping strategy is similarly employed for other predicates such as
intr:hasSurvSHAPFeature, intr:hasSurvSHAPFeatureValue, and many more, effec-
tively representing specific data facets through corresponding URI templates.

Once all SurvSHAP results are mapped, semantically enriched, and transformed
into an RDF-compatible format, along with the necessary data for performance mon-
itoring gathered from other InterpretME stages, users can then upload their results
to Virtuoso. Virtuoso not only provides an efficient storage solution but also enables
the querying of the data through SPARQL, offering a streamlined approach for users.
With the implementation of this last modification, the survival mode in InterpretME
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is now fully implemented and ready for operation.
The integration of SurvSHAP within the InterpretME framework overcomes var-

ious critical limitations of LIME, that were mentioned in 2.3. This enhancement
provides a more robust, stable, and realistic methodology for interpreting machine
learning models, especially within the domain of survival analysis. The improvements
brought by SurvSHAP over LIME are detailed below [8]:

• Addressing the Sampling Challenge: SurvSHAP incorporates sophisti-
cated sampling strategies that consider feature dependencies and interactions.
This approach generates data points that are more representative of the true
data structure, leading to more reliable and accurate interpretations.

• Improving Core Selection: SurvSHAP utilizes survival models that are
inherently more robust and less dependent on kernel parameterization. This
reduces the sensitivity of explanations to the choice of local kernels, resulting
in more consistent interpretations.

• Improving Stability: Leveraging the inherent consistency of survival models,
SurvSHAP enhances stability in the explanations it provides. This is partic-
ularly beneficial for users who require dependable insights from their model
interpretations.

• Beyond Linear Regression: Accommodating complex, non-linear relation-
ships typical in survival data, SurvSHAP provides more nuanced and accurate
interpretations, suited to the intricacies of real-world data.

Several disadvantages of SHAP as well as of SurvSHAP, which were identified in
2.4, were addressed. For instance, the issue of involving all features in explana-
tions has been tackled by implementing a two-step SurvSHAP process. Initially,
SurvSHAP runs with all features included, and then, according to the conclusive-
ness of the results, it conducts a second run focusing only on the most significant
features. While this approach increases computational demands, it greatly simplifies
interpretation by concentrating on the most significant features. Furthermore, the
challenge of correlated features is addressed using advanced methods like Conditional
SHAP, as cited by [39]. However, adapting this method for survival analysis remains
an area for future development and was not included in this thesis. A persistent
and unmitigated issue with SurvSHAP is its computational intensity. The method
requires a robust central processing unit to perform all its calculations, significantly
impacting the running time. This remains a notable consideration for users and an
area for potential future optimization. These mentioned enhancements collectively
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demonstrate the value added by integrating SurvSHAP into InterpretME, substan-
tially and from another angle, InterpretME itself brings considerable benefits to the
SurvSHAP method, as due to InterpretME’s semantic enrichment and KG presenta-
tion of results. The semantic layer added by InterpretME allows for more nuanced
and context-aware interpretations, while the KG format presents results in a struc-
tured, understandable manner for both humans and machines. This integration not
only broadens the analytical capabilities of InterpretME but also enhances the ac-
cessibility and interpretability of the outcomes, making it a more powerful tool for
detailed and insightful data analysis.

3.5 Chapter Summary

In this chapter, the focus was first on comparing regression with survival analy-
sis, outlining their definitions, applications, and methodologies. The chapter dis-
cusses the integration of survival analysis in the InterpretME framework, detailing
the SurvSHAP implementation and the survival machine learning model. It also cov-
ers tuning the ML model and the initial standalone implementation of the SurvSHAP
interpretation function. Finally, the adaptation of InterpretME for survival analy-
sis is explored, emphasizing its application and adjustments for survival data and
extending InterpretME with the new survival mode.

In the following chapter, the focus is on testing and evaluating the implemented
approaches. This includes the investigation of the SurvSHAP function as well as
the embedded survival analysis mode in InterpretME. The aim is to thoroughly test
both the functionality and efficiency of these innovations in order to confirm their
effectiveness and applicability in practice. The research questions motivated and
raised by in the scope of this thesis will also be discussed and answered.
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Experimental Evaluation

Upon completion of the methodologies outlined in 3.3 and 3.4, this chapter delves
into a comprehensive evaluation of the outcomes. Initially, the performance of the
SurvSHAP method is rigorously assessed, focusing on its efficacy and accuracy. Sub-
sequently, an experimental evaluation is conducted to examine the integration of
SurvSHAP with InterpretME. This analysis aims to understand the impact and
effectiveness of this integration in practical scenarios, providing insights into its ap-
plicability and potential benefits in the field of survival analysis.

4.1 Benchmark

In the scope of this chapter two different datasets were utilized for testing, the first
dataset is the tlos v1 presented in [40], its data is extracted from X-ray images and
radiology reports of various patients, indicating their length of stay in the hospital
and an event indicating whether a death occurred during their stay. The dataset is
huge with over 1200 patients each with about 90 features and therefore only certain
features will be picked and analyzed. The second dataset that will be utilized in this
section is the exp3 heart failure dataset presented in [8], its data focuses on patients
with heart failure. Heart failure is a chronic condition where the heart is unable to
pump blood effectively to meet the body’s needs. Each row represents a patient’s
medical record, and the columns contain various health-related measurements and
features. The dataset includes about 300 patients each with 11 features. Table 4.1
summarizes some of the most important characteristics of the used datasets.
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Dataset Description Number
of

Features

Number
of

Patients

tlos v1 Patients Length of stay
in Hospital based on
X-rays images

75 1200

Heart failure Heart failure Patients
characteristics

11 300

Table 4.1: Benchmark of the used datasets.

4.2 Evaluating survshap interpretation

To test and evaluate the implemented function and its functionality, accuracy and
impact, the tlos v1 4.1 will be used in this section and only the following features will
be examined: (age, sex, medical devices, an pleural effusion, an lung mass). After
loading the dataset, the columns patient id, time, event, and the specified features
will be first extracted from the dataset, event and time will be picked out and re-
formed to align with the survival ml model parameters expected formats.

Next step of data preprocessing would be splitting the data with a test data size of
20% into the following DataFrames: X train, X test contain the train and test feature
columns, and Y train, Y test contain the train and test (time-event) informations,
the splits were done with a random state of (123) to ensure reproducibility. Now the
hyperparameter grid dictionary will be defined as in listing 4.1:

hyperparameter_grid = {

’n_estimators ’: [100, 300],

’min_samples_split ’: [2, 5, 10],

’min_samples_leaf ’: [1, 2, 4],

’max_depth ’: [3, 5, 10],

’max_features ’: [’sqrt ’, ’log2 ’]

}

Listing 4.1: Used Hyperparameter Grid limitations

A Random Survival Forest model is initialized with Grid Search CV for hyperpa-
rameter tuning using 3-fold cross-validation. The best model is selected based on
the cross-validation results. After the best hyperparameters are extracted from the
Grid Search CV process. The model accuracy is evaluated with the cross-validation
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Figure 4.1: The bar plot of the survshap interpretation results illustrating the rank-
ing importance of the examined features.

mean score. Now the RSF model is trained with the best hyperparameters from the
tuning process on the training set.

The SurvSHAP can now be used with the help of the survshap interpretation
function as all required parameters are available. Figure 4.1 shows the first plot
of the survshap interpretation results and it illustrates the ranking importance of
the examined features. The plot illustrates the ranking of features based on their
importance across patients. Age is highlighted as the predominant feature (1st), as
it is recognized to be the most Important Feature (most Important Feature (mIF))
for 188 patients, where 40 patients had an pleural effusion as their mIF while 19
patients had pr firstorder MeanAbsoluteDeviation. Notably no patients had sex as
their mIF. an pleural effusion comes in the 2nd place as the majority patients have
it as their 2nd mIF, the same thing goes for pr firstorder MeanAbsoluteDeviation
which comes in the 3rd place and the least important feature is sex.

This plot assists users in understanding the rankings of features according to
their importance. Additionally, it shows the proportion of patients that display this
importance for each feature. With these results, the first research question (RQ1) is
addressed, enabling users to comprehend how each feature influences the predictions
of the employed survival model.

Figure 4.2 shows the change in aggregated |SurvSHAP values| over time (days)
for all patients. SurvSHAP excels at revealing how the relevance of different pa-
tient features evolves over time, a differentiated insight that goes beyond static im-
portance rankings. For instance, while age consistently emerges as the most im-
pactful feature overall, SurvSHAP’s analysis uncovers that in the period 60-70 days,
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Figure 4.2: The change in aggregated |SurvSHAP values| over time (days) for all
patients.

pr firstorder MeanAbsoluteDeviation shows a surprisingly higher influence more than
an pleural effusion, despite being ranked lower in overall importance. This dynamic
perspective provided by SurvSHAP is crucial for understanding the temporal ef-
fects of various factors on patient outcomes, enabling more informed and time-
sensitive healthcare decision. It is also noticeable that changes in the aggregated
|SurvSHAP values| are smaller after 70 days is due to the fact, that very small
number of patients have survived after 70 days.

Aggregating the SurvSHAP values of all patients provides a concise overview and
a general understanding of how feature importance changes over time. However,
in practical scenarios, users whether they are researchers, physicians, or others of-
ten require more detailed and individual-based information. For this reason, the
implemented method facilitates a deeper understanding and examination of specific
individuals (patients). This means that users can track and visualize the changes in
SurvSHAP values for a particular patient, offering a more personalized and precise
insight. Figure 4.3 shows the resulted plot of calling the implemented function with
the patient id = 5 as an input parameter.
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Figure 4.3: The change in |SurvSHAP values| over time (days) for patient id = 5.

This plot shows big differences from the aggregated SurvSHAP values plot. Even
though this patient has age as mIF but when it comes to the 2nd mIF it shows
that pr firstorder MeanAbsoluteDeviation has higher SurvSHAP values than the
an pleural effusion feature and therefor, for patient 5 the ranking of features im-
portance deviates from the overall rank. This ability to analyze specific entities
benefits users in many ways:

• Personalized analysis: By examining the SurvSHAP values of a specific patient,
doctors and researchers can gain a deeper understanding of the individual fac-
tors that influence the health condition or disease risk of that patient. As shown
in the example of Patient 5, individual analysis can reveal that certain factors
(such as pr firstorder MeanAbsoluteDeviation) may be more important for an
individual patient than generally assumed. This helps in identifying deviations
from the average pattern.

• Targeted Treatment Strategies: It helps understanding which factors are most
relevant for a particular patient allows for the development of customized treat-
ment and prevention strategies.
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4.3. Survival Analysis over InterpretME

• Improved Diagnostic Accuracy: Individual consideration allows for a more ac-
curate diagnosis, as it takes into account the unique characteristics and risk
factors of a patient.

The plot results for both the aggregated |SurvSHAP values| and the individual
|SurvSHAP values| provide users with valuable insights into the time-dependent
changes in feature importance, applicable to both groups of patients and individual
cases. With these results, RQ1 and RQ2 are satisfactorily answered, demonstrat-
ing a comprehensive understanding of how each feature dynamically influences the
survival model’s predictions over time for both cases, whether for a set of patients
or for an individual.

The testing phase for the implemented functions has successfully demonstrated
their accuracy and readiness to be integrated into InterpretME. Moving forward,
the next phase of testing will focus on evaluating InterpretME in its entirety, with
particular emphasis on its performance after the incorporation of SurvSHAP. This
comprehensive testing will ensure that the integration is seamless and that the system
functions optimally in its enhanced state.

4.3 Survival Analysis over InterpretME

The focus of this section is to test the ability of InterpretME to work with survival
analysis, with all of its new implemented additions that InterpretME got. After
insuring that InterpretME can perform survival analysis, the input data will be cor-
rupted and the change in the SurvSHAP results will be discussed and examined.
For those purposes the heart failure dataset 4.1 will be utilized and only the fol-
lowing features will be examined: (sex, age, anaemia, smoking, high blood pressure,
diabetes).

As discussed in 2.7.3 InterpretME will be used here by calling its pipeline func-
tion, this time in survival mode (survival = 1). The configuration file path is provided
and it defines many important configurations, like the examined features Indepen-
dent variable and classes (Dead and Alive) and many other essential process con-
figuration like cross validation folds (5) and the used ML model (Random survival
Forest). The path for survshap results was also provided to the pipeline function.
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The used JSON configuration file is shown below in 4.2 :

{

"path_to_data": "dataset/heart_failure_dataset.csv",

"Type": "Person",

"Index_var": "patient_id",

"Independent_variable": ["patient_id","sex", "age", "anaemia

", "smoking", "high_blood_pressure", "diabetes"],

"Dependent_variable": ["event"],

"classes": {

"Dead": "0",

"Alive": "1"

},

"sampling_strategy": "None",

"number_important_features": 6,

"cross_validation_folds": 5,

"test_split": 0.3,

"model": "Random survival Forest",

"min_max_depth": 4,

"max_max_depth": 6

}

Listing 4.2: The used JSON Configuration file for testing

After providing the necessary parameters, the InterpretME pipeline can be initiated.
The pipeline execution was successful, thoroughly validating all features of Inter-
pretMEs survival mode. The definitions of the implemented classes and the data
preprocessing steps were well-prepared for handling survival data. The addition of
the new survival machine learning model, specifically the survival random forest,
provided robust predictions. Hyperparameter tuning for survival analysis employed
the same grid used in 4.2. This tuning process successfully identified the best combi-
nation of hyperparameters. Both the Brier score, at 0.235, and the C-Index, at 0.593,
were recorded and saved. Although these values indicate a lower model accuracy,
this is primarily attributed to the heart failure dataset small size, comprising only
300 data points (patients). A larger dataset is generally necessary for the machine
learning model to perform optimally. However, this does not detract from our tests,
which are focused on assessing the functionality of all InterpretME features and their
ability to yield plausible results.

The SurvSHAP interpretability process executed smoothly and it calculated the
SurvSHAP values for all features under examination. These results were illustrated,
beginning with Figure 4.4:
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4.3. Survival Analysis over InterpretME

Figure 4.4: The bar plot of InterpretME interpretation results illustrating the ranking
importance of the examined features without corruption.

Figure 4.4 presents the ranking of feature importance for the heart failure dataset.
Notably, age ranked as the most significant feature, with approximately 53.3% (48
out of 90) of patients indicating age as their mIF. Anaemia followed, identified as
the mIF for approximately 25.6% of patients. In second place, anaemia was the
2nd mIF for about 23.3% of patients. High blood pressure was the 3rd mIF for
around 27.8% of patients. Surprisingly, diabetes was ranked as the least important
feature, with 27.8% of patients having it as their 6th mIF. These findings offer
a detailed understanding of the relative importance of features within the patient
cohort. Figure 4.5 displays the change in aggregated |SurvSHAP values| over time
for the examined feature. Age as the most important feature is dominating with the
highest values across the whole observed time while anaemia has the 2nd highest
values, however diabetes had interestingly higher values than anaemia for the time
period 5-25 days. Even the smoking features shows higher results than anaemia for
short period of time. This kind of informations are very important and provide a
very usefull insights for the users of InterpretME and they directly answer the raised
RQ1.
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Figure 4.5: The change in aggregated |SurvSHAP values| over time (days) for all
patients (Data with no corruption).

All results and configurations of the InterpretME pipeline stages in addition to
the SurvSHAP process, were saved for each run. The collected data is mapped
using InterpretMEs mappings, including the newly implemented mapping for the
SurvSHAP method. At each run, an InterpretME KG is created or updated, this
KG encapsulating all data accumulated throughout the pipeline, each datapoint is
uniquely marked with an automatically generated run id. This KG can be used to
gain additional aspects and insights on the run. The InterpretME KG can be queried
anytime for informations. An illustration of such a query is provided in the following
listing 4.3 :

select distinct ?entity ?feature ?run where {

?s a <http:// interpretme.org/vocab/SurvSHAPFeatures> .

?s <http:// interpretme.org/vocab/hasEntity> ?entity .

?s <http:// interpretme.org/vocab/hasSurvSHAPFeature> ?feature.

?s <http:// interpretme.org/vocab/hasRun> ?run .

FILTER (? entity = <http:// interpretme.org/entity/patient_151>)

}

Listing 4.3: Example of querying InterpretME KG
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4.3. Survival Analysis over InterpretME

The query is retrieving distinct sets of informations related to SurvSHAP features
from the InterpretME knowledge graph. Specifically, it’s focused on data related to
a particular entity identified as ”patient 151”. In more detail, it is querying for:

• entities: The specific entities related to SurvSHAP features, which in this case
is constrained to the one identified as ”patient 151”.

• features: These are the SurvSHAP features associated with ”patient 151”.

• run: This refers to the unique run identifier, from which the information is
queried. The run identifier allows for precise extraction and examination of
the data related to a particular analysis.

By filtering the results for patient 151, the query aims to extract a focused sub-
set of the knowledge graph that specifically pertains to this individual, detailing
the relevant features and the context (runs) in which they were analyzed. This
targeted extraction helps in understanding the specific circumstances and charac-
teristics of ”patient 151” as represented in InterpretME’s knowledge graph. The
results of such a query are presented in Table 4.2. Note: To simplify the pre-
sentation of the query result, the table displays truncated URIs, starting after
’http://interpretme.org/entity’.

entity feature run

/patient 151 /anaemia 0.0 /1703119817220
/patient 151 /sex 0.0 /1703119817220
/patient 151 /age 72.0 /1703119817220
/patient 151 /high blood pressure 1.0 /1703119817220
/patient 151 /smoking 0.0 /1703119817220
/patient 151 /diabetes 0.0 /1703119817220

Table 4.2: Results of querying InterpretME’s 4.3 KG with query

These results are showing snapshot of ”patient 151” from the InterpretME Knowl-
edge Graph, detailing the examined feature status during a specific analysis run.
Each feature is linked to the patient via a unique URI, providing a structured and
interconnected way of representing the patient’s informations.

This initial test run of InterpretME in survival mode was successful in every
aspect and demonstrated a promising functionality that will enable InterpretME
users to perform survival analysis and fully exploit the semantic possibilities.
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4.4 Feature Corruption effect on the survival anal-

ysis of InterpretME

The aim this test is to perform SurvSHAP and InterpretME with three modifications
done to the heart failure dataset: First, with the original heart failure dataset without
any type of modification; second, the number of dead smokers will be increased by
30% and then by 70%, the corruption alters the dataset by changing the smoking
status of a subset of patients classified as dead. Specifically, it converts a proportion
of dead non-smokers into dead smokers. Table 4.3 illustrate the the modifications
that were carried out to corrupt the smoking feature:

Corruption
percentage

Nr. Alive
smokers

Nr. Dead
smokers

Nr. Dead
non-
smokers

0% 30 66 137
30% Corruption 30 85 118
50% Corruption 30 99 104
70% Corruption 30 112 91

Table 4.3: Impact of Data Corruption on the Smoking Feature in Heart Failure
Patient Records

The purpose of these tests is to explore and observe the effects that the corruption
of a feature (in this case smoking) has on the results of the ML model of InterpretME
and the reliability of its predictions, i.e. on the results of the SurvSHAP process. The
corruption was done by the implemented corrupt DataFrame function models. All
tests were performed under identical conditions and configurations, either in terms of
the split ratio for training and test data or the boundaries of the hyperparameter grid
up to the cross-validation value. The only deviation was the structural corruption of
the smoking feature. Table 4.4 shows the brier score and C-Index for each corrupted
dataset with the unique run id.
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Dataset run id Brier Score C-Index

Original 1703119817220 0.2349 0.5929
30% Corruption 1703255486598 0.2063 0.6426
50% Corruption 1703259726169 0.2113 0.6284
70% Corruption 1703255835894 0.2140 0.6182

Table 4.4: Comparison between the InterpretME RSF model accuracy results of the
original, 30% and 70% corruption to the smoking feature in the heart failure dataset.

The unusual improvements observed in model performance, as evidenced by the
decrease in Brier score and the increase in the C-Index with when the data is cor-
rupted, are contrary to typical expectations. Normally, data corruption leads to a
decline in model accuracy. However, at a 30% corruption rate, both the Brier score
and the C-Index reached their optimal values, suggesting an unexpected improve-
ment in the model’s accuracy and its ability to classify survival times accurately.
This anomaly could be attributed to specific characteristics of the dataset, the na-
ture of the corruption introduced, or idiosyncrasies in the model’s learning process.
Interestingly, while the Brier score showed its best value at 30% corruption, implying
that the corruption might have introduced certain patterns or eliminated noise in the
smoking feature that the model deemed significant, it began to worsen (indicating
a decrease in accuracy) as the corruption rate increased further. A similar trend
was observed with the C-Index, which peaked at 30% corruption and then started to
decline with higher rates of corruption. Despite anticipating a deterioration due to
data corruption, the model demonstrated improved accuracy at a specific corruption
level of 30%, pointing to complex interactions between the data corruption and the
model’s interpretative mechanisms.

These survival ML model results call for more detailed investigation and expla-
nation in future research. However, the focus of this thesis is on the interpretation of
the ML model for survival data rather than its performance. Therefore the effect of
the corruption on the SurvSHAP results whether it is the importance ranking, the
aggregated |SurvSHAP values| or the individual |SurvSHAP values| will be focused
and discussed next. Only the results for 30% and 70% corruption will be addressed
as theses results provide a full picture on the effect of corruption on the SurvSHAP
results. Figure 4.6 shows the importance ranking for the heart failure dataset with
30% corruption. It is clear that there is a significant shift in the importance of fea-
tures at the 30% corruption level of the smoking feature as smoking rises to the most
important mIF for 44 patients making smoking the 1st mIF .
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Figure 4.6: The bar plot of InterpretME interpretation results illustrating the ranking
importance of the examined features with 30% corruption.

For 32 patients, it ranks as the 2nd mIF. This is a significant increase compared
to the ranking of importance of the original dataset shown in Figure 4.4, in which
smoking was only ranked first in 10 patients and second in 16 patients. The number
of patients for whom smoking is least important decreases from 15 in the original
dataset to none in the 30% corrupted dataset. This increase in the importance of
smoking is further confirmed and emphasized by the rankings of importance for the
70% corrupted dataset. Figure 4.7 shows importance ranking for the heart failure
dataset with 70% corruption. These results confirm the conclusion that the cor-
ruption applied to the smoking feature in the heart failure dataset directly effected
the importance ranking of features and shifted the ranking toward the the smoking
feature. The number of patients that have smoking as their 1st glsmIF increased to
78 leaving only 12 patients having age as their 1st mIF, age was the 1st mIF in the
original dataset. only 12 patients have smoking as their 2nd mIF and not a single
has smoking as their 3rd mIF and none have it as their 6th mIF.

The observed results provide a compelling indication that the intentional corrup-
tion of the smoking feature significantly influences the importance ranking of features
within the heart failure dataset which directly answers the RQ3 . Specifically, with
a 30% corruption level, there’s a pronounced shift in the feature importance, notably
elevating smoking to the most critical feature for a substantial number of patients.
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Figure 4.7: The bar plot of InterpretME interpretation results illustrating the ranking
importance of the examined features with 70% corruption.

This shift is not just a minor variation but a distinct reordering, moving smoking
from a lower-ranked feature in the original dataset to the most significant mIF for a
majority of patients in the corrupted dataset. The pronounced increase in patients
for whom smoking is the primary or secondary mIF underscores the sensitivity of the
model to changes in this particular feature. Additionally, the fact that no patients
consider smoking as the least important feature post-corruption starkly contrasts
with the original data, highlighting the dramatic impact of the corruption. Further-
more, the distortion remains consistent and even more pronounced at higher levels
of corruption, as evidenced by the 70% corrupted dataset. The shift away from age,
which was previously the most significant mIF in the original dataset, to smoking in
the corrupted dataset, reinforces the notion that the model’s interpretation of fea-
ture importance is heavily influenced by the manipulation of the smoking data. To
observe the changes in |SurvSHAP values| over time, a specific patient (patient 151)
was selected as a representative case for detailed analysis on individuals RQ2. Fig-
ure 4.8 presents three sets of results depicting the evolution of |SurvSHAP values|
for patient 151 across various datasets: on top, the original heart failure dataset,
followed by datasets corrupted by 30% and 70%, respectively.
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Figure 4.8: The change in |SurvSHAP values| over time (days) for patient id = 151
for the heart failure dataset without corruption and with 30% and 70% corruption
to the smoking feature.

It is proven that the corruption addressed earlier significantly influences the
SurvSHAP values of the smoking feature. Notably, as the corruption rate increases,
so do the SurvSHAP values. For example, on the 20th day, the SurvSHAP value for
the original dataset is 0.007, which increases to 0.010 in the 30% corrupted dataset,
and further escalates to 0.020 in the 70% corrupted dataset. A similar pattern is
observed on the 100th day, where the original dataset SurvSHAP value of 0.008
rises to 0.011 with 30% corruption and peaks at 0.036 with 70% corruption. This
trend is consistent for most SurvSHAP values over time, reinforcing the previously
drawn conclusions about the impact of data corruption on the model’s interpretative
outcomes.

4.5 Chapter Summary

In the ”Experimental Evaluation” chapter, the testing phase is reported as success-
ful, with InterpretME providing detailed and accurate survival analysis results. The
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newly integrated survival mode of InterpretME underwent thorough testing and eval-
uation within this chapter. Furthermore, the three research questions RQ1, RQ2,
RQ3 prompted by the implementation of SurvSHAP were effectively addressed, dis-
cussed, and resolved, affirming the efficacy and applicability of the approaches.
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Chapter 5

Conclusions and Future Work

This thesis embarked on an exploratory journey to enhance the interpretability of
machine learning models, particularly focusing on survival analysis within the con-
text of the InterpretME framework. The culmination of this thesis provides valuable
insights and contributions to the field of machine learning interpretability and knowl-
edge graph semantics. The successful reproduction of the state-of-the-art approach,
SurvSHAP, marks a significant milestone in this thesis. By meticulously implement-
ing SurvSHAP within the InterpretME framework, this thesis not only validates the
robustness and versatility of SurvSHAP but also enhances the interpretability fea-
tures of InterpretME. The integration demonstrates the framework’s capability to
provide deeper insights into survival models, making it a more comprehensive tool
for researchers and practitioners. Through the meticulous tracing of metadata and
writing of RML mappings at each step of the survival analysis, this thesis has laid
a groundwork for reproducibility and clarity. This systematic approach ensures that
future researchers can understand the transformations and interpretations made at
each stage, facilitating easier modifications and extensions. The comparative analy-
sis using InterpretME KG with and without corrupted features provides a nuanced
understanding of the model’s robustness and the interpretability reliability. These
experiments are crucial for understanding how feature corruption affects the survival
model’s interpretability, offering insights into the model’s behavior under various
scenarios, which is invaluable for real-world applications where data quality cannot
always be guaranteed. The preparation of comprehensive code documentation for
both the repository and this thesis acts as a valuable resource for future researchers.
It covers all the steps, findings, and methodologies employed throughout the thesis,
ensuring that the knowledge generated is accessible and understandable.

The work presented in this thesis represents a step towards demystifying the
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black-box nature of survival models, making them more accessible and understand-
able. By bridging the gap between complex machine learning models interpretability
and knowledge graph semantics, this thesis contributes to more transparent, reliable,
and ethical AI systems. The journey of exploration and discovery in enhancing In-
terpretME with SurvSHAP and metadata tracing has not only provided a robust
tool for today’s researchers but also set a foundation for tomorrow’s innovations.

5.1 Limitation

The recently integrated survival mode in InterpretME, like any research project,
encounters certain limitations. A notable restriction is the absence of a specialized
sampling method for survival data within the scope of this thesis. No method was
utilized or developed to effectively handle the nuances of survival data sampling.

Moreover, the SurvSHAP method itself, while innovative, is not without its lim-
itations. One such limitation is its provision of a single impact value per feature.
Although this offers a straightforward interpretation, it doesn’t capture the potential
variability with different instances. A broader exploration of SurvSHAP values across
similar cases might reveal a more detailed and dynamic understanding of how feature
contributions vary, akin to a forecasting model [41]. Another significant challenge is
the computational intensity required by SurvSHAP. The extensive calculations have
prolonged the testing phase, with some runs of the InterpretME pipeline exceeding
four hours. A potential mitigation strategy could involve the use of approxima-
tion techniques or the adoption of model-specific optimized versions of SurvSHAP,
like TreeSHAP [42] , suitably adapted for survival analysis. Such measures could
markedly decrease computation time while preserving the depth of insights.

These limitations are not unusual, particularly in a relatively new and evolving
field. They reflect the current state of technology and understanding, serving as
starting points for future enhancements and research. As the field matures, so too
will the methods and tools, leading to more refined and efficient solutions.
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5.2 Future Work

While this thesis has made significant strides in enhancing the interpretability of
survival models, the journey does not end here. Future research can explore the
following avenues:

• Extending SurvSHAP: Investigating further enhancements to SurvSHAP
to handle a wider array of survival models and datasets.

• Robustness to Feature Corruption: Further studies to understand the
limits and capabilities of InterpretME in the presence of increasingly corrupted
features and multiple features corruption.

• Interactive User Interfaces: Developing user-friendly interfaces for Inter-
pretME, allowing practitioners with limited technical knowledge to leverage its
capabilities.

• Enhancing Computational Efficiency: The SurvSHAP method, as high-
lighted in this research, is computationally intensive and time-consuming. Fu-
ture work should focus on optimizing the process and its computational de-
mands. Enhancing the speed and efficiency of SurvSHAP is crucial for scaling
to larger datasets and making it more accessible for real time applications.

5.3 Chapter Summary

In the ”Conclusion” chapter, the thesis underscores the significant progress made in
enhancing the interpretability of survival models through the InterpretME frame-
work, particularly with the integration of SurvSHAP. It emphasizes InterpretME’s
unique ability to semantify results and create KGs, providing a structured and in-
sightful understanding of the data. Despite facing challenges such as computational
intensity and sampling limitations, the advancements set a solid foundation for fu-
ture research. The chapter looks forward to opportunities for refining SurvSHAP,
improving robustness against feature corruption, developing more intuitive user in-
terfaces, and boosting computational efficiency. Furthermore, it envisions continued
innovation in leveraging semantic data and KGs within InterpretME. This conclud-
ing chapter serves as a testament to the ongoing evolution and potential in the realm
of interpretable machine learning.
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Acronyms

AI Artificial Intelligence

C-Index Concordance-Index

csv Comma-Separated Values

JSON JavaScript Object Notation

KG Knowledge Graph

LIME Local Interpretable Model Agnostic Interpretation

mIF most Important Feature

ML Machine Learning

MRI Magnetic Resonance Imaging

RDF Resource Description Framework

RML RDF Mapping Language

RSF Random Survival Forest

SHACL SHapes Constraint Language

SHAP Shapley Additive Explanations

SPARQL Protocol & Query Language

SQL Structured Query Language
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Acronyms

SurvSHAP Survival Shapley Additive ExPlanations

UML Unified Modeling Language

URI Uniform Resource Identifiers

W3C World Wide Web Consortium
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