
Journal of Physics: Conference
Series

     

PAPER • OPEN ACCESS

Structural Change Identification at a Wind Turbine
Blade using Model Updating
To cite this article: Karsten Schröder et al 2018 J. Phys.: Conf. Ser. 1104 012030

 

View the article online for updates and enhancements.

You may also like
Performance evaluation of an airfoil under
ice accretion using CFD simulations
Daniel Bodenlle-Toral, Pedro García-
Regodeseves and Adrián Pandal-Blanco

-

Inception of ice accretion by ice crystal
impact
Jens Löwe, Daniel Kintea, Arne Baumert
et al.

-

An experimental study on the thermal
characteristics of NS-DBD plasma
actuation and application for aircraft icing
mitigation
Yang Liu, Cem Kolbakir, Andrey Y
Starikovskiy et al.

-

This content was downloaded from IP address 89.245.22.228 on 20/02/2024 at 07:11

https://doi.org/10.1088/1742-6596/1104/1/012030
/article/10.1088/1742-6596/2217/1/012088
/article/10.1088/1742-6596/2217/1/012088
/article/10.1088/1742-6596/745/3/032013
/article/10.1088/1742-6596/745/3/032013
/article/10.1088/1361-6595/aaedf8
/article/10.1088/1361-6595/aaedf8
/article/10.1088/1361-6595/aaedf8
/article/10.1088/1361-6595/aaedf8
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvPGgUQibBcADf28NC8p5eqPwmwNk1YF3-AUpcY5MURuU9wjZyechFEVDblzBr51gbf2AEri0k24lNwVQQmbmEcUBFLK7RWKVHa_tY-asBVk3eDffnuOS5u5g4twdwdLmr3cloNdQUTtnFbcVbNwOd9tkEPC6PKwKbRurAwVhWqEzkuZ-2NsDpk3Nv8NJ0Lb0NoROO_waL5Vi4g8lM2i-BP740XoHrC1OJ0c2miMEHZXh2_IND9AnKoNlHR1_I4wenX67j7Q1iVHQb1i5JzgtKbWVJMSLRXPCL9tk4nbv8cOpKD1yNh1VQU9cKl582Ppqj2cs7DtQ&sai=AMfl-YTBh9S986qbuKM5iFOb6w8GHEQfM-kOuAKC4QqzQsghQZlk5z9nUZJ1RoNOIjNyzbLBmYp8eLJ7XKFuRNg&sig=Cg0ArKJSzPpDvwmlravV&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://ecs.confex.com/ecs/prime2024/cfp.cgi%3Futm_source%3DIOP%26utm_medium%3Dbanner%26utm_campaign%3Dprime_abstract_submission


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

EERA DeepWind'2018, 15th Deep Sea Offshore Wind R&D Conference

IOP Conf. Series: Journal of Physics: Conf. Series 1104 (2018) 012030

IOP Publishing

doi:10.1088/1742-6596/1104/1/012030

1

Structural Change Identification at a Wind Turbine

Blade using Model Updating
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Abstract. In this paper, a damage and ice accretion localization method based on finite
element model updating is tested using the example of a wind turbine blade. Both
eigenfrequencies in combination with mode shapes and a new comparison technique based on
transmissibility functions are employed in order to define measures for a quantification of the
difference between numerical and measured results. Results of these quantifications are used
to define an optimization problem, minimizing the deviation between model and measurement
by variations of the numerical model using a combination of a global and a local optimization
method. A full-scale rotor blade was tested in a rotor blade test facility in order to test those
structural health monitoring methods. During the test, additional masses were installed on the
structure in order to emulate ice accretion. Afterwards, the blade was driven to damage using
an edgewise fatigue test. In this test a crack occurs at the trailing edge of the rotor blade. The
model updating algorithm is applied to locate and quantify both structural changes with the
two different measures. Though shown to be successful in a numerical study, both measures
return incorrect damage locations when applied to real measurement data. On the other hand,
ice localization is successful using eigenfrequencies and mode shapes, even quantification is
possible. If transmissibility functions are applied, the localization is not possible.

1. Introduction
In cold climates, ice accretion on rotor blades has the potential to endanger the environment
of wind turbines. In case the ice mass becomes too big, the danger of throwing ice is growing.
Hence, turbines are stopped or operated with reduced speed if ice is on the blade [1]. In addition,
unbalanced ice growth at the rotor blades may cause higher fatigue loads in essential structural
parts such as the nacelle and the gearbox [2]. Thus, the detection of ice, modifying the structural
properties of the blade, at an early stage is of high interest for the operators of wind turbines.
Damage is another change of the structural properties. Repair of rotor blades cause the second
highest downtime per failure after gearboxes [3]. Hence, structural health monitoring and early
damage detection within these assemblies is vital to all wind turbines in operation, especially due
to the growing and ageing infrastructure [4]. The exact location of damage is a key component
for classification of damages.
Both damage localization and quantification of ice accretion can be regarded as a tracking of
structural changes. Finite element model updating [4] is a tool that may be employed to localize
these structural changes by updating a numerical model of the investigated structure to the

http://creativecommons.org/licenses/by/3.0
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measured data, provided that the initial model shows a very similar behavior to the measured
data. Model updating is applied to localize structural changes in several studies, especially big
structural systems such as bridges. Damage localization is successfully applied to a highway
bridge in [5]. Corrosion effects in a bridge are investigated in [6], whereas a frame structure is
investigated in [7]. In [8], the authors successfully apply model updating for damage localization
at a jacket structure of an offshore wind turbine.
In this paper, a finite element model updating approach presented in [9] is applied to a full scale
34 m rotor blade that is tested in a rotor blade test facility. Additional masses are attached
to the tip of the blade in order to simulate ice masses on the structure [2]. Afterwards, the
same blade is driven to fatigue damage using a load frame exciting the structure in its first
edgewise eigenfrequency. Twelve measurement transducers are installed in six positions along
the structure in order to observe the vibrations of the blade throughout the tests, four biaxial
accelerometers and two biaxial geophones. The signals of the geophones are derived to obtain
acceleration signals.
An essential step in finite element model updating is the comparison of measurement data with
results from a numerical model [10]. Two different methods are investigated within this paper.
The first is the classical approach, using eigenvector and eigenfrequency residuals [4]. The latter
makes use of the concept of transmissibility functions. Transmissibility functions are frequency
dependent response functions that are evaluated using the ratio of two measured signals [11].
To the best of our knowledge, transmissibility functions have not been used for model updating
before. In [12], modal parameters identified from those are used for model updating, but not the
functions themselves. Both comparison techniques are used in this paper for the investigation
of ice accretion and damage localization.
These quantified discrepancies between numerical model and measurement data are used to
define the objective function of an optimization problem which is minimized using variations of
the parameterized numerical model. The optimization problem is constrained in order to keep
the parameters within a user-defined range. Since it is known that optimization problems arising
in model updating are nonlinear and provide several local minima [13], the global optimization
procedure ’Simulated Quenching’ [14] is used to approximate a local minimum of the problem.
Afterwards, the local optimization method ’Sequential Quadratic Programming’ [15] is started
in order to converge to the exact local minimum. Being a heuristic optimization procedure,
the algorithm is started several times in order to ensure finding the global optimum. The final
objective function value is used to distinguish local and global optima.
After the mathematical formulation of the model to measurement comparison, measures based
on model parameters and transmissibility functions are introduced in the next section, the two-
step minimization algorithm is given subsequently. This is followed by a short description of the
rotor blade test, the numerical model being formulated based on limited data and a numerical
study on damage localization. Finally, the plausibility of the approach is tested via application
to real measured data for both damage localization and ice mass quantification followed by a
discussion of the results and a conclusion.

2. Optimization based model updating
Finite element model updating is a technique that uses data acquired from vibration tests to
update a numerical model in structural dynamics. Therefore, the difference between the dynamic
response of the numerical model and the measured data is evaluated using f(θ) ∈ R. The aim is
to minimize this measure using an optimization algorithm via modifications of the parameters
θ ∈ Rn, with n being the number of parameters. The parameters θ modify predefined quantities
within the numerical model such as masses or stiffnesses.
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2.1. Quantification of deviations between numerical model and measured data
Two different measures are used within this study. The first employs modal parameters whereas
the latter is formulated based on transmissibility functions. The use of modal parameters
has the advantage of a fast numerical simulation. Moreover, it is possible to use the average
modal parameters of several measurements. Operational modal analysis is a big research field
comprising a large variety of methods for identifying modal parameters from measured data.
However, the choice of the method influences the results. In addition, many methods provide
a certain user dependency by means of parameters needing to be adjusted problem dependent.
Employing transmissibility functions for model-to-measurement comparison has the advantage
of avoiding the effort needed for operational modal analysis and hence excludes a possible source
of errors. Furthermore, in contrast to other frequency or time domain based approaches, it is
sufficient to measure the output of the structure solely without exact knowledge of the excitation,
since this information can hardly be gathered exactly in many real life applications.

2.1.1. Deviation quantification based on modal parameters. Modal parameters are most
commonly used for model-measurement comparison [13]. In this study, a combination of
eigenfrequencies ω and mode shapes φ using

f(θ) =‖ωm − ωs(θ)

ωm
‖2 +

∑
i∈Y
||φi

m − φi
s(θ)||2 (1)

is employed for this purpose. The subindices m denote measured quantities and s
simulated quantities, respectively. Y represents the set of considered eigenvectors. For each
considered eigenmode the difference between measured and simulated data is determined for
eigenfrequencies and eigenvectors using the Euclidean norm.

2.1.2. Deviation quantification based on transmissibility functions. Transmissibility functions
(TF ) are frequency-dependent response functions, that describe the relationship between two
responses from different locations on the structure [11]. Transmissibility functions are defined
as

TF ij,k(ω) =
Xi(ω)

Y j(ω)
=
H ik(ω) · F k(ω)

Hjk(ω) · F k(ω)
=
H ik(ω)

Hjk(ω)
(2)

with X(ω) and Y (ω) denoting the responses at the locations i and j. H(ω) denotes the
frequency response function between the response X(ω) at the location i and Y (ω) at the
location j and the employed force F (ω) located in k. Since the force can be cancelled, the
transmissibility function solely depends on the location of the force. It is independent from the
magnitudes. In this study, transmissibility functions are evaluated using

TF xy =
P yx

P xx
, (3)

with P yx denoting the cross power spectral density of the responses X and Y and P xx

denoting the power spectral density of the response X. For damage and ice localization, the
transmissibility function is evaluated with two measured acceleration time series and compared
to the transmissibility function determined from the corresponding acceleration time series of
the numerical model using the l2 norm. The objective function used for model updating is
defined as

f(θ) =
n∑

i=1

‖TFm
xy,i − TF s

xy,i(θ)‖2
‖TFm

xy,i‖2
, (4)
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where n denotes the number of considered transmissibility functions, TFm
xy denotes the

transmissibility functions resulting from the measurement and TF s
xy denotes the simulated

transmissibility functions.

2.2. Minimization of the deviation between numerical model and measured data
The optimization algorithm used is presented in [9]. The measures outlined above are employed
for the definition of a minimization problem of the form

min
θ
f(θ) (5a)

subject to ci(θ) ≥ 0 ∀ i ∈ I . (5b)

The objective function f depending on the parameter set θ is minimized by variations of θ
subject to collection of inequality constraints (I). These constraints ensure that the parameters
remain within a defined range. For instance, these constraints may be used to keep physical
feasibility of the model, e.g. masses must be positive. A two-step optimization algorithm
is used to minimize the objective function. Problems arising in model updating are known
to have several local minima [13]. Therefore, a global optimization algorithm is employed to
solve problem (5). In this study, Simulated Quenching, an enhancement to the Simulated
Annealing algorithm, is used. Simulated Annealing is inspired by the slow annealing of metals
[14], where the atoms arrange in a crystal lattice in configuration of minimal energy. At certain
temperatures, particles may leave the lattice or arrange in it. Transferred to optimization,
this means that random solutions are accepted if they have a lower energy E, and hence a
lower objective function value. In addition, it is checked whether the constraints are fulfilled.
If constraints are violated, a new solution is created randomly. Worse solutions with bigger

values f(θ) are accepted if a random number between zero and one is smaller than e
−δE
T , where

δE denotes the difference between the actual and the next objective function value and T
denotes the actual ’temperature’. For low temperatures this acceptance probability is decreased.
After N repetitions the temperature is lowered repeatedly. Thus, no minimum is left if the
algorithm is close to the end and the optimization algorithm converges towards an optimum.
The main disadvantage of Simulated Annealing is that it requires a long time to converge
towards the exact minimum. Hence, Simulated Quenching is used, which uses an exponential
cooling scheme with Tk+1 = T0 · e((C−1)k) instead of a linear one in order to accelerate the
algorithm [16], with k denoting the iteration counter. Tk+1 denotes the next temperature and
C denotes an appropriately chosen value for the annealing constant. Both Simulated Annealing
and Simulated Quenching are based on randomness. Hence, it can not be guaranteed that
the algorithm calculates the correct minimum. In this study, the minimum is approximated
several times in order to overcome this. After approximating an initial solution using Simulated
Quenching, the exact minimum is determined using a local optimization algorithm. In this
study, a Sequential Quadratic Programming method is used. Sequential Quadratic Programming
methods combine an unconstrained optimization problem employing Newton‘s method with
constrained consideration using Lagrange‘s method [15]. A quadratic subproblem is constructed
at the actual iteration θk, approximating the objective function quadratically and the constrains
linearly. The subproblem can be written as

min
p

1

2
pT∇2

θθL p+∇fTk p+ fk (6a)

subject to ∇ci(θk)Tp+ ci(θk) ≥ 0 ∀ i ∈ I, (6b)

with ∇2
θθL denoting the Hessian of the Lagrangian of problem (5) and p denoting the solution

used as an iteration step towards the final solution. fk is the objective function evaluated at
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Figure 1. Rotor blade investigated on the test rig [2]

geophone
accelerometer

3,7m 12m 15,5m 20,5m 27,4m 34,2m

Figure 2. Sensor positions and types at the rotor blade

iteration k. The main advantage of this method is that no evaluation of the objective function is
needed to solve the subproblem. The evaluation of the objective function is numerically costly,
since every evaluation of the objective function includes a finite element analysis. Central
differences are used in order to approximate ∇fk since no general approach for finding the
derivative of the objective function exists. The Hessian ∇2

θθL is approximated using the
BFGS-method, making the algorithm a Quasi-Newton procedure [15]. Since the solution is
approximated using Simulated Quenching, the parameter set is modified before Sequential
Quadratic Programming is started. The parameter with the biggest deviation from the initial
value is supposed to be the parameter that needs to be changed. Hence, this parameter and
its neighbours are treated variable whereas the remaining parameters are fixed. This procedure
significantly reduces the effort needed to solve subproblem (6).

3. Experimental investigations at the rotor blade
In order to validate the model updating algorithm, measurements are performed at a 34 m
wind turbine rotor blade made of glass fiber composite material, see Figure 1. Twelve sensors
are installed at the rotor blade at six positions in order to measure the structural responses.
The sensor position and types are depicted in Figure 2. The rotor blade is tested in six
conditions. Firstly, a test is performed at the healthy structure to record the initial configuration.
Subsequently additional steel sheets each having a mass of 4.8 kg are fixed at the tip of the
blade in four steps in order to simulate ice accretion. The ice accretion steps, including the
positions and weights, are given in Figure 3 and Table 1. Finally, the blade is tested in
damaged state without ice. This state is achieved by an edgewise fatigue test. Cyclic loading
in edgewise direction is applied by a load frame 17.5 m from the blade root. Damage occurs



EERA DeepWind'2018, 15th Deep Sea Offshore Wind R&D Conference

IOP Conf. Series: Journal of Physics: Conf. Series 1104 (2018) 012030

IOP Publishing

doi:10.1088/1742-6596/1104/1/012030

6

step 1

step 2

step 3

step 4

Figure 3. Steps for ice accretion test

Table 1. Steps and added masses for ice accretion localization

Step
Number of Position of Added weight Added weight in percentage
steel sheets steel sheets in m of sheets in kg of blade mass in %

1 1 33-34 4.8 0.1

2 3 33-34 14.4 0.3

3
3 33-34 14.4

0.6
3 32-33 14.4

4 33-34 19.2
4 3 32-33 14.4 0.9

2 31-32 9.6

at the trailing edge, 6 m from the root. The structure is excited using hand excitation of the
first three eigenmodes and impulse hammer excitations at different locations. The analysis
presented here focuses on flapwise hammer excitations 33 m from the blade root. Data driven
Stochastic Subspace Identification [17] is used to identify eigenfrequencies and eigenvectors from
the measured signals.

4. Model updating at the rotor blade
Only mass and stiffness distributions are known at different spots along the blade. Due to this
limited information on the geometry of the blade, it is modelled using a rectangular cross section.
Nodes are set at every spot with known properties, resulting in a model with 26 Timoshenko
beam elements. Two beam elements are merged in one parameter in order to reduce the number
of optimization parameters. Hence, each parameter modifies the initial stiffness of two elements.

4.1. Damage localization using simulated data
A numerical example is presented to demonstrate the theoretical functionality of the algorithm.
Damage is simulated by different reductions of the stiffness in parameter four, representing
damage at 6m. The optimization problem used for damage localization is

min
θ
f(θ) (7a)

subject to θi ≥ 0.5 ∀ i ∈ θ (7b)

θi ≤ 1.01 ∀ i ∈ θ (7c)∑
i

(1− θi) ≤ 0.5 . (7d)

The maximum decrease is constrained to 50% (eq. 7b), a small increase of 1% is allowed (eq. 7c)
for numerical reasons. In addition, a constraint is defined ensuring that only one parameter can
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Table 2. Results of eight Simulated Quenching and adaptive Sequential Quadratic Programming
runs, using modal parameters to localize a stiffness decrease of 3%

SQP run Objective funtion Parameter number
number value 1 2 3 4 5 6 7 8 9 10 11 12 13

1 3.975· 10-06 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.999 1.000 1.000 1.00 1.00

2 5.032· 10-08 1.00 1.00 0.992 0.985 1.001 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3 3.494· 10-06 1.00 1.00 1.00 1.00 1.00 1.00 0.998 0.996 0.998 1.00 1.00 1.00 1.00

4 4.007· 10-06 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000 0.998 0.999 1.00 1.00

5 1.510· 10-08 1.00 1.00 1.00 0.978 1.001 0.999 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6 5.032· 10-08 1.00 1.00 0.992 0.985 1.001 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

7 3.272· 10-06 1.00 1.00 1.00 1.00 1.00 0.997 0.994 1.002 1.00 1.00 1.00 1.00 1.00

8 1.496· 10-08 1.00 1.00 1.00 0.978 1.001 0.999 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 3. Results of ten Simulated Quenching and adaptive Sequential Quadratic Programming
runs, using transmissibility functions to localize a stiffness decrease of 3%

SQP run Objective funtion Parameter number
number value 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0.0537 1.00 1.00 0.996 0.982 1.001 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 0.0869 1.00 1.004 0.994 0.982 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3 2.3264 1.00 1.00 1.00 1.00 1.010 1.010 0.952 1.00 1.00 1.00 1.00 1.00 1.00

4 0.4932 1.010 0.983 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

5 0.0540 1.00 1.00 0.996 0.982 1.001 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6 0.0538 1.00 1.00 0.996 0.982 1.001 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

7 0.5321 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.997 1.002 0.996

8 2.2413 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.974 1.010 1.010 1.00

9 0.2233 1.00 1.010 0.987 0.978 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10 2.0297 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.010 1.010 0.966

be close to the maximum estimated stiffness decrease (eq. 7d) [18]. The parameters in θ modifiy
the stiffnesses of two elements. The resulting parameter vectors with the lowest corresponding
objective function value of several Simulated Quenching runs for a stiffness decrease of 3%
are given in Tables 2 and 3. Since an adaptive reduction of the parameter set is applied
after running Simulated Quenching, many parameters are set to 1.0 in the results. It is shown
that the runs that localize simulated damage correctly in parameter four lead to much smaller
objective function values. Thus, this quantity is used to distinguished between wrong and
correct solutions. Therefore, damage localization is possible for the numerical example using
both metrics. The parameter vector entries are examined in order to quantify the simulated
damage. The parameter vector entries for all correct Sequential Quadratic Programming runs
are depicted in Figure 4. It is shown that both metrics lead to similar results. A smaller
stiffness decrease leads to a bigger parameter vector entry. Both comparison metrics based on
modal parameters and transmissibility functions seem to perform equally good on this theoretical
example. The outlier at 2 percent stiffness reduction can be detected by the objective function
value, which is 10% bigger than those of the other solutions in this solution class.

4.2. Damage localization using measured data
After validating the model updating algorithm using a numerical example, the algorithm is
applied to real measured data of the rotor blade. The minimization problem for damage
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Figure 4. Parameter vector entries for all correct SQP runs for the numerical example

localization using measured data is defined as

min
θ

f(θ) (8a)

subject to θi ≥ 0.25 ∀ i ∈ θ (8b)

θi ≤ 1.01 ∀ i ∈ θ (8c)∑
i

(1− θi) ≤ 0.75 , (8d)

where a stiffness decrease of 75% is allowed. This stiffness decrease is too high and aims
to demonstrate the robustness of the approach. The measure ψ is introduced in order to
illustrate results in a comprehensive manner. ψ is evaluated averaging the mean deviation
of the parameters from the initial value 1.0 for all optimization runs.

ψi =

∣∣Mpi − 1
∣∣

max(ψ)
, (9)

where pi denotes the vector of parameter i in all optimum solutions and Mpi denotes the
expected value of a vector p. The measure ψ resulting from damage localization using modal
parameters and transmissibility functions is depicted in Figure 5. Damage occurred in the area
covered by parameter three. The model updating algorithm localizes it in parameter five using
modal parameters and in parameter one and six using transmissibility functions. Hence, both
metrics localize the damage in wrong areas.

4.3. Ice detection and quantification
It is known that ice accretion initiates at the blade tip [2]. Therefore, the parameterization is
refined in the area close to the tip. The density is varied in order to modify the mass of the
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Figure 5. Vector parameter ψ for damage localization
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Figure 6. Overview on vector parameter ψ for all four ice steps using modal quantities

elements. The optimization problem used for ice localization is defined as

min
θ

f(θ) (10a)

subject to θi ≥ 0.99 ∀ i ∈ θ (10b)

θi ≤ 1.75 ∀ i ∈ θ , (10c)

where a small decrease of 1% and a increase of 75% of the density is allowed. The measure ψ
for ice localization using modal parameters for all ice steps is illustrated in Figure 6. It reveals a
clear location of added masses in parameters 12 and 13, which represents the blade tip. Hence,
ice localization using modal parameters is possible. The parameter vector entries are used to
calculate the extra masses. Masses added in the experiment are compared with the averaged
masses determined using model updating in Figure 7. The identified masses overestimate masses
added during the experiment by the factor two to three. Both the added masses of experiment
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Figure 7. Comparison of added masses during experiment and average additional mass
determined using model updating

and identified using model updating reveal a behaviour close to linearity within the range
considered here. This linear relationship may be used to determine the real mass growth on
the structure. In contrast to modal parameters, ice detection using transmissibility functions is
unsuccessful. The added mass is located in different parameters in the four steps. In the first
step, the added mass is located in parameter 2, in step 2 it is located in parameter 12, in step
3 in 11 and in the last step in parameter 10.

5. Discussion and limitations
The model updating algorithm delivers good results in the numerical analysis. If the damage
is located at the right location, the objective function value is about a decimal power smaller.
Both considered metrics yield similar results. The entry in the parameter vector gets bigger
for smaller stiffness reductions. The identified stiffness reduction underestimates the reference
stiffness reduction by a factor of about 0.5.
Using the measured data taken from the rotor blade for damage localization the algorithm
yields wrong results. The ice accretion localization using transmissibility functions supplies
invalid results. This can be attributed to the sensor positions. Damage localization using
modal parameters located the damage in the range of the second sensor. It is possible that
the damage effects to the modal parameters are not manifested on vibration signals of the
first sensor. Furthermore, the wrong localization may be caused by the impreciseness of the
numerical model. Due to limited information on the geometry of the blade, it is modelled using
a rectangular cross section, focusing on the webs and girders that carry the loads arising in a
rotor blade. During the experiment, damage occurs only at the airfoil. Since the load carrying
structure remains undamaged, the influence on the global dynamic behavior is weak. This can
be shown by observing the small change of eigenfrequencies and mode shapes after damage.
In addition, damping which is influencing results of transient analyses is strongly simplified
using a material damping formulation. This approach is probably too simple to capture the
real damping behaviour. In the use of transmissibility functions presented here, only ten out of
thirty functions are affected by the damage, the remaining contain relationships between sensors
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that do not cover the damaged area. Hence, the algorithm may fail because the effect of damage
may be obliterated between all functions used.
The metric employing modal parameters locates the added masses correctly at the tip of the
blade. The quantification of the identified masses using the parameter vector overestimate the
mass added in the experiment by the factor two to three. The nearly linear behaviour of both
masses may be used to estimate the real mass growth. Due to the fact that the added masses
are localized correctly using modal parameters, it is possible that effect of damage on the modal
parameters is too small to localize it correctly.

6. Conclusion and outlook
In this paper, a plausibility test of damage and ice accretion localization using model updating,
employing the example of a wind turbine rotor blade is presented. Two different metrics,
based on eigenfrequencies and mode shapes and another based on transmissibility functions,
are considered to quantify the deviation between numerical model and measured data. The
results of both metrics are compared. Furthermore, it is investigated whether it is possible to
quantify damage and ice accretion.
The structure used to validate the model updating algorithm is a 34 m long wind turbine rotor
blade, which is tested in six conditions. The numerical model is created using 26 Timoshenko
beam elements with a rectangular cross section, meaning that one element has a length of 1.3m.
The localization problem is solved using a minimization problem. An objective function is
defined to compare measured data with simulated data and build a residuum between them.
In this study, the objective function is formulated using modal parameters and transmissibility
functions.
The residuum is reduced using a two-step optimization algorithm. This algorithm combines
Simulated Quenching, a global optimization technique, with the local Sequential Quadratic
Programming. The result of the optimization process is a parameter vector representing the
calculated modifications of the parameters of the numerical model. The parameter with the
biggest deviation is considered as potentially damaged or as potential location of ice accretion.
The objective function value is used to distinguish correct from wrong solutions.
A numerical analysis is performed in order to validate the model updating algorithm. It is
shown that a small stiffness reduction of 0.5% can be localized correctly. The damage at the
trailing edge of the rotor blade during the experiment can not be located correctly, neither with
modal parameters nor with transmissibility functions. Localization of ice accretion using modal
parameters yields correct results. A quantification of the identified masses using the parameter
vector overestimates the masses added in the experiment by the factor two to three. Both masses
reveal a nearly linear behaviour. This may be used to estimate the real mass growth. The ice
localization using transmissibility functions yields wrong results.
The influence of sensor positions on localization results should be investigated further. The
results of ice quantification presented here are valid only for one blade investigated with small
masses. The linearity assumption made for the scaling of the mass within this paper should be
validated for bigger masses being attached to the blade. Due to the fact that transmissibility
functions are depending on the position of load application it has to be considered whether
localization is possible under changing loading conditions.
Within the analysis presented, loads are known and environmental and operational conditions
are not included. These should be investigated for applications in real turbines, since these
factors heavily affect the structural properties of the turbines. A workaround for this could
be to create individual numerical models for similar environmental and operational conditions.
Unknown loads may be approximated by the use of Kalman filters.
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