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Deep learning for geometric and semantic tasks in photogrammetry and
remote sensing
Christian Heipke and Franz Rottensteiner

Institute of Photogrammetry and GeoInformation (PI), Leibniz University Hannover, Hannover, Germany

ABSTRACT
During the last few years, artificial intelligence based on deep learning, and particularly based on
convolutional neural networks, has acted as a game changer in just about all tasks related to
photogrammetry and remote sensing. Results have shown partly significant improvements in
many projects all across the photogrammetric processing chain from image orientation to surface
reconstruction, scene classification as well as change detection, object extraction and object
tracking and recognition in image sequences. This paper summarizes the foundations of deep
learning for photogrammetry and remote sensing before illustrating, by way of example, differ-
ent projects being carried out at the Institute of Photogrammetry and GeoInformation, Leibniz
University Hannover, in this exciting and fast moving field of research and development.
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1. Introduction

The use of neurons and neural networks for artificial
intelligence in general, and for tasks related to image
understanding in particular, is not new. Artificial neu-
rons were described by McCulloch and Pitts as early as
1943. Rosenblatt (1958) developed the first computer
program, which implemented the so-called concept of
perceptrons (see Figure 1) and was able to learn based
on trial and error. After Minsky and Papert (1969)
proved mathematically that the original concept could
not model the important XOR statement (exclusive
OR; the result is true only for an odd number of
positive inputs), which dealt the research on neural
networks a significant blow, the field was revived
about two decades later with the introduction of back-
propagation (Rummelhart, Hinton, and Williams
1986; LeCun 1987), which allowed the efficient train-
ing of multi-layer artificial neural networks (see Figure
2), to which the theoretical restrictions noted by
Minsky and Papert (1969) do not apply. Other impor-
tant steps were the introduction of Convolutional
Neural Networks (CNN, LeCun et al. 1989; LeCun
and Bengio 1998) and deep belief networks (Hinton,
Osindero, and Teh 2006). The breakthrough of deep
learning came, when Krizhevsky, Sutskever, and
Hinton (2012) won the ImageNet Large-Scale
Recognition Challenge, a classification task involving
1000 different classes (Russakovsky et al. 2015) using
a CNN-based approach. Their network, called
AlexNet, lowered the remaining error by nearly 50%
compared to the previous best result.

Since then, deep learning based on neural networks
has seen a tremendous success in many different areas

including photogrammetry and remote sensing (Zhu
et al. 2017). The main reasons are twofold: (a) since
a few years, computers are powerful enough to process
and store data using large networks with many layers
(called “deep” networks), in particular when using
GPUs (graphical processing units) during training,
and (b) more and more training data became available
for the different tasks (it should be noted that AlexNet
used some 1,2 million labeled training images to learn
a total of some 60 million parameters). The most
comprehensive textbook available for deep learning
today is the one by Goodfellow, Bengio, and
Courville (2016).

This paper is structured as follows: after a brief
summary of the principles of deep learning and
CNN, by way of example we describe the work carried
out along those lines at the Institute of
Photogrammetry and GeoInformation (IPI) of
Leibniz University Hannover. We subdivide the
main chapter into geometric approaches and those
used in aerial image analysis and close range. Finally,
some conclusions are drawn.

2. Convolutional networks for image analysis

In principle, a CNN can be considered a classifier. In
traditional classifiers (random forests, support vector
machines, conditional random fields, maximum likeli-
hood estimation, etc.) features representing the different
classes are extracted from the data set in a pre-processing
step, and classification is then performed based on these
features. It is clear then that the results can only be as
good as the selected features. CNN overcome this pro-
blem by learning the features together with the
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corresponding label for each data sample (see Figure 3).
The price to pay is the fact that a very large amount of
training data is needed to estimate this largely increased
number of unknowns. Since often the required amount
of training data is not available, additional data are gen-
erated from the available ones (data augmentation) or
simulation results are used as a substitute for real training
data.

In a CNN architecture, in principle three different
steps are carried out in each layer (see Figure 4): (a) the
convolution step, where a set of digital filters is applied
to an input image of fixed size, (b) a so-called pooling
step, where from a larger group of filtered pixels only

one (the one with the maximum entry in the case of
max-pooling) is retained and (c) an activation step,
where the remaining set of pixels is subjected to a non-
linear function. In most current works the rectilinear
unit (ReLU) has been chosen as an activation function.
These steps are followed by processing through a few
densely connected layers which eventually results in
a feature vector representing the complete input
image. This feature vector is then classified using an
arbitrary classifier. Typically, the softmax classifier is
used as it has several advantages (Kreinovich and
Quintana 1991).

Similar to the concept of image pyramids the pool-
ing step is employed to increase the context area
considered by each filter. A non-linear activation func-
tion must be used, since otherwise, all steps could be
substituted by one (linear) layer between input and
output, which is known not to be expressive enough
for learning any but very simple tasks. The elements of
the filters are considered as unknown parameters
which are learned from training data via stochastic
gradient descent. Initial values can typically be selected
arbitrarily and the gradients are computed by back-
propagation. Updates for the unknowns are found
based on a specially designed loss function, which for
the training data minimizes a function of the differ-
ences between the class predicted by the network and
the known class. Various training strategies are in use
regarding the size of the sample set used simulta-
neously (called batch size) in one parameter update

Figure 1. Concept of a perceptron j. Depicted are the input xi, the weight wji, the bias bj, the (non-linear) function f and the
resulting output aj.

Figure 2. Artificial neural network with input layer, two hidden
layers and output layer.

Figure 3. Concept of a standard classifier (top) and a CNN classifier (bottom). The advantage of the latter is that the features and
the model parameters are learned simultaneously from the training data.
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step and the selection of nodes used for each training
sample (in the so-called dropout strategy some of the
nodes are not always used to increase the generaliza-
tion capabilities of the network).

As would have become apparent after this descrip-
tion, when using a CNN, several parameters need to be
fixed prior to processing the images. These comprise
among others the number of filters and their size, the
number of nodes in each layer and the number of
layers. The latter one is of particular importance
(Baral, Fuentes, and Kreinovich 2018): In principle,
a neural network (as any supervised classifier) can be
seen as an interpolation function with the training
samples serving as support. Each path between input
and output through the network represents such
a function. In order to increase the accuracy of the
overall results, many different functions are needed.
However, permutations within a layer lead to the same
function being implemented through different paths.
Therefore, the number of nodes per layer should be
kept reasonably small, and as a consequence, many
layers are needed in order to obtain the number of

unknowns necessary for complex tasks; this explains
the fact that in general deeper networks yield better
results (e.g. He et al. 2015).

While the original concept of a CNN would typi-
cally learn a feature vector to represent a whole image,
other tasks have also been solved using CNN. Among
those are pixel-wise classification (called semantic seg-
mentation in Computer Vision (CV) terminology),
where Fully Convolutional Networks (FCN, Long,
Shelhamer, and Darrell 2015) are employed. Encoder-
decoder networks (Hinton and Salakhutdinov 2006;
Ronneberger, Fischer, and Brox 2015, see Figure 5)
carry out the upsampling required to get pixel-wise
class predictions in a series of steps in the decoder part
that mirror the structure of the downsampling proce-
dure of the encoder network. The U-net structure of
Ronneberger, Fischer, and Brox (2015) includes so-
called skip connections to better preserve object
boundaries. Also object detection, where objects are
described by bounding boxes (Ren et al. 2017) and
object delineation (instance segmentation in the CV
world, He et al. 2017), where in addition to these

Figure 4. Architecture of a typical Convolutional Neural Network for image analysis. The figure shows the successive steps of
convolution and pooling to generate a feature vector which is classified in the final step, typically using the softmax classifier (the
non-linear activation function is not depicted).

Figure 5. The U-net architecture, an example of an encoder network with skip connections (Ronneberger, Fischer, and Brox 2015).
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bounding boxes a mask is computed for each object
with pixels belonging to either fore- or background,
describe very useful tasks tackled using CNNs. Other
network architectures comprise Siamese networks
(Bromley 1993), where weights are shared between
two different parts of the network, often to determine
similarity of two images (e.g. in image matching),
Recurrent Neural Networks (RNN, e.g. Grave et al.
2009) for dealing with time-dependent data and
Generative Adversarial Networks (GAN, Goodfellow
et al. 2014), which can learn new data with the same
statistical distribution as a given data set. The latter
can be useful, e.g. in transfer learning (Yosinski et al.
2014; Tzeng et al. 2017). Finally, CNN techniques have
also been applied to unstructured 3D point data
(Landrieu and Simonovsky 2018), e.g. representing
depth (Qi et al. 2016).

In particular, for pixel-wise classification and for
object delineation it is important in our field to con-
sider the geometric accuracy of the object boundary, as
a different label is sought for each pixel. Thus, in some
works maximum pooling, which acts as a low path
filter and thus blurs the boundary, is not used. In order
to still keep the number of filter elements, and thus of
unknown parameters to be estimated, at a reasonable
number, filter elements are interpolated from
a selected number of unknowns in successive layers,
or dilated convolution, originally developed for wave-
let decomposition (Holschneider et al. 1990; Yu and
Koltun 2016), is used, where a number of elements are
set to zero. In both cases, care should be taken not to
violate the sampling theorem.

3. Deep learning research at IPI

In photogrammetry and remote sensing, and in parti-
cular when dealing with aerial or satellite images, some
of the conditions which hold true for typical computer
vision applications do not apply: (a) the images are
much larger and contain a multitude of objects, each
often only a few pixels in size; (b) the image orientation
and the ground sampling distance are typically known;
(c) there is no preferred direction in the image (“up”
does not point to the sky); (d) besides 3-channel color
images other modalities such as additional bands (e.g.
the infrared channel) and depth are often available,
sometimes also other data such as maps, social media
data or Volunteered Geographical Information (VGI);
(e) often, considerable prior knowledge about the scene
is available; (f) typically, there is a shortage of training
data, while at least in an update scenario outdated map
data are given; and finally (g) the accuracy require-
ments are typically more stringent, both for geometric
and for semantic results. Thus, the question did arise
a few years ago, in how far deep learning and CNN can
be used to advantage also in photogrammetry and
remote sensing. This question has also influenced

work at the Institute of Photogrammetry and
GeoInformation, as will be shown in the following.

3.1. CNN for geometric tasks

Problems relating to image orientation and dense sur-
face reconstruction are considered geometric tasks in
this context. We report on projects related to these two
tasks.

In image orientation, a specific problem is the
detection, description and matching of conjugate
point pairs. While in standard cases different opera-
tional solutions based on the well-known SIFT (Scale
Invariant Feature Transform, Lowe 2004) operator
exist, these solutions reach their limits for wide base-
line image pairs with largely different viewing direc-
tions and different scales. This is for instance the case
when oblique aerial images of different viewing direc-
tions need to be matched. Chen, Rottensteiner, and
Heipke (2016) suggest a Siamese network to learn
a feature descriptor to solve this problem. The loss
function is designed according to the triplet loss para-
digm (Weinberger and Saul 2009): it pulls the descrip-
tors of matching patches closer in feature space while
pushing the descriptors for non-matching pairs
further away from each other.

Also after decades of research and development, 3D
surface reconstruction cannot be considered
a problem solved under all circumstances: areas with
poor and repetitive texture, as well as sharp depth
discontinuities and resulting occlusions continue to
pose difficulties. The first solution based on CNN
was presented by Zbontar and LeCun (2015). At IPI
we deal with this problem on two levels: On the one
hand, Kang et al. (2019) developed a new dense stereo
method based on dilated convolution, which does not
only use depth as training data but includes a depth
gradient term into the loss function (see Figure 6). The
results show that more detail can be retrieved in par-
ticular in the presence of depth discontinuities, if (and
only if) the gradients in the training data are reliable.
On the other hand, Mehltretter and Heipke (2019)
improve the quality of dense stereo matching by ana-
lyzing the 3D cost volume of the related disparity
space image. In a novel CNN architecture features
for confidence estimation are directly learned from
the volumetric 3D data.

3.2. Aerial image analysis

The automatic analysis of aerial imagery has been
a major focus of research for a number of decades
at IPI. We currently work on three different topics
with a connection to deep learning: land cover and
land use classification, transfer learning and bomb
crater detection.

GEO-SPATIAL INFORMATION SCIENCE 13



The first one is concerned with the update of
land cover and land use databases. Yang,
Rottensteiner, and Heipke (2018, 2019) have sug-
gested two network architectures, one for land
cover and another one for land use update. For
the land cover, an ensemble classifier combining
RGB data with an infrared channel and height in
the form of a normalized Digital Terrain Model is
being used in an encoder-decoder network struc-
ture with skip connections (see Figure 7). In the
following land use estimation, the object shapes are
taken from the topographic database to stabilize the
solution, while for each object the label is estimated
using the input information as well as the result of
land cover classification. The results confirm that
CNN can outperform the best methods employed
previously, i.e. Conditional Random Fields (Albert,
Rottensteiner, and Heipke 2017).

Another topic we work on is related to transfer
learning with the goal of pixel-wise classification of
mono-temporal data (Wittich and Rottensteiner

2019). Assuming the availability of labeled training
data for existing data (called the source domain), we
adapt a CNN trained on these data to new data (target
domain) that have a different joint distribution of class
labels and features. In domain adaptation, a specific
setting of transfer learning, this adaptation is to be
achieved without new hand-labeled training samples
from the new domain. For that purpose, we adapt
Adversarial Discriminative Domain Adaptation
(ADDA; Tzeng et al. 2017) to the prediction of land
cover from aerial images and a Digital Surface Model
(DSM). Adversarial methods try to train a neural net-
work to produce a feature representation that is inde-
pendent from the domain from which a sample is
drawn; similarity is measured by the capability of
another neural network (called discriminator) to pre-
dict from which domain a feature vector was drawn.
While ADDA gives encouraging results for similar
domains, there is clearly room for improvement if
the domains are very different, especially with respect
to the distribution of class labels.

Figure 6. Network architecture for dense matching (Kang et al. 2019).

Figure 7. Architecture of ensemble classifier for semantic segmentation of land cover including skip connections. The top encoder
part takes color images as input, the bottom part the infrared channel and height information. The encoder part ensures a detailed
information for each pixel (Yang et al. 2019).
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In a more classical pattern recognition approach
Clermont et al. (2019) extract bomb crater from images
acquired during the second world war (see Figure 8).
The background of this work is the fact that a number of
bombs did not explode during the war and are still
sitting in the ground, posing a significant danger in
particular during ground construction work. The ratio-
nale of the project is that finding the bomb craters will
give an indication of where unexploded bombs might
lie. The work is based on a variant of the ResNet
architecture (He et al. 2015), the results show that this
seemingly not so difficult problem is indeed challen-
ging, partly because of the lack of a sufficient number of
training data.

3.3. Close range applications

In this area, we are concerned with mobility, as well as
a project dealing with artwork. In the field of mobility,
we have designed and implemented a system that can
recognize and determine the relative poses of cars in
a stereoscopic image sequence based on adaptive
shape models. In a related project, pedestrians are
detected and tracked in these sequences. Finally, we
are working on the re-identification of persons being
viewed from different cameras of a sensor network. All
three projects are connected to the German Science
Foundation as part of the Research Training Network
“Integrity and Collaboration in Dynamic Sensor
Networks” funded at our university (i.c.sens 2019).

In the first project (Coenen, Rottensteiner, and
Heipke 2019), for every detected object a CAD model is
fitted into a stereo image pair and the derived point
cloud, allowing to estimate the pose of the car relative
of the camera position and, consequently, of the camera
relative to the other car. If the detected cars are equipped
with a GNSS receiver and can communicate their posi-
tion to the camera, these cars thus act as dynamic control
points for image orientation and, thus, the positioning of
the cars. The core of the method is 3D reconstruction by
optimizing a probabilistic energy function involving

several data and prior terms. A multi-task CNN delivers
some of the image-related data terms by predicting the
positions of keypoints and model edges in the image
while also providing a prior term for the coarse orienta-
tion (rotation about the vertical axis) of the car. Figure 9
shows the qualitative results of 3D reconstruction based
on Coenen, Rottensteiner, and Heipke (2019).

Pedestrian detection and tracking (Nguyen,
Rottensteiner, and Heipke 2019) rely on the Mask
R-CNN approach (He et al. 2017) to generate and
classify region proposals assumed to contain pedes-
trians. Since stereo information is available detection
and tracking are carried out in 3D space, which allows
to employ additional geometric constraints (a position
in 3D can only be occupied by one person). Data
association is then based on the triplet loss using
TriNet (Hermans, Beyer, and Leibe 2017) and takes
into account the local context. Experiments indicate
the good quality of the results, both when evaluating
the geometric accuracy of the resulting trajectories and
also when investigating their length: the new approach
shows fewer identity switches and thus longer trajec-
tories than comparable solutions.

Person re-identification is tackled by using a fisheye
camera in nadir viewing position (Blott, Takami, and
Heipke 2018, Blott, Yu, and Heipke 2019). In this way,
multiple views of a person (front, side, back) can be
extracted from the image sequences, before comparing
this 3-view set of images with a database in order to re-
identify the person. Classification of the different
views uses a ResNet variant (He et al. 2015), while in
the matching stage the TriNet is used to extract fea-
tures. The results are promising and the approach
outperforms existing approaches by a significant mar-
gin, partly due to the fact that more information is
available than in single image solutions.

The last project we want to discuss is related to
cultural heritage documentation. There are many
museums having collections of silk fabrics. These col-
lections are also documented in digital records, typically
consisting of digital images and a corresponding text.

Figure 8. Results of automatic detection of bomb craters in historic wartime images using convolutional neural networks.
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The information contained in the text, e.g. describing
the time or place of production of a fabric, is very
important for art historians, but it is not provided in
a standardized way, and sometimes important pieces of
information are missing. In the context of an EUH2020
project (SILKNOW 2019), a multi-task CNN based on
ResNet (He et al. 2015) was developed that simulta-
neously predicts the production time, the production
place and the production technique from a digital
image, deriving the training data automatically by ana-
lyzing existing collections (Dorozynski, Clermont, and
Rottensteiner 2019). The results show that by combin-
ing these prediction tasks, the accuracy of prediction is
increased if high-quality training samples are used.

4. Conclusions

The short summary of the individual projects had the
goal to convince the reader, that indeed, deep learning
and CNN-based solutions carry great value in photo-
grammetry and remote sensing. In both, geometric and
semantic tasks, CNN-based solutions outperform those
based on more traditional image analysis. The strength
of CNN is the combined estimation of the feature
representation and the labels during classification, and
it seems that deeper networks are practically guaranteed
to yield better results than shallow networks, as long as
enough training data is available. Open source imple-
mentations for CNN exist, and the industry has started
to make heavy use of these algorithms.

Having said that, one should not forget that in
essence, a CNN (and any deep learning approach) is
a classifier. As such it comes with the same general
limitations as any other classifier. Therefore, a number
of questions need further attention:

● A CNN needs a sufficient number of representa-
tive training data, well balanced with respect to

the related classes. Otherwise there is a risk of
overfitting the classifier to the training data and
a bias is likely to be introduced into the results.
To increase the amount of training data, data
augmentation, transfer learning, approaches
which are able to tolerate a certain amount of
incorrect labels (label noise), semi-supervised
and unsupervised learning (clustering) can be
employed and should be studied. In some cases,
simulation techniques may also help.

● A CNN “cannot learn the unseen”, the general-
ization capabilities are limited to previously seen
training data.

● Incremental learning and forgetting (or
“unlearning”) data, e.g. those which are not rele-
vant anymore due to a changing environment, is
a topic which has received little attention in our
field so far, yet this area offers a large potential, in
particular for multi-temporal analysis.

● Anumber of design decisions need to be taken, e.g.
with respect to the network architecture and the
design of the loss function. It is not clear in gen-
eral, how different choices influence the results,
and how robust the classifiers are. Some works
suggest that CNN can be indeed be fooled rela-
tively easily (Nguyen, Yosinski, and Clune 2015).

● A CNN is based on correlations of different data
sets. We argue that understanding a task to then
reason about possible solutions in a way humans
do is far beyond the scope of the currently
employed methods (note that this does not
mean that reasoning is not done, e.g. in a game
of chess or Go. It does mean, however, that CNN
does not have an intuition for possibly correct
solutions and abstract deductive learning).

● A CNN is largely a black box. While it may deliver
very good results, it is largely unknown why and
how exactly these results are being reached. Besides

Figure 9. Four qualitative results of 3D vehicle reconstruction based on (Coenen et al. 2019). Left: Input image, superimposed with
extracted model wireframes. Right: 3D view on the reconstructed scene.
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being a little frustrating from a scientific point of
view, this means that the limitations of these meth-
ods cannot clearly be stated, resulting in some
doubts whether the methods can be employed in
real-world safety- and security-related areas –
autonomous driving is a good example.

Thus, it seems that a number of difficult research ques-
tions still exist in our field. Besides taking care of a better
geometric and semantic accuracy of the results, improv-
ing their reliability is of great importance. This will only
be possible by investigating better ways to explain why
deep learning approaches give the results they do (see
e.g. Roscher et al. 2019). Another important aspect is the
integration of deep learning approaches with other
learning paradigms and prior knowledge, according to
the motto, “Why learn what we already know?”. So far,
the approaches discussed in this paper are mainly stand-
alone solutions. We believe that in the long run, only
a combination of different methods will lead to success.
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