
Classical and Quantum Gravity

PAPER • OPEN ACCESS

Regression methods in waveform modeling: a
comparative study
To cite this article: Yoshinta Setyawati et al 2020 Class. Quantum Grav. 37 075012

View the article online for updates and enhancements.

You may also like
Accuracy of Estimating Highly Eccentric
Binary Black Hole Parameters with
Gravitational-wave Detections
László Gondán, Bence Kocsis, Péter
Raffai et al.

-

Observation of Gravitational Waves from
Two Neutron Star–Black Hole
Coalescences
R. Abbott, T. D. Abbott, S. Abraham et al.

-

A higher-multipole gravitational waveform
model for an eccentric binary black holes
based on the effective-one-body-
numerical-relativity formalism
Xiaolin Liu, Zhoujian Cao and Zong-Hong
Zhu

-

This content was downloaded from IP address 89.245.22.240 on 19/02/2024 at 07:29

https://doi.org/10.1088/1361-6382/ab693b
/article/10.3847/1538-4357/aaad0e
/article/10.3847/1538-4357/aaad0e
/article/10.3847/1538-4357/aaad0e
/article/10.3847/2041-8213/ac082e
/article/10.3847/2041-8213/ac082e
/article/10.3847/2041-8213/ac082e
/article/10.1088/1361-6382/ac4119
/article/10.1088/1361-6382/ac4119
/article/10.1088/1361-6382/ac4119
/article/10.1088/1361-6382/ac4119

1

Classical and Quantum Gravity

Regression methods in waveform
modeling: a comparative study

Yoshinta Setyawati1,2 , Michael Pürrer3 and Frank Ohme1,2

1  Max Planck Institute for Gravitational Physics (Albert Einstein Institute),
Callinstr. 38, D-30167 Hannover, Germany
2  Leibniz Universität Hannover, D-30167 Hannover, Germany
3  Max Planck Institute for Gravitational Physics (Albert Einstein Institute),
D-14476 Potsdam-Golm, Germany

E-mail: yoshinta.setyawati@aei.mpg.de

Received 25 September 2019, revised 16 December 2019
Accepted for publication 8 January 2020
Published 3 March 2020

Abstract
Theoretical gravitational-wave models of compact-binary mergers need to be
accurate, but also fast in order to compare millions of signals in near real
time with experimental data. Various regression and interpolation techniques
have been employed to build efficient waveform models, but no study has
systematically compared the performance of these methods yet. Here we
provide such a comparison. For analytical binary-black-hole waveforms,
assuming either aligned or precessing spins, we compare the accuracy as
well as the computational speed of a variety of regression methods, ranging
from traditional interpolation to machine-learning techniques. We find that
most methods are reasonably accurate, but efficiency considerations favour in
many cases the simpler approaches. We conclude that sophisticated regression
methods are not necessarily needed in standard gravitational-wave modeling
applications, although machine-learning techniques might be more suitable
for problems with higher complexity than what is tested here.

Keywords: gravitational wave, waveform modeling, regression,
interpolation, machine learning, precessing, singular-value-decomposition

Y Setyawati et al

Regression methods in waveform modeling: a comparative study

Printed in the UK

075012

CQGRDG

© 2020 The Author(s). Published by IOP Publishing Ltd

37

Class. Quantum Grav.

CQG

1361-6382

10.1088/1361-6382/ab693b

Paper

7

1

26

Classical and Quantum Gravity

IOP

Original content from this work may be used under the terms of the Creative
Commons Attribution 4.0 licence. Any further distribution of this work must maintain
attribution to the author(s) and the title of the work, journal citation and DOI.

2020

1361-6382/ 20 /075012+26$33.00  © 2020 The Author(s). Published by IOP Publishing Ltd  Printed in the UK

Class. Quantum Grav. 37 (2020) 075012 (26pp) https://doi.org/10.1088/1361-6382/ab693b

https://orcid.org/0000-0003-3718-4491
https://orcid.org/0000-0003-0493-5607
mailto:yoshinta.setyawati@aei.mpg.de
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6382/ab693b&domain=pdf&date_stamp=2020-03-03
publisher-id
doi
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
https://doi.org/10.1088/1361-6382/ab693b

2

1.  Introduction

The laser interferometric and gravitational-wave (GW) detectors LIGO [1] and Virgo [2] have
reported observations of one binary neutron-star (BNS) and ten binary black-hole (BBH)
mergers in their first two observing runs [3]. In the third observing run (O3), we expect to
observe several tens of signals from compact binary coalescences [4]. The analysis of these
GW data is the motivation for our study. The data from the detectors are filtered with many
theoretically predicted waveforms with varying binary parameters. These waveform templates
are drawn from models of the emitted GWs. The waveform models need to fulfil accuracy
and speed requirements so that the parameters of the GW source can be estimated well in a
reasonable amount of time.

We highlight two major modeling approaches: analytical and numerical relativity (NR).
The basis of analytical models is the Post-Newtonian (PN) expansion [5]. Waveform models
in this category are fairly computationally efficient, but the PN approximation breaks down for
merger and ringdown part of the signal. The second category is NR. NR waveforms are built
by numerically solving Einstein’s equations [6–8]. Although these waveforms are known to
have exceptional accuracy to model the correct GW signals in general relativity, they require
high computational resources and need weeks to months to generate.

Combining the two approaches above, new methods have been developed to model full
waveforms. Two major families of this group, namely the effective-one-body (EOB) [9–12]
and the phenomenological models [13–18] are commonly used in GW analyses. In general,
these models start from a reformulation of PN results and calibrate the model to a select
number of NR simulations. In this study, we employ SEOBNRv3 [11] and IMRPhenomPv2
[17, 18] as two representative models that have been widely used to explore the full parameter
space of non-eccentric, precessing BBHs.

Over the past few years, complementary techniques have been developed to build fast
surrogates of EOB models and NR waveforms with a much higher computational efficiency.
Unlike the previous approaches, these models do not start from PN expansions. They use
existing EOB or NR waveforms, decompose, and interpolate them. The NRSurrogate models
[12, 19–24] have an exceptional accuracy against the original NR signals, but are more limited
in the parameter range and waveform length they cover. Reduced order and surrogate models
of EOB waveforms have been crucial to allow EOB models to be used for template bank con-
struction [25] and parameter estimation [26, 27].

In a similar spirit, unique methods have been explored to speed up the waveform genera-
tion without compromising accuracy [28–32]. They have shown that advanced mathematical,
statistical, and computational techniques are needed to build waveform models optimized for
the demands of GW analyses.

We stress that in order to make a relatively small number of computationally expensive
waveforms usable for analysis applications that rely on the ability to freely vary all param
eters, all waveform models described above crucially rely on some form of interpolation or fit-
ting method as part of their construction. Phenomenological and EOB models typically fit free
coefficients (often representing unknown, higher-order PN contributions) to a set of NR data.
The fits or interpolants are then evaluated over the binary parameter space. Other approaches,
such as NR or EOB surrogate models, rely more on data-driven techniques to interpolate the
key quantities needed to reconstruct waveforms anywhere in a given parameter-space region.
In fact, the interpolation techniques that have recently been employed cover standard methods
such as polynomial fits [12, 16, 33], linear interpolation [30, 34], and more complex method
such as Gaussian process regression (GPR) [21, 32, 35–37]. Additionally, novel interpolation
methods have been developed such as greedy multivariate polynomial fits (GMVP) [29, 31]

Y Setyawati et alClass. Quantum Grav. 37 (2020) 075012

3

and tensor-product-interpolation (TPI) [23, 24]. References [12, 16, 23, 24, 29, 31–34] have
been used to build waveform models and have been implemented in the analysis of the LIGO
data. This study compares various regression methods to investigate their prospect of building
GW model with more dimensional parameters.

In this study, we investigate the importance of interpolation and fits in waveform models
(which themselves are crucial for GW astronomy), given the accuracy and computational
time of various regression methods. We study whether the use of more complicated meth-
ods to model the waveforms given the same data preparation and noise reduction is justified
in practice. Finally, we compare the performance of machine-learning against various tradi-
tional methods. In particular, we explore the prospects of artificial-neural-networks (ANN)
as a regression method [38, 39] that has not been widely employed in waveform modeling so
far. We focus on BBH systems with spins either aligned with the orbital angular momentum
or precessing and provide both theoretical overviews and references to practical tools such as
ready-to-use algorithms. Our analysis is not only of relevance for current LIGO and Virgo data
and their extensions such as the Advanced LIGO A+, Voyager [40], and KAGRA [41], but
also for future analysis of GW data by LISA [42] and the third generation instruments such as
Einstein Telescope [43] and Cosmic Explorer [44].

The testbed we use is as follows. We compare various methods on waveform data at a
fixed point in time as a function of mass ratios and spins. We use two models to generate
waveform data: the time-domain model SEOBNRv3 [11], and the inverse Fourier transform
of IMRPhenomPv2 [17, 18] which is natively given in the frequency domain. Both models
were designed for precessing BBH mergers which are described by seven intrinsic param
eters: the mass ratio q and the two spin vectors �χ1 and �χ2 with Cartesian components in the
x, y, z directions. IMRPhenomPv2 models precessing waveforms in a single spin approx
imation using an effective precession spin parameter.

We consider two classes of training data:

	 (i)	�Data on a regular three-dimensional grid describing nonprecessing binaries, (q,χ1z,χ2z),
where 1 � q � 10 and |χiz| � 1 for i = 1, 2.

	(ii)	�Random uniform data on a full seven-dimensional grid (q, �χ1 and �χ2), where 1 � q � 2
and −1/

√
3 � �χi � 1/

√
3 for i = 1, 2.

For each case, the regression methods were tested over test sets made up from random uniform
test points that were drawn independently of the training set, but covering the same physical
domain.

This paper is organized as follows. We prepare the data by defining the waveform and its
reference frame and defining waveform data pieces in a precession adapted frame as discussed
more detail in section 2.1. We explain the background and the features of traditional methods
such as linear interpolation, TPI, polynomial fit, GMVP, and radial basis functions (RBF) as
well as machine-learning methods, GPR and ANN in section 2.2. In section 3 we present the
results of our study. Finally, a brief conclusion and discussion of future studies are found in sec-
tion 4. Throughout the manuscript, we employ geometric units with the convention G  =  c  =  1.

2.  Method

2.1.  Waveform data

We generate training and test waveform datasets for various regression methods from two
state-of-the art models of the GWs emitted by merging BBHs. We use the phenomenological

Y Setyawati et alClass. Quantum Grav. 37 (2020) 075012

4

model IMRPhenomPv2 [14, 16, 18] and the effective-one-body model SEOBNRv3 [11, 45,
46]. IMRPhenomPv2 includes an effective treatment of precession effects, while SEOBNRv3
incorporates the full two-spin precession dynamics. The models have been independently
tuned in the aligned-spin sector to NR simulations.

The GW strain can be written as an expansion into spin-weighted spherical harmonic
modes in the inertial frame

h(t;�λ; θ,φ) =
∞∑
�=2

�∑
m=−�

h�,m
i (t;�λ)−2Y�,m(θ,φ).� (1)

We can choose to model the waveform modes h�,m
i (t; θ) directly which depend a collection of

parameters �λ. The spherical harmonics −2Y�,m(θ,φ) for a given (�, m) depend on the direction
of emission described by the polar and azimuthal angles θ and φ. The two waveform models
employed in this study provide approximations to the dominant modes at � = 2. In a preces-
sion adapted frame SEOBNRv3 includes m = ±2 and m = ±1 modes (the negative m modes
by symmetry), whereas IMRPhenomPv2 includes only the m = ±2 modes. For SEOBNRv3
we directly generate time-domain inertial modes h2,m

i (t), while for IMRPhenomPv2 we com-
pute the native inertial modes in the Fourier domain h̃2,m

i (f), and subsequently condition and
inverse Fourier transform them to obtain an approximation to the time-domain modes.

To test interpolation methods we work in the setting of the empirical interpolation (EI)
method [20, 28]. In this approach we can define an empirical interpolant of waveform data
piece X(t;�λ) (such as, e.g. amplitude or phase of the gravitational waveform) by

IN [X](t;�λ) =
N∑

i=1

ci(�λ)ei(t) =
N∑

j=1

X(Tj;�λ)b j(t).� (2)

The first expression is an expansion with coefficients ci of waveform data in an orthonor-
mal linear basis {ei(t)}N

i=1 (e.g. obtained from computing the singular value decomposition
[47, 48] for discrete data [23, 24]). A transformation to the basis {bi(t)} results in coefficients
which are the waveform data piece X evaluated at empirical node times Tj . The EI basis {bi(t)}
and the EI times can be obtained by solving a linear system of equations as discussed in [28].
Here we forgo the basis construction step and just choose EI times manually to select wave-
form data for accessing regression methods.

We want to transform the inertial frame modes into a more appropriate form, such that data
pieces are as simple and non-oscillatory as possible in time and smooth in their parameter
dependence on �λ. In evaluating the model, we reconstruct the full waveforms by transforming
back to the inertial frame. This transformation includes the choice of a precession adapted
frame of reference that follows the motion of the orbital plane of the binary. In this frame the
waveform modes have a simple structure and are well approximated by non-precessing wave-
forms. A further simplification in the modes can be achieved by taking out the orbital motion.
In addition, we align the waveform and frame following [20] at the same time for different
configurations and waveform models. The procedure is comprised of the following steps4:

4 We represent rotations through unit quaternions. Quaternions can be notated as a scalar plus a vector
Q = q0 + q = (q0, q1, q2, q3). A unit quaternion R = eθû/2 generates a rotation through the angle θ about the axis
û. For calculations we use the GWFrames [49] package and notation conventions from [49].

Y Setyawati et alClass. Quantum Grav. 37 (2020) 075012

5

	 •	�We define time relative to the peak of the sum of squares of the inertial frame modes.
	 •	�We transform the inertial frame waveform modes h�,m

i (t) (dropping the parameter depend
ence on �λ for now) to the minimally rotating co-precessing frame [50] and thereby obtain
the co-precessing waveform modes

h2,m
copr(t) =

∑
m′

h2,m
i (t)D2

m′,m (Rcopr(t)) ,� (3)

		 where D�
m′,m are Wigner matrices [49, 51] and Rcopr(t) is the time-dependent unit quater-

nion which describes the motion of this frame.

	 •	�We compute the Newtonian orbital angular momentum unit vector l̂N(t) =
Rcopr(t) ẑ R∗

copr(t), where Q∗ is the conjugate of the quaternion Q and ẑ = (0, 0, 1). We
interpolate l̂N(t) to the desired alignement time talign.

	 •	�We use the rotor Ra =
√
−l̂N(talign) ẑ that rotates ẑ into l̂N(talign) to align the inertial

modes at talign and then compute the aligned co-precessing frame modes h̄2,m
copr(t) and

quaternion time series R̄copr(t), where the bar indicates alignment in time.
	 •	�Finally, we rotate around the z-axis to make the phases of the (2, 2) and (2,−2) modes

small by applying a fixed Wigner rotation with the rotor Rz = exp(θ/2 ẑ) R̄copr to obtain
¯̄h2,m

i (t) and ¯̄h2,m
copr(t).

We choose the following quantities (see figure 1) to test the accuracy and efficiency of
interpolation methods: (i) the ‘orbital phase’ defined as one quarter the averaged GW-phase
from the (�, m) = (2, 2) and (2,−2) modes in the co-precessing frame

φ(t) :=
1
4

(
arg

[
¯̄h2,−2

copr (t)
]
− arg

[
¯̄h2,2

copr(t)
])

,� (4)

(ii) a linear combination of the � = m = 2 modes in the co-orbital frame

−4000 −3500 −3000 −2500 −2000 −1500 −1000 −500 0

t/M

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
(t

)
Amplitude

−4000 −3500 −3000 −2500 −2000 −1500 −1000 −500 0

t/M

−100

−50

0

50

100

φ
(t

)
(r

ad
)

Phase

Figure 1.  The key quantities of the GW signal of a precessing BBH, here illustrated
for a binary with (q,χ1x,χ1y,χ1z,χ2x,χ2y,χ2z) = (1.99, 0.51, 0.04, 0.03, 0.01, 0.6, 0.1).
Left: the dimensionless amplitude A(t). Right: the phase φ(t) (in unit radian). The black
dashed lines show the points in time-space, where we perform different interpolation
methods (t  =  −3500M and t  =  −50M).

Y Setyawati et alClass. Quantum Grav. 37 (2020) 075012

6

A(t) := Re ¯̄h2,2
+ =

1
2

Re
(
¯̄h2,2

coorb(t) +
¯̄h2,−2∗

coorb (t)
)

,� (5)

where the co-orbital modes are defined as

h�,m
coorb(t) = h�,m

copr(t)e
imφ(t).� (6)

The rationale for choosing these two quantities is the following: the phasing is usually the
quantity that requires the most care in GW-modeling with accuracy requirements of a fraction
of a radian over hundreds of waveform cycles. The co-orbital frame mode combinations play
the role of a generalized amplitude and are typically smooth and non-oscillatory.

We consider the following waveform training datasets in this study: (i) three-dimensional
datasets: several interpolation methods in this study require data on a regular grid. We prepare
three-dimensional datasets (q,χ1z,χ2z) in the mass-ratio q = m1/m2 and the aligned comp
onent spins χiz = �Si · L̂N/m2

i for i = 1, 2. We do not include the total mass since it can be fac-
tored out from the waveform for GWs emitted from BBHs which are solutions of Einstein’s
equations in vacuum. The grids have an equal number of points per dimension, ranging from
5 to 11. We choose parameter ranges 1 � q � 10 and |χiz| � 1. (ii) The full intrinsic parameter
space we consider is seven-dimensional: we include the dimensionless spin vector of each
black hole χi = Si/m2

i and the mass-ratio q of the binary. Due to the curse of dimensionality
regular grid methods require a prohibitive amount of data in 7D. For instance, ten points per
dimension would require 107 waveform evaluations. Therefore, we only produce scattered
waveform data in seven dimensions which are drawn from a random uniform distribution in
each parameter. Here we choose parameter ranges 1 � q � 2 and −1/

√
3 � �χi � 1/

√
3. For

both choices of dimensionality we also generate test data of 2500 points drawn randomly from
the respective parameter space.

Waveform data in three and seven dimensions is produced at a total mass of M = 50M�
with a starting frequency of 20Hz. We align the waveform and frames at talign = −2000M
with the above procedure. We record waveform data from the key quantities at two differ-
ent times, ttarget = −3500M and  −50M, where we have performed alignment in time such
that the mode sum of the waveform amplitudes peaks at t  =  0M. This choice allows us to
independently probe the inspiral and the merger regime. We expect that the waveform data
will be very smooth in the inspiral, but more irregular close to merger due to the calibration
of internal model parameters to numerical relativity waveforms at a limited number of points
in parameter space.

2.2.  Regression methods: a general overview

A large number of techniques have been developed to improve the speed and accuracy of
generating gravitational waveforms. A priori, one would expect that higher speed would go
hand-in-hand with less accuracy and less complexity. One frequent question is how to select
a method for a specific purpose. Depending on the goals, a choice needs to be made between
complex, highly accurate methods with moderate efficiency versus simpler but more efficient
methods, and we can choose to trade accuracy for speed.

In this subsection, we discuss various methods and categorize them into two groups. The
first group is comprised of traditional interpolation and fitting methods which are based on
mathematical techniques and algorithms that are straightforward to implement and easily
evaluated. The second group is made up of machine-learning methods which may require
a more advanced mathematical and computational background. Methods from the second

Y Setyawati et alClass. Quantum Grav. 37 (2020) 075012

7

group are in general more complex and require more computational resources than the first
group. Here we give a basic description of these methods, their limitation and provide some
references.

2.2.1. Traditional interpolation and fitting methods.  The traditional interpolation and fitting
methods are either interpolatory, i.e. the approximation is designed such that it exactly includes
the data points, or they produce an approximate fit, where a distance function between the data
and the model is minimized. Many of these methods rely on polynomials as building blocks to
model the data. Some models have a fixed order of approximation, while others let the number
of terms be a free parameter. These methods are relatively straightforward to use and do not
usually require much computational power.

	 (i)	�Linear interpolation
		 Linear interpolation is a straight line approximation that predicts the value of an unknown

data point which lies between two known points [52]. This method has been widely used
as a standard method to perform interpolation in various studies. If we have several data
points, the transition between the adjacent data points is only continuous but not smooth.

		 Since linear interpolation is available as a standard Python package, we include this
method to compare to other more complicated techniques. In particular, we investigate
the application of multivariate linear interpolation on a regular grid using the regular grid
interpolator (RGI) [53, 54] that is available in scipy [55].

		 The mathematical background of linear interpolation can be explained as follows. Assume
two known points (x0, y0) and (x1, y1) and an unknown point (x, y) with x0 � x � x1. This
method assumes that the slope between x0 and x is equal to the slope between x and x1.
Hence, we use the following relation to predict the data point y  in one dimension.

y − y0

x − x0
=

y1 − y
x1 − x

⇔ y = y0 + (x − x0)
y1 − y0

x1 − x0
.

�
(7)

		 In dimensions d  >  1, this method requires a regular grid of data points as a training set.
		 Multivariate linear interpolation works as follows. Let yi(�x) be the data point we want

to predict, where �x denotes the input parameters in d dimensions. Initially, we need to
obtain the parameters of the projection of yi(�x) in d  −  1 dimensions, followed iteratively
by d  −  2 and so on until we reach one-dimensional case d  =  1. Once we obtain these
projection points, we can employ equation (7) to predict the values of these points in one
dimension. Subsequently, we use the predicted values as the known points to predict the
result in higher dimensions iteratively. We then repeat the process further to find yi(�x) in
d dimensions. This algorithm involves a small number of multiplications and additions,
which are relatively fast.

		 Since RGI assumes a regular grid, it is affected by the curse of dimensionality: the number
of training points grows as the power of d. Therefore, we only investigate this method in
three dimensions.

		 Other popular regression methods that we do not consider here are ridge [56], LASSO
[57], and Bayesian regression [58]. One reason is that the GW training data is quite well-
behaved and does not usually include outliers such that would require special treatment.

	(ii)	�Tensor product interpolation
		 On regular or Cartesian product grids one can use the same univariate interpolation

method in each dimension and the grid points can be unequally spaced. This gives rise to

Y Setyawati et alClass. Quantum Grav. 37 (2020) 075012

8

TPI methods. Popular choices for the univariate method are splines [59] and, if the data
is very smooth, spectral interpolation [60, 61].

		 Let us assume that we want to model a waveform quantity X(t;�λ) at a particular time
t = ti. We define the d-dimensional TPI interpolant (where d = dim(�λ)) as an expansion
in a tensor product of one-dimensional basis functions Ψj(λj),

I[X](ti;�λ) =
∑

j1,...,jd

aj1,...,jd (Ψj1 ⊗ · · · ⊗Ψjd) (
�λ).� (8)

		 A popular choice for the basis functions are univariate splines, which are piecewise poly-
nomials of degree k  −  1 (order k) with continuity conditions. For instance, cubic splines
have degree k  =  4 and continuous first and second derivatives. The boundaries of the
domain require special attention. A simple choice is the natural spline where the second
derivative is set to zero at the endpoints. If boundary derivatives are not known it is better
to use the so-called ‘not-a-knot’ boundary condition [59]. This condition is defined by
demanding that even the third derivative must be continuous at the first and last knots.

		 To construct splines in a general manner it is advantageous to introduce basis functions
with compact support, so-called B-splines. We denote the ith B-spline basis function
[59, 62] of order k with the knots vector �t , a nondecreasing sequence of real numbers,
evaluated at x by Bi,k,t(x). The knots refer to the locations in the independent variable
where the polynomial pieces of B-spline basis function are connected. For distinct knots
ti, . . . , ti+k+1, the B-splines can be defined as

Bi,k,t(x) := (ti+k − ti)[ti, . . . , ti+k](· − x)k−1
+ ,� (9)

		 where [ti, . . . , ti+k] f is the divided difference [59, 62] of order k of the function f  at the
sites ti, . . . , ti+k, and (x)+ := max{x, 0}. The B-splines can also be defined in terms of
recurrence relations. The definition can be extended to partially coincident knots which
are useful for the specification of boundary conditions. B-splines can be shown to form
a basis [59] of the spline space for a given order and knots vector. A spline function or
spline of degree k with knots �t can be then defined as an expansion

s =
∑

i

siBi,k,t(x),� (10)

		 with real coefficients {si}n
i=1. Given data, a fixed order and knots vector, and a choice

of boundary conditions, we can solve the linear system for the spline coefficients si. For
efficient evaluation we only compute the parts of the B-spline basis functions that are
nonzero.

		 For smooth data, Chebyshev interpolation [60, 61] is a popular choice. Chebyshev poly-
nomials (of the first kind) are defined as the unique polynomials satisfying

Tn(cos(θ)) = cos(nθ)� (11)

		 on [–1,1]. In contrast to splines where the polynomial degree is usually low, global high
order polynomial interpolation requires a special choice of nodes to be well-conditioned.
A good choice are Chebyshev-Gauss-Lobatto nodes (which are defined to be the extrema
of the Tn(x) plus the endpoints of the domain)

xk = − cos

(
kπ

m − 1

)
, k = 0, . . . , m − 1.� (12)

Then we can approximate a function f (x) by an expansion

Y Setyawati et alClass. Quantum Grav. 37 (2020) 075012

9

f (x) ≈ I[f (x)] :=
m−1∑
k=0

ckTk(x).� (13)

		 For f ∈ C∞ the error of Chebyshev interpolation converges exponentially with the
number of polynomials Tn(x).

		 Tensor product interpolation is a very useful tool for constructing fast reduced order
models (ROM) or surrogate models of time or frequency dependent functions that depend
on a moderate number of parameters �λ. TPI with splines and Chebyshev polynomials has
been used to build several GW models [21, 23, 24, 29] and [63], respectively. TPI is not
available in standard Python packages. For TPI spline interpolation we use the Cython
[64] implementation in the TPI package [65].

	(iii)	�Polynomial fits
		 A polynomial fit is a multiple linear regression model where the independent variables

form a polynomial [66]. Different settings of maximum polynomial degrees may cause
underfitting or overfitting, therefore care must be taken in choosing the ansatz.

		 Assume that we have N training points ({�xi, yi} ∈ Rd × R|i = 1, · · · , N). Our goal is to
find a function or regressor such that each �xi yields an output with the lowest error against
its function values y i. We assume that this function f (�x) is expressed by a polynomial of
degree k and parameters �c .

		 In one dimension we have:

f (�x) = c0xk + c1xk−1 + · · ·+ ck−1x + ck.� (14)

		 If we had as many degree of freedom as data points, we could demand:

f (xi) = yi.� (15)

		 In matrix form, equation (15) can be written as:

X�c = �Y



xk
1 xk−1

1 · · · x1 1
xk

2 xk−1
2 · · · x2 1

...
. . .

...
xk

N xk−1
N · · · xN 1







c0

c1
...

ck


 =




y1

y2
...

yN


 ,

� (16)

		 where X is the N × (k + 1) Vandermonde matrix. The parameters �c are obtained by
solving equation (16) for the known input and output data, X and �Y in the training set. In
general, the linear system may be over or under determined such that no unique solution
would exist. Instead, we employ the standard discrete least squares fit to minimize the
error (see section 10 of [67] and [68]):

ΣN
j=1|f (xj)− yj|2.� (17)

		 Similar to linear interpolation, univariate polynomial interpolation is available in the
scipy package.

		 Phillips [66] discusses several methods and provide an overview of multivariate interpo-
lation with polynomials. We employ polynomial fits for multivariate interpolation as in
[69] and explained more detail in [70].

	(iv)	�Greedy multivariate polynomial fit (GMVP)
		 London and Fauchon-Jones [31] recently introduced methods that build an interpolant

for a given data set by adaptively choosing a small set of analytical basis function from

Y Setyawati et alClass. Quantum Grav. 37 (2020) 075012

10

a certain class of functions. In our study here, we test the GMVP procedure described in
detail in section II.B of [31].

		 In this method, a scalar function, f , that is known at discrete points in the d-dimensional
parameter space, �xj = {x1

j , x2
j , . . . , xd

j }, is approximated by a linear sum of analytical basis
functions, φk(�x),

f (�x) ≈
∑

k

µk φk(�x).� (18)

		 Given a set of basis functions, the coefficients µk are determined by a ‘least-squares’
optimal fit to the known function values f (�xj). In practice, this is calculated using the
pseudoinverse (Moore–Penrose) matrix of φk(�xj) (that is, the values of the basis functions
at the given location in the parameter space).

		 In GMVP, the basis functions are chosen to be multivariate polynomials of maximal
degree D. In order to prevent overfitting, however, not all possible polynomial terms from
the set

φk(�x) ∈

{(
x1)α1

(
x2)α2

. . .
(
xn)αd ,

n∑
i=1

αi � D

}
� (19)

		 are included in the basis. Instead, a greedy algorithm [70] iteratively adds the basis func-
tions to (18) that minimize the error

ε2 =

∑
j

[
f (�xj)−

∑
k µk φk(�xj)

]2

∑
j [f (�xj)]

2 .

� (20)
		 This process terminates when the difference in ε between two successive iterations

becomes smaller than some user-defined tolerance. In order to improve the stability of
the algorithm, the maximally allowed multinomial degree D is successively increased,
which the authors of [31] refer to as degree tempering.

		 In our study, we use GMVP with a tolerance of ε = 5 × 10−4 and a maximal multinomial
degree of D  =  16.

	(v)	�Radial basis functions (RBF)
		 Radial basis functions [71] are an approximation for continuous functions, where the

predicted outputs depend on the Euclidean distance between the points and a chosen
origin. This method is applicable in arbitrary dimensions and does not require a regular
grid. We include RBF in this study because this method has been integrated as a standard
Python package in scipy and used in machine-learning as activation functions in radial
basis functions neural networks (see section 2.2.2).

		 The mathematical background of RBFs is explained as follows. Let N be the number of
training points, �xi the parameters of each data point, and y i the data defining the training
set {(�xi, yi) ∈ Rd × R|i = 1, . . . , N}.

		 The goal is to find an approximant s : Rd → R to the function y : Rd → R such that
s(�xi) = yi (s interpolates y  at the chosen points) with the form:

s(�x) =
N∑

i=1

wiϕ(r),� (21)

		 where �x is the vector of independent variables, wi are the coefficients, r is the Euclidean
distance between �x and �xi (r = ‖�x − �xi‖), and ϕ(r) is known as the radial basis function.

		 To obtain the approximant s, we need to solve:

Y Setyawati et alClass. Quantum Grav. 37 (2020) 075012

11

Φ(r)�w = �Y ,� (22)

		 where Φ(r) = {‖�x − �xi‖}x,xi∈Ξ, �Y = {yi}N
i=1 and �w = {wi}N

i=1. Ξ is a finite subset of Rd
with more than one element [71]. We can solve the linear system for the coefficients and
obtain the interpolant. Hence, the computational complexity and thus the training time
of RBF is dominated by the computation of vector coefficients �w that involves matrix
inversion and goes as O(N3) [72].

		 The interpolation matrix Φ(r) has to be nonsingular so that it does not violate the
Mairhuber–Curtis theorem [71]. The solution is to choose a kernel function such that
Φ(r) is a semi-definite matrix and therefore nonsingular. One common choice is the
multiquadric kernel function ϕ(r) expressed by:

ϕ(r) =

√
1 +

(
r
ε

)2

,� (23)

		 where ε is the average distance between nodes based on a bounding hypercube as defined
in scipy [73].

		 The multiquadric kernel function is commonly applied to scattered data because of its
versatility due to its adjustable parameter ε which can improve the accuracy or the stability
of the approximation. Buhmann [71] shows that this kernel is also able to approximate
smooth functions well so that it useful for approximation. Hence, we employ the multi-
quadric kernel function in this study.

2.2.2.  Machine-learning methods.  Machine-learning (ML) is the scientific study of comp
uter algorithms and statistics which aims to find patterns or regularities in the data sets. Sys-
tems learn from the training data and can predict output values for test data.

Although the distinction is a blur, one major difference between ML and traditional inter-
polation methods lies in their objectives. In traditional methods, the objective is not only
to provide an approximation of an underlying function from which the training data were
generated, but also to understand the mathematical process behind the relation of input and
output data. In that case, we seek interpolants or fits which often can be found analytically
by solving linear systems for the coefficients in the model. Hence, the traditional methods
originated from approximation theory and numerical analysis in mathematics. Conversely, in
ML, the objective is to recognize patterns from the input-output training set and to construct
a model from this data [74, 75]. Although we know that the result follows some mathematical
procedures that depend on free parameters, these details are considered to be less important.

	 (i)	�Gaussian process regression (GPR)
		 GPR is a unique method that combines statistical techniques and ML. It can predict

function values away from training points and can provide uncertainties of the predicted
values, which will be useful for certain applications and do not require a regular grid.
Compared to traditional methods, GPR requires more knowledge of advanced statistics
such as covariance matrices, regression and Bayesian statistics for the optimization
strategy.

		 We provide a summary of GPR as discussed in detail in [76, 77]. We start with the most
important assumption in GPR. Any discrete set of function values yi = y(�xi) is assumed

Y Setyawati et alClass. Quantum Grav. 37 (2020) 075012

12

to be a realization of a Gaussian process (GP). Assuming the data can be pre-processed
to have zero mean, µ(�x) = 0, the covariance function k(�x,�x′) fully defines the Gaussian
process:

y(�x) ∼ GP
(
µ(�x) = 0, k(�x,�x′)

)
.� (24)

		 Assume that we want to predict the value y * at �x∗ ∈ Rd and that we have N num-
bers of training points, where each point depends on d parameters expressed by
{(�xi, yi)|i = 1, . . . , N}. The training and test outputs can be written as follows:

[
�y
y∗

]
∼ N

(
0,
[

K(X, X) + σ2
nI K(X, X∗)

K(X∗, X) K(X∗, X∗)

])
,� (25)

		 where K(X, X) denotes the matrix of the covariances evaluated at all pairs of the training
points and similarly for K(X∗, X∗), K(X, X*), and K(X*, X), σ2

n (also called nugget) is
the variance of the Gaussian (white) noise kernel that will be discussed later (see the
hyperparameters).

		 Explicitly, in order to predict a single value y *, we need to compute K(X, X) as the
covariance matrix between each point in the training set, K(X,X*) and its transpose that
are vectors and the scalar K(X∗, X∗). In a different form, our main goal is to find the
conditional probability expressed by the following distribution:

p(y∗|�xi,�x∗,�y, �θ) = N (ȳ∗, var(y∗)),� (26)

		 i.e. the probability of finding the value y * given the training data �xi and �y , the hyper-
parameters �θ , and the location �x∗ is a normal distribution with mean ȳ∗ and variance
var(y∗).

		 The mean and variance can be shown to be:

ȳ∗ = K(X∗, X)(K(X, X))−1
ij yj� (27)

var(y∗) = K(X∗, X∗)− K(X∗, Xi)(K(X, X))−1
ij K(X∗, Xj).� (28)

		 In the equation above, the covariance K(xi, xj) is expressed by:

K(xi, xj) = σ2
f k(xi, xj) + σ2

nδij,� (29)

		 where σf and σn are hyperparameters, δij is the standard Kronecker delta, k(xi, xj) = k(r),
and r is the distance:

r =
√

(�x −�x′)TM(�x −�x′).� (30)

		 In the following, we discuss the form of M as a diagonal matrix with a tunable length
scale in each physical parameter which form part of the hyperparameters.

		 The hyperparameters
		 We assume that our training data has some numerical noise σ2

n and a scale factor σf that
can be estimated by optimizing the hyperparameters �θ = {σf ,σn, M}. For instance, the
explicit form of M in the seven-dimensional case is:

Y Setyawati et alClass. Quantum Grav. 37 (2020) 075012

13

M = diag(�−2
q , �−2

χ1x
, �−2

χ1y
, �−2

χ1z
, �−2

χ2x
, �−2

χ2y
, �−2

χ2z
),� (31)

		 where the �i are length scales. Rasmussen and Williams [78] describes the length-scale
� as the distance taken in the input space before the function value changes significantly.
Small values of the lengthscale � imply that the function values change quickly and vice
versa. Hence, the lengthscale � describes the smoothness of a function.

		 To determine the hyperparameters, we can maximizse the marginal log-likelihood:

ln p(yi|�xi, �θ) = −1
2

(
yi(K(X, X))−1

ij yj + ln |K(X, X)|+ N ln 2π
)

.� (32)

		 Because the log-likelihood may have more than one local optimum, we repeatedly start
the optimizer and we choose ten repetitions. For the first run, we set the initial value of
each length scale to unity, with bounds of 10−5 to 105. Furthermore, we set σ2

n = 10−10,
where higher σ2

n value means that the data are more irregular. The subsequent runs use the
allowed values of the hyperparameters from the previous runs until the maximum number
of iterations is achieved.

		 In equation (32), we see that the partial derivatives of the maximum log likelihood can
be computed using matrix multiplication. However, the time needed for this computation
grows with more data in the training set as O(N3). Additionally, we employ algorithm 2.1
of [76], because Cholesky decomposition is about six time faster than the ordinary matrix
inversion to compute equation (32). We highlight that although GPR becomes more accu-
rate in predicting the underlying functional form of the data given more training points N,
it has complexity O(N3) and therefore the method becomes ineffective for large N.

		 We estimate the posterior distribution of the hyperparameters using Bayes’ theorem as
follows:

p(�θ|�xi, yi) ∝ p(θ) p(yi|�xi, �θ),� (33)

		 where we employ a uniform prior distribution p(θ). Additionally, we use the sckit-
learn package [77] to optimize the hyperparameters as in the implementation of
algorithm 2.1 in [76].

		 This method is non-parametric because no direct model ansatz is used. Note however that
a choice for the covariance function needs to be made.

		 The covariance functions
		 In statistics, covariance expresses how likely two random variables change together

[79]. Various choices of covariance functions which are usually called kernels k(�x,�x′)
are discussed in more detail in [77] and [76]. In this study, we compare the two most
commonly used kernel functions in GPR: the squared exponential kernel and the Matérn
kernel explained below.

	(a)	� The squared exponential kernel (SE) is a standard kernel for Gaussian processes:

kSE(r) = exp

(
−r2

�2

)
,� (34)

with r defined in equation (30) and � is the length-scale.

Y Setyawati et alClass. Quantum Grav. 37 (2020) 075012

14

	(b)	� The Matérn class of kernels is named after a Swedish statistician, Bertil Matérn and
has less smoothness than the SE kernel. The Matérn kernel is given by:

kM(r) =
21−ν

Γ(ν)

(√
2νr
�

)ν

Kν

(√
2νr
�

)
,� (35)

		 where Kν is a modified Bessel function [80], Γ is the gamma function and ν is usually
half-integer. Common choices of ν are kν=3/2 and kν=5/2.

kν=3/2(r) =
(

1 +

√
3r
�

)
exp

(
−

√
3r
�

)
,� (36)

kν=5/2(r) =
(

1 +

√
5r
�

+
5r2

3�2

)
exp

(
−

√
5r
�

)
.� (37)

		 The Matérn kernel is a generalization of the radial basis function kernel. For ν = 1/2, it
reduces to exponential kernel and ν = ∞ reduces to the SE kernel. We use the Matérn
kernel with ν = 3/2 in our analysis.

	(ii)	�Artificial neural networks
		 Artificial neural networks (ANNs) as computing systems are inspired by emulating the

work of brains to learn complex things and to find patterns in biology. In ML algorithms,
ANN has been widely used as a framework to perform advanced tasks such as pattern
recognition [81], forecasting [82], and many other applications in various disciplines
[83]. This framework works analogously to brains: it receives some inputs, processes
them, and yields some output [75].

		 In this study, we employ ANNs or feedforward networks as the simplest neural networks
architecture to perform interpolation. The feedforward network with hidden layers can
approximate of any function which is known as the universal approximation theorem [75,
84]. This class is called feedforward because the information flow from the input to the
output and the connection between them does not form a cycle (loop). In our case, the
inputs are the waveform’s parameters �λ and the output is the predicted value of A(ti;�λ)
or φ(ti;�λ). We define hidden layer as a layer between the input and the output of ANN5.

		 We employ multi-layer-perceptron (MLP) as one of the simplest architectures to perform
function approximation [84, 85]. Figure 2 shows the illustration of the network architec-
ture used in this study.

		 In figure 2, each layer consists of a finite number of neurons. Each neuron in each layer is
connected to the subsequent layer and the previous layer which are generally called links
or synapses. The workflow of MLP is explained as follows:

	(a)	� Define the input as xij, where i is the index of the layers. Starting at i  =  0 at the input
layer, and j  indexes the neurons in a layer. Thus, with x0j , j = 1, 2, 3 corresponds to
q,χ1z,χ2z respectively.

	(b)	� The kth neuron of the (i + 1)th layer receives the value of xij from the ith layer multi-
plied by the weight wijk. These products are then summed over all links from the ith to
the (i + 1)th layer.

5 In some references, the input layer is counted as the first hidden layer. Here we use the definition of hidden layer
as a layer between the input and the output layer.

Y Setyawati et alClass. Quantum Grav. 37 (2020) 075012

15

	(c)	� A bias or shift bik is added to the above value and an activation function σ is applied to
the final result. In this study, we use the Rectified Linear Unit (ReLU) [86] because it
faster than other functions such as sigmoid and tanh and it is commonly used in other
studies. ReLU is mathematically expressed by the following equation:

σ(z) = max(z, 0),� (38)

and the MLP procedure is expressed by the following relation:

xi+1,k = σ


∑

j

wijkxij + bik


 .� (39)

We vary the number of neurons in the first hidden layer between 2 to 2000 for the
three-dimensional data sets and 2 to 5000 for the seven-dimensional data sets. We
then set the number of neurons in the second hidden layer identical to the first hidden
layer. The output of the networks is either A or φ at a single time. For each network
and training data set, we compute mean squared error and the mean absolute error
(see [87]) of A(t) and φ(t), respectively.To train the networks, the training data is
separated into several batches, where each batch contains the same number of data
samples. Each batch is then passed through the networks (see equation (39)). When
each data sample in the training set has had an opportunity to pass the networks a
single time, this is known as an epoch. The number of epochs affects the learning of

Figure 2.  Diagram of ANN architecture used for three-dimensional interpolation in
this study. The circles represent the neurons and we indicate weigths wi along neuron
connections and biases bi. We employ two layers in the hidden layer part of the diagram.
The same architecture is used for the seven-dimensional case, where the input contains
seven neurons that depend on the seven parameters.

Y Setyawati et alClass. Quantum Grav. 37 (2020) 075012

16

the networks, i.e. the higher the epoch, the better the learning. In this study, we set our
batch size to five and train them through one thousand epochs.The networks compute
the loss functions during each epoch. The loss functions measure the errors or incon-
sistency between the predicted value and the true data. In this study, we employ the
mean squared error loss function for A(t) and the absolute error for φ(t) respectively
(see [87]).Training neural networks means that we minimize the loss functions so that
our predicted values are as close as possible to the true values [88]. To minimize the
loss functions, the networks adjust learnable parameters, i.e. the values of the weights
and biases of the model. In most cases, the minimization cannot be solved analyti-
cally, but can be approached with optimization algorithms.During optimization, the
network learns the values of weights and biases of the previous epoch and calculates
its loss functions. Subsequently, it adjusts the values of weights and biases in the next
epoch so that the loss functions become smaller. To minimize the loss functions, we
compute the gradient values with respect to the learnable parameters. In this study,
we employ Adam [89] as the optimization algorithm due its robustness.Following the
above procedure, a model is then saved at the end of the run and evaluated through
the test data. We then compute the accuracy and execution time of this process similar
to other methods. We employ Keras [87] and TensorFlow [90] to perform this
computation.

3.  Results

In this section, we show results for accuracy and computational time for different regression
methods. We apply methods to the three-dimensional and seven-dimensional data sets defined
in section 2.2.

3.1. Three-dimensional case

We investigated the results for aligned spin waveforms with parameters q,χ1z, and χ2z.
Training points were given on a regular grid. We placed the same number of points equally
spaced to each other for each parameter (see section 2.1). Hence the total number of training
points is proportional to the number of training points per dimension cubed. We then varied
the number of training points in each dimension from five to eleven which corresponds to a
total number of training points of 125 to 1331. We distributed 2500 test points randomly (see
section 2.1). These test points are located inside the same domain covered by the training
points. Hence, we do not test how well the methods perform for extrapolation.

We calculated relative errors (in percent) for the amplitude A(t):

εre =

∑N
i |Ai

pred(t)− Ai
true(t)|∑N

i |Ai
true(t)|

× 100.� (40)

The phase error is an important diagnostic to measure the accuracy of GW waveform models.
Therefore, we consider the absolute phase error (in radians)

εae =
1
N

N∑
i

|φi
pred(t)− φi

true(t)|.� (41)

Y Setyawati et alClass. Quantum Grav. 37 (2020) 075012

17

εre and εae are the relative error and the average of the absolute error, respectively, Apred(t)
and φpred(t) are the predicted results of the amplitude and phase regression respectively, and
Atrue(t) and φtrue(t) are their true values.

Subsequently, we investigated the computational time taken to evaluate each interpola-
tion method. Here we define the training time as the time to compute the interpolant and the
execution time being the time to compute the 2500 interpolation points following our test set.
Furthermore, we define total time as the sum between the training time and the execution time,
i.e. the entire process to perform interpolation for 2500 points. The comparison results in the
early inspiral (t  =  −3500M) are shown in figure 3, whereas the results at t  =  −50M are shown
in figure 4. We now discuss the results shown the results for different regression methods.

	 (i)	�Traditional interpolation and fitting methods & GPR
		 We expect that the key quantities for two waveform models, SEOBNRv3 and

IMRPhenomPv2 agree quite well in the early inspiral. The error in A(t) and φ(t),
decreases with more training points for both models. This result is expected as we popu-
late our parameter space with more points located on a regular grid.

		 For both quantities, we find that errors for different methods are similar between waveform
models. GPR errors show a dependence on the kernel choice. We first consider the ampl
itude errors. For SEOBNRv3 the errors fall off in a similar way for either choice of kernel,
whereas for IMRPhenomPv2 the error is much higher for the SE kernel compared to the
Matérn kernel. This is likely due to the higher level of noise in the IMRPhenomPv2 data
due to the inverse Fourier transformation.

		 The SE kernel assumes a higher degree of smoothness in the data than the Matérn kernel.
Similarly, we find for either waveform model that the SE kernel shows a higher phase
error than the Matérn kernel.

	(ii)	�Artificial neural networks
		 We now discuss errors for ANNs as indicated by the filled circles in figure 3. Here we

compare the results of the double layer MLP with various numbers of neurons. By design,
the double layer MLP consists of one input layer, two hidden layers, and one output
layer. We set the number of inputs as the dimensionality of the parameter space and only
produce a single output. In the aligned spin case, our inputs are the parameters q,χ1z,
and χ2z and output is either A(t) or φ(t). For the hidden layers, we varied the number of
neurons between 2 and 2000 in the first hidden layer, and set an equal number of neurons
for the second hidden layer.

		 Thus, we obtained a set of errors as we modified the number of neurons in the hidden
layers for a fixed number of training points N per dimension. In figure 3, we only show
the results of the smallest errors for each training set. In this plot, different colors of the
circles correspond to different numbers of neurons as indicated by the color bar. We note
that the ANN with the smallest error may not be the fastest one.

		 Regarding the computational time, the training time obviously grows with the number of
neurons per layer. However, we argue that there is no guarantee that many neurons yield
smaller error than fewer neurons. In fact, too many neurons lead to overfitting and too few
neurons lead to underfitting. We could reduce overfitting by activating the Dropout func-
tion in Keras, Dropout removes the result from a selected number of neurons randomly.
However, we prefer to not include an additional stochastic element and do not include
Dropout in this study.

		 Next, we compare execution times. Execution time is relatively similar between the GPR,
RBF, TPI, and ANN methods. Other traditional methods such as linear, polynomial fit and
GMVP, and linear interpolation are faster.

Y Setyawati et alClass. Quantum Grav. 37 (2020) 075012

18

		 To ensure a fair comparison between all methods, we explored the performance on the
same machines (2x Intel Xeon E5-2698 v4) with 20 CPU cores, 256 Gigabytes of RAM,
and 1x HDD (1TB, 6Gbps) of storage.

		 Due to the limited scope of our study, we only investigate results for the double layer
ANN. This leaves tuning parameters and architectures to be explored in future studies. A
possible way to reduce training and execution times is to use on GPUs instead of CPUs.

Finally, we discuss results for training times. The training time for RBF and GPR rise pro-
portionally with the number of training points. In RBF, this is caused by the least-squares-fit
computation that takes a longer time with more training points. For GPR, the training time
goes as O(N3) with N the number of training points as explained in section 2.2. Polynomial
fit, TPI and linear interpolation do not depend strongly on the size of the training set and their
training time is relatively fast.

For both models, ANN yields comparable errors and execution times as other interpolation
methods, but generally with longer training time than other methods. Several methods have

Figure 3.  The three-dimensional interpolation results at t  =  −3500M. Top:
SEOBNRv3, bottom:IMRPhenomPv2. The x-axes show the number of training points
in each dimension, N, and the y−axes show the errors, training, and indicated execution
time as on the labels of the panels. Left: errors of the amplitude and phase respectively,
middle: training time in (seconds), and right: execution time (seconds). Different colors
represent different interpolation methods as shown in the shared legend. The colored
circles show ANN results, where different colors represent the number of neurons per
layer in a double layer ANN as shown in the corresponding color bar.

Y Setyawati et alClass. Quantum Grav. 37 (2020) 075012

19

execution times that are independent of the size of the training set for a fixed order of approx
imations. This includes TPI, linear interpolation, polynomial fit, and ANNs.

Combining all the results at t  =  −3500M and at t  =  −50M, we found that the errors are
generally larger in noisy data. We also found that the methods with longer training time do not
always yield a better result than the methods with less training time (see figure 4).

Using too many neurons in the hidden layers may cause problems such as overfitting. It
occurs when the networks have too much capacity to process information such that the amount
of information in the training set is not enough to train the networks [91]. Hence, the number
of neurons must be set such that there are not too few or not too many. The selection however,
depend on the architecture of the networks and the hyperparameters.

3.2.  Seven-dimensional case

In seven dimensions, we distribute the training points randomly in each dimension. The main
reason for this placement is to avoid the curse of dimensionality as explained in the previous

Figure 4.  The three-dimensional interpolation results at t  =  −50M. Top: SEOBNRv3,
bottom:IMRPhenomPv2. The x-axes show the number of training points in each
dimension, N, and the y −axes show the errors, training, and indicated execution time
as on the labels of the panels. Left: errors of the amplitude and phase respectively,
middle: training time in (seconds), and right: execution time (seconds). Different colors
represent different interpolation methods as shown in the shared legend. The colored
circles show ANN results, where different colors represent the number of neurons per
layer in a double layer ANN as shown in the corresponding color bar.

Y Setyawati et alClass. Quantum Grav. 37 (2020) 075012

20

section. Similarly to the three-dimensional case, we investigate training sets of different sizes,
from 500 to 3000 points. As discussed in section 2.1, the seven-dimensional case has a nar-
rower range of mass ratio (1 � q � 2) than the three-dimensional one (1 � q � 10) and full-
spin range.

We construct a single test set with 2500 points distributed randomly and located within the
parameter ranges. Some of the test points may be outside the domain covered by the training
points. This means that our results may contain a small extrapolation.

Since TPI and linear interpolation require regular grid training points, we do not include
them in our analysis. For other methods, we employed the same settings (kernels, hyperparam
eters, degree) as in the three-dimensional case.

We built the architecture of ANN in a similar way as before. The results of the seven-
dimensional case for different interpolation methods (t  =  −3500M and t  =  −50M) are shown
in figure 5.

Figure 5.  The seven-dimensional interpolation results. Top:SEOBNRv3, bottom:
IMRPhenomPv2. The x-axes show the number of training points N and the y -axes
shows the errors, training, and execution time as shown on the plot. Left: errors of the
amplitude (A(t)) and phase (φ(t)) respectively, middle: training time in unit seconds,
and right: execution time in unit seconds. The solid lines show the results at t  =
 −3500M and the dashed lines for t  =  −50M. Different colors represent different
interpolation methods as shown in the shared legend. The colored circles correspond to
the results of ANN at t  =  −3500M and the colored diamonds for t  =  −50M. Different
colors represent a different number of neurons on a double layer ANN as shown in the
corresponding color bar.

Y Setyawati et alClass. Quantum Grav. 37 (2020) 075012

21

We observed that errors of SEOBNRv3 are not significantly different than the corre
sponding three-dimensional results. Furthermore, the errors of this model at t  =  −50M are
higher than at t  =  −3500M in a similar way as in three dimensions.

Surprisingly, the relative amplitude errors for IMRPhenomPv2 (top left plots) in the late
inspiral are smaller than in the early inspiral in contrast to SEOBNRv3. The A(t) quantity of
IMRPhenomPv2 is smoother at t  =  −50M than at t  =  −3500M. We emphasize that both
models, SEOBNRv3 and IMRPhenomPv2 have comparable amplitude values at t  =  −50M
and at t  =  −3500M.

In the early inspiral (t  =  −3500M), both waveforms agree well, similar to the three-dimen-
sional case. Hence, the percent errors are not significantly different as shown in the same plot.

The phase errors were computed as absolute errors (see equation (41)). We find that the
phase errors for SEOBNRv3 and IMRPhenomPv2 are comparable. Furthermore, the late
inspiral errors are higher than the early inspiral as the data fluctuates more. In figure 5, we
observe a similar behavior for the training time as in three dimensions, where higher training
time was found for GPR, ANN, and RBF. This is caused by the same factors as explained in
the three-dimensional case. For the execution time (right panel), we found that the more com-
plex methods take longer time than the simpler methods. For RBF and GPR this is due to their
dependence on the size of the training set. Interestingly, the execution time for ANNs is faster
than GPR and RBF. This is because ANN picks the optimum weights and biases during the
training and its execution time does not depend on the number of training points in the data.

We remind the reader that we set the parameter space of the seven-dimensions analysis
narrower in mass ratio than the three-dimensions. Hence, the errors should not be compared
directly to the three-dimensional case. For the same parameter ranges, the seven dimensional
case yields errors up to 100 times larger for the A(t) and 15 times larger for the φ(t). The order
of accuracy does not significantly change, where the best accuracy in this range is obtained by
polynomial interpolation.

Overall, we found that in some cases, a simple method such as polynomial fit yields lower
errors and performs faster than the more complex methods.

Table 1.  Summary of features of the methods used in this study. We present the
advantages, the disadvantages and the scaling complexity for each method. For linear
interpolation, TPI, RBF, and GPR the (training time) depends on the number of training
points N (and polynomial degree k). Other methods have different complexity scalings
that affect their training time.

Methods Advantages Disadvantages Training time

Linear
(RGI)

Standard scipy Needs regular grid O(N)

TPI Robust and high accuracy Needs regular grid O(Nk)
GMVP Irregular grid fast

execution time
Complex #basis function

#error tolerance
Polynomial
fit

Irregular grid simple
and fast

Runge’s phenomenon only uni-
variate in scipy

O(N) and
#polynomial
degree

RBF scipy irregular grid high computational complexity O(N3)
GPR irregular grid can predict

uncertainty
Depends on the choice of kernel
and hyperparameters complex

O(N3)

ANN Irregular grid flexible
architecture choices

Complex #neurons
#hidden layers

Y Setyawati et alClass. Quantum Grav. 37 (2020) 075012

22

4.  Discussion and conclusion

Various approximation methods play important roles in building gravitational waveform mod-
els. Methods with high accuracy, low complexity, and fast computational time are needed
for current and future applications. In this paper, we presented a comparative study of inter-
polation, fitting and regression methods applied to precessing and aligned BBH systems.
Precessing BBH model depends on seven key intrinsic parameters (q, �χ1, �χ2), whereas the
aligned model depends on three parameters (q,χ1z,χ2z).

We generated the data sets in the time domain using two waveform models: SEOBNRv3
(originally built in the time domain) and the inverse Fourier transform of IMRPhenomPv2
(originally built in frequency domain). The full waveforms were transformed into a precession
adapted frame where we extracted two quantities: amplitude A(t) and phase φ(t) as explained
in section 2.1 to perform a comparative study. For each key quantity, we picked two points
in time, t  =  −3500M in the inspiral for the smoother data set and t  =  −50M near merger for
the more irregular data. We employed this procedure on different numbers of training sets and
used different approximation methods.

We split approximation methods into two categories: traditional methods and ML methods
(see section 2.2). The traditional methods consist of linear interpolation, polynomial fits, radial
basis function, GMVP, and TPI. Since linear interpolation and TPI package require a regular
grid, we do not include them in the seven dimensional analysis. Furthermore, we investigated
ML methods such as GPR and ANN. For GPR, we compared two kernel functions: the square
exponential kernel and the Matérn kernel. In our results, we do not include GPR uncertainties
in our comparison. We only consider the posterior mean of GPR SE and Matérn as shown by
the red and green curves in figures 3–5. The SE kernel is C∞ which makes GPRs constructed
with it assume that the data has high smoothness. However, this assumption is not realistic as
many physical processes contain noise components in the data. If the smoothness of the data is
not well understood, we recommend that the Matérn kernel be used and its smoothness param
eter ν should be included in hyperparameter optimization. For ANN, we focused on networks
with two hidden layers and varied the number of their neurons.

We computed the relative errors for A(t) and the absolute errors for φ(t). To validate the
result, we generated 2500 test points distributed randomly within the same parameter space.
The comparison results of different methods in accuracy, training time and execution time (in
second) are presented in section 3.

We found that most methods perform better with more training data. Furthermore, we com-
pared the performance of the same method in a set of smoother data and a set of more irregular
data. In general, we found that approximation methods perform better in smoother data as
expected. We recommend to use preprocessing methods to improve the smoothness of the data
where possible which should increase the accuracy of regression results. This preparation is
crucial as any methods perform well with smoother data sets. Different accuracies are attained
by different methods in handling the irregularities in the data. We give a brief summary of
different methods in table 1.

For lower dimensions, simpler methods such as linear interpolation and TPI provide good
accuracy and speed. However, these methods need a regular grid and therefore are less useful
for high dimensional data sets as explained above. For this situation, we found that polyno-
mial fits are one of the simplest methods that offers a good combination between accuracy
and speed. Furthermore, polynomial fits have been used widely and can be coded manually
making it reliable and easy. The computational timing of polynomial fits depends on the num-
ber of parameters and the maximum polynomial degree. Another method that can perform

Y Setyawati et alClass. Quantum Grav. 37 (2020) 075012

23

approximation of scattered data sets is GMVP. GMVP which is based on polynomials can per-
form very well by setting error tolerance on its algorithm. For lower dimensionality, GMVP is
computationally cheap. However, as the number of parameters rise, the computational time to
compute the interpolant with the same error tolerance grows significantly higher. Therefore,
we do not include this method in our analysis for the seven-dimensional case.

RBF and GPR are promising methods for scaterred data points. RBF has been integrated
in a standard scipy package, making it easy for users. GPR computes the uncertainty of the
predicted values. This feature is useful for future applications and cannot be found in other
methods. Furthermore, GPR has been integrated in sckit-learn package [77]. Both RBF
as GPR have the freedom to choose suitable kernel functions and hyperparameters. However,
their speed depends on the number of training points cubed O(N3). Hence, these methods
become inefficient for larger data set.

A simple ANN can be used to perform regression for scattered data points. Similar to GPR,
this method is more complex and depends on the choice of architecture and hyperparam
eters. We showed that the the three-dimensional result of ANN requires a longer training time
with relatively comparable accuracy to other methods. We argue that such complexity is less
needed for lower dimensional parameter and users should use a more simpler methods that
provide good accuracy and speed. However, ANN is highly versatile to solve problems in
higher dimensions and is promising to be explored further.

One might expect that methods with higher complexity perform better than methods with
lower complexity. We find that this is not always the case. A more complicated method does
not guarantee that the results are always better or faster. We find that simpler methods may
yield smaller errors than more complex methods and perform faster in many cases. Hence,
we suggest that one should critically evaluate the performance of approximation methods
and understand the features of the method that are necessary for the data of interest. Simpler
methods that perform better or at least equal to more complicated methods should be used as
the first choice to avoid unecessary complexity.

Acknowledgments

The authors would like to thank to Lionel London, Scott Field, Stephen Green, Chad Galley,
Christopher Moore, Zoheyr Doctor, Rory Smith, Ed Fauchon-Jones, and Lars Nieder for use-
ful discussions. Computations were carried out on the Holodeck cluster of the Max Planck
Independent Research Group ‘Binary Merger Observations and Numerical Relativity’. This
work was supported by the Max Planck Society’s Independent Research Group Grant.

ORCID iDs

Yoshinta Setyawati https://orcid.org/0000-0003-3718-4491
Frank Ohme https://orcid.org/0000-0003-0493-5607

References

	 [1]	 Aasi J et al 2015 Advanced LIGO Class. Quant. Grav. 32 074001
	 [2]	 Acernese F et al 2014 Advanced Virgo: a second-generation interferometric gravitational wave

detector Class. Quant. Grav. 32 024001
	 [3]	 Abbott B P et al 2019 Gwtc-1: a gravitational-wave transient catalog of compact binary mergers

observed by ligo and virgo during the first and second observing runs Phys. Rev. X 9 031040

Y Setyawati et alClass. Quantum Grav. 37 (2020) 075012

https://orcid.org/0000-0003-3718-4491
https://orcid.org/0000-0003-3718-4491
https://orcid.org/0000-0003-0493-5607
https://orcid.org/0000-0003-0493-5607
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.9.031040

24

	 [4]	 The LIGO Scientific Collaboration 2019 LIGO third observing time (O3) (https://dcc.ligo.org/
public/0152/G1801056/004/G1801056-v4.pdf)

	 [5]	 Blanchet L 2014 Gravitational radiation from post-newtonian sources and inspiralling compact
binaries Living Rev. Relativ. 17 2

	 [6]	 Campanelli M, Lousto C O, Marronetti P and Zlochower Y 2006 Accurate evolutions of orbiting
black-hole binaries without excision Phys. Rev. Lett. 96 111101

	 [7]	 Pretorius F 2005 Evolution of binary black-hole spacetimes Phys. Rev. Lett. 95 121101
	 [8]	 Baker J G, Centrella J, Choi D-I, Koppitz M and van Meter J 2006 Gravitational-wave extraction

from an inspiraling configuration of merging black holes Phys. Rev. Lett. 96 111102
	 [9]	 Damour T 2001 Coalescence of two spinning black holes: an effective one-body approach Phys.

Rev. D 64 124013
	[10]	 Damour T, Jaranowski P and Schäfer G 2008 Effective one body approach to the dynamics of two

spinning black holes with next-to-leading order spin-orbit coupling Phys. Rev. D 78 024009
	[11]	 Babak S, Taracchini A and Buonanno A 2017 Validating the effective-one-body model of spinning,

precessing binary black holes against numerical relativity Phys. Rev. D 95 024010
	[12]	 Bohé A et al 2017 Improved effective-one-body model of spinning, nonprecessing binary black

holes for the era of gravitational-wave astrophysics with advanced detectors Phys. Rev. D
95 044028

	[13]	 Santamaría L et al 2010 Matching post-Newtonian and numerical relativity waveforms: systematic
errors and a new phenomenological model for nonprecessing black hole binaries Phys. Rev. D
82 064016

	[14]	 Khan S, Husa S, Hannam M, Ohme F, Pürrer M, Forteza X J and Bohé A 2016 Frequency-domain
gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for
the advanced detector era Phys. Rev. D 93 044007

	[15]	 Hannam M, Husa S, González J A, Sperhake U and Brügmann B 2008 Where post-Newtonian and
numerical-relativity waveforms meet Phys. Rev. D 77 044020

	[16]	 Husa S, Khan S, Hannam M, Pürrer M, Ohme F, Forteza X J and Bohé A 2016 Frequency-domain
gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and
anatomy of the signal Phys. Rev. D 93 044006

	[17]	 Schmidt P, Hannam M and Husa S 2012 Towards models of gravitational waveforms from generic
binaries: a simple approximate mapping between precessing and nonprecessing inspiral signals
Phys. Rev. D 86 104063

	[18]	 Hannam M, Schmidt P, Bohé A, Haegel L, Husa S, Ohme F, Pratten G and Pürrer M 2014 Simple
model of complete precessing black-hole-binary gravitational waveforms Phys. Rev. Lett.
113 151101

	[19]	 Blackman J, Field S E, Galley C R, Szilágyi B, Scheel M A, Tiglio M and Hemberger D A 2015 Fast
and accurate prediction of numerical relativity waveforms from binary black hole coalescences
using surrogate models Phys. Rev. Lett. 115 121102

	[20]	 Blackman J et al 2017 Numerical relativity waveform surrogate model for generically precessing
binary black hole mergers Phys. Rev. D 96 024058

	[21]	 Doctor Z, Farr B, Holz D E and Pürrer M 2017 Statistical gravitational waveform models: what to
simulate next? Phys. Rev. D 96 123011

	[22]	 Varma V, Field S E, Scheel M A, Blackman J, Kidder L E and Pfeiffer H P 2019 Surrogate model
of hybridized numerical relativity binary black hole waveforms Phys. Rev. D 99 064045

	[23]	 Pürrer M 2014 Frequency-domain reduced order models for gravitational waves from aligned-spin
compact binaries Class. Quantum Grav. 31 195010

	[24]	 Pürrer M 2016 Frequency domain reduced order model of aligned-spin effective-one-body
waveforms with generic mass ratios and spins Phys. Rev. D 93 064041

	[25]	 Abbott B P et al 2016 GW150914: first results from the search for binary black hole coalescence
with advanced LIGO Phys. Rev. D 93 122003

	[26]	 Veitch J et al 2015 Parameter estimation for compact binaries with ground-based gravitational-
wave observations using the lalinference software library Phys. Rev. D 91 042003

	[27]	 Veitch J, Mandel I, Aylott B, Farr B, Raymond V, Rodriguez C, van der Sluys M, Kalogera V and
Vecchio A 2012 Estimating parameters of coalescing compact binaries with proposed advanced
detector networks Phys. Rev. D 85 104045

	[28]	 Field S E, Galley C R, Hesthaven J S, Kaye J and Tiglio M 2014 Fast prediction and evaluation of
gravitational waveforms using surrogate models Phys. Rev. X 4 031006

Y Setyawati et alClass. Quantum Grav. 37 (2020) 075012

https://dcc.ligo.org/public/0152/G1801056/004/G1801056-v4.pdf
https://dcc.ligo.org/public/0152/G1801056/004/G1801056-v4.pdf
https://doi.org/10.12942/lrr-2014-2
https://doi.org/10.12942/lrr-2014-2
https://doi.org/10.1103/PhysRevLett.96.111101
https://doi.org/10.1103/PhysRevLett.96.111101
https://doi.org/10.1103/PhysRevLett.95.121101
https://doi.org/10.1103/PhysRevLett.95.121101
https://doi.org/10.1103/PhysRevLett.96.111102
https://doi.org/10.1103/PhysRevLett.96.111102
https://doi.org/10.1103/PhysRevD.64.124013
https://doi.org/10.1103/PhysRevD.64.124013
https://doi.org/10.1103/PhysRevD.78.024009
https://doi.org/10.1103/PhysRevD.78.024009
https://doi.org/10.1103/PhysRevD.95.024010
https://doi.org/10.1103/PhysRevD.95.024010
https://doi.org/10.1103/PhysRevD.95.044028
https://doi.org/10.1103/PhysRevD.95.044028
https://doi.org/10.1103/PhysRevD.82.064016
https://doi.org/10.1103/PhysRevD.82.064016
https://doi.org/10.1103/PhysRevD.93.044007
https://doi.org/10.1103/PhysRevD.93.044007
https://doi.org/10.1103/PhysRevD.77.044020
https://doi.org/10.1103/PhysRevD.77.044020
https://doi.org/10.1103/PhysRevD.93.044006
https://doi.org/10.1103/PhysRevD.93.044006
https://doi.org/10.1103/PhysRevD.86.104063
https://doi.org/10.1103/PhysRevD.86.104063
https://doi.org/10.1103/PhysRevLett.113.151101
https://doi.org/10.1103/PhysRevLett.113.151101
https://doi.org/10.1103/PhysRevLett.115.121102
https://doi.org/10.1103/PhysRevLett.115.121102
https://doi.org/10.1103/PhysRevD.96.024058
https://doi.org/10.1103/PhysRevD.96.024058
https://doi.org/10.1103/PhysRevD.96.123011
https://doi.org/10.1103/PhysRevD.96.123011
https://doi.org/10.1103/PhysRevD.99.064045
https://doi.org/10.1103/PhysRevD.99.064045
https://doi.org/10.1088/0264-9381/31/19/195010
https://doi.org/10.1088/0264-9381/31/19/195010
https://doi.org/10.1103/PhysRevD.93.064041
https://doi.org/10.1103/PhysRevD.93.064041
https://doi.org/10.1103/PhysRevD.93.122003
https://doi.org/10.1103/PhysRevD.93.122003
https://doi.org/10.1103/PhysRevD.91.042003
https://doi.org/10.1103/PhysRevD.91.042003
https://doi.org/10.1103/PhysRevD.85.104045
https://doi.org/10.1103/PhysRevD.85.104045
https://doi.org/10.1103/PhysRevX.4.031006
https://doi.org/10.1103/PhysRevX.4.031006

25

	[29]	 Blackman J et al 2017 A surrogate model of gravitational waveforms from numerical relativity
simulations of precessing binary black hole mergers Phys. Rev. D 95 104023

	[30]	 Setyawati Y, Ohme F and Khan S 2019 Enhancing gravitational waveform models through dynamic
calibration Phys. Rev. D 99 024010

	[31]	 London L and Fauchon-Jones E 2018 On modeling for Kerr black holes: Basis learning, QNM
frequencies, and spherical-spheroidal mixing coefficients Class. Quantum Grav. 36 235015

	[32]	 Lackey B, Pürrer M, Taracchini A and Marsat S 2018 Surrogate model for an aligned-spin effective
one body waveform model of binary neutron star inspirals using Gaussian process regression
Phys. Rev. D 100 024002

	[33]	 Buonanno A, Pan Y, Pfeiffer H P, Scheel M A, Buchman L T and Kidder L E 2009 Effective-one-
body waveforms calibrated to numerical relativity simulations: Coalescence of nonspinning,
equal-mass black holes Phys. Rev. D 79 124028

	[34]	 Vinciguerra S, Veitch J and Mandel I 2017 Accelerating gravitational wave parameter estimation
with multi-band template interpolation Class. Quantum Grav. 34 115006

	[35]	 Williams D, Heng I S, Gair J, Clark J A and Khamesra B 2019 A precessing numerical relativity
waveform surrogate model for binary black holes: a Gaussian process regression approach
(arXiv:1903.09204)

	[36]	 Moore C J, Berry C P L, Chua A J K and Gair J R 2016 Improving gravitational-wave parameter
estimation using gaussian process regression Phys. Rev. D 93 064001

	[37]	 Moore C J, Berry C P L, Chua A J K and Gair J R 2016 Fast methods for training gaussian
processes on large datasets R. Soc. Open sci. 3 160125

	[38]	 Rebei A et al 2018 Fusing numerical relativity and deep learning to detect higher-order multipole
waveforms from eccentric binary black hole mergers Phys. Rev. D 100 044025

	[39]	 Chua A J K, Galley C R and Vallisneri M 2019 Reduced-order modeling with artificial neurons for
gravitational-wave inference Phys. Rev. Lett. 122 211101

	[40]	 The LIGO Scientific Collaboration 2018 LIGO instrument white paper: LIGO A+, Cosmic
Explorer and Voyager https://dcc.ligo.org/LIGO-T1500290/public

	[41]	 Aso Y, Michimura Y, Somiya K, Ando M, Miyakawa O, Sekiguchi T, Tatsumi D and Yamamoto H
2013 Interferometer design of the KAGRA gravitational wave detector Phys. Rev. D 88 043007

	[42]	 Bender P et al 2020 Laser Interferometer Space Antenna: a cornerstone mission for the observation
of gravitational waves Technical Report ESA-SCI(2000) 11

	[43]	 Punturo M et al 2010 The third generation of gravitational wave observatories and their science
reach Class. Quantum Grav. 27 084007

	[44]	 Abbott B P et al 2017 Exploring the sensitivity of next generation gravitational wave detectors
Class. Quantum Grav. 34 04400

	[45]	 Pan Y, Buonanno A, Taracchini A, Kidder L E, Mroué A H, Pfeiffer H P, Scheel M A and Szilágyi B
2014 Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the
effective-one-body formalism Phys. Rev. D 89 084006

	[46]	 Taracchini A et al 2014 Effective-one-body model for black-hole binaries with generic mass ratios
and spins Phys. Rev. D 89 061502

	[47]	 Golub G H and Van Loan C F 1996 Matrix Computations 3rd edn (Baltimore, MD: Johns Hopkins)
	[48]	 Demmel J W 1997 Applied Numerical Linear Algebra (Philadelphia, PA: SIAM)
	[49]	 Boyle M 2013 Angular velocity of gravitational radiation from precessing binaries and the

corotating frame Phys. Rev. D 87 104006
	[50]	 Boyle M, Owen R and Pfeiffer H P 2011 A geometric approach to the precession of compact

binaries Phys. Rev. D 84 124011
	[51]	 Wigner E P 1959 Group Theory and its Application to the Quantum Mechanics of Atomic Spectra

(New York: Academic)
	[52]	 Garrido J M 2015 Introduction to Computational Models with Python vol 1, 1st edn (London:

Chapman and Hall)
	[53]	 Buchner J 2015 Regular grid interpolator GitHub (https://pypi.org/project/regulargrid)
	[54]	 SCIPY 2015 Scipy RGI (SciPy 0.16.1) (https://docs.scipy.org/doc/scipy-0.16.0/reference/

generated/scipy.interpolate.RegularGridInterpolator.html)
	[55]	 Virtanen P et al 2019 SciPy 1.0–Fundamental Algorithms for Scientific Computing in Python

(arXiv:1907.10121)
	[56]	 Birkes D and Dodge Y 1993 Alternative Methods of Regression 1st edn (New York: Wiley)

Y Setyawati et alClass. Quantum Grav. 37 (2020) 075012

https://doi.org/10.1103/PhysRevD.95.104023
https://doi.org/10.1103/PhysRevD.95.104023
https://doi.org/10.1103/PhysRevD.99.024010
https://doi.org/10.1103/PhysRevD.99.024010
https://doi.org/10.1088/1361-6382/ab2f11
https://doi.org/10.1088/1361-6382/ab2f11
https://doi.org/10.1103/PhysRevD.100.024002
https://doi.org/10.1103/PhysRevD.100.024002
https://doi.org/10.1103/PhysRevD.79.124028
https://doi.org/10.1103/PhysRevD.79.124028
https://doi.org/10.1088/1361-6382/aa6d44
https://doi.org/10.1088/1361-6382/aa6d44
https://arxiv.org/abs/1903.09204
https://doi.org/10.1103/PhysRevD.93.064001
https://doi.org/10.1103/PhysRevD.93.064001
https://doi.org/10.1098/rsos.160125
https://doi.org/10.1098/rsos.160125
https://doi.org/10.1103/PhysRevD.100.044025
https://doi.org/10.1103/PhysRevD.100.044025
https://doi.org/10.1103/PhysRevLett.122.211101
https://doi.org/10.1103/PhysRevLett.122.211101
https://dcc.ligo.org/LIGO-T1500290/public
https://doi.org/10.1103/PhysRevD.88.043007
https://doi.org/10.1103/PhysRevD.88.043007
https://doi.org/10.1088/0264-9381/27/8/084007
https://doi.org/10.1088/0264-9381/27/8/084007
https://doi.org/10.1088/1361-6382/aa51f4
https://doi.org/10.1088/1361-6382/aa51f4
https://doi.org/10.1103/PhysRevD.89.084006
https://doi.org/10.1103/PhysRevD.89.084006
https://doi.org/10.1103/PhysRevD.89.061502
https://doi.org/10.1103/PhysRevD.89.061502
https://doi.org/10.1103/PhysRevD.87.104006
https://doi.org/10.1103/PhysRevD.87.104006
https://doi.org/10.1103/PhysRevD.84.124011
https://doi.org/10.1103/PhysRevD.84.124011
https://pypi.org/project/regulargrid
https://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.interpolate.RegularGridInterpolator.html
https://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.interpolate.RegularGridInterpolator.html
https://arxiv.org/abs/1907.10121

26

	[57]	 Hastie T, Tibshirani R and Wainwright M 2015 Statistical Learning with Sparsity and
Generalizations 1st edn (Boca Raton, FL: CRC Press)

	[58]	 Wakefield J 2013 Bayesian and Frequentist Regression Methods (Springer Series in Statistics)
(New York: Springer)

	[59]	 de Boor C 2001 A Practical Guide to Splines (Berlin: Springer)
	[60]	 Boyd J P 2000 Chebyshev and Fourier Spectral Methods (New York: Dover)
	[61]	 Canuto C, Hussaini M Y, Quarteroni A and Zang T A 2006 Spectral Methods, Fundamentals in

Single Domains (Berlin: Springer)
	[62]	 Quarteroni A, Sacco R and Saleri F 2000 Numerical Mathematics (Berlin: Springer)
	[63]	 Lackey B D, Bernuzzi S, Galley C R, Meidam J and Van Den Broeck C 2017 Effective-one-body

waveforms for binary neutron stars using surrogate models Phys. Rev. D 95 104036
	[64]	 Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn D S and Smith K 2011 Cython: The best of

both worlds Computi. Sci. Eng. 13 31–9
	[65]	 Pürrer M and Blackman J 2018 Tensor product interpolation package for python (TPI). GitHub

https://github.com/mpuerrer/TPI
	[66]	 Phillips G M 2003 Interpolation and Approximation by Polynomials 1st edn (New York: Springer)
	[67]	 Quarteroni A, Sacco R and Saleri F 2007 Numerical Mathematics vol 1–10, 2nd edn (Berlin:

Springer)
	[68]	 Press W, Flannery B, Teukolsky S and Vetterling W 1992 Numerical Recipes in C: the Art of

Scientific Computing volume 1, 2 (Cambridge: Cambridge University Press)
	[69]	 Chad Galley 2018 rompy Bitbucket (https://bitbucket.org/chadgalley/rompy/src/master/)
	[70]	 Field S E, Galley C R, Herrmann F, Hesthaven J S, Ochsner E and Tiglio M 2011 Reduced basis

catalogs for gravitational wave templates Phys. Rev. Lett. 106 221102
	[71]	 Buhmann M D 2004 Radial Basis Function: Theory and Implementaions. The Pitt Building,

Trumpington Street (Cambridge: Cambridge University Press)
	[72]	 Roussos G and Baxter B 2005 Rapid evaluation of radial basis functions J. Comput. Appl. Math.

180 51–70
	[73]	 Scipy 2018 Scipy RBF (https://github.com/scipy/scipy/blob/v1.4.1/scipy/interpolate/rbf.py)
	[74]	 Müller A and Guido S 2016 Introduction to Machine Learning with Python (Sebastopol, CA:

O’Reilly Media)
	[75]	 Goodfellow I, Bengio Y and Courville A 2017 Deep Learning (Cambridge, MA: MIT Press)
	[76]	 Rasmussen C and Williams C 2006 Gaussian Processes for Machine Learning (Cambridge, MA:

MIT Press)
	[77]	 Pedregosa F et al 2011 Scikit-learn: machine learning in python J. Mach. Learn. Res. 12 2825–30
	[78]	 Rasmussen C and Williams C 1996 Gaussian processes for regression Advances in Neural

Information Processing Systems pp 514–20
	[79]	 Jackson J E 2003 A User’s Guide to Principal Components vol 1, 3rd edn (New York: Wiley)
	[80]	 Abramowitz M and Stegun I 1965 Handbook of Mathematical Functions (New York: Dover)
	[81]	 Egmont-Petersen M, de Ridder D and Handels H 2002 Image processing with neural networks: a

review Pattern Recognit. 35 2279–301
	[82]	 Zhang G, Patuwo B E and Hu M Y 1998 Forecasting with artificial neural networks: the state of the

art Int. J. Forecast. 14 35–62
	[83]	 Abiodun O, Jantan A, Omolara A, Dada K, Mohamed N and Arshad H 2018 State-of-the-art in

artificial neural network applications: a survey Int. J. Forecast. 4 e00938
	[84]	 Hornik K, Stinchcombe M and White H 1989 Multilayer feedforward networks are universal

approximators Neural Netw. 2 359–66
	[85]	 Sonoda S and Murata N 2017 Neural network with unbounded activation functions is universal

approximator Appl. Comput. Harmon. Anal. 43 233–68
	[86]	 Glorot X, Bordes A and Bengio Y 2011 Deep sparse rectifier neural networks J. Mach. Learn. Res.

15 315–23 http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf.
	[87]	 Chollet F 2015 keras (version 2.2.0) (https://github.com/fchollet/keras)
	[88]	 da Silva I N, Spatti D H, Flauzino R A, Liboni L H B and dos Reis Alves S F 2017 Artificial Neural

Networks: a Practical Course 1st edn (Berlin: Springer)
	[89]	 Kingma D and Ba J 2017 Adam: a methods for stochastic optimization (arXiv:1412.6980)
	[90]	 Abadi M et al 2016 Tensorflow: A system for large-scale machine learning 12th Symp. on Operating

Systems Design and Implementation pp 265–283
	[91]	 Heaton J 2008 Introduction to Neural Networks with Java 2nd edn (Chesterfield: Heaton Research,

Inc.)

Y Setyawati et alClass. Quantum Grav. 37 (2020) 075012

https://doi.org/10.1103/PhysRevD.95.104036
https://doi.org/10.1103/PhysRevD.95.104036
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1109/MCSE.2010.118
https://github.com/mpuerrer/TPI
https://bitbucket.org/chadgalley/rompy/src/master/
https://doi.org/10.1103/PhysRevLett.106.221102
https://doi.org/10.1103/PhysRevLett.106.221102
https://doi.org/10.1016/j.cam.2004.10.002
https://doi.org/10.1016/j.cam.2004.10.002
https://doi.org/10.1016/j.cam.2004.10.002
https://github.com/scipy/scipy/blob/v1.4.1/scipy/interpolate/rbf.py
https://doi.org/10.1016/S0031-3203(01)00178-9
https://doi.org/10.1016/S0031-3203(01)00178-9
https://doi.org/10.1016/S0031-3203(01)00178-9
https://doi.org/10.1016/S0169-2070(97)00044-7
https://doi.org/10.1016/S0169-2070(97)00044-7
https://doi.org/10.1016/S0169-2070(97)00044-7
https://doi.org/10.1016/j.heliyon.2018.e00938
https://doi.org/10.1016/j.heliyon.2018.e00938
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/j.acha.2015.12.005
https://doi.org/10.1016/j.acha.2015.12.005
https://doi.org/10.1016/j.acha.2015.12.005
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
https://github.com/fchollet/keras
http://arxiv.org/abs/1412.6980

	﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿Regression methods in waveform modeling: a comparative study﻿﻿﻿﻿
	﻿﻿Abstract
	﻿﻿﻿1. ﻿﻿﻿Introduction
	﻿﻿2. ﻿﻿﻿Method
	﻿﻿2.1. ﻿﻿﻿Waveform data
	﻿﻿2.2. ﻿﻿﻿Regression methods: a general overview
	﻿﻿2.2.1. ﻿﻿﻿Traditional interpolation and fitting methods. 
	﻿﻿2.2.2. ﻿﻿﻿Machine-learning methods. 

	﻿﻿3. ﻿﻿﻿Results
	﻿﻿3.1. ﻿﻿﻿Three-dimensional case
	﻿﻿3.2. ﻿﻿﻿Seven-dimensional case

	﻿﻿4. ﻿﻿﻿Discussion and conclusion
	﻿﻿﻿Acknowledgments
	﻿﻿﻿﻿﻿﻿ORCID iDs
	﻿﻿﻿﻿﻿﻿﻿References﻿﻿﻿﻿

