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Abstract
Theoretical gravitational-wave models of compact-binary mergers need to be 
accurate, but also fast in order to compare millions of signals in near real 
time with experimental data. Various regression and interpolation techniques 
have been employed to build efficient waveform models, but no study has 
systematically compared the performance of these methods yet. Here we 
provide such a comparison. For analytical binary-black-hole waveforms, 
assuming either aligned or precessing spins, we compare the accuracy as 
well as the computational speed of a variety of regression methods, ranging 
from traditional interpolation to machine-learning techniques. We find that 
most methods are reasonably accurate, but efficiency considerations favour in 
many cases the simpler approaches. We conclude that sophisticated regression 
methods are not necessarily needed in standard gravitational-wave modeling 
applications, although machine-learning techniques might be more suitable 
for problems with higher complexity than what is tested here.

Keywords: gravitational wave, waveform modeling, regression, 
interpolation, machine learning, precessing, singular-value-decomposition
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1.  Introduction

The laser interferometric and gravitational-wave (GW) detectors LIGO [1] and Virgo [2] have 
reported observations of one binary neutron-star (BNS) and ten binary black-hole (BBH) 
mergers in their first two observing runs [3]. In the third observing run (O3), we expect to 
observe several tens of signals from compact binary coalescences [4]. The analysis of these 
GW data is the motivation for our study. The data from the detectors are filtered with many 
theoretically predicted waveforms with varying binary parameters. These waveform templates 
are drawn from models of the emitted GWs. The waveform models need to fulfil accuracy 
and speed requirements so that the parameters of the GW source can be estimated well in a 
reasonable amount of time.

We highlight two major modeling approaches: analytical and numerical relativity (NR). 
The basis of analytical models is the Post-Newtonian (PN) expansion [5]. Waveform models 
in this category are fairly computationally efficient, but the PN approximation breaks down for 
merger and ringdown part of the signal. The second category is NR. NR waveforms are built 
by numerically solving Einstein’s equations [6–8]. Although these waveforms are known to 
have exceptional accuracy to model the correct GW signals in general relativity, they require 
high computational resources and need weeks to months to generate.

Combining the two approaches above, new methods have been developed to model full 
waveforms. Two major families of this group, namely the effective-one-body (EOB) [9–12] 
and the phenomenological models [13–18] are commonly used in GW analyses. In general, 
these models start from a reformulation of PN results and calibrate the model to a select 
number of NR simulations. In this study, we employ SEOBNRv3 [11] and IMRPhenomPv2 
[17, 18] as two representative models that have been widely used to explore the full parameter 
space of non-eccentric, precessing BBHs.

Over the past few years, complementary techniques have been developed to build fast 
surrogates of EOB models and NR waveforms with a much higher computational efficiency. 
Unlike the previous approaches, these models do not start from PN expansions. They use 
existing EOB or NR waveforms, decompose, and interpolate them. The NRSurrogate models 
[12, 19–24] have an exceptional accuracy against the original NR signals, but are more limited 
in the parameter range and waveform length they cover. Reduced order and surrogate models 
of EOB waveforms have been crucial to allow EOB models to be used for template bank con-
struction [25] and parameter estimation [26, 27].

In a similar spirit, unique methods have been explored to speed up the waveform genera-
tion without compromising accuracy [28–32]. They have shown that advanced mathematical, 
statistical, and computational techniques are needed to build waveform models optimized for 
the demands of GW analyses.

We stress that in order to make a relatively small number of computationally expensive 
waveforms usable for analysis applications that rely on the ability to freely vary all param
eters, all waveform models described above crucially rely on some form of interpolation or fit-
ting method as part of their construction. Phenomenological and EOB models typically fit free 
coefficients (often representing unknown, higher-order PN contributions) to a set of NR data. 
The fits or interpolants are then evaluated over the binary parameter space. Other approaches, 
such as NR or EOB surrogate models, rely more on data-driven techniques to interpolate the 
key quantities needed to reconstruct waveforms anywhere in a given parameter-space region. 
In fact, the interpolation techniques that have recently been employed cover standard methods 
such as polynomial fits [12, 16, 33], linear interpolation [30, 34], and more complex method 
such as Gaussian process regression (GPR) [21, 32, 35–37]. Additionally, novel interpolation 
methods have been developed such as greedy multivariate polynomial fits (GMVP) [29, 31] 
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and tensor-product-interpolation (TPI) [23, 24]. References [12, 16, 23, 24, 29, 31–34] have 
been used to build waveform models and have been implemented in the analysis of the LIGO 
data. This study compares various regression methods to investigate their prospect of building 
GW model with more dimensional parameters.

In this study, we investigate the importance of interpolation and fits in waveform models 
(which themselves are crucial for GW astronomy), given the accuracy and computational 
time of various regression methods. We study whether the use of more complicated meth-
ods to model the waveforms given the same data preparation and noise reduction is justified 
in practice. Finally, we compare the performance of machine-learning against various tradi-
tional methods. In particular, we explore the prospects of artificial-neural-networks (ANN) 
as a regression method [38, 39] that has not been widely employed in waveform modeling so 
far. We focus on BBH systems with spins either aligned with the orbital angular momentum 
or precessing and provide both theoretical overviews and references to practical tools such as 
ready-to-use algorithms. Our analysis is not only of relevance for current LIGO and Virgo data 
and their extensions such as the Advanced LIGO A+, Voyager [40], and KAGRA [41], but 
also for future analysis of GW data by LISA [42] and the third generation instruments such as 
Einstein Telescope [43] and Cosmic Explorer [44].

The testbed we use is as follows. We compare various methods on waveform data at a 
fixed point in time as a function of mass ratios and spins. We use two models to generate 
waveform data: the time-domain model SEOBNRv3 [11], and the inverse Fourier transform 
of IMRPhenomPv2 [17, 18] which is natively given in the frequency domain. Both models 
were designed for precessing BBH mergers which are described by seven intrinsic param
eters: the mass ratio q and the two spin vectors �χ1 and �χ2 with Cartesian components in the 
x, y, z directions. IMRPhenomPv2 models precessing waveforms in a single spin approx
imation using an effective precession spin parameter.

We consider two classes of training data:

	 (i)	�Data on a regular three-dimensional grid describing nonprecessing binaries, (q,χ1z,χ2z), 
where 1 � q � 10 and |χiz| � 1 for i = 1, 2.

	(ii)	�Random uniform data on a full seven-dimensional grid (q, �χ1 and �χ2), where 1 � q � 2 
and −1/

√
3 � �χi � 1/

√
3 for i = 1, 2.

For each case, the regression methods were tested over test sets made up from random uniform 
test points that were drawn independently of the training set, but covering the same physical 
domain.

This paper is organized as follows. We prepare the data by defining the waveform and its 
reference frame and defining waveform data pieces in a precession adapted frame as discussed 
more detail in section 2.1. We explain the background and the features of traditional methods 
such as linear interpolation, TPI, polynomial fit, GMVP, and radial basis functions (RBF) as 
well as machine-learning methods, GPR and ANN in section 2.2. In section 3 we present the 
results of our study. Finally, a brief conclusion and discussion of future studies are found in sec-
tion 4. Throughout the manuscript, we employ geometric units with the convention G  =  c  =  1.

2.  Method

2.1.  Waveform data

We generate training and test waveform datasets for various regression methods from two 
state-of-the art models of the GWs emitted by merging BBHs. We use the phenomenological 
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model IMRPhenomPv2 [14, 16, 18] and the effective-one-body model SEOBNRv3 [11, 45, 
46]. IMRPhenomPv2 includes an effective treatment of precession effects, while SEOBNRv3 
incorporates the full two-spin precession dynamics. The models have been independently 
tuned in the aligned-spin sector to NR simulations.

The GW strain can be written as an expansion into spin-weighted spherical harmonic 
modes in the inertial frame

h(t;�λ; θ,φ) =
∞∑
�=2

�∑
m=−�

h�,m
i (t;�λ)−2Y�,m(θ,φ).� (1)

We can choose to model the waveform modes h�,m
i (t; θ) directly which depend a collection of 

parameters �λ. The spherical harmonics −2Y�,m(θ,φ) for a given (�, m) depend on the direction 
of emission described by the polar and azimuthal angles θ and φ. The two waveform models 
employed in this study provide approximations to the dominant modes at � = 2. In a preces-
sion adapted frame SEOBNRv3 includes m = ±2 and m = ±1 modes (the negative m modes 
by symmetry), whereas IMRPhenomPv2 includes only the m = ±2 modes. For SEOBNRv3 
we directly generate time-domain inertial modes h2,m

i (t), while for IMRPhenomPv2 we com-
pute the native inertial modes in the Fourier domain h̃2,m

i ( f ), and subsequently condition and 
inverse Fourier transform them to obtain an approximation to the time-domain modes.

To test interpolation methods we work in the setting of the empirical interpolation (EI) 
method [20, 28]. In this approach we can define an empirical interpolant of waveform data 
piece X(t;�λ) (such as, e.g. amplitude or phase of the gravitational waveform) by

IN [X](t;�λ) =
N∑

i=1

ci(�λ)ei(t) =
N∑

j=1

X(Tj;�λ)b j(t).� (2)

The first expression is an expansion with coefficients ci of waveform data in an orthonor-
mal linear basis {ei(t)}N

i=1 (e.g. obtained from computing the singular value decomposition  
[47, 48] for discrete data [23, 24]). A transformation to the basis {bi(t)} results in coefficients 
which are the waveform data piece X evaluated at empirical node times Tj . The EI basis {bi(t)} 
and the EI times can be obtained by solving a linear system of equations as discussed in [28]. 
Here we forgo the basis construction step and just choose EI times manually to select wave-
form data for accessing regression methods.

We want to transform the inertial frame modes into a more appropriate form, such that data 
pieces are as simple and non-oscillatory as possible in time and smooth in their parameter 
dependence on �λ. In evaluating the model, we reconstruct the full waveforms by transforming 
back to the inertial frame. This transformation includes the choice of a precession adapted 
frame of reference that follows the motion of the orbital plane of the binary. In this frame the 
waveform modes have a simple structure and are well approximated by non-precessing wave-
forms. A further simplification in the modes can be achieved by taking out the orbital motion. 
In addition, we align the waveform and frame following [20] at the same time for different 
configurations and waveform models. The procedure is comprised of the following steps4:

4 We represent rotations through unit quaternions. Quaternions can be notated as a scalar plus a vector 
Q = q0 + q = (q0, q1, q2, q3). A unit quaternion R = eθû/2 generates a rotation through the angle θ about the axis 
û. For calculations we use the GWFrames [49] package and notation conventions from [49].
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	 •	�We define time relative to the peak of the sum of squares of the inertial frame modes.
	 •	�We transform the inertial frame waveform modes h�,m

i (t) (dropping the parameter depend
ence on �λ for now) to the minimally rotating co-precessing frame [50] and thereby obtain 
the co-precessing waveform modes

h2,m
copr(t) =

∑
m′

h2,m
i (t)D2

m′,m (Rcopr(t)) ,� (3)

		 where D�
m′,m  are Wigner matrices [49, 51] and Rcopr(t) is the time-dependent unit quater-

nion which describes the motion of this frame.

	 •	�We compute the Newtonian orbital angular momentum unit vector l̂N(t) =  
Rcopr(t) ẑ R∗

copr(t), where Q∗ is the conjugate of the quaternion Q and ẑ = (0, 0, 1). We 
interpolate l̂N(t) to the desired alignement time talign.

	 •	�We use the rotor Ra =
√
−l̂N(talign) ẑ that rotates ẑ into l̂N(talign) to align the inertial 

modes at talign and then compute the aligned co-precessing frame modes h̄2,m
copr(t) and 

quaternion time series R̄copr(t), where the bar indicates alignment in time.
	 •	�Finally, we rotate around the z-axis to make the phases of the (2, 2) and (2,−2) modes 

small by applying a fixed Wigner rotation with the rotor Rz = exp(θ/2 ẑ) R̄copr to obtain 
¯̄h2,m

i (t) and ¯̄h2,m
copr(t).

We choose the following quantities (see figure 1) to test the accuracy and efficiency of 
interpolation methods: (i) the ‘orbital phase’ defined as one quarter the averaged GW-phase 
from the (�, m) = (2, 2) and (2,−2) modes in the co-precessing frame

φ(t) :=
1
4

(
arg

[
¯̄h2,−2

copr (t)
]
− arg

[
¯̄h2,2

copr(t)
])

,� (4)

(ii) a linear combination of the � = m = 2 modes in the co-orbital frame
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Figure 1.  The key quantities of the GW signal of a precessing BBH, here illustrated 
for a binary with (q,χ1x,χ1y,χ1z,χ2x,χ2y,χ2z) = (1.99, 0.51, 0.04, 0.03, 0.01, 0.6, 0.1). 
Left: the dimensionless amplitude A(t). Right: the phase φ(t) (in unit radian). The black 
dashed lines show the points in time-space, where we perform different interpolation 
methods (t  =  −3500M and t  =  −50M).
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A(t) := Re ¯̄h2,2
+ =

1
2

Re
(
¯̄h2,2

coorb(t) +
¯̄h2,−2∗

coorb (t)
)

,� (5)

where the co-orbital modes are defined as

h�,m
coorb(t) = h�,m

copr(t)e
imφ(t).� (6)

The rationale for choosing these two quantities is the following: the phasing is usually the 
quantity that requires the most care in GW-modeling with accuracy requirements of a fraction 
of a radian over hundreds of waveform cycles. The co-orbital frame mode combinations play 
the role of a generalized amplitude and are typically smooth and non-oscillatory.

We consider the following waveform training datasets in this study: (i) three-dimensional 
datasets: several interpolation methods in this study require data on a regular grid. We prepare 
three-dimensional datasets (q,χ1z,χ2z) in the mass-ratio q = m1/m2 and the aligned comp
onent spins χiz = �Si · L̂N/m2

i  for i = 1, 2. We do not include the total mass since it can be fac-
tored out from the waveform for GWs emitted from BBHs which are solutions of Einstein’s 
equations in vacuum. The grids have an equal number of points per dimension, ranging from 
5 to 11. We choose parameter ranges 1 � q � 10 and |χiz| � 1. (ii) The full intrinsic parameter 
space we consider is seven-dimensional: we include the dimensionless spin vector of each 
black hole χi = Si/m2

i  and the mass-ratio q of the binary. Due to the curse of dimensionality 
regular grid methods require a prohibitive amount of data in 7D. For instance, ten points per 
dimension would require 107 waveform evaluations. Therefore, we only produce scattered 
waveform data in seven dimensions which are drawn from a random uniform distribution in 
each parameter. Here we choose parameter ranges 1 � q � 2 and −1/

√
3 � �χi � 1/

√
3. For 

both choices of dimensionality we also generate test data of 2500 points drawn randomly from 
the respective parameter space.

Waveform data in three and seven dimensions is produced at a total mass of M = 50M� 
with a starting frequency of 20Hz. We align the waveform and frames at talign = −2000M 
with the above procedure. We record waveform data from the key quantities at two differ-
ent times, ttarget = −3500M and  −50M, where we have performed alignment in time such 
that the mode sum of the waveform amplitudes peaks at t  =  0M. This choice allows us to 
independently probe the inspiral and the merger regime. We expect that the waveform data 
will be very smooth in the inspiral, but more irregular close to merger due to the calibration 
of internal model parameters to numerical relativity waveforms at a limited number of points 
in parameter space.

2.2.  Regression methods: a general overview

A large number of techniques have been developed to improve the speed and accuracy of 
generating gravitational waveforms. A priori, one would expect that higher speed would go 
hand-in-hand with less accuracy and less complexity. One frequent question is how to select 
a method for a specific purpose. Depending on the goals, a choice needs to be made between 
complex, highly accurate methods with moderate efficiency versus simpler but more efficient 
methods, and we can choose to trade accuracy for speed.

In this subsection, we discuss various methods and categorize them into two groups. The 
first group is comprised of traditional interpolation and fitting methods which are based on 
mathematical techniques and algorithms that are straightforward to implement and easily 
evaluated. The second group is made up of machine-learning methods which may require 
a more advanced mathematical and computational background. Methods from the second 

Y Setyawati et alClass. Quantum Grav. 37 (2020) 075012



7

group are in general more complex and require more computational resources than the first 
group. Here we give a basic description of these methods, their limitation and provide some 
references.

2.2.1. Traditional interpolation and fitting methods.  The traditional interpolation and fitting 
methods are either interpolatory, i.e. the approximation is designed such that it exactly includes 
the data points, or they produce an approximate fit, where a distance function between the data 
and the model is minimized. Many of these methods rely on polynomials as building blocks to 
model the data. Some models have a fixed order of approximation, while others let the number 
of terms be a free parameter. These methods are relatively straightforward to use and do not 
usually require much computational power.

	 (i)	�Linear interpolation
		 Linear interpolation is a straight line approximation that predicts the value of an unknown 

data point which lies between two known points [52]. This method has been widely used 
as a standard method to perform interpolation in various studies. If we have several data 
points, the transition between the adjacent data points is only continuous but not smooth.

		 Since linear interpolation is available as a standard Python package, we include this 
method to compare to other more complicated techniques. In particular, we investigate 
the application of multivariate linear interpolation on a regular grid using the regular grid 
interpolator (RGI) [53, 54] that is available in scipy [55].

		 The mathematical background of linear interpolation can be explained as follows. Assume 
two known points (x0, y0) and (x1, y1) and an unknown point (x, y) with x0 � x � x1. This 
method assumes that the slope between x0 and x is equal to the slope between x and x1. 
Hence, we use the following relation to predict the data point y  in one dimension.

y − y0

x − x0
=

y1 − y
x1 − x

⇔ y = y0 + (x − x0)
y1 − y0

x1 − x0
.

�
(7)

		 In dimensions d  >  1, this method requires a regular grid of data points as a training set.
		 Multivariate linear interpolation works as follows. Let yi(�x) be the data point we want 

to predict, where �x  denotes the input parameters in d dimensions. Initially, we need to 
obtain the parameters of the projection of yi(�x) in d  −  1 dimensions, followed iteratively 
by d  −  2 and so on until we reach one-dimensional case d  =  1. Once we obtain these 
projection points, we can employ equation (7) to predict the values of these points in one 
dimension. Subsequently, we use the predicted values as the known points to predict the 
result in higher dimensions iteratively. We then repeat the process further to find yi(�x) in 
d dimensions. This algorithm involves a small number of multiplications and additions, 
which are relatively fast.

		 Since RGI assumes a regular grid, it is affected by the curse of dimensionality: the number 
of training points grows as the power of d. Therefore, we only investigate this method in 
three dimensions.

		 Other popular regression methods that we do not consider here are ridge [56], LASSO 
[57], and Bayesian regression [58]. One reason is that the GW training data is quite well-
behaved and does not usually include outliers such that would require special treatment.

	(ii)	�Tensor product interpolation
		 On regular or Cartesian product grids one can use the same univariate interpolation 

method in each dimension and the grid points can be unequally spaced. This gives rise to 
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TPI methods. Popular choices for the univariate method are splines [59] and, if the data 
is very smooth, spectral interpolation [60, 61].

		 Let us assume that we want to model a waveform quantity X(t;�λ) at a particular time 
t = ti. We define the d-dimensional TPI interpolant (where d = dim(�λ)) as an expansion 
in a tensor product of one-dimensional basis functions Ψj(λj),

I[X](ti;�λ) =
∑

j1,...,jd

aj1,...,jd (Ψj1 ⊗ · · · ⊗Ψjd) (
�λ).� (8)

		 A popular choice for the basis functions are univariate splines, which are piecewise poly-
nomials of degree k  −  1 (order k) with continuity conditions. For instance, cubic splines 
have degree k  =  4 and continuous first and second derivatives. The boundaries of the 
domain require special attention. A simple choice is the natural spline where the second 
derivative is set to zero at the endpoints. If boundary derivatives are not known it is better 
to use the so-called ‘not-a-knot’ boundary condition [59]. This condition is defined by 
demanding that even the third derivative must be continuous at the first and last knots.

		 To construct splines in a general manner it is advantageous to introduce basis functions 
with compact support, so-called B-splines. We denote the ith B-spline basis function 
[59, 62] of order k with the knots vector �t , a nondecreasing sequence of real numbers, 
evaluated at x by Bi,k,t(x). The knots refer to the locations in the independent variable 
where the polynomial pieces of B-spline basis function are connected. For distinct knots 
ti, . . . , ti+k+1, the B-splines can be defined as

Bi,k,t(x) := (ti+k − ti)[ti, . . . , ti+k](· − x)k−1
+ ,� (9)

		 where [ti, . . . , ti+k] f  is the divided difference [59, 62] of order k of the function f  at the 
sites ti, . . . , ti+k, and (x)+ := max{x, 0}. The B-splines can also be defined in terms of 
recurrence relations. The definition can be extended to partially coincident knots which 
are useful for the specification of boundary conditions. B-splines can be shown to form 
a basis [59] of the spline space for a given order and knots vector. A spline function or 
spline of degree k with knots �t  can be then defined as an expansion

s =
∑

i

siBi,k,t(x),� (10)

		 with real coefficients {si}n
i=1. Given data, a fixed order and knots vector, and a choice 

of boundary conditions, we can solve the linear system for the spline coefficients si. For 
efficient evaluation we only compute the parts of the B-spline basis functions that are 
nonzero.

		 For smooth data, Chebyshev interpolation [60, 61] is a popular choice. Chebyshev poly-
nomials (of the first kind) are defined as the unique polynomials satisfying

Tn(cos(θ)) = cos(nθ)� (11)

		 on [–1,1]. In contrast to splines where the polynomial degree is usually low, global high 
order polynomial interpolation requires a special choice of nodes to be well-conditioned. 
A good choice are Chebyshev-Gauss-Lobatto nodes (which are defined to be the extrema 
of the Tn(x) plus the endpoints of the domain)

xk = − cos

(
kπ

m − 1

)
, k = 0, . . . , m − 1.� (12)

Then we can approximate a function f (x) by an expansion
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f (x) ≈ I[ f (x)] :=
m−1∑
k=0

ckTk(x).� (13)

		 For f ∈ C∞ the error of Chebyshev interpolation converges exponentially with the 
number of polynomials Tn(x).

		 Tensor product interpolation is a very useful tool for constructing fast reduced order 
models (ROM) or surrogate models of time or frequency dependent functions that depend 
on a moderate number of parameters �λ. TPI with splines and Chebyshev polynomials has 
been used to build several GW models [21, 23, 24, 29] and [63], respectively. TPI is not 
available in standard Python packages. For TPI spline interpolation we use the Cython 
[64] implementation in the TPI package [65].

	(iii)	�Polynomial fits
		 A polynomial fit is a multiple linear regression model where the independent variables 

form a polynomial [66]. Different settings of maximum polynomial degrees may cause 
underfitting or overfitting, therefore care must be taken in choosing the ansatz.

		 Assume that we have N training points ({�xi, yi} ∈ Rd × R|i = 1, · · · , N). Our goal is to 
find a function or regressor such that each �xi yields an output with the lowest error against 
its function values y i. We assume that this function f (�x) is expressed by a polynomial of 
degree k and parameters �c .

		 In one dimension we have:

f (�x) = c0xk + c1xk−1 + · · ·+ ck−1x + ck.� (14)

		 If we had as many degree of freedom as data points, we could demand:

f (xi) = yi.� (15)

		 In matrix form, equation (15) can be written as:

X�c = �Y



xk
1 xk−1

1 · · · x1 1
xk

2 xk−1
2 · · · x2 1

...
. . .

...
xk

N xk−1
N · · · xN 1







c0

c1
...

ck


 =




y1

y2
...

yN


 ,

� (16)

		 where X is the N × (k + 1) Vandermonde matrix. The parameters �c  are obtained by 
solving equation (16) for the known input and output data, X and �Y  in the training set. In 
general, the linear system may be over or under determined such that no unique solution 
would exist. Instead, we employ the standard discrete least squares fit to minimize the 
error (see section 10 of [67] and [68]):

ΣN
j=1|f (xj)− yj|2.� (17)

		 Similar to linear interpolation, univariate polynomial interpolation is available in the 
scipy package.

		 Phillips [66] discusses several methods and provide an overview of multivariate interpo-
lation with polynomials. We employ polynomial fits for multivariate interpolation as in 
[69] and explained more detail in [70].

	(iv)	�Greedy multivariate polynomial fit (GMVP)
		 London and Fauchon-Jones [31] recently introduced methods that build an interpolant 

for a given data set by adaptively choosing a small set of analytical basis function from 
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a certain class of functions. In our study here, we test the GMVP procedure described in 
detail in section II.B of [31].

		 In this method, a scalar function, f , that is known at discrete points in the d-dimensional 
parameter space, �xj = {x1

j , x2
j , . . . , xd

j }, is approximated by a linear sum of analytical basis 
functions, φk(�x),

f (�x) ≈
∑

k

µk φk(�x).� (18)

		 Given a set of basis functions, the coefficients µk  are determined by a ‘least-squares’ 
optimal fit to the known function values f (�xj). In practice, this is calculated using the 
pseudoinverse (Moore–Penrose) matrix of φk(�xj) (that is, the values of the basis functions 
at the given location in the parameter space).

		 In GMVP, the basis functions are chosen to be multivariate polynomials of maximal 
degree D. In order to prevent overfitting, however, not all possible polynomial terms from 
the set

φk(�x) ∈

{(
x1)α1

(
x2)α2

. . .
(
xn)αd ,

n∑
i=1

αi � D

}
� (19)

		 are included in the basis. Instead, a greedy algorithm [70] iteratively adds the basis func-
tions to (18) that minimize the error

ε2 =

∑
j

[
f (�xj)−

∑
k µk φk(�xj)

]2

∑
j [ f (�xj)]

2 .

� (20)
		 This process terminates when the difference in ε between two successive iterations 

becomes smaller than some user-defined tolerance. In order to improve the stability of 
the algorithm, the maximally allowed multinomial degree D is successively increased, 
which the authors of [31] refer to as degree tempering.

		 In our study, we use GMVP with a tolerance of ε = 5 × 10−4 and a maximal multinomial 
degree of D  =  16.

	(v)	�Radial basis functions (RBF)
		 Radial basis functions [71] are an approximation for continuous functions, where the 

predicted outputs depend on the Euclidean distance between the points and a chosen 
origin. This method is applicable in arbitrary dimensions and does not require a regular 
grid. We include RBF in this study because this method has been integrated as a standard 
Python package in scipy and used in machine-learning as activation functions in radial 
basis functions neural networks (see section 2.2.2).

		 The mathematical background of RBFs is explained as follows. Let N be the number of 
training points, �xi the parameters of each data point, and y i the data defining the training 
set {(�xi, yi) ∈ Rd × R|i = 1, . . . , N}.

		 The goal is to find an approximant s : Rd → R to the function y : Rd → R such that 
s(�xi) = yi  (s interpolates y  at the chosen points) with the form:

s(�x) =
N∑

i=1

wiϕ(r),� (21)

		 where �x  is the vector of independent variables, wi are the coefficients, r is the Euclidean 
distance between �x  and �xi (r = ‖�x − �xi‖), and ϕ(r) is known as the radial basis function.

		 To obtain the approximant s, we need to solve:
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Φ(r)�w = �Y ,� (22)

		 where Φ(r) = {‖�x − �xi‖}x,xi∈Ξ, �Y = {yi}N
i=1 and �w = {wi}N

i=1. Ξ is a finite subset of Rd 
with more than one element [71]. We can solve the linear system for the coefficients and 
obtain the interpolant. Hence, the computational complexity and thus the training time 
of RBF is dominated by the computation of vector coefficients �w that involves matrix 
inversion and goes as O(N3) [72].

		 The interpolation matrix Φ(r) has to be nonsingular so that it does not violate the 
Mairhuber–Curtis theorem [71]. The solution is to choose a kernel function such that 
Φ(r) is a semi-definite matrix and therefore nonsingular. One common choice is the 
multiquadric kernel function ϕ(r) expressed by:

ϕ(r) =

√
1 +

(
r
ε

)2

,� (23)

		 where ε is the average distance between nodes based on a bounding hypercube as defined 
in scipy [73].

		 The multiquadric kernel function is commonly applied to scattered data because of its 
versatility due to its adjustable parameter ε which can improve the accuracy or the stability 
of the approximation. Buhmann [71] shows that this kernel is also able to approximate 
smooth functions well so that it useful for approximation. Hence, we employ the multi-
quadric kernel function in this study.

2.2.2.  Machine-learning methods.  Machine-learning (ML) is the scientific study of comp
uter algorithms and statistics which aims to find patterns or regularities in the data sets. Sys-
tems learn from the training data and can predict output values for test data.

Although the distinction is a blur, one major difference between ML and traditional inter-
polation methods lies in their objectives. In traditional methods, the objective is not only 
to provide an approximation of an underlying function from which the training data were 
generated, but also to understand the mathematical process behind the relation of input and 
output data. In that case, we seek interpolants or fits which often can be found analytically 
by solving linear systems for the coefficients in the model. Hence, the traditional methods 
originated from approximation theory and numerical analysis in mathematics. Conversely, in 
ML, the objective is to recognize patterns from the input-output training set and to construct 
a model from this data [74, 75]. Although we know that the result follows some mathematical 
procedures that depend on free parameters, these details are considered to be less important.

	 (i)	�Gaussian process regression (GPR)
		 GPR is a unique method that combines statistical techniques and ML. It can predict 

function values away from training points and can provide uncertainties of the predicted 
values, which will be useful for certain applications and do not require a regular grid. 
Compared to traditional methods, GPR requires more knowledge of advanced statistics 
such as covariance matrices, regression and Bayesian statistics for the optimization 
strategy.

		 We provide a summary of GPR as discussed in detail in [76, 77]. We start with the most 
important assumption in GPR. Any discrete set of function values yi = y(�xi) is assumed 
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to be a realization of a Gaussian process (GP). Assuming the data can be pre-processed 
to have zero mean, µ(�x) = 0, the covariance function k(�x,�x′) fully defines the Gaussian 
process:

y(�x) ∼ GP
(
µ(�x) = 0, k(�x,�x′)

)
.� (24)

		 Assume that we want to predict the value y * at �x∗ ∈ Rd  and that we have N num-
bers of training points, where each point depends on d parameters expressed by 
{(�xi, yi)|i = 1, . . . , N}. The training and test outputs can be written as follows:

[
�y
y∗

]
∼ N

(
0,
[

K(X, X) + σ2
nI K(X, X∗)

K(X∗, X) K(X∗, X∗)

])
,� (25)

		 where K(X, X) denotes the matrix of the covariances evaluated at all pairs of the training 
points and similarly for K(X∗, X∗), K(X, X*), and K(X*, X), σ2

n  (also called nugget) is 
the variance of the Gaussian (white) noise kernel that will be discussed later (see the 
hyperparameters).

		 Explicitly, in order to predict a single value y *, we need to compute K(X, X) as the 
covariance matrix between each point in the training set, K(X,X*) and its transpose that 
are vectors and the scalar K(X∗, X∗). In a different form, our main goal is to find the 
conditional probability expressed by the following distribution:

p(y∗|�xi,�x∗,�y, �θ) = N (ȳ∗, var(y∗)),� (26)

		 i.e. the probability of finding the value y * given the training data �xi and �y , the hyper-
parameters �θ , and the location �x∗ is a normal distribution with mean ȳ∗ and variance 
var(y∗).

		 The mean and variance can be shown to be:

ȳ∗ = K(X∗, X)(K(X, X))−1
ij yj� (27)

var(y∗) = K(X∗, X∗)− K(X∗, Xi)(K(X, X))−1
ij K(X∗, Xj).� (28)

		 In the equation above, the covariance K(xi, xj) is expressed by:

K(xi, xj) = σ2
f k(xi, xj) + σ2

nδij,� (29)

		 where σf  and σn  are hyperparameters, δij is the standard Kronecker delta, k(xi, xj) = k(r), 
and r is the distance:

r =
√

(�x −�x′)TM(�x −�x′).� (30)

		 In the following, we discuss the form of M as a diagonal matrix with a tunable length 
scale in each physical parameter which form part of the hyperparameters.

		 The hyperparameters
		 We assume that our training data has some numerical noise σ2

n  and a scale factor σf  that 
can be estimated by optimizing the hyperparameters �θ = {σf ,σn, M}. For instance, the 
explicit form of M in the seven-dimensional case is:
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M = diag(�−2
q , �−2

χ1x
, �−2

χ1y
, �−2

χ1z
, �−2

χ2x
, �−2

χ2y
, �−2

χ2z
),� (31)

		 where the �i  are length scales. Rasmussen and Williams [78] describes the length-scale 
� as the distance taken in the input space before the function value changes significantly. 
Small values of the lengthscale � imply that the function values change quickly and vice 
versa. Hence, the lengthscale � describes the smoothness of a function.

		 To determine the hyperparameters, we can maximizse the marginal log-likelihood:

ln p(yi|�xi, �θ) = −1
2

(
yi(K(X, X))−1

ij yj + ln |K(X, X)|+ N ln 2π
)

.� (32)

		 Because the log-likelihood may have more than one local optimum, we repeatedly start 
the optimizer and we choose ten repetitions. For the first run, we set the initial value of 
each length scale to unity, with bounds of 10−5 to 105. Furthermore, we set σ2

n = 10−10, 
where higher σ2

n  value means that the data are more irregular. The subsequent runs use the 
allowed values of the hyperparameters from the previous runs until the maximum number 
of iterations is achieved.

		 In equation (32), we see that the partial derivatives of the maximum log likelihood can 
be computed using matrix multiplication. However, the time needed for this computation 
grows with more data in the training set as O(N3). Additionally, we employ algorithm 2.1 
of [76], because Cholesky decomposition is about six time faster than the ordinary matrix 
inversion to compute equation (32). We highlight that although GPR becomes more accu-
rate in predicting the underlying functional form of the data given more training points N, 
it has complexity O(N3) and therefore the method becomes ineffective for large N.

		 We estimate the posterior distribution of the hyperparameters using Bayes’ theorem as 
follows:

p(�θ|�xi, yi) ∝ p(θ) p(yi|�xi, �θ),� (33)

		 where we employ a uniform prior distribution p(θ). Additionally, we use the sckit-
learn package [77] to optimize the hyperparameters as in the implementation of 
algorithm 2.1 in [76].

		 This method is non-parametric because no direct model ansatz is used. Note however that 
a choice for the covariance function needs to be made.

		 The covariance functions
		 In statistics, covariance expresses how likely two random variables change together 

[79]. Various choices of covariance functions which are usually called kernels k(�x,�x′) 
are discussed in more detail in [77] and [76]. In this study, we compare the two most 
commonly used kernel functions in GPR: the squared exponential kernel and the Matérn 
kernel explained below.

	(a)	� The squared exponential kernel (SE) is a standard kernel for Gaussian processes:

kSE(r) = exp

(
−r2

�2

)
,� (34)

with r defined in equation (30) and � is the length-scale.
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	(b)	� The Matérn class of kernels is named after a Swedish statistician, Bertil Matérn and 
has less smoothness than the SE kernel. The Matérn kernel is given by:

kM(r) =
21−ν

Γ(ν)

(√
2νr
�

)ν

Kν

(√
2νr
�

)
,� (35)

		  where Kν is a modified Bessel function [80], Γ is the gamma function and ν  is usually 
half-integer. Common choices of ν  are kν=3/2 and kν=5/2.

kν=3/2(r) =
(

1 +

√
3r
�

)
exp

(
−

√
3r
�

)
,� (36)

kν=5/2(r) =
(

1 +

√
5r
�

+
5r2

3�2

)
exp

(
−

√
5r
�

)
.� (37)

		  The Matérn kernel is a generalization of the radial basis function kernel. For ν = 1/2, it 
reduces to exponential kernel and ν = ∞ reduces to the SE kernel. We use the Matérn 
kernel with ν = 3/2 in our analysis.

	(ii)	�Artificial neural networks
		 Artificial neural networks (ANNs) as computing systems are inspired by emulating the 

work of brains to learn complex things and to find patterns in biology. In ML algorithms, 
ANN has been widely used as a framework to perform advanced tasks such as pattern 
recognition [81], forecasting [82], and many other applications in various disciplines 
[83]. This framework works analogously to brains: it receives some inputs, processes 
them, and yields some output [75].

		 In this study, we employ ANNs or feedforward networks as the simplest neural networks 
architecture to perform interpolation. The feedforward network with hidden layers can 
approximate of any function which is known as the universal approximation theorem [75, 
84]. This class is called feedforward because the information flow from the input to the 
output and the connection between them does not form a cycle (loop). In our case, the 
inputs are the waveform’s parameters �λ and the output is the predicted value of A(ti;�λ) 
or φ(ti;�λ). We define hidden layer as a layer between the input and the output of ANN5.

		 We employ multi-layer-perceptron (MLP) as one of the simplest architectures to perform 
function approximation [84, 85]. Figure 2 shows the illustration of the network architec-
ture used in this study.

		 In figure 2, each layer consists of a finite number of neurons. Each neuron in each layer is 
connected to the subsequent layer and the previous layer which are generally called links 
or synapses. The workflow of MLP is explained as follows:

	(a)	� Define the input as xij, where i is the index of the layers. Starting at i  =  0 at the input 
layer, and j  indexes the neurons in a layer. Thus, with x0j , j = 1, 2, 3 corresponds to 
q,χ1z,χ2z respectively.

	(b)	� The kth neuron of the (i + 1)th layer receives the value of xij from the ith layer multi-
plied by the weight wijk. These products are then summed over all links from the ith to 
the (i + 1)th layer.

5 In some references, the input layer is counted as the first hidden layer. Here we use the definition of hidden layer 
as a layer between the input and the output layer.
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	(c)	� A bias or shift bik is added to the above value and an activation function σ is applied to 
the final result. In this study, we use the Rectified Linear Unit (ReLU) [86] because it 
faster than other functions such as sigmoid and tanh and it is commonly used in other 
studies. ReLU is mathematically expressed by the following equation:

σ(z) = max(z, 0),� (38)

and the MLP procedure is expressed by the following relation:

xi+1,k = σ


∑

j

wijkxij + bik


 .� (39)

We vary the number of neurons in the first hidden layer between 2 to 2000 for the 
three-dimensional data sets and 2 to 5000 for the seven-dimensional data sets. We 
then set the number of neurons in the second hidden layer identical to the first hidden 
layer. The output of the networks is either A or φ at a single time. For each network 
and training data set, we compute mean squared error and the mean absolute error 
(see [87]) of A(t) and φ(t), respectively.To train the networks, the training data is 
separated into several batches, where each batch contains the same number of data 
samples. Each batch is then passed through the networks (see equation (39)). When 
each data sample in the training set has had an opportunity to pass the networks a 
single time, this is known as an epoch. The number of epochs affects the learning of 

Figure 2.  Diagram of ANN architecture used for three-dimensional interpolation in 
this study. The circles represent the neurons and we indicate weigths wi along neuron 
connections and biases bi. We employ two layers in the hidden layer part of the diagram. 
The same architecture is used for the seven-dimensional case, where the input contains 
seven neurons that depend on the seven parameters.
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the networks, i.e. the higher the epoch, the better the learning. In this study, we set our 
batch size to five and train them through one thousand epochs.The networks compute 
the loss functions during each epoch. The loss functions measure the errors or incon-
sistency between the predicted value and the true data. In this study, we employ the 
mean squared error loss function for A(t) and the absolute error for φ(t) respectively 
(see [87]).Training neural networks means that we minimize the loss functions so that 
our predicted values are as close as possible to the true values [88]. To minimize the 
loss functions, the networks adjust learnable parameters, i.e. the values of the weights 
and biases of the model. In most cases, the minimization cannot be solved analyti-
cally, but can be approached with optimization algorithms.During optimization, the 
network learns the values of weights and biases of the previous epoch and calculates 
its loss functions. Subsequently, it adjusts the values of weights and biases in the next 
epoch so that the loss functions become smaller. To minimize the loss functions, we 
compute the gradient values with respect to the learnable parameters. In this study, 
we employ Adam [89] as the optimization algorithm due its robustness.Following the 
above procedure, a model is then saved at the end of the run and evaluated through 
the test data. We then compute the accuracy and execution time of this process similar 
to other methods. We employ Keras [87] and TensorFlow [90] to perform this 
computation.

3.  Results

In this section, we show results for accuracy and computational time for different regression 
methods. We apply methods to the three-dimensional and seven-dimensional data sets defined 
in section 2.2.

3.1. Three-dimensional case

We investigated the results for aligned spin waveforms with parameters q,χ1z, and χ2z. 
Training points were given on a regular grid. We placed the same number of points equally 
spaced to each other for each parameter (see section 2.1). Hence the total number of training 
points is proportional to the number of training points per dimension cubed. We then varied 
the number of training points in each dimension from five to eleven which corresponds to a 
total number of training points of 125 to 1331. We distributed 2500 test points randomly (see 
section 2.1). These test points are located inside the same domain covered by the training 
points. Hence, we do not test how well the methods perform for extrapolation.

We calculated relative errors (in percent) for the amplitude A(t):

εre =

∑N
i |Ai

pred(t)− Ai
true(t)|∑N

i |Ai
true(t)|

× 100.� (40)

The phase error is an important diagnostic to measure the accuracy of GW waveform models. 
Therefore, we consider the absolute phase error (in radians)

εae =
1
N

N∑
i

|φi
pred(t)− φi

true(t)|.� (41)
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εre and εae are the relative error and the average of the absolute error, respectively, Apred(t) 
and φpred(t) are the predicted results of the amplitude and phase regression respectively, and 
Atrue(t) and φtrue(t) are their true values.

Subsequently, we investigated the computational time taken to evaluate each interpola-
tion method. Here we define the training time as the time to compute the interpolant and the 
execution time being the time to compute the 2500 interpolation points following our test set. 
Furthermore, we define total time as the sum between the training time and the execution time, 
i.e. the entire process to perform interpolation for 2500 points. The comparison results in the 
early inspiral (t  =  −3500M) are shown in figure 3, whereas the results at t  =  −50M are shown 
in figure 4. We now discuss the results shown the results for different regression methods.

	 (i)	�Traditional interpolation and fitting methods & GPR
		 We expect that the key quantities for two waveform models, SEOBNRv3 and 

IMRPhenomPv2 agree quite well in the early inspiral. The error in A(t) and φ(t), 
decreases with more training points for both models. This result is expected as we popu-
late our parameter space with more points located on a regular grid.

		 For both quantities, we find that errors for different methods are similar between waveform 
models. GPR errors show a dependence on the kernel choice. We first consider the ampl
itude errors. For SEOBNRv3 the errors fall off in a similar way for either choice of kernel, 
whereas for IMRPhenomPv2 the error is much higher for the SE kernel compared to the 
Matérn kernel. This is likely due to the higher level of noise in the IMRPhenomPv2 data 
due to the inverse Fourier transformation.

		 The SE kernel assumes a higher degree of smoothness in the data than the Matérn kernel. 
Similarly, we find for either waveform model that the SE kernel shows a higher phase 
error than the Matérn kernel.

	(ii)	�Artificial neural networks
		 We now discuss errors for ANNs as indicated by the filled circles in figure 3. Here we 

compare the results of the double layer MLP with various numbers of neurons. By design, 
the double layer MLP consists of one input layer, two hidden layers, and one output 
layer. We set the number of inputs as the dimensionality of the parameter space and only 
produce a single output. In the aligned spin case, our inputs are the parameters q,χ1z, 
and χ2z and output is either A(t) or φ(t). For the hidden layers, we varied the number of 
neurons between 2 and 2000 in the first hidden layer, and set an equal number of neurons 
for the second hidden layer.

		 Thus, we obtained a set of errors as we modified the number of neurons in the hidden 
layers for a fixed number of training points N per dimension. In figure 3, we only show 
the results of the smallest errors for each training set. In this plot, different colors of the 
circles correspond to different numbers of neurons as indicated by the color bar. We note 
that the ANN with the smallest error may not be the fastest one.

		 Regarding the computational time, the training time obviously grows with the number of 
neurons per layer. However, we argue that there is no guarantee that many neurons yield 
smaller error than fewer neurons. In fact, too many neurons lead to overfitting and too few 
neurons lead to underfitting. We could reduce overfitting by activating the Dropout func-
tion in Keras, Dropout removes the result from a selected number of neurons randomly. 
However, we prefer to not include an additional stochastic element and do not include 
Dropout in this study.

		 Next, we compare execution times. Execution time is relatively similar between the GPR, 
RBF, TPI, and ANN methods. Other traditional methods such as linear, polynomial fit and 
GMVP, and linear interpolation are faster.
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		 To ensure a fair comparison between all methods, we explored the performance on the 
same machines (2x Intel Xeon E5-2698 v4) with 20 CPU cores, 256 Gigabytes of RAM, 
and 1x HDD (1TB, 6Gbps) of storage.

		 Due to the limited scope of our study, we only investigate results for the double layer 
ANN. This leaves tuning parameters and architectures to be explored in future studies. A 
possible way to reduce training and execution times is to use on GPUs instead of CPUs.

Finally, we discuss results for training times. The training time for RBF and GPR rise pro-
portionally with the number of training points. In RBF, this is caused by the least-squares-fit 
computation that takes a longer time with more training points. For GPR, the training time 
goes as O(N3) with N the number of training points as explained in section 2.2. Polynomial 
fit, TPI and linear interpolation do not depend strongly on the size of the training set and their 
training time is relatively fast.

For both models, ANN yields comparable errors and execution times as other interpolation 
methods, but generally with longer training time than other methods. Several methods have 

Figure 3.  The three-dimensional interpolation results at t  =  −3500M. Top: 
SEOBNRv3, bottom:IMRPhenomPv2. The x-axes show the number of training points 
in each dimension, N, and the y−axes show the errors, training, and indicated execution 
time as on the labels of the panels. Left: errors of the amplitude and phase respectively, 
middle: training time in (seconds), and right: execution time (seconds). Different colors 
represent different interpolation methods as shown in the shared legend. The colored 
circles show ANN results, where different colors represent the number of neurons per 
layer in a double layer ANN as shown in the corresponding color bar.
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execution times that are independent of the size of the training set for a fixed order of approx
imations. This includes TPI, linear interpolation, polynomial fit, and ANNs.

Combining all the results at t  =  −3500M and at t  =  −50M, we found that the errors are 
generally larger in noisy data. We also found that the methods with longer training time do not 
always yield a better result than the methods with less training time (see figure 4).

Using too many neurons in the hidden layers may cause problems such as overfitting. It 
occurs when the networks have too much capacity to process information such that the amount 
of information in the training set is not enough to train the networks [91]. Hence, the number 
of neurons must be set such that there are not too few or not too many. The selection however, 
depend on the architecture of the networks and the hyperparameters.

3.2.  Seven-dimensional case

In seven dimensions, we distribute the training points randomly in each dimension. The main 
reason for this placement is to avoid the curse of dimensionality as explained in the previous 

Figure 4.  The three-dimensional interpolation results at t  =  −50M. Top: SEOBNRv3, 
bottom:IMRPhenomPv2. The x-axes show the number of training points in each 
dimension, N, and the y −axes show the errors, training, and indicated execution time 
as on the labels of the panels. Left: errors of the amplitude and phase respectively, 
middle: training time in (seconds), and right: execution time (seconds). Different colors 
represent different interpolation methods as shown in the shared legend. The colored 
circles show ANN results, where different colors represent the number of neurons per 
layer in a double layer ANN as shown in the corresponding color bar.
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section. Similarly to the three-dimensional case, we investigate training sets of different sizes, 
from 500 to 3000 points. As discussed in section 2.1, the seven-dimensional case has a nar-
rower range of mass ratio (1 � q � 2) than the three-dimensional one (1 � q � 10) and full-
spin range.

We construct a single test set with 2500 points distributed randomly and located within the 
parameter ranges. Some of the test points may be outside the domain covered by the training 
points. This means that our results may contain a small extrapolation.

Since TPI and linear interpolation require regular grid training points, we do not include 
them in our analysis. For other methods, we employed the same settings (kernels, hyperparam
eters, degree) as in the three-dimensional case.

We built the architecture of ANN in a similar way as before. The results of the seven-
dimensional case for different interpolation methods (t  =  −3500M and t  =  −50M) are shown 
in figure 5.

Figure 5.  The seven-dimensional interpolation results. Top:SEOBNRv3, bottom: 
IMRPhenomPv2. The x-axes show the number of training points N and the y -axes 
shows the errors, training, and execution time as shown on the plot. Left: errors of the 
amplitude (A(t)) and phase (φ(t)) respectively, middle: training time in unit seconds, 
and right: execution time in unit seconds. The solid lines show the results at t  =  
 −3500M and the dashed lines for t  =  −50M. Different colors represent different 
interpolation methods as shown in the shared legend. The colored circles correspond to 
the results of ANN at t  =  −3500M and the colored diamonds for t  =  −50M. Different 
colors represent a different number of neurons on a double layer ANN as shown in the 
corresponding color bar.
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We observed that errors of SEOBNRv3 are not significantly different than the corre
sponding three-dimensional results. Furthermore, the errors of this model at t  =  −50M are 
higher than at t  =  −3500M in a similar way as in three dimensions.

Surprisingly, the relative amplitude errors for IMRPhenomPv2 (top left plots) in the late 
inspiral are smaller than in the early inspiral in contrast to SEOBNRv3. The A(t) quantity of 
IMRPhenomPv2 is smoother at t  =  −50M than at t  =  −3500M. We emphasize that both 
models, SEOBNRv3 and IMRPhenomPv2 have comparable amplitude values at t  =  −50M 
and at t  =  −3500M.

In the early inspiral (t  =  −3500M), both waveforms agree well, similar to the three-dimen-
sional case. Hence, the percent errors are not significantly different as shown in the same plot.

The phase errors were computed as absolute errors (see equation (41)). We find that the 
phase errors for SEOBNRv3 and IMRPhenomPv2 are comparable. Furthermore, the late 
inspiral errors are higher than the early inspiral as the data fluctuates more. In figure 5, we 
observe a similar behavior for the training time as in three dimensions, where higher training 
time was found for GPR, ANN, and RBF. This is caused by the same factors as explained in 
the three-dimensional case. For the execution time (right panel), we found that the more com-
plex methods take longer time than the simpler methods. For RBF and GPR this is due to their 
dependence on the size of the training set. Interestingly, the execution time for ANNs is faster 
than GPR and RBF. This is because ANN picks the optimum weights and biases during the 
training and its execution time does not depend on the number of training points in the data.

We remind the reader that we set the parameter space of the seven-dimensions analysis 
narrower in mass ratio than the three-dimensions. Hence, the errors should not be compared 
directly to the three-dimensional case. For the same parameter ranges, the seven dimensional 
case yields errors up to 100 times larger for the A(t) and 15 times larger for the φ(t). The order 
of accuracy does not significantly change, where the best accuracy in this range is obtained by 
polynomial interpolation.

Overall, we found that in some cases, a simple method such as polynomial fit yields lower 
errors and performs faster than the more complex methods.

Table 1.  Summary of features of the methods used in this study. We present the 
advantages, the disadvantages and the scaling complexity for each method. For linear 
interpolation, TPI, RBF, and GPR the (training time) depends on the number of training 
points N (and polynomial degree k). Other methods have different complexity scalings 
that affect their training time.

Methods Advantages Disadvantages Training time

Linear 
(RGI)

Standard scipy Needs regular grid O(N )

TPI Robust and high accuracy Needs regular grid O(Nk)
GMVP Irregular grid fast  

execution time
Complex #basis function 

#error tolerance
Polynomial 
fit

Irregular grid simple  
and fast

Runge’s phenomenon only uni-
variate in scipy

O(N) and 
#polynomial 
degree

RBF scipy irregular grid high computational complexity O(N3)
GPR irregular grid can predict 

uncertainty
Depends on the choice of kernel 
and hyperparameters complex

O(N3)

ANN Irregular grid flexible 
architecture choices

Complex #neurons  
#hidden layers
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4.  Discussion and conclusion

Various approximation methods play important roles in building gravitational waveform mod-
els. Methods with high accuracy, low complexity, and fast computational time are needed 
for current and future applications. In this paper, we presented a comparative study of inter-
polation, fitting and regression methods applied to precessing and aligned BBH systems. 
Precessing BBH model depends on seven key intrinsic parameters (q, �χ1, �χ2), whereas the 
aligned model depends on three parameters (q,χ1z,χ2z).

We generated the data sets in the time domain using two waveform models: SEOBNRv3 
(originally built in the time domain) and the inverse Fourier transform of IMRPhenomPv2 
(originally built in frequency domain). The full waveforms were transformed into a precession 
adapted frame where we extracted two quantities: amplitude A(t) and phase φ(t) as explained 
in section 2.1 to perform a comparative study. For each key quantity, we picked two points 
in time, t  =  −3500M in the inspiral for the smoother data set and t  =  −50M near merger for 
the more irregular data. We employed this procedure on different numbers of training sets and 
used different approximation methods.

We split approximation methods into two categories: traditional methods and ML methods 
(see section 2.2). The traditional methods consist of linear interpolation, polynomial fits, radial 
basis function, GMVP, and TPI. Since linear interpolation and TPI package require a regular 
grid, we do not include them in the seven dimensional analysis. Furthermore, we investigated 
ML methods such as GPR and ANN. For GPR, we compared two kernel functions: the square 
exponential kernel and the Matérn kernel. In our results, we do not include GPR uncertainties 
in our comparison. We only consider the posterior mean of GPR SE and Matérn as shown by 
the red and green curves in figures 3–5. The SE kernel is C∞ which makes GPRs constructed 
with it assume that the data has high smoothness. However, this assumption is not realistic as 
many physical processes contain noise components in the data. If the smoothness of the data is 
not well understood, we recommend that the Matérn kernel be used and its smoothness param
eter ν  should be included in hyperparameter optimization. For ANN, we focused on networks 
with two hidden layers and varied the number of their neurons.

We computed the relative errors for A(t) and the absolute errors for φ(t). To validate the 
result, we generated 2500 test points distributed randomly within the same parameter space. 
The comparison results of different methods in accuracy, training time and execution time (in 
second) are presented in section 3.

We found that most methods perform better with more training data. Furthermore, we com-
pared the performance of the same method in a set of smoother data and a set of more irregular 
data. In general, we found that approximation methods perform better in smoother data as 
expected. We recommend to use preprocessing methods to improve the smoothness of the data 
where possible which should increase the accuracy of regression results. This preparation is 
crucial as any methods perform well with smoother data sets. Different accuracies are attained 
by different methods in handling the irregularities in the data. We give a brief summary of 
different methods in table 1.

For lower dimensions, simpler methods such as linear interpolation and TPI provide good 
accuracy and speed. However, these methods need a regular grid and therefore are less useful 
for high dimensional data sets as explained above. For this situation, we found that polyno-
mial fits are one of the simplest methods that offers a good combination between accuracy 
and speed. Furthermore, polynomial fits have been used widely and can be coded manually 
making it reliable and easy. The computational timing of polynomial fits depends on the num-
ber of parameters and the maximum polynomial degree. Another method that can perform 
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approximation of scattered data sets is GMVP. GMVP which is based on polynomials can per-
form very well by setting error tolerance on its algorithm. For lower dimensionality, GMVP is 
computationally cheap. However, as the number of parameters rise, the computational time to 
compute the interpolant with the same error tolerance grows significantly higher. Therefore, 
we do not include this method in our analysis for the seven-dimensional case.

RBF and GPR are promising methods for scaterred data points. RBF has been integrated 
in a standard scipy package, making it easy for users. GPR computes the uncertainty of the 
predicted values. This feature is useful for future applications and cannot be found in other 
methods. Furthermore, GPR has been integrated in sckit-learn package [77]. Both RBF 
as GPR have the freedom to choose suitable kernel functions and hyperparameters. However, 
their speed depends on the number of training points cubed O(N3). Hence, these methods 
become inefficient for larger data set.

A simple ANN can be used to perform regression for scattered data points. Similar to GPR, 
this method is more complex and depends on the choice of architecture and hyperparam
eters. We showed that the the three-dimensional result of ANN requires a longer training time 
with relatively comparable accuracy to other methods. We argue that such complexity is less 
needed for lower dimensional parameter and users should use a more simpler methods that 
provide good accuracy and speed. However, ANN is highly versatile to solve problems in 
higher dimensions and is promising to be explored further.

One might expect that methods with higher complexity perform better than methods with 
lower complexity. We find that this is not always the case. A more complicated method does 
not guarantee that the results are always better or faster. We find that simpler methods may 
yield smaller errors than more complex methods and perform faster in many cases. Hence, 
we suggest that one should critically evaluate the performance of approximation methods 
and understand the features of the method that are necessary for the data of interest. Simpler 
methods that perform better or at least equal to more complicated methods should be used as 
the first choice to avoid unecessary complexity.
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