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We construct an N= 2 supersymmetric extension of n-particle Ruijsenaars–Schneider models. The 
guiding feature is a deformation of the phase space. The supercharges have a “free” form linear in the 
fermions but produce an interacting four-fermion Hamiltonian. A field-dependent unitary transformation 
maps to standard fermions obeying conventional Poisson brackets. In this frame, the supercharges and 
Hamiltonian have long “fermionic tails”. We also comment on previous attempts in this direction.
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1. Introduction

The Ruijsenaars–Schneider models [1] are known for more than three decades as a “relativistic” variant1 of the well known Calogero–
Moser–Sutherland models [3–5]. An N=2 supersymmetric extension of the latter has been constructed many years ago [6,7]. Soon after, 
its symmetry algebra and eigenfunctions have been analyzed [8], introducing the Jack superpolynomials [9] as superspace analogs of the 
Jack polynomials. In contrast, its “relativistic” cousin – an N= 2 supersymmetric extension of Ruijsenaars–Schneider models – remained 
almost completely unexplored for a couple of decades. Presumably responsible for this relative silence is the unfamiliar structure of its 
action (the lack of a potential), which impedes trusted techniques of supersymmetric mechanics [10] in a relativistic setting.

The first (integrable) N= 2 supersymmetric generalization of the (quantum) trigonometric Ruijsenaars–Schneider model has been re-
ported in [11]. Its construction is based on (a) the integrability of the bosonic system, (b) a modification of the anticommutation relations 
between fermions, and (c) a complicated definition of adjoints. We shall comment on it in the Conclusions.

A second example of an N= 2 supersymmetric Ruijsenaars–Schneider system was elaborated in [12] for the case of three particles. Its 
ansatz for the supercharges mimics those in the supersymmetric Calogero–Moser–Sutherland models [13–15]. Unfortunately, it is unclear 
how this permutation-symmetry breaking solution can be extended to an arbitrary number of particles.

Here, we succeed in constructing N= 2 supersymmetric n-particle Ruijsenaars–Schneider models. Our guidelines are:

• The supercharges Q and Q are taken to be “free”, i.e. only linear in the fermions,
• The “interactions” are entirely encoded in a highly non-trivial structure of the Poisson brackets.

With this prescription, N=2 supercharges may easily be constructed. The N= 2 Poincaré superalgebra then produces an interacting 
Hamiltonian. With a (field-dependent) unitary transformation one comes back to the standard fermions with standard Poisson brackets. 
The ensuing supercharges appear as a natural generalization of the “non-relativistic” fermions to the “relativistic” case. When passing to 
the standard fermions, the Hamiltonian gets modified by a long “fermionic tail”.

The paper is organized as follows. In Section 2 we briefly review the relevant properties of the bosonic Ruijsenaars–Schneider model, 
emphasizing on its free-Hamiltonian representation, whose price is deformed Poisson brackets. Section 3 extends the non-standard bosonic 
Poisson brackets to the N= 2 supersymmetric case, where the “free” supercharges produce a proper interacting N= 2 supersymmetric 
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Hamiltonian. The precise relation with standard fermions (obeying standard Poisson brackets) is presented in Section 4, which also com-
putes the Hamiltonian in this frame. In the Conclusions we compare with the previous efforts [11,12] and mention possible further 
developments.

2. Bosonic models

The Ruijsenaars–Schneider models are integrable many-body systems in one dimension which are described by the equations of motion 
[1]

ẍi = 2
n∑

j �=i

ẋi ẋ j W (xi−x j) , (2.1)

where the function W is one of the following functions2

W (x) ∈ {
1/x, 1/ sin(x), 1/ sinh(x), 1/ tan(x), 1/ tanh(x)

}
. (2.2)

The standard description of such systems is based on the Hamiltonian [1]

H = 1
2

n∑
i

e2θi

n∏
j( �=i)

f (xi−x j) , (2.3)

where the rapidities θi and the coordinates x j obey standard Poisson brackets,

{
xi, θ j

} = δi j and
{

xi, x j
} = {

θi, θ j
} = 0 . (2.4)

The functions W in (2.1) and f in (2.3) are related (in this order):

f (z) ∈
{1

z
,

1

sinh(z)
,

1

sin(z)
,

1

tanh( z
2 )

,
1

tan( z
2 )

}
⇔ W (z) ∈

{1

z
,

1

tanh(z)
,

1

tan(z)
,

1

sinh(z)
,

1

sin(z)

}
. (2.5)

We prefer the following re-interpretation of the Ruijsenaars–Schneider systems. Let us cast the Hamiltonian H into a free form,3

H = 1
2

n∑
i=1

p2
i , (2.6)

with new momenta

pi = eθi

n∏
j( �=i)

√
f (xi−x j) . (2.7)

This redefinition (θi → pi ) clearly changes the Poisson brackets to4

{
xi, p j

} = δi j p j and
{

pi, p j
} = pi p j W (xi−x j) . (2.8)

One may check that the Hamiltonian H (2.6) and brackets (2.8) result in the equations of motion (2.1). Indeed, from (2.6) and (2.8) we 
have

ẋi ≡ {xi, H} = p2
i , (2.9)

and, therefore,

ẍi ≡ {ẋi, H} =
{

p2
i , H

}
= 2

n∑
j( �=i)

p2
i p2

j W (xi−x j) = 2
n∑

j( �=i)

ẋi ẋ j W (xi−x j) , (2.10)

as it should be.

2 We will not consider the elliptic variant in this paper.
3 This form of the Hamiltonians and Poisson brackets is explicitly written in [12] but may be older.
4 We assume that W (0) = 0, which allows us to avoid writing {pi , p j

} = (
1 − δi j

)
pi p j W (xi − x j).
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3. N=2 supersymmetric Ruijsenaars–Schneider models

We have seen that the bosonic Ruijsenaars–Schneider models can be described by a free Hamiltonian, while the interaction moved 
to the Poisson brackets. We shall use the same strategy to construct an N= 2 supersymmetric extension of the Ruijsenaars–Schneider 
models.

Such a model is equivalent to the existence of supercharges Q and Q forming an N= 2 Poincaré superalgebra

{
Q,Q

} = −2iH and {Q,Q} = {
Q,Q

} = 0 (3.1)

together with the Hamiltonian H whose bosonic sector coincides with the Hamiltonian H (2.6).
To construct such supercharges we extend the 2 n phase-space variables xi and p j , obeying the brackets (2.8), by 2 n fermions ψi and 

ψ̄ j = (
ψ j

)†
, subject to the brackets

{
ψi,ψ j

} = −ψiψ j W (xi−x j) ,
{
ψ̄ i, ψ̄ j

} = −ψ̄ iψ̄ j W (xi−x j) ,
{
ψi, ψ̄ j

} = −i δi j + ψiψ̄ j W (xi−x j) ,

{
pi,ψ j

} = i
2 δi j piψi

∑
k

ψkψ̄k W ′(xi−xk) − i
2 piψ jψiψ̄ i W

′(xi−x j) ,
{

xi,ψ j
} = 0 , (3.2)

{
pi, ψ̄ j

} = − i
2 δi j piψ̄ i

∑
k

ψkψ̄k W ′(xi−xk) + i
2 piψ̄ jψiψ̄ i W

′(xi−x j)
{

xi, ψ̄ j
} = 0 .

It is rather easy to check that the Jacobi identities are fulfilled.
Finally, we verify that the supercharges

Q =
n∑
i

piψi and Q =
n∑
i

piψ̄ i (3.3)

form an N= 2 Poincaré superalgebra (3.1) with the Hamiltonian

H = 1
2

n∑
i=1

p2
i + i

n∑
i, j

pi p jψiψ̄ j W (xi−x j) + 1
2

n∑
i, j

p2
i ψiψ̄ iψ jψ̄ j W

′(xi−x j) . (3.4)

Thus, the set {Q, Q, H} describes an N= 2 supersymmetric extension of the Ruijsenaars–Schneider models.
It should be noted that everything works fine for any antisymmetric function W (x). Thus, the explicit choices in (2.2) are dictated by 

integrability and not by N= 2 supersymmetry.
Finally, we comment on the rationale leading to the form of the brackets (3.2). We insist that the supercharges Q and Q obey the 

brackets {Q , Q } = {
Q , Q

} = 0 and have the structure (3.3). To achieve this, the brackets 
{
ψi,ψ j

} = −ψiψ j W (xi−x j) and 
{
ψ̄ i, ψ̄ j

} =
−ψ̄ iψ̄ j W (xi−x j) compensate contributions coming from 

{
pi, p j

}
. For a complete cancellation of {Q , Q }, we further make the ansatz {

pi,ψ j
} = piψiAi, j . The functions Ai, j as well as the yet undetermined brackets 

{
ψi, ψ̄ j

}
finally follow uniquely from the Jacobi identities.

4. Playing with the fermions

One-dimensional supersymmetric systems feature a rich possibility to define the fermions. For example, the quite nonlinear redefinition 
of the fermions in [16] brings the supercharges of the N -extended supersymmetric An Calogero model introduced in [17] to the standard 
form maximally cubic in the fermions. The mystery with the brackets (3.2) has the same origin. Indeed, one may define alternative 
fermions

ξi = exp
{

i
2

n∑
j

ψ jψ̄ j W (xi−x j)
}

ψi and ξ̄i = exp
{
− i

2

n∑
j

ψ jψ̄ j W (xi−x j)
}

ψ̄ i , (4.1)

which are subject to the standard brackets

{
ξi, ξ j

} = {
ξ̄i, ξ̄ j

} = 0 ,
{
ξi, ξ̄ j

} = −i δi j and
{

pi, ξ j
} = {

pi, ξ̄ j
} = 0 . (4.2)

This exponential redefinition is inspired by the relation (2.7) between momenta and rapidities. Observing that

ξi ξ̄i = ψiψ̄ i ∀i , (4.3)

the inverse transformation reads

ψi = exp
{
− i

2

n∑
j

ξ j ξ̄ j W (xi−x j)
}

ξi, ψ̄ i = exp
{ i

2

n∑
j

ξ j ξ̄ j W (xi−x j)
}

ξ̄i . (4.4)

Thus, the supercharges (3.3) and the Hamiltonian (3.4) can be represented as
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Q =
n∑
i

pi exp
{
− i

2

n∑
j

ξ j ξ̄ j W (xi−x j)
}

ξi , Q =
n∑
i

pi exp
{ i

2

n∑
j

ξ j ξ̄ j W (xi−x j)
}

ξ̄i , (4.5)

H = 1
2

n∑
i=1

p2
i + i

n∑
i, j

pi p j exp
{
− i

2

∑
k

ξk ξ̄k
(
W (xi−xk) − W (x j−xk)

)}
ξi ξ̄ j W (xi−x j)

+ 1
2

n∑
i, j

p2
i ξi ξ̄iξ j ξ̄ j W

′(xi−x j). (4.6)

Thus, in this frame, the supercharges Q and Q and the Hamiltonian H acquire long “fermionic tails”.

5. Conclusions

We have constructed an N= 2 supersymmetric extension of the Ruijsenaars–Schneider system, starting from the bosonic equations 
of motion (2.1). Our construction is valid for any antisymmetric function W . Only the demand of integrability will restrict this function 
to the choices known from Ruijsenaars–Schneider models. When re-expressed in terms of standard fermions, the Hamiltonian and the 
supercharges are natural “relativistic” generalizations of the “non-relativistic” ones.

Let us compare our results with previous attempts on this problem. The work of [11] contains fermionic brackets similar to (3.2)
between ψi and ψ̄ j . However, it does not feature deformed Poisson brackets between fermions and momenta like in (3.2), but rather 
introduces complicated conjugation properties. Of course, our construction is pure classical and, for the time being, ignores integrability, 
but we do not foresee obstacles for implementing the latter.

A three-particle Ruijsenaars–Schneider model was proposed in [12]. Its supercharges

Q =
3∑

i=1

piξi − i p1ξ1ξ3ξ̄3W (x1−x3) − i p2ξ2ξ1ξ̄1W (x2−x1) − i p3ξ3ξ2ξ̄2W (x3−x2) ,

Q =
3∑

i=1

pi ξ̄i + i p1ξ̄1ξ3ξ̄3W (x1−x3) + i p2ξ̄2ξ1ξ̄1W (x2−x1) + i p3ξ̄3ξ2ξ̄2W (x3−x2) (5.1)

indeed form an N= 2 Poincaré algebra (3.1), and the fermions ξi and ξ̄ j obey the standard brackets (4.2). To compare these supercharges 
to ours one should put them into the form

Q =
3∑
i

piρi and Q =
3∑
i

piρ̄ i (5.2)

with new fermions

ρi = ξi
(
1 − iξi−1ξ̄i−1W (xi−xi−1)

)
cyclicly in i = 1,2,3 . (5.3)

While the brackets 
{
ρi,ρ j

}
, 

{
ρ̄ i, ρ̄ j

}
and 

{
ρi, ρ̄ j

}
coincide with the corresponding ones for ψi and ψ̄ i from (3.2), the non-covariant 

structure of the ρ fermions results in completely different brackets 
{

pi,ρ j
}

and 
{

pi, ρ̄ j
}

. For example, it follows from (5.3) that {p1,ρ3} =
0 in explicit contradiction with {p1,ψ3} �= 0 from (3.2), when restricted to the three-particle case. We conclude that our model for n=3
differs from the one in [12]. Another road to the same conclusion expands the supercharges (4.5) in powers of fermions. Even for three 
particles, (4.5) produces five-fermion terms, in the contradiction with the ansatz in [12].

There is a number of interesting open issues regarding these extended supersymmetric Ruijsenaars–Schneider models. The list contains 
prospective integrability, an off-shell superfield Lagrangian formulation, and N= 4 generalizations. We plan to clarify some of these points 
elsewhere.
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