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Energy localization in an atomic chain with a topological soliton
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Topological defects in low-dimensional nonlinear systems feature a sliding-to-pinning transition of relevance
for a variety of scenarios, ranging from biophysics to nano- and solid-state physics. We find that the dynamics
after a local excitation results in a highly nontrivial energy transport in the presence of a topological defect,
characterized by a strongly enhanced energy localization in the pinning regime. Moreover, we show that the
energy flux in ion crystals with a defect can be sensitively regulated by experimentally accessible environmental
parameters. Whereas nonlinear resonances can cause an enhanced long-time energy delocalization, robust energy
localization persists for distinct parameter ranges, even for long evolution times and large local excitations.
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I. INTRODUCTION

Energy transport in low-dimensional systems has attracted
sustained attention since the well-known results of Fermi,
Pasta, and Ulam in 1955 [1], which showed that ergodicity and
thermalization are not inherent in anharmonic particle lattices.
Subsequently, several low-dimensional lattice models have
been employed to study microscopic energy transport [2–4].
The underlying dynamics of nonlinear many-body systems
can exemplarily be investigated by the Frenkel-Kontorova
(FK) model [5,6], a ubiquitous and paradigmatic model of
nanofriction, which finds applications in a wide range of
fields, from condensed matter physics [7–11] to biophysics
[12–15]. Only recently have such atomistic systems become
experimentally accessible [16–18]. The FK model describes
a one-dimensional (1D) particle lattice with harmonic inter-
actions placed into a periodic substrate potential. When the
period of the potential is incommensurable to the particle
distances it features a transition from a sliding phase (with
superlubricity) to a pinned phase, first described by Aubry
[19].

Trapped ions constitute an excellent system to probe en-
ergy transport with atomic resolution in arbitrary dimensions
in both the classical and quantum regimes [20–22]. Recent
theoretical works have shown that nontrivial transport features
persist in one- and two-dimensional ion Coulomb crystals
[23,24]. First measurements have also monitored the time-
resolved dynamics of an ion chain after a local excitation,
revealing energy transport from one chain end to the other
[25,26]. The nonlinearities of the Coulomb interaction be-
come important when topological defects (kinks) are induced
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into the system [17,27–30]. Kinks may be created by a quench
across the structural phase transition from a one-dimensional
to a two-dimensional crystal due to the Kibble-Zurek mech-
anism [28,31]. The precise control of the kink via external
trap parameters made it possible to investigate their properties
[32,33].

An example for the use of the good control of kinks in
trapped ion systems is the study of nanofriction in the FK
model. Its original form may be emulated by superimposing
an optical lattice to an ion chain [34]; however, the same
signatures of Aubry physics have been observed in a self-
assembled and back-acting, two-dimensional crystal with a
defect [17]. In the latter case the defect introduces the nec-
essary incommensurability. Experiments on both approaches
showed the occurrence of reduced friction and a structural
symmetry breaking at the Aubry transition [19]. Other efforts
have been made to investigate the transport properties of
solitonic excitations [6,35–38].

In this paper, we show that energy transport after a local
ion displacement [25,26] shows a tunable, highly nontrivial
excitation dynamics in the presence of a topological defect of
the crystal. Whereas the defect remains transparent to energy
flux within the sliding regime, the slight change in the crystal
geometry that accompanies the sliding-to-pinning transition
results in a very strong enhancement of energy localization.
Moreover, nonlinearity results in a complex dependence of the
long-time dynamics on the aspect ratio of the trap. Whereas
nonlinear resonances enhance delocalization for certain as-
pect ratios, slightly altered values lead to surprisingly robust
energy localization for very long times and large initial ion
displacements. Our results reveal the crucial role played by
defects in the transport properties, and eventually in the ther-
malization dynamics and heat conductivity, of self-assembled
atomic chains.

II. MODEL

We consider a two-dimensional system consisting of N
ions places into a harmonic trapping potential. The ions obey
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the Hamiltonian:

H =
∑

i

�p2
i

2m
+ V ({�ri}), (1)

where �pi = (px
i , pz

i ) and �ri = (xi, zi ) are the momentum and
the position of the ith ion and m the ion mass. The ions
experience a potential that results from the external trap and
the Coulomb interaction:

V ({�ri}) =
∑

i

mω2
z

2
(z2

i + α2x2
i ) + 1

2

∑
i, j �=i

e2

4πε0

1

|�ri j | , (2)

with �ri j = �ri − �r j , e the elementary charge, ε0 the vacuum
permittivity, ωz the trap frequency along z, and α = ωx/ωz

the trap aspect ratio. We assume that effects due to fast-
rotating parts of the trap potential are negligeable. In our
simulations we consider a typical experimental scenario with
N = 30172Yb+ ions and fixed ωz/2π = 25 kHz. This leaves
the ratio of the trapping frequencies α as the only external
control parameter.

At equilibrium the ions are located at positions �ri,0, which
minimize H and are therefore dependent on α. For α > αZZ,L

(= 11.98 in our case) the ions align in a 1D chain along
the z axis due to the strong confinement in x. Below that
value a two-dimensional zigzag phase (ZZ) develops at the
chain center [39]. For α < αK (= 9.1 in our case) a kink
inside the zigzag region can be stabilized, forming a solitonic
excitation of the zigzag crystal. We constrain our analysis to
α < αK , since we are interested in the energy transport in the
presence of a kink. In our numerical simulations, we realize an
equilibrium arrangement with a topological defect by flipping
one half of a zigzag crystal horizontally, e.g., transforming
xi → −xi for all ions i with zi > 0, and let the kink find its
equilibrium under high damping.

The shape and the dynamics of the kink are determined by
an effective kink potential, the Peierls-Nabarro (PN) potential.
For α < αSP (= 6.4 in our case) is in the so-called sliding
(S) phase for which the PN potential globally confines the
soliton in the trap center. The ion crystal has therefore mirror
symmetry in z [see Fig. 1(b)]. At αSP the kink undergoes an
Aubry-type transition to a pinning (P) phase. At this critical
value the kink potential is modulated by periodic barriers. In
particular, a barrier rises in the trap center so that the kinks
new equilibrium position (given by a potential minimum)
is forced off the symmetry axis. The crystal symmetry is
spontaneously broken as seen in Fig. 1(c). At αPO (= 7.7 in
our case) the kink undergoes a crossover to the odd (O) phase,
in which the radial trapping is sufficiently strong to force a
kink ion between the upper (xi > 0) and the lower (xi > 0)
subchains that formed the zigzag arrangement [Fig. 1(d)] [28].
The form of the PN potential is changed toward a globally
unstable form, still modulated by the periodic barriers, which
stabilize the defect by supplying local potential minima. At
αK these local minima become too shallow, and the soliton
slips out of the crystal and is lost.

As shown below, both the S-to-P transition and the
crossover into the O phase has dramatic consequences for
the transport and localization of excitations in the crystal,
even if the change in the crystal structure is minimal (as it
is particularly the case at the S-to-P transition).
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FIG. 1. (a) Photo of an ion crystal with a central zigzag region
with a kink in the sliding (S) phase, experimental picture from
Ref. [40]. Computed equilibrium positions for the S phase (b), pinned
(P) phase (c), and odd-kink (O) regime (d). On the right of the crystal
the respective Peierls-Nabarro potential of the kink is schematically
depicted. (e) α dependence of the frequency of the kink mode (red)
and other low-lying modes. The mode vector of the kink mode is
shown in the inset.

III. HARMONIC APPROXIMATION

In harmonic approximation, one considers small devia-
tions of the ions from their equilibrium positions and obtains
an effective Hamiltonian after linearization. Whereas for a
linear ion chain axial and transversal degrees of freedom
decouple, the analysis is significantly more complicated in
a zigzag crystal due to the strong coupling between both
degrees of freedom. In the following, we discuss how the har-
monic approximation is obtained for this more complicated
case.

We assume a small deviation d�ri = (dxi, dzi ) = �ri − �ri,0

of the ions with respect to their equilibrium positions �ri,0,
discussed in the previous part. Expanding the potential (2) up
to second order in the deviations we obtain

V ({�ri}) − V ({�ri0}) �
∑

i

Ui −
∑
i, j �=i

hi j . (3)

The potential is given by the sum of a local potential Ui for
each ion and their interaction hi j , coming from the Couloumb
potential. The coupling of the ions in harmonic approximation
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is expressed as

hi j = d�ri
T

(
W xx

i j W zx
i j

W zx
i j W zz

i j

)
︸ ︷︷ ︸

Wi j

d�r j (4)

with

Wi j = e2

8πε0|�ri j,0|5
(

2x2
i j,0 − z2

i j,0 3zi j,0xi j,0

3zi j,0xi j,0 2z2
i j,0 − x2

i j,0

)
. (5)

Here �ri j,0 = (xi j,0, zi j,0) = �ri,0 − �r j,0 denotes the ion distances
in the equilibrium. Note that in the inhomogeneous linear-
zigzag geometry the off-diagonal coefficients W xz

i j are gener-
ally nonzero. As a result, the x and z degrees of freedom are
coupled.

The local potential Ui experienced by the ion i is given by:

Ui = m

2

(
ω2

i,zdz2
i + ω2

i,xdx2
i + 2�2

i dzidxi
)

(6)

with

ω2
i,x = ω2

z α
2 + 2

m

∑
j �=i

W xx
i j ,

ω2
i,z = ω2

z + 2

m

∑
j �=i

W zz
i j ,

�2
i = 2

m

∑
j �=i

W xz
i j . (7)

Note again that in the local potential there is a coupling
between oscillations along x and z via �i. Hence, the eige-
naxes that characterize the local harmonic oscillator for each
ion are not x or z. Instead, due to the Coulomb interaction and
the inhomogeneity of the crystal geometry, the local eigenaxes
and eigenfrequencies vary nontrivially with the ion index. We
introduce the vibron degrees of freedom �Xi = (Xi,−, Xi,+) that
diagonalize the local potential via local rotations Si, such that

d�ri = Si �Xi with Si =
(

cos φi sin φi

− sin φi cos φi

)
. (8)

Inserting this ansatz into the local potential of Eq. (6) and
solving for vanishing off-diagonal terms gives the local ro-
tation angles φi and the vibron frequencies �i,μ:

tan 2φi = 2�2
i

ω2
i,z − ω2

i,x

�2
i,μ

= ω2
i,x + ω2

i,z

2
± 1

2

√(
ω2

i,z − ω2
i,x

)2 + �4
i . (9)

Finally, we need to transform the coupling terms hi j into the
vibron basis and obtain the harmonic Hamiltonian:

HH =
∑

i,σ=±

P2
i,σ

2m
+

∑
i,σ=±

m

2
�2

i,σ X 2
i,σ − 1

2

∑
i, j �= i σ, σ ′ = ±

Ũ σσ ′
i j Xi,σ Xj,σ ′ .

(
U −−

i j U −+
i j

U +−
i j U ++

i j

)
= ST

i Wi jS j . (10)

The diagonalization of HH provides an alternative picture
in terms of phononlike excitations of the crystal.

With each phonon mode oscillating with its respective
frequency the excitation dynamics in this picture is given by
the group velocity of the modes, describing the dephasing of
the mode amplitudes.

In particular, the presence of a kink results in a global mode
with strongly localized amplitude at the defect (kink mode),
which shows an interesting dependence on α [Fig. 1(e)], van-
ishing at the S-to-P transition and showing a marked minimum
at the onset of the O phase.

IV. ENERGY LOCALIZATION

In our simulations, we first determine the equilibrium
positions of the ions for a given α < αK (we restrict to α >

5.5, since for lower α the crystal may undergo a structural
transition into a three-layer arrangement). We then perform in-
stantaneously at time t = 0 a displacement of a single chosen
ion, resulting in a coherent state, which may be experimentally
realized as in Ref. [25]. After inducing this local perturbation,
the system evolves freely, and its initially localized energy
may propagate through the ion crystal. In order to study
the resulting dynamics, we solve the Hamilton equations of
motion corresponding to Eq. (1), when considering the exact

evolution, or of Eq. (10), when restricting to the harmonic ap-
proximation. We then characterize the propagation of excita-
tions by monitoring the local kinetic energy Ei(t ) = m�̇ri(t )2/2
for the i ion at time t > 0.

The excitation dynamics is markedly different in the S
and in the P phases, as shown in Fig. 2 for the case of an
initial displacement of 1 μm of ion 7 along the z direction.
Whereas in the S phase the energy can be quickly transported
across the system within tens of μs, in the P phase the
kink strongly blocks energy transport. The excitation remains
localized within one half of the crystal, unable to cross the
defect region. The starkly different behavior can be traced
back to the spatial amplitude distribution of the phononlike
modes that become populated by the initial excitation. Due
to the asymmetric crystal the dominant modes are strongly
localized in the excited half of the crystal. These modes are
unable to transport energy across the defect which leads to an
energy blockade.

The observed energy localization is best characterized by
the time-averaged kinetic energy (after a time τ ) at one half of
the crystal, e.g., Eleft = ∑

zi<0〈Ei〉, with 〈Ei〉 = 1
τ

∫ τ

0 dtEi(t ).
We define �E as the ratio between Eleft and the total energy
of the system. Mirror symmetric energy distributions are
characterized by �E = 0.5, whereas localization at the left
half results in �E > 0.5.
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FIG. 2. Dynamics of the kinetic energy after a 1 μm displacement of ion 7 along z, calculated using Eq. (10), for (a) α = 5.5 (sliding
phase) and (b) α = 6.8 (pinning phase).

A. Harmonic transport

Figure 3(a) shows �E , for an initial displacement of the
leftmost ion by 1 μm along x, averaged over τ = 100 ms
(much longer than the dynamics timescale Tz = 2π/ωz =
40 μs). The blue circles depict our results using the Hamilto-
nian in harmonic approximation of Eq. (10). For α < αSP the
energy distribution is mainly symmetric (�E = 0.5) due to
the transparency of the kink in the S phase. However, for some
α values the energy remains localized even in the S phase for
a long time, leading to sharp peaks in �E . The anomalously
slow delocalization results from the crossing of two harmonic
modes for certain α values. If these modes are strongly pop-
ulated by the initial excitation, the mode degeneracy results
in very slow dephasing, handicapping delocalization even at
long times.

At α > αSP, the crystal symmetry is spontaneously broken,
leading to an abrupt increase of �E , which peaks at α �
6.8, for which over 90% of the energy remains localized at
the left side. This sensitivity of the transport properties at
the S-to-P transition is particularly surprising, considering
that the equilibrium geometry is only slightly modified at
the transition [see Fig. 1(c)]. Localization is also strongly
enhanced at αPO by the appearance of the odd kink, reaching
up to a maximal �E = 0.85. Finally, at αK the kink becomes
unstable and disappears, and with it the energy localization,
resulting in �E = 0.5. Although the quantitative values of
�E depend on the initially excited ion, the amplitude, and the
direction of the displacement, similar significant localization
is observed at the Aubry-type transition and at the onset of the
odd kink for all choices of the initial excitation.

B. Anharmonic transport

Although the harmonic approximation provides useful in-
sights about the dynamics, in particular at short times, the
actual energy transport, especially in the long-time limit and
for larger displacements, is provided by the Hamilton equa-
tions resulting from the Hamiltonian (1). The corresponding
results are depicted with red circles in Fig. 3(a). In the sliding
phase the dynamics is well described by the harmonic approx-
imation. In the symmetry-broken phases anharmonic effects
result in considerable delocalization which compensates the
energy imbalance between the left and the right halves. This

is particularly so when the PN barriers are small (close to αSP

and αK ) so that the excitation may be strong enough to trigger
the movement of the kink across the barrier into a neighboring
minimum of the PN potential (close to αK the kink is lost, see
Fig. 1). As a result, at those α values the anharmonic effects
are particularly strong even for small initial ion displacements.

Interestingly, nonlinear delocalization also occurs deep
inside the pinning and odd phase at particular windows of
α values. Delocalization on a timescale of hundreds of ms
appears in α ranges intertwined with α regions where lo-
calization is surprisingly robust and well described by the
harmonic approximation even at very long times, well over
100 ms. Figure 3(b), which zooms in the window 6.95 <

α < 7.05, clearly illustrates the dense structure of inter-
twined harmonic (localized) and anharmonic (delocalized)
regions.

The observed anharmonic delocalization of energy for
particular α values is due to a third-order resonance of the
phononlike modes. It occurs when the frequency ωexc of an
eigenmode, localized in one crystal half and strongly popu-
lated by the initial excitation, equals the sum of two lower-
lying mode frequencies which have a significant amplitude in
both crystal halves (see Fig. 4). This leads to a strong coupling
between these three eigenmodes, enabling transport across the
kink. Our results for different averaging times [Fig. 3(b)] show
that anharmonic delocalization occurs in a typical timescale of
10–100 ms. Due to the sensitivity of the nonlinear effects to
α the weak micromotion of the ions in an experimental setup,
which influences the eigenmode frequencies, might shift the
resonant α values. The calculation of this perturbation is,
however, out of the scope of this paper.

Larger initial displacements enhance nonlinear effects,
leading to a broadening of the anharmonic resonances, as
illustrated in Fig. 5, where the observable �E is shown
for different displacement amplitudes. Within the harmonic
windows of α values, the localization is remarkably robust
up to very large displacements of 1.5 μm. For stronger dis-
placements the energy brought into the system is large enough
to break through the energy blockade for all choices of α.
Figure 5 shows as well clear dips at the broadened nonlinear
resonances. In the vicinity of the resonance at α � 7.01 even
tiny displacements result in nonlinear delocalization due to
mode coupling.
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FIG. 3. (a) �E as a function of α averaged for τ = 100 ms after
an initial displacement of the leftmost ion by 1 μm along x. Blue
and red circles indicate, respectively, the results obtained from the
harmonic approximation [Eq. (10)] and the exact evolution [Eq. (1)].
(b) Same as (a), zooming in the region 6.95 < α < 7.05. Red and
blue curves depict the same results as (a). The orange curve depicts
the results for τ = 20 ms, whereas the purple curve shows �E for an
initial displacement of 0.5 μm.

V. CONCLUSIONS

Coulomb crystals with a topological defect present a highly
nontrivial dynamics. Energy transport of initially localized
excitations is remarkably sensitive to the external confinement
by two ways. First, changes of the soliton properties (sliding-
to-pinning transition, odd-ion crossover) are accompanied by
a surprisingly strong energy localization, even if the cor-
responding change in the crystal geometry is very small.
Second, nonlinear effects critically determine the long-time
dynamics as a function of the trap aspect ratio. Couplings be-
tween phonon modes lead to an intricate structure of windows
of resonantly enhanced transport and regimes of surprisingly
robust localization even for very long evolution times and
large initial displacements.

Although we have focused on ion chains, the discussed
transport properties in the presence of a topological defect
are relevant as well for other systems (e.g., DNA strains with
loop defects [13]) and for other types of repulsive interactions.
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FIG. 4. The mode frequency of the most excited mode by the
initial displacement (red) and the sum of two nonexcited modes
(blue), as an example for the appearance of nonlinear resonances.
The spatial amplitude distribution of the involved modes are shown
in the insets. While the excited mode is localized the two low-
frequency modes have major contributions in both crystal halves.

Our work shows that energy flux in an atomic chain can be
controlled and steered by slight modifications of the defect
properties (in our case by very small changes of the trap aspect
ratio). Our results are therefore interesting for the engineering
of novel cooling techniques and the motional control of ion
crystals in experiments dedicated to precision spectroscopy
[41–43] and tests of fundamental physics [44,45]. They also
emphasize the importance of defects for the exchange of
energy between two thermal baths in low-dimensional sys-
tems, from solid-state nanosystems to biomolecules like DNA
[2,14], and pave the way for future experiments on quantum
thermodynamics [21,23,24].
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