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1 Introduction

Constructing the scattering amplitudes of a four-dimensional quantum field theory beyond

a few orders of perturbation theory has been a long-term challenge for theoretical physics.

Back in the 1960s/70s, it gave rise to the analytic S-matrix program, which aimed at recon-

structing scattering amplitudes from their analytic properties in the space of complexified

kinematic invariants. At that time there existed few tools to make precision predictions at

high loop orders, or even at finite coupling. This has changed during the last two decades,

in which our understanding of gauge theories in general, and of the maximally supersym-

metric N = 4 Yang-Mills (SYM) theory in particular, has advanced significantly. Many

new calculational techniques are now available, so that for the first time scattering ampli-

tudes in a 4d gauge theory are accessible even beyond perturbation theory. In the case of

N = 4 SYM theory, a concrete one-dimensional model could be identified that describes the

corresponding flux tube. This model turned out to be integrable, and its solution allows us

to compute scattering amplitudes at any coupling [1–5], though far from the collinear limit

many flux tube excitations must be summed, which often restricts practical applications

to near-collinear kinematics.

A particularly interesting kinematic limit of scattering theory is the multi-Regge limit.

Roughly, it concerns regions in the space of kinematic variables that are probed by particle

colliders, in which the collision of two highly energetic particles produces many new parti-

cles of much lower energies which escape the scattering region, along with two particles that

carry away most of initial energy. The multi-Regge regime is not only experimentally rele-

vant, but also of significant theoretical interest. First of all, while the limit entails remark-

able simplifications, it still has a very rich structure that has been studied extensively in the

context of the analytic S-matrix program. In Regge theory, whole classes of Feynman dia-

grams resum into the exchange of effective particles called Reggeons, which give rise to the

famous Regge trajectories. Pole terms in the scattering amplitudes can be associated with

single-Reggeon exchange, while the exchange of multi-Reggeon states is seen in cut terms.

The fundamental assumptions Regge theory makes about the analytic structure of

partial waves are rooted in fundamental properties of the theory, such as confinement.

Hence Regge theory applies to large classes of models, including supersymmetric Yang-

Mills theories. These possess the same multi-Regge behavior as their bosonic cousins, at

least in the leading logarithmic approximation (LLA). Indeed, over the last decade, Regge

theory has been pivotal in pushing the perturbative expansion in N = 4 supersymmetric

Yang-Mills theory. When Bern, Dixon, and Smirnov (BDS) proposed their celebrated all-

loop formula for color-ordered, maximally helicity violating (MHV) scattering amplitudes
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of n gluons [6], the mismatch with the expected analytic structure of the S-matrix was

clearly demonstrated in the multi-Regge regime [7]. Along with independent evidence

from holography [8], this showed that the BDS formula was incomplete beyond five external

gluons, and required a finite correction term that is known as the remainder function. In

constructing the finite remainder for generic kinematics, predictions of Regge theory have

been used as essential boundary data for the perturbative amplitude bootstrap to high

loop orders, see [9] and references therein.

In spite of all the simplifications and integrability, constructing the finite remainder

function in multi-Regge kinematics remains a challenging problem. For six external gluons,

the problem was solved in [10] to all orders, completing a program that was initiated by

Bartels et al. [11], who determined the leading logarithmic approximation (LLA) to all

orders in the gauge coupling, with extensions to next-to-LLA (NLLA), and next-to-NLLA

(NNLLA) in [12] and [13]. The loop expansion of these expressions was studied in [14].

In the strong-coupling limit, the multi-Regge limit of the hexagon remainder function was

calculated in [15, 16]. For a larger number of external gluons, results are sparse. The first

expressions for the multi-Regge limit of the heptagon remainder function in LLA and in

all Mandelstam regions were proposed by Bartels et al. in [17, 18]. All other results to

date are restricted to two loops. The symbol of the two-loop remainder function in the

multi-Regge limit for any number of external gluons was discussed in [19, 20], and the

upgrade to functions was completed in [21–23].

In comparison, the collinear limit that we mentioned in the introductory paragraph

is much better understood. In this case, the Wilson loop operator product expansion

(OPE) [1–5] allows to obtain exact results that are based on the complete solution of

the relevant flux tube, which turns out be quantum integrable. Extracting the analytic

structure in general kinematics requires a resummation of all flux-tube excitations, which

is very difficult in general. Here, we pursue a different, somewhat indirect route: we

exploit the leading collinear behavior of the flux-tube OPE to explore the weak-coupling

expansion of Regge theory. While this is certainly much less ambitious than the beautiful

all-order derivation of the hexagon remainder in multi-Regge kinematics by Basso et

al. [10], the structure of the remainder function becomes richer for higher numbers of

gluons. In particular, there exist several disjoint Mandelstam regions, and more cuts that

can contribute to the multi-Regge limit of the remainder function.

The main goal here is to obtain constraints on the finite remainder function of N = 4

supersymmetric Yang-Mills theory in multi-Regge kinematics in all Mandelstam regions

from the Wilson loop OPE. The Wilson loop OPE allows to compute the remainder function

in collinear asymptotics for completely spacelike polygon Wilson loops. Such completely

spacelike configurations define the main sheet of the remainder function. On this sheet, the

multi-Regge limit of the remainder function is trivial, since the BDS amplitude is multi-

Regge exact. In order to go to non-trivial Mandelstam regions, in which the remainder

function possesses a non-vanishing multi-Regge limit, we need to analytically continue the

OPE data. Through these analytic continuations, we can obtain the remainder function

in a collinear limit of the multi-Regge regime. We shall refer to this limit as a combined

multi-Regge collinear limit. A priori, it may not be entirely clear that the collinear limit
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sees enough of the branch cuts to reach the relevant Mandelstam regions, but we shall

provide evidence that this is the case. At the example of the two-loop heptagon remainder

function, which is known in all four non-trivial Mandelstam regions, we shall show that our

analysis fixes correctly all parameters that cannot be determined from general consistency

requirements when we perform the lift from symbols to functions.

Let us briefly outline the content of the following sections. In section 2, we shall provide

some of the kinematical background. In particular, we introduce appropriate coordinates

to describe and parametrize multi-Regge kinematics. Then we turn to the collinear limit.

We review the natural variables of the Wilson loop OPE, and explain how to perform ana-

lytic continuations in the collinear regime. Section 3 contains a lightning review of the flux

tube and the Wilson loop OPE. The latter is used to compute leading terms in the collinear

limit of the heptagon remainder function. The remaining two sections address the analytic

continuation from the main sheet to the various Mandelstam regions. For pedagogical

reasons, we start with the hexagon case (section 4) before turning to the more elaborate

heptagon, which admits four Mandelstam regions in which the remainder function does not

vanish (section 5). For all these regions, we perform the analytic continuation. It turns

out that the continuation of the leading-order terms in the Wilson loop OPE, along with

a few standard requirements, suffice to lift the symbols of the two-loop multi-Regge hep-

tagon to functions. The expressions we obtain for the two-loop heptagon remainders in the

multi-Regge regime are fully consistent with recent results by Del Duca et al. [21–23]. We

conclude with an extensive outlook to further directions and open problems in section 6.

The paper also includes several technical appendices, in particular on tessellations of the

Wilson loop and associated variables for the Wilson loop OPE and multi-Regge limits for all

multiplicities (appendix A and appendix B). Appendix D provides an extensive analysis of

the multi-Regge limit of the two-loop symbol and its lift to the two-loop heptagon function.

We show that for the two most interesting Mandelstam regions, single-valuedness, symme-

try, and collinear behavior determine the multi-Regge limit of the heptagon remainder up

to four parameters. The latter are fixed by our continuation in section 5.

2 The multi-Regge limit

Our ultimate goal is to compute the multi-Regge limit of the finite remainder function

for color ordered maximally helicity violating (MHV) amplitudes in the planar limit of

N = 4 super Yang-Mills theory from the Wilson loop operator product expansion (OPE).

This section contains some background material. After a short reminder on Mandelstam

regions and multi-Regge kinematics, we turn to collinear kinematics and recall the OPE

variables of [1], which are appropriate to discuss the combined multi-Regge collinear limit.

The final subsection outlines how we calculate remainder functions in the combined multi-

Regge collinear limit from the Wilson loop OPE by summing relevant cut contributions,

see (2.19) and (2.20) below.
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p3p4p5pn−1pn

t3t4tn−1

s3s4sn−1

←→

x1

x2

x3

x4
xn−1

xn

Figure 1. Kinematics of the scattering process 2 → n − 2. Forward energies are labeled by si,

momentum transfers by ti. On the right-hand side we show a graphical representation of the dual

variables xi.

2.1 Multi-Regge regime and Mandelstam regions

We consider the scattering of n gluons. With later kinematical limits in mind we shall think

of two incoming particles whose momenta we denote by p1, p2 and n− 2 outgoing particles

with momenta −p3, . . . ,−pn, as shown in figure 1. It will be convenient to label momenta

pi by arbitrary integers i such that pi+n ≡ pi. In the context of N = 4 supersymmetric

Yang-Mills theory, it is advantageous to pass to a set of dual variables xi such that

pi = xi − xi−1. (2.1)

The variables xi inherit their periodicity xi+n = xi from the periodicity of the pi and

momentum conservation. Let us also introduce the notation xij = xi−xj . The x2
ij provide

a large set of Lorentz invariants x2
ij = x2

ji. Throughout this note, we use a Lorentzian metric

with signature (−,+,+,+). When expressed in terms of the momenta, the invariants read

x2
ij = (pi+1 + · · ·+ pj)

2 . (2.2)

Lorentz symmetry along with the mass-shell conditions p2
i = 0 imply that only 3n − 10

of these variables are independent. We will not make any specific choice here. On the

main sheet, all the energies −p0
i , i = 3, . . . , n are assumed to be negative (i.e. the particles

with momenta −p3, . . . ,−pn are physical outgoing particles). We will refer to the Man-

delstam invariants x2
ij that are negative on the main sheet as s-like (e.g. forward energies,

see figure 1). Those that obey x2
ij ≥ 0 on the main sheet are called t-like (e.g. momentum

transfers).

The finite remainder function R for an n-gluon scattering amplitude is invariant under

dual conformal symmetry [24], and hence it can only depend on cross ratios of the form

Uij ≡
x2
i+1,jx

2
i,j+1

x2
ijx

2
i+1,j+1

, 3 ≤ |i− j| < n− 2 . (2.3)

Since the conformal group in four dimensions has 15 generators, only 3n−15 of these cross

ratios are independent. For the discussion of the multi-Regge limit, we adopt the following

choice [15, 25]

uj,1 = Uj+1,j+4 , uj,2 = Uj+2,n , uj,3 = U1,j+3 , (2.4)
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where j = 1, . . . , n − 5. Note that for n < 6 one cannot form any cross ratios, and hence

the remainder functions Rn must be trivial for n = 4, 5. In the case of n = 6 external

gluons, however, there exist 3 independent cross ratios, which we shall simply denote by

u1, u2, u3. And indeed it has been argued in [7] that R6 must be a non-vanishing function

of the cross ratios ui in order to correct for the unphysical analytical structure of the

Bern-Dixon-Smirnov (BDS) Ansatz [6].

In the multi-Regge limit, the absolute values of the s-like variables are much larger

than the t-like ones, which are kept finite. The precise characterization of the limit in terms

of Mandelstam invariants can be found in [25]. Here, we shall mostly focus on the multi-

Regge limit of the remainder functions Rn, which depend on the Mandelstam invariants

only through the cross ratios u, of which a complete independent set is given in (2.4). In

the multi-Regge limit, the so-called “large” cross ratios uj,1 tend to uj,1 ∼ 1 while the

remaining “small” ones tend to zero, i.e. uj,2, uj,3 ∼ 0. Cross ratios with the same index j

approach their limit values such that the following ratios remain finite:[
uj,2

1− uj,1

]MRL

=:
1

|1 + wj |2
,

[
uj,3

1− uj,1

]MRL

=:
|wj |2
|1 + wj |2

, (2.5)

These expressions are parametrized by n−5 pairs of so-called “anharmonic ratios” (wj , w̄j),

j = 1, . . . , n− 5. In the above formulas, |f(w)|2 means |f(w)|2 = f(w)f(w̄), even if w and

w̄ are not complex conjugates of each other. Our conventions concerning the enumeration

of gluons are shown in figure 1. Here and in the following, the superscript “MRL” instructs

us to evaluate the expression in square brackets in multi-Regge kinematics.

We are going to evaluate the multi-Regge limit for functions which possess branch cuts,

and so in order to make it well-defined, we need to specify the sheet on which the limit is

actually performed. There exist 2n−4 different Mandelstam regions that are distinguished

by the signs of the energies −p0
i for i = 4, . . . , n−1. These regions are reached by continuing

the energies −p0
j of outgoing particles with indices j ∈ I ⊂ {4, . . . , n−1} to negative values.

The choice of the subset I labels the different Mandelstam regions.

To each such Mandelstam region I, we associate an n-component object %I = (%Ij )

such that

%Ij =


−1 if j ∈ I ,

0 if j ∈ {1 ≡ n+ 1, 2} ,
+1 otherwise .

(2.6)

Since the first and last two entries of % are fixed to take the values %2 = 0 = %n+1 and

%3 = 1 = %n, we will also use the n − 4 component % = (%i, i = 4, . . . , n − 1) to label

Mandelstam regions. When we go into a region % = (%i), our curve in the space of kinematic

invariants may wind around the endpoints of some branch cuts of the remainder function.

Physical branch points are typically located at the points Uij = 0. The winding numbers

of the variables Uij around the points Uij = 0 for the various Mandelstam regions are [26]1

nij(%) =
1

4
(%i+2 − %i+1)(%j+1 − %j) . (2.7)

1Our conventions here differ from those used in [26] by an overall sign.
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Let us point out that the numbers nij take values in the set of half-integers, i.e. nij ∈ Z/2.

The so-called large cross-ratios that become uij → 1 in multi-Regge kinematics, however,

possess integer winding numbers for all choices of %.

If we perform the multi-Regge limit of the remainder functions Rn in the region in

which all the energies are positive (i.e. on the main sheet, which is accessible to the Wilson

loop OPE), the result turns out to vanish,

[Rn(u, a)]MRL
++···+ = 0 . (2.8)

In other words, in the region %0 = (+,+, . . . ,+), the BDS formula is actually multi-Regge

exact. If it was only for this region, the multi-Regge limit would not be able to see the

difference between a vanishing and non-vanishing remainder function.

As we have anticipated in the introduction, however, there exists other regions in which

the Regge limit of the remainder function does not vanish. Of course, the non-vanishing

terms must be associated with the cut contributions that are picked up when we analytically

continue from the region %0 into a new region %. Hence, the multi-Regge limit is able to

detect that the remainder functions are non-zero, in spite of (2.8).

2.2 Collinear kinematics and multi-Regge limit

We want to study the multi-Regge limit using the Wilson loop OPE. The latter is for-

mulated as an expansion around a multi-collinear limit of the external momenta. Luckily,

the multi-collinear limit of the Wilson loop OPE does have a non-trivial overlap with the

multi-Regge limit, at least up to n = 9 external points.2 Hence we can zoom in on a

combined multi-Regge collinear limit where the Wilson loop OPE applies.

In order to study the combined multi-Regge collinear limit, we will employ the natural

variables that arose in the construction of the OPE for null polygon Wilson loops [1, 27–

30]. The parametrization is based upon a tessellation of the polygon contour with n cusps

into a sequence of n − 3 null tetragons. Two of those tetragons are boundary tetragons,

the remaining n − 5 tetragons are internal tetragons. Compared to the hexagon and

heptagon tessellations of [1, 2], our tessellation is cyclically shifted. The tessellation is

obtained by drawing unique null lines from cusps xi to points x′i on edges (xj , xj + 1) of

the polygon, see figure 2. Each internal null tetragon is preserved by three independent

conformal transformations that are parametrized by τi, σi, and ϕi, where i = 1, . . . , n − 5

now labels the internal tetragons. These variables are conjugate to the energy, momentum,

and helicity of flux tube excitations in the frame defined by the respective tetragon [27].

In order to generate all conformally inequivalent configurations, we start with a fixed

“reference” polygon, and subsequently act with the three conformal transformations that

stabilize each internal tetragon on all cusps xj that lie above that internal tetragon.3 We

2In appendix B, we present a slightly different parametrization that has an overlap with the multi-Regge

limit for any number of points.
3Of course, one can alternatively act with the inverse conformal transformations on the bottom part of

the polygon. These two choices are related by a global conformal transformation and hence conformally

equivalent.
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Figure 2. Polygon tessellations for up to n = 9 points. The cases n = 6, 7 are cyclic rotations

of the parametrizations given in appendix A of [2], the cases n = 8, 9 are generalizations thereof,

see (A.3). For n = 9 we found it convenient to cyclically rotate again to find a non-trivial overlap

between the collinear and the multi-Regge limit.

will mostly use the exponentiated variables

Ti = e−τi , Si = eσi , Fi = eiϕi . (2.9)

The Wilson loop OPE for the remainder function applies in multi-collinear kinematics,

which are attained when Ti � 1 with Si and Fi finite (i = 1, . . . , n − 5). Letting any

Ti → 0 sends all cusps that lie above the associated internal tetragon to points on the top

edge of that tetragon, thereby flattening the upper part of the polygon. Further taking

Si → 0 sends all those cusps either to the left end or to the right end of the top edge

(depending on the orientation of the tetragon). Conversely, taking Si →∞ sends all those

cusps to the other end of the top edge.

Now, recalling the definition (2.4) of the cross ratios uj,i, it is easy to see that the

multi-Regge limit uj,1 → 1, uj,2, uj,3 → 0 can be approached by letting all Ti → 0 as well

as all Si either to zero or to infinity. In fact, each triplet {uj,1, uj,2, uj,3} can be associated

to one particular internal tetragon, in the sense that the triplet approaches {1, 0, 0} as

the variables {Ti, Si} of that tetragon are sent either to {0, 0} or to {0,∞}. For example,

consider the heptagon in figure 2. The upper internal tetragon is associated with the

variables {T1, S1, F1}, the lower tetragon with the variables {T2, S2, F2}. Letting T1 → 0

and S1 → 0 sends cusps 3 to cusp 2 and cusp 4 to the left end of line a. It is clear that in

this limit u1,1 = U2,5 → 1, u1,2 = U3,7 → 0, and u1,3 = U1,4 → 0. Similarly, letting T2 → 0

and S2 →∞ sends cusps 2, 3, and 4 to the right end of line b, upon which u2,1 = U3,6 → 1,

u2,2 = U4,7 → 0, and u2,3 = U1,5 → 0. Similar relations hold for all internal tetragons and

cross ratios uj,i of the four polygons in figure 2.

All in all, the multi-Regge regime corresponds to a double-scaling limit where Ti � 1

with either ri = Si/Ti or ri = 1/(SiTi) finite (depending on n and i). Explicit formulas for

the momentum twistors parametrizing the n-gon for n = 6, 7, 8, 9 are given in appendix A.
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For our choice of reference polygon (as given in appendix A), we have to make the following

identifications between the multi-collinear parameters ri, Fi and the multi-Regge variables

wi, w̄i to recover the multi-Regge parametrization (2.5) in the limit Ti → 0:4

n = 6, 7, 8 : S1 = r1T1 , r1 =
1√
w1w̄1

, F1 =

√
w1

w̄1
,

S2 =
1

r2T2
, r2 =

1√
w2w̄2

, F2 =

√
w2

w̄2
,

S3 =
1

r3T3
, r3 =

√
w3w̄3 , F3 = −

√
w3

w̄3
, (2.10)

n = 9 : S1 =
1

r1T1
, r1 =

√
w3w̄3 , F1 =

√
w3

w̄3
,

S2 =
1

r2T2
, r2 =

1√
w2w̄2

, F2 =

√
w2

w̄2
,

S3 = r3T3 , r3 =
1√
w1w̄1

, F3 = −
√
w1

w̄1
,

S4 = r4T4 , r4 =
√
w4w̄4 , F4 =

√
w4

w̄4
. (2.11)

The arguments of large logarithms in the multi-Regge limit are given by

εj ≡ uj,2uj,3 , j = 1, . . . , n− 5 . (2.12)

With the above parametrization, we have in the limit Ti → 0:

n = 6, 7, 8 : ε1 = r2
1T

4
1 , ε2 = r2

2T
4
2 , ε3 = r2

3T
4
3 , (2.13)

n = 9 : ε1 = r2
3T

4
3 , ε2 = r2

2T
4
2 , ε3 = r2

1T
4
1 , ε4 = r2

4T
4
4 , (2.14)

and

uj,2
1− uj,1

=
1

|1 + wj |2
+
∑
i

O(T 2
i ) ,

uj,3
1− uj,1

=
|wj |2
|1 + wj |2

+
∑
i

O(T 2
i ) . (2.15)

Formulas for the cross ratios uj,a in terms of the tetragon variables Tj , Sj , Fj for the hexagon

and the heptagon are given in the respective sections below. The respective formulas for

the octagon and nonagon can be found in appendix A.

2.3 Analytic continuation in the collinear limit

Our goal is to recover the combined multi-Regge collinear limit of the remainder function in

all Mandelstam or multi-Regge regions from the Wilson loop OPE. The latter is computed

on the main sheet % = (+, . . . ,+) and must be continued into the non-trivial Mandelstam

4The nonagon has permuted labels compared to the other polygons because we chose to extend the

octagon at the top instead of the bottom (see figure 2), and therefore have to rotate the external labels in

order to maintain a non-trivial overlap between the multi-collinear and the multi-Regge limit. The benefit

of this choice is a simpler expression for the conformal transformations that preserve the upper internal

square and thus simpler expressions for the cross ratios. See appendix A, in particular (A.5) there.

– 9 –



J
H
E
P
0
5
(
2
0
2
0
)
0
0
2

regions along some curve γ. The main goal of this subsection is to set up some notation that

allows to evaluate the result of such analytical continuations in collinear kinematics. Since

we are only interested in the combined multi-Regge collinear limit, we shall implement the

multi-Regge limit throughout.

As we will see in the next section, it is not too difficult to construct the finite remainder

function to leading order in the Ti at low number of loops from the Wilson loop OPE. The

explicit expressions Rope
n,(l) turn out to contain several functions of the variables Si which

possess branch cuts ending at r hypersurfaces σν , ν = 1, . . . , r of co-dimension two in the

space of complexified S-variables. We shall choose a set of generators pν for the fundamental

group π1 of the complement, i.e. pν ∈ π1(Cn−5 \ {σν | ν = 1, . . . , r}). If we continue the

remainder function Rope
n,(l) along a curve Cν associated to the generator pν , we may pick up

a cut contribution whose multi-Regge limit may or may not vanish:[
CνRope

n,(l)

]MRL ≡
(
1 + 2πi∆ν

)
Rope
n,(l) . (2.16)

Let us now pick an arbitrary element γ ∈ π1 in our fundamental group. By construction,

γ can be written as a product of generators pν , i.e. it is a finite product of the form

γ =
∏
k p

nk
νk

= pn1
ν1 p

n2
ν2 · · · with νk ∈ {1, . . . , r} and nk ∈ {±1}. Note that the fundamental

group is not abelian so that the order of factors matters. Continuation along a curve Cγ
that is associated to the element γ gives[
CγRope

n,(l)

]MRL
=
∏
k

(1 + 2πi∆νk)nkRope
n,(l) = (1 + 2πi∆ν1)n1(1 + 2πi∆ν2)n2 · · ·Rope

n,(l) . (2.17)

Here, (1 + 2πi∆)−1 is defined as a formal geometric series expansion in 2πi∆. Let us

make a few comments. First of all, our symbols (1 + 2πi∆ν) are a bit formal. One should

first expand all the terms with nk = −1, and then write the right hand side as a sum

of ‘products’ of the ∆ν . Each of the terms in this sum then stands for the multi-Regge

limit of a particular multiple cut contribution. We drop the leading term 1 · Rope
n,(l), since

it vanishes in the multi-Regge limit. We stress that taking the multi-Regge limit does not

commute with evaluating cut contributions, i.e. even if the multi-Regge limit ∆νR of a cut

contribution vanishes, the multi-Regge limit ∆µ∆νR of a double-cut contribution may not

vanish. We shall see examples later on.

The right hand side of eq. (2.17) can now be expanded in the number of cut contribu-

tions, starting with those terms that contain a single cut ∆ν ,

[
CγRope

n,(l)

]MRL
=

(
2πi

∑
ν

cν∆ν + (2πi)2
∑
µ,ν

cµ,ν∆µ∆ν + . . .

)
Rope
n,(l) (2.18)

Let us point out that the sum on the right hand side is finite at any given loop order l

since the maximal number of non-vanishing discontinuities at l loops is 2l − 1.

In principle, there is a unique curve γ% associated to each Mandelstam region, and if

this curve was known, we could simply compute the combined multi-Regge collinear limit

in all regions [
R%n,(l)

]CL
=
[
Cγ%Rope

n,(l)

]MRL
(2.19)
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and obtain strong constraints on the remainder function in multi-Regge kinematics. In

practice, however, the curve γ% is not known, and the equality (2.19),

[
R%n,(l)

]CL
=

(
2πi

∑
ν

cν∆ν + (2πi)2
∑
µ,ν

cµ,ν∆µ∆ν + . . .

)
Rope
n,(l) (2.20)

imposes constraints on both sides of the equation, i.e. on the remainder function in multi-

Regge kinematics and on the curve γ% (through the coefficients cµ, cµ,ν etc.). Eqs. (2.19)

or (2.20) are our key to constraining the multi-Regge limits of the remainder function in

subsequent sections.

Even though the curve γ% is not known in general, the coefficients c• that characterize

the discontinuity expansion are not entirely free. The first set of constraints comes from

the winding numbers nij(%) we defined in eq. (2.7). Let us recall that there exists a famous

projection from the fundamental or first homotopy group π1 to the first homology group H1

of our space Cn−5\{σν | ν = 1, . . . , r}. Elements of the latter are characterized by the wind-

ing numbers of the former around the endpoints σν of our branch points. Recall that H1 is

an abelian group that is obtained from the non-abelian fundamental group π1 by equating

all commutators to the unit element. This set of winding numbers is clearly not sufficient

to determine the associated curve, but it allows us to compute the leading coefficients cν .

In fact, for each generator pν of the fundamental group, one can compute the winding

numbers nνij of the cross ratios Uij . These allow to constrain the coefficients cν = cν(%) as∑
ν

nνijcν(%) = nij(%) , (2.21)

where nij(%) are the known winding numbers (2.7) of the cross ratios Uij as one continues

into the Mandelstam region %. As we will see below, there are as many independent cross

ratios Uij as there are generators pν , and hence (2.21) completely fixes the coefficients cν .

In addition to these constraints on the coefficients of single discontinuities, we can also

constrain the coefficients of multiple discontinuities. As an example, let us consider the

following statement

dµ,ν(γ) := cµ,ν(γ) + cν,µ(γ) = cµ(γ)cν(γ) = cµcν , (2.22)

which allows to determine the coefficient cν,µ from cµ,ν along with the coefficients cν of the

single discontinuities.

In order to prove this equality, we first note that it is safe to ignore all generators Ck
with k 6= µ, ν that may appear in the expression for our curve γ. Hence, for the purpose

of computing cµ,ν and cν,µ we can think of the curve as a product of pµ, pν and their

inverses. Of course, the order in which these factors appear in the curve does matter for

the individual coefficients, but not for the anti-commutator dµ,ν we defined in eq. (2.22).

In fact, since dµ,ν is computed from coefficients of double discontinuities, we obtain

(1+2πi∆µ)n(1+2πi∆ν)m−(1+2πi∆ν)m(1+2πi∆µ)n

∼ (1+2πi n∆µ)(1+2πi m∆ν)−(1+2πi m∆ν)(1+2πi n∆µ) = (2πi)2nm(∆µ∆ν−∆ν∆µ).
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Consequently, in calculation of the anti-commutator dµ,ν we do not have to worry about

the order of pµ and pν . It is therefore straightforward to compute the anti-commutator

from the coefficients of the single discontinuities,

dµ,ν(γ) = dµ,ν((1 + ∆µ)cµ(1 + ∆ν)cν + . . . ) = dµ,ν(cµcν∆µ∆ν + . . . ) = cµcν . (2.23)

Here, the ellipses stand for terms with dµ,ν(. . . ) = 0, and cµ, cν are overall numbers of ∆µ,

∆ν respectively. This completes the proof of eq. (2.22).

In all this discussion, we have ignored one detail that will start to appear from n = 7

external gluons. As we pointed out in section 2.1, some of the winding numbers of small

cross ratios may fail to be integer. The meaning of half-integer winding numbers is simple:

we need to allow cross ratios to become negative by going above (winding number +1/2) or

below (winding number −1/2) the origin. Without loss of generality, we choose to append

such continuations to the very end of our curves. We shall explain this in more detail below

when be discuss the heptagon.

3 OPE expansion to two loops

In this section we want to construct the collinear limit of the two-loop heptagon remainder

function from the Wilson loop OPE. The result is spelled out in the third subsection. Its

derivation needs some background about the flux tube in four-dimensional N = 4 SYM

theory and the Wilson loop OPE, which we provide in the first two subsections in order to

keep our discussion self-contained. While some parts of the leading collinear terms in the

two-loop heptagon remainder function had been computed before, the complete result also

contains new terms which we derive in the final subsection, after a short warm-up with a

one-loop calculation.

3.1 The flux tube or GKP string

The formula for the remainder function that we spell out in the next subsection realizes

an old idea in quantum field theory, namely to construct the four-dimensional amplitudes

in terms of a one-dimensional quantum system that describes the famous flux tube and its

excitations. In the case of N = 4 super Yang-Mills theory, this flux tube is also known

as Gubser-Klebanov-Polyakov (GKP) string, referring to the incarnation of the flux tube

in the dual AdS5 geometry [31]. Let us describe some facts about this one-dimensional

quantum systems that will become relevant below.

The excitations of the GKP string can be considered as multi-particle states that are

built up from a set of single-particle excitations. The set of single-particle excitations is

known [32] to consist of six ‘scalars’ ϕ, eight ‘fermions’ ψ, ψ̄, two ‘gluons’ F, F̄ , and so-called

‘gluon bound states’ DkF and DkF̄ , where k can be any positive integer k = 1, 2, 3, . . . .

The names of these excitations refer to their four-dimensional origin. They carry an action

of the four-dimensional R-symmetry group SO(6) under which the scalars transform in

the vector representations, while fermions ψ and ψ̄ are spinors. All gluon bound states,

finally, transform as scalars under SO(6). In the one-dimensional system, all the elementary

particles can move with some rapidity u. As a consequence of integrability, their dispersion
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law is known for any value of the coupling parameter g. In fact, these quantities are

determined by the famous Beisert-Eden-Staudacher (BES) equation [33], which can be

solved to any desired order, both at weak and strong coupling. For us, only the gluon and

gluon bound state excitations are relevant. For these, the leading order terms of the energy

E = E(u) and the momentum p(u) take the form [32]

EDkF (u) = EDkF̄ (u) = 1 + k+ 2g2

(
ψ

(
k + 3

2
+ iu

)
+ ψ

(
k + 3

2
− iu

)
− 2ψ(1)

)
+O(g4) ,

(3.1)

and

pDkF (u) = pDkF̄ (u) = 2u+ 2ig2

(
ψ

(
k + 1

2
+ iu

)
− ψ

(
k + 1

2
− iu

))
+O(g4) . (3.2)

Here, we allow for k to be k = 0, in which case the formulas give the dispersion law of the

gluon excitations. Let us also mention that the one-particle excitations possess a conserved

U(1) charge m, which we shall refer to as helicity. For the gluon bound states, this is simply

given by

mDkF = 1 + k , mDkF̄ = −1− k . (3.3)

Being a discrete quantum number, m neither depends on the coupling g nor on the rapidity

u. To complete the description of single-particle excitations, let us note that the one-particle

wave functions Ψ(u) are integrated with a measure that depends on the rapidity. Once

again, this measure is known for all one-particle excitations and any coupling. In the case

of gluons and gluon bound states, it reads

µDkF (u) = µDkF̄ (u) = (−1)k+1g2 Γ(k+1
2 + iu)Γ(k+1

2 − iu)

Γ(k + 1)(u2 + (k + 1)2/4)
+O(g4) . (3.4)

Similar formulas also exist for the other one-particle excitations, i.e. the scalars and

fermions. Since we won’t need them below, we refrain from spelling them out here. Let us

only mention that all one-particle excitations satisfy Eg=0
X (u) ≥ 1. Equality holds only for

scalars, fermions and gluons, but obviously not for non-trivial gluon bound states.

From the one-particle states, one can now build up multi-particle excitations. These

can contain any number N of single-particle excitations, each with its own rapidity ua, a =

1, . . . , N . Since the GKP string is integrable, the energy E, momentum p and helicity m of

such multi-particle states can be computed as the sum of their single-particle constituents.

The interaction between the single-particle excitations is described by a factorizable S-

matrix, i.e. it can be built from the two-particle S-matrix. The latter is also known explic-

itly, but since we will not need it here, at least not directly, we will not give explicit formulas.

3.2 Wilson loop OPE and finite remainder

After this preparation, we are now able to state the main result from [1–3, 5]. According

to Basso et al., the finite remainder function of a color ordered planar MHV n-gluon

amplitude in N = 4 super Yang-Mills theory is given by

Rg(τi, σi, ϕi) = logWg(τi, σi, ϕi)− logWU(1)
g (τi, σi, ϕi) (3.5)
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where the first term takes the form

Wg(τi, σi, ϕi) =
∑
Ψi

[
n−5∏
i=1

e−E
g
i τi+ip

g
i σi+imiϕi

]
Pg(0|Ψ1)Pg(Ψ1|Ψ2) . . . Pg(Ψn−5|0) . (3.6)

Let us explain the individual pieces of this formula. First of all, we need to discuss the

summation. The n−5 objects Ψi, i = 1, . . . n−5 that we sum over are n−5 multi-particle

excitations of the GKP string. Hence the sum consists of a discrete (but infinite) summation

over the single-particle content of the multi-particle states, along with an integration over

the rapidity variables. The rapidity integration must be performed with the appropriate

measure µg(u). To be quite precise, it should also contain appropriate symmetry factors

that depend on the exact multi-particle content, but we will not need these below.

Ei, pi, and mi denote the energy, momentum, and helicity of these multi-particle states.

Recall that these are simply obtained by summing the energy, momentum, and helicity of

the single-particle constituents. The kinematic invariants τi, σi, and ϕi of our scattering

process multiply the energies, momenta, and helicities. Finally, the factors P are known

as pentagon transitions. One should think of them as being determined uniquely by the

S-matrix of the GKP string. For gluon excitations, the pentagon transitions are

PFF (u|v) = PF̄ F̄ (u|v) = − 1

g2

Γ(iu− iv)

Γ(−1
2 + iu)Γ(−1

2 − iv)
+O(g0) , (3.7)

PFF̄ (u|v) = PF̄F (u|v) =
Γ(2 + iu− iv)

Γ(3
2 + iu)Γ(3

2 − iv)
+O(g2) , (3.8)

and PF (0|u) = 1 = PF̄ (0|u). The formulas can be extended to any pair of multi-particle

excitations, and in particular to gluon bound states and their multi-particle composites.

We will not need these formulas below. Let us only mention that P (Ψ1|Ψ2) satisfies an

important selection rule. As we pointed out above, all single-particle excitations transform

under the space-time R-symmetry SO(6). The action on single-particle states induces

an action on the multi-particle states Ψ1 and Ψ2. The pentagon transition P (Ψ1|Ψ2)

intertwines this action. Since the vacuum 0 of the GKP string is SO(6) invariant, the

transition P (0|Ψ) can only be non-zero if the action of SO(6) on Ψ contains a trivial

subrepresentation. If Ψ is a single-particle state, it must be a gluon or gluon bound state

in order for P (0|Ψ) to be non-trivial.

It remains to describe the second term in eq. (3.5).5 The function Wg in the first term

represents a certain ratio of polygon Wilson loops. WU(1)
g represents the same ratio, but in

a free abelian U(1) theory with coupling Γcusp. Both ratios Wg and WU(1)
g obey the same

anomalous Ward identities, such that their ratio Wg/WU(1)
g is UV finite, and its logarithm

equals the remainder function, as stated in eq. (3.5). Concretely, the second term is given by

logWU(1)
g (τi, σi, ϕi) ≡

Γcusp(g)

4g2
(logWg)

(1)(τi, σi, ϕi) , (3.9)

where (logWg)
(1) denotes the one-loop part of the function logWg defined in eq. (3.6).

We divide by 4g2 in order to remove the dependence on the coupling from the one-loop

5See the discussion in section 3.3 of [27].
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result, and then multiply with the so-called cusp anomalous dimension Γcusp. The latter

describes the vacuum energy of the GKP string, and it is also known for any value of the

coupling. Its weak coupling expansion reads

Γcusp(g) = 4g2 − 4π2

3
g4 +O(g6) . (3.10)

It is not too difficult to work out explicit formulas for the function WU(1) for any number

of external gluons.

3.3 The heptagon remainder function

We now describe the hexagon and heptagon remainder functions in the collinear limit at two

loops. We first discuss the general structure of the collinear expansion in a bit more detail,

mainly to fix our notation. Then, we state our results on the two-loop heptagon remainder

function. We restrict ourselves to the first non-trivial terms in the collinear expansion of

eq. (3.6): for n ∈ {6, 7} we consider the two-loop term proportional to g4 with only the

lowest corrections to the asymptotic expansion in Ti → 0. As it was shown in [2], only the

one-gluon excitation can contribute to these terms, which makes the problem much more

manageable.

Let us start with putting more structure to eqs. (3.5) and (3.6), following [2]. For the

hexagon, the collinear (T1 → 0) expansion at weak coupling takes the form (see eq. (35)

in [2])

Whex = 1 + 2T1 cos(ϕ1) f̃1(T1, S1) +O(T 2) , (3.11)

where the second term proportional to f̃1 comes form the propagation of a one-gluon

excitation through the only internal tetragon of hexagon (see also section 2.1). Similarly,

the leading term in the collinear (Ti → 0) expansion of the heptagon is (see eq. (38) in [2]):

Whep = 1 + 2T1 cos(ϕ1) f̃1(T1, S1) + 2T2 cos(ϕ2) f̃2(T2, S2)

+ 2T1T2 cos(ϕ1 + ϕ2)h12(T1, T2, S1, S2)

+ 2T1T2 cos(ϕ1 − ϕ2) h̄12(T1, T2, S1, S2) +O(T 2) . (3.12)

Here, the first line comes from the one-gluon excitation in either of the internal tetragons

of the heptagon, and the second and third lines from excitations in both of the tetragons.

The hexagon functions f̃1 and f̃2 are identical:

f̃1(T, S) ≡ f̃(T, S) , f̃2(T, S) ≡ f̃(T, S) , (3.13)

where f̃(T, S) is the usual hexagon function of [2]. The heptagon functions h12 ≡ h and

h̄12 ≡ h̄ are also defined in [2]. The hexagon and heptagon functions are graded in powers
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of log(Ti):

f̃(T, S) =
∑
L≥1

L−1∑
p=0

f̃
(p)
L

(
log(T )

)p
, (3.14)

h(T1, T2, S1, S2) =
∑
L≥1

∑
p1,p2

h
(p1,p2)
L

(
log(T1)

)p1(log(T2)
)p2 , (3.15)

h̄(T1, T2, S1, S2) =
∑
L≥1

∑
p1,p2

h̄
(p1,p2)
L

(
log(T1)

)p1(log(T2)
)p2 , (3.16)

where the inner sum on the second line covers the 0 ≤ p1 +p2 ≤ L−1 domain, whereas the

inner sum in the last line covers 0 ≤ p1 + p2 ≤ L − 2. The components f̃
(p)
L , h

(p1,p2)
L , and

h̄
(p1,p2)
L are proportional to g2L. The relevant terms in this grading up to two-loop order

are

f̃(T, S) = f̃
(0)
1 (S) + f̃

(0)
2 (S) + log(T )f̃

(1)
2 (S) + . . . , (3.17)

h(T1, T2, S1, S2) = h
(0,0)
1 (S1, S2) + h

(0,0)
2 (S1, S2)

+ log(T1)h
(1,0)
2 (S1, S2) + log(T2)h

(0,1)
2 (S1, S2) + . . . , (3.18)

h̄(S1, S2) = h̄
(0,0)
2 (S1, S2) + . . . . (3.19)

The component functions f̃
(0)
L , f̃

(1)
L , h

(0,0)
L , and h̄

(0,0)
L to two loop order can be found in

the literature, see the discussion around eqs. (118), (125) and (126) in [2] as well as the

file Functionshf.nb accompanying that paper, and eq. (62) in [34] together with the file

MHV full.m there. For f̃
(0)
2 and f̃

(1)
2 , see also (4.14) and (4.15) below. The only missing

pieces that we need to compute ourselves are the functions h
(1,0)
2 and h

(0,1)
2 that appear at

two loops. As we shall show below, the first of these functions is given by

h
(1,0)
2 (S1, S2) =

2g4

S1S2

[
(1 + S2

1)S2
2 log(1 + S2

1)
(

log(1 + S2
1)− log(S2

1)− 2
)

− 2S2
1 log(S2

1)− 2S2
2 log(S2

2)− 2S2
1(1 + S2

2) log(1 + S2
2)

− (S2
1 + S2

2 + S2
1S

2
2)
{

log(S2
1) log(S2

2) + log(S2
2) log(1 + S2

2)

− log(S2
1 + S2

2 + S2
1S

2
2)
(

2 + log(S2
1) + log(S2

2) + log(1 + S2
2)
)

+ log(S2
1 + S2

2 + S2
1S

2
2)2
}]

(3.20)

The second function is then obtained by swapping the S-variables, i.e.

h
(0,1)
2 (S1, S2) = h

(1,0)
2 (S2, S1) . (3.21)

The general one-gluon contribution to the OPE of the heptagon remainder function is given

in eq. (39) of [2]

h =

∫
du1du2

4π2
µ(u1)P (−u1|u2)µ(u2)e−τ1E(u1)+ip(u1)σ1−τ2E(u2)+ip(u2)σ2 . (3.22)

The helicity-breaking transition h̄ has the same form with P → P̄ . In the following two

subsections, we will describe how one can obtain explicit results for all of the building

blocks in eqs. (3.17), (3.18) and (3.19) from the OPE integral (3.22).
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3.4 Evaluation of the collinear remainder function

The goal of this final subsection is to provide a brief sketch of the methods that allow

to evaluate the remainder function in the collinear limit. Before we dive into the full

complexity of the two-loop integral (3.18), we first calculate the function h
(0,0)
1 at one loop

in order to illustrate the main steps in a more pedagogical setting.

3.4.1 One-loop remainder function

The one-loop contribution h
(0,0)
1 comes from the first term in the g2 expansion of the

integral (3.22)

h
(0,0)
1 = g2

∫
du1 du2

4π2
e2i(σ1u1+σ2u2) Γ(3

2 + iu1)Γ(−iu1 − iu2)Γ(3
2 + iu2)

(u2
1 + 1

4)(u2
2 + 1

4)
. (3.23)

We compute this integral via the residue theorem. The u1-contour of integration can be

closed in the upper half-plane so that only the poles at u1,pole = i(1
2 + k1), k1 ∈ Z≥0

contribute. Following [34] we take u1 = u1,pole + ε and pick the ε−1-term in the series

expansion ε → 0 to compute the residue. We then repeat the same procedure for u2 and

arrive at the following double sum over poles,

h
(0,0)
1 =

g2

S1S2

[ ∑
k1,2∈Z≥1

(−S−2
1 )k1(−S−2

2 )k2

(k1 + 1)(k2 + 1)k1k2
× Γ(1 + k1 + k2)

Γ(k1)Γ(k2)

+
∑

k1∈Z≥1

(−S−2
1 )k1 + (−S−2

2 )k1

k1 + 1
+ 1

]
, (3.24)

where in the second line we combined the k1 = 0 and k2 = 0 residues together into one

separate term. These sums turn out to be very easy to perform, and in appendix C we

explain how one can express them in terms of simple logarithms, so that the helicity-

preserving function h
(0,0)
1 takes the form

h
(0,0)
1 = g2

(
S1

S2
log

S2
1(1 + S2

2)

S2
1 + S2

2 + S2
1S

2
2

+
S1S2

2
log

(1 + S2
1)(1 + S2

2)

S2
1 + S2

2 + S2
1S

2
2

+ (S1 ↔ S2)

)
. (3.25)

Let us furthermore note that the helicity-breaking transition starts only at g4, i.e. the

one-loop contribution h̄
(0,0)
1 = 0 vanishes, see eq. (124) of [2]. After this preparation, we

can proceed to higher loops.

3.4.2 Higher-loop remainder function

Here we describe the procedure to compute higher terms in the g2-expansion of the one-

gluon contribution to the remainder function in terms of multiple polylogarithms, which

mostly follows [34] and [35]. The idea is exactly the same as in the previous section 3.4.1:

first we need to extract the desired loop contribution from the integral (3.22), then we apply

the residue theorem to convert integrals into sums over poles. These sums can finally be

expressed in terms of multiple polylogarithms.
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When expanded to higher loops, the schematic structure of the integrand in eq. (3.22)

becomes:

e2i(σ1u1+σ2u2)∏
j=1,2

(uj + i
2)rj (uj − i

2)pj
·Γ
(

3

2
+ iu1

)
Γ (−iu1 − iu2) Γ

(
3

2
+ iu2

)
×

×Q
({

uj , ψ
(mj)

(
1

2
± iuj

)
, ψ(nj)

(
3

2
± iuj

)}
j=1,2

)
. (3.26)

Compared to our discussion in the previous section 3.4.1, the Γ-functions do not change,

the denominators acquire integer exponents rj and pj , and a polynomial Q of the rapidities

uj and polygamma ψ-functions of various weight appear. The location of relevant poles

stays the same, only the residues become more complicated. Therefore, we use the same

procedure as above to convert the integral (3.26) into a sum over residues. As in [34], a

few basic relations for Γ- and ψ-functions turn out to be very useful in this step,

Γ(z)Γ(1− z) =
π

sinπz
,

ψ(n)(z + 1) = ψ(n)(z) + (−1)nn!z−n−1 ,

ψ(n)(z) = (−1)nψ(n)(1− z)− π∂nz cot(πz) .

After some processing, we arrive at the following L-loop analogue of eq. (3.24):

h
(p1,p2)
L =

∑
k1,2∈Z≥1

(−S−2
1 )k1(−S−2

2 )k2∏
j=1,2

(kj)pj (1 + kj)rj
· Γ(1 + k1 + k2)

Γ(k1)Γ(k2)
× P

({
kj , ψ

(mj)
kj

, ψ
(nj)
1+kj

}
j=1,2

)
,

(3.27)

where we have introduced shorthands ψ
(m)
k := ψ(m)(k) for polygamma functions of integer

arguments. On the right hand side of eq. (3.27), the polynomial P depends on both

summation indices k1, k2 and ψ-functions of weight mj , nj < 2L, the powers of common

denominators pj , rj are bounded by the number of loops as well. This double sum cannot

be done in full generality for arbitrary loop number, but for every fixed number of loops,

we can make use of algorithms developed in [36]. In order to do so, we replace the ratio

of Γ-functions with a binomial
(
k1+k2
k1

)
, introduce a new variable j = k1 + k2, and express

ψ-functions in terms of the so-called S-sums (see eq. (3) in [36])

S(n;m1, . . . ,mk;x1, . . . , xk) =

n∑
i=1

xi1
im1
S(i;m2, . . . ,mk;x2, . . . , xk) . (3.28)

The ψ-functions of integer arguments are related to these objects via

ψk = −γE + S(k − 1, 1, 1) (3.29)

ψ
(m)
k = (−1)m+1m! (ζm+1 − S(k − 1,m+ 1, 1)) . (3.30)

After all these conversions, we make use of the XSummer package [37] for FORM [38] that

rewrites these sums over residues in terms of multiple polylogarithms (see also [36] for a

description of the algorithm). Since the only missing pieces at two loops are the functions
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h
(1,0)
2 and h

(0,1)
2 in eq. (3.20), we can just filter the corresponding terms with τi ≡ log(Ti)

that come from the g2 corrections to the gluon energy (3.1) in the two-loop expansion of

eq. (3.22), perform the residue resummation, and convert the produced answer to classical

polylogarithms using the package [39], which finally yields (3.20) and (3.21).

With all this, we are finally able to write the full expression (3.12) for the two-

loop remainder function in collinear kinematics in terms of only classical polylogarithms

{log,Li2,Li3}. This form of the answer makes it easy to understand the analytical struc-

ture, and hence it provides a good starting point for our discussion in the next sections.

4 Continuation and Regge limit: the hexagon

In this section, we now turn to the central theme of this work, namely the continuation of

the collinear remainder function from the main sheet into non-trivial Mandelstam regions.

Our goal here is to illustrate the general procedure at the simplest example, namely the

hexagon.6 After a brief review of the relevant coordinates and limits, we will discuss existing

results for the only Mandelstam region in which the Regge limit of the hexagon remainder

function is non-vanishing and can be computed to any desired order. We will state the

known results for two loops in the combined multi-Regge collinear limit. Then we turn to

the continuation in collinear kinematics. Starting from the main sheet, we discuss how to

reach the Mandelstam region and compute the relevant cut contributions. We shall show

how the continuation allows to recover the two-loop result for the combined multi-Regge

collinear limit of the remainder function from the leading terms in the Wilson loop OPE.

4.1 Variables and limits

Let us now specialize the discussion of kinematics in section 2.2 to the case of n = 6

external gluons, for which the finite remainder function depends on just three cross ratios,

which we denote as

u1 = U25 , u2 = U36 , u3 = U14 ,

omitting the first index j = 5 in eqs. (2.4). According to the general prescription, the

multi-Regge regime is reached when the “large” cross ratio u1 approaches u1 = 1, while

the “small” cross ratios go to zero, i.e.

u1 → 1 , u2 → 0 , u3 → 0 . (4.1)

The ratios of vanishing terms remain finite, and are used to define a single pair of anhar-

monic ratios w = w1 and w̄ = w̄1 as

u2

1− u1
→ 1

|1 + w|2 ,
u3

1− u1
→ |w|2
|1 + w|2 . (4.2)

6The analytic continuation of the perturbative expansion of the hexagon Wilson loop OPE has been

explored before: using a specific choice of continuation path, Hatsuda [40] could match the analytically

continued collinear expansion against known Regge-limit data up to the next-to-next-to-leading logarithmic

approximation (N2LLA) at five loops, and produced predictions for N3LLA and N4LLA. That work preceded

the all-order continuation of the hexagon carried out in [10].
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For n = 6 the approach to the Regge regime is controlled through a single parameter,7

ε = u2u3 . (4.3)

that tends to zero in the limit.

Next we want to discuss the relation with the kinematic variables we have used in our

discussion of the Wilson loop OPE. The three cross ratios ui are expressed through the

kinematical variables T ≡ T1, S ≡ S1 and F ≡ F1 = exp(iϕ) introduced in section 2.2 as

u1 =U2,5 =
1

1+S2 +T 2 +2ST cosϕ
, u2 =U3,6 =

S2u1

1+T 2
, u3 =U1,4 =

T 2

1+T 2
. (4.4)

In the collinear limit T → 0, the relations (4.4) read

u1 =
1

1 + S2
+O(T ) , u2 =

S2

1 + S2
+O(T ) , u3 = T 2 +O(T 4) . (4.5)

When parametrized in terms of S, T , and F = exp(iϕ), the Regge limit is taken by sending

both T and S to zero, while keeping r = S/T finite, see eq. (2.10). In the Regge limit, the

remainder function depends on the finite variables r and F along with the quantity T that

vanishes in the limit. These are related to w, w̄ and ε through

r2 =
1

ww̄
, F 2 =

w

w̄
, S2T 2 = r2T 4 = ε , (4.6)

as in (2.10) and (2.13). This concludes our brief summary of the relevant variables and

limits that are used in the subsequent analysis of the hexagon remainder function.

4.2 The remainder function in multi-Regge kinematics

For the hexagon n = 6, the remainder function is well known to possess only one Mandel-

stam region with a non-trivial Regge limit, namely the region % = (−−). In this region,

the two-loop contribution to the finite remainder function in multi-Regge kinematics reads

R−−6,(2)(ε, w) = 2πi f(ε;w) = 2πi
(
f1(w) log ε+ f0(w)

)
, (4.7)

where the leading logarithmic term contains the coefficient

f1(w) =
1

2
log |1 + w|2 log

∣∣∣∣1 + w

w

∣∣∣∣2 , (4.8)

while the next-to-leading logarithmic term is given by

f0(w) = −4 Li3(−w)− 4 Li3(−w̄) + 2 log |w|2
(
Li2(−w) + Li2(−w̄)

)
+

1

3
log2 |1 + w|2 log

|w|6
|1 + w|4 −

1

2
log |1 + w|2 log

∣∣∣∣1 + w

w

∣∣∣∣2 log
|w|2
|1 + w|4 . (4.9)

7Note that our normalization of the parameter ε differs from the one used by Dixon et al. [41], see

footnote 2 in [20], but it is consistent with eqs. (4.8) and (4.9).
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We use the variables that were introduced in the previous subsection. This formula can

be derived from the general expression for the six-gluon remainder function due to [11]

that in its original version encodes at least the leading logarithmic (LL) terms to all loop

orders. The result of Bartels et al. parametrizes the multi-Regge limit of the remainder

function in terms of two functions of the coupling g, the impact factor and the so-called

BFKL eigenvalue. These possess a power series expansion in g. In order to construct the

LL contributions of the remainder function at any loop order, it is sufficient to know the

leading terms in these expansions. It is not too difficult to reconstruct the LLA in eq. (4.7)

from the results in [11], and in fact to carry out these computations to higher loop orders,

and even beyond the leading logarithmic order, see [14] for an extensive discussion. Explicit

expressions for the impact factor and BFKL eigenvalue in NLLA were first given in [12].

If we apply the combined multi-Regge collinear limit, i.e. send r2 = 1/(ww̄) → ∞
while keeping the ratio w/w̄ = F 2 finite, these formulas reduce to[

1

2πi
R−−6,(2)

]CL

= C 2 log(r) log(ε) + C
(
8 + 8 log(r) + 4 log(r)2

)
, (4.10)

with

C =
cos(ϕ)

r
. (4.11)

Let us stress that our formulas for the remainder function in multi-Regge kinematics and

the combined multi-Regge collinear limit contain terms from LLA and NLLA. At this order

in the weak-coupling expansion, the expression we state is complete. At higher orders, the

multi-Regge limit of the remainder function is also known exactly from the amplitude

bootstrap [13] and ultimately to all loops due to the work by Basso et al. [10]. We will

not need such extensions here.

4.3 Analytic continuation

Let us now see how we can recover the results we reviewed in the previous subsection, and

in particular eq. (4.10), through analytic continuation from the collinear n = 6 remainder

function on the main sheet. The relevant Mandelstam region % = (−−) is reached by some

curve along which only the large cross ratio u1 = U2,5 has non-trivial winding number

n25 =
1

4
(%4 − %3)(%6 − %5) =

1

4
(−1− 1)(1 + 1) = −1 (4.12)

around u1 = 0, see eq. (2.7). In order to initiate our analysis, let us display the collinear

limit of the two-loop remainder function on the main sheet. From the Wilson loop OPE

one finds

R6,(2)(S, T, F ) = 2T cos (ϕ)f̃
(0)
2 (S) + 2T cos (ϕ) log (T )f̃

(1)
2 (S)−

(
logWU(1)

g

)(2)
+O(T 2) ,

(4.13)

where

f̃
(0)
2 (S) = g4(S + S−1)

[
(12 + π2) logS2

3(1 + S2)
+ log(1 + S−2)(4− 2 log(S2)) (4.14)

+
(
log(S2)− 2

)
log2(1 + S−2) +

2

3
log3(1 + S−2)− 2 Li3(−S−2)

]
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and

f̃
(1)
2 (S) = 2g4(S + S−1)

[
−2 log(S2)

1 + S2
+
(
log(S2)− 2

)
log(1 + S−2) + log(1 + S−2)

]
. (4.15)

The BDS part is given by

(
logWU(1)

g

)(2)
= g4 2π2

3
T (S + S−1)

[
log(S2)

1 + S2
+ log(1 + S−2)

]
. (4.16)

There are a number of comments we would like to make about these expressions. First

of all, a closer look at the arguments of the (poly-)logarithms reveals that the remainder

function possesses r = 2 branch points in the complex S2-plane. These are the points

S2 = 0 and S2 +1 = 0. Of course we see this here only to the given order of the expansion,

but the statement remains true for higher loops, see e.g. the explicit three-loop expression

in [42]. It is important to note that, to leading order in the collinear limit, the cross ratios

ui we listed in the previous subsection can be built as products of the two functions S2

and 1 + S2 and their inverses. This makes it particularly easy to switch between curves in

the S2-plane and in the space of cross ratios. Let us also note that the remainder function

vanishes in the multi-Regge limit S → 0 before we analytically continue from the main

sheet into other Mandelstam regions.

Our task is to derive the eqs. (4.10) from the formula (4.13) through analytic contin-

uation along some specific curve in the space of kinematic variables. Since we will focus

on the collinear limit, our paths will remain in this limit, i.e. we will not vary T . This is

justified by the fact that, by eq. (4.5), u1 and u2 only depend on S2 in the collinear limit,

whereas u3 = U1,4 = T 2 has winding number n1,4 ∼ (%5 − %4) = 0 by eq. (2.7). As we can

see from the explicit formulas above, the two-loop contributions to the collinear limit are

analytic in ϕ. This statement actually remains true at any finite loop order. Hence, we can

restrict to paths along which ϕ is kept constant. It remains to study paths in the complex

S2-plane that start and end in the region where S2 > 0. As we pointed out before, the

remainder function possesses branch points at S2 = −1 and S2 = 0. Equivalence classes of

paths are therefore parametrized by the fundamental group π1(C \ {0,−1}). This group is

generated by two elements p1 and p2. The precise choice is a matter of convention. Let us

agree that the generator p1 is associated with a curve C1 that starts at some point S2 > 0,

runs slightly above the real axis, surrounds S2 = 0 in counterclockwise direction before

running back to its starting point where S2 > 0. As for p2, we make a similar choice, except

that now the curve C2 runs from S2 > 0 towards S2 = −1 above the real axis, surrounds

the point S2 = −1 in counterclockwise direction and runs back below the real axis to its

starting point. The two curves are depicted in table 1.

Since the cross ratios are rational functions of S2, they acquire corresponding phase

shifts which are easy to work out,

C1u1 = u1 , C1u2 = e2πiu2 , C1u3 = u3

C2u1 = e−2πiu1 , C2u2 = u2 , C2u3 = u3 . (4.17)
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generator S2

C1
S20−1

C2
S20−1

Table 1. Path generators for the hexagon.

Here and in the following, the symbol Cif(u) means the value of a function f of the cross

ratios at the endpoint of an analytic continuation along the curve Ci. The value of the

cross ratio u3 is unaffected by the continuation as it does not depend on S2.

Now we can study the behavior of the remainder function upon continuation. For the

continuation along the curves C1 and C2 one finds[
CiRope

6,(2)

]MRL
= (1 + 2πi∆i)R

ope
6,(2) (4.18)

with

∆2R
ope
6,(2) = C

(
8 + 8 log(r) + 4 log(r)2

)
+ C 2 log(r) log(ε) , (4.19)

and ∆1R
ope
6,(2) = 0. Non-vanishing cut contributions for more general elements g ∈ π1 in

our fundamental group can also be worked out by combining the following building blocks

∆2∆1R
ope
6,(2) = C

(
4− 4iπ + 2 log(r)

)
− C log(ε) ,

∆1∆2R
ope
6,(2) = C

(
4 + 4iπ + 6 log(r)

)
+ C log(ε) ,

∆2∆2∆1R
ope
6,(2) = −∆1∆1∆2R

ope
6,(2) = −4C . (4.20)

All other discontinuities, and in particular those beyond triple discontinuities, vanish at

this loop order. Let us stress once again that our symbols ∆i combine an analytic contin-

uation with taking the Regge limit. Before taking the Regge limit, a continuation along C1

produces a nontrivial cut contribution, which vanishes only in the Regge limit. If, on the

other hand, we continue this cut contribution along C2, new terms appear that possess a

non-trivial Regge limit.

Our first and most important observation is that continuation of the collinear re-

mainder function along the curve C2 gives a single non-vanishing cut contribution, namely

∆2R
ope
6,(2), which agrees exactly with the expected formula (4.10) for the collinear limit of

the remainder function in the Mandelstam region % = (−−). This is fully consistent with

the kinematics, as the cross ratio u1 has winding number −1 under the generator C2 of

eq. (4.17), as required for the % = (−−) region by eq. (4.12).

We can carry the analysis a bit further and ask to which extent the expression (4.10)

determines the curve. In order to investigate this issue, let us first write the collinear limit of

the hexagon remainder in the non-trivial Mandelstam region in terms of cut contributions,[
R−−6,(2)

]CL
=

(
2πi

∑
i

ci∆i + (2πi)2
∑
i,j

ci,j∆i∆j + (2πi)3
∑
i,j,k

ci,j,k∆i∆j∆k

)
Rope

6,(2) . (4.21)
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Using our list (4.20) one may infer the following four constraints on the coefficients

c2 = 1 , c1,2 = 0 = c2,1 , c1,1,2 = c2,2,1 . (4.22)

It is now easy to see that curves of the form Cα1
1 Cα2

2 Cα3
1 are consistent with eq. (4.10) if and

only if α1 = α3 = 0 and α2 = 1, i.e. within this family of curves, C2 is the only solution. On

the other hand, there do exist other curves that give rise to the same cut contributions, e.g.

Ck1C1−k
2 C−1

1 Ck2C1−k
1 (4.23)

for any value of k ∈ Z. For k 6= 0, these curves are not the same as C2, even though they

have the same winding numbers around u1 = 0 and u2 = 0. It would be interesting to

investigate whether these curves are excluded by higher-order corrections in the loop or

collinear expansion. The curve of eq. (4.23) is actually unique in the class of curves that

involve only two powers of C2 generators that are separated by some power of C1, if we

impose both the LLA and NLLA constraints by matching formula (4.21) against (4.10).

The conditions from LLA alone (i.e. log ε terms) dictate only c1,2 = c2,1 and c1,1,2 = c2,2,1.

Eq. (4.22) is a consequence of the anticommutator lemma (2.22) together with the total

winding conditions c1 = 1 − c2 = 0, which follow from eq. (4.17). If we allow elements of

the fundamental group that involve three powers of C2, separated by some powers of C1,

the LLA and NLLA constraints can be solved by

Cα1
1 Cα2

2 C−α1−α2
1 Cα1

2 Cα2
1 C1−α1−α2

2 (4.24)

for α1, α2 < −1. We conclude that the two-loop formulas in LLA and NLLA impose

strong constraints on the curve of continuation, but in order to fix the curve completely,

one needs additional assumptions on its form.

5 Continuation and multi-Regge limit: the heptagon

We now approach the main goal of this work, namely to repeat the analysis outlined in the

previous section for the heptagon. In this case, the analysis is richer because there exist

four Mandelstam regions in which the remainder function possesses a non-trivial multi-

Regge limit. After a short discussion of the relevant kinematical variables, we will review

known results about the multi-Regge limit of the heptagon remainder function in all four

Mandelstam regions. In the final subsections, their collinear limit will be reproduced by

analytic continuation from the Wilson loop OPE.

5.1 Variables and limits

Before we start our analysis, it is again useful to review some of the formulas we derived in

section 2 for the heptagon. When n = 7, there are six independent cross ratios (2.4), two

of which approach u1,1 = u2,1 = 1 while the other four vanish in multi-Regge kinematics.

Consequently, the approach to the multi-Regge limit is now controlled by two small ε

parameters

ε1 = u1,2u1,3 , ε2 = u2,2u2,3 , (5.1)

while the limit itself is parametrized by four anharmonic ratios w1, w̄1 and w2, w̄2.
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Once again, we can parametrize the heptagons in general kinematics in terms of the

variables

{Tj , Sj , Fj} = {e−τj , eσj , eiϕj} , j = 1, . . . , n− 5 (5.2)

introduced in section 2.2. The precise relation between these variables and our set of

heptagon cross ratios (2.4) may be worked out from the formulas in appendix A,

u1,3 = U1,4 =
T 2

1

1 + T 2
1

,

u1,1 = U2,5 =
1 + T 2

2

1 + S2
1 + 2c1S1T1 + T 2

1 + T 2
2

,

u1,2 = U3,7 =
S2

1

(1 + T 2
1 )(1 + T 2

2 )
· U2,5

U3,6
,

u2,1 = U3,6 =
S2

1(1 + T 2
2 ) + S2

2(1 + T 2
1 ) + S2

1S
2
2 + 2c1S1T1S

2
2 + 2c2S

2
1S2T2 + 2c+S1T1S2T2(

1 + S2
1 + 2c1S1T1 + T 2

1 + T 2
2

) (
1 + S2

2 + 2c2S2T2 + T 2
1 + T 2

2

) ,

U2,6 =
S2

2

(1 + T 2
1 )(1 + T 2

2 )
· U4,7

U3,6
,

u2,2 = U4,7 =
1 + T 2

1

1 + S2
2 + 2c2S2T2 + T 2

1 + T 2
2

,

u2,3 = U1,5 =
T 2

2

1− T 2
1

, (5.3)

with the shorthand notation

c1 = cos(ϕ1) , c2 = cos(ϕ2) , c+ = cos(ϕ1 + ϕ2) . (5.4)

Besides the six cross ratios uj,i, we have also listed U2,6. The latter is not independent, but

related to the set uj,i through a non-rational Gram determinant relation. Together, the

seven cross ratios (5.3) constitute a multiplicative basis for the set of all conformal cross

ratios of the heptagon. For the purpose of understanding analytic continuation paths in

the space of cross ratios, it is therefore sufficient to consider these seven.

Given the formulas (5.3), it is straightforward to obtain the following expressions for

the leading terms in the cross ratios as T1 and T2 are sent to zero,

u1,1 = U25 =
1

1 + S2
1

+O(Ti)

u1,2 = U37 =
S2

1(1 + S2
2)

S2
1 + S2

2 + S2
1S

2
2

+O(Ti) , u1,3 = U14 = T 2
1 +O(T 4

1 ) ,

u2,1 = U36 =
S2

1 + S2
2 + S2

1S
2
2

(1 + S2
1)(1 + S2

2)
+O(Ti) (5.5)

u2,2 = U47 =
1

1 + S2
2

+O(Ti) , u2,3 = U15 = T 2
2 +O(T 4

2 )

U26 =
(1 + S2

1)S2
2

S2
1 + S2

2 + S2
1S

2
2

+O(Ti) .
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Setting S1 = r1T1 and S2 = 1/(r2T2) in accordance with (2.10), the multi-Regge limit is

attained for Tj → 0, keeping rj finite. For the heptagon, one finds

r2
1 =

S2
1

T 2
1

=
1

w1w̄1
, F 2

1 =
w1

w̄1
, S2

1T
2
1 = r2

1T
4
1 = ε1 ,

r2
2 =

1

S2
2T

2
2

=
1

w2w̄2
, F 2

2 =
w2

w̄2
,

T 2
2

S2
2

= r2
2T

4
2 = ε2 . (5.6)

Note that the equations for Fi require to expand the expressions (5.3) for the cross ratios

to higher orders in small Ti, beyond the terms stated in eq. (5.5). One way to derive

eq. (5.6) is to solve the system of quadratic equations (2.5) for {w1, w̄1, w2, w̄2} in terms

of {Ti, Si, Fi = exp(iϕi)} using eqs. (2.4) and (5.3). Once this is done, one can insert the

result into the right hand side of eq. (5.6) (after picking appropriate branches of square

roots) to obtain the left hand side as leading terms in the collinear Ti → 0 expansion.

From the multi-Regge limit, the combined multi-Regge collinear limit is attained for

r1, r2 →∞. If we start in general kinematics {Tj , Sj , Fj}, we reach the collinear limit when

we send Tj → 0 while keeping Sj and Fj finite. We can then continue to the combined

multi-Regge collinear limit by setting S1 = r1T1 and S2 = 1/(r2T2), and taking the limit

rj →∞, keeping Tj � 1/rj .

5.2 The remainder function in multi-Regge kinematics

The heptagon remainder function is known to possess a non-trivial multi-Regge limit in

four Mandelstam regions. These regions are associated with the four different sign choices

of the energies p0
i , i = 4, 5, 6, in which at least two energies are flipped. At least for

three of these regions, the remainder function in multi-Regge kinematics at two loops is

known.8 As in the case of the hexagon, the two-loop result receives contributions from

both LLA and NLLA. The regions % = (−−+) and % = (+−−) are the easiest, because

the answer involves exactly the same information that appears for the multi-Regge limit of

the hexagon, i.e. using the variables defined in eqs. (5.2) and (5.6), the multi-Regge limit

of the remainder function reads [18]

R−−+
7,(2) = f(ε1;w1) , R+−−

7,(2) = f(ε2;w2) , (5.7)

where f is the function we defined in eq. (4.7). For % = (−−−), the two-loop remainder

function is also known in the Regge limit, but it involves a new function g [18–20],

R−−−7,(2) = f(ε1; v1) + f(ε2; v2) + g(v1, v2) , (5.8)

where the variables

v1 =
w1w2

1 + w2
≡ −1/y , v2 = (1 + w1)w2 ≡ −x (5.9)

combine pairs of adjacent particles into clusters [20, 43]. The symbol of the function g was

determined in [20], and it can be used to constraint the function g. Based on symmetry

8For the last region (−+−), the remaining free coefficients where fixed in [23], see below.
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arguments, it was fixed up to 25 unfixed rational coefficients in [20]. If additional constraints

from single-valuedness, symmetries and collinear limits are taken into account, the function

g can be shown to take the following form, see appendix D and [22],

g(x, y) = −1/2Gs,x
0 Gs,y̌

0 Gs,y̌
1 + 1/2Gs,x

0 Gs,x
1 Gs,y̌

1 + 1/2Gs,y̌
0 Gs,x

1 Gs,y̌
1 − 1/2Gs,x

0 Gs,x
1 Gs,y̌

x

+ 1/2Gs,y̌
0 Gs,y̌

1 Gs,y̌
x −Gs,y̌

1 Gs,x
0,1 +Gs,y̌

x Gs,x
0,1 +Gs,x

0 Gs,y̌
0,1 −Gs,x

1 Gs,y̌
0,1 −Gs,y̌

x Gs,y̌
0,1

+Gs,x
1 Gs,y̌

0,x −Gs,y̌
0 Gs,y̌

1,x −Gs,x
1 Gs,y̌

1,x +Gs,y̌
1 Gs,y̌

1,x + 2Gs,y̌
0,1,x − 2Gs,y̌

1,1,x

+ κ0ζ2G
s,y̌
x + 2πi

[
κ1

(
(Gs,x

0 −Gs,x
1 )Gs,x

1 + (Gs,y̌
0 −Gs,y̌

1 )Gs,y̌
1

)
+ κ2(Gs,x

0 −Gs,x
1 )Gs,y̌

1 + κ3(Gs,x
0 −Gs,y̌

0 )Gs,y̌
x

]
. (5.10)

Here and in the following, we use the condensed notation Gs,z
a1,...,an ≡ Gs(a1, . . . , an; z), and

y̌ ≡ 1/y. The functions Gs are obtained by applying the single-valued map [44] to multiple

or Goncharov polylogarithms [45], which can be defined recursively as iterated integrals

G(a1, . . . , an; z) ≡


1

n!
logn z if a1 = . . . = an = 0 ,∫ z

0

dt

t− a1
G(a2, . . . , an; t) otherwise,

(5.11)

with G(; z) = 1. The expansion of this function in the collinear limit takes the form

[g(v1, v2)]CL = C−

(
2 log(r2) + 4πi(κ1 − κ3)

)
+ C+

(
(−6− 8πi(2κ1 + κ2)) log(r2)− 8πi(κ1 − κ3) log(r1)

+ 4πi(κ1 − κ3) +
π2κ0

3
− 4 log2(r2)− 4 log(r1) log(r2)− 4

)
+ C1

(
−π

2κ0

3
− 8πiκ3 log(r1)

)
− 8πiκ1C2 log(r2) , (5.12)

where we have used the abbreviated notation

C1 =
cos(ϕ1)

r1
, C2 =

cos(ϕ2)

r2
, C+ =

cos(ϕ1 + ϕ2)

r1r2
, C− =

cos(ϕ1 − ϕ2)

r1r2
. (5.13)

We see that all remaining coefficients κ0, . . . , κ3 in the function g survive the collinear limit,

and that they can be fixed by collinear data. In [22], the values of the coefficients for the

function g were determined to be9

κ0 = κ1 = κ2 = κ3 = 0 . (5.14)

There is one more Mandelstam region we need to discuss, namely the region % = (−+−). In

this case, the multi-Regge limit of the remainder function is known to take the form [18, 20],

R−+−
7,(2) = f(ε1, v1) + f(ε2, v2)− f(ε1, w1)− f(ε2, w2) + g̃(v1, v2) . (5.15)

9The analysis in [22] assumes a certain path of analytic continuation from the (+++) to the (−−−)

region.
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Here, f is the same function (4.7) that appears for the hexagon. The function g̃ was not

known until quite recently [23]. Our analysis provides a different route to determining

it. We shall use that the symbols of the remainder functions in the various Mandelstam

regions satisfy the following linear relation [20]

S[R−+−
7,(2) ] = S[R−−−7,(2) ]− S[R−−+

7,(2) ]− S[R+−−
7,(2) ] , (5.16)

and therefore the symbols of g and g̃ are identical:

S[g(v1, v2)] = S[g̃(v1, v2)] . (5.17)

Given that g and g̃ possess the same symbol, and that the constraints we imposed in order

to obtain the expression (5.10) for g did not make any reference to a specific Mandelstam

region, we conclude that the general Ansatz (5.10) is also valid for g̃. Of course, the values

of the four free parameters within this Ansatz do depend on the Mandelstam region, and

hence are expected to differ from those we stated for the Mandelstam region % = (−−−)

in eq. (5.14). In other words,

g̃(v4, v1) = g(v4, v1)
∣∣
κi→κ̃i

. (5.18)

We will determine the values of the parameters κ̃0, . . . , κ̃3 for the region % = (−+−) below.

The collinear expansions of the relevant hexagon functions are

[f(ε1,w1)]CL = 2C1 log(ε1) log(r1)+C1

(
4log2(r1)+8log(r1)+8

)
, (5.19)

[f(ε2,w2)]CL = 2C2 log(ε2) log(r2)+C2

(
4log2(r2)+8log(r2)+8

)
, (5.20)

[f(ε1,v1)]CL =C+ log(ε1)
(
2log(r1)+2log(r2)

)
(5.21)

+C+

(
4log2(r1)+4log2(r2)+8log(r2) log(r1)+8log(r1)+8log(r2)+8

)
,

[f(ε2,v2)]CL = log(ε2)
(
−C−+C+(2 log(r2)−1)+2C2 log(r2)

)
+C−

(
−4log(r2)−4

)
+C+

(
4log2(r2)+4log(r2)+4

)
+C2

(
4log2(r2)+8log(r2)+8

)
. (5.22)

Combining the above, we find that the collinear limit of the multi-Regge remainder function

in the four different Mandelstam regions is

[R−−+
7,(2) ]CL =2C1 log(ε1)log(r1)+C1(4log2(r1)+8log(r1)+8), (5.23)

[R+−−
7,(2) ]CL =2C2 log(ε2)log(r2)+C2(4log2(r2)+8log(r2)+8), (5.24)

[R−−−7,(2) ]CL =log(ε1)C+

(
2log(r1)+2log(r2)

)
+log(ε2)

(
−C−+C+(2log(r2)−1)+2C2 log(r2)

)
+C1

(
−2κ0ζ2−8πiκ3 log(r1)

)
+C2

(
(8−8πiκ1)log(r2)+4log2(r2)+8

)
+C+

(
(8−8πi(κ1−κ3))log(r1)+(6−8πi(2κ1+κ2))log(r2)

+2(κ0ζ2+4)+4πi(κ1−κ3)+4log2(r1)+4log2(r2)+4log(r2)log(r1)
)

+C−
(
4πi(κ1−κ3)−2log(r2)−4

)
, (5.25)

[R−+−
7,(2) ]CL =log(ε1)(C+(2log(r1)+2log(r2))−2C1 log(r1))+log(ε2)(C+(2log(r2)−1)−C−)

+C1

(
(−8−8πiκ̃3)log(r1)−2(κ̃0ζ2+4)−4log2(r1)

)
−C28πiκ̃1 log(r2)

+C+

(
(8−8πi(κ̃1−κ̃3))log(r1)+(6−8πi(2κ̃1+κ̃2))log(r2)

+2(κ̃0ζ2+4)+4πi(κ̃1−κ̃3)+4log2(r1)+4log2(r2)+4log(r2)log(r1)
)

+C−
(
4πi(κ̃1−κ̃3)−2log(r2)−4

)
. (5.26)
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Region u1,1 u1,2 u1,3 u2,1 u2,2 u2,3 U2,6

(−−+) −1 0 0 0 −1/2 1/2 0

(+−−) 0 1/2 −1/2 −1 0 0 0

(−−−) 0 0 0 0 0 0 −1

(−+−) 1 −1/2 1/2 1 1/2 −1/2 −1

Table 2. Winding numbers of basis cross ratios as one continues from the (+++) to into the four

different non-trivial Mandelstam regions.

This concludes our brief review of known results on the two-loop heptagon remainder func-

tion in multi-Regge kinematics. We are now prepared to compare with what we obtain when

we continue the collinear heptagon remainder function into the various Mandelstam regions.

5.3 Analytic continuation

As explained in section 2, we can reach all Mandelstam regions from the (+++) region by

analytic continuation of some of the forward energy variables p0
i , i = 4, 5, 6. For the four

non-trivial regions of the heptagon, these continuations entail the windings of the seven

cross ratios around the origin displayed in table 2. The entries of this table are produced

with the help of our formula (2.7). We note that in contrast to the hexagon, some of the

cross ratios possess half-windings around the origin. Let us also stress that in the (−−−) re-

gion, only the cross ratio U2,6 possesses a non-vanishing winding number around the origin.

Generators. As in the previous section, we first need to determine a generating set of

curves that can expose all the branch cuts in the collinear limit. In order to do so, let

us begin by listing all the branch cuts of the two-loop collinear remainder function. The

component functions in eq. (3.12) are linear combinations of products of logarithms log(xi)

and polylogarithms Li2(1− yi), Li3(1− yi). The arguments xi are ratios with factors10

xi ∈
{
S2

1 , 1 + S2
1 , S

2
2 , 1 + S2

2 , S
2
1 + S2

2 + S2
1S

2
2

}
. (5.27)

In addition, there are five different polylogarithm arguments yi:

y1 y2 y3 y4 y5

yi :
1 + S2

1

S2
1

1 + S2
2

S2
2

S2
1 + S2

2 + S2
1S

2
2

(1 + S2
1)S2

2

S2
1 + S2

2 + S2
1S

2
2

S2
1(1 + S2

2)

(1 + S2
1)(1 + S2

2)

S2
1 + S2

2 + S2
1S

2
2

(1− yi) : − 1

S2
1

− 1

S2
2

− S2
1

(1 + S2
1)S2

2

− S2
2

S2
1(1 + S2

2)
− 1

S2
1 + S2

2 + S2
1S

2
2

(5.28)

All expressions yi and 1 − yi are ratios of xi. Since Lin(z) has branch points at z = 1

and z = 0, the space of complex S2
1 and S2

2 contains r = 5 branch points at xi = 0.

10In their original form, the component functions also contain log(Si), which we can safely rewrite as

1/2 log(S2
i ). The logarithm arguments also contain factors (S2

1 + S2
2), but these are spurious: they cancel

out upon expanding all logarithms.

– 29 –



J
H
E
P
0
5
(
2
0
2
0
)
0
0
2

generator S2
1 S2

2

C1
S2
1

0Â−1
fix

C2
S2
1

0−1 S2
2

0−1

C3 fix
S2
2

0Ê−1

C4
S2
1

0Â−1
fix

C5 fix
S2
2

0Ê−1

Â = −S2
2/(1 + S2

2) Ê = −S2
1/(1 + S2

1)

Table 3. Tables of generators of the fundamental group. All generators except C2, move only one of

the S2
j variables. The C2 generator winds both S2

1 and S2
2 at the same time, so that S2

1 +S2
2 +S2

1S
2
2

winds exactly once in the clockwise direction.

Consequently, the fundamental group can be generated by five elements pν , ν = 1, . . . , 5.

We will now describe the precise curves Cν we shall use in order to represent the set of

generators, see table 3.

All curves start and end at positive values of S2
1 and S2

2 , since all the branch points xi =

0 are located where either S2
1 ≤ 0 or S2

2 ≤ 0. The first curve C1 keeps S2
2 constant. In the

space of S2
1 , it looks similar to the curve C2 we introduced in the discussion of the hexagon,

see table 1, except that now there is one more branch point at S2
1 = −S2

2/(1+S2
2) ∈ (−1, 0),

i.e. in between the two branch points at S2
1 = 0 and S2

1 = −1. C2 moves both variables

S2
1 and S2

2 at the same time, in such a way that S2
1 + S2

2 + S2
1S

2
2 winds in the clockwise

direction once. For C3, we keep S2
1 fixed and rotate S2

2 around 0, just like C1 of the hexagon

in table 1. C4 is similar: it rotates S2
1 around 0 and fixes S2

2 . C5 is the same as C1, but with

the roles of S2
1 and S2

2 interchanged.

It turns out that we can model these generators Cν with just circular movements of S2
1

and S2
2 around 0. More importantly, the generators Cν are chosen such that if an argument

1 − yi of a polylogarithm winds around yi = 0 under the action of Cν , then it also winds

around yi = 1, along a path that is homotopically equivalent to a circle in the yi plane.

This makes it easy to consistently pick the branches of the produced logarithms. Namely,

for all our generators Cν :

Cν Lin(1− yi) = Lin(1− yi)− sν(yi)
2πi

Γ(n)

(
log(yi − 1) + sν(yi)πi

)n−1
, (5.29)

where sν(yi) = ±1 is the counterclockwise winding number of yi around yi = 0 under the
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C1 C2 C3 C4 C5

u1,1 −1 0 0 0 0

u2,1 0 −1 0 0 0

U26 0 0 −1 0 0

u1,2 0 0 0 1 0

u2,2 0 0 0 0 1

C1 C2 C3 C4 C5

1− u1,1 0 −1 0 −1 0

1− u2,1 −1 0 0 0 −1

1− U26 0 0 0 −1 −1

1− u1,2 1 0 1 0 0

1− u2,2 0 1 1 0 0

Table 4. Winding numbers of cross ratios under the action of generators Ci.

action of the curve Cν . In addition, we have the obvious continuation rule

Cν log(x) = log(x) + sν(x)2πi . (5.30)

From our description of the curves Cν , it is not difficult to infer the winding numbers of

the variables xi and of the cross ratios Uij . The winding numbers of the arguments xi and

yi around zero are given in the following tables:

xi C1 C2 C3 C4 C5

S2
1 1 −1 0 1 0

1 + S2
1 1 0 0 0 0

S2
2 0 −1 −1 0 −1

1 + S2
2 0 0 0 0 −1

S2
1 + S2

2 + S2
1S

2
2 1 −1 0 0 −1

C1 C2 C3 C4 C5

y1 0 1 0 −1 0

y2 0 1 1 0 0

y3 0 0 1 0 0

y4 0 0 0 −1 0

y5 0 1 0 0 0

(5.31)

Here, a “1” means that the corresponding factor winds once around the origin, in the

mathematically positive sense (counterclockwise). The curves we have introduced have

the virtue that each of them winds exactly one of the cross ratios (5.5) around the origin,

as shown in table 4 on the left. Each cycle begins and ends in the region S2
1 , S

2
2 > 0,

and therefore 0 < Uij < 1 for all of the cross ratios (5.5). Besides winding one cross

ratio around the origin, each generator also winds two other cross ratios around Uij = 1,

as shown in table 4 on the right. The cross ratios u1,3 and u2,3 are not displayed, since

their leading collinear term does only depend on T1 and T2, respectively. In addition to

these full rotations of cross ratios Uij that start and end on the positive real line, we also

need to include possible curves that have half-integer winding numbers, as dictated by the

kinematics in table 2. That means that we allow cross ratios to move to the negative real

line above (winding number +1/2) or below (winding number −1/2) the origin, and we

choose to append such region-dependent continuations to the end of our curves, so that

we can just specify the correction terms to discontinuities generated by Cν for each region

separately (see appendix E). For the continuation of the cross ratios u1,3 and u2,3, that

implies substitutions of the collinear variables Tj → ±iTj , where the sign depends on the

sign of the half winding in table 2. That way, we need to consider continuations to negative

arguments only of pure logarithms produced by eq. (5.29).
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Discontinuities. Now let us focus on the discontinuities relevant for continuations into

the various Mandelstam regions. Using the variables (5.2), (5.6), we find the following

non-zero single discontinuities of the two-loop, near-collinear remainder function in the

combined multi-Regge collinear limit:

∆1R
ope
7,(2) = 2 log(ε1)C1 log(r1) + C1

(
4 log2(r1) + 8 log(r1) + 8

)
,

∆2R
ope
7,(2) = 2 log(ε2)C2 log(r2) + C2

(
4 log2(r2) + 8 log(r2) + 8

)
,

∆3R
ope
7,(2) = log(ε1)C+

(
2 log(r1) + 2 log(r2)

)
+ log(ε2)

(
2C2 log(r2) + C+(2 log(r2)− 1)− C−

)
+ C2

(
4 log2(r2) + 8 log(r2) + 8

)
+ C+

(
4 log2(r1) + 4 log(r2) log(r1) + 8 log(r1) + 4 log2(r2) + 6 log(r2) + 8

)
− C−

(
2 log(r2) + 4

)
, (5.32)

where we have used the abbreviated notation (5.13). In particular, the discontinuities

∆4R
ope
7,(2) and ∆5R

ope
7,(2) vanish. That is, the generators C4 and C5 act trivially on Rope

7,(2) in

the multi-Regge limit, which immediately shows that the representation of the fundamental

group is not faithful. Since C4 and C5 let only small cross ratios wind, this shows that the

remainder function on the main (+++) sheet has trivial monodromy in the combined

multi-Regge collinear limit when these small cross ratios wind around the origin. This

confirms earlier findings [20]. For the double discontinuities ∆i,j ≡ ∆i∆jR
ope
7,(2), we find:

∆1,2 =− log(ε1)C1− log(ε2)C+ +C1

(
−6log(r1)+4πi−4

)
+C+

(
4log(r1)−2log(r2)−4πi

)
,

∆2,1 = log(ε1)
(
C1−C+

)
+C1

(
−2log(r1)+4πi−4

)
+C+

(
2log(r1)−4πi+2

)
−2C− ,

∆1,4 = log(ε1)C1 +C1

(
6log(r1)+4πi+4

)
,

∆4,1 =− log(ε1)C1 +C1

(
2log(r1)−4πi+4

)
,

∆2,5 = log(ε2)C2 +C2

(
6log(r2)+4πi+4

)
,

∆5,2 =− log(ε2)C2 +C2

(
2log(r2)−4πi+4

)
,

∆3,4 = log(ε1)C+ +C+

(
6log(r1)+4log(r2)+4πi+4

)
,

∆4,3 =− log(ε1)C+− log(ε2)C+ +C+

(
2log(r1)+2log(r2)−4πi+4

)
,

∆3,5 = log(ε1)C+ +log(ε2)
(
C2 +C+

)
+C2

(
6log(r2)+4πi+4

)
+C+

(
2log(r1)+6log(r2)+4πi+2

)
−2C− ,

∆5,3 =− log(ε2)
(
C2 +C+

)
+C+

(
2log(r2)−4πi

)
+C2

(
2log(r2)−4πi+4

)
. (5.33)

Notably, the generators C4 and C5 act non-trivially on some of the single discontinuities.

The triple discontinuities ∆i,j,k ≡ ∆i∆j∆kR
ope
7,(2) are:

∆1,2,5 = ∆1,5,2 = ∆5,1,2 = ∆5,2,1 = ∆4,1,3 = ∆4,3,1

= −1

2
∆3,4,4 =

1

2
∆4,3,3 = −∆3,4,5 = −∆3,5,4 =− 2C+ ,
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∆1,2,4 = ∆1,4,2 = 2C+ − 4C1 , ∆1,2,2 = ∆2,1,1 = 4C1 − 4C+ ,

∆3,5,5 = −∆5,3,3 = 4C2 + 4C+ , ∆5,2,3 = ∆5,3,2 = −2C+ − 4C2 ,

∆1,4,4 = −∆4,1,1 = 4C1 , ∆2,5,5 = −∆5,2,2 = 4C2 . (5.34)

Continuation results. Having listed all the relevant discontinuities that remain non-

trivial in multi-Regge kinematics, we can now compute the collinear remainder function

in the various Mandelstam regions. For the regions % = (−−+), (+−−), and (−−−),

immediate candidates for admissible continuations are those along the curves C1, C2, and

C3, respectively. Indeed, one finds that[
R−−+

7,(2)

]CL
=
[
C1R

ope
7,(2)

]MRL
,

[
R+−−

7,(2)

]CL
=
[
C2R

ope
7,(2)

]MRL
, (5.35)[

R−−−7,(2)

]CL
=
[
C3R

ope
7,(2)

]MRL
, (5.36)

where we use the simple shorthand C̄i ≡ C−1
i for the inverse of the curve Ci, i.e. the curve

with opposite orientation. The right hand side of these three equations is computed from

the discontinuities we listed above (and the corrections for appended half-windings that are

listed in appendix E). What one obtains reproduces exactly the expressions in eqs. (5.23)–

(5.25), including the values (5.14) of the parameters κ0, . . . , κ3 that cannot be determined

by general constraints such as single-valuedness, symmetries, and collinear limits.

For the region % = (−+−), finally, we infer from table 2 and table 4 that the corre-

sponding curves must contain C̄1, C̄2, and C3. Of course the order in which we put these

generators matters for the continuation, but it cannot be determined from the winding

numbers alone. It turns out that we can obtain the correct result in several ways, including[
R−+−

7,(2)

]CL
=
[
C̄2C3C̄1R

ope
7,(2)

]MRL
=
[
C̄2C̄1C3R

ope
7,(2)

]MRL
=
[
C3C̄2C̄1R

ope
7,(2)

]MRL
. (5.37)

Once again, the continuation along the three paths on the right hand side is computed

with the help of the cut contributions we listed above, along with the corrections for

appended half-windings from appendix E. In all three cases, the result is the same, and it

agrees with formula (5.26), with the parameters κ̃i given by

κ̃0 = κ̃1 = κ̃2 = κ̃3 −
1

2
= 0 . (5.38)

These values are in agreement with the recent results in [22]. Let us note that in all

three paths in (5.37), the generators C̄1 and C̄2 appear in the same order. But there are

three more permutations in which the order of these two generators is reversed. For these

remaining three paths, it is necessary to involve additional generators C4 and C5 in order

to get the correct result, e.g.[
R−+−

7,(2)

]CL
=
[
C̄5C4C̄1C̄2C3C̄4C5R

ope
7,(2)

]MRL
. (5.39)

It turns out that the precise dressing of the path with the generators C4 and C5 can be

determined by matching to the LLA on the left hand side. Once the dressing is known,

one can use it to compute the NLLA, and one finds again full agreement with eqs. (5.26)

and (5.38). The same is true for the remaining two orders in which we can place our three

generators C̄1, C̄2 and C5. Some more detailed comments on the derivation of these results

are collected in the final subsection.
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C5

C3

C4

C1 C2

Figure 3. Commutation relations between generators. An edge between two generators Ci and

Cj corresponds to a non-trivial commutator [Ci, Cj ]. Notably, we find that whenever a commutator

vanishes, [Ci, Cj ]=0, the double discontinuities ∆i,j and ∆j,i also vanish.

5.4 Analysis of continuation paths

This final subsection contains a number of detailed comments on the results we summarized

in eqs. (5.37)–(5.39) at the end of the previous subsection. As we explained above, each of

the Mandelstam regions is reached by a curve that must satisfy the total winding conditions

of table 2. The latter comes purely from kinematical considerations. We view the curves

as monomials in noncommutative generators Cν , so that the total winding fixes the total

power of each generator in these monomials. In case some cross ratios undergo half-

windings, these are added at the end, after all the full windings have been carried out. The

noncommutative structure of the fundamental group starts to reveal itself at the level of

the double discontinuities. Let us note that some generators Ci commute in our two-loop

analysis. In fact, two generators Ci, Cj commute iff ∆A,i,j,B = ∆A,j,i,B for all (possibly

empty) A and B. From the tables of discontinuities (5.33) and (5.34), we see that for

example C3 commutes with both C1 and C2. We collect the commutation relations among

all generators in figure 3. After these introductory comments, let us now briefly consider

the four different Mandelstam regions.

5.4.1 The Mandelstam regions (−−+) and (+−−)

Even though the combined multi-Regge collinear limit (5.23) and (5.24) of the remainder

function in the regions (−−+) and (+−−) reproduces formula (4.10) for the hexagon,

the derivation through analytic continuation from the Wilson loop OPE is not quite the

same. On the one hand, the heptagon case involves some half-windings that need to be

taken into account, see table 2. On the other hand, the two-loop functions h2, h̄2 in the

expression (3.12) for the collinear heptagon remainder function constitute a new ingredient

that does not appear for the hexagon. In addition, there are also more generators to

consider for the heptagon.

It turns out that there is a natural choice of the continuation curve, dictated by the

structure of the OPE prediction (3.12) that agrees with the previous analysis. In the

(−−+) and (+−−) regions, as one can see from the lists of discontinuities in eq. (5.32)

together with the half-winding corrections shown in (E.2) and (E.4), the contributions from

h2 and h̄2 to the analytic continuations along the curves C1 and C2 respectively are trivial
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in the combined multi-Regge collinear limit:

∆
(−−+)
1 h2 = ∆

(−−+)
1 h̄2 = ∆

(+−−)
2 h2 = ∆

(+−−)
2 h̄2 = 0. (5.40)

This leaves only the hexagonal functions f̃1 and f̃2 to contribute to these simplest contin-

uation curves, which then leads to exactly the same form shown in eq. (5.23) and (5.24)

of the heptagonal remainder function in these two regions. Hence, in the end, the results

of the continuation along the simplest curves for the (−−+) and (+−−) regions do boil

down to the hexagon case, albeit in a somewhat nontrivial manner.

5.4.2 The Mandelstam region (−−−)

The collinear limit of the remainder function (5.25) contains four free parameters κ0, . . . , κ3

that are not fixed by general considerations. Under some assumptions on the complexity of

the path of continuation, we can fix these unknowns. In order to do so, we first constrain

the paths using only information about the LLA in eq. (5.25). Subsequently, we can

use any such LLA-admissible path to determine the free parameters in NLLA. As in the

hexagon case (4.21), we accomplish this by constructing a general Z-linear combination of

discontinuities,[
R−−−7,(2)

]CL
=

(
2πi

∑
i

ci∆i+(2πi)2
∑
i,j

ci,j∆i∆j+(2πi)3
∑
i,j,k

ci,j,k∆i∆j∆k

)
Rope

7,(2) , (5.41)

and match it against (5.25). Here, we include only non-zero discontinuities,

see (5.32), (5.33) and (5.34), which means that we need to find 5 linear coefficients ci,

10 quadratic coefficients ci,j and 22 cubic coefficients ci,j,k. The total winding conditions

from table 2, together with the dictionary in table 4, fix the linear coefficients ci to

{c1, c2, c3, c4, c5} = {0, 0, 1, 0, 0} . (5.42)

Matching at LLA, we obtain four constraints on the quadratic coefficients ci,j . Next, we

exploit that only special linear combinations in eq. (5.41) can actually come from some

continuation curve, therefore there must be additional constraints on the coefficients ci,j
and ci,j,k. One such condition is discussed in eq. (2.22): one can express ci,j = cicj − cj,i,
which reduces the number of unknowns by 5.

We fix the remaining uncertainty in the coefficients by considering an Ansatz for the

curve of continuation. From the structure of the commutation relations shown in figure 3,

we see that the most general continuation curve that has only one instance of C3 and does

not involve C1 or C2 is

γ = Cα1
4 Cα2

5 C3Cα3
4 Cα4

5 . (5.43)

Assuming such a curve, all coefficients {ci, ci,j , ci,j,k} can be expressed in terms of the expo-

nents {α1, α2, α3, α4} via (2.18). Using the conditions (5.41) in LLA with the values (5.42)

put in, the solution is unique:

α1 = α2 = α3 = α4 = 0 , (5.44)
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which motivates our choice of the simplest continuation curve for the (−−−) region

in (5.36). With this curve, we can then compute the NLLA part of the remainder function

R−−−7,(2) , and fix the four coefficients κi in the Ansatz (5.10) to assume the values (5.14) we

stated before. Thereby, we have determined all the unknowns in our Ansatz for R−−−7,(2) .

The numerical values for the κi we obtain are in full agreement with [22].

5.4.3 The Mandelstam region (−+−)

After our detailed discussion of the region (−−−), we can be rather brief for the remaining

case (−+−). For the latter, the winding number conditions force us to continue along a

composite curve that must involve C̄1, C̄2 and C3. In addition, it can certainly also contain

C4 and C5, as in the previous subsection. Table 2 shows that the Mandelstam region

% = (−+−) also involves some half-windings, so that the continuation requires results from

appendix E in addition to the discontinuities we listed in the previous subsection.

Assuming that the generators C3, C̄1, and C̄2 each appear only once in the path-

monomial, and taking into account the commutation relations of figure 3, we find that

there exist six different classes of possible curves

γ123 = Cα1
4 Cα2

5 C̄1C̄2Cα3
4 Cα4

5 C3Cα5
4 Cα6

5 , γ213 = Cα1
4 Cα2

5 C̄2C̄1Cα3
4 Cα4

5 C3Cα5
4 Cα6

5 , (5.45)

γ132 = Cα1
4 Cα2

5 C̄1Cα3
4 C3Cα4

5 C̄2Cα5
4 Cα6

5 , γ231 = Cα1
4 Cα2

5 C̄2Cα3
5 C3Cα4

4 C̄1Cα5
4 Cα6

5 , (5.46)

γ312 = Cα1
4 Cα2

5 C3Cα3
4 Cα4

5 C̄1C̄2Cα5
4 Cα6

5 , γ321 = Cα1
4 Cα2

5 C3Cα3
4 Cα4

5 C̄2C̄1Cα5
4 Cα6

5 . (5.47)

By matching at LLA, for γ123, γ132 and γ312 we obtain the following constraints on the

exponents of the generators C4 and C5:

α1 = α2 = α3 = α4 = α5 = α6 = 0 . (5.48)

Similarly, one can also evaluate the constraints from the LLA for the paths γ213, γ231 and

γ321 to find that

−α1 = α2 = α5 = −α6 = 1 (5.49)

α3 = α4 = 0 . (5.50)

With these constraints implemented, one can now proceed and compute the NLLA through

analytic continuation of eq. (3.12). For all six curves, one obtains the same result (5.26) with

the NLLA coefficients (5.38). Our analysis has indeed confirmed the paths we anticipated

in eqs. (5.37), (5.39).

6 Conclusions and outlook

In this work, we have proposed a new tool to determine the finite remainder function for

all Mandelstam regions in multi-Regge kinematics. Our constraints were obtained through

analytic continuation of known expressions for the remainder function on the main sheet

in collinear kinematics. This input into our analysis is provided by the Wilson loop OPE,

and is in principle available for any number of external gluons and any loop order. We
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illustrated the general procedure in two examples, namely the hexagon and the heptagon

at two loops. While the hexagon case admits only a single non-trivial Mandelstam region,

there are four such regions for the heptagon. For one of these regions, the multi-Regge

limit of the two-loop finite remainder was only determined quite recently in [23], though

the leading logarithmic terms were known for some time [43].

Pushing this analysis to higher loops is not that difficult in principle. As we stressed

above, the relevant input from the Wilson loop OPE is available. Here, we made some effort

to express the two-loop collinear remainder function in terms of ordinary polylogarithms.

That helped with the analytic continuation, but is not crucial. We could have been content

with expressions involving Goncharov’s multiple polylogarithms. The relevant expressions

are considerably more bulky, but they can still be continued with computer algebra tech-

niques [46]. For the hexagon, there is nothing new to learn, since the multi-Regge limit of

the remainder function is known to all orders [10]. On the other hand, higher-loop results

for the multi-Regge limit of the remainder function with more than six external gluons are

scarce. For the heptagon remainder function, for example, only the LLA is known to all or-

ders in the coupling and for all Mandelstam regions [17, 18]. It would therefore be very inter-

esting to extend our analysis of the heptagon to higher loops. Of course, the ultimate hope

would be to obtain all-loop expressions for all Mandelstam regions by analytically continu-

ing the Wilson loop OPE at finite coupling, i.e. without expanding in the ’t Hooft coupling,

as done in [10] for the hexagon. Right now, this seems difficult, especially for the % = (−+−)

region. The perturbative analysis we carried out above and its extension to higher orders

is a rather pedestrian approach that could help to obtain insights into the appropriate con-

tinuation paths, and thereby valuable input for the more ambitious finite-coupling analysis.

The potential issues with finding the correct path of analytic continuation were seen

at strong coupling already. At infinite ’t Hooft coupling, the most non-trivial contribution

to the remainder function may be interpreted as the free energy of an integrable one-

dimensional quantum system [47]. For generic kinematics, this is still difficult to compute,

because the elementary particles of the one-dimensional system are screened by clouds

of excitations. As was shown in [15, 25], however, the multi-Regge limit in the gauge

theory amounts to sending all masses in the one-dimensional auxiliary system to infinity,

and hence it suppresses the difficult quantum fluctuations. As a result, in computing the

free energy, one only has to solve for a finite set of Bethe roots rather than for a set of

particle densities that are determined as solutions of a coupled set of non-linear integral

equations [48]. Which roots contribute for a given Mandelstam region, however, depends

on the continuation path. For the hexagon, and for three of the four Mandelstam regions

in the heptagon, the relevant solutions were found in [15, 26]. But in the case of the region

% = (−+−), the suggested continuation path was shown to be associated with the trivial

solution of the Bethe Ansatz equations, even though its winding numbers correctly satisfy

the kinematic constraints (2.7). In the light of our analysis in section 5, and in particular

the insight we gained into the choice of paths close to the collinear limit, it would be

interesting to revisit this issue at strong coupling.

Our perturbative analysis above was restricted to the leading terms in the collinear

limit. It would certainly be of interest to include higher-order corrections in the variables
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Figure 4. Shifted heptagon kinematics: the collinear limit of the Wilson-loop OPE (tessellation

shown in red) has a non-trivial overlap with the multi-Regge limit (kinematics shown in black)

for three different cyclic shifts xi → xn−k, where k = 0, 1, 4. The shifts k = 0, 1 are related by

symmetries, but the shift k = 4 is an independent combined multi-Regge collinear limit.

Ti. This requires to consider contributions from gluon bound-state excitations of the GKP

string, extending the resummations of [35]. Continuing additional terms in the expansion

around the collinear limit could provide additional information on the remainder function

in the various Mandelstam regions.

There is actually another way in which our analysis may be extended to obtain further

information on the multi-Regge remainder function. The combined multi-Regge collinear

limit with the coordinates introduced in section 2.2 probes the neighborhood of a particular

codimension-two subregion of the heptagon multi-Regge limit. We can probe different

regions by cyclically shifting the kinematics xi → xi−k on the Wilson loop OPE side. The

collinear limit described by the Wilson loop OPE will not have an overlap with the multi-

Regge limit for all shifts k, but it does have a non-trivial overlap for k = 1 and for k = 4

(for a non-trivial overlap, the “small” cross ratios uj,k, j = 5, 6, k = 2, 3 must become

small when T1, T2 → 0.). For the heptagon, the kinematics with a shift k = 1 are related

to k = 0 by a combination of target-projectile symmetry (pi → p3−i) and reversing the

OPE variables {F, S, T}1 ↔ {F, S, T}2 and hence does not yield independent information

on the Regge limit. The shift k = 4 does contain new information. In addition, it is a very

symmetric choice, see figure 4. For the analysis in this paper, the constraints from k = 0

were sufficient to fix all unknowns, and we merely used the independent constraints from

k = 4 to cross-check our results. But at higher loop orders it might be useful to combine

the constraints from k = 0 and k = 4 to determine the remainder function.

Let us finally also mention the extension to higher numbers of external gluons. The

multi-Regge limit of the remainder function R8 for n = 8 external gluons probes a new cut

that can be associated with the eigenvalue of a non-compact Heisenberg spin chain of length

three [49]. While in leading logarithmic order this eigenvalue is simply the sum of eigenval-

ues for a spin chain of length two, higher orders give rise to terms which represent a new
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three-body interaction between reggeized gluons [50]. Again, the detailed composition of R8

depends upon the kinematic region. The next extensions of the spin chain are expected to

be seen in the n = 10 point scattering process, 2→ 8, the n = 12 point process, 2→ 10, etc.

One of the challenges will be to find, beyond the LLA, the eigenvalues of this spin chain. The

three-body interaction found in [50] raises some doubts whether they are simply obtained

from the sum of two-body interactions. This issue certainly deserves further investigation.
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A Explicit BSV-like tessellation variables

In section 2.2, we recalled the parametrization of general null polygons in terms of conformal

transformations that preserve internal null tetragons of the tessellated polygon, as well as

the relation between the associated tetragon variables

Tj = e−τj , Sj = eσj , Fj = eiϕj (A.1)

and the multi-Regge limit. In the following, we will define these variables explicitly. Both

the external and the internal null lines of the tessellation are conveniently parametrized

by four-component momentum twistors Zj , j = 1, . . . , n, such that xi ' (Zn,i, Zn,i+1) [51].

The momentum twistors Zj are obtained by acting with the conformal transformations

parametrized by {Fi, Si, Ti} on a fixed reference polygon given by reference momentum

twistors Zj . Following and generalizing appendix A of [2], we choose for our reference

polygons for n = 6, . . . , 9:

Z7,1 = Z8,1 = Z9,5 = (0, 2,−1, 1) ,

Z6,1 = Zint
7,c = Zint

8,c = Zint
9,c = (0, 1,−1, 1) ,

Z6,2 = Z7,2 = Z8,2 = Z9,6 = (0, 1, 0, 0) ,

Z6,3 = Z7,3 = Z8,3 = Z9,7 = (0, 1, 1, 0) ,

Z6,4 = Z7,4 = Z8,4 = Zint
9,e = (1, 0, 1, 1) ,

Z6,5 = Z7,5 = Z8,5 = Z9,1 = (1, 0, 0, 0) ,

Z6,6 = Z7,6 = Z8,6 = Z9,2 = (−1, 0, 0, 1) ,

Zint
6,a = Zint

7,a = Zint
8,a = Zint

9,a = (0, 0, 1, 0) ,

Zint
6,b = Zint

7,b = Zint
8,b = Zint

9,b = (0, 0, 0, 1) ,
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Z7,7 = Zint
8,d = Zint

9,d = (−1, 1,−1, 3) ,

Z8,7 = Z9,3 = (0, 1,−1, 2) ,

Z8,8 = Z9,4 = (1, 0, 1,−3) ,

Z9,8 = (1, 1, 3, 1) ,

Z9,9 = (2, 0, 1, 1) . (A.2)

Here, Zn,i, i = 1, . . . , n, parametrizes the reference n-gon, and the momentum twistors Zint
n,x

are associated to the internal lines x = a, . . . , e, see figure 2. The full n-gon parametrization

is obtained by acting with the stabilizing matrices of the internal tetragons as follows:

Z6,3 = Z6,3M1 , Z8,5 = Z8,5M2 , Z9,8 = Z9,8M4M1 ,

Z6,4 = Z6,4M1 , Z8,4 = Z8,4M1M
′
2 , Z9,9 = Z9,9M4M1 ,

Z8,3 = Z8,3M1M
′
2 , Z9,7 = Z9,7M1 ,

Z7,3 = Z7,3M1 , Z8,a = Z8,aM2 , Z9,e = Z9,eM1 ,

Z7,4 = Z7,4M1 , Z8,7 = Z8,7M
−1
3 , Z9,3 = Z9,3M

−1
3 M−1

2 ,

Z7,7 = Z7,7M
−1
2 , Z8,8 = Z8,8M

−1
3 , Z9,4 = Z9,4M

−1
3 M−1

2 ,

Z7,1 = Z7,1M
−1
2 , Z9,5 = Z9,5M

−1
2 ,

Z9,d = Z9,dM
−1
2 , (A.3)

with all other Zn,i = Zn,i. In terms of the variables (A.1), the stabilizing matrices Mj are

defined by the relation


Zright

Zleft

Zbottom

Ztop

Mj =
√
Fj


1/(FjSj) 0 0 0

0 Sj/Fj 0 0

0 0 Tj 0

0 0 0 1/Tj




Zright

Zleft

Zbottom

Ztop

 . (A.4)

Here, the momentum twistors Z parametrize the respective internal square, see figure 2.

Note that compared to appendix A of [2], top and bottom as well as left and right are

reversed. Also, due to the alternating nature of the tessellation, the notions “left” and

“right” interchange from one internal tetragon to the next. Explicitly, the stabilizing
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matrices are given by11

M1 =
√
F1


S1
F1

0 0 0

0 1
F1S1

0 0

0 0 1
T1

0

0 0 0 T1

 , M2 =
√
F2


1

F2S2
0 0 − 1

F2S2
+ 1

T2

0 S2
F2

0 0

0 S2
F2
− T2 T2

1
T2
− T2

0 0 0 1
T2

 ,

M3 =
√
F3



2S3
F3
− T3 T3 − 1

T3
1
T3
− T3 −2S3

F3
+ 3T3 − 1

T3

0 2
F3S3

− 1
T3

1
T3
− 1

F3S3

1
F3S3

− 1
T3

S3
F3
− T3 T3 + 2

F3S3
− 3

T3
−T3 − 1

F3S3
+ 3

T3

1−S2
3

F3S3
+ 3T3 − 3

T3

S3
F3
− T3 T3 − 1

T3
1
T3
− T3 −S3

F3
+ 3T3 − 1

T3

 ,

M4 =
√
F4


1

F4S4
0 0 0

0 S4
F4

S4
F4
− T4 0

0 0 T4 0
1
T4
− 1

F4S4
0 1

T4
− T4

1
T4

 . (A.5)

Using the four-bracket combinations 〈i, j, k, l〉 := det(ZiZjZkZl) of these variables, one can

express the cross ratios shown in eq. (2.3) as:

Uij =
〈i, i+ 1, j + 1, j + 2〉〈i+ 1, i+ 2, j, j + 1〉
〈i, i+ 1, j, j + 1〉〈i+ 1, i+ 2, j + 1, j + 2〉 . (A.6)

Plugging the momentum twistors Zi into this formula, one recovers the hexagon and hep-

tagon cross ratios stated in eqs. (4.4) and (5.3). For convenience, we reproduce their

collinear limits (4.5) and (5.5) here: for T1 → 0, the hexagon cross ratios become:

u1,1 = U25 →
1

1 + S2
, u1,2 = U36 →

S2

1 + S2
, u1,3 = U14 → T 2 (A.7)

The heptagon cross ratios in the collinear limit Ti → 0 read:

u1,1 = U25 →
1

1 + S2
1

, u1,2 = U37 →
S2

1(1 + S2
2)

S2
1 + S2

2 + S2
1S

2
2

, u1,3 = U14 → T 2
1 ,

u2,1 = U36 →
S2

1 + S2
2 + S2

1S
2
2

(1 + S2
1)(1 + S2

2)
, u2,2 = U47 →

1

1 + S2
2

, u2,3 = U15 → T 2
2 ,

U26 →
(1 + S2

1)S2
2

S2
1 + S2

2 + S2
1S

2
2

. (A.8)

For the octagon and nonagon cross ratios, we will only state their collinear limits, as their

full expressions can easily be reproduced from the above formulæ. We will use the following

11The stabilizing matrix M4 has a relatively simple form compared to M3, because we chose to extend

the octagon at the top rather than at the bottom. This choice simplifies the expressions for the cross ratios,

in particular in general kinematics, away from the collinear limit.
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shorthands:

S2
12 = S2

1 + S2
2 + S2

1S
2
2 ,

S2
23 = S2

2 + S2
3 + S2

2S
2
3 ,

S2
14 = S2

1 + S2
4 + S2

1S
2
4 ,

S2
123 = S2

2 + S2
1S

2
2 + S2

1S
2
3 + S2

2S
2
3 + S2

1S
2
2S

2
3 , (A.9)

S2
124 = S2

1 + S2
1S

2
2 + S2

1S
2
4 + S2

2S
2
4 + S2

1S
2
2S

2
4 ,

S2
1234 = S2

1S
2
2 + S2

1S
2
3 + S2

2S
2
4 + S2

1S
2
2S

2
3 + S2

1S
2
2S

2
4 + S2

1S
2
3S

2
4 + S2

2S
2
3S

2
4 + S2

1S
2
2S

2
3S

2
4 .

With these abbreviations, the octagon cross ratios in the collinear limit Ti → 0 become:

U25 →
1

1 + S2
1

, U38 →
S2

1(1 + S2
2)

S2
12

, U14 → T 2
1 ,

U36 →
S2

123

(1 + S2
1)S2

23

, U48 →
1

1 + S2
2

, U15 → T 2
2 ,

U47 →
(1 + S2

2)S2
3

S2
23

, U58 → T 2
3 , U16 →

1

1 + S2
3

,

U26 →
(1 + S2

1)S2
2(1 + S2

3)

S2
123

, U37 →
S2

12S
2
23

(1 + S2
2)S2

123

, U27 →
S2

123

S2
12(1 + S2

3)
. (A.10)

The nonagon cross ratios in the collinear limit read:

U25 →
1

1 + S2
3

, U39 →
(1 + S2

2)S2
3

S2
23

, U14 → T 2
3 ,

U36 →
S2

123

S2
12(1 + S2

3)
, U49 →

1

1 + S2
2

, U15 → T 2
2 ,

U47 →
S2

124

S2
12(1 + S2

4)
, U59 → T 2

1 , U16 →
1

1 + S2
1

,

U58 →
1

1 + S2
4

, U69 → T 2
4 , U17 →

(1 + S2
1)S2

4

S2
14

,

U26 →
(1 + S2

1)S2
2(1 + S2

3)

S2
123

, U37 →
S2

12S
2
1234

S2
123S

2
124

, U48 →
S2

1(1 + S2
2)(1 + S2

4)

S2
124

,

U27 →
S2

123S
2
14

(1 + S2
1)S2

1234

, U38 →
S2

23S
2
124

(1 + S2
2)S2

1234

, U28 →
S2

1234

S2
23S

2
14

. (A.11)

All expressions in (A.7)–(A.11) hold up to linear terms in the Ti variables, except for the

cross ratios of the form T 2
j , which further expand as T 2

j +O(T 3
j ) +

∑
i 6=j O(Ti).

Starting with the cross ratio expressions in general kinematics, we can express all Si
in terms of riTi, and further all ri and Fi in terms of wi and w̄i via (2.10) and (2.11).

Subsequently taking the limit Ti → 0 (i.e. a double-scaling limit in Ti and Si), we recover

the multi-Regge-limit parametrizations (2.15) of the reduced cross ratios uj,2/(1−uj,1) and

uj,3/(1− uj,1).
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x′j+5

x′j+4

x′j+3

x′j+2
xj+2

xj+3

xj+4

xj+5

Z2

Zj+2

Zj+3

Zj+4

Zj+5

Zj+6

Z int
j+2

Z int
j+3

Z int
j+4

Z int
j+5

Z int
j = 〈1, 2, 3, j〉Zj+1

− 〈1, 2, 3, j + 1〉Zj

Figure 5. A multi-Regge friendly tessellation. Left: inner tetragon (red) stabilized by τj , σj , and

ϕj , together with the surrounding hexagon (green) that defines the cross ratios (B.1). The primed

coordinates all lie on the line x12. For an n-sided polygon, there are in total n−5 internal tetragons,

indexed by j = 1, . . . , n − 5. Middle: the corresponding momentum-twistor configuration. Right:

formula for the “internal” momentum twistors Z int
j that define the primed coordinates x′j .

B A multi-Regge-friendly tessellation for any n

The Wilson loop OPE of [1, 2] relies on a tessellation of the null polygon into internal

null squares. As shown in section 2.2 and appendix A, the multi-collinear limit, where the

Wilson loop OPE applies, has a non-trivial overlap with the multi-Regge limit for up to

nine points. Beyond nine points, the collinear Ti → 0 limit of the “alternating” tessellation

employed by the OPE has no overlap with the multi-Regge limit.

In the following, we will describe a slightly modified tessellation whose multi-collinear

Ti → 0 limit does feature an overlap with the 2→ n− 2 multi-Regge limit for any number

n of edges, with canonical relations between all relevant parameters and cross ratios. Even

though an OPE formula for this tessellation is not known to date, the tessellation variables

do provide a multi-Regge friendly parametrization of the general n-gon and thus might be

of use in the future. It would be very interesting to generalize the Wilson loop OPE to

this type of tessellation.

The tessellation. As in the tessellation employed in [1, 2] and in the main text of this

paper, our modified tessellation decomposes the n-gon into (n− 5) internal tetragons and

two boundary tetragons. The tessellation is defined by the (unique) null lines from cusps

x4, . . . , xn−1 to line x12, intersecting the line x12 at points x′4, . . . , x
′
n−1, see figure 1 and
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figure 5 (left). As before, each internal null tetragon (xj+3, xj+4, x
′
j+4, x

′
j+3) is preserved by

three conformal transformations that we parametrize by variables τj , σj , ϕj , j = 1, . . . , n−
5, following [1, 2, 27, 30]. Acting with these conformal transformations on all cusps xi, i ∈
{j+5, . . . , n, 1} that lie below that internal tetragon generates all conformally inequivalent

configurations.12 The tetragon variables τj , σj , ϕj can be expressed in terms of the cross

ratios u′j,1, u′j,2, and u′j,3 of the surrounding internal hexagon (see figure 5),

u′j,1 = U(j+2)′,j+4,j+2,j+5 ,

u′j,2 = Uj+2,j+5,j+3,(j+5)′ ,

u′j,3 = U(j+5)′,j+3,(j+2)′,j+4 ,

Ui,j,k,l =
x2
ilx

2
jk

x2
ijx

2
kl

, xij ≡ |xi − xj | , (B.1)

via

u′j,1 =
1− e−2τj

1 + e2σj + 2 eσj−τj cosϕj
,

u′j,2
u′j,1

= e2σj , u′j,3 = e−2τj . (B.2)

As before, we shall also use the exponentiated variables (2.9)

Tj = e−τj , Sj = eσj , Fj = eiϕj . (B.3)

The limit in which all τj are large, that is Tj � 1, again is a multi-collinear limit. The

multi-Regge regime, on the other hand, corresponds to a double scaling limit where Tj � 1

and Sj � 1 while the ratios Sj/Tj ≡ rj are kept finite.

Our choice of tessellation is such that each triple of cross ratios {uj,1, uj,2, uj,3} is

associated to one of the inner null tetragons, namely the tetragon that is invariant under τj ,

σj , and ϕj . This is illustrated in figure 6: in the limit Tj → 0, the lower part of the polygon

is flattened to the bottom of the tetragon, which sends uj,3 → 0. In this limit, the variable

Sj controls the positions of all cusps on the upper line of the tetragon. Upon sending Sj →
0, all cusps on that line approach the point xj+4 on the left, which implies that uj,1 → 1

and uj,2 → 0, as required by the multi-Regge limit.13 More precisely, for fixed j we have

uj,1 → 1 +O(T 2
j ) , uj,2 → O(T 2

j ) , uj,3 → O(T 2
j ) for Tj → 0 with Sj/Tj fixed. (B.4)

Even though not apparent in figure 6, all other cross ratios ui,k, i 6= j, remain finite in

this limit. The exact expression of uj,k in terms of rj = Sj/Tj and Fj depend on the

normalizations of τj , σj , and ϕj , as well as on the choice of “reference polygon” obtained

when τj , σj , ϕj = 0. We found it possible to choose normalizations and reference polygons

such that with

r2
j =

S2
j

T 2
j

=
1

wjw̄j
, F 2

j =
wj
w̄j

, S2
j T

2
j = r2

jT
4
j = εj , (B.5)

12Unlike in appendix A, we choose to let the three conformal transformations of each tetragon act on the

bottom part of the polygon. Acting instead with the inverse conformal transformations on the top part of

the polygon yields a conformally equivalent configuration. Consistently, in the definition of the conformal

transformations via (B.11) below, the orientation of the internal tetragon (“top” and “bottom” momentum

twistors) is flipped relative to (A.4).
13Conversely, all points on the lower line approach x1 on the right when sending Sj →∞.
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x1

x2

xn

xj+1

xj+2

xj+3

xj+4

xj+5

uj,1

uj,2

uj,3

Tj→ 0−−−−→

x1

x2

xj+1

xj+2

xj+3

xj+4

Sj → 0 Sj → ∞

Figure 6. One inner null tetragon (gray dashed lines) with the associated “large” cross ratio

uj,1 (orange, solid) and “small” cross ratios uj,2 (blue, dashed) and uj,3 (green, dotted). Upon

sending Tj → 0, the lower part of the polygon flattens to the bottom of the tetragon, implying

uj,3 ∼ T 2
j → 0. Further sending Sj → ∞ shifts all points on the lower null line to the right.

Conversely, sending Sj → 0 shifts all points to the left. One can easily see that uj,1 → 1, uj,2 → 0

when Sj → 0, as required by the multi-Regge limit.

the cross ratios satisfy the wanted Regge limit relations (2.5) and (2.12), namely

uj,2
1− uj,1

=
1

|1 + wj |2
+
∑
i

O(T 2
i ) ,

uj,3
1− uj,1

=
|wj |2
|1 + wj |2

+
∑
i

O(T 2
i ) ,

uj,2 uj,3 = εj

(
1 +

∑
i 6=j
O(T 2

i )

)
+O(T 5

j ) , j = 1, . . . , n− 5 (B.6)

when Tj → 0 with rj = Sj/Tj fixed for all j. On the other hand, in the multi-collinear

limit Tj → 0 with Sj finite for all j, the relevant cross ratios become

uj,1 =
1 + S2

j−1(1 + S2
j )

(1 + S2
j−1)(1 + S2

j )
+
∑
i

O(Ti) ,

uj,2 =
Aj

1 +Aj
+
∑
i

O(Ti) , uj,3 = T 2
j

(
1 +

∑
i 6=j
O(T 2

i )

)
, (B.7)

where

S2
j =

Aj
1 +Aj+1

, j = 1, . . . , n− 5 . (B.8)

In these formulas, the index j runs through j = 1, . . . , n − 5 and we need to supply the

boundary conditions

An−4 = S0 = 0 (B.9)

to make our formulas well defined. Subleading terms in the expansions (B.6) and (B.7)

are provided in (B.19) and (B.22) below.

The parametrization of the multi-Regge cross ratios (2.4) in general kinematics in terms

of the tetragon variables Tj , Sj , Fj is well adapted to the combined multi-Regge collinear
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limit for any number n of external gluons. We do not state general formulas for the uj,a in

terms of the tetragon variables here, but will do so for n = 6, 7 below.14 All this requires

is to work out relations between the u′j,a defined in eq. (B.1) and the cross ratios (2.4) we

use in the multi-Regge limit.

Momentum twistors. We will now state our parametrization explicitly. As before, we

employ four-component momentum twistors Zj (see figure 5), which yield all conformally

invariant cross ratios via (A.6). For the j’th internal null tetragon, the relevant momentum

twistors are:

xj+3 x′j+3

xj+4 x′j+4

Zj+4 Z2

Z int
j+3

Z int
j+4

(B.10)

Conformal transformations act linearly on momentum twistors. Again, the three trans-

formations τj , σj , and ϕj are defined in terms of the matrix Mj = Mj(τj , σj , ϕj) via

(see (A.4))


Zj+4

Z2

Z int
j+3

Z int
j+4

Mj =
√
Fj


1/(FjSj) 0 0 0

0 Sj/Fj 0 0

0 0 Tj 0

0 0 0 1/Tj




Zj+4

Z2

Z int
j+3

Z int
j+4

 , (B.11)

where the column of Z’s is understood as a 4×4 matrix. Let us illustrate how all conformally

inequivalent null polygons are constructed from the parameters {τj , σj , ϕj} by considering

the hexagon. In this case, there is only one internal tetragon:

x′
4

x′
5

x2

x3

x4

x5

x6

x1

←→ Z2

Z3Z4

Z5

Z6 Z1

Z int
4

Z int
5

(B.12)

Because conformally inequivalent null hexagons have three degrees of freedom, and be-

cause all null tetragons are conformally equivalent, all conformally inequivalent hexagons

are generated by starting with an arbitrary fixed reference hexagon, and acting with the

conformal transformations M1 that preserve the inner tetragon on the upper part of the

14In fact we can write an exact expression at least for uj,3, see (B.21) below.
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hexagon, i.e. on the momentum twistors Z3 and Z4. Concretely, we use:

Z2 = (1, 0, 0, 0) ,

Z3 = (1, 0, 1, 1) ,

Z4 = (0, 1, 0,−1) ,

Z5 = (0, 1, 0, 0) ,

Z6 = (0, 1,−1, 0)M1 ,

Z1 = (−1, 0, 1, 1)M1 ,

Z int
4 = (0, 0, 0, 1) ,

Z int
5 = (0, 0, 1, 0) ,

M1 =
√
F1


S1/F1 0 0 0

0 1/(F1S1) 0 0

0 0 1/T1 0

0 0 0 T1

 , (B.13)

where M1 is the solution to eq. (B.11). We construct the heptagon by extending the

hexagon at the bottom, such that Z1 of the hexagon becomes Z int
6 of the heptagon:

x′
4

x′
5

x′
6

x2

x3

x4

x5

x6
x7

x1

←→ Z2

Z3Z4

Z5

Z6

Z7 Z1

Z int
4

Z int
5

Z int
6

(B.14)

Concretely, we choose:

Z2 = (1, 0, 0, 0) ,

Z3 = (1, 0, 1, 1)M−1
1 ,

Z4 = (0, 1, 0,−1)M−1
1 ,

Z5 = (0, 1, 0, 0) ,

Z6 = (0, 1,−1, 0) ,

Z7 = (1, 1,−2,−1)M2 ,

Z1 = (2, 0, 0,−1)M2 ,

Z int
4 = (0, 0, 0, 1) ,

Z int
5 = (0, 0, 1, 0) ,

Z int
6 = (−1, 0, 1, 1) ,

M1 =
√
F1


S1
F1

0 0 0

0 1
F1S1

0 0

0 0 1
T1

0

0 0 0 T1

 ,

M2 =
√
F2


S2
F2

0 0 0

0 1
F2S2

T2 − 1
F2S2

0

0 0 T2 0
S2
F2
− 1

T2
0

1−T 2
2

T2
1
T2

 ,

(B.15)

where again M1 and M2 are the solutions to eq. (B.11), and we have chosen to act with

the transformation M−1
1 on Z3 and Z4 instead of acting with M1 on Z6, Z7, Z1, and Z int

6 ,

the difference being just an overall conformal transformation.

Note that the choice of numerical reference polygon in eqs. (B.13) and (B.15) is arbi-

trary. Our choice is constructed in such a way that the “large” and “small” cross ratios (2.4)

uj,i , j = 1, . . . , n− 5 , i = 1, 2, 3 , (B.16)
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when expressed in terms of Tj , Sj , and Fj , in the multi-Regge limit take the canonical

form (B.6), with the simple identifications (B.5)

S2
j =

T 2
j

wjw̄j
, F 2

j =
wj
w̄j

. (B.17)

For other choices of reference polygons, the relation between wj , w̄j and Tj , Sj , Fj might

get more complicated. More concretely, extending the (n−1)-gon to the n-gon requires

adding two momentum twistors (that will become Zn and the new Z1), which have six

degrees of freedom. Three of those degrees of freedom are fixed by consistency with the

(n−1)-gon, namely by requiring that the equation (see figure 5)

Z int
j = 〈1, 2, 3, j〉Zj+1 − 〈1, 2, 3, j + 1〉Zj (B.18)

for the internal twistor Z int
n−1 (which was Z1 in the (n−1)-gon) is satisfied. The three

remaining degrees of freedom are fixed by imposing the multi-Regge limit relations (B.6)

with (B.17).

This construction can be iterated to any number of points. We have solved the con-

straints explicitly for up to n = 18, and then recognized the pattern shown in table 5. Here,

the transformation matrices Mj , j = 1, . . . , n−5, are defined via eq. (B.11) with all other

Mi, i 6= j set to 1. For completeness, we explicitly list these matrices in table 6. We have

checked the consistency of this parametrization with eqs. (B.6), (B.17), and (B.18) up to

n = 30. In order to avoid overly complicated expressions, one can alternatively choose to

act with the global conformal transformation M−1
1 . . .M−1

bn/2c−2 on the full polygon, which

evenly distributes the action of the matrices Mj on the top and bottom of the polygon and

thus renders expressions a bit simpler.

Cross ratios in collinear and Regge limits. The parametrization in table 5 entails

uniform expressions for the cross ratios (B.16). We quote their expansions in the multi-

collinear limit Tj → 0, j = 1, . . . , n− 5:

uj,1 =
1

(1+S2
j−1)(1+S2

j )

[
1+S2

j−1(1+S2
j )−

2cos(ϕj−1)S3
j−1S

2
j Tj−1

1+S2
j−1

− 2cos(ϕj)SjTj
1+S2

j

−
S2
j−1

[
1−2cos(2ϕj−1)S2

j−1+S4
j−1

]
S2
j T

2
j−1

(1+S2
j−1)2

−
[
1−2cos(2ϕj)S

2
j +S4

j

]
T 2
j

(1+S2
j )2

+
2Sj−1Sj

[
cos(ϕj−1+ϕj)(1+S2

j +S2
j−1S

2
j )−cos(ϕj−1−ϕj)S2

j−1

]
Tj−1Tj

(1+S2
j−1)(1+S2

j )

]
+O(T 3

i ),

uj,2 =
Aj

1+Aj
+

2

(1+Aj)2

[
−cosϕjAjSjTj+

n−1∑
i=j+1

cosϕi

i−1∏
k=j

S2
kSiTi

]
+O(T 2

i ), (B.19)

uj,3 =T 2
j

[
1+
(
T 2
j−1+T 2

j+1

)
+
(
T 2
j−2T

2
j−1+T 4

j−1+T 2
j−1T

2
j+1+T 4

j+1+T 2
j+1T

2
j+2

)
+O(T 6

i 6=j)

]

The leading terms in these expressions can be recognized in eq. (B.7). Here, O(T `i ) stands

for any products of all Ti of total order at least `. The parameters Aj are defined via (B.8).
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For all j≥ 0 :

Z6j+4 = (6j,1,0,−1) ,

Z6j+5 = (6j,1,0,0) ,

Z6j+6 = (6j,1,−1,0) ,

Z6j+7 = (6j+1,1,−2,−1) ,

Z6j+8 = (6j+3,1,−2,−2) ,

Z6j+9 = (6j+5,1,−1,−2) ,



Z3

Zint
4

Zint
5

Zint
6
...

Zint
n−1

Z1


=



(1,0,1,1)

(0,0,0,1)

(0,0,1,0)

(−1,0,1,1)

(2,0,0,−1)

(2,0,1,0)
...

cyclic rep.
...



, Z2 = (1,0,0,0) ,

Zj =

{
Zj 2≤ j≤ 5 ,

ZjMj−5 . . .M2M1 6≤ j≤n,
Z int
j =

{
Zint
j 4≤ j≤ 5 ,

Zint
j Mj−5 . . .M2M1 6≤ j≤n−1 ,

Z1 = Z1Mn−5 . . .M2M1 .

Table 5. Parametrization of the n-point polygon for any n ≥ 6. The boldface momentum twistors

Zj define a fixed reference polygon, where “cyclic rep.” stands for cyclic repetitions of the six given

momentum twistors. All conformally inequivalent polygons are parametrized by the Z in normal

face. They are obtained from the reference polygon by acting with each matrix Mj stabilizing the

j’th internal tetragon on all momentum twistors below that tetragon (see eqs. (B.13) and (B.15)

for examples). For reference, the matrices Mj are given in table 6. This specific choice of reference

polygon is engineered to satisfy the relations (B.6) with eq. (B.17) in the multi-Regge limit.

In all expressions above and below, we set

An−4 = 0 , Sj = Tj = 0 for j /∈ {1, . . . , n− 5} . (B.20)

The last expression for uj,3 in eq. (B.19) is exact in Tj . In fact, we can write the full

expression for uj,3 in general kinematics. It is a ratio of polynomials in the T 2
i with unit

coefficients:

uj,3 = T 2
j

P j−2
1 Pn−5

j+2

P j−1
1 Pn−5

j+1

, P ba =
∑
I∈Iba

|I|∏
`=1

(−T 2
i`

) = 1−
b∑
i=a

T 2
i + . . . ,

Iba =
{

(i1, . . . , ik) | k ≥ 0 ∧ a ≤ i` ≤ b ∧ i` + 2 ≤ i`+1

}
. (B.21)
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Mj =
√
Fj


Sj
Fj

0 0 0
(j−1)(1−S2

j )

FjSj
1

FjSj
0 0

0 0 1
Tj

0

0 0 0 Tj

 , j ∈ 6Z + 1 ,

Mj =
√
Fj


Sj
Fj

0 0 0
(j−2)(1−S2

j )

FjSj
1

FjSj
Tj − 1

FjSj
0

0 0 Tj 0
Sj
Fj
− 1

Tj
0 1

Tj
− Tj 1

Tj

 , j ∈ 6Z + 2 ,

Mj =
√
Fj


Sj
Fj

0 0 0

− (j−2)(S2
j−1)

FjSj
− 2Tj + 2

Tj
1

FjSj
2Tj − 2

FjSj
2Tj − 1

FjSj
− 1

Tj

−Sj
Fj
− Tj + 2

Tj
0 Tj Tj − 1

Tj
2Sj
Fj
− 2

Tj
0 0 1

Tj

 , j ∈ 6Z + 3 ,

Mj =
√
Fj


Sj
Fj

0 0 0

− (j−1)(S2
j−1)

FjSj
− 4Tj + 4

Tj
1

FjSj
2
Tj
− 2

FjSj
2Tj − 2

FjSj
2
Tj
− 2Sj

Fj
0 1

Tj
0

2Sj
Fj
− 2Tj 0 0 Tj

 , j ∈ 6Z + 4 ,

Mj =
√
Fj


Sj
Fj

0 0 0

− j(S2
j−1)

FjSj
− 2Tj + 2

Tj
1

FjSj
−Tj − 1

FjSj
+ 2

Tj
2
Tj
− 2

FjSj

2Tj − 2Sj
Fj

0 Tj 0
Sj
Fj
− 2Tj + 1

Tj
0 1

Tj
− Tj 1

Tj

 , j ∈ 6Z + 5 ,

Mj =
√
Fj


Sj
Fj

0 0 0

− j(S2
j−1)

FjSj
1

FjSj
0 1

Tj
− 1

FjSj

Tj − Sj
Fj

0 Tj Tj − 1
Tj

0 0 0 1
Tj

 , j ∈ 6Z .

Table 6. Matrices Mj , 1≤ j≤ (n− 5) appearing in table 5 that stabilize the j’th internal tetragon

of the reference polygon. Each of these matrices is a solution to the defining equation (B.11) with

all other matrices set to Mi = 1.
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In the multi-Regge limit, where all Ti → 0 with ri = Si/Ti fixed, we find the expansions

uj,2uj,3 =
[
1+T 2

j−1 +
(
2+2cos(ϕj+1)rj+1 +r2

j+1

)
T 2
j+1 +O(T 4

i 6=j)
]
r2
jT

4
j +O(Tj)

6 , (B.22)

uj,2
1−uj,1

=
r2
j

1+2cos(ϕj)rj +r2
j

[
1+

(
2

cos(ϕj−1)+cos(ϕj−1 +ϕj)rj
1+2cos(ϕj)rj +r2

j

rj−1 +r2
j−1

)
T 2
j−1

−T 2
j +
(

1+2cos(ϕj+1)rj+1 +r2
j+1

)
T 2
j+1

]
+O(T 4

i ) ,

uj,3
uj,2

=
1

r2
j

[
1+T 2

j−1 +
[
1+2cos(ϕj)rj +r2

j

]
T 2
j −
[
2cos(ϕj+1)rj+1 +r2

j+1

]
T 2
j+1

]
+O(T 4

i ).

Besides providing an unambiguous parametrization of conformally inequivalent null poly-

gons, the variables τj , σj , and ϕj explained above are of course designed for the application

of the OPE for null polygon Wilson loops [1–3, 5, 27, 30]. The applicability of the latter

crucially relies on the specific “alternating” tessellation of [30] that we used in the main

body of this paper. It would be nice to find a generalization of the Wilson loop OPE that

applies to our multi-Regge friendly tessellation.

Note that the reference n-point polygon of table 5 is somewhat singular: for Tj =

Sj = Fj = 1, several internal distances xi − xj among cusps are null, and some others

are timelike. The reference polygon therefore lies outside the Euclidean region where the

Wilson loop OPE is applicable. However, all internal distances become spacelike when

approaching the multi-collinear limit, i.e. when all parameters Tj are small, and hence the

Wilson loop OPE can be applied in this region. In fact, we find experimentally that all

internal distances xi − xj are spacelike as long as all Tj ≤ 1/2, j = 1, . . . , n− 5.

The hexagon. In terms of the tessellation variables T ≡ T1, S ≡ S1, and ϕ ≡ ϕ1, the

three cross ratios of the hexagon read

u1 = U2,5 =
1− T 2

1 + S2 + 2ST cosϕ
, u2 = U3,6 =

S2(1− T 2)

1 + S2 + 2ST cosϕ
, u3 = U1,4 = T 2 .

(B.23)

When comparing with our expressions in eq. (B.2), we use the identifications x′3 = x2 and

x′6 = x1 for n = 6 to show that

u′1 = U3′,5,3,6 = U2,5,3,6 = U2,5 = u1 , u′2 = U3,6,4,6′ = U3,6,4,1 = U3,6 = u2 ,

u′3 = U6′,4,3′,5 = U1,4,2,5 = U1,4 = u3 .

In the collinear limit, the relations (4.4) read

u1 =
1

1 + S2
+O(T ) , u2 =

S2

1 + S2
+O(T 3) , u3 = T 2 . (B.24)

This coincides with our claim in eqs. (B.7) if we take into account that S0 = 0 and

S2 = S2
1 = A1 for n = 6. When parametrized in terms of S, T , and F = exp(iϕ), the

Regge limit is taken by sending both T and S to zero, while keeping r = S/T finite, i.e. in

the Regge limit, the remainder function depends on the finite variables r and F along with

the quantity T that vanishes in the limit. These are related to w, w̄ and ε through (B.5):

r2 =
1

ww̄
, F 2 =

w

w̄
, S2T 2 = r2T 4 = ε . (B.25)
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The heptagon. Via the general formula (A.6), our tessellation induces the following

formulas for the heptagon cross ratios:

u1,3 = U1,4 =
T 2

1

1− T 2
2

,

u1,1 = U2,5 =
1− T 2

1

1 + S2
1 + 2c1S1T1

,

u1,2 = U3,7 =
S2

1

(
1− T 2

1 − T 2
2

)
(1− T 2

2 )
(
1 + S2

1 + 2c1S1T1

) · 1

U3,6
,

u2,1 = U3,6 =
S2

1S
2
2(1− T 2

1 ) + (1− T 2
2 ) + S2

1 + 2c1S1T1 + 2c2S
2
1S2T2 + 2c+S1T1S2T2(

1 + S2
1 + 2c1S1T1

) (
1 + S2

2 + 2c2S2T2

) ,

U2,6 =

(
1− T 2

1 − T 2
2

)
(1− T 2

1 )
(
1 + S2

2 + 2c2S2T2

) · 1

U3,6
,

u2,2 = U4,7 =
S2

2(1− T 2
2 )

1 + S2
2 + 2c2S2T2

,

u2,3 = U1,5 =
T 2

2

1− T 2
1

, (B.26)

where we have used the shorthand notation

c1 = cos(ϕ1) , c2 = cos(ϕ2) , c+ = cos(ϕ1 + ϕ2) . (B.27)

Given the formulas (B.26), it is straightforward to obtain the following expressions for the

leading terms in the cross ratios as T1 and T2 are sent to zero,

u1,1 = U25 =
1

1 + S2
1

, u1,2 = U37 =
S2

1(1 + S2
2)

1 + S2
1 + S2

1S
2
2

, u1,3 = U14 = T 2
1 ,

u2,1 = U36 =
1 + S2

1 + S2
1S

2
2

(1 + S2
1)(1 + S2

2)
, u2,2 = U47 =

S2
2

1 + S2
2

, u2,3 = U15 = T 2
2 ,

U26 =
1 + S2

1

1 + S2
1 + S2

1S
2
2

. (B.28)

From the general kinematics (B.26), the multi-Regge limit is attained by setting Sj = rjTj
and letting Tj → 0, keeping rj finite, with the identifications (B.5). From the multi-Regge

limit, the combined multi-Regge collinear limit is attained for r1, r2 → ∞. Conversely, if

we start in general kinematics, we reach the collinear limit when we send Tj → 0 while

keeping Sj and Fj finite. We can then continue to the combined multi-Regge collinear limit

by letting Sj → 0, keeping Sj/Tj � 1.

C Performing the one-loop sums

In this appendix, we fill in some details about our evaluation of the residue sums that

appear in the one-loop contribution of one-gluon excitation shown in eq. (3.24), which we

split into a double sum Σ2 and a single sum Σ1:

h
(0,0)
1 = g2S2

S1

(
Σ2 + Σ1

)
. (C.1)
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We begin with the double sum,

Σ2 :=
∑

k1,2∈Z≥1

(−S−2
1 )k1(−S−2

2 )k2

(k1 + 1)(k2 + 1)k1k2
× Γ(1 + k1 + k2)

Γ(k1)Γ(k2)
=
∞∑
j=2

j−1∑
k1=1

(S−2
1 S2

2)−k1(−S−2
2 )j

(k1 + 1)(j − k1 + 1)

(
j

k1

)
,

(C.2)

where to reach the right hand side, we have introduced a new summation index j = k1 +k2.

Now we can split denominators in the following way:

1

(k1 + 1)(j − k1 + 1)
=

1

j + 2

(
1

k1 + 1
+

1

j − k1 + 1

)
. (C.3)

Note that if we let k′1 = j − k1 and make use of
( j
j−k′1

)
=
( j
k′1

)
, we can decompose eq. (C.2)

into two sums that only differ by the replacement S1 ↔ S2,

Σ2 =

∞∑
j=2

(−S−2
2 )j

j + 2

(
j∑

k1=1

(S−2
1 S2

2)k1
(
j

k1

)
1

k1 + 1
− (S−2

1 S2
2)j

1

j + 1

)
+ (S1 ↔ S2) . (C.4)

Next, we eliminate the (+1) offset in the denominator of the inner sum. This can be done

with the help of the binomial identity
(
j

k−1

)
= k

j+1

(
j+1
k

)
(for a more general treatment, see

eq. (44) in [36]),

j∑
k1=1

(S−2
1 S2

2)k1
(
j

k1

)
1

k1 + 1
=

j+1∑
k=2

(S−2
1 S2

2)k−1

(
j

k − 1

)
1

k
=

(
1 +

S2
2

S2
1

)j+1
S2

1

S2
2

1

j + 1
− 1 .

(C.5)

After these steps, the outer summation over j is straightforward:

Σ2 = (S2
1 + S2

2 + S2
1S

2
2) log

S2
1 + S2

2 + S2
1S

2
2

(1 + S2
1)(1 + S2

2)
+ 1 . (C.6)

Having evaluated the sum in eq. (C.2), it remains to perform the single sum,

Σ1 :=
∑

k1∈Z≥1

(−S−2
1 )k1 + (−S−2

2 )k1

k1 + 1
+ 1 = S2

1 log (1 + S−2
1 ) + S2

2 log (1 + S−2
2 )− 1 . (C.7)

Combining these Σ1 and Σ2 sums back into eq. (C.1), we obtain (up to an overall sign) eq.

(125) from [2] that was stated in eq. (3.25).

D The function g

At LLA, the MRL two-loop remainder function for all multiplicities and in all kinematic

regions can be expressed in terms of the six-point function (4.7). At NLLA, further func-

tions g and g̃ are required to express the seven-point remainder function in the kinematic

regions (−−−) and (−+−). Writing out the expressions (5.8) and (5.15), one finds

R−−−7,(2) = log(ε1)f1(v1) + log(ε2)f1(v2) + f0(v1) + f0(v2) + g(v1, v2) , (D.1)

R−+−
7,(2) = log(ε1)

(
f1(v1)− f1(w1)

)
+ log(ε2)

(
f1(v2)− f1(w2)

)
+ f0(v1)− f0(w1) + f0(v2)− f0(w2) + g̃(v1, v2) . (D.2)
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At symbol level, the remainder functions in the various regions satisfy the identity [20]

S[R−+−
7,(2) ] = S[R−−−7,(2) ]− S[R−−+

7,(2) ]− S[R+−−
7,(2) ] , (D.3)

and therefore the symbols of g and g̃ are identical:

S[g(v1, v2)] = S[g̃(v1, v2)] . (D.4)

Based on its symbol as well as symmetry arguments, the function g was determined up

to 25 unfixed rational coefficients [20]. Subsequently, the function g was fully determined

in [22]. The latter result assumes a specific path of continuation from the Euclidean to the

(−−−) region, and is justified by Regge factorization. In the following, we independently

refine the determination of the functions g and g̃. Without making assumptions on the

path of continuation, we are able to determine both g and g̃ up to a few coefficients.

Function space. Maximally helicity-violating amplitudes in N = 4 super Yang-Mills

theory are rational polynomials in multiple polylogarithms, iπ, and (multiple) zeta values,

where all occurring monomials have the same (uniform) transcendental weight [52]. Mul-

tiple polylogarithms, also called Goncharov polylogarithms [45], can be defined recursively

as iterated integrals

G(a1, . . . , an; z) ≡


1

n!
logn z if a1 = . . . = an = 0 ,∫ z

0

dt

t− a1
G(a2, . . . , an; t) otherwise,

(D.5)

with G(; z) = 1. The sequence of parameters (a1, . . . , an) is called the weight vector, and

the length of the weight vector equals the transcendental weight (or transcendentality) of

the function G(a1, . . . , an; z). The parameters ai are also called letters, and the set of all

multiplicatively independent letters that occur in a given function is called the alphabet

of that function. Multiple zeta values are defined in terms of multiple polylogarithms

evaluated at unity, and inherit their transcendental weight: ζk has weight k, ζj,k has weight

j + k, and so forth. π has weight 1.

As noted in [20], using the variables (5.9), the alphabet of the seven-point remainder

function in all Mandelstam regions becomes

ℵxy = {x, 1− x, y, 1− y, 1− xy} ∪ {c.c.} . (D.6)

Multiple polylogarithms whose symbols draw their entries from this alphabet belong to the

class of two-dimensional harmonic polylogarithms (2dHPLs) [53]. An independent basis

for these is given by [54]15{
G(~a, x) |~ai ∈ Lyn{0, 1}

}
∪
{
G(~a, 1/y) |~ai ∈ Lyn{0, 1, x}

}
∪ {c.c.} , (D.7)

where {c.c.} stands for the complex conjugates of the previous sets, and Lyn{0, 1} and

Lyn{0, 1, x} denote the sets of Lyndon words formed from the ordered sets of letters {0, 1}
and {0, 1, x}, respectively.

15The choice of basis is not unique. We used a different basis in [20], but found the choice (D.7) more

suitable for the present analysis.
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Single-valuedness. Besides the consistency with the known symbol, the functions g and

g̃ have to satisfy various constraints. One of them is single-valuedness: due to unitarity,

a physical amplitude can only have branch points where one of the cross ratios vanishes

(or becomes infinite). Since the cross ratios are expressed in terms of absolute squares of

the complex variables w1 and w2, see eq. (2.5), a rotation (w1 − z, w̄1 − z̄)→ (e+2πi(w1 −
z), e−2πi(w̄1 − z̄)) around any point z in the complex plane can never let a cross ratio

wind around zero (or infinity). The same is true for rotations of w2, and therefore also for

rotations of x and y. The conclusion is that the remainder function in the multi-Regge limit

must be a single-valued function of the complex variables x and y, and thus the same must

be true for the functions g and g̃. This property has been essential for the determination

of the six-point multi-Regge limit to high loop orders [13, 14, 55, 56].

It turns out that the single-valuedness constraint can be satisfied directly at the level of

the basis: single-valued multiple polylogarithms were constructed by Brown [44]. A suitable

basis of such functions for multi-Regge amplitudes of any multiplicity was proposed in [21].

The single-valued basis can be constructed purely algebraically from the basis of ordinary

multiple polylogarithms (D.7) using the Hopf algebra structure that underlies the multiple

polylogarithm algebra [45]: each holomorphic element G of the ordinary basis (D.7) gets

promoted to a single-valued function Gs by the single-valued map [44]

s : G(~a, z) 7→ Gs(~a, z) ≡ (−1)|~a|µ(S̄ ⊗ id)∆G(~a, z) , (D.8)

where ∆ is the coproduct, id is the identity, S̄ is the complex conjugate of the antipode map

of the Hopf algebra, and µ denotes the multiplication operator µ(a⊗ b) = a · b. All details

of the single-value map are spelled out in section 3.4.3 of [21], and we will not reproduce

them here. For example, one finds16

Gs(0, x, 1/y) = −G(0, x)G(x̄, 1/ȳ)−G(0, x̄)G(x̄, 1/ȳ) +G(0, 1/y)G(x̄, 1/ȳ)

+G(0, 1/ȳ)G(x̄, 1/ȳ) +G(0, x, 1/y)−G(0, x̄, 1/ȳ) . (D.9)

The anti-holomorphic elements of (D.7) can equally be promoted to single-valued functions,

which however are not independent from the single-valued functions generated from the

holomorphic elements. A full basis of single-valued 2dHPLs is therefore provided by the

single-valued completions of the holomorphic elements of the ordinary basis (D.7). Since

this halves the size of the algebra basis, it significantly reduces the number of linearly

independent elements in a general Ansatz at any fixed weight.

To summarize, the single-valued algebra basis that we will employ is{
Gs(~a, x)|~a ∈ Lyn{0, 1}

}
∪
{
Gs(~a, 1/y)|~a ∈ Lyn{0, 1, x}

}
, (D.10)

where every single-valued function Gs(~a, z) is constructed from the ordinary multiple poly-

logarithm G(~a, z) according to the algebraic prescription (D.8).

16After the completion of this computation, the Mathematica package PolyLogTools appeared [57],

which can perform many of the required manipulations of single-valued and ordinary multiple polyloga-

rithms. For example, single-valued MPLs can be expanded in ordinary MPLs via the function cGToG of that

package. The expansion typically contains non-basis functions. Most of these can be related back to basis

functions via shuffle identities, all others can be mapped to combinations of basis functions by numerical

comparison, e.g. via GiNaC [58] (as done by the function ToFibrationBasis of PolyLogTools).
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The ansatz and symbol constraints. Here and in the following, we use the condensed

notation Gs,z
a1,...,an ≡ Gs(a1, . . . , an; z), and y̌ ≡ 1/y. For up to weight three, the basis (D.10)

has 19 elements and reads{
Gs,x

0 , Gs,x
1 , Gs,y̌

0 , Gs,y̌
1 , Gs,y̌

x , Gs,x
0,1 , G

s,y̌
0,1 , G

s,y̌
0,x , G

s,y̌
1,x ,

Gs,x
0,0,1 , G

s,x
0,1,1 , G

s,y̌
0,0,1 , G

s,y̌
0,0,x , G

s,y̌
0,1,1 , G

s,y̌
0,1,x , G

s,y̌
0,x,1 , G

s,y̌
0,x,x , G

s,y̌
1,1,x , G

s,y̌
1,x,x

}
(D.11)

There are 65 different weight-three products of the above basis functions. At leading weight,

the function g(v1, v2) therefore has to be a linear combination of these 65 terms, with

rational coefficients. Taking the symbol of this general linear combination, and equating it

to the known symbol of g fixes all 65 coefficients, the result being

g(x, y) = −1/2Gs,x
0 Gs,y̌

0 Gs,y̌
1 + 1/2Gs,x

0 Gs,x
1 Gs,y̌

1 + 1/2Gs,y̌
0 Gs,x

1 Gs,y̌
1 − 1/2Gs,x

0 Gs,x
1 Gs,y̌

x

+ 1/2Gs,y̌
0 Gs,y̌

1 Gs,y̌
x −Gs,y̌

1 Gs,x
0,1 +Gs,y̌

x Gs,x
0,1 +Gs,x

0 Gs,y̌
0,1 −Gs,x

1 Gs,y̌
0,1 −Gs,y̌

x Gs,y̌
0,1

+Gs,x
1 Gs,y̌

0,x −Gs,y̌
0 Gs,y̌

1,x −Gs,x
1 Gs,y̌

1,x +Gs,y̌
1 Gs,y̌

1,x + 2Gs,y̌
0,1,x − 2Gs,y̌

1,1,x

+ ζ2 g
(1)(x, y) + d0ζ3 + iπ g(2)(x, y) + iπd1ζ2 , (D.12)

where g(2) and g(1), at this point, are general linear combinations of the 19 and 5 possible

weight-two and weight-one products of basis functions, and d0 and d1 are rational constants.

These terms are not constrained by the symbol of g.

Symmetries. While the terms with subleading functional weight are not seen by the

symbol, they can be constrained by symmetry requirements. Firstly, MHV amplitudes are

invariant under parity (spatial reflection), which is realized by wi ↔ w̄i in the multi-Regge

limit [19], that is x ↔ x̄ and y ↔ ȳ. Secondly, the multi-Regge limit amplitude should

be invariant under target-projectile symmetry (exchange of the two incoming momenta),

which amounts to symmetry under w1 ↔ 1/w2 [26], that is x ↔ y and x̄ ↔ ȳ. The

sums of six-point terms in the expressions (D.1)–(D.2) are separately invariant under these

transformations, and hence we can require parity as well as target-projectile symmetry

for the function g by itself, and equally for g̃. These symmetries significantly reduce the

number of free parameters, as summarized in table 7.

Both parity and target-projectile symmetry are not trivially implemented: the parity

map replaces all holomorphic weight vectors and arguments of our single-valued basis func-

tions Gs with their complex conjugates. Again using the Hopf algebra antipode, these con-

jugate single-valued functions can be re-expressed in terms of single-valued functions with

holomorphic arguments [21], but those will not necessarily be elements of the basis (D.10).

Similarly, the target-projectile inversion map x ↔ y produces non-basis functions. In or-

der to derive constraints for our Ansatz coefficients, all non-basis functions need to be

re-expressed in terms of basis functions, which is possible due to the many relations among

multiple polylogarithms. The single-valued map (D.8) is an algebra homomorphism, hence

every identity among ordinary multiple polylogarithms lifts to a corresponding identity

among single-valued multiple polylogarithms. In this way, single-valued multiple polyloga-

rithms inherit the shuffle and stuffle algebra relations from their ordinary counterparts, as
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g(1) g(2) iπζ2 ζ3

Ansatz (D.12) 19 5 1 1

Parity invariance 15 5 1 1

TP-symmetry 9 3 1 1

Collinear limit 1 6 2 0 0

Collinear limit 2 4 1 0 0

Second entry 3 1 0 0

Table 7. The table shows the numbers of undetermined coefficients in the different parts of the

initial Ansatz (D.12) (first line), as well as their reduction upon imposing various consistency

constraints.

well as the simpler rescaling property

Gs(a1, . . . , an; z) = Gs(ca1, . . . , can; cz) for an 6= 0 and c 6= 0 . (D.13)

We list all relations among single-valued polylogarithms with holomorphic arguments that

are needed to evaluate parity and target-projectile symmetry:

Gs,x̌
0 =−Gs,x

0 , Gs,y
0 =−Gs,y̌

0 , Gs,y
1 =Gs,y̌

1 −Gs,y̌
0 ,

Gs,1
x =Gs,x

1 −Gs,x
0 , Gs,x

x̃ =Gs,y̌
1 −Gs,y̌

0 , Gs,y̌
x̃ =Gs,x

1 −Gs,x
0 ,

Gs,1
0,x =

1

2
((Gs,x

0 ))2−Gs,x
0,1, Gs,x

0,x̃ =
1

2
(Gs,y̌

0 )2−Gs,y̌
0,1, Gs,y̌

0,x̃ =
1

2
(Gs,x

0 )2−Gs,x
0,1,

Gs,1
x,0 =Gs,x

0,1−
1

2
(Gs,x

0 )2, Gs,1
x,1 =Gs,x

0,1 +
1

2
(Gs,x

1 )2−Gs,x
0 Gs,x

1 ,

Gs,y̌
x̃,x =Gs,y̌

0,x−Gs,y̌
1,x−Gs,x

0 Gs,y̌
1 +Gs,x

1 Gs,y̌
1 ,

Gs,x
0,0,x̃ =Gs,y̌

0,0,1−
1

6
(Gs,y̌

0 )3, Gs,y̌
0,0,x̃ =Gs,x

0,0,1−
1

6
(Gs,x

0 )3,

Gs,y̌
0,x̃,x =−Gs,y̌

1 Gs,x
0,1−Gs,y̌

1 Gs,y̌
0,x+Gs,y̌

0,0,x+Gs,y̌
0,1,x+Gs,y̌

0,x,1 +
1

2
(Gs,x

0 )2Gs,y̌
1 ,

Gs,y̌
x̃,x̃,x =−Gs,x

0 Gs,y̌
0,1 +Gs,x

1 Gs,y̌
0,1−Gs,y̌

1 Gs,y̌
0,x+Gs,y̌

0,0,x+Gs,y̌
0,x,1 +Gs,y̌

1,1,x+
1

2
(Gs,x

0 )2Gs,y̌
1

+
1

2
Gs,x

0 (Gs,y̌
1 )2−Gs,x

1 Gs,x
0 Gs,y̌

1 −
1

2
Gs,x

1 (Gs,y̌
1 )2 +

1

2
(Gs,x

1 )2Gs,y̌
1. (D.14)

where x̌ := 1/x and x̃ := x/y. The weight-one single-valued basis functions are individually

parity invariant, hence parity symmetry only affects the Ansatz for the weight-two part g(2).

It reduces the number of undetermined coefficients from 19 to 15. Target-projectile sym-

metry further reduces the uncertainty in g(2) and g(1) to 9 and 3 coefficients, respectively.

Collinear limit. Next, we want to expand our Ansatz function in the collinear limit.

One way to do so is: first write the single-valued 2dHPLs in terms of ordinary Goncharov

polylogarithms according to (D.8), then rewrite the Goncharov polylogarithms in terms

of classical polylogarithms, for example using [39], and finally expand in large r1 and r2,
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using (5.9), and (5.6), which combine to

x = −F2(F1 + r1)

r1r2
, x̄ = − 1 + F1r1

F1F2r1r2
,

y = −r1(F2 + r2)

F1F2
, ȳ = −F1r1(1 + F2r2) . (D.15)

While the Regge limit sits at T1, T2, S1 → 0, S2 →∞ with r1 ≡ S1/T1 and r2 ≡ 1/(S2T2)

fixed, the collinear limit is defined by Tj → 0 with Sj finite. From the Regge limit, the

combined Regge collinear limit is therefore attained by letting rj →∞, that is

x ≈ −F2

r2
→ 0 , x̄ ≈ − 1

F2r2
→ 0 , y ≈ − r1r2

F1F2
→∞ , ȳ ≈ −F1F2r1r2 →∞ . (D.16)

The expansion of the basis functions (D.7) in this case is simple, since all arguments x, x̄,

1/y, and 1/ȳ tend to zero. After writing all single-valued functions Gs in terms of ordinary

multiple polylogarithms and performing the expansion, we obtain the expansions of the

Ansatz (D.12) for g near the collinear limit (D.16). In doing so, one has to be careful

in picking consistent branches for all occurring logarithms. Every single-valued multiple

polylogarithm of the basis (D.7) expands to a power series in log(ri) and 1/ri, where the

series coefficients are rational functions of F1 and F2 as presented below:

Gs,x
0 =−2log(r2)+2C1 +O(r−2), Gs,y̌

0 =−2log(r1)−2log(r2)−2C2 +O(r−2),

Gs,x
1 = 2C2 +2C+ +O(r−3), Gs,y̌

1 = 2C+ +O(r−3),

Gs,y̌
x =−2C1 +2C+ +O(r−3),

Gs,x
0,1 =−2log(r2)

F2r2

(
1+

1

F1r1

)
+2C+ +

F2

r2
− 1

F2r2
+O(r−3),

Gs,y̌
0,1 =− 2log(r1)

F1F2r1r2
− 2log(r2)

F1F2r1r2
+
F1F2

r1r2
− 1

F1F2r1r2
+O(r−3),

Gs,y̌
0,x =

2log(r1)

F1r1

(
1− 1

F2r2

)
− F1

r1
+

1

r1F1
+

2F2C1

r2
+O(r−3),

Gs,y̌
1,x =

2log(r2)

F1F2r1r2
+

2C2

F1r1
+O(r−3),

Gs,y̌
0,1,x =

−4log2(r2)−4log(r1) log(r2)−2log(r1)
(
F 2

2 +1
)
−4log(r2)−2

F1F2r1r2
+O(r−3),

Gs,y̌
1,1,x =−2log(r2)

F1r1r2
2

− F 2
2

2F1r1r2
2

− 2

F1r1r2
2

+
1

2F1F 2
2 r1r2

2

+O(r−4) , (D.17)

where we have used the abbreviations (5.13), and where O(r−n) stands for terms with n

or more inverse powers of r1 or r2.

In the Mandelstam regions that we consider, the BDS amplitude correctly captures

the leading behavior in the collinear limit. Hence, the remainder function has to vanish in

this limit. That is, there should be no terms that are free of 1/ri factors in the collinear

expansion of the remainder function. Moreover, we can require consistency with the general

form of the Wilson loop OPE that governs the remainder function in the collinear limit [1,
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2]. The general systematics of the Wilson loop OPE predicts that the remainder function

in the combined Regge collinear limit (at two loops and in any kinematic region) takes the

form shown in eq. (3.12), whose multi-Regge expansion via (5.6) has the form

RMRL−coll
7 =

cos(ϕ1)

r1
f̃1

(
log(ε1), log(r1)

)
+

cos(ϕ2)

r2
f̃2

(
log(ε2), log(r2)

)
+

cos(ϕ1 + ϕ2)

r1r2
h
(
log(ε1), log(ε2), log(r1), log(r2)

)
+

cos(ϕ1 − ϕ2)

r1r2
h̄
(
log(ε1), log(ε2), log(r1), log(r2)

)
+O(r−2) , (D.18)

where Fi = eiϕi , and f̃1, f̃2, h, and h̄ are polynomials in the respective logarithms. In

particular, the dependence on ϕ1 and ϕ2 is very restricted.17 A general combination of

multiple polylogarithms would also produce sine functions of ϕ1, ϕ2, and ϕ1±ϕ2. It turns

out that our parity and target-projectile symmetric Ansatz is already free of such sine

terms, which is an important cross-check of our result. Moreover, terms where cos(ϕ1)

multiplies log(ε2) or log(r2) should be absent, and the same is true for products of cos(ϕ2)

with log(ε1) or with log(r1). Imposing these constraints reduces the number of parameters

in g(2) and g(1) to 6 and 2 coefficients, respectively, and moreover sets

d0 = 0 , d1 = 0 . (D.19)

When considering the above constraints, one has to keep in mind that the remainder

function in the (−−−) region (D.1) consists of the function g as well as two copies of the

six-point (−−) region remainder function (4.7). In principle, there could be cross-terms

between the six-point functions and the function g, such that only their sum vanishes

and satisfies eq. (D.18) in the collinear limit. However, the two instances of the six-point

function separately vanish and satisfy eq. (D.18) in the seven-point Regge collinear limit, for

both arguments v1 = −x and v2 = −y. Hence also g has to satisfy these constraints by itself.

In fact, the combined Regge collinear limit is not unique: by cyclically rotating the

tessellation of the heptagon that defines the OPE variables (2.9) and taking appropriate

limits in the variables Si, we can probe different limits in the space of multi-Regge kinemat-

ics. Not all collinear limits have an overlap with the multi-Regge limit: the requirement

is that the vanishing of “small” cross ratios uj,2, uj,3 is compatible with the collinear limit

T1, T2 → 0. One further case where this is satisfied is the cyclic rotation of our polygon

variables by 3 sites, that is, we use the momentum twistors Z+3
7,i ≡ Z7,i+3, where Z7,i are

the momentum twistors (A.3) used throughout the rest of this work.18 In this case, the

17The form (D.18) is valid in the Euclidean region as well as the (+++) region. We assume that all other

Mandelstam regions are connected to the Euclidean region through analytic continuation. Moreover, the

remainder function is a function of the cross ratios. The cross ratios in general kinematics (5.3) depend

on the variables ϕ1 and ϕ2 only through the entire functions cos(ϕ1), cos(ϕ2), and cos(ϕ1 + ϕ2), and this

dependence drops out in the collinear limit. Hence the general form (D.18) is preserved under the analytic

continuation into the various Mandelstam regions, including the (−−−) and the (−+−) regions.
18Another independent Regge collinear limit is defined by Z+1

i ≡ Zi+1, with S1 = 1/(r1T1), S2 =

1/(r2T2), and r2i = wiw̄i, F
2
i = wi/w̄i, that is x = −F2(1 +F1r1)r2, y = −(1 +F2r2)/(F1F2r1r2). However,

this limit is related to the unshifted kinematics by a combination of target-projectile symmetry and a

permutation of the OPE variables {Fi, Si, Ti}, and thus does not imply further independent constraints.
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Regge limit is attained by setting S1 = 1/(r1T1), S2 = 1/(r2T2), and letting T1, T2 → 0.

The multi-Regge parameters w1, w2 are then related to the OPE variables by

r1 =
√
w2w̄2 , r2 =

1√
w1w̄1

, F1 =

√
w̄2√
w2

, F2 =

√
w1√
w̄1

, (D.20)

or equivalently

x = −r1(F2 + r2)

F1r2
, x̄= −F1r1(1 + F2r2)

F2r2
,

y = −(F1 + r1)r2

F2r1
, ȳ= −F2(1 + F1r1)r2

F1r1
. (D.21)

The combined Regge collinear limit is attained from the multi-Regge limit by letting

r1, r2 →∞, which implies

x ≈ − r1

F1
→∞ , x̄ ≈ −r1F1 →∞ , y ≈ − r2

F2
→∞ , ȳ ≈ −r2F2 →∞ .

(D.22)

In this limit, the basis functions of eq. (D.7) expand as follows (see eq. (D.17) for the

notation):

Gs,x
0 = 2log(r1)+2C2 +O(r−2), Gs,y̌

0 =−2log(r2)−2C1 +O(r−2),

Gs,x
1 = 2log(r1)+2C1 +2C2−2C+ +O(r−3), Gs,y̌

1 = 2C2−2C+ +O(r−3),

Gs,y̌
x =−2C+ +O(r−3),

Gs,x
0,1 = 2log2(r1)+2log(r1)

(
1

F1r1
− 1

F1F2r1r2
+2C2

)
− F1

r1
+

1

F1r1
+

2F2C1

r2
+O(r−3),

Gs,y̌
0,1 =−2log(r2)

F2r2

(
1− 1

F1r1

)
+
F2

r2
− 1

F2r2
− 2F1C2

r1
+O(r−3),

Gs,y̌
0,x =

2log(r1)+2log(r2)+1

F1F2r1r2
− F1F2

r1r2
+O(r−3),

Gs,y̌
1,x =

2log(r1)

F1F2r1r2
+

2C1

F2r2
+O(r−3),

Gs,y̌
0,1,x =−2log2(r1)+2log(r1)

(
2log(r2)+1

)
F1F2r1r2

− 2C1

(
2log(r2)+1

)
F2r2

+O(r−3),

Gs,y̌
1,1,x =−2log(r1)

(
log(r1)+1

)
F1F2r1r2

+
F1

F2r1r2
− 1

F1F2r1r2
+O(r−3) . (D.23)

Expanding the Ansatz (D.12) for g in the limit (D.22), we can again require (i) vanishing

in the collinear limit, and (ii) agreement with the general form (D.18) of the Wilson loop

OPE. Imposing these constraints further reduces the number of parameters in g(2) and g(1)

to 4 and 1 coefficients, respectively, as shown in table 7.
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The constrained ansatz. Combining all the above constraints, the full Ansatz (D.12)

for the function g reduces to

g(x, y) = −1/2Gs,x
0 Gs,y̌

0 Gs,y̌
1 + 1/2Gs,x

0 Gs,x
1 Gs,y̌

1 + 1/2Gs,y̌
0 Gs,x

1 Gs,y̌
1 − 1/2Gs,x

0 Gs,x
1 Gs,y̌

x

+ 1/2Gs,y̌
0 Gs,y̌

1 Gs,y̌
x −Gs,y̌

1 Gs,x
0,1 +Gs,y̌

x Gs,x
0,1 +Gs,x

0 Gs,y̌
0,1 −Gs,x

1 Gs,y̌
0,1 −Gs,y̌

x Gs,y̌
0,1

+Gs,x
1 Gs,y̌

0,x −Gs,y̌
0 Gs,y̌

1,x −Gs,x
1 Gs,y̌

1,x +Gs,y̌
1 Gs,y̌

1,x + 2Gs,y̌
0,1,x − 2Gs,y̌

1,1,x

+ κ0ζ2G
s,y̌
x + 2πi

[
κ1

(
(Gs,x

0 −Gs,x
1 )Gs,x

1 + (Gs,y̌
0 −Gs,y̌

1 )Gs,y̌
1

)
+ κ2(Gs,x

0 −Gs,x
1 )Gs,y̌

1 + κ3(Gs,x
0 −Gs,y̌

0 )Gs,y̌
x + κ4(Gs,y̌

x )2
]
, (D.24)

The expansion of this function in the collinear limit (D.16) takes the form

[g(x, y)]CL = −cos(ϕ1)

r1

(
8iπκ3 log(r1) + 2κ0ζ2

)
− cos(ϕ2)

r2
8iπκ1 log(r2)

− cos(ϕ1 + ϕ2)

r1r2
2
(

2 log(r2)2 + 2 log(r1) log(r2) + 4iπ(κ1 − κ3) log(r1)

+
(
3 + 4iπ(2κ1 + κ2)

)
log(r2) + 2− κ0ζ2 − 2πi(κ1 − κ3)

)
+

cos(ϕ1 − ϕ2)

r1r2
2
(

log(r2) + 2πi(2κ1 − κ3)
)

+O(r−2
1 ) +O(r−2

2 ) . (D.25)

Except for κ4, all remaining coefficients in the constrained Ansatz (D.24) should be fixed

by the expansion of the true remainder function in this combined Regge collinear limit.

All constraints considered above equally apply to the function g̃, and hence the con-

strained Ansatz for g equally holds for g̃. Of course, the undetermined coefficients may

assume different values for g̃ than for g.

Second symbol entry constraints. Next, we will derive further constraints on the

functions g and g̃ by looking at the second entry of the known remainder function’s sym-

bol [59]. While the first entry of the symbol encodes the positions of all branch points on

the main sheet, the first and second entries together determine the positions of all branch

points on all sheets adjacent to the main sheet. We denote the symbol of the heptagon

remainder function by

S[R
(2)
7 ] =

∑
i∈I, j∈J

(ai, aj , Xij) . (D.26)

Letters ai, i ∈ I in the first entry are drawn from the six cross ratios (2.4) as well as the

seventh cross ratio U26. The second entry includes further letters that cannot be reduced

to cross ratios. Every pair of first and second entry is followed by a two-letter symbol Xij .

Writing the continuation of the remainder function along some path C as:

CR(2)
7 = (1 + ∆C)R

(2)
7 , ∆CR

(2)
7 = 2πih1 + (2πi)2h2 + . . . , (D.27)

the coefficients h1 and h2 are functions of weight 3 and 2, respectively. Their symbols have

the form

S[h1] =
∑

i∈I, j∈J
ni (aj , Xij) , S[h2] =

∑
i∈I, j∈J

nijXij , (D.28)
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where ni and nij are numbers that depend on the chosen path C (ni is the winding number

of ai around zero).

We can now constrain the function h2 by inspecting the known symbol (D.26): we first

collect all Xij , and compute their multi-Regge limits at symbol level. In the multi-Regge

limit, the entries of the symbols Xij are rational functions of our Regge variables Ti, wi,

and w̄i, i = 5, 6. There are 73 symbols Xij , but not all of them are independent in the

multi-Regge limit. We note that the six-point function f (4.7) is free of terms proportional

to 2πi, hence h2 only contributes to the functions g or g̃. We can therefore set the LLA

part of h2 to zero. We do so by first unshuffling the variables T1 and T2 from the symbol,

then identifying the symbol (Ti) with the function 1/4(log εi+log(wiw̄i)) (using eqs. (B.5)),

and requiring that the coefficients of log ε1 and log ε2 must vanish. This imposes 8 linear

constraints on the 73 numbers nij .

Next, we match the symbol of h2 to the symbol of a generic weight-two combination

of single-valued MPLs constructed from the basis Gs (D.10). This implies 28 further con-

straints on the nij , and leaves us with a six-parameter combination of single-valued MPLs.

Further matching this combination against the function multiplying 2πi in eq. (D.24) (i.e.

imposing parity-invariance, target-projectile symmetry, and consistency with the Wilson

loop OPE in the collinear limit) eliminates 3 coefficients, and imposes the constraint

κ4 = 0 (D.29)

on our Ansatz (D.24). Since the analysis leading to eq. (D.29) was independent on the

choice of path C, we conclude that eq. (D.29) has to hold for both functions g and g̃. We

note that the constraints on the numbers nij are consistent with

nii = 1 where ai = U26 , (D.30)

which follows if the path C winds U26 around zero once (in the negative sense), as is the

case for the paths leading from the (+++) into the (−−−) and (−+−) regions, see table 2.

If we require in addition that u1,1 = U25 and u2,1 = U36 are held fixed, which is

consistent with the continuation into the (−−−) region, then it follows that

nij = 0 if ai ∈ {U25, U36} ∨ aj ∈ {U25, U36} . (D.31)

Combining these conditions with the previous constraints enforces that

κ1 = κ2 = κ3 = 0 (D.32)

in our Ansatz (D.24), in full agreement with [22].

E Discontinuity tables for half windings

Here we list the additional contributions δ%I to discontinuities ∆I listed in eqs. (5.32), (5.33),

and (5.34), that arise after appending the half-windings to the path of continuation sepa-

rately for each region % according to table 2:

δ%I := ∆%
I −∆I , % ∈ {(+−−), (−−+), (−+−)} . (E.1)

Below, we list these corrections for single ∆i and double ∆i,j discontinuities, while the

triple ones are unchanged δ%i,j,k = 0. We will use the shorthand notation (5.13).
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E.1 The region (+−−)

The corrections to the single discontinuities for the (+−−) region read

δ+−−
1 = 2πiC1 log(ε1) + C1(8πi log(r1)− 4π2 + 8πi) ,

δ+−−
3 = 2πiC+ log(ε1) + C+(8πi log(r1) + 4πi log(r2)− 4π2 + 8πi) . (E.2)

The corrections to the double discontinuities are
1

3
δ+−−

1,4 = δ+−−
4,1 = 2πiC1 ,

1

3
δ+−−

3,4 = δ+−−
4,3 = δ+−−

3,5 = 2πiC+ ,

δ+−−
1,2 = −6πiC1 + 4πiC+ ,

δ+−−
2,1 = −2πiC1 + 2πiC+ . (E.3)

E.2 The region (−−+)

The corrections to the single discontinuities for the (−−+) region read

δ−−+
3 = −2πiC+ log(ε1)− (2πiC+ + 2πiC2) log(ε2)− C2(8πi log(r2) + 4π2 + 8πi)

− C+(4πi log(r1) + 8πi log(r2) + 4π2 + 6πi) + 2πiC− ,

δ−−+
2 = −2πiC2 log(ε2)− C2(8πi log(r2) + 4π2 + 8πi) . (E.4)

The corrections to the double discontinuities are
1

2
δ−−+

3,4 = δ−−+
4,3 = −δ−−+

1,2 = −2πiC+ ,

1

3
δ−−+

3,5 = δ−−+
5,3 = −2πiC+ − 2πiC2 ,

1

3
δ−−+

2,5 = δ−−+
5,2 = −2πiC2 . (E.5)

E.3 The region (−+−)

The corrections to the single discontinuities for the (−+−) region read

δ−+−
1 = −2πiC1 log(ε1)− C1(8πi log(r1) + 4π2 + 8πi) ,

δ−+−
3 = (2πiC+ + 2πiC2) log(ε2) + C2(8πi log(r2)− 4π2 + 8πi)

− C+(4πi log(r1)− 4πi log(r2) + 4π2 + 2πi)− 2πiC− ,

δ−+−
2 = 2πiC2 log(ε2) + C2(8πi log(r2)− 4π2 + 8πi) . (E.6)

The corrections to the double discontinuities are
1

3
δ−+−

1,2 = δ−+−
2,1 = −2πiC+ + 2πiC1 ,

1

3
δ−+−

1,4 = δ−+−
4,1 = −2πiC1 ,

1

3
δ−+−

2,5 = δ−+−
5,2 = 2πiC2 ,

δ−+−
3,4 = −2πiC+ ,

δ−+−
3,5 = 4πiC+ + 6πiC2 ,

δ−+−
5,3 = 2πiC+ + 2πiC2 . (E.7)
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