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1 Introduction

The non-trivial topology of de Sitter (dS) spacetime comprises two disconnected spacelike

boundaries and causally disconnected interior regions. Recently, it has been argued [1] that

the Gibbons-Hawking entropy of dS spacetime [2] arises from the entanglement between the

past and future conformal infinities or, alternatively, from the entanglement between two

antipodal and causally disconnected bulk observers located at opposites Rindler wedges of

the dS interior.

One of the central ideas behind the above argument is that in order to measure any

observer-dependent quantity, in particular the thermal properties of the dS cosmological

horizon, one has to go beyond the standard probe approximation of a static observer. In

other words, the observer back-reaction should be taken into account.

Following this idea and motivated by the conically singular geometries induced by

point particles in three dimensions [3–5], we model the back-reaction of a static observer in

dS4 spacetime via the quotient dS4/Zq. That is, we think of observers that back-react with

the background geometry as inducing codimesion two defects that correspond to the fixed

points of the Zq action. In this sense, we treat the orbifold dS4/Zq as the fundamental

manifold on which the gravity theory is formulated and think of the dS4 spacetime only as
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a smooth limit of it. When such back-reaction is taken into account, we shall refer to the

static observer as a massive observer, and we shall think of the q → 1 limit as its massless

probe limit in which one recovers the original, non-singular dS4 geometry.

The aim of this note is to show that massive observers in dS4 admits an intrinsic

description in terms of a two-dimensional conformal field theory. We shall argue that the

introduction of an orbifold parameter q > 1 permits to build up a reduced two-dimensional

action functional with support on the pair of codimension two minimal surfaces that define

the set of fixed points of the Zq action. Each of these minimal and tensionful surfaces have

the topology of a 2-sphere in the Euclidean geometry and they can be formally thought

of as the “worldvolume” of a massive observer, whose massless limit is equivalent to the

tensionless limit q → 1. As we shall argue, the resulting effective two-dimensional Euclidean

action can be identified with a Liouville theory on a 2-sphere, in which the Liouville field

acquires q-dependent vacuum expectation value.

The correspondence between the effective action of a massive observer and the Liouville

theory action links the gravitational parameters, namely the dS4 radius ` and the four-

dimensional Newton’s constant G4, with the Liouville coupling constant γ2 ∼ ~. This

relation results in a semiclassical central charge given by

cq =

(
1− 1

q

)
3`2

G4
. (1.1)

This q-dependent central charge arguably encodes degrees of freedom associated to a mas-

sive observer which are not present in the massless limit q → 1. Consequently and by

means of the thermal Cardy formula, the central charge (1.1) predicts a Cardy entropy

that equals a modular free energy whose corresponding modular entropy correctly repro-

duces the Gibbons-Hawking area law.

We conclude by observing that in the q → ∞ limit of the quotient dS4/Z4, the four-

dimensional geometry reduces to the global geometry of dS3, where the two minimal sur-

faces of the former can be mapped — via a double Wick rotation — to the two conformal

boundaries of the latter. In this limit, the two Liouville theories on the bulk minimal sur-

faces become boundary theories (one for each boundary) at zero temperature. Moreover,

upon taking the q → ∞ limit, the two dS3 boundaries inherit a central charge from the

Liouville theory on the corresponding minimal surface in one higher dimension. As we shall

see, the total central charge of the two boundaries reproduces exactly the central charge

derived in the context of the dS3/CFT2 correspondence [6–12].

2 Static observers in dS4

In four dimensions, de Sitter spacetime (dS4) can be viewed as a four-dimensional timelike

hypersurface embedded in five-dimensional Minkowski space M1,4. Taking the embedding

coordinates to be Xµ ∈M1,4, µ = 0, . . . , 4, and considering the Minkowski metric

ds2
M1,4 = −(dX0)2 +

∑
1≤i≤4

(dX i)2 , (2.1)
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the dS4 hypersurface is defined by

XµX
µ = `2 , (2.2)

where `2 is the dS4 radius. The hyperboloid (2.2) has the topology of R×S3 with manifest

O(4, 1) symmetries.

2.1 Massless probe observers

The standard description of a static observer in dS4 is obtained by parametrizing the

embedding coordinates as

X0 =
√
`2 − r̂2 sinh(t̂/`) , X1 =

√
`2 − r̂2 cosh(t̂/`) , X i = r̂ŷi , 2 ≤ i ≤ 4 , (2.3)

where the ŷi denote the coordinates of the unit 2-sphere. The resulting line element

ds2 = −
(

1− r̂2

`2

)
dt̂2 +

dr̂2

1− r̂2

`2

+ r̂2dΩ2
2 , (2.4)

where the radial coordinate runs from 0 ≤ r̂ < ` and dΩ2
2 is the metric on the unit 2-sphere.

The time-independent metric (2.4) describes the worldline of a single static observer

located at the origin r̂ = 0. The observer is causally connected with only part of the full

spacetime. Such region is dubbed the Rindler wedge (or static patch) of the observer, and

its boundary defines an observer-dependent cosmological horizon H. This has the fix time

topology of a 2-sphere and is located at r̂ = `.

In the Euclidean vacuum, a static observer detects a temperature and a corresponding

Gibbons-Hawking entropy [2] given by

TdS =
1

2π`
, SdS =

π`2

G4
. (2.5)

2.2 Massive observers and antipodal defects

The above characterization of a static observer in dS spacetime considers the observer as

a massless probe object. Here, instead, we treat an observer as a massive object which

modify the local geometry of the spacetime; we propose to model the back-reaction of such

massive observer by means of a singular Zq quotient. This construction, which we shall

now briefly review, has been spelled out in full detail in [1].

To begin with, we note that the constraint (2.2) can be alternatively solved by param-

eterizing the embedding coordinates as

X0 =
√
`2 − ξ2 cos θ sinh(t/`) , X1 =

√
`2 − ξ2 cos θ cosh(t/`) , (2.6)

X2 = ξ cos θ , X3 = ` sin θ cosφ , X4 = ` sin θ sinφ ,

where

−∞ < t <∞ , −` < ξ < ` , 0 ≤ θ ≤ π , 0 ≤ φ < 2π . (2.7)
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Figure 1. Penrose diagram of dS4, with coordinates (τ,Θ). In the conformal time τ ∈
[−π/2,+π/2], the future and past infinities I± are located at τ = ±π/2. The global polar co-

ordinates Θ ∈ [0, π] defines the north and south poles by the points Θ = 0, π, respectively.

The metric (2.8) covers the two Rindler wedges of the dS4 interior: RN = {0 ≤ θ < π/2} and

RS = {π/2 < θ ≤ π}. The location of the two antipodal observers ON and OS defined in (2.9)

coincides with the global north and south poles Θ = θ = 0 and Θ = θ = π, respectively.

The resulting dS4 line element, that we shall simply denote by g4, is

g4 = `2(dθ2 + sin2 θ dφ2) + cos2 θ

[
−
(

1− ξ2

`2

)
dt2 +

dξ2

1− ξ2

`2

]
. (2.8)

The metric (2.8) has the warped product form S2 ×w dS±2 , where the 2-sphere has radius

` and dS±2 denotes the radially extended dS2 space, with the extended radial coordinate

ξ ∈ (−`, `), as indicated in (2.7). This geometry describes the worldline of two antipodal

static observers

ON := (θ = 0, ξ = 0) ∈ RN , OS := (θ = π, ξ = 0) ∈ RS , (2.9)

which are causally disconnected (as any light ray can not be sent from one observer into

the other). The foliation (2.8) covers the union RN ∪RS of both northern and southern

Rindler wedges, as depicted in figure 1.

In order to incorporate the observers back-reaction, one next deforms the S2 sector

in (2.8) by performing a S2/Zq orbifold. This is done via the discrete identification

φ ∼ φ+ 2π
q , with an orbifold parameter q > 1. The four-dimensional orbifold d̂S4 :=dS4/Zq

is then endowed with the metric

ĝ4 = `2gspindle + w2g±2 , (2.10)

where the warp factor w = cos θ satisfy the holonomy conditions w|0,π = 1 and w′|0,π = 0,

and

gspindle = dθ2 +
sin2 θ

q2
dφ2 , g±2 = −

(
1− ξ2

`2

)
dt2 +

dξ2

1− ξ2

`2

. (2.11)

The azimuthal identification deforms the S2 geometry into that of a Thurston’s

spindle [13]. The latter geometry has two antipodal conical singularities at the points

θ = 0, π, which are precisely the locations of the two static observers (2.9). We interpret
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these singularities as the response of the background geometry to the presence of a massive

observer, with a mass proportional to (q − 1).

The set of fixed points under the Zq action

F = ΣN ∪ ΣS , ΣN := d̂S4

∣∣
θ=0

, ΣS := d̂S4

∣∣
θ=π

, (2.12)

defines two antipodal, codimension two surfaces ΣN and ΣS , both endowed with the in-

duced metric

h = ĝ4

∣∣
θ=0,π

= g±2 . (2.13)

In what follows, we shall refer to the submanifolds (ΣN , h) and (ΣS , h) as defects.

In terms of the gravity action and in order to have a well defined variational principle,

the two conical singularities are resolved by adding to the Einstein-Hilbert action a pair of

Nambu-Goto terms with support on ΣN and ΣS [14]

I[d̂S4] =
1

16πG4

∫
d̂S4\(ΣN∪ΣS)

d4x
√
−g
(
R− 6

`2

)
−Tq

∫
ΣN

d2y
√
−h−Tq

∫
ΣS

d2y
√
−h. (2.14)

In the above, the support of the first integral excludes the location of the defects ΣN and

ΣS . The two Nambu-Goto terms are coupled through the tension

Tq =
1

4G4

(
1− 1

q

)
, (2.15)

where the limit q → 1 corresponds to the tensionless limit in which one recovers the usual

Einstein-Hilbert action on the smooth dS4 geometry.

Hence, by construction, ΣN and ΣS are codimension two minimal surfaces with an

induced stress-energy tensor given by

Tij = Tq hij . (2.16)

The localized stress energy tensor (2.16) is a strong sign of the existence of an underlying

field theory defined on the two minimal surfaces. As we shall next argue, this theory

corresponds to an Eucliedan Liouville theory on a 2-sphere.

3 Liouville theory description of a massive observer

In this section, we construct an effective two-dimensional action with support on the codi-

mension two minimal surfaces ΣN and ΣS . These surfaces are the set of fixed points of

the Zq action. Each of them contain the worldline of one of the massive observers ON and

OS , and they both have the topology of a 2-sphere in the Euclidean geometry, viz.

ΣE
N
∼= ΣE

S
∼= S2 , (3.1)

with induced metric dΩ2
2 (which corresponds to the analytic continuation of (2.13)). In

the above, the label “E” denotes Euclidean geometry. Hereafter, we shall drop this label

when is clear from context.
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3.1 Effective two-dimensional action

To begin with, we recall that the total Euclidean gravity action (2.14) on the conically

singular manifold d̂S4 := dS4/Zq consists of a bulk piece plus a pair of two-dimensional

Nambu-Goto terms

IEtotal[d̂S4] = Ibulk[d̂S4] + ING[ΣN ] + ING[ΣS ] , (3.2)

where the Euclidean integrals

Ibulk[d̂S4] := − 1

16πG4

∫
d̂S4\(ΣN∪ΣS)

d4x
√
g

(
R− 6

`2

)
, (3.3)

ING[ΣN ] := Tq
∫

ΣN

d2y
√
h , ING[ΣS ] := Tq

∫
ΣS

d2y
√
h .

Although the support of the bulk integral above excludes the location of the defects,

we can define a “free energy inflow” from the bulk to ΣN and ΣS by dimensional reducing

Ibulk down to two dimensions

Ibulk[d̂S4]
dim red
−→ I2d[ΣN

]
+ I2d[ΣS

]
, (3.4)

as to define an effective action on each of the defects, which comprises the inflow (3.4) and

the corresponding Nambu-Goto term, viz.

Ieff [ΣN ] = I2d[ΣN ] + ING[ΣN ] , Ieff [ΣS ] = I2d[ΣS ] + ING[ΣS ] , (3.5)

and such that the total on-shell action (3.2)

IEtotal[d̂S4] ≈ Ieff [ΣN ] + Ieff [ΣS ] . (3.6)

(From here and in what follows, we shall use the notation “≈” to indicate on-shell

equalities.)

The reduced Euclidean action I2d in (3.4) can be computed using the line elements (2.11)

and integrating out the spindle coordinates (θ, φ). This gives

Ibulk[d̂S4] ≈ − `2

4qG4

∫
d2y
√
hR , (3.7)

where the integral is over the two-dimensional submanifold coordinatized by y = (τ, ξ)

(with τ denoting the Euclidean time), and R = R[h] is the intrinsic two-dimensional scalar

of curvature built up from the induced metric on the defects (2.13). This reduction holds

upon imposing Einstein’s equations `2Rθθ = 3gθθ (and likewise the φφ-equation) and by

making use of the codimension two identity Rij = 3 cos2 θRij .
Due to the antipodal symmetry relating ΣN and ΣS [1], we further assign to each of

the defects half of the total inflow (3.7)

I2d[ΣN ] := − `2

8qG4

∫
ΣN

d2y
√
hR , I2d[ΣS ] := − `2

8qG4

∫
ΣS

d2y
√
hR , (3.8)

– 6 –



J
H
E
P
0
4
(
2
0
2
0
)
1
2
4

so that the effective action (3.5) on the northern defect is given by

Ieff [ΣN ] ≈ − `2

8qG4

∫
ΣN

d2y
√
hR+

1

4G4

(
1− 1

q

)∫
ΣN

d2y
√
h , (3.9)

idem for Ieff [ΣS ].

3.2 On-shell correspondence with Liouville theory

We now observe that the structure of the reduced effective action (3.9) closely resembles

the Liouville theory action [15]:

IL[g,Φ; γ] = −1

2

∫
M2

d2y
√
g
(
gij∂iΦ∂jΦ +QRΦ + 4πµe2γΦ

)
. (3.10)

In the above, (M2, g) is a two-dimensional Euclidean manifold and γ2 ∼ ~ is the only

coupling constant of the theory; its strength dictates the classical and quantum regimes

and further defines the background charge to be Q = γ−1 + γ, as required for conformal

invariance (for a brief review of Liouville theory see appendix A). It is important to point

out that the action (3.10) differs from the one given in (A.1) by an overall factor of −2π;

such a normalization is needed in order to uniformize the definition of the stress-energy

tensor1 while comparing (3.9) and (3.10).

Indeed, the reduced effective action (3.9) corresponds precisely to the Liouville ac-

tion (3.10) on the 2-sphere (M2, g) = (ΣN , h), upon giving to the Liouville field a fix

expectation value 〈Φ〉 = Φ0. That is

Ieff [ΣN ] ≈ IL

∣∣
〈Φ〉=Φ0

, (3.11)

and similarly for Ieff [ΣS ]. This on-shell relation permits to establish the existence of an

effective field theory on each of the minimal surfaces, ΣN and ΣS , given by a broken phase

of Liouville theory. As we shall now see, the effective field theoretic description encode a

number of compatibility conditions that in turn yield a q-dependent central charge which

we propose encode the degrees of freedom associated to a massive observer.2

The on-shell correspondence (3.11) holds provided

`2

8qG4
=
QΦ0

2
,

1

4G4

(
1− 1

q

)
= −2πµe2γΦ0 , (3.12)

1We recall that in our conventions the definition of the gravitational stress energy tensor (2.16) differs

from the standard convention used in the CFT context:

T ijgrav =
2√
h

δI

δhij
, T ijCFT =

−4π√
h

δI

δhij
.

The overall factor of −2π propagates when computing the operator product expansion 〈TT 〉, which in turns

produces a relative factor in the central charge. Comparison of the effective gravitational action (3.9) with

the Liouville action (A.1) thus requires the normalization implemented in (3.10).
2A similar idea has been previously discussed in [16] where the dimensional reduction of Einstein gravity

to two-dimensional Liouville theory is proposed to describe the underlying degrees of freedom of black hole

horizons.
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as follows from matching the terms of the same order in derivatives of the metric in (3.9)

and (3.10). In addition, the expectation value Φ0 must satisfy the Liouville equation of

motion for a constant field, which is given by

QR+ 8πγµe2γΦ0 =
2Q

`2
+ 8πγµe2γΦ0 = 0 , (3.13)

where the first equality made use of the constant positive curvature R = 2`−2 of ΣN .

Compatibility of the equations (3.12) and (3.13) yields

Φ0 =
1

2γ(q − 1)
, µ =

1

8πG4

(
1− q
q

)
exp

(
1

1− q

)
, (3.14)

and
Q

γ
=

(
1− 1

q

)
`2

2G4
. (3.15)

Observe that the bound q > 1 for the orbifold parameter can be understood as a

consistency condition: one the one hand, from (3.13) it follows that positivity of R[h] =

2`−2 > 0 is only possible if µ < 0, which according to (3.14) requires q to be greater than

one. On the other hand and remembering that Q = γ + γ−1, the bound q > 1 ensures the

reality of the couplings γ and ` in (3.15).

In what follows, we shall see that the semiclassical limit of (3.15) provides a nontrivial

link between the Liouville coupling constant γ, in terms of which the central charge of the

theory is defined, and the gravitational coupling `2/G4 which in turns defines (up to a

factor of π in dimension four) the entropy of the dS4 space.

3.3 Central charge and Cardy formula

In the semiclassical regime γ2 � 1, where thusQ ∼ γ−1, there exists aO(1/γ2) contribution

to the Liouville central charge [17]

c = 1 + 6Q2 ≈ 6

γ2
, (3.16)

whose value can be computed in terms of the gravity couplings and the orbifold parameter q.

Indeed, from the semiclassical limit of (3.15), we straightforwardly find

cq =

(
1− 1

q

)
3`2

G4
. (3.17)

This value of the central charge is consistent with the classical conformal anomaly equation

〈T 〉 = c
12R, where T = hijTij is the trace of stress-energy tensor (2.16) and R = 2`−2 is

the curvature of the corresponding defect. Also, we note that since q > 1, then the central

charge cq > 0, which indicates unitarity of the theory.

Is it worth to notice that the central charge (3.17) is q-dependent and vanishes in the

tensionless limit q → 1. This is similar to what occurs in the AdS3/CFT2 context, where

the bulk orbifold AdS3/Zq induces a q-dependence of the central charge of the boundary

theory [18–22], with the Brown-Henneaux central charge being recovered by rescaling the

Newton’s constant as G ∼ qG.
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Having obtained the central charge (3.17) and by virtue of the thermal Cardy formula

in the canonical ensemble [23, 24]

S Cardy
q =

π2

3
cq,L TL +

π2

3
cq,R TR , (3.18)

a q-dependent entropy can be computed (as usual, L and R label left and right-movers

central charge and temperature). Indeed, based on the arguments of [25], the Cardy

formula holds in the extended range of large central charge and large gap in operator

dimension above zero. Accordingly, in our case, since

cq ∼
`2

G4
� 1 , ∆0 ∼ cq � 1 , (3.19)

where ∆0 is the (semiclassical) conformal dimension of the bound state (see (A.13)), the

Cardy formula (3.18) applies.

For a non-chiral Liouville theory, we have

cq,L = cq,R = cq , TL = TR =
1

2π
, (3.20)

where cq is given in (3.17) and TL and TR correspond to the temperature of the generalized

Hartle-Hawking vacuum of dS space. This is known to be equivalent to a thermal state

ρ = e−2πHR defined by the Rindler Hamiltonian HR [26, 27](see also [28]).

Hence, using (3.17) and (3.20) in the Cardy formula (3.18), we find the q-dependent

Cardy entropy

S Cardy
q =

(
1− 1

q

)
π`2

G4
. (3.21)

Note that minus the derivative of the above entropy with respect to 1/q gives the Gibbons-

Hawking entropy (2.5). Based on this simple observation, we shall next reinterpret the

Cardy entropy (3.21) as modular free energy.

3.4 Modular free energy and Gibbons-Hawking entropy

The Cardy entropy (3.21) can be understood as the modular free energy Fq whose derivative

with respect to the dimesionless temperature3 T = q−1 [29, 30] yields the Gibbons-Hawking

area law. To this end, we define the modular Hamiltonian

H := − log ρ , ρ q = e−qH . (3.22)

Thus, we can write the modular partition function as

Z = tr ρ q = tr e−qH , (3.23)

in terms of which the modular free energy is given by

Fq = −1

q
logZ = −1

q
log trρ q . (3.24)

3Note that, by identifying T = q−1, the orbifold parameter q induces a Boltzmann factor exp(−qH)

(with H denoting the modular Hamiltonian (3.22)) which makes the Liouville theory thermal and thus

amounts to using the thermal Cardy formula (3.18).
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Next, we compute the modular free energy (3.24) on the 4-sphere defined by

S4 := (RES ∪REN )/Π . (3.25)

Here, RES and REN denote the analytic continuation of the southern and northern Rindler

wedges (both given by 4-spheres), and Π : S4 → S4 is the antipodal map that sends every

point in the southern Rindler wedge to the corresponding antipodal point in the northern

Rindler wedge [1]. It is important to point out that the 4-sphere (3.25) is equivalent to

the analytic continuation of a single Rindler wedge and also equivalent to the Euclidean

continuation of global dS4 spacetime. Moreover, it naturally admits a Zq action (given by

azimutal identifications), with a q-fold branched cover that we denote by S4
q . Using the

Calabrese-Cardy formula [31]

tr ρ q =
Z[S4

q ]

(Z[S4])q
, (3.26)

it follows that

Fq[S
4] = −1

q
logZ[S4

q ] + logZ[S4] ≈ IE [S4/Zq]− IE [S4] = 2

(
1− 1

q

)
π`2

G4
. (3.27)

In the above, we have used the semiclassical approximation Z[S4] ≈ exp(−IE [S4]) and

the locality of the gravity action to write IE [S4
q ] = qIE [S4/Zq]. The value of the latter is

given by the on-shell value of (2.14) (properly Euclideanized) restricted to a single Rindler

wedge (which we recall is given by a 4-sphere in the Euclidean geometry), viz.

IE [S4/Zq] ≈
(

1− 2

q

)π`2
G4

. (3.28)

The value of the modular free energy (3.27) comprises the contribution form both,

northern and southern defects. For a single defect (say the southern one), we thus have

FΣS
q =

1

2
Fq[S

4] =

(
1− 1

q

)
π`2

G4
, (3.29)

which corresponds exactly to the value of the Cardy entropy (3.21).

Finally, we can compute the modular entropy

S̃q = −∂Fq
∂T

= (1− q∂q) logZ , (3.30)

which gives

S̃q = q2 ∂

∂q

(
1− 1

q

)
π`2

G4
=
π`2

G4
= SdS . (3.31)

This is precisely the Gibbons-Hawking entropy (2.5). Observe that although (3.31) has its

origin in the modular free energy (3.24), its value is independent of the modular parameter

q and hence this remains fix in the tensionless limit q → 1, in which one recovers the

standard description of the dS4 spacetime.
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S2

Γθ

S2/Zq

•

•

`q = `
q

ΣN

ΣS

q →∞
dS3

z

Figure 2. The large q limit of the spindle S2/Zq. This corresponds to the zero radius limit `q → 0,

where the two-dimensional geometry between the northern and southern defects ΣN and ΣS shrinks

to a single transverse dimension. The resulting geometry is that of global dS3 spacetime.

4 The large q limit and dS3 holography

Here, we consider the q → ∞ limit of the orbifold d̂S4 := dS4/Zq. We will first argue

that this limit yields an alternative realization of the global dS3 geometry. We will further

propose that the large q limit provides a new mechanism to study dS3/CFT2 holography,

whereby the dual field theory defined on the two conformal boundaries of dS3 has a higher

dimensional origin, namely, it is inherited from the Euclidean Liouville theory on the two

minimal surfaces ΣS and ΣN (embedded in four dimensions).

4.1 3D conformal boundaries from codimension two defects in 4D

The limit q → ∞ is equivalent to the zero radius limit of the S2/Zq spindle, viz.

`q := q−1`→ 0. In this limit, the two-dimensional geometry between the northern and

southern defects ΣN and ΣS collapses to a single transverse direction, say z := `θ, with

ΣN located at z = 0 and ΣS at z = π`. The situation is illustrated in figure 2.

In the above limit, the four-dimensional geometry of the manifold (d̂S4, ĝ4) reduces to

the three-dimensional geometry of global dS3 spacetime with a radius equals to `. This

can be seen directly from the embedding coordinates (2.6) by first identifying φ ∼ φ+ 2π
q

and then taking q →∞. This operation sets X4 = 0. The remaining coordinates

X0 =
√
`2 − ξ2 cos θ sinh(t/`) , X1 =

√
`2 − ξ2 cos θ cosh(t/`) , (4.1)

X2 = ξ cos θ , X3 = ` sin θ ,

parametrize the embedding dS3 ↪→ M1,3 of the dS3 hyperboloid, defined by the hyper-

surface equation −(X0)2 + (X1)2 + (X2)2 + (X3)2 = `2, into four-dimensional Minkowski

spacetime M1,3.

After taking the limit, the resulting geometry is

g3 = dz2 + cos2(z/`)h , (4.2)

where h is the two-dimensional induced metric on the defects defined in (2.11) and (2.13).

We futher observe that the line element (4.2) can be mapped to the global foliation of dS3.

This is done via analytical continuation of the transverse coordinate z ∈ [0, π`] and the

time t ∈ (−∞,∞) (the latter being the time coordinate in h), that is

z → iT , t→ iτ . (4.3)
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As a result, the compact coordinate z becomes the global time −∞ < T < ∞ and the

induced metric h→ dΩ2
2, where dΩ2

2 denotes the metric on the unit 2-sphere:

g3 = −dT 2 + cosh2(T/`)dΩ2
2 . (4.4)

Clearly, this is the global foliation of dS3 spacetime. Under (4.3), the original codimension

two defects ΣN and ΣS are respectively sent to T → −∞ and T →∞. Hence, in the large

q limit, they reincarnate as the past and future infinities of dS3.

4.2 dS3/CFT2 central charge

The above maneuvers show that the global dS3 geometry can be thought of as the limit

(d̂S4, ĝ4)
q→∞
−→ (dS3, g3) (4.5)

(ΣS ,ΣN ) 7−→ (I+, I−) ,

where the minimal surfaces ΣS and ΣN are sent to the past and future infinities I± of

dS3 (after the double analytical continuation (4.3)). Thus, recalling from section 3 that

on ΣN and ΣS there exist an Euclidean Liouville theory, from the dS3 perspective one

should expects to have some Liouville-type theory on each of the boundaries I±. This is

consistent with the known fact that the asymptotic dynamics of pure dS3 gravity — when

formulated as two copies Chern-Simons theory with gauge group SL(2,C) — is described

by an Euclidean Liouville theory on I+∪I− [12]. Indeed, in the large q limit, the Liouville

theory on each the minimal surfaces reaches its zero temperature limit becoming a non-

thermal theory, in agreement with the results established in [12] which, in the context of

the dS3/CFT2 correspondence, predicts a non-thermal dual theory.

Accordingly, the total central charge of the composite boundary I+ ∪ I−

c = c(I+) + c(I−) , (4.6)

can be computed by means of (4.5) as

c = c∞(ΣN ) + c∞(ΣS) =
6`2

G4
, (4.7)

where c∞(ΣN ) = c∞(ΣS) = 3`2

G4
denote the Liouville central charge (3.17) in the limit

q → ∞. Note that the four-dimensional Newton’s constant can be expressed in terms of

the three-dimensional one as

G4 = Vol(S1)G3 , (4.8)

where Vol(S1) is defined as the average volumen of a meridian Γθ located at a polar angle

θ (see figure 2). This average is given by

Vol(S1) = 〈Γθ〉 = 2π`〈sin θ〉 = 4` . (4.9)

(In the above, we have used that π〈sin θ〉 =
∫ π

0 dθ sin θ = 2.) Then

G4 = 4`G3 , (4.10)
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and therefore one finds that the total central charge (4.7) is

c =
3`

2G3
, (4.11)

in accordance with the result derived in the context of the dS3/CFT2 correspondence [6–12].

Note that this result is consistent with the fact that, in the large q limit, the Cardy entropy

of the two defects

SΣN∪ΣS
q := S Cardy

q [ΣN ] + S Cardy
q [ΣS ] = 2

(
1− 1

q

)
π`2

G4
, (4.12)

correctly reproduces the thermodynamic entropy of three-dimensional dS spacetime [32]

(upon using the dimensional reduction of the Newton constant (4.10)), viz.

SΣN∪ΣS
q

q→∞
−→ SdS3 =

π`

2G3
. (4.13)

The results (4.11) and (4.13) seem to indicate that dS3 holography may emerge as the large

q limit of the dS4/Zq orbifold geometry.

5 Conclusions

In this work, we have modeled the back-reaction of a static observer in four-dimensional

de Sitter spacetime via the singular quotient dS4/Zq. The latter geometry exhibits two

antipodal conical singularities that we interpret as being created by a pair of massive

observers, OS and ON , defined in (2.9). The massless probe limit is defined by q → 1 in

which one recovers the smooth dS4 spacetime.

The set of fixed points of the Zq action defines a pair of codimension two surfaces, ΣS

and ΣN , as indicated in (2.12). Each of these two surfaces contains the worldline of one

static observer and they both have the topology of a 2-sphere in the Euclidean geometry.

Moreover, they are by construction minimal surfaces in the sense that their area functional

must be coupled to the Einstein-Hilbert action in order to have a well defined variational

principle; cf. equation (2.14).

By introducing an orbifold parameter q > 1, we have proposed the existence of an

intrinsic field theoretic description of each of the minimal surfaces in terms of a two-

dimensional conformal field theory. To this end, we have built up an effective two-

dimensional action functional with support on ΣS and ΣN , which comprises a free energy

inflow coming from dimensionally reducing the four-dimensional Einstein-Hilbert action,

plus the corresponding Nambu-Goto term of the surface. The resulting effective action,

given in equation (3.9), corresponds to that of a Liouville theory on a 2-sphere with a fixed

vacuum expectation value of the Liouville field.

The correspondence between the reduced action on the minimal surfaces and the Liou-

ville theory action provides a non-trivial link between the couplings and parameters of both

theories. These consistency conditions, displayed in (3.14) and (3.15), in particular lead to

the q-dependent central charge (3.17). Making use of the thermal Cardy formula, we have
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dS4/ZqGlobal dS3 Static dS4

q →∞ q → 1

Liouville theory

on ΣN,S

Non-thermal

Liouville Theory on I±

Defects (cod-2)Boundaries (cod-1)

q →∞

Figure 3. Different limits of the dS4/Zq geometry and its defect/boundary field theory description.

computed the Cardy entropy (3.21) which, upon identifying the modular parameter with

the inverse of the (dimensionless) temperature q = T−1, gives a modular free energy whose

modular entropy equals the Gibbons-Hawking entropy.

The above construction permits the interpretation of the Gibbons-Hawking entropy

as representing microscopic degrees of freedom of the massive observer: the back-reaction

of such observer induces a conical defect which in turn is the locus of codimension two

minimal surface. This two-dimensional surface encode their own field theoretic description

in terms of Liouville theory, which yields the central charge (3.17) and that we propose

captures the degrees of freedom of the observer (that are only visible when q > 1).

We finally studied the q →∞ limit of the quotient dS4/Zq, which is equivalent to the

zero radius limit of the S2/Zq spindle (see figure 2). In this limit, the four-dimensional

geometry reduces to the global geometry of dS3 spacetime where the two minimal surfaces

ΣS and ΣN are mapped, upon double analytical continuation, to the future and past

conformal boundaries I+ and I− of dS3, as indicated in (4.5).

From the relation between the modular parameter and the temperature q = T−1, it

follows that the limit q → ∞ is also equivalent to zero temperature limit of the Liouville

theory on the minimal surfaces. As a result, the future and past infinities of dS3 inherit

from the minimal surfaces a non-thermal Liouville theory. Schematically, our findings can

be summarized in figure 3.

Accordingly, the total central charge of the composite dS3 boundary I+∪I− comprises

two separate contributions, one from ΣS and another one ΣN , as displayed in (4.7). This

can be directly computed by taking the large q limit of the Liouville central charge (3.17).

The result correctly reproduces the value of the dS3/CFT2 central charge for the boundary

field theory.

Regarding directions for future work, one may speculate that our construction be-

longs to a broader scheme whereby (higher spin) gravity theories are formulated as quasi-

topological field theories of the AKSZ type [33]. These theories are naturally formulated

on manifolds with multiple boundaries and they incorporate extended objects of various

codimensions; Hilbert spaces are assigned to boundaries (encoding boundary states of the

bulk theory) as well as to defects (encoding defect states labeled by the codimension num-

ber). In this moduli space, it is natural to expect that the Hilbert spaces associated to
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boundaries and defects are related via a (co)dimensional ladder of dualities involving dif-

ferent limits of the moduli parameters. The case presented here would then be a concrete

example of such a duality in which the Hilbert space of a codimension two defect in four

dimension gives rise, in the large q limit, to the boundary Hilbert space of dS3. We plan

to refine and present these ideas in a separate work.
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A Liouville theory

In this appendix we collect the most relevant results of Liouville field theory and its semi-

classical limit. For a more detailed analysis see, for instance, [34–36] and references therein.

Quantum theory. Let (Σ, h) be a two-dimensional Riemann surface. Liouville theory

is an exact two-dimensional conformal field theory on Σ, defined by the action

IL =
1

4π

∫
Σ
d2y
√
h
(
hij∂iΦ∂jΦ +QRΦ + 4πµe2γΦ

)
, (A.1)

where the interaction parameter µ depends on the curvature of Σ, and the coupling γ2 ∼ ~
controls the quantum effects. When considering the theory on a Lorentzian manifold, the

action (A.1) acquires an extra overall minus sign.

Conformal invariance at the full quantum level sets the brackground charge

Q =
1

γ
+ γ , (A.2)

which is thus invariant under the shift γ → γ−1. In complex coordinates, the (holomorphic

part of the) stress-enery tensor

T := Tzz = Q∂2Φ− (∂Φ)2 , (A.3)

gives rise, via the operator product expansion

T (z1)T (z2) =
c/2

(z1 − z2)4
+

2T (z2)

(z1 − z2)2
+
∂T (z2)

z1 − z2
+ · · · , (A.4)

to the central charge of the theory

c = 1 + 6Q2 . (A.5)
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The vertex operators

Vα(z) = e2αΦ(z) , (A.6)

labeled by the quantum number α, create the spectrum of primary operators of the theory.

It follows that the operator product

T (z1)V (z2) =
∆Vα(z2)

(z1 − z2)2
+
∂Vα(z2)

z1 − z2
+ · · · (A.7)

determines the conformal dimension of primaries in terms of the background charge and

the momentum

∆ = α(Q− α) . (A.8)

The momenta of normalizable states

α =
1

2
Q+ iλ , λ ∈ R , (A.9)

in terms of which

∆ =
1

4
Q2 + λ2 ≥ 1

4
Q2 =: ∆0 . (A.10)

Semiclassical limit. The semiclassical limit of the theory is taken through the double

scaling

Φ→ γ−1Φ , µ→ γ−2µ , (A.11)

under which the quantum action (A.1) scales to

IL =
1

4πγ2

∫
Σ
d2y
√
h
(
hij∂iΦ∂jΦ +RΦ + 4πµe2Φ

)
, (A.12)

in the limit where γ2 → 0. In this regime, the central charge (A.5) and the bound state

conformal weight in (A.10) is well approximated by

c ≈ 6

γ2
, ∆0 ≈

c

24
. (A.13)
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