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Abstract
The present thesis investigates serial quantum dot arrays of di�erent
sizes, the double quantum dot, the triple quantum dot, and the quadru-
ple quantum dot. The quantum dot device is based on a two-dimensional
electron gas formed in a GaAs/AlGaAs heterostructure. A quantum point
contact in the vicinity of the quantum dots is utilized as a charge sensor,
allowing to detect tunneling of single electrons into or out of the quantum
dots as well as between two of the quantum dots. Two qualitatively di�er-
ent regimes are discussed, the transport regime and the isolated regime.

In the transport regime, where the quantum dots are well coupled to
electron reservoirs on both sides, electrons can tunnel from one reservoir
to the other through the array. Gate voltage dependent measurements
are used to characterize the transport properties through the quantum
dot arrays and to extract electrostatic properties. For all array sizes, long-
range transport across quantum dots in Coulomb blockade is observed for
the strong coupling regime.

The isolated regime is reached by increasing the tunnel barriers be-
tween reservoirs and the quantum dot array on both sides until tunnel-
ing from and into the reservoirs is fully suppressed within the measure-
ment timescales. The number of electrons in an isolated array is �xed,
but electrons can still be redistributed inside the array. The charge recon-
�guration inside the arrays is tracked using the charge detector. A high
level of control over the coupling, and thus the interdot transitions, in-
cluding long-range transitions between non-neighboring quantum dots,
is demonstrated. Time-resolved charge detection was used to investigate
the tunneling dynamics of a single, two, and three electrons loaded into
a double quantum dot, where the three electron case shows a high sensi-
tivity to environmental parameters.
Keywords: quadruple quantum dot, single-electron tunneling,

charge detection, isolated quantum dots, Coulomb blockade, long-
range tunneling
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Symbols

αj,i lever arm of gate j with respect to quantum dot i
B magnetic �eld
Cgate,i capacitance between gate and quantum dot i
Cij mutual capacitance between quantum dot i and quantum dot

j
Cm mutual capacitance in a double quantum dot system
CΣ total capacitance of a quantum dot
CΣi total capacitance of quantum dot i
D di�usion coe�cient
∆ detuning energy
∆ij detuning energy between quantum dot i and quantum dot j
∆Ei energetic shift of the energy levels of quantum dot i
∆Eij energetic shift of quantum dots i and j due to the interdot

capacitance
∆N detuning of the N-th energy level
∆t time interval
∆VG gate voltage di�erence
e elementary charge
EC charging energy of the quantum dot
ECi charging energy of quantum dot i
Em mutual charging energy in a double quantum dot
ε̄ mean energy
εi energy of state i
ε− lower energy (bonding) state of a double quantum dot
ε+ higher energy (antibonding) state of a double quantum dot
Γ tunneling rate
Γl tunneling rate from the right to the left inside a double quan-

tum dot
Γr tunneling rate from the left to the right inside a double quan-

tum dot
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Γij tunneling rate between the two elements i and j
Γ∗ e�ective tunneling rate
h Planck constant
 h reduced Planck constant
I current
Iavg average current
Idot current through the quantum dot system
Iqpc current through the quantum point contact system
kB Boltzmann constant
mi slope of the quantum dot i charging lines
mRij slope of the recon�guration line between quantum dot i and

quantum dot j
M amount of a substance
µ0(N) ground state energy of a quantum dot charged with N elec-

trons.
µe 2DEG electron mobility
µF Fermi level
µS chemical potential of the source reservoir
µD chemical potential of the drain reservoir
µQDi chemical potential of the relevant energy level of quantum

dot i
ne 2DEG electron density
Ne number of electrons
N1 number of electrons in quantum dot 1
N2 number of electrons in quantum dot 2
N3 number of electrons in quantum dot 3
N4 number of electrons in quantum dot 4
NTQD total number of electrons in a triple quantum dot NTQD =

N1 +N2 +N3
P power
QD1 quantum dot 1
QD2 quantum dot 2



QD3 quantum dot 3
QD4 quantum dot 4
r radius
t time
t0 reference time
tint integration time
τ time interval between tunneling events
τij residence time ; time interval between a tunneling event into

level i and the consecutive tunneling event into level j.
τii return time ; time interval between two consecutive events

of the same transition
U concentration of substance
V voltage
Vsd,dot quantum dot bias voltage
Vsd,qpc quantum point contact bias voltage
VBg1 voltage applied to gate Bg1
VBg2 voltage applied to gate Bg2
VDg1 voltage applied to gate Dg1
VDg2 voltage applied to gate Dg2
VDg3 voltage applied to gate Dg3
VDg4 voltage applied to gate Dg4
VTg1 voltage applied to gate Tg1
VTg2 voltage applied to gate Tg2
VTg3 voltage applied to gate Tg3
VTg4 voltage applied to gate Tg4
VTg5 voltage applied to gate Tg5
VQg1 voltage applied to gate Qg1
VQg2 voltage applied to gate Qg2
Vth thermoelectric voltage
VQD voltage applied to a gate capacitively coupled to a quantum

dot
VQPC voltage applied to gate capacitively coupled to a quantum

point contact
w width





1
Introduction

Quantum dots are arti�cially created small objects, in which charge car-
riers are con�ned in such a way that they exhibit a discrete energy spec-
trum. Due to this discrete energy spectrum, quantum dots operate at the
level of single charges and single spins. The energy spectrum of the quan-
tum dots can hereby be controlled by, for example, the material basis [1–
3], the size [2, 4] and the shape [5, 6] of the quantum dot, as well as
by external parameters, such as an applied electric �eld [7, 8], magnetic
�eld [9, 10], or strain [11, 12]. This combination makes quantum dots
versatile building blocks for a variety of quantum technologies. The con-
trollable energy spectrum is, for example, used to �ne-tune the optical
absorption and emission spectra to improve solar cells [13, 14] or to build
high-quality single-photon sources [15, 16] or entangled photon sources
[17, 18]. The high level of tunability of quantum dots is also exploited for
electronic applications, e.g. to realize accurate single-electron pumps for
metrological applications [19, 20] or highly sensitive electrometers [21,
22]. One of the most prominent application of quantum dots is the use
of spin states [23–26], charge states [27–31] or hybrids [32, 33] of both to
implement qubits for quantum computation by utilizing the high level of
control for the initialization, manipulation and read-out procedure.

A variety of quantum technologies, including the qubit application, re-
quire the operation of multiple quantum dots. While the use of arrays
consisting of multiple quantum dots improves functionality or is even a
prerequisite for it, increasing the number of quantum dots simultaneously
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1. Introduction

increases the parameter space and thus also the tuning complexity. For
these technologies, an important task is to achieve the high level of con-
trol required for successful operation by implementing e�cient and scal-
able tuning methods for larger arrays of quantum dots.

A detailed understanding of quantum dot arrays is the foundation for
implementing such tuning protocols in quantum technologies. Within
this thesis, an electrostatically de�ned quantum dot array with up to four
quantum dots in series, based on a GaAs/AlGaAs heterostructure, was
investigated. For a double, triple and quadruple quantum dot, electronic
transport measurements under variation of gate potentials are used to
characterize the quantum dot arrays. With using a sensitive charge de-
tector, the number and distribution of electrons inside the arrays are de-
termined. It is shown, that the quantum dot arrays can be transferred
into a regime isolated from the electron reservoirs in a controlled way. In
the isolated con�guration, the total number of electrons inside the array
is �xed, but the electrons can be shuttled between the di�erent quantum
dots, which is observable in the charge detector signal. The interdot tran-
sitions, including long-range transitions between non-neighboring quan-
tum dots are shown to be robust and highly tunable in the isolated con�g-
uration. At the same time, the isolation drastically simpli�es the system,
especially for small electron numbers. The dynamics of interdot tunnel-
ing are discussed based on the statistical analysis on time-resolved single-
electron detection in an isolated double quantum dot system.

After this general introduction (Chapter 1), the remainder of this the-
sis is organized as follows:
Chapter 2 (Fundamentals) begins with an introduction to the fun-

damental properties of quantum dots. Furthermore, the coupling mech-
anisms in multiple quantum dot systems are discussed and �nally an in-
troduction to charge detection using a quantum point contact is given.
Chapter 3 (Experimental basics) covers the experimental basics.

First, the fabrication process for the quadruple quantum dot structure is
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explained, followed by a description of the measurement setup. The last
part of the chapter introduces the measurement methods on the example
of characteristic single quantum dot measurements.
Chapter 4 (Transport through Quantum Dot Arrays) focuses on

transport measurements through quantum dot arrays with di�erent num-
bers of quantum dots. The transport properties of a double, triple and a
quadruple quantum dot array are discussed. For each array size, the sys-
tem is characterized based on low bias measurements, followed by bias
dependent transport, where the internal level structure greatly in�uences
the transport properties.
Chapter 5 (Transport in Quantum Dot Arrays) again investigates

the double, triple and quadruple quantum dot arrays, but in the regime
isolated from the electron reservoirs. The charge detector is used to track
the electrons tunneling inside the quantum dot arrays, from one quantum
dot to another. In addition to the experimental data, capacitance model
simulations are used to interpret the results. The interdot transitions are
shown to be robust and highly tunable, including long range transitions
between non-neighboring quantum dots. A controlled procedure for load-
ing a prede�ned number of electrons into the array is discussed for the
triple quantum dot. It is shown, that the complexity of the stability dia-
grams drastically reduces, when only a single or two electrons are isolated
inside the triple quantum dot array.
Chapter 6 (Time-Resolved Electron Tunneling) investigates the

dynamics of electrons isolated in a double quantum dot based on time-
resolved charge detection. First, the digitization procedure is introduced
on the example of a single electron loaded into the double quantum dot.
Statistical quantities are introduced and discussed in comparison to a sin-
gle quantum dot coupled to electron reservoirs. With two electrons iso-
lated in the double quantum dot, competing rates emerge due to spin-
�ips and spin blockade. Finally, the three-electron double quantum dot
is investigated. The detector signal here switches between eight di�erent
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1. Introduction

levels, with most of the transition rates between these levels showing a
signi�cant time dependency. This time-dependency is analyzed in detail.

The thesis concludes with summarizing the results inChapter 7 (Sum-
mary) and providing complementary data in the Appendix.
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2
Fundamentals

This chapter provides an introduction into the fundamentals necessary
to understand the properties of quantum dots and for the analysis and
evaluation of transport through and in quantum dot arrays. The begin-
ning will be an introduction on the basic properties of single quantum
dots and their transport characteristics, followed by coupling mechanisms
and coupled quantum dots. The chapter concludes with the introduction
of the charge detection principle using a quantum point contact.

2.1. �antum Dots

Due to their similarity to real atoms, quantum dots are often called arti-
�cial atoms [34–36]. Con�nement in all three spatial dimensions leads to
a discrete energy spectrum of quantum dots, which allows the quantum
dot to bind a de�ned number of electrons N, similar to a real atom. The
con�nement potential of a quantum dot however, which de�nes the en-
ergetic spectrum, strongly depends on the size, material, and symmetry
of the quantum dot. Quantum dots exist for a wide range of these pa-
rameters. From few nanometer sized quantum dots, for example based
on phosphorous donors in silicon [37, 38] to hundreds of nanometers us-
ing gate de�ned quantum dots based on a two-dimensional electron gas
(2DEG). The latter type is used within the scope of this work and brings
the advantage of a large spatial dimension compared to real atoms. This
allows the installation of electrical contacts and control gate electrodes
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2. Fundamentals

to the quantum dots using standard lithographic techniques [5, 39–42],
enabling the electrical investigation of quantum dot systems.

e-
e-
e-

gate

e- e-

S D

Figure 2.1.: Schematic representation of a QD connected to two electron reser-
voirs source (S) and drain (D) via tunnel barriers. Electrons are exchanged
with the electron reservoirs via stochastic tunneling events. A control gate
electrode in the vicinity couples capacitively to the quantum dot and allows
tuning the number of electrons bound on the QD.

A schematic of a quantum dot, tunnel coupled to two electron reser-
voirs source (S) and drain (D), is shown in �gure 2.1. A control gate elec-
trode in the vicinity acts as an electrostatic tuning mechanism for the
quantum dot. Charging and discharging of the quantum dot occurs via
tunneling events from or into one of the electron reservoirs. By applying
a voltage VG to the control gate electrode, the discrete energy levels of
the quantum dot can be energetically shifted, allowing to manipulate the
number of electrons N bound on the quantum dot. At the transition be-
tween two di�erent charge statesN andN+1, energy conserving (elastic)
electron tunneling between the electron reservoirs and the quantum dot
is possible and the charge of the quantum dot �uctuates between N and
N+ 1 electrons.

One of the characteristic parameters of a quantum dot is the charging
energy EC ≈ e2/CΣ, where e is the elementary charge and CΣ is the to-
tal capacitance of the quantum dot. The charging energy is the additional
energy, that has to be provided to load an additional electron into the
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2.1. Quantum Dots

quantum dot. The charging energy is the energy scale, which de�nes the
conditions under which single-electron charging and transport phenom-
ena become observable. There are two fundamental criteria to be ful�lled.
First, the thermal energy has to be small compared to the charging energy
of the quantum dot

kBT � EC, (2.1)

where kB is the Boltzmann constant and T is the temperature. This en-
sures, that only one energy level of the quantum dot is energetically ac-
cessible for elastic tunneling between the quantum dot and the electron
reservoirs.

Second, the coupling between quantum dot and electron reservoirs has
to be weak, so that the electrons are localized in the quantum dot. For
this purpose, the conductance Gdot of the quantum dot has to be small
compared to the conductance quantum [42–44]

Gdot �
e2

h
, (2.2)

with elementary charge e and Planck constant h. This second criterion
can be derived from the time-energy uncertainty relation ∆t∆E > h,
where ∆t = RCΣ is the RC-time constant of the quantum dot, i.e., the
time it takes to charge or discharge the quantum dot. Resolving the energy
di�erence ∆E = EC ≈ e2/CΣ, the charging energy of the quantum dot,
therefore requires a resistance R > h/e2. Using Gdot = 1/R then yields
equation 2.2. This implies, that the conductance of a channel coupling a
quantum dot to a reservoir has to be well below the ballistic regime i.e.,
deep in the tunneling regime.

In general, the energy spectrum of a quantum dot consists of two con-
tributions. The excitation spectrum, originating from the energy quanti-
zation due to the spatial con�nement of the electrons, and the addition
spectrum, which is a result of the Coulomb repulsion between multiple
electrons in one quantum dot. Which one of the two contribution domi-
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2. Fundamentals

nates, depends on the Fermi-wavelength of the electrons and the size of
the quantum dot. Whilst the Coulomb repulsion is typically the dominant
energy contribution in metallic quantum dots [45, 46], the con�nement
energy can become dominant in semiconductor quantum dots.

An approximation of the energy spectrum µm(N) can be given within
the constant interaction model. Two important assumptions feed into
this model. First, the Coulomb interaction of an electron on the quantum
dot is described by a single constant capacitance, the total capacitance
CΣ. Second, all other interactions except the Coulomb interaction are
neglected. The charging energy then writes to [5, 7, 47]

EC ≈ εN+1 − εN +
e2

CΣ
, (2.3)

which is only a function of the single particle states εm and the total
capacitance CΣ of the quantum dot.

2.1.1. Excitation Spectrum

The excitation spectrum is the single particle energy spectrum of the
quantum dot. It is de�ned by the con�nement potential in all three dimen-
sions and can be obtained by solving the Schrödinger equation. For a gate
de�ned quantum dot based on a 2DEG, the con�nement in z-direction is
already given by the 2DEG material. The 2DEG typically provides a real
two-dimensional system, where only the �rst subband E1

z is occupied in
z-direction. For gate de�ned con�nement in the remaining two dimen-
sions, an isotropic two-dimensional harmonic potential of the form

V(x,y) = 1
2m
∗ω2
o|~r|

2, (2.4)

with the electron e�ective massm∗, the radial frequencyωo, and the ra-
dius of the quantum dot |~r|2 = x2+y2, is considered a good approximation
[48].
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2.1. Quantum Dots

This approximation allows to use the well known Hamilton operator
of a two-dimensional harmonic oscillator

H = −
 h2

2m∗∇
2 + V(~r). (2.5)

with energy eigenvalues

εn,l = (2n+ |l|+ 1) hω0, (2.6)

with radial quantum number n ∈ N0, angular momentum quantum num-
ber l = 0,±1,±2, …, reduced Planck constant  h, and radial frequencyω0.
In absence of a magnetic �eld, which is the B = 0 case of the popular
Fock-Darwin spectrum [49, 50], the energy spectrum consists of equidis-
tant energy levels, which are separated by  hω0 in energy. Including a
factor of 2 due to spin degeneracy, each of these energy levels consists of
a set of 2(n+1) degenerate states. In analogy to real atoms, each set of de-
generate states can be regarded as an electron shell, where each shell can
hold up to 2(n+1) electrons, leading to magic numbersN = 2, 6, 12, 20, …
for completely �lled shells [10].

For a 2DEG with only one subband occupied, the con�nement in z-
direction only adds the constant subband energy E1

z to all states of this
single particle spectrum.

2.1.2. Addition Spectrum

Whereas the excitation spectrum is a single particle spectrum, the addi-
tion spectrum approximates the energy spectrum for multiple electrons in
the quantum dot. With more than one electron, interactions between the
electrons have to be taken into account. The constant interaction model
hereby only takes the Coulomb interaction into account and assumes all
other interactions (screening, exchange interaction,...) to be negligible.
The quantum dot is described by a total capacitance CΣ, which is inde-
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2. Fundamentals

pendent of the number of electrons N. When loading electrons into the
quantum dot, the electrons successively occupy the single particle states
of the excitation spectrum. The ground state energy of a quantum dot
loaded with N electrons then becomes

E(N) =

N∑
m=1

εm +

N−1∑
n=1

n
e2

CΣ

=

N∑
m=1

εm +
1
2N(N− 1) e

2

CΣ
.

(2.7)

Each additional electron in the quantum dot increases the total energy
of the quantum dot. This increase in total energy for increasing the num-
ber of electrons from N− 1 to N is the chemical potential

µ(N) = E(N) − E(N− 1) = εN + (N− 1) e
2

CΣ
. (2.8)

The energy di�erence between consecutive chemical potentials is then
the additional energy, that has to be provided to load an additional elec-
tron into the quantum dot, the charging energy

EC = µ(N+ 1) − µ(N) = εN+1 − εN +
e2

CΣ
. (2.9)

2.1.3. Electrostatic Model

The preceding calculations can be extended to an electrostatic model of a
quantum dot. The model introduces capacitively coupled elements to de-
scribe the environment of the quantum dot and is capable of explaining
the observation of Coulomb blockade in electronic transport measure-
ments. Figure 2.2 (a) shows a circuit diagram of a quantum dot, tunnel
coupled to two electron reservoirs, and capacitively coupled to a single
gate electrode. For this situation, the total capacitance of the quantum
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2.1. Quantum Dots

QD

VSD VG

CG

CS CD

µ(N-1)

µ(N)

µ(N+1)

µ(N+2)

}EC
µF

a) b)

VG

Figure 2.2.: (a) Circuit diagram of a QD coupled to two reservoirs and a gate
electrode. The total capacitance of the quantum dot CΣ = CS + CD + CG
is given by the sum of the source, drain and gate capacitance. (b) Schematic
energy diagram of a QD. The charging energy EC is the energy di�erence be-
tween two successive energy levels, i.e. between the ground state chemical
potentials of two successive electron numbers. Up to the Fermi energy µF, the
energy levels of the QD are occupied by electrons, levels above µF are unoc-
cupied. Without an applied bias voltage VSD, the electron reservoirs S and D
are coequal. A gate voltage VG acts as an electrostatic tuning mechanism for
the states µ(N) of the quantum dot and thereby allows to control the number
of electrons N in the quantum dot.
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2. Fundamentals

dot CΣ is given by
CΣ = CS + CD + CG. (2.10)

In general, the number of capacitances is not limited and a generalized
form of equation 2.10 is given by CΣ =

∑
iCi.

This electrostatic model assumes the environmental contributions to be
of purely electrostatic nature. The single particle spectrum of the quan-
tum dot is therefore independent of these contributions. In contrast, the
electrostatic energy of the quantum dot is a�ected by the environmental
contributions. Being previously de�ned by the number of charges in the
quantum dot, which can only change in integers, the environment now
contributes an additional continuous part, which couples capacitively to
the quantum dot. For N electrons, the ground state energy of the quantum
dot becomes

E(N) =

N∑
m=1

εm +
1

2CΣ

(
−e(N−N0) +

∑
i

CiVi

)2

, (2.11)

where N0 denotes the number of electrons populating the quantum dot
without any voltages applied Vi = 0, which compensate the background
doping. The modi�ed total energy E(N) also a�ects the electrochemical
potential µ(N) = E(N) − E(N − 1). For a set of �xed voltages Vi, the
electrochemical potential becomes

µ(N) = εN + (N−N0 −
1
2)
e2

CΣ
− e

∑
i

Ci
CΣ
Vi. (2.12)

In contrast, the characteristic charging energy EC = µ(N+ 1)−µ(N) =

εN+1 −εN+ e2

CΣ
is of the same form as in the addition spectrum in equa-

tion 2.9, where environmental contributions were not explicitly taken into
account, but only implicitly as part of CΣ. As equation 2.10 shows, the
environmental contributions de�ne the total capacitanceCΣ, which feeds
into the charging energy.
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2.1. Quantum Dots

Using the electrochemical potentialsµ(N), a schematic energy diagram
as shown in �gure 2.2 (b) can be set up for the quantum dot. The quan-
tum dot is hereby depicted by the electrochemical potentials for di�erent
electron numbers, which will be referred to as energy levels in the fol-
lowing. The two-dimensional electron reservoirs source (S) and drain (D)
are occupied by electrons up to the Fermi level µF and separated from the
quantum dot by tunneling barriers, which are depicted in grey. The num-
ber of electrons N in the quantum dot depends on the electrochemical
potentials of the electron reservoirs, which are µS,µD = µF at zero bias
voltage. As long as µ(N) < µF, the quantum dot is then charged with
electrons.

The last term of equation 2.12 interconnects the internal energies of the
quantum dot with externally applied voltages Vi. Changing the voltage
applied to a gate or an electron reservoir by ∆Vi shifts all energy levels
µ(N) with respect to the Fermi level µF by

∆µ = −e
Ci
CΣ
∆Vi = −eαi∆Vi, (2.13)

where αi = Ci/CΣ is called the lever arm. This relation can now be uti-
lized to manipulate the number of electrons in the quantum dot. A quan-
tum dot loaded withN electrons will be charged by an additional electron,
when µ(N + 1) < µF or discharged by one electron when µ(N) > µF,
which can be achieved by varying an external gate voltage VG.

2.1.4. Transport Spectroscopy

Electronic transport experiments are a method for obtaining information
about the energy spectrum of a quantum dot and have become a common
tool for the investigation of semiconductor quantum dots. In analogy to
the optical approach, this approach is called transport spectroscopy [5,
42, 51].

Due to the discrete energy spectrum of quantum dots, energy conserv-
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2. Fundamentals

ing (elastic) electron tunneling between a quantum dot and the coupled
electron reservoirs can be allowed or blocked, depending on the energetic
alignment of the quantum dot energy levels with respect to the reservoir
chemical potentials µS,µD. Schematic energy diagrams for three di�er-
ent con�gurations are given in �gure 2.3 (a). The �rst diagram shows
a quantum dot charged with N electrons. The energy level µ(N) lies
well below the reservoir chemical potentials µS,µD. In this alignment,
electrons cannot tunnel out of the quantum dot, since all energetically
available states in the reservoirs are occupied. The energy level µ(N+ 1)
lies well above the reservoir chemical potentials µS,µD. Since all occu-
pied states in the reservoirs are lower in energy than µ(N + 1), no ad-
ditional electron can tunnel into the quantum dot. This situation, where
both, tunneling in and tunneling out processes are forbidden, is called the
Coulomb-blockade. From an electrostatic point of view, two approaches
can be used to lift this Coulomb-blockade, and drive a tunneling current
Idot through the quantum dot.

The �rst approach utilizes a gate, capacitively coupled to the quan-
tum dot. By variation of the gate voltage VG, the energy levels of the
quantum dot are shifted with respect to µS,µD, according to equation
2.13. More positive voltage hereby leads to decreasing energy. For ex-
ample, a gate voltage change of ∆VG = EC

eαG
results in an energy shift

of ∆µ = −eαG∆UG = −EC. Beginning from the situation mentioned
before, this results in µ(N + 1) < µS,µD, meaning, in equilibrium, the
quantum dot is occupied by one additional electron. At the transition
point between the two electron numbers, µ(N + 1) is in resonance with
the reservoirs. In this situation, electrons can tunnel into and out of the
quantum dot, as depicted in the second energy diagram in �gure 2.3 (a).
Here, the electron number �uctuates betweenN andN+ 1 electrons and
already a small bias voltage Vsd,dot � EC drives a tunneling current
Idot through the quantum dot. The third energy diagram shows a sit-
uation similar to the �rst, where the quantum dot again is in Coulomb-
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2.1. Quantum Dots

blockade, but with one additional electron populating the quantum dot.
This cycle repeats for every transition between two electron numbers.

Finite conductanceGdot is only found close to the resonances between a
quantum dot energy level and the reservoirs. As function of a gate voltage
VG1, this leads to a series of sharp peaks [43, 52, 53] in the quantum dot
conductance Gdot, as schematically depicted in �gure 2.3 (b).

The charging energy EC and the lever arm of the gate αG1 hereby de-
�ne the gate voltage distance ∆VG1 = EC

eαG1
between two conductance

peaks. For large quantum dots, where the capacitive contribution to the
charging energy dominates (εN+1−εN � e2

CΣ
), this relation can be used

to directly determine the gate capacitance

CG1 =
e

∆VG1
. (2.14)

The shape of a Coulomb peak can be regarded as the evolution of the
probability to transfer electrons from one reservoir to the other as func-
tion of the energy detuning between the quantum dot energy levels and
a reference potential. Thus, the exact lineshape is not only de�ned by the
properties of the quantum dot, but is determined by the interplay between
quantum dot and reservoirs. Overall, this leads to a variety of di�erent
lineshapes, depending on the conditions of the involved energy scales.
For small bias voltages, the most relevant energy scales are given by the
charging energyEC, the quantization energy∆E, the couplings Γ̃S and Γ̃D
between quntum dot and reservoirs, and the thermal energy Eth = kBT .
Calculated lineshapes for di�erent relations between these quantities can
for example be found in Refs. [42, 43, 54]. Experimentally, the peak am-
plitudes and widths for successive electron numbers in a quantum dot are
not expected to be equal or change in a monotonic way. A variety of pa-
rameters play a role here, for example the experimentally always present
cross-coupling and possibly asymmetric e�ect of the gate voltage on the
tunnel barriers [55], the electron number dependency of degenerate states
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Figure 2.3.: (a) A gate voltage VG1 can be used to shift the energy levels of a QD.
This allows to tune a QD energy level into resonance with the Fermi levelµF of
the reservoirs. (b) The conductanceGdot as function of gate voltageVG1 then
exhibits a series of sharp peaks, where each peak corresponds to a transition
between two speci�c electron numbers N. The distance between two peaks
∆VG1 = EC/(eαG1) is hereby de�ned by the charging energy EC and the
lever arm of the gate αG1. (c) As function of two gate voltages ∆VG1 and
∆VG2, a stability diagram is obtained. An energy level shift induced by one
gate can be compensated via the other, leading to the occurrence of parallel
charging lines. The slope of these charging lines −αG1/αG2 is directly given
by the lever arm ratio.
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available for tunneling in or out of the quantum dot [56], or modi�ed cou-
pling depending on the wave function of the speci�c state available for
tunneling [57, 58].

The second electrostatic approach to lift the Coulomb blockade in
quantum dot devices is based on opening a transport window by apply-
ing a bias voltage VSD. The following assumes the bias voltage to be
applied to the source (S) reservoir while the drain (D) reservoir remains
at the reference potential. The electrochemical potentials are thus related
via µS = µD − eVSD. The energy schematics (1)-(3) in �gure 2.4 show
three simpli�ed energy schemes illustrating the in�uence of a bias volt-
age VSD. Schematic (1) hereby shows a situation VSD < 0, schematic
(2) corresponds to VSD = 0, and schematic (3) illustrates VSD > 0.
While (2) again shows a Coulomb blockaded situation, an applied bias
voltage opens up an energy window, where occupied states are found in
one reservoir while unoccupied states are present in the other reservoir.
This energy window is called the transport window. Whenever an energy
level µ(N) of the quantum dot, i.e. the ground state chemical potential
for theN-th electron, lies energetically inside this transport window, elec-
trons can tunnel into the quantum dot from one reservoir and tunnel out
to the other reservoir, leading to a �nite conductance. With one energy
level available for transport, the system is in the single electron transport
regime, where the sign of the bias voltage dictates the direction of tunnel-
ing. For larger bias voltages |eVSD| > EC, it is possible to have multiple
energy levels inside the bias window. Without interactions, each energy
level hereby contributes a parallel transport channel. As function of the
bias voltage, this leads to a step-like change of the current for each state
entering or leaving the transport window, as shown in �gure 2.4 (b). On
a plateau, the occupation of the quantum dot �uctuates between the an-
notated numbers of electrons.

In addition to the steps due to ground states entering and leaving the
bias window, each excited state µm(N) with m > 1 entering or leaving
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Figure 2.4.: (a) Energy level schematics for di�erent bias voltages VSD applied
to the source reservoir with (1) VSD < 0, (2) VSD = 0, and (3) VSD > 0. The
applied bias voltage opens up a transport window of size eVSD. Tunneling
through the quantum dot becomes possible, when at least one energy level of
the quantum dot lies inside the transport window. The direction of tunneling
is de�ned by the sign of VSD. (b) Current through the quantum dot as func-
tion of the bias voltage VSD. An energy level entering (leaving) the transport
window adds (removes) one transport channel, leading to steps in the current
through the quantum dot. Each level inside the bias window can be either
occupied or unoccupied, so that each plateau in the current corresponds to
certain numbers of electrons between which the quantum dot �uctuates.
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2.1. Quantum Dots

the bias window also provides a parallel channel, but only for tunneling
into the quantum dot. As soon as an electron has tunneled into the quan-
tum dot, the electron resides there in a speci�c state, so that there is no
additional channel for tunneling out. Excited states can thus lead to addi-
tional but smaller steps in the current Idot as function of the bias voltage
Vsd,dot.

Combining the two parameters, the gate voltage VG and the bias volt-
age VSD, provides a powerful tool for the spectroscopic investigation of
quantum dots. As function of these two parameters, quantum dots show
a characteristic pattern, the so called Coulomb diamonds. A schematic
of the resulting pattern is shown in �gure 2.5. Two sets of parallel lines
emerge, one set with positive slopes and a second set with negative slopes,
together forming the characteristic diamond shaped pattern. Each indi-
vidual line hereby corresponds to a unique resonance between a quantum
dot state and one of the reservoirs. Since the drain potential is �xed, a res-
onance between a quantum dot state and the drain reservoir (µN = µD)
follows ∆µN = −eCGCΣVG − eCSCΣVSD = 0, where CS is the source ca-
pacitance. A more positive VSD has thus to be compensated by a more
negative VG and vice versa, leading to the negative slope mD = −CSCG .
Similarly, a resonance between a quantum dot state and source (µN =

µS = µD − eVSD) follows ∆µN = −eCGCΣVG − eCSCΣVSD = −eVSD.
According to eq. 2.10, the resulting slope mS = CΣ−CS

CG
is always posi-

tive, since CS is an additive component of CΣ. Combined with the gate
capacitance CG the two slopes allow to calculate the total capacitance of
the quantum dot

CΣ = CG(mS −mD). (2.15)

A vertical cut through the Coulomb diamonds at VSD = 0 crosses sev-
eral intersections of the source and drain resonances. This results in a
series of Coulomb blockade peaks, as has been discussed in the context
of �gure 2.3. However, additional intersection points are present at �-
nite bias voltages. The two energy schematics (4) and (5) in �gure 2.5
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Figure 2.5.: Combining the bias voltage VSD dependence and gate voltage VG
dependence results in the so called Coulomb diamonds. Each diamond corre-
sponds to a �xed number of energy levels inside the bias window. For a bias
voltage applied at the source reservoir, the boundaries of the diamonds are
given by resonances of an energy level with the chemical potentials of source
µS (positive slope) and drain µD (negative slope). Numbers (1) - (3) are identi-
cal to �gure 2.4, (4) and (5) mark special points, where two successive energy
levels of the QD (µN, µN+1) are resonant with µS and µD, respectively. The
charging energy EC can therefore directly be obtained from the width of the
Coulomb diamond.
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illustrate the energetic situations at the positions marked by (4) and (5)
in the schematic Coulomb diamonds. At position (4), the two resonances
µN+1 = µS and µN = µD intersect. Due to µS = µD − eVSD this
provides a direct experimental access to the charging energy EC of the
quantum dot via

µS − µD = µN+1 − µN =: EC = −eVSD. (2.16)

Similarly, the situation (5), where µS = µN and µD = µN+1 intersect,
can be rearranged to

µD − µS = µN+1 − µN =: EC = eVSD. (2.17)

For an experimental determination of the charging energy EC from
Coulomb diamond measurements, it is bene�cial to use the relation
∆VSD = 2EC/e with ∆VSD being the width of the diamond in VSD-
direction. In contrast to using only one corner of the diamond, this
method is insensitive to o�sets in VSD. At the same time, the µS = µN =

µD resonances in the Coulomb diamonds allow to determine any exper-
imental o�sets in VSD.

In combination with the charging energy EC, the height ∆VG of the
diamond allows to precisely determine the lever arm of the gate αG =

EC/(∆VG), which interconnects a change of an external parameter with
the energy shift of the quantum dot levels.

2.2. Coupled �antum Dots

A system of coupled quantum dots is obtained by bringing two or more
quantum dots in close proximity to each other, so that interactions be-
tween the quantum dots become important. In addition to the inter-
actions, each quantum dot in a multiple quantum dot system also con-
tributes its own energy scale to the total system. The stability diagram of
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a system consisting of n quantum dots thus becomes n-dimensional. In-
dependent control over the electron numbers of each quantum dot there-
fore requires at least one independently tunable parameter per quantum
dot in the system. In the following, the basic control and coupling mech-
anisms will be introduced using the example of a serial double quantum
dot, the smallest possible coupled quantum dot system.

b)
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QD1 QD2
a)
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Figure 2.6.: (a) Energy level schematic of a serial double quantum dot. The two
gate voltages VG1 and VG2 act as electrostatic tuning parameters for the en-
ergy levels of the two quantum dots. (b) Schematic charge stability diagram of
a in the absence of coupling. The numbers in brackets denote the charge con-
�gurations (N1,N2) in QD1 and QD2. Without cross coupling of the gates,
the charging lines are vertical (QD1, blue) and horizontal (QD2, red). The
crossing points are quadruple points, which connect for di�erent charge con-
�gurations. This situation corresponds to uncoupled quantum dots, far apart
from each other.

A simpli�ed energy schematic of a double quantum dot is shown in �g-
ure 2.6 (a). The two quantum dots are connected in series between the two
electron reservoirs and are separated by a tunnel barrier. In analogy to
the single quantum dot, the two quantum dots QD1 and QD2 are depicted
by their individual ladder of electrochemical potentials µ(N1) and µ(N2),
where N1 (N2) is the number of electrons in QD1 (QD2). The charging
energies EC1 of QD1 and EC2 of QD2 are thus considered parameters of
the individual quantum dots and do not have to be equal. Panel (b) shows,
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2.2. Coupled Quantum Dots

as a reference, a schematic double quantum dot stability diagram in the
absence of interdot coupling. Gate voltage VG1 acts as an electrostatic
tuning mechanism for QD1 via ∆µQD1 = −eαG1,1VG1 (equation 2.13),
where αj,i is the lever arm of gate j with respect to QDi. VG2 acts as
an electrostatic tuning mechanism for QD2 via ∆µQD2 = −eαG2,2VG2,
respectively. Without any cross-capacitances (αG1,2 = αG2,1 = 0), the
double quantum dot stability diagram consists of a series of vertical charg-
ing lines (blue) for charging of QD1, combined with a series of horizon-
tal charging lines (red) for charging of QD2. The numbers in brackets
(N1,N2) denote the number of electrons in QD1, QD2. Each time one of
the blue (red) lines is crossed, the charge on QD1 (QD2) changes by one
electron. At the intersection points, a state of QD1 is resonant with a state
of QD2 and with the Fermi level, µQD1(N1) = µQD2(N2) = µF. These
intersection points are so-called quadruple points, where four di�erent
charge con�gurations are degenerate. These are the only points in the
stability diagram, where non of the quantum dots is in Coulomb-blockade
and thus the only points, where current is expected to �ow through the
serial double quantum dot. However, the situation shown in �gure 2.6 (b)
is only a good approximation for distant quantum dots, where the interdot
coupling and the cross-capacitances of the gates become negligible.

2.2.1. Capacitive coupling

For quantum dots in close proximity, both the interdot coupling and the
cross-capacitances have to be taken into account. An important inter-
dot coupling mechanism is the capacitive coupling due to the classical
Coulomb repulsion. The electrons on the �rst quantum dot hereby repel
other negative charges in their environment and thus increase the energy
needed to load electrons into the second quantum dot, and vice versa.

Figure 2.7 (a) shows a circuit diagram of a serial double quantum dot.
Each quantum dot is capacitively coupled to a gate electrode. The key
new feature is the capacitive coupling between the two quantum dots,
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the mutual capacitance Cm. Following the constant interaction model
and Refs. [22, 42, 59, 60], as well as neglecting all cross-capacitances, the
energy of the double quantum dot becomes

E(N,M)=

N∑
i=1
εi+

EC1
2 N(N− 1) − NEC1 +MEm

e
(CG1VG1 + CSVS)

+

M∑
j=1

εj +
EC2

2 M(M− 1) − MEC2 +NEm
e

(CG2VG2 + CDVD)

+ EmNM.
(2.18)

N and M are hereby the electron numbers on the �rst and the second
quantum dot, respectively, and with CΣ1(2) being the total capacitance of
the �rst (second) single quantum dot, the term

Em =
e2

Cm

(
CΣ1CΣ2
C2
m

− 1
)−1

(2.19)

is the mutual charging energy, the additional energy required to add an
electron to one of the quantum dots due to a single electron in the other.
EC1 and EC2 describe the electrostatic part of the individual quantum dot
charging energies with

EC1(2) =
e2

CΣ1(2)

(
1 − C2

m

CΣ1CΣ2

)−1
. (2.20)

The mutual capacitance thus leads to a correction factor to the elec-
trostatic energies of the uncoupled quantum dots. This factor is always
larger than one due to CΣ1 and CΣ2 both being sums that include Cm.
For vanishing Cm the correction factor becomes 1.

With including the capacitive coupling and also including the e�ect
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Figure 2.7.: (a) Circuit diagram of a serial double quantum dot. Each of the
two quantum dots is capacitively coupled to a gate electrode and one of the
reservoirs. The mutual capacitance between the two quantum dots is given by
Cm. The boxes depicting reservoir coupling and interdot coupling consist of
resistor and capacitor in parallel. Annotation of the resistances was left out for
visual clarity. (b) Schematic charge stability diagram of a capacitively coupled
double quantum dot with denoted electron numbers (N1,N2). Including the
more realistic scenario of cross coupling of the gates, the horizontal and ver-
tical lines turn into lines of two di�erent slopes. The mutual charging energy
Em due to the interdot capacitance Cm introduces an energy gap between
the (N1,N2) and (N1 + 1,N2 + 1) states. Each additional electron in one of
the quantum dots shifts the charging lines of the other dot. (c) Zoom into one
of the resonances. The energy gap splits the former quadruple point into two
triple points TP1 and TP2. At these triple points, already a small bias voltage
drives a tunneling current through the serial double quantum dot.
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of cross-capacitances, a schematic stability diagram is shown in �gure
2.7 (b). The stable charge con�gurations (N1,N2) are again denoted in
brackets. The blue lines correspond to charging lines of QD1, the red lines
to those of QD2. As function of gate voltages VG1 and VG2 the charging
lines now have a �nite slope due to the cross-capacitances. In addition, the
interdot capacitive coupling results in a splitting of the intersection points
of the charging lines. The mutual charging energy lifts the degeneracy of
the (N1,N2) and (N1 + 1,N2 + 1) at the intersection points, so that the
former quadruple point is separated into two triple points, where three
di�erent charge con�gurations are degenerate.

Including multiple of these split resonances results in the double quan-
tum dot characteristic honeycomb pattern [59]. Figure 2.7 (c) shows a
zoom into one of these split resonances with the two marked triple points
TP1 and TP2, split by the mutual charging energy Em. For both of these
triple points, it is possible to transfer a charge from one reservoir into the
other reservoir by cycling through the degenerate charge states. For TP1
(�lled circle), beginning in the (0, 0) con�guration, an electron can tun-
nel from the left reservoir into the left QD1, further into the right QD2,
and tunnel out into the right reservoir. A small (negative) bias voltage
applied to the left reservoir thus allows to drive a current through the
double quantum dot via the cycle (0, 0)− (1, 0)− (0, 1)− (0, 0). A similar
cycle can be found for TP2 (open circle). For the same bias direction and
starting from the double occupied (1, 1) con�guration, it is convenient to
work in the quasi hole picture, such that a hole enters the right QD2 from
the right reservoir, hops further to the left QD1, and �nally escapes to
the left reservoir. The cycle (1, 1) − (1, 0) − (0, 1) − (1, 1) thus drives a
current through the double quantum dot at TP2. Based on this sequential
tunneling picture, triple points of type TP1 are also called electron triple
points, whereas triple points of the type TP2 are referred to as hole triple
points [59, 61].

36



2.2. Coupled Quantum Dots

2.2.2. Tunnel Coupling

The second important coupling mechanism for a coupled quantum dot
system is the tunnel coupling between the two quantum dots. For two
quantum dots in close proximity, the electronic wave functions overlap,
so that electrons can tunnel from one quantum dot to the other. In the
vicinity of the triple points, where the energy levels of the individual
quantum dots are degenerate, a �nite tunnel coupling lifts this degen-
eracy and bonding and antibonding states form, leading to an avoided
crossing.

An approximation of the e�ect of the tunnel coupling can be given
by considering only a single electron and one state of each quantum
dot. When neglecting interactions to electrons of lower energy, the back-
ground electrons can then be treated as an additive term to the total en-
ergy E(N,M) according to equation 2.18.

The Hamiltonian of a such a coupled two-level system can be taken as
[42, 59]

H =

(
ε1 t̃

t̃ ε2

)
, (2.21)

where t̃ describes the tunnel coupling and ε1/2 are the energy levels of
the two quantum dots for the uncoupled case t̃ = 0.

The corresponding single-electron energy eigenvalues are

ε± =
ε1 + ε2

2 ± 1
2

√
(ε1 − ε2)2 + 4t̃2. (2.22)

The lower energy state ε− (bonding state) becomes the ground state for
the single electron, with the higher energy state ε+ (antibonding state)
being an excited state. With introducing relative coordinates for the two
quantum dots, the mean energy ε̄ = (ε1 + ε2)/2 and the detuning ∆12 =

ε1 − ε2, equation 2.22 can be rewritten to
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ε± = ε̄± 1
2

√
∆2

12 + 4t̃2. (2.23)

As function of the two parameters ε̄ and ∆12, the solid lines in �gure
2.8 (a) show the lower energy bonding state ε− and the higher energy
antibonding state ε+. The energy di�erence between the ground and the
excited state

∆E = ε+ − ε− =

√
∆2

12 + 4t̃2, (2.24)

becomes minimal at zero detuning between the quantum dots, with
∆E(∆12 = 0) = 2|̃t|.
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Figure 2.8.: (a) E�ect of a �nite tunnel coupling on a single electron in a double
quantum dot. The two individual states ε1 and ε2 (dotted lines) of the two
quantum dots hybridize and form a bonding ε− and antibonding ε+ state,
showing an avoided crossing as function of the detuning ∆12. (b) Schematic
stability diagram of a tunnel coupled double quantum dot. The double quan-
tum dot characteristic honeycomb pattern is de�ned by the Coulomb repul-
sion. Close to the resonances, the tunnel coupling leads to the formation of
the ε± states, resulting in the characteristic bending of the charging lines and
an additional splitting of 2|̃t|.

The dashed lines show the energies ε1 and ε2 of the individual quantum
dots for zero tunnel coupling. For large detuning ∆12 between the quan-
tum dot levels, the double quantum dot states ε± converge to the states
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of the individual quantum dots. When following the ground state ε− as
function of the detuning, the electron is localized in one quantum dot in
the beginning and transferred to being localized in the other quantum dot
in a smooth way.

With neglecting all interactions except for the Coulomb interaction and
the tunnel coupling, the single electron double quantum dot states ε± can
be used to approximate the behavior of a multi electron double quantum
dot. Figure 2.8 (b) shows a schematic stability diagram for such a sys-
tem as function of two gate voltages VG1 and VG2. Due to the Coulomb
interaction, the overall behavior follows the honeycomb pattern of a ca-
pacitively coupled double quantum dot (see �gure 2.7 (b)). QD1 charging
lines are again colored in blue, QD2 charging lines are colored in red.
Close to the double quantum dot resonances (triple points), the individ-
ual quantum dot states εi/j hybridize and form bonding and antibonding
states ε±, leading to an additional splitting of 2|̃t|. A color gradient from
blue to red is used to symbolize the smooth transition regions. The black
dotted lines are again recon�guration lines, where one electron moves
from one quantum dot to the other. The mean energy axis of panel (a) is
parallel to the recon�guration lines, the detuning axis is perpendicular to
the recon�guration lines.

Each resonance consists of four charge con�gurations (N,M), (N +

1,M), (N,M + 1), and (N + 1,M + 1), with the total change in charge
being two electrons. For each resonance, the e�ect of the tunnel coupling
is approximated by the formation of the double quantum dot states ε±
on top of a background charge con�guration. The �rst electron with re-
spect to this background charge con�guration then occupies the lower
energy state ε−, whereas the second electron occupies the higher energy
ε+ state.
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2.3. Charge Detection

To complement the transport spectroscopy, a charge detector can be in-
stalled to the quantum dot system, granting access to the exact number
and distribution of the electrons in the quantum dot system. Since all
charging events in quantum dots are based on single electrons, a reliable
charge detector has to be highly sensitive to local potential changes.

Charge detectors for quantum dot systems are typically based on the
use of a parallel circuit in which a capacitively coupled sensor element
is located in the vicinity of the quantum dot system under investigation.
Commonly used charge sensor types are based on using a quantum dot
[22, 62–64] or quantum point contact [31, 65–67] as the capacitively cou-
pled sensor element. The high sensitivity due to the sharp Coulomb block-
ade peaks and the relative ease of fabrication and integration made es-
pecially metallic single-electron transistors (SETs) attractive in the early
stages of single charge detection [21, 68, 69] and of highly sensitive elec-
trometers in general [70–72].

In this work, the charge detector is implemented in form of a quantum
point contact (QPC). One advantage of the QPC is the simplicity of the
design in comparison to a quantum dot. Typically, a QPC detector can be
implemented with only one additional gate, whereas good control over
a quantum dot detector would require at least three additional gates, a
plunger gate and one gate for controlling each of the two tunnel barriers.
Additionally, the high sensitivity of the sharp Coulomb peaks comes with
the downside of the necessity to readjust the detector gate voltages often
for constantly being in a sensitive regime. These readjustments, as well
as the localized charge on the detector dot lead to electrostatic backac-
tion onto the system under investigation. A QPC on the other hand does
not contain localized charges and typically needs less adjustment of the
gate voltage, thus providing the bene�t of only small electrostatic back-
action. However, QPC detectors also need to be carefully tuned, since
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biased QPCs emit phonons, which also interact with the system under
investigation [73–75].

b)a)

�F~

2DEG

2DEG

Figure 2.9.: (a) Schematic of a quantum point contact. A gate electrode is used to
form a narrow channel within the 2DEG with a width comparable to the Fermi
wavelength λF. Electronic transport through this one-dimensional channel is
ballistic, for channels that are short compared to the mean free path of the
electrons. (b) ConductanceGQPC as function of the QPC gate voltage VQPC.
Each one-dimensional subband crossing the Fermi level µF contributes 2e2/h
to the total conductance of the QPC, resulting in the characteristic conduc-
tance plateaus of one-dimensional conductor.

A QPC is a one-dimensional transport channel. Forming a QPC re-
quires con�nement to the order of the Fermi wavelength λF in two spatial
dimensions. In a 2DEG, this can for example be achieved using electro-
static potentials applied to gate electrodes, as schematically depicted in
�gure 2.9 (a). While the con�nement leads to energy quantization in two
dimensions, electrons can freely move in channel direction. Energetically
separated one-dimensional sub-bands form, where each sub-band is an
individual transport mode. As long as the channel length is small com-
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pared to the mean free path lmfp of the electrons, transport through these
modes is ballistic. Each single mode crossing the Fermi level µF then con-
tributes the conductance quantum G0 = 2e2/h to the total conductance
of the QPC [42, 76–78]

GQPC = s · e
2

h
·MQPC. (2.25)

MQPC hereby denotes the number of modes crossing the Fermi level
µF, s is the degeneracy factor of the modes. For electrons in absence of
a magnetic �eld s = 2 due to the spin degeneracy. The spin degeneracy
can be lifted by applying an external magnetic �eld [39, 77, 79].

A gate voltage VQPC can be used to manipulate the constriction. The
gate voltage hereby changes the width and potential landscape of the
QPC constriction, both de�ning the energy con�guration of the one-
dimensional sub-bands. More negative voltagesVQPC decrease the width
of the constriction, thereby increasing the ground state energy and energy
spacing of the sub-bands. As function of the gate voltage VQPC, the con-
ductance of a quantum point contact therefore exhibits a series of steps, as
shown in �gure 2.9 (b). As depicted by the energy band schematics on top,
a step occurs each time a sub-band crosses the Fermi level µF. The step
height is hereby given by the conductance quantum. The width of each
plateau depends on the energy spacing of the one-dimensional subbands
and therefore strongly depends on the exact potential landscape. Equidis-
tant steps are observed for a saddle-point constriction [80], a commonly
used approximation for a QPC in a 2DEG.

Similar to changing a gate voltage VQPC, changing the charge on a
quantum dot in the vicinity of the QPC has an in�uence on the potential
landscape of the QPC constriction. Each additional electron on the quan-
tum dot slightly decreases the width of the constriction, as schematically
depicted in �gure 2.10 (a). In the VQPC-space, each additional charge
on the quantum dot slightly shifts the detector curve toward more posi-
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Figure 2.10.: (a) Schematic of a narrow QPC channel capacitively coupled to a
quantum dot. Each additional electron on the quantum dot slightly decreases
the width of the QPC channel. (b) Conductance of the QPCGQPC as function
of the gate voltage VQPC. The negative potential of each additional electron
in the quantum dot shifts the QPC curve toward more positive potential in
the VQPC-space. (c) Operating the QPC at a �xed gate voltage VWP , the
QPC conductance becomes sensitive to the number of electrons NQD in the
quantum dot.

43



2. Fundamentals

tive VQPC. For one (blue), two (orange), and three (green) electrons, this
is schematically depicted in �gure 2.10 (b). With �xing a working point
VQPC = VWP (grey dotted line) for the QPC on a transition between
two plateaus, the conductanceGQPC becomes sensitive to the number of
electrons on the quantum dot. Panel (c) illustrates GQPC at the working
point VWP for the three di�erent electron numbers. As long as the uncer-
tainty in the measurement ofGQPC is small compared to the conductance
change for adding or removing an electron on the quantum dot, this al-
lows to monitor changes of the electron number NQD on the quantum
dot by monitoring the conductance GQPC.

Even though the exact gate voltage dependency of a QPC sensitively
depends on a variety of parameters including geometry [80, 81], tempera-
ture [77, 81], magnetic �eld [77, 79], and bias [82, 83], or might show addi-
tional substructures, for example the ’0.7 anomaly’ [84, 85], this detection
scheme is very robust, since it only depends on the coupling strength be-
tween QPC and quantum dot. The sensitivity for the charge detection is
then determined by the conductance change ∆GQPC as function of po-
tential, which can be approximated by dGQPC/dVQPC, the slope of the
QPC conductance as function of gate voltage.

Figure 2.11 illustrates how a QPC charge detector responds on charging
events in a quantum dot in the vicinity. A schematic of a simple con�g-
uration of a quantum dot, capacitively coupled to a QPC, is shown in (a).
The quantum dot is connected to the QD source and QD drain reservoirs,
the QPC is connected to the QPC source and QPC drain reservoirs. A gate
electrode in the vicinity of the quantum dot allows to control the energy of
the quantum dot levels µN by applying a gate voltage VQD. The voltage
applied to the QPC gate electrode is chosen to VQPC = VWP (compare
�gure 2.10 (b)), so that the QPC is in the transition region between two
plateaus and is sensitive to potential changes.

As function of VQD, the quantum dot shows Coulomb blockade oscil-
lations, as discussed in 2.1.4. The number of electrons on the quantum
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Figure 2.11.: Illustration of the detection of charging events in a quantum dot
using a quantum point contact. (a) Schematic of a quantum dot capacitively
coupled to a QPC. The quantum dot and the QPC can be controlled with gate
voltages VQD and VQPC, respectively. The quantum dot is coupled to two
electron reservoirs source and drain, so that electrons can tunnel into and out
of the quantum dot with tunneling rates Γin and Γout. (b) Conductance of the
QPCGQPC with changing VQD. The voltage VQD cross couples to the QPC,
leading to a �nite slope. Changing the electron number of the quantum dot
leads to a step in GQPC. Depending on the direction of the VQD change, the
step can be due to adding (positive direction) or removing (negative direction)
an electron. (c) At the transition, the quantum dot switches between N and
N + 1 electron. As function of time GQPC switches to a low conductance
state, whenever an electron tunnels into the quantum dot and back to the high
conductance state, when the electron tunnels out again. Due to the stochastic
nature of tunneling, the times between the switching events �uctuate.
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dot always changes by one, when crossing one of the Coulomb block-
ade peaks. When simultaneously monitoring the QPC conductance, a
step-like behavior is observed, as depicted in �gure 2.11 (b). Changing
the electron number of the quantum dot leads to a potential change and
thus slightly shifts the QPC curve with respect to the �xed working point
VQPC = VWP . Since the working point of the QPC does not change,
this shift is observed as a step in the QPC conductance. The steps in the
QPC conductance GQPC and the Coulomb blockade peaks in the GQD
are therefore observed at the same voltages VQD. A �nite slope ofGQPC
away from the resonance occurs in the presence of cross-coupling of the
gate voltage VQD on the QPC channel. This cross coupling is expected,
since the quantum dot and the QPC are required to be in close proximity
for the charge detection to be sensitive.

As long as tunneling into and out of the quantum dot is fast compared
to the timescale of the measurement, the charge detector shows the equi-
librium charge con�guration of the quantum dot. In this case, the QPC
conductance GQPC does not depend on the direction of the measure-
ment, i.e., the QPC conductance GQPC is the same for sweeping VQD
from more positive to more negative voltages compared to sweep VQD
from more negative to more positive voltages. However, as sketched on
top of �gure 2.11 (b), the underlying process di�ers. For sweeping toward
more negativeVQD, the observed step corresponds to an electron leaving
the quantum dot, while toward more positive voltages, the step comes as
a result of loading an additional electron onto the quantum dot.

At the position of the step, the quantum dot is bistable. A level of
the quantum dot is in resonance with the reservoirs and the number of
electrons on the quantum dot stochastically �uctuates between N and
N + 1 electrons. Therefore, also the QPC conductance GQPC �uctuates,
as shown in �gure 2.11 (c). As long as there areN electrons on the quan-
tum dot, the QPC conductance is stable. As soon as an additional electron
tunnels into the quantum dot, the QPC conductance drops to a lower level,
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corresponding toN+1 electrons in the quantum dot. After a certain time
the electron then tunnels out again and the QPC conductance returns to
the original value forN electrons. The timescale of the �uctuations is de-
termined by the tunneling rates Γin and Γout into and out of the quantum
dot. With a su�ciently high detector bandwidth Γdet > Γin, Γout these
�uctuations become resolvable, allowing to detect single-electron charg-
ing events in a time-resolved manner [86–88]. Time resolved detection of
single-electron tunneling is for example used as a readout procedure for
quantunm dot based spin qubits [89, 90] and provides an error detection
method for single electron pumps [91, 92].
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3
Experimental Basics

This chapter will give an introduction into the experimental techniques
used within the scope of this work. Beginning with the heterostructure,
the fabrication methods for the quadruple quantum dot device are dis-
cussed. An introduction into the measurement setup will be given, and
the chapter concludes with the introduction of characteristic transport
measurements on a single quantum dot.

3.1. Heterostructure

The quantum dot device investigated within the scope of this work, is
based on a two-dimensional electron gas (2DEG). This 2DEG is formed
in a GaAs/AlGaAs heterostructure [93, 94], which was grown by E.
P. Rugeramigabo via molecular beam epitaxy (MBE) [95, 96]. The layer
structure according to the growth protocol is shown in �gure 3.1a. At the
GaAs/AlGaAs interface at 110nm below the surface, which is marked
in blue, the 2DEG is formed.

Growing GaAs and AlGaAs on top of each other leads to strainless
and atomically �at interfaces, since the Al-content in AlxGa1−xAs has
a vanishing e�ect on the lattice constant. The band gap on the other
hand is modulated by theAl-content and can be tuned between theGaAs
(∼ 1.4 eV) and AlAs (∼ 2.1 eV). By bringing the two di�erent materials
in contact, the Fermi level µF aligns, which leads to a deformation of the
energy bands in the interface region. A triangular shaped potential well is
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Figure 3.1.: (a) Schematic of the material layer order of the used heterostructure.
A two-dimensional electron gas (2DEG) forms at the interface betweenGaAs
andAlGaAs (blue). (b) Schematic conduction band edge diagram close to the
GaAs/AlGaAs interface. A dip in the conduction band emerges in growth
direction in the GaAs and forms a triangular shaped quantum well. The
Fermi level µF allows only the lowest energy subband to be occupied by elec-
trons. In this subband, electrons can only move perpendicular to the growth
direction.
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formed inside the GaAs, as schematically depicted in �gure 3.1b. In this
con�nement region, two-dimensional energy subbands are formed. By
appropriate Si-doping, the Fermi level µF is tuned into the gap between
the lowest two subbands, so that at low temperatures only the lowest
subband is occupied by electrons. Since electrons con�ned in this subband
can only move perpendicular to the growth direction, this system is called
two-dimensional electron gas.

By magnetotransport measurements on a Hall-bar, characteristic elec-
tronic properties of a 2DEG are obtained. For the heterostructure used,
the charge carrier density ne = 2.4× 1011 cm−2 and charge carrier mo-
bilityµe = 5.1× 105 cm2 V−1 s−1were determined. These values allow
the calculation of the Fermi wavelength λF =

√
2π/ne ≈ 51nm and the

electron mean free path lmfp = hµe/(eλF) ≈ 4 µm, which are charac-
teristic length scales of the 2DEG. To see quantization e�ects or ballistic
transport, the device dimensions have to be in this regime.

3.2. Lithography

To realize an electrically contacted quantum dot device in a two-
dimensional electron gas, the heterostructure is processed by optical
lithography and electron beam lithography. Within the scope of this the-
sis, the optical lithography was maintained and the electron beam lithog-
raphy was optimized in terms of structure sizes and reproducibility. The
quantum dot device used within this thesis was fabricated in the preced-
ing master thesis, where the fabrication and process parameters are doc-
umented in detail [97]. The individual fabrication steps are therefore only
outlined in this context.

As a �rst step, a sample of 4.5× 4.5mm2 is cut out of the heterostruc-
ture. The sample surface is then cleaned using Acetone/Isopropanol in
an ultrasonic bath. After this cleaning, the sample is prepared for litho-
graphic processing. The processing steps of the optical lithography are
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sketched in �gure 3.2 (a), �gure 3.2 (b) shows the steps for the electron
beam lithography.
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Figure 3.2.: (a) Processing steps of the optical lithography. Positive photoresist
is used to produce protective masks for etching procedures. Negative pho-
toresist is used for metallization steps, where an undercut pro�le of the resist
is required for a successful lift-o� procedure. (b) Processing steps of the elec-
tron beam lithography used to fabricate nanoscale structures. An undercut
pro�le emerges in the resist after development due to scattering of the elec-
trons.

For the optical lithography, a thin �lm of UV-sensitive photoresist is
spin coated onto the sample. An optical mask, consisting of transparent
fused silica with opaque Chromium patterns is then brought into con-
tact with the resist coated sample. In this con�guration and under UV-
illumination, exclusively the parts which are not covered by Chromium
are exposed. Depending on the type of photoresist, either the exposed ar-
eas (positive photoresist Shipley S1805; developer Microposit MF319) or
the unexposed areas (negative photoresist AZ 5214E; developer AZ 726)
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can now be removed in a wet chemical development process. The mask
pattern is thus transferred into the resist and the uncovered heterostruc-
ture surface is prepared for further processing, while the remaining resist
protects the covered areas.

In the �rst step, an isolated region where the 2DEG is preserved, a so
called mesa, is created. By using aH2O : H2O2 : H3PO4 etching solution,
the uncovered parts of the heterostructure are dissolved with a certain
etching rate. The 2DEG is hereby destroyed. After a given time (etching
depth = etching rate × time), the etching process is stopped by dipping
the sample into water. After removing the remaining resist with Acetone,
the mesa etching process is completed. A microscope image of a mesa is
shown in �gure 3.3 (a).

The second step aims toward electrically contacting the 2DEG. Met-
allization (Au/Ge) is hereby thermally evaporated onto the sample in a
vacuum chamber. A negative photoresist is used for this step, as it pro-
vides the necessary undercut pro�le. In the following lift-o� procedure,
Acetone is used to remove the resist. Due to the undercut pro�le, the
metallization on the heterostructure surface is not connected to the met-
allization on top of the resist and therefore remains on the surface. By
annealing this metallization, the ohmic contacts to the 2DEG are formed.
Figure 3.3 (b) shows the sample after the anneling. In addition to the con-
tacts, bondpads are produced in this step.

In a third step, the gate leads are fabricated. The gate leads are con-
nected to bondpads and reach over the etching edge on top of the mesa.
The procedure is similar to the fabrication of the ohmic contacts but with
aCr/Aumetallization and without annealing. A microscope image of the
sample after the evaporation of the gate leads is shown in �gure 3.3 (c).
These gate leads include markers, which enable the alignment between
optical and electron beam lithography.

The �nal lithographic step, where the gate structure de�ning the quan-
tum dots is fabricated is done using electron beam lithography. In the
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Figure 3.3.: Optical microscopy images of the fabrication steps for a gate de-
�ned quantum dot device based on a 2DEG material. (a) A de�ned mesa is
created using a wet chemical etching procedure. (b) Metal evaporation on
the sidearms of the mesa and subsequent annealing forms Ohmic contacts to
the 2DEG. Additional bond pads for the following gate leads are placed aside
of the mesa. (c) A second metallization but without annealing is used to de-
�ne gate leads. (d) Zoom into the central area of the mesa. The nanoscale
gate structure is patterned via electron beam lithography and connected to
the gate leads fabricated before via optical lithography.
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beginning, an electron sensitive resist (PMMA 950K 3% Anisol) is spin
coated onto the sample. In a direct write process, the focused electron
beam of a scanning electron microscope (SEM) is guided over the prede-
�ned areas. The exposed areas can then be removed using a developer
(MIBK). Forward scattering of the electrons in the resist results in an un-
dercut pro�le, which again enables the metallization and following lift-o�.
At this point, the device fabrication is completed, a microscope image of
a �nalized device is shown in �gure 3.3 (d).

3.3. Measurement Setup

To begin with, the gap between the device contact size (∼ 100 µm diam-
eter) and the measurement instruments contacts (∼ 1 cm diameter) size
has to be bridged. The �rst step into this direction is done by contact-
ing the sample to a chip carrier with 20 contacts. The sample is glued
into the chip carrier and the chip carrier contacts are bonded to the de-
vice bondpads with thin gold wires. The chip carrier can then be plugged
into a sample holder, which allows the connection of the measurement
instruments.

To ful�ll the condition kBT � EC, which is a requirement for the
observation of single electron transport, the sample has to be cooled to
low temperatures. To achieve these low temperatures, the sample holder
is put into a cryostat. The cryostat used here is an Oxford Instruments
3He-4He dilution refrigerator. The main components of this dilution re-
frigerator are the so called 1K-pot, the dilution chamber and the still. The
1K pot is used to precool and condense the 3He. Via a needle valve, the
1K-pot is �lled with liquid 4He from the main bath. By pumping on the
4He gas phase, the vapor pressure and thereby the temperature of the
1K-pot is reduced to ∼ 1.5K. After precooling the 3He/4Hemixture with
the 1K-pot, the mixture is further cooled by several counter�ow heat ex-
changers, using the cold 3He, which is coming from the mixing chamber.
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After these heat exchangers, the mixture enters the mixing chamber. At
a critical temperature of around 0.86K, the 3He/4He mixture separates
into two phases. One phase is a 3He-rich (concentrated) and the other a
3He-poor (dilute) phase. The 3He is diluted as it �ows from the concen-
trated into the diluted phase across the phase boundary. This crossing of
the phase boundary is an endothermic process, which therefore removes
heat from the mixing chamber environment. To maintain a steady �ow
of 3He, the diluted phase is connected to the still, which is held at low
pressure by pumping on the gas phase. Due to the much higher partial
pressure of 3He compared to 4He at the still temperature, the pumped
gas is almost pure 3He, which is then fed back into the system, resulting
in a 3He circulation. Additionally, heat is supplied to the still to further
increase the 3He �ow. This way, base temperatures of ∼ 10mK can be
achieved. More detailed information about the dilution refrigerator oper-
ating principle can be found in [98].

With the sample holder in the cryostat, the device contacts can now
be connected to measurement instruments. An SEM image of the device
with schematic wiring is shown in �gure 3.4. All DC voltages are applied
using AD5791 20 bit DACs (digital-to-analog converter). For the quantum
dot source voltageVsd,dot and the QPC source voltageVsd,qpc, a voltage
divider or an AC/DC voltage adder with integrated voltage divider is used
to increase the minimal voltage step size.

The currents are measured using transimpedance ampli�ers, which
convert the current in a proportional voltage. For both currents, Idot and
Iqpc, ITHACO 1211 current preampli�ers with tunable ampli�cation fac-
tor have been used. Typical ampli�cation factors for the measured device
range from 106 V A−1 to 109 V A−1.

The instruments for measuring the output voltages vary depending on
the measurement session. In most cases, the output voltage was digitized
using an analog input module (16/18 bit ADC, analog-to-digital converter)
of an ADwin-Pro II. The ADwin-Pro II is a freely programmable real-
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Figure 3.4.: Colored SEM image of the quadruple quantum dot device. The de-
vice consists of a total of 13 gate electrodes, of which 12 (colored in gold) were
used to de�ne quantum dot systems from single to quadruple dots. By apply-
ing negative voltages VBg1 and VBg2, the 2DEG is split in two galvanically
isolated part, the quantum dot part on the top side, the QPC charge detec-
tor part on the lower side. The quantum dots, depicted as green circles, are
formed electrostatically in the 2DEG by applying negative voltages to the re-
spective gates. Each of the quantum dots is de�ned by two tunnel barrier gate
voltages VTgi and a plunger gate voltage VDgi.
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time controller with a sampling rate of up to 500 kHz. Alternatively, the
output voltages were measured via Keithley 2000 multimeter. In some
cases, additional AC measurements have been performed by connecting
a lock-in ampli�er (EG&G 7260 DSP Lock-In Ampli�er / Ametek 7270
General Purpose DSP Lock-In Ampli�er) to the source voltage via the
AC/DC voltage adder and on the output of the transimpedance ampli�er.

All measurement instruments were controlled by a measurement com-
puter via Python and PyMeasure. A detailed documentation about
PyMeasure can be found in the dissertation of T. Wagner [99]. Within the
scope of this thesis, several instrument drivers and functionalities have
been implemented and revised.

3.4. �antum Dot Characterization

This section describes the basic measurement techniques for the charac-
terization and investigation of quantum dot systems using the example
of a single quantum dot. Linear and non-linear transport experiments are
presented, the charge detection is introduced and the opportunities of vir-
tual gates are discussed. A more detailed characterization of the device is
given in [97].

When applying negative voltages to the gates, the resulting negative
potential repels the electrons in the 2DEG underneath, which leads to the
depletion of the 2DEG. In a �rst step, the two current paths Idot and Iqpc
are galvanically isolated from each other by applying su�ciently negative
voltages VBg1 and VBg1 to the central gates. The small gap between both
gates is hereby electrostatically closed, but increases the capacitive cou-
pling between both current paths.

A quantum dot can now be formed using a plunger gate and two tunnel
barrier gates. By applying negative voltages VDg3, VTg3 and VTg4, the
third quantum dot (QD3) is formed. The quantum dot is coupled to the
electron reservoirs via two tunnel barriers, which are formed between the
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center gates VBg1, VBg1 and the tunnel barrier gates VTg3, VTg4. Addi-
tionally, a QPC charge detector is formed via VQg1.

Figure 3.5.: Current Idot (orange) and Iqpc (blue) as function of the plunger
gate voltage VDg3. The current Idot shows clear Coulomb blockade oscil-
lations, the characteristic behavior of a single quantum dot. For each peak
crossed toward more negative VDg3, the quantum dot is depopulated by one
electron. Electrons removed from the quantum dot hereby change the poten-
tial at the QPC charge detector and thus the conductance of the QPC. Each
step in the detector current Iqpc corresponds to the occupation of the quan-
tum dot changing by one electron. When the tunneling rates become small
toward more negative voltages, the measured current Idot drops below the
noise �oor. The charge detector however still responds to changes in the
quantum dot occupation. The inset shows Idot and Iqpc in di�erent scale
for the peak marked by the black rectangle. The time averaged detector sig-
nal resolves the average occupation of the quantum dot, leading to a smooth
step of the same width as the Coulomb blockade peak.

To perform a current measurement, a small bias voltage of Vsd,dot ≈
100 µV is applied to drive a current through the quantum dot. The gate
voltages VDg3, VTg3 and VTg4 are adjusted to deplete the 2DEG. Via
VTg3, the coupling to the left reservoir can be tuned and via VTg4, the
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coupling to the right reservoir, respectively. The charge detector is tuned
onto a steep �ank as function of the gate voltage VQg1, to obtain a high
sensitivity to potential changes. The detector bias voltage is chosen to
Vsd,qpc = 1mV , to ensure such a steep �ank. Figure 3.5 shows the dot
current Idot and the detector current Iqpc as function of the plunger
gate voltage VDg3. The dot current Idot shows a peak, whenever one of
the energy levels of the QD passes through the transport window, where
tunneling of electrons from source to dot and from dot to drain is en-
ergetically possible. Toward more negative VDg3, the number of elec-
trons on the QD is hereby reduced by one for each peak observed. Up
to VDg3 ≈ 300mV these quantum dot characteristic Coulomb blockade
oscillations are observable. For more negative VDg3, the current through
the quantum dot drops below the noise �oor is is not resolvable any more.

The detector current Iqpc shows a decreasing behavior toward more
negative VDg3, due to the more negative potential which narrows the
QPC channel. At the positions of the Coulomb resonances however, a
step like increase of Iqpc is observed. This increasing current comes as
a result of the decreasing electron number in the quantum dot, which
decreases the negative potential and therefore widens the QPC channel.
These steps occur for every change in the electron number of the quantum
dot. However, the steps are not perfectly sharp but show a broadening,
which follows the peak width of the Coulomb blockade oscillations. This
is due to the signal integration over one power line cycle (PLC), which
corresponds to the integration time tint = 20ms. Within this timescale,
many electrons tunnel into and out of the quantum dot and the result-
ing detector signal resolves the average charge on the quantum dot. The
steps therefore probe the occupation probability of the quantum dot. With
more negativeVDg3, both tunnel barriers become less transparent and the
tunneling current Idot at some point drops below the resolution limit.
The detector current Iqpc on the other hand still shows distinct steps due
to the charging events of the quantum dot. The detector therefore does
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not only provide additional information but at the same time increases
the measurement range.

By measuring as function of two gate voltages, a stability diagram is
obtained. Such a stability diagram of QD2 as function of the two tunnel
barrier gates VTg2 and VTg3 is shown in �gure 3.6. The current Idot is
shown in (a), the corresponding di�erential detector signal∆Iqpc/∆VTg2
in (b). Each of the visible charging lines correspond to an energy level of
the quantum dot being in resonance with the leads. From the slope of
the charging lines, the gate capacitance ratio CTg2/CTg3 ≈ 1.1 can be
estimated. For the most positive gate voltages −0.3V > VTg2,VTg3 >
−0.35V , the Coulomb blockade oscillations are only barely visible. Here,
the tunnel barriers are not yet well de�ned. For more negative volt-
ages on both gates in the regime −0.35V > VTg2,VTg3 > −0.4V
the charging lines develop but the current between two resonances does
not drop to zero. In this region, the tunnel barriers are already de�ned,
so that a quantum dot is formed. The coupling of the quantum dot to
both reservoirs is very strong in this region, so that neighboring reso-
nances overlap, preventing a total Coulomb blockade. For more negative
VTg2,VTg3 6 −0.4V , the barriers are well de�ned and total Coulomb
blockade is observed. At VTg2 ≈ −0.45V for the left barrier, and at
VTg3 ≈ −0.45V for the right barrier, the threshold, where the current
Idot drops below the resolution limit, is reached. For more negative volt-
ages, no current is observed.

The di�erential detector signal ∆Iqpc/∆VTg2 shows the opposite be-
havior. For more positive voltages, the charging lines are only vaguely
visible. Here, the broadening of the charging lines due to the large cou-
pling leads to a slowly changing average occupation of the quantum dot,
which consequently leads to small changes in the detector current be-
tween two gate voltage steps. In the regime of the total Coulomb blockade
however, the charging lines become clearly visible and even more pro-
nounced, where the current Idot is already below the resolution limit.
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a) b)

Figure 3.6.: Two-dimensional measurement as function of both tunnel barrier
gate voltages VTg2 and VTg3 at an applied bias voltage Vsd,dot = 0.5mV . (a)
Current Idot through the quantum dot. Di�erent regimes of coupling occur
in the stability diagram. Finite current is only observed when both barriers
are transparent, i. e. for the most positive gate voltages VTg2 and VTg3 (top
right). The parallel lines are the single quantum dot characteristic Coulomb
blockade oscillations. More negative VTg2 (VTg3) reduce the coupling to the
left (right) reservoir and thereby eventually suppress the current. (b) Corre-
sponding charge detector signal. Charging lines are visible over a much larger
range of gate voltages. Moving along a charging line tunes the asymmetry of
the coupling to the reservoirs. The inset shows a zoom into the box, where the
visible charging lines experience a small shift around the symmetric coupling
con�guration. Dashed lines in (a) and (b) approximately follow the coupling
symmetry.
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For the most negative VTg2,VTg3 6 −0.5V , the charging lines start to
appear noisy. This is due to tunneling rates of the order of the integra-
tion time. In this regime, the detector signal does not integrate over many
tunneling events, but single events and their stochastic nature becomes
dominant. By further decreasing the tunneling rates via more negative
gate voltages, the measurement timescale becomes too short for the sys-
tem to relax to its ground state and occupied energy levels are lifted above
the Fermi energy. This e�ect leads to the gap, which is visible in the last
charging line of the stability diagram.

The charge stability diagrams in �gure 3.6 were taken with an applied
bias Vsd,dot = 0.5mV . For the Coulomb blockade resonances in the dot
current Idot, this additionally broadens the charging lines. Since the de-
tector signal is only sensitive to changes in the average occupation of the
QD, this does not hold for the detector signal. When moving along one
charging line, the energetic shift of a more negative voltage on one gate
is compensated by a more positive voltage on the other gate. As func-
tion of the two tunnel barrier gates, this means the coupling symmetry to
the reservoirs is tuned when moving along the charging line. The most
positive VTg2 on a given charging line correspond to the most negative
VTg3 on this line. This results in a large tunneling rate ΓS between source
and dot and a small tunneling rate ΓD between drain and dot. Therefore
ΓS � ΓD and with a positive bias Vsd,dot = 0.5mV applied on the
source contact, the QD energy level is on average unoccupied as soon as
the energy level comes into the bias window. In this con�guration, the
detector shows the resonance between drain and the energy level. For
the most negative VTg2 on the same charging line ΓS � ΓD. Here, the
energy level is on average occupied and the detector shows the resonance
between source and energy level. Due to the bias voltage, both resonances
are at di�erent energies and therefore also shifted in the stability diagram.
In a small region, where ΓS ≈ ΓD, a transition between these visible reso-
nances occurs. It is not a sharp transition however, but gradually and with
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a lower contrast in the detector signal. The lower contrast results from
the fact that in this region the average occupation changes over the full
bias window, leading to a broadening of the charging line in the detector
signal. These transitions are found close to the diagonal perpendicular
to the charging lines. The inset of �gure 3.6 (b) shows a zoom into the
marked area, where four of these transitions are found. With a higher
measurement resolution, these transitions might show the excited states
spectrum [100]. The position of the ΓS ≈ ΓD symmetry points on the
di�erent charging lines �uctuate with respect to dashed line, which is a
linear �t to 7 symmetry points. The di�erent charging lines correspond to
di�erent quantum mechanical states of the QD, which couple di�erently
to the reservoirs.

This linear �t can now be used to couple both tunnel barrier gates.
This can be described as a virtual gate, which in�uences the coupling
to both reservoirs at the same time. A stability diagram as function of
the coupled tunnel barrier gates VTg2,Tg3 and the plunger gate VDg2 is
shown in �gure 3.7 (a). The slope of the charging lines show that the
capacitive coupling of the plunger gate is approximately twice as large as
the combined capacitance of both tunnel barrier gates. It is clearly visible,
that the pinch o�, where the current Idot drops to zero shifts toward
more negative VDg2 for more positive VTg2,Tg3. This dependency can
now be used to de�ne another virtual gate, which consists of VTg2, VTg3
and VDg2. Along the blue line in the graph, the tunnel barrier voltages
approximately compensate the in�uence of the plunger gate VDg2 on the
tunnel barriers.

This can now be used for Coulomb diamond measurements, which pro-
vide information about the energy scales of the quantum dot. Figure 3.7
(b) shows the di�erential conductance ∆Idot/∆Vsd,dot as function of
Vsd,dot and the plunger gate voltage VDg2 and (c) as function of Vsd,dot
and the virtual gate VDg2,Tg2,Tg3 along the blue line in (a). For both, (b)
and (c), the variation range of the plunger gate voltage VDg2 is identical.
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a)

b) c)

Figure 3.7.: (a) Current Idot as function of plunger gate voltage VDg2 and the
coupled gate voltage VTg2,Tg3 along the coupling symmetry line. Lines of
approximately constant coupling can be approximated as lines parallel to the
pinch-o�. (b) Coulomb diamonds as function of VDg2 for VTg2,Tg3 = −0.4V
and (c) along the blue line in (a). The coupled gate voltage VDg2,Tg2,Tg3 keeps
the coupling nearly constant, resulting in homogeneous Coulomb diamonds.
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Some di�erences between the two plots directly catch the eye. With us-
ing only VDg2 in (b), the overall conductance is high for the most positive
values and below the resolution limit for the most negative VDg2. This
comes as a result of the cross-coupling of the plunger gate on the tunnel
barriers. The barriers are narrow for the most positive voltages, interme-
diate for intermediate voltages and become large for the most negative
voltages, as sketched in the insets. In contrast, the overall conductance
and appearance of the diamonds is almost homogeneous using the virtual
gate VDg2,Tg2,Tg3 in (c). Here, the barrier increasing e�ect of more neg-
ative VDg2 is compensated by more positive values applied to the tunnel
barrier gates VTg2 and VTg3, resulting in the barriers being almost con-
stant along the y-axis. However, even assuming perfect compensation
of the tunnel barriers, the observed Coulomb diamonds are not perfectly
identical. Each feature corresponds to a speci�c state of the quantum
dot, which can couple quite di�erently, as can be seen in the lowest di-
amond of �gure 3.7 (c). The lower resonance of the diamond shows a
blockade phenomenon around Vsd,dot = 0. Since the diamond is fully
resolved for bias voltages |Vsd,dot| & 0.2mV , it is clear that a state of
the quantum dot is resonant with the reservoirs, but no signi�cant di�er-
ential conductance is observed. Even though the mechanism behind this
blockade cannot be determined from the available data, the presence of
the blockade underlines the sensitivity of the transport properties on the
exact con�guration.

Another major di�erence when comparing the single gate to the virtual
gate Coulomb diamonds lies in the shape of the diamonds. The width to
height ratio of the diamonds is clearly smaller for the diamonds as func-
tion of the virtual gate voltage VDg2,Tg2,Tg3. As shown in section 2.1.4,
this ratio is determined by the lever arm of the gate. With the charg-
ing energy EC = e∆Vsd,dot/2, where ∆Vsd,dot is the full width of a
diamond, and the height ∆Vgate of the same diamond, the conversion
factor from gate voltage to energy, the lever arm αgate = EC/∆Vgate,
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can be determined. However, especially for the single gate diamonds in
(b), the width ∆Vsd,dot of the diamonds, and therefore the charging en-
ergy, is not constant but tends to increase toward smaller electron num-
bers. Due to this dependency, characterization measurements should al-
ways be performed in a con�guration as close as possible to the actual
working point of the device. Extracting the lever arms from all visible
diamonds of the VDg2 measurement yields αDg2 = −0.106(±0.030), and
thus ∆µDg2 = −0.106(±0.030)eVDg2 (mean ± standard deviation) for
the energy level shift as function of VDg2. For the virtual gate the con-
version becomes ∆µDg2,Tg2,Tg3 = −0.058(±0.010)eVDg2,Tg2,Tg3. The
bene�cial e�ect of constant tunnel barriers therefore comes at the cost
of an approximate factor of two smaller lever arm of the virtual gate. In
addition to the larger range of VDg2 needed for the same energetic shift,
two additional gate voltages are changed using the virtual gate, resulting
in an overall greater in�uence on the potential landscape in the vicinity.
Therefore, both options, using single gates or combining gates into a vir-
tual gate come with there own bene�ts and downsides and the optimal
choice depends on the task.

For the investigation of e�ects, which depend sensitively on the cou-
pling or the coupling symmetry, as for example the Kondo e�ect in quan-
tum dots [101, 102], it can be bene�cial to implement a virtual gate con-
sisting of the two tunnel barrier gates. Coupling the two tunnel barrier
gates in parallel to the charging lines, approximately perpendicular to the
virtual gate discussed earlier (dashed line in �gure 3.6), results in a tuning
parameter for the coupling symmetry without shifting the energy levels
of the quantum dot.
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4
Transport through �antum Dot

Arrays

This chapter provides an overview over the transport properties of arrays
consisting of multiple quantum dots. Based on using gate electrodes to
manipulate the energy level alignment in the quantum dot array, a com-
bination of current signals and charge detection signals will be presented
and discussed. The �rst part will hereby be about the smallest possible
array, the double quantum dot, followed by the extensions to the triple
and quadruple quantum dot array.

4.1. Double �antum Dot

A double quantum dot (DQD) is the smallest implementation of a multi
quantum dot device. As such, it provides an excellent platform to study
interdot coupling phenomena and their in�uence on the transport prop-
erties of multi quantum dot devices. Both, parallel and serial con�gu-
rations are versatile platforms for research and applications. The parallel
arrangement of two quantum dots for example allows to use one quantum
dot as a charge detector for the other [103, 104] or to split Cooper pairs
[105, 106]. Serial double quantum dots are frequently used as a basis to
form spin qubits [23–26], and charge qubits [27–31], as well as hybrid
qubits [32, 33]. Interestingly, both, the parallel [107, 108] and the serial
[109, 110] con�guration are candidates for thermoelectric devices.
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In this work, the gate layout de�nes a serial con�guration of QDs. The
DQD presented here consists of the two central QDs of the device, QD2
and QD3. The DQD is de�ned by the gate voltages VBg1 and VBg2 from
the lower side, and the plunger gate voltages VDg2 and VDg3 from the
upper side. Via tunnel barrier gate voltages VTg2 and VTg4, the coupling
between the DQD and both reservoirs is controlled, VTg3 is used to tune
the interdot tunnel coupling. Both QDs contribute their individual energy
scale to the overall system, which results in a two-dimensional energy
space of the DQD. Additionally, the interdot coupling and the interac-
tion between both QDs become crucial parameters for the properties and
characteristics of the DQD system.

By measuring the transport through the DQD as function of both
plunger gate voltages VDg2 and VDg3, the two-dimensional energy space
of the DQD is probed. The current Idot through the DQD is given in �g-
ure 4.1 (a). The inset shows a colored SEM image of the device. The col-
oring of the gates relates to the gate voltages. Gray gates are grounded,
golden gates are at �nite voltages and red gates are measurement param-
eters. Similar to the SQD measurements, a bias voltageVsd,dot ≈ 300 µV
is applied to prede�ne a transport direction. The constant gate voltages
are VBg1 = VBg2 = −0.4V , VTg2 = −0.35V , VTg3 = −0.25V , and
VTg4 = −0.47V .

Two di�erent slopes of charging lines are visible in the DQD current.
These can be attributed to the two QDs by making reasonable assump-
tions for the relevant lever arms αj,i of gate j with respect to QDi based
on the gate layout. Due to the symmetric gate layout, αDg2,2 ≈ αDg3,3
and αDg2,3 ≈ αDg3,2. Additionally, the di�erent distances allow the as-
sumptions αDg2,2 > αDg2,3 and αDg3,3 > αDg3,2. With this, the two
di�erent slopes of charging lines can be clearly assigned to the two QDs.
For the almost vertical charging lines, the in�uence of VDg2 on the en-
ergy levels is much larger than the in�uence of VDg3. These charging
lines therefore correspond to energy levels of QD2. The charging lines
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a)

b) c)

2 3

Figure 4.1.: (a) DQD Current Idot as function of the plunger gate voltages VDg2
and VDg3. Markers show the points, where the co-tunneling current is taken
for �gure 4.3. The arrows highlight a particular electron number of QD3,
where the co-tunneling current is suppressed. Inset: Colored SEM image of
the device. Gray gates are grounded, golden gates are kept at �xed voltages,
and red gates are measurement parameters. (b) Energy level scheme of a DQD
resonance. (c) Energy level scheme corresponding to the marked positions in
the stability diagram, where QD2 is in resonance with Source, while QD3 is
in Coulomb blockade.
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4. Transport through Quantum Dot Arrays

with the smaller slope correspond to energy levels of QD3, respectively.
Whenever two of the charging lines approach each other, they anticross

due to the interdot coupling, as described in section 2.2. This splits every
DQD resonance into two energetically separated triple points and leads
to the formation of the characteristic DQD honeycomb pattern [59]. At
these triple points, exchange of electrons between the QDs and the reser-
voirs is energetically allowed, as depicted by the energy level schematic
in �gure 4.1 (b). From the capacitive model, current through the DQD is
only expected to �ow at these triple points, where three charge states are
degenerate.

In the gate voltage region −0.375V . VDg2 . −0.325V and
−0.45V . VDg3 . −0.4V in �gure 4.1 (a), this behavior is well re-
produced and the o�-resonant current is strongly suppressed due to the
Coulomb blockade. However, especially for the most positive gate volt-
ages VDg2, VDg3 > −0.35V , �nite current is not only observed at
the triple points, but additionally in con�gurations where only one of
the QDs is in resonance with the reservoirs, while the other QD is in
Coulomb blockade, as schematically depicted in �gure 4.1 (c). In this re-
gion, the honeycomb pattern is fully resolved in the DQD current Idot.
This can be explained when taking co-tunneling into account, where the
o�-resonant QD is only virtually occupied. For the most negative voltages
VDg2,VDg3 . −0.4V , the current vanishes. In this regime, the tunnel-
ing rates are too small to resolve the current. Overall, both the resonant
and the o�-resonant current decrease from more positive to more neg-
ative voltages. This is a consequence of the capacitive in�uence of the
gates on the neighboring tunnel barriers and therefore on the tunnel cou-
plings tS2 (between source and QD2), t3D (between QD3 and drain), and
t23 (between QD2 and QD3).

However, neither the resonant nor the o�-resonant current decreases
monotonously, but they �uctuate as function of the electron numbers in
the QDs, with an overall decreasing trend. Especially at one particular
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electron number N3 in QD3, which is highlighted by the two arrows in
�gure 4.1 (a), the o�-resonant current is fully suppressed, while �nite val-
ues are found for more and less electrons in QD3. The current through the
DQD is thus not only a function of the tunnel barriers but also dependent
on the electron con�guration. For more detailed insight, it is therefore
necessary to determine the electron numbers on the QDs.

The detector signal corresponding to this measurement is shown in �g-
ure 4.2 (a) and complements the information of the current measurement.
The charging lines of both QDs are visible over the entire voltage range,
so that the regions of stable charge can clearly be identi�ed. However,
direct access to the electron numbers in the QDs is prevented due to the
fact that the QDs were not fully depopulated within this measurement.
In a more indirect way, the electron numbers can nevertheless be deter-
mined via the charging energies. The charging energies for the succes-
sive electron numbers can be determined by extracting the gate voltage
di�erences ∆VDg2 between successive QD2 charging lines and ∆VDg3
between successive QD3 charging lines, respectively. The charging en-
ergy is then given by EC = −αG,i · e∆VG (equation 2.13), where αG,i
is the lever arm of gate G with respect to QDi, e the elementary charge
and∆VG the gate voltage di�erence. The same procedure is then used on
a reference measurement, where both QDs were fully depopulated. By
comparing the evolution of the charging energies it is then possible to
determine the electron number.

To account for �uctuations within the measurements, the gate voltage
di�erence ∆VG for each electron number was taken at six di�erent po-
sitions in the stability diagram and the mean of these values was used
to calculate the charging energies. The lever arms αDg2,2 = 0.097 and
αDg3,3 = 0.098 used for the gate voltage to energy conversion have been
determined by Coulomb diamond measurements. Figure 4.2 (b) exem-
plarily shows the charging energies for QD3 as function of the electron
number, for the reference measurement (blue) and extracted from (a) (red).
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a)

b) c)

(5, 4)

(6, 5)

(7, 6)

(8, 7)

(9, 8)

(10, 9)

(11, 10)

(12, 11)

(13, 12)

Figure 4.2.: (a) Detector signal corresponding to �gure 4.1 (a). The charging
lines of both QDs are visible over the full range of the stability diagram. (b)
Evolution of the charging energies EC3 of reference data with known electron
numbers (blue) and data from (a) (red) with an o�set of four electrons in QD3.
The gray dashed lines indicate "magic numbers". (c) RMSD for di�erent o�set
electrons in QD3. The clear minimum at four o�set electrons determines the
number of electrons in QD3. The identical procedure for QD2 is given in the
appendix A.1 and results in �ve o�set electrons in QD2. With these o�sets,
the charge states (N2,N3) of QD2 and QD3 are given in (a).
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The red curve is o�set by four electrons, so that in the overlapping region,
the charging energies match best. As function of the number of o�set
electrons, the deviation from the reference curve increases. For di�erent
o�set numbers, the root-mean-squared deviation

RMSD =

√∑m
n=1(En,ref − En)2

m

of the overlapping region was calculated, wherem is the number of over-
lapping points. En,ref is the charging energy of the n-th electron from
the reference measurement, En the charging energie of the n-th electron
extracted from �gure 4.2 (a), with n including the o�set.

For two to six o�set electrons in QD3, the RMSD is shown in �gure 4.2
(c). It shows a clear minimum at four o�set electrons, which allows to
assign the QD3 electron numbers. The same procedure for QD2 results
in �ve o�set electrons and is found in the appendix A.1. The numbers
(N2,N3) in brackets in �gure 4.2 (a) are the electron numbers in QD2 and
QD3, based on these determined o�set values.

This can now be used to investigate the co-tunneling through the DQD
as function of the electron numberN3 in QD3. Figure 4.3 (a) shows again
the measured current Idot as function of gate voltages VDg2 and VDg3.
The colored dots mark positions on di�erent charging lines of QD2 with
QD3 being o�-resonant. Each color hereby corresponds to one charging
line of QD2. The positions are chosen, so that the detunings of the N-th
and (N+1)-st energy level of QD3 with respect to the resonant level of
QD2 are approximately equal, ∆N ≈ ∆N+1. This situation is depicted in
the energy level scheme in �gure 4.3 (b). The current for these points is
shown in �gure 4.3 (c) in logarithmic scale and as function of the electron
number in QD3. The lines are colored according to the dots in (a). For the
number of electrons in QD2, 20 means the 20-th charging line of QD2 is
in resonance with the reservoirs.

Lower electron numbers in the QDs correspond to more negative gate
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a) b)

tS2 t23 t3D

ΔN
ΔN+1

c)

Figure 4.3.: (a) Transport regime of �gure 4.1 (a) Colored points mark posi-
tions on a charging line of QD2 while QD3 is o�-resonant. (b) Energy level
schematic for the marked positions. The two closest energy levels of QD3
are approximately equally detuned with respect to QD2 ∆N ≈ ∆N+1. (c)
Co-tunneling current through QD3 as function of the number of electrons in
QD3. Di�erent lines represent di�erent electron numbers in QD2 and are col-
ored according to the markers in (a). The co-tunneling current is suppressed
for the ’magic number’ of N3 = 12 electrons in QD3 whereas enhanced for
N3 = 13.
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voltages. The lowest currents are therefore found for low electron num-
bers, where for N3 6 7 the co-tunneling current is not resolvable any
more and the spreading of the values is given by the noise �oor. Up to
N3 = 11 the co-tunneling current then slightly increases and drops to
a level below the noise �oor at N3 = 12, followed by a signi�cant peak
at N3 = 13. From N3 = 15 onward, the co-tunneling current again in-
creases. This trend is observable for di�erent electron numbers in QD2
while only the magnitude of the co-tunneling current is modulated. This
indicates a mechanism, which is mainly dependent on QD3.

The situation of �nite current with QD2 being resonant with the source
reservoir and QD3 being o�-resonant is comparable to co-tunneling
through a SQD (QD3), with QD2 acting as reservoir. In lowest order,
the co-tunneling coupling between QD2 and the non-neighboring drain
reservoir is given by [42]

tco =
t23t3D
∆N

+
t
′
23t
′
3D

∆N+1
, (4.1)

where t23 is the coupling between QD2 and the N-th energy level of
QD3, t3D the coupling between the N-th energy level of QD3 and drain
and ∆N is the detuning of the energy level with respect to the resonant
QD2 and µD. t ′23, t ′3D and∆N+1 refer to the (N+1)-st energy level of QD3,
respectively.

The coupling quantities are directly a�ected by the gate voltages due
to their capacitive in�uence on the tunnel barriers. In terms of gate volt-
age, the x-axis scale of �gure 4.3 (a) is not linear, but monotonic. Smaller
N3 correspond to more negative VDg3 , and at the same time to slightly
more positive VDg2 (following the slope of the QD2 charging lines). Due
to the monotonic changes in gate voltages, the capacitive in�uence on
the coupling quantities is also expected to be monotonic, which therefore
cannot explain the behavior as function of N3. On the other hand, the
evolution of the charging energies, which is given in 4.2 (b), is not strictly
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monotonic and de�nes the detuning energies via ∆N ≈ ∆N+1 ≈ EC/2.

Especially atN3 = 12, an increased charging energy is found, meaning
the charging of the 13th electron needs additional energy compared to
neighboring electron numbers. The charging energies forN3 = 11, 12, 13
are

EC =


1.31meV N3 = 11
1.58meV N3 = 12
1.12meV N3 = 13

.

The vanishing co-tunneling current at N3 = 12 is connected to this
larger charging energy and the therefore larger detuning. The increas-
ing co-tunneling current for N3 < 12 also agrees with the decreasing
charging energies. However, the behavior for N3 > 12 does not follow
the evolution of the charging energy. The increased charging energy for
N3 = 12 hints toward orbital shell e�ects. In two dimensions, N = 12 is
a ‘magic number’ of a completely �lled shell [10]. In a simpli�ed picture
of a symmetric potential without Hund’s rules, the quantum mechani-
cal states within an orbital shell are degenerate and the charging energy
reduces to the classical Coulomb repulsion. Only when loading the �rst
electron onto a new shell, the quantum mechanical contribution to the
charging energy becomes relevant, leading to a peak in the charging en-
ergy.

The �ndings of a suppressed co-tunneling current for N3 = 12 and a
pronounced peak at N3 = 13 shows evidence for the in�uence of shell
e�ects on the coupling strength. When comparing the behavior to real
atoms, the reactivity shows a similar behavior. Noble gases with a com-
pletely �lled outer shell are chemically inert, while alkali metals with a
single valence electron in the outer shell are highly reactive.
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Bias e�ects on a Double �antum Dot

A bias voltage Vsd,dot, as applied in the previous sections, is used to
prede�ne a transport direction. However, as clearly visible in Coulomb
diamond measurements, a transport window de�ned by a bias voltage can
a�ect the transport properties of QD systems drastically. In the following,
the transport properties of a DQD under applied bias are discussed.

For bias voltages −0.5mV 6 Vsd,dot 6 0.5mV , a representation of
the measured current Idot through the DQD as function of the plunger
gate voltages VDg2 and VDg3 is shown in �gure 4.4. The respective bias
voltages are given in the upper left corner of each graph. For better com-
parability, −Idot is shown for the bias range −0.5mV 6 Vsd,dot 6
−0.1mV , where the measured current is negative. Additionally, a pos-
itive o�set Ioff = 110 pA was added for all bias voltages, so that also
negative values can be visualized in the logarithmic scale. The �xed gate
voltages are VBg1 = VBg2 = −0.55V , VTg2 = −0.5V , VTg3 = −0.55V ,
and VTg4 = −0.75V . To achieve well de�ned tunnel barriers between
the DQD and the reservoirs, voltages VDg1 = −0.35V and VDg4 =

−0.275V are applied to the two outer plunger gates, so that the 2DEG
is depleted, but QD1 and QD4 are not yet formed. The di�erences in
gate voltages compared to the previously discussed DQD measurement
are due to a di�erent cooldown cycle of the device, which always leads to
changes, especially regarding the electron density of the 2DEG.

The Vsd,dot values are the voltage source values, which are applied
to the right reservoir. The e�ective bias voltage di�ers from these values
due to a thermoelectric voltage contribution. The sign change in the cur-
rent happens between Vsd,dot = 0mV and Vsd,dot = −0.1mV , which
allocates the thermoelectric voltage Vth in the interval 0mV 6 Vth 6
0.1mV . The black spots close to the resonances, which are only present
for the two bias voltages close to the e�ective zero bias, can be explained
by current recti�cation e�ects [111] of frequency noise. The overall cur-
rent increases when increasing the bias window by increasing |Vsd,dot|.
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Figure 4.4.: DQD current Idot as function of the plunger gate voltagesVDg2 and
VDg3 for di�erent Vsd,dot. Vsd,dot is hereby applied to the drain reservoir,
which is next to QD3.
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The main di�erences are found close to the resonances, where regions of
�nite current are emerging. Additionally, the charging lines, where only
one of the QDs has an energy level inside the bias window, are only barely
visible for |Vsd,dot| 6 −0.1mV and become more and more pronounced
with increasing bias voltage.

The emerging regions of �nite current close to the resonances grow
with increasing absolute bias voltage |Vsd,dot|. Depending on the sign of
the bias voltage the sign of the current Idot and the direction of the tri-
angular shaped �nite current region is inverted. These triangular regions
are typical for coupled DQDs under an applied bias with one bias triangle
emerging for each of the two triple points of a resonance [59].

Figure 4.5 shows the Vsd,dot = 0.5mV data, where the triangular re-
gions of �nite current are well pronounced. In (a), the current Idot is
shown, the corresponding detector signal is given in (b). An overlay of
both is shown in (c). The detector signal shows clearly the charging lines
of both QDs, where again the larger slope corresponds to QD2 and the
smaller slope to QD3, allowing to identify the charge stability regions.
Relative to the con�guration (N2,N3) = (0, 0), four charge states around
a single resonance are given in �gure 4.5 (a) and (b). The four con�gu-
rations are the relevant charge con�gurations for this speci�c resonance.
Contributions of other con�gurations can be neglected due to the charg-
ing energies of both QDs being of the order of EC ≈ 1.3meV , which
exceeds the transport window opened up by the applied bias by a factor
of approximately 2.5.

From the overlay (c), where both the �nite current regions and the
charging lines are visible, it is clear that only one triangle per resonance
is visible. This comes as a result of a small interdot capacitance as well
as weak interdot coupling. There is only a small energy gap between the
two triple points, so that the two triangles strongly overlap and appear as
a single triangular region of �nite current. For one of the resonances, the
three corners of the triangle are marked by green circles and labeled as a,
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a) b)

c)

(0,0)

(0,1) (1,1)

(1,0)

(0,0)

(0,1) (1,1)

(1,0)

a
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Figure 4.5.: (a) DQD current Idot as function of the plunger gate voltages VDg2
and VDg3 for Vsd,dot = 0.5mV . The numbers in brackets in (a) and (b) are
the electron numbers (N2,N3) relative to (0, 0). (b) Corresponding charge
detector signal. The charging lines of both quantum dots are clearly visible
and allow the assignment of the stable charge regions. (c) Overlay of (a) and
(b), where both, the current through the DQD and the charging lines of the
two QDs are visible. Due to the small interdot capacitance, the bias triangles
of the two triple points strongly overlap, so that only a single bias triangle is
visible per resonance. The three corners of a bias triangle are marked by a, b,
and c.
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4.1. Double Quantum Dot

b, and c.
The line connecting the two points a and b is parallel to the charge

recon�guration lines, interconnecting the triple points of the DQD reso-
nances. In this direction, the detuning between the two QDs is kept con-
stant, but the total energy is changed. Vice versa, perpendicular to the
recon�guration line, the detuning between the two QDs changes, while
the total energy is kept constant. Due to the applied bias, which opens
up a transport window of size eVsd,dot, the line between points a and b
can be identi�ed as the resonance between the two QDs. As long as the
two QDs are in resonance and inside the transport window, electrons can
tunnel through the DQD.

Beginning from this resonance line, the triangle reaches out into the re-
gion, where the (0, 1) con�guration is energetically most favorable. Point
c in �gure 4.5 (c) marks the third corner of the triangle, the maximum
detuning between the energy levels of the two QDs, for which current
through the system is observed. As function of the detuning ∆ relative to
this point, cuts along the lines marked in �gure 4.4 are shown in �gure
4.6 (a) for di�erent bias voltages. Point c is taken as the reference value
here, since, with including the charge detector signal, position c can be
determined more accurately than positions a and b. The detuning is cal-
culated via equation 2.13 with lever arms αDg2,2 = 0.1 and αDg3,3 = 0.1.
The cross lever arms, calculated via the slopes of the charging lines, are
αDg3,2 = αDg2,2/2.8 and αDg2,3 = αDg3,3/2.27. The values αDg2,2 and
αDg3,3 are rounded values. The values extracted from Coulomb diamond
measurements are within 5% of the rounded value, which is of the order
of the readout uncertainty for the given Coulomb diamonds.

The current as function of detuning strongly depends on the applied
bias voltageVsd,dot. With more positiveVsd,dot, the peak position shifts
toward more positive detuning energies, where the involved QD2 energy
level becomes energetically more favorable. At the same time, the mag-
nitude of the current |Idot| and the peak width increase with increasing
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a)

b) c)

d)

e)

Figure 4.6.: (a) Cuts along the lines marked in 4.4. The current Idot is shown
as function of the relative detuning between both QDs. ∆ = 0 corresponds to
point c in �gure 4.5. For positive detuning the involved QD2 energy level is
energetically more positive. (b) The width (in energy detuning) of the current
peak as function of the bias voltage Vsd,dot. The dotted lines in (a) illustrate,
how the width is determined. The peak width follows the bias voltage lin-
early with approximately w ≈ eVsd,dot. (c), (d), and (e) show energy level
schematics for the endpoints of the bias triangle, marked by a, b, and c in
�gure 4.5, respectively.

84



4.1. Double Quantum Dot

the absolute value of the bias voltage |Vsd,dot|. Figure 4.6 (b) shows the
peak widthw as function of the bias voltage. The peak widthw is hereby
taken at Idot = Idot(∆ = 0) in (a), which is illustrated by the dotted
lines for some bias voltages.

The solid line shows a linear �t to the determined peak width, yielding
w ∝ (0.89 ± 0.13) · eVsd,dot. Note here, that the small errors in the
determination of∆ = 0 have a large impact on the proportional constant.
The determination of the ∆ = 0 positions was done by using the detector
signal but due to the measurement resolution, the precision is limited. The
given error originates from multiple �ts for reasonable ∆ = 0 positions.

Within this uncertainty, the detuning at point c, the maximum detun-
ing for which current through the DQD is observed, is de�ned by the
transport window ∆ ≈ eVsd,dot. With this, the extent of the triangular
structures is fully determined. For the case of a positive bias voltage, �g-
ure 4.6 (c), (d), and (e) show energy level schematics of the three corners
of the bias triangle, corresponding to positions a, b, and c in �gure 4.5 (c),
respectively. Due to the positive bias voltage being applied to the drain
reservoir, the drain chemical potential is smaller than the source chemical
potential, so that electrons tunnel through the DQD from source to drain.
Points a and b correspond to the two QDs being resonant. Since point a
is located at more negative voltages, it is higher in energy than point b.
Point a can thus be identi�ed as the resonance of both QDs with source.
The lower energy point b corresponds to the resonance of both QDs with
drain. Toward point c, the detuning becomes more negative, so that the
QD3 energy level becomes energetically more favorable. Eventually, at
point c, the energy detuning matches the transport window. Here, the
QD2 energy level is in resonance with source, the QD3 energy level is in
resonance with drain.

In summary, this part discussed electronic transport through a DQD
system. Charge stability diagrams as function of two gate voltages
showed the DQD typical honeycomb pattern. In the weak coupling
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regime, current was only present close to the triple points, as expected
for a serial DQD system. For stronger coupling however, current was
also observed in situations where only one of the QDs had an energy
level within the bias window while the other QD was in Coulomb block-
ade. The co-tunneling current through the DQD (QD2 and QD3) with a
QD2 energy level inside the bias window and QD3 being o�-resonant,
showed a signi�cant dependency on the number of electronsN3 in QD3.
A suppression of the co-tunneling current was observed for the ’magic
number’N3 = 12 of a completely �lled two-dimensional electronic shell,
followed by a signi�cant peak for one additional electron. The observed
e�ect of the shell �ling on the co-tunneling reminds of the reactivity of
atoms, where completely �lled shells (noble gases) provide stable con�g-
urations and alkali metals with one valence electron are highly reactive.
Under an applied bias, the transport through the DQD showed triangular
regions of �nite current, the characteristic bias triangles. The boundaries
of the bias triangles were discussed and the energetic extent was veri�ed
based on detuning dependent transport.
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4.2. Triple Quantum Dot

4.2. Triple �antum Dot

A triple quantum dot (TQD) is the natural sequel of a DQD in terms of
the investigation of multi quantum dots. By integrating a third quantum
dot into the system, a variety of new possibilities and phenomena arises.
TQDs are charging recti�ers [112, 113], and show quantum cellular au-
tomata processes [114–116]. A TQD qubit is expected to allow for addi-
tional functionality and tools for quantum computation compared to the
DQD qubit [117–119]. But already the device design brings new oppor-
tunities. Where the DQD is limited to serial and parallel con�gurations,
a TQD can be arranged in a triangular geometry [120–123], where each
of the QDs can be tunnel coupled to both others. But also in the serial
con�guration discussed here, the third QD changes the system in a quali-
tative way. The serial TQD is the smallest possible QD chain, in which the
central QD is not directly coupled to an electron reservoir and therefore
can only be charged or discharged involving a second QD. The third QD
also introduces a third, independent energy scale, the energy space of the
TQD thus becomes three-dimensional [116, 124–126].

The overall complexity and �exibility of the system rises not only due
to the additional energy scale. The additional QD compared to the DQD
system also brings two additional tunnel coupling parameters. With three
energy dimensions, four tunnel couplings and a bias voltage, the param-
eter space is quite large and a single measurement only provides insight
into a small piece of the whole picture.

Even though a two-dimensional stability diagram does not provide
all system information, it can for example be used to classify the pa-
rameter regime inside the parameter space. Such a stability diagram as
function of the outer plunger gate voltages VDg1 and VDg3 is shown
in �gure 4.7. The current through the TQD Idot is presented in (a),
the corresponding charge detector signal in (b). The constant gate volt-
ages are VBg1 = VBg2 = −0.55V , VTg1 = −0.6V , VTg2 = −0.37V ,
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VTg3 = −0.52V , VTg4 = −0.55V , and VDg2 = −0.525V . A bias volt-
ageVsd,dot = 75 µV was applied to prede�ne the transport direction. An
o�set of Ioff = 5.9× 10−11A is added to Idot for the color plot in (a),
so that negative currents due to recti�cation e�ects at VDg1 ≈ −0.54V ,
VDg3 ≈ −0.62V have positive values and can thus be shown in logarith-
mic scale.

The current Idot shows structures of �nite values in the regime
VDg1 & −0.6V and VDg3 & −0.66V . For more negative gate voltages,
the current drops below the resolution limit of the measurement setup. In
a serial con�guration, the current through the device gets more and more
suppressed with increasing the number of QDs. Therefore, the charge de-
tection becomes more relevant, since it shows all charging events, which
allows to identify the charge states contributing to the current �ow. A
comparison between current and detector signal allows the identi�cation
of two charging lines of the center QD2 in the transport regime, which
are marked by arrows in �gure 4.7 (a) and (b). The charging line marked
as N2 is almost entirely visible in the current, indicating strong coupling
of the center QD2 to the neighboring QDs. For the N2 − 1 charging line,
the suppression of the current due to Coulomb blockade of QD1 or QD3
is signi�cantly larger and �nite current is mainly found close to the TQD
resonances.

This trend of decreasing coupling strength of the center QD2 for more
negative gate voltages is also clearly visible in the detector signal. The
N2 charging line is only vaguely visible in the detector signal. On the one
hand, this is due to the hybridization with the neighboring QDs, which
leads to a bending of the QD2 charging line close to the resonances. One
the other hand, a large coupling broadens the charging lines. With the
�xed detector response amplitude of a single charge being removed from
the QD, this decreases the contrast in the given di�erential detector sig-
nal. For theN2 − 1 charging line, the bending due to hybridization is also
observed, but only for the most positive VDg3 & −0.62V . The broad-
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a)

b)

Figure 4.7.: (a) TQD current Idot as function of the outer plunger gate volt-
ages VDg1 and VDg3. The panel on top shows a cut along the dashed line.
Two charging lines of the center QD are marked by arrows. (b) The cor-
responding detector signal clearly shows three di�erent slopes of charging
lines, attributed to the three QDs. The charging lines of the center QD are
nicely visible and almost diagonal. Loading and unloading does not rely on
resonances with the outer QDs. The box marks a TQD resonance, visible in
both, current Idot and detector signal.
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4. Transport through Quantum Dot Arrays

ening of the charging line is smaller compared to the N2 charging line,
which in turn leads to the better contrast. Along theN2−2 charging line,
no features are visible in the current Idot. In the detector signal however,
the charging line is well resolved and the bending of the charging lines
close to the resonances with the outer QDs, a signature of strongly tunnel
coupled QDs, almost completely disappeared. The N2 − 3 charging line,
found at the most negative gate voltages VDg1 and VDg3, is not clearly
visible any more. The charging line does not appear as a straight line,
but is noisy, especially in the center of the honeycomb pattern span by
QD1 and QD3. This is an indication for the tunneling times being of the
order of the integration time tint = 20ms. In contrast to before, the
detector here does not integrate over many tunneling events, but instead
reacts on single tunneling events, which reveals the stochastic nature of
the tunneling. The highest tunneling rate for charging QD2 dominates
this process.

A line cut along the horizontal dashed line in �gure 4.7 (a) is shown on
top of the color plot. The main peak in Idot corresponds to a resonance
of QD2 with the reservoirs, while QD1 and QD3 are o�-resonant. This
peak lies in the center of the honeycomb cells span by QD1 and QD3 en-
ergy levels, where the detuning of the energy levels is maximal. The peak
current is Imax = 0.29nA, which converts via Γ∗ = I/e to the e�ec-
tive tunneling rate Γ∗ = 1.83GHz. A full transport cycle contributing to
the current hereby consists of a loading event from the source reservoir
to QD2 with rate ΓS2 and an unloading event from QD2 into the drain
reservoir with rate Γ2D. Since the e�ective tunneling rate Γ∗ = ΓS2Γ2D

ΓS2+Γ2D
is always smaller than the contributing individual tunneling rates, Γ∗ is
a lower bound for the individual tunneling rates ΓS2 and Γ2D, which are
co-tunneling rates. Within the shown gate voltage range of 125mV per
gate, the change in co-tunneling rates between QD2 and the reservoirs
can therefore be estimated to vary from the GHz-regime for the most
positive gate voltages to the order of 50Hz(= 1/tint) for the most neg-
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ative gate voltages.
Similar to the o�-resonant current in the DQD, �nite current through

the TQD is not only found for situations, where all three QDs are resonant.
Especially resonances of both outer QDs with the center QD2 being o�-
resonant are pronounced features in the current in 4.7 (a). In this situation,
the current is also co-tunneling mediated, but in contrast to before, the
co-tunneling interconnects QD1 and QD3 via virtual occupation of QD2
[127, 128]. For di�erent peaks, the peak currents Imax for this type of
resonances close to the maximal detuning of the center QD2 are of the
order of Imax ≈ 0.2nA (1.2GHz) and therefore slightly smaller than
the previous process, where two co-tunneling transitions are involved.
This might be due to the fact, that the leads and therefore multiple states
are involved in these processes, whereas co-tunneling between QD1 and
QD3 is between two discrete QD states.

Additionally, there is an asymmetry visible in the QD1-QD3 reso-
nances. In VDg1-direction, the resonances are visible until the current
drops below the resolution limit. In VDg3-direction, the resonances are
only pronounced features for VDg3 & −0.63V . This indicates a coupling
asymmetry, where either t23 or t3D are small compared to the other cou-
plings and therefore the suppression of the o� resonant current is more ef-
�cient. The detector signal gives additional information concerning these
couplings. The charging lines of QD1 (almost vertical) are broadened and
have a low contrast in the transport regime. Since this is also the case
for QD2 and QD3 being o�-resonant, the dominant process for charging
and discharging QD1 is tunneling between source and QD1. This indi-
cates a strong coupling tS1 between source and QD1. The QD3 charging
lines (almost horizontal) are less broadened and have higher contrast in
the transport regime. The asymmetry in the QD1-QD3 resonances is thus
most likely due to t3D < tS1.

A resonance between all three QDs is marked by boxes in �gure 4.7 (a)
and (b). For three center plunger gate voltages VDg2, a zoom onto this
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resonance is shown in �gure 4.8. (a-c) show the current Idot, (d-f) the
corresponding charge detector signal, and (g-i) show schematic stability
diagrams with denoted electron con�gurations (N1,N2,N3). Zero hereby
refers to the background electron con�guration. The �xed gate voltages
are identical to �gure 4.7.

In general, a TQD resonance is a three-dimensional object, where six
quadruple points, each connecting four di�erent charge con�gurations,
are located within the three-dimensional energy space. These quadru-
ple points are the TQD analogue to the triple points in DQDs, where
the system is conductive even in the absence of a bias voltage. A two-
dimensional measurement can therefore only provide partial information
about the resonance and the quadruple points. The maximum number
of quadruple points, that can be visible in a single two-dimensional mea-
surement is four. However, in general, the plane in which four quadruple
points are visible, is tilted against the two measurement axes, which re-
duces the amount of quadruple points visible in a single two-dimensional
cut. The two remaining quadruple points are generally not visible in
a two-dimensional cut, since the fourth con�guration touches a visible
triple point from the third dimension [116].

The center column (b, e, h) of �gure 4.8 corresponds to VDg2 =

−524.8mV and shows a TQD resonance, close to a situation, where four
quadruple points are expected simultaneously. The left (a, d, g) and right
(c, f, i) column are taken at 2mV more positive and more negative VDg2
values, respectively. The current Idot in the resonant case (b) shows �nite
values within the full plane enclosed by the four quadruple points. In (e),
the detector signal shows the relevant charging lines for this resonance.
An idealized schematic stability diagram, where the four quadruple points
are highlighted by red dots is given in (h). As a �rst step, the lever arms are
calculated to get insight into the relevant energy scales of this resonance.

From Coulomb diamond measurements (see appendix, �gure A.2), the
lever arms αDg1,1 = −0.091e∆VDg1, αDg2,2 = −0.071e∆VDg2, and
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Figure 4.8.: Triple quantum dot resonance as function of the outer plunger gate
voltages VDg1 and VDg3 for three values of the center gate VDg2. (a-c) The
current Idot shows �nite values not only at the resonances but also in the (d-f)
corresponding detector signal, (g-i) schematic stability diagram with denoted
charge con�gurations (N1,N2,N3), which refer to the background charge con-
�guration.
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αDg3,3 = −0.077e∆VDg3 have been determined for this cooldown cycle.
The gate voltage di�erence ∆VDg2 = −4mV thus converts into an en-
ergy di�erence of ∆E2 = 284 µeV . Simultaneously, the gate voltage dif-
ference∆VDg2 = −4mV shifts the QD1 energy levels in VDg1-direction
by ∆VDg1 = 1.4mV . This converts into an energetic shift of ∆E1 =

128 µeV , yielding a lever arm αDg2,1 = −0.032e∆VDg2. Following the
same procedure for QD3, the gate voltage di�erence ∆VDg3 = 1.0mV
converts into∆E3 = 77 µeV , yielding αDg2,3 = −0.019e∆VDg2. To com-
pensate the energy level shift of QD2∆E2 = 284 µeV viaVDg1,∆VDg1 =

8.4mV are needed. This results in αDg1,2 = −0.034e∆VDg1. The slope
of the QD2 charging line in the VDg1-VDg3-space is m = −1.07, which
allows to calculate αDg3,2 = αDg1,2/1.07 = −0.032e∆VDg1. Finally, the
lever arms αDg1,3 = −0.0097eVDg1 and αDg3,1 = −0.0093eVDg1 can
be determined via the slopes of the QD1 and QD3 charging lines. These
lever arms are summarized in tabular 4.1.

VDg1 VDg2 VDg3
QD1 0.091 0.032 0.0093
QD2 0.034 0.071 0.032
QD3 0.0097 0.019 0.077

Table 4.1.: Lever arms between gate voltages VDg1, VDg2, VDg3 and QD1, QD2,
QD3.

With the lever arms it is now possible to calculate the energetic shift of
the energy levels due to the interdot capacitances. These are the relevant
energies for a TQD resonance, which de�ne the extent of the resonance
in the three-dimensional energy space. The bending of the charging lines
due to hybridization does not allow exact extractions of the ∆VG val-
ues in the given gate voltage range. However, good estimations can be
derived for the QD2-QD3 resonance from the left hand resonance in �g-
ure 4.8 (d) and for the QD1-QD2 resonance from the top resonance in (f).
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For the QD2-QD3 resonance, the energetic shift of the QD3 energy level
is ∆VDg3 ≈ 2mV , which converts into ∆E23 = −eαDg3,3∆VDg3 ≈
150 µeV . The shift of the QD1 energy level due to charging QD2 is also
∆VDg1 ≈ 2mV , which converts into ∆E12 ≈ 180 µeV . Both, (d) and
(f) allow to extract the ∆VDg1 and ∆VDg3 values for the QD1-QD3 reso-
nance, which lies in the center of both graphs. Due to the large distance
the interdot capacitance C13 between the two QDs is small, and there-
fore the shift ∆VDg1 ≈ 800 µV as well. The shift is in this case smaller
than the linewidths of the charging lines. Converting into energy yields
∆E13 ≈ 70 µeV .

On the one hand, these energetic shifts due to the capacitive coupling
between the QDs show, that the voltage range ∆VDg2 = ±2mV com-
pared to the resonant situation already present o�-resonant situations.
Nevertheless, in both cases (a) and (c), �nite current is observed. This can
be explained by the strong tunnel coupling between the QDs in combina-
tion with the proximity to the TQD resonance. Additionally, a QPC bias
of Vsd,qpc = 0.5mV was applied for the charge detection, which can
act as a source of phonons and therefore enables inelastic tunneling [73–
75]. Another source of energy is given by the dot bias Vsd,dot = 75 µV ,
which is similar to the energetic shift ∆E13. The bias voltage in com-
bination with the strong coupling, which further broadens the charging
lines leads to an overlap and therefore the coexistence of all four possi-
ble charge con�gurations for the QD1-QD3 resonances. E�ectively, the
small interdot capacitance C13 leads to a relatively �at three-dimensional
TQD resonance. In combination with the availability of energy, this ex-
plains the observation of current in the full plane de�ned by the quadruple
points in �gure 4.8 (b).

Bias e�ects on a Triple �antum Dot

In the following, the e�ects of an applied bias on a TQD system will be
discussed. A bias voltage does not only prede�ne a transport direction but
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at the same time acts as a source of energy and therefore enables transport
via excited con�gurations.

Similar to the DQD system discussed in section 4.1, gate dependent
transport through the TQD under varying bias voltages Vsd,dot will be
discussed. Figure 4.9 shows an overview of the current Idot through the
TQD as function of the outer plunger gate voltages VDg1 and VDg3 for
di�erent bias voltages −2mV 6 Vsd,dot 6 2mV . As for the DQD case,
an o�set Ioff = 1.5× 10−11A is added to also allow negative current
values to be plotted in logarithmic scale. For negative bias values the
absolute current |Idot − Ioff| is shown. The given bias values are the
values applied to the drain (right) reservoir. Due to thermal voltages, the
e�ective bias voltage di�ers from these values. The constant gate voltages
are VBg1 = VBg2 = −0.55V , VTg1 = −0.61V , VTg2 = −0.365V ,
VTg3 = −0.525V , VTg4 = −0.64V , and VDg2 = −0.547V .

Beginning from Vsd,dot = 0V toward more negative values, the over-
all current strongly increases. Up to Vsd,dot = −0.8mV , the charging
lines of QD1 (almost vertical) and QD3 (almost horizontal) are visible over
the full transport range. The QD2 charging lines however, which are ex-
pected with an almost diagonal slope, can not clearly be identi�ed. Only
the recti�cation e�ects for Vsd,dot = 0V and Vsd,dot = 0.4mV and
increased current values along a diagonal through VDg1 ≈ −0.525V and
VDg3 ≈ −0.55V for Vsd,dot = −0.4mV hint toward quantized energy
levels of QD2 taking part in the transport. In the corresponding detec-
tor signals (appendix A.3), the almost diagonal QD2 charging lines are
however clearly visible.

For more negative Vsd,dot 6 −0.8mV and for the most positive gate
voltages VDg1 and VDg3 the current strongly increases. For Vsd,dot =

−1.6mV and Vsd,dot = −2.0mV the charging lines, the characteristic
feature of single electron tunneling, are not resolvable due to the high
background current in the regime VDg1 > −0.525V , VDg3 > −0.55V .
The disappearance of the charging lines in this regime is also observed in
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Figure 4.9.: TQD current Idot as function of the outer plunger gate voltages
VDg1 and VDg3 for di�erent Vsd,dot in logarithmic color scale. ForVsd,dot =
0V , strong rectifying e�ects lead to negative currents (white spots), which can
not be plotted in logarithmic scale.
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the detector signals (appendix A.3). Most likely, this is a consequence of
the electrostatic e�ect of the bias voltage. The applied bias voltage tilts
the electrostatics of the total system and thereby also a�ects the tunneling
barriers with respect to the reference potentials µS and µD. Combined
with the already small tunnel barriers in the regime of the most positive
gate voltages, this can lead to a situation, where the QDs are not well
de�ned any more.

In the regime of more de�ned tunneling barriers, VDg1 6 −0.55V and
VDg3 6 −0.575V , the Vsd,dot 6 −0.8mV data shows triangular/trape-
zoid structures at the QD1-QD3 resonances, which remind of the DQD
under applied bias discussed in section 4.1. In positive bias direction, be-
ginning at Vsd,dot = 0.4mV , similar triangles evolve. In contrast to the
negative bias direction, the positive bias direction shows additional sub-
structures with increasing bias voltage. These substructures evolve with
a positive slope in gate space, which reminds of the recon�guration lines,
where two QD states are degenerate. In a typical, unbiased stability dia-
gram, these recon�guration lines are the only lines with a positive slope.

The transport in this regime is thus again a function of the detuning
between two QDs. However, in a TQD system three di�erent detunings
∆12 between QD1 and QD2, ∆23 between QD2 and QD3, and∆13 between
QD1 and QD3 are present. So as a �rst step, a comparison of the di�erent
slopes in the stability diagram is used to identify the relevant detuning
energy. Figure 4.10 panel (a) and (b) show a zoom into the Vsd,dot =

1.2mV data, in the range marked by the box in �gure 4.9.
The triangular shaped regions of �nite o�-resonant current are emerg-

ing from the QD1-QD3 resonances. For VDg1 > −0.555V , no substruc-
tures are visible in the o�-resonant current areas. Toward more negative
VDg1 values, the substructures become prominent features in Idot. Inter-
estingly, the detector signal in (b) shows these structures as well, indicat-
ing changes in the average occupation or distribution of electrons in the
TQD due to the underlying process. From the detector signal, the di�er-
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Figure 4.10.: (a) Current through the TQD as function of VDg1 and VDg3 for
Vsd,dot = 1.2mV in the area marked by the box in �gure 4.9. (b) Corre-
sponding detector signal. Charging lines of all three QDs are visible, as well
as recon�guration lines, which coincide with the substructures present in the
Idot. Arrows mark the peak positions in the current along the dashed line. (c)
Cut along the vertical dashed line in (a) and (b). The energy shifts ∆E1, ∆E2,
and ∆E3 are given with respect to the rightmost peak, which coincides with
a QD3 charging line. The two peaks, where the energy shifts are given, are
two successive charging lines of QD3.
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ent slopes of the charging and recon�guration lines can be determined.
The slope of the QD1 charging lines ism1 = −9.67, the slope of the QD2
charging lines can be determined to m2 = −1.06, and the slope of the
QD3 charging lines is m3 = −0.13. Two recon�guration line slopes can
be read out as well. In the lower part of the stability diagram, recon�gura-
tion lines with slopemR1 = 0.48 are found, the slope of the substructures
is mR2 = 2.41. All slopes are de�ned by the gate lever arms ratios. For
the charging lines, the slopes are mi = −αDg1,i/αDg3,i. Using the val-
ues of table 4.1, the slopes calculate to m1 = −9.78, m2 = −1.06, and
m3 = −0.12, matching well with the extracted charging line slopes.

For the recon�guration lines, the relation between lever arms and re-
con�guration line slope is [129]

mRij =
αDg1,i − αDg1,j
αDg3,j − αDg3,i

. (4.2)

The calculated values aremR12 = 2.51,mR23 = 0.54, andmR13 = 1.20.
Comparing the extracted and the calculated slopes allows to assign the
slope mR1 to the QD2-QD3 recon�guration and the slope of the sub-
structures mR2 to the QD1-QD2 recon�guration. Increased conductiv-
ity within the areas of o�-resonant current is therefore found for speci�c
detuning values ∆12 between QD1 and QD2. Figure 4.10 (c) shows a ver-
tical cut through (a). VDg1 = −0.561V was chosen, so that the cut lies
between two QD1 charging lines, meaning QD1 is o�-resonant over the
VDg3 range shown. The cut shows a series of peaks with varying dis-
tances, which are marked by the gray dashed lines. The positions of the
peaks are additionally marked by arrows in the detector signal in (b). The
detector signal allows to assign charging events to the peaks. The �rst
peak on the right coincides with a QD3 charging line in the detector sig-
nal. For the two peaks at VDg3 = −0.558V and VDg3 = −0.573V , the
energetic shift values of the QDs ∆E1, ∆E2, and ∆E3 with respect to the
�rst peak are given. From the stability diagram and from the ∆E3 val-
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ues, these peaks can clearly be assigned to charging lines of QD3. With
∆EC(N3) = 1.26meV and ∆EC(N3 − 1) = 2.40meV − 1.26meV =

1.14meV , the charging energies are typical values for this device in the
many electron regime [97].

The smaller peaks in-between are due to the substructures, which are
parallel to the QD1-QD2 recon�guration line in the stability diagram.
Each of these peaks therefore corresponds to a �xed detuning value be-
tween QD1 and QD2. In the detector signal, these peaks coincide with
the dark blue lines, which correspond to a more negative potential in the
vicinity of the detector. This can either be achieved by adding an electron
to the system or by moving an electron into the direction of the detector.
The energetic shift∆Ei for each individual QD and all detunings between
di�erent QDs are given in table 4.2. All values are with respect to the peak
at VDg3 = −0.542V , the rightmost peak in �gure 4.10 (c).

VDg3 (V) -0.542 -0.545 -0.549 -0.558 -0.565 -0.573
∆E1 (meV) 0 0.03 0.06 0.15 0.21 0.29
∆E2 (meV) 0 0.10 0.22 0.55 0.78 1.06
∆E3 (meV) 0 0.23 0.50 1.26 1.77 2.40
∆12 (meV) 0 0.07 0.16 0.40 0.57 0.77
∆23 (meV) 0 0.13 0.28 0.71 0.99 1.34
∆13 (meV) 0 0.20 0.46 1.11 1.56 2.11

Table 4.2.: Energetic shift and detuning values for the peaks marked in �gure
4.10.

Using the detuning values ∆12 between QD1 and QD2 the energy
scale of the process behind the substructures can be deduced. While
∆12 = 0.07meV for the VDg3 = −0.545V peak does not provide an en-
ergy scale, due to the de�nition of ∆12 = 0, where the energy level align-
ment of QD1 and QD2 is not known, the detuning di�erence between two
successive substructure peaks is a meaningful value. When starting at the
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4. Transport through Quantum Dot Arrays

VDg3 = −0.545V peak and going to the VDg3 = −0.549V peak, the de-
tuning between QD1 and QD2 changes by∆12 = 0.16meV−0.07meV =

0.09meV .

The detector signal shows, that the two leftmost peaks in �gure 4.10 (c)
coincide with the substructures. In detuning between QD1 and QD2, this
means∆12 = 0.77meV−0.57meV = 0.20meV , providing an additional
meaningful value for the underlying process. The energy scale between
successive substructure peaks extractable here is therefore in the range
of 90 µeV 6 ∆12 6 200 µeV , which is the energy scale of excited states
of the individual QDs in the many electron regime [97]. It is thus very
likely, that the underlying processes of the substructures are based on
excited state interdot transitions between QD1 and QD2.

However, since these substructures are not visible over the full trans-
port range, the presence of excited states is not the only condition to be
satis�ed. Additional information about the boundary conditions is rel-
evant for understanding the underlying process. Referring to this, �g-
ure 4.11 shows Coulomb diamonds in this range, which inherently pro-
vide additional information about the bias dependency and allow deeper
insight into the energy level alignment. However, the Coulomb dia-
monds were not obtained in the typical way by directly measuring Idot
or dIdot/dVsd,dot as function of Vsd,dot and stepping the gate voltage.
The Coulomb diamond data presented here was reconstructed from the
three-dimensional data set already used for �gure 4.9. In this case, the
transport Idot was measured as a sequence of two-dimensional stabil-
ity diagrams with sweep gate voltage VDg1 and stepping the gate voltage
VDg3 after eachVDg1-line. Only after completion of the two-dimensional
measurement, the bias voltage Vsd,dot was stepped. The di�erential con-
ductance dIdot/dVsd,dot was then obtained by taking the numerical
derivative of Idot. Due to the three-dimensionality of the original mea-
surement, the Vsd,dot resolution of 133 µV is low compared to typical
Coulomb diamond measurements.
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Figure 4.11.: TQD Coulomb diamonds as function of VDg3 reconstructed from
the three-dimensional data presented in �gure 4.9. The dIdot/dVsd,dot data
was obtained by taking the numerical derivative of Idot. The color plot
shows the Coulomb diamonds. Dotted lines are guides to the eyes. The
top panel shows a horizontal cut, the right panel a vertical cut along the
dashed lines. Orange lines present Idot, the blue line in the top panel shows
dIdot/dVsd,dot. The crossing point of both cuts is the VDg3 = −0.549V
substructure peak in �gure 4.10 and table 4.2. The vertical cut in the right
panel is identical to �gure 4.10 (c).
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Nevertheless, due to the stability of the device, some of the typical fea-
tures of Coulomb diamonds can be recognized in the color plot. No perfect
Coulomb blockade is observed, where the current drops below the reso-
lution limit, as soon as one QD is in blockade, but some of the source and
drain resonances can be identi�ed. The horizontal and vertical dashed
line mark the cuts presented in the top and right panel, respectively. The
data in the right panel is hereby only the current Idot and identical to
�gure 4.10 (c). Both cuts intersect at the VDg3 = −0.549V substructure
peak discussed before.

First of all, the asymmetry regarding positive and negative Vsd,dot
catches the eye. Toward negative Vsd,dot, the absolute current |Idot| in-
creases substantially faster than toward positiveVsd,dot. This is probably
due to the electrostatic e�ect of the bias voltage, which tilts the potential
of the 2DEG. By applying negative potentials, the tunneling barriers are
therefore reduced with respect to the 2DEG potential, which results in
higher currents. Applying positive potentials has the reversed e�ect of
increasing tunneling barriers, which reduces the current.

For positive Vsd,dot, where the substructures are found, the tunnel
barrier con�guration allows the observation of several resonances. As
described in 2.1.4, positive slopes in Coulomb diamonds correspond to
resonances with the reservoir, where the potential is applied (here: right,
drain), negative slopes correspond to resonances with the grounded reser-
voir (here: left, source). The most prominent feature in the Coulomb di-
amonds is the resonance, which corresponds to the VDg3 = −0.558V
peak in the vertical cut in the right panel. It is marked by the lower green
dotted line. In the previous discussion, the detector signal was used to
identify this peak as a QD3 charging line. Due to the positive slope, which
identi�es a resonance with the right reservoir, the dominant process for
charging QD3 can therefore be deduced to be charging via the neighbor-
ing drain reservoir.

Beginning from this resonance and going toward more positive
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VDg3, a faintly visible resonance with a negative slope is found in
dIdot/dVsd,dot along the black dotted line. At VDg3 = −0.55V this
resonance intersects with the vertical cut. This value is close to the
VDg3 = −0.549V substructure peaks in Idot. The small o�set VDg3
can be understood by taking the background current into account. The
background current increases toward more positive VDg3, so that a peak
on top of the background becomes asymmetric and is shifted toward more
positive VDg3. A detailed analysis of a peak structure on a background
current thus requires the subtraction of the background current [130].

Since the absolute values of the positive and negative slope are similar,
the negative slope resonance can also be assigned to QD3. With the top-
most peak in the vertical cut at VDg3 = −0.542V also being known as a
QD3 resonance, the upper green dotted line can be constructed in parallel
to the lower one, which should coincide with the QD3 resonance. From
this half diamond, the bias o�set can be read to Vsd,off ≈ 350 µV . The
right corner of the half diamond lies at Vsd,dot ≈ 1.9mV , the gate volt-
age di�erence between the two QD3 resonances is∆VDg3 ≈ 15mV . The
charging energy can therefore be estimated to EC ≈ 1.55meV , yielding a
lever arm of αDg3,3 = −0.103 e∆UDg3. This is signi�cantly larger than
the earlier found value of αDg3,3 = −0.77 e∆UDg3, which can be ex-
plained by the large uncertainties in the determination of the slopes due
to the long timescales between the individual data points.

In the horizontal dIdot/dVsd,dot cut in the top panel, the position
of the substructure (gray dashed line) does not show a pronounced fea-
ture. The substructure is located at Vsd,dot = 1.2mV directly behind
the visible peak at Vsd,dot = 1mV , which comes from the QD3-source
resonance. This might be due to the low resolution and relative noise due
to the reconstruction, but can as well be a signature, that the conductance
of the substructures does not show a signi�cant bias dependency.

The available information about the situation, in which the substruc-
tures in the gate voltage dependent transport and under applied bias are
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present, can now be combined to discuss a probable underlying process.
Referring to this, �gure 4.12 (a) shows the charge detector signal, which
was already shown in �gure 4.10 for Vsd,dot = 1.2mV and (b) shows a
schematic energy level diagram based on the information gathered within
this section.

a) b)

Figure 4.12.: (a) Charge detector signal of theVsd,dot = 1.2mV data, as already
shown in �gure 4.10. The dashed lines mark a QD2 charging line where the
gaps are shifts due to the interdot coupling. (b) Schematic energy level dia-
gram illustrating the process, which leads to the substructures in the linear
transport under applied bias. The ground or any excited state of QD2 is loaded
from source via the resonant QD1 ground state. Followed by higher order tun-
neling via QD3 to drain this allows a contribution to the current Idot.

The presence of substructures was observed in the transport regime for
the most negative VDg1 and in parallel to the QD1-QD2 charge recon�g-
uration lines. The most negative voltages VDg1 correspond to the largest
tunneling barriers between source and QD1 as well as between QD1 and
QD2. In the detector signal, the substructures are visible as a charging
events, which increase the negative potential in the vicinity of the de-
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tector. Between two of the substructure lines, the negative potential is
reduced (white/red lines), i.e. an electron is removed from the vicinity of
the detector. Since this occurs in parallel to the QD1-QD2 recon�gura-
tion lines, the process behind the substructures increases the occupation
probability of QD2 via electron transfer from QD1. At the same time, the
visibility in the detector signal means, that the loading process of QD2
via source and QD1 is more e�cient than the unloading process via QD3
to drain. As a consequence, the ground state charging lines of QD1 and
QD2 in the detector signal have to be resonances with source. From the
Coulomb diamonds it is known, that the dominant process for discharg-
ing QD3 is the drain resonance. In combination, this can be explained
by the tunnel barriers to the left of QD2 being more transparent than the
tunnel barriers to the right of QD2.

The substructure lines are connected to a QD1 charging line. They are
evolving into positive gate voltage direction, meaning toward lower en-
ergies compared to the resonance at which QD1 is discharged. Including
the shifts due to the interdot coupling, a continuation of the QD2 charg-
ing line, which is almost diagonal and enters the stability diagram from
the bottom right is given by the dashed lines in �gure 4.12 (a). Similar
to the QD1 situation, the substructures are only found at energies lower
than the ground state discharging of QD2. Since the substructure lines
merge with the QD1 charging line, the contribution of the excited states
comes from QD2.

The process behind the substructures is therefore a transition between
the QD1 ground state and QD2. Di�erent substructure lines are due to
resonances between either the ground state or an excited state of QD2,
where each line corresponds to a di�erent QD2 state. To complete the
charge transfer from source to drain, which is necessary for these struc-
tures to be visible in the current Idot, there have to be transitions from
QD2 via QD3 to the drain reservoir. An exemplary energy level diagram
for the case of the resonance between QD1 and the �rst excited state of
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QD2 is shown in �gure 4.12 (b). Since the substructures are also present
for o�-resonant QD3, the QD3 level is chosen o�-resonant in the diagram.
Two possible charge transfer mechanisms from QD2 to drain while QD3
is o�-resonant are higher order tunneling or inelastic tunneling, for ex-
ample by emission of a phonon. Based on the previously derived con�g-
uration of the tunnel barriers with larger barriers around QD3, inelastic
tunneling hereby is the more probable process.

Starting from the resonance condition sketched in �gure 4.12 (b) and
changing the detuning ∆12 between QD1 and QD2 breaks the resonance,
where elastic tunneling is allowed. As a consequence, the e�ciency of
the loading process for QD2 goes down and thus the average occupation
of QD2 as well, which is resolved in the detector signal.

For VDg3 > −0.58V , QD2-QD3 recon�guration lines become visible
as dark blue lines. This is a sign for the right tunnel barrier to become
even less transparent, which allows charging processes from the source
via QD2 to change the average occupation of QD3 within the integration
time. This shows how a coupling asymmetry in a TQD device can have
critical impact on the transport characteristics under the availability of
energy.

In this part, electronic transport measurements through a TQD system
were presented and discussed. A short introduction about the serial TQD
system was given based on a two-dimensional stability diagram as func-
tion of the two outer plunger gate voltages. Di�erent coupling regimes of
the center QD, which is not directly coupled to a reservoir, were shown.
Ranging from strongly coupled with the neighboring QDs, so that �nite
current was observed along the full charging line, over the intermediate
regime, where current is only observed close to a TQD resonance down
to a regime, where the charging line becomes noisy in the charge detec-
tion signal due to tunneling rates of the order of the measurement fre-
quency. In the regime of intermediate coupling, the three-dimensional
energy space of a TQD resonance was discussed. The charge detector
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signal was used to identify the extent of the TQD resonance in the three-
dimensional energy space. With a bias voltage larger than one of the
energy dimensions, �nite current was observed in the full volume of the
resonance. The bias dependency of transport through a TQD was dis-
cussed. With applying larger bias voltages, triangular shaped structures
of �nite current formed, similar to the DQD case. In several of the trian-
gular structures, additional substructures were present. Based on the cou-
pling asymmetry, the energy scales and the energetic situation for which
the substructures are observed, a plausible mechanism for the occurrence
of the substructures was deduced.
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4.3. �adruple �antum Dot

Quadruple quantum dots (QQDs) can be seen as a crucial step toward
the implementation of QD based applications. Serial arrangements nat-
urally inherit all functionality of a serial TQD while the additional QD
provides additional functionality, as for example the possibility to oper-
ate the system as a coupled two qubit system, with each qubit consisting
of a DQD [26, 131, 132]. Similar to the extention from two to three QDs,
the extention to four QDs also provides new possibilities in terms of the
arrangement of the QDs. A QQD can be arranged in a 2x2 QD array, the
smallest possible implementation of a QD matrix [58, 133].

The quadruple quantum dot (QQD) uses the potential of the device to its
fullest. All gates are used to de�ne four QDs in series. In a serial QQD, two
of the QDs are not directly coupled to a reservoir, but only indirectly via
another QD. Due to this indirect coupling, the energy level alignment of
QD2 and QD3 and their coupling parameters are expected to have a large
impact on the transport properties. However, with a four-dimensional
energy space and �ve coupling parameters, the parameter space is even
larger than for the TQD. A two-dimensional stability diagram therefore
only reveals a small part of the full picture.

Such a stability diagram as function of the outer plunger gate voltages
VDg1 and VDg4 is shown in �gure 4.13. The QQD current Idot is given
in (a) in logarithmic scale, the corresponding detector signal is shown
(b). The constant gate voltages are VBg1 = VBg2 = −0.575V , VTg1 =

−0.525V , VTg2 = −0.335V , VTg3 = −0.40V , VTg4 = −0.525V ,
VTg5 = −0.60V , and VDg2 = VDg3 = −0.59V . A bias voltage of
Vsd,dot = 100 µV was applied to prede�ne the transport direction. A
two-dimensional uniform �lter was used to smooth the detector signal.
The vertical red line in the detector signal at VDg1 ≈ −0.47V corre-
sponds to a jump in Iqpc, most likely induced by a charge trap in the
vicinity.
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The symmetry of the device can again be used to assign the charging
lines of di�erent slopes to the four QDs. In the given serial con�guration,
the current Idot depends strongly on resonances between the QDs, so
that the identi�cation of the charging lines of the individual QDs can be
di�cult. The detector signal however shows the charging events of the
individual QDs also away from resonances. The almost vertical charging
lines with the small spacing of ∆VDg1 ≈ 10mV can be assigned to QD1.
The second largest (negative) slope with the spacing of ∆VDg1 ≈ 50mV
corresponds to QD2 charging lines. The small (negative) slope stems from
QD3 charging lines. QD4 charging lines are only barely visible in the
detector signal on this scale. This is a result of VDg1 being the sweep
gate and the derivation in VDg1-direction. In combination with the slope
of the QD4 charging lines being expected to be almost horizontal, the
contrast in the detector signal is drastically reduced, especially for strong
coupling, where the contrast of the charging lines is already small due to
the broadening.

In this two dimensional cut, the current Idot in 4.13 (a) shows dom-
inantly a honeycomb pattern de�ned by the charging lines of the two
central QDs, QD2 and QD3. In the most positive gate voltage range
VDg1 > −0.475V and VDg4 > −0.525V �nite current is present along
the entire charging lines of QD2 and QD3, an indication for strong cou-
pling, where co-tunneling mediated transport is possible. Where the QD2
and QD3 charging lines intersect, broad and pronounced peaks in the cur-
rent Idot occur. The charging lines of QD1 and QD4 are mainly observed
as an additional modulation pattern on top of the main honeycomb pat-
tern de�ned by QD2 and QD3. The panel on top of the color plot shows
in linear scale a cut along the horizontal dashed line. A large and broad
peak develops at the QD2-QD3 resonance. The oscillation on top of the
peak has a periodicity of ∆VDg1 ≈ 10mV , corresponding to the charg-
ing lines of QD1. Similarly, the double peak structure in the vertical cut
on the right shows a spacing of ∆VDg4 ≈ 10mV and can therefore be
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attributed to QD4.

Toward more negative gate voltages the current Idot does not fully
resolve the QD2-QD3 honeycomb structure anymore. For VDg1 .
−0.475V , the �nite current along the QD3 charging lines for o�-resonant
QD2 drops below the noise �oor. ForVDg4 . −0.525V , the �nite current
along the charging lines of QD2 with QD3 being o�-resonant becomes
unresolvable. Both indicates a decrease in coupling from more positive
to more negative voltages. Interestingly, for both, the QD2 and the QD3
charging lines, the more relevant gate in this case is the one further away
from the respective QD. From the electrostatic point of view, the main in-
�uence of a more negative VDg1 on the coupling is on the tunnel barriers
between source and QD1, as well as QD1 and QD2, whereas tunneling
into and out of QD3 involves the tunnel barriers between QD2 and QD3,
as well as between QD3 and QD4. Vice versa, VDg4 has the strongest in-
�uence on the barriers between QD3 and QD4 as well as between QD4 and
drain, but tunneling into and out of QD2 involves the tunneling barriers
between QD1 and QD2 as well as between QD2 and QD3. The detector
signal in �gure 4.13 (b) resolves the expected e�ect on the tunnel barriers
in terms of the broadening of the respective charging lines. The charging
lines of QD2 are less broadened for more negative VDg1 due to the de-
creasing coupling strength. The charging lines of QD3 are less broadened
toward more negative VDg4, respectively. In the current Idot, this e�ect
is pronounced as decreasing width and amplitude of the current features.
On the other hand, the detector signal does not show signi�cant in�u-
ence of the VDg1 on the width of the QD3 charging lines or of VDg4 on
the width of the QD2 charging lines. The mechanism behind the suppres-
sion in this situation is therefore not likely to be due to the in�uence of
the gate voltages on the tunneling barriers.

In the current Idot, the charging lines of QD2 show �nite current for
N3 + 1 electrons in QD3 and is suppressed after the transition toN3 elec-
trons in QD3. Equivalently, the �nite current along the charging lines of
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Figure 4.13.: (a) QQD current Idot as function of the outer plunger gate voltages
VDg1 and VDg4. Finite current is only found for at least one of the center QDs
being in resonance with the reservoirs. Resonances between QD2 and QD3
are found as broad peaks, which extend over several energy levels of QD1
and QD4. The black box marks a resonances in the regime, where the o�-
resonant current is strongly suppressed. (b) Corresponding charge detector
signal. Charging lines of QD1, QD2, and QD3 can be identi�ed. One charging
line of each QD is labeled accordingly. The charging lines of QD4 are not
visible in this con�guration due to the charging lines being almost horizontal,
which in combination with sweep gate voltageVDg1 and numerical derivation
in VDg1-direction drastically reduces the contrast of the charging lines.
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QD3 ís suppressed after the transition from N2 + 1 to N2 electrons in
QD2. This reminds of the DQD 4.1, where co-tunneling was shown to
be a function of the electron number and therefore the states involved.
A decreasing coupling strength due to the changes in the electron num-
bers is therefore a likely explanation for the observed suppression of the
o�-resonant current.

The following will discuss the con�guration and conditions around the
resonance at VDg1 ≈ −0.5V and VDg4 ≈ −0.55V in �gure 4.13, where
�nite current is still observed around the resonance but o�-resonant cur-
rent is already strongly suppressed. Figure 4.14 (a) shows a zoom into the
lower part of the stability diagram, allowing to identify contributions of
QD4. A single charging line of QD4 is faintly visible for the most nega-
tive VDg4, where the cross coupling on the tunnel barriers results in the
weakest coupling strength for QD4. The charging line is almost horizon-
tal and marked by the lowest green arrow on the right side of the graph.
For the rest of the stability diagram, no more charging lines of QD4 can
be clearly identi�ed.

However, at several positions, marked by the black arrows, features in
the QD3 charging lines indicate the presence of further charging lines of
QD4. The mutual charging energies due to the capacitive coupling lead to
a shift of the charging lines, whenever another QD is (dis-)charged, i.e. at
each crossing of two charging lines, the behavior of a coupled DQD is ob-
served. For non-neighboring QDs however, this shift does not exceed the
linewidth of the charging lines. Resonances between neighboring QDs
on the other hand show a larger splitting and the characteristic charge
recon�guration lines connecting the two triple points. In the given mea-
surement con�guration with gate voltage VDg1 being swept from more
positive to more negative voltages, these charge recon�gurations occur
from the left to the right of the array. The sequential charge recon�gura-
tions from QD1 to QD2, and from QD2 to QD3 hereby transfer an electron
closer to the charge detector, located below QD3, resulting in a more neg-
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Figure 4.14.: (a) Zoom into the charge detector signal of �gure 4.13. Black ar-
rows mark features in the QD3 charging lines, �tting to the behavior expected
for QD3-QD4 resonances. The green arrows on the right mark the positions of
the QD4 charging lines based on these features. A faint signal is observed for
the lowest QD4 charging line. Gray arrows mark probable positions for ad-
ditional QD4 charging lines, based on the spacing between the green arrows.
(b) Zoom into the resonance area, marked by the box in (a). The detector sig-
nals is overlaid by contour lines of the current Idot. The highest Idot values
are located asymmetrically with respect to the QD2-QD3 resonance. Com-
bined with the larger extent of the resonance current in VDg1-direction this
indicates the presence of a QD4 charging line and thus a QQD resonance.
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4. Transport through Quantum Dot Arrays

ative potential and thus dark blue color in the detector signal color plot.
The charge recon�guration from QD3 to QD4 on the other hand removes
an electron from the vicinity of the detector, so that white/red color is
observed.

By calculating the lever arms of the two gates, an estimate for the
slopes of the sequential recon�guration lines can be given. The lever arms
αDg1,1 = 0.091 and αDg4,4 = 0.078 are obtained directly from Coulomb
diamond measurements (see appendix, �gure A.2). With the cross lever
arms αDg1,2 and αDg1,3 already calculated for the TQD (table 4.1) and
the slopes mi = −

αDg1,i
αDg4,i

of the QDi charging lines, the remaining lever
arms can be calculated. The slopes mi obtained from �gure 4.14 (a) are
m1 = −18, m2 = −5.0, m3 = −0.21, and m4 = −0.059. The resulting
lever arms of the two gate voltages VDg1 and VDg4 to all four QDs are
given in table 4.3.

QD1 QD2 QD3 QD4
αDg1 0.091 0.032 0.0093 0.0046
αDg4 0.0051 0.0064 0.044 0.078

Table 4.3.: Lever arms between the plunger gate voltages VDg1 and VDg4 and
all four quantum dots.

Using the lever arms, the recon�guration line slopes can then again
be calculated according to equation 4.2. The calculated slopes mRij for
the charge recon�guration lines from QDi to QDj become mR12 = 43.9,
mR23 = 0.60, and mR34 = 0.14. Thus, the QD3-QD4 charge recon�gura-
tion lines are almost horizontal and of white/red color in the charge de-
tector signal. In combination with the contrast of the QD4 charging lines
being very small due to the almost horizontal charging lines, the main vis-
ible feature of resonances between QD3 and QD4 is an almost horizontal
shift of the QD3 charging lines. Situations, where such a shift occurs are
marked by black arrows in �gure 4.14 (a). For the resonance marked by
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the topmost black arrow, the shift inVDg1-direction hereby is of the order
of theVDg1 spacing of the QD1 charging lines. WithαDg1,1/αDg1,3 ≈ 10,
the mutual charging energy between QD3 and QD4 can be estimated to
Em34 ≈ EC1/10. For typical charging energies of the device in the many
electron regime being 1meV . EC1 . 1.5meV , the mutual charging
energy is of the order 100 µeV . Em34 . 150 µeV , �tting well to the
values obtained for the TQD resonance.

The green arrows on the right side of �gure 4.14 (a) mark the approx-
imate positions of the QD4 charging lines based on the QD3-QD4 reso-
nances marked by the black arrows. For the lowest green arrow, the QD4
charging line is faintly visible, so that the slope of the charging lines is
known and also used for the estimate of the positions. Based on the spac-
ing between the green arrows, there are most likely two additional QD4
charging lines present in the graph, since the level spacing of the charg-
ing lines in the many electron regime is typically almost equidistant. The
approximate position of these two QD4 charging lines is marked by the
gray arrows. However, in contrast to the charging lines marked in green,
there are no shifts in any QD3 charging line present, that can clearly be
attributed to resonances with these two QD4 charging lines.

In proximity to resonances with additional QDs however, the energetic
situation is much more complex than with only two QDs involved, so
that the simple expectation of only an almost horizontal shift does not
necessarily remain upheld. Moving an electron from QD3 to QD4 also
lowers the levels of QD1 and QD2, since Em14 < Em13 and Em24 < Em23,
which in turn can lead to charge recon�guration or even an additional
electron being loaded onto one of the QDs.

In the center of the box in �gure 4.14 (a) (and in the current Idot in
�gure 4.13 (a)), an extended resonance between QD1, QD2, and QD3 is
visible. Additionally, the lower gray arrow, where a charging line of
QD4 is expected, points to this resonance. Over the extent of the reso-
nance, several dark blue areas indicate charge recon�gurations and the
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detailed path of the individual charging lines can not be followed in the
two-dimensional gate space due to the four-dimensional energy space of
the QQD. The complexity of the resonance structure in combination with
the expected QD4 charging line indicates the presence a QQD resonance.

Panel (b) in �gure 4.14 shows a zoom into the detector signal around
the resonance marked by the box in (a). In addition, the detector signal is
overlaid with contour lines of the current Idot. The current Idot hereby
is Idot > 0.75 pA (1.75 pA, 2.75 pA, 3.75 pA) within the areas enclosed
by black (dark-red, orange, yellow) lines. Interestingly, even though the
honeycomb pattern observed in the current Idot in �gure 4.13 (a) was
predominantly de�ned by the QD2 and QD3 charging lines, the contour
lines show a clear asymmetry with respect to the QD2-QD3 resonance.
However, for the black contour line, which can be interpreted as the onset
of the current peak, the QD2-QD3 resonance appears to be a boundary.
In the upper part, the black contour line follows the QD3 charging line,
while the QD2 charging line provides a rough boundary on the left side.
Only the bulge at VDg4 ≈ −0.555V noticeably crosses the QD2 charging
line.

Combined with the shape of the yellow contour line, corresponding to
the highest current values, this bulge is a strong indicator for a QD4 charg-
ing line crossing the resonance. The upper part of the yellow contour line
is close to horizontal with a very small negative slope and directly points
to the bulge in the black contour line. Since a very small negative slope
is exactly what is expected for the QD4 charging lines, the shape of the
current peak con�rms the presence of an additional QD4 charging line at
the position marked by the lower gray arrow in �gure 4.14 (a).

The presence of a QD4 charging line crossing the resonance can ex-
plain both, an asymmetry of the shape of the current peak, as well as an
asymmetry with respect to the QD2-QD3 resonance. Additionally, how-
ever, the charging lines of QD2 and QD3 appear to be boundaries for the
observed current, very similar to the DQD under applied bias discussed
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in section 4.1. The bias voltage dependency of the transport through a
QQD will be discussed in the following.

Bias e�ects on a �adruple �antum Dot

This part analyzes the in�uence of an applied bias voltage on the transport
properties of a QQD system. Similar to the DQD and TQD, the main focus
will hereby be on qualitative changes in the stability diagrams, which are
an indicator for transport mechanisms only occurring in the presence of
a bias voltage Vsd,dot.

Figure 4.15 (a) shows the current Idot through the serial QQD array
in linear scale as function of the outer plunger gate voltages VDg1 and
VDg4. The applied bias voltage Vsd,dot = −0.05mV is annotated at the
bottom of the graph. As indicated by the sample schematic on the right,
the bias voltage is applied to the right reservoir. While the transport is
blocked for the most negative voltages, several features are observed in
the current for more positive voltages, again mainly resolving the hon-
eycomb pattern de�ned by the two center QDs, QD2 and QD3. However,
there is no clearly de�ned transport direction. The yellow areas are pos-
itive currents, whereas the black areas show negative current. Positive
current hereby means electrons tunneling from the left reservoir to the
right reservoir. There are regions in the stability diagram clearly favor-
ing the positive transport direction, whereas other regions favor negative
transport direction. Since the distribution of the positive and negative
current regions does not follow a clear systematic, a likely explanation
are recti�cation e�ects with a dependency on the coupling parameters. A
zoom into the green box of �gure 4.15 (a) is shown on the right, showing
a cross of negative current, surrounded by dots of positive current, fol-
lowing an almost horizontal line, as well as an almost vertical line. The
pattern of the dots of positive current is therefore most likely de�ned by
resonances between QD1 and QD4, whereas the cross of negative current
is de�ned by a speci�c electron numbers in QD1 and a speci�c electron
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number in QD4. Similar to the DQD, discussed in section 4.1, the trans-
port properties of the QQD are strongly in�uenced by the exact electron
con�guration.

Due to thermoelectric voltage contributions, the bias voltage e�ectively
applied between the reservoirs is not equal to the voltage Vsd,dot, which
is the voltage applied by the voltage source. For small bias voltages,
both, positive as well as negative currents are observed in the stability
diagrams, so that determining the e�ective zero bias voltage is not pos-
sible. However, a method for determining a reasonable reference point
is given by the following procedure. First, the measured current is cor-
rected for o�sets by subtracting the average value of the current mea-
sured in the regime VDg1,VDg4 < −0.64V , where the current is ex-
pected to be zero. After the o�set correction, the average value Iavg of
the entire stability diagram becomes a measure for the balance between
positive and negative currents. For the situation of the applied bias volt-
age Vsd,dot = −0.05mV , shown in �gure 4.15 (a), this average value is
Iavg ≈ 1 pA. For all bias voltages measured over the same gate voltage
range, this value is the closest to zero, and is used as a reference point.
For the remainder of this section, the values Vsd,dot will be given with
respect to this reference point, i.e. Vsd,dot = Vapplied + 0.05mV .

For bias voltages Vsd,dot = ±0.3mV ,±0.9mV ,±1.5mV with re-
spect to this reference point, a representation of the current Idot is shown
in logarithmic color scale in �gure 4.15 (b) for the same gate voltage range
as in (a). The representation of the current, Idot multiplied by the sign of
the bias voltage, is chosen over the conductivity due to the uncertainty in
the determination of the absolute value of the bias voltage. Additionally,
a small o�set Ioff = 5 pA is added, so that the noise around Idot = 0
does not produce negative values which can not be plotted in logarithmic
scale. With these adjustments, the current for positive and negative bias
direction can be plotted on the same scale.

The left column shows Vsd,dot = −0.3mV (top) and Vsd,dot =
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a)

b)
1 2 3 4

Figure 4.15.: (a) QQD current Idot in linear scale and as function of the outer
plunger gate voltages VDg1 and VDg4 for bias voltage Vsd,dot = −0.05mV .
The sample scheme clari�es the circuit con�guration. The current is not di-
rected, showing both, regimes of positive (yellow) and negative (black) val-
ues. The zoom shows a cross of negative current de�ned by speci�c electron
numbers in QD1 and QD4, indicating a strong dependency on the coupling
con�guration. (b) QQD current ±Idot in logarithmic scale for di�erent bias
voltages Vsd,dot = ±0.3V ,±0.9V ,±1.5V . The transport is clearly directed
already for Vsd,dot = ±0.3V . Triangular regions emerge around the QD2-
QD3 resonances with increasing size for increasing |Vsd,dot| and opposite
direction for opposite sign of Vsd,dot.
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0.3mV (bottom). Both bias directions do not show values signi�cantly
smaller than the �uctuations around the applied o�set, showing that the
transport direction is fully determined by the bias direction. Apart from
the opposite direction of the current and a small electrostatic shift, the
two stability diagrams are similar. Both show �nite current in the full
range VDg1,VDg4 > −0.45V with peaks along the charging lines of
QD2 and QD3, growing into larger peaks at the resonances of the two
QDs. For slightly more negative voltages, a honeycomb pattern of �-
nite current along the charging lines of QD2 and QD3 with suppres-
sion in the center of the cells is observed. Going to even more nega-
tive voltages VDg1 ≈ −0.55V , well separated features of �nite current
are only observed close to resonances between QD2 and QD3. These
features are dominated by almost vertical components, indicating an in-
creasing importance of QD1 on the transport properties. This can be un-
derstood from the cross coupling of VDg1 on the two tunnel barriers of
QD1. The increasing tunnel barriers decrease the coupling of QD1 to both
sides, so that co-tunneling via QD1 becomes much less likely and thus
the Coulomb blockade between the levels of QD1 is observed. Similarly,
around VDg4 ≈ −0.6V faintly visible and almost horizontal structures
occur, indicating an increasing importance of QD4 on the transport prop-
erties.

Compared to the reference measurement in �gure 4.15 (a), for both bias
values Vsd,dot = ±0.3mV the pinch-o�, where the current drops below
the noise �oor is shifted toward more negative voltages, both, inVDg1 and
VDG4-direction. Additionally, the current is clearly directed and compa-
rable features occur broadened.

With increasing the bias voltages to Vsd,dot = ±0.9mV , shown in the
center column of �gure 4.15 (b), the broadening of the features further
increases, so that the regime, where �nite current is present also in the
center of the honeycomb cells de�ned by QD2 and QD3, shifts to more
negative voltages compared to the Vsd,dot = ±0.3mV cases. At the
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same time, the almost vertical (QD1) and almost horizontal (QD4) features
close to the pinch-o� become much more pronounced. The most signi�-
cant change, however, is given by the formation of triangular structures
of �nite current. The triangles emerge from the intersections of the QD2
and QD3 charging lines, and the direction of the triangles is inverted by
changing the sign of the bias voltage.

The observed trends continue when the bias voltage is further in-
creased to Vsd,dot = ±1.5mV , shown in the right column of �gure 4.15
(b). The broadening and hence overlap of the current features continues
to increase, and the almost vertical QD1 charging lines, as well as the al-
most horizontal QD4 charging lines become even more pronounced near
the pinch-o� region. Additionally, the size of the triangular structures
increases. This behavior is very similar to the DQD under applied bias
described in section 4.1, where �nite current was observed up to a maxi-
mum detuning ∆23 ≈ eVsd,dot.

To compare the DQD and the QQD case, a zoom into the area of the
triangular current features is shown in �gure 4.16 for bias voltages (a)
Vsd,dot = 0.9mV and (b) Vsd,dot = 1.5mV . For the triangular struc-
ture showing the smallest overlap with other features, a line cutting the
QD2-QD3 recon�guration line perpendicularly, i.e. along the detuning
axis, is shown in the graphs. The slope of the line is calculated from the
recon�guration line slope m∆23 = −1/mR23 with mR23 = 0.6 calculated
from the lever arms given in tabular 4.3. Panels (c) and (d) in �gure 4.16
show the charge detector signals corresponding to the boxes in (a) and
(b), respectively. The charge detector signal shows clearly the charging
lines of QD2 and QD3 and was used in order to determine the center of
the QD2-QD3 resonance de�ned by these charging lines as accurately as
possible.

However, an absolutely accurate determination is not possible because
the QD2-QD3 resonances do not occur as isolated features in the QQD
system, but both QDs also interact with QD1 and QD4. Resonances be-
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Figure 4.16.: Zoom into the current Idot for (a) Vsd,dot = 0.9mV and (b)
Vsd,dot = 1.5mV in the area where pronounced triangular structures occur.
The size of the triangular structures increases with increasing bias voltage.
The lines cut through the QD2-QD3 recon�guration line along the∆23 detun-
ing axis. (c) and (d) show the detector signals corresponding to the boxes in
(a) and (b), respectively. To achieve high accuracy, the reference value for the
detuning ∆23 = 0 is taken as the center of the recon�guration line from the
charge detector signal. The green part of the cut lines in all panels represents
the QD2-QD3 detuning interval 0 6 ∆23 6 eVsd,dot.
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tween QD1 and QD3 for the 0.9mV case in (c), for example, lead to a frag-
mented appearance of the QD3 charging line. Within this uncertainty,
the green part of the cut lines in all four panels represent the interval
0 6 ∆23 6 eVsd,dot. As in the DQD case, the reference value ∆23 = 0 is
taken as the center of the QD2-QD3 charge recon�guration line observed
in the detector signal. The detuning is calculated from the lever arms
given in table 4.3.

A further zoom into the into the triangular shaped regions of �-
nite current is shown in �gure 4.17 for (a) Vsd,dot = 0.9mV and (b)
Vsd,dot = 1.5mV in linear scale. The white arrows represent the ∆23
detuning axis with the green parts again highlighting the detuning inter-
val 0 6 ∆23 6 eVsd,dot. The current along the arrows is shown in �gure
4.17 (c) as function of the detuning ∆23 in blue for Vsd,dot = 0.9mV ,
and in red for Vsd,dot = 1.5mV . For both bias values, the correspond-
ingly colored parts of the background illustrate the detuning interval
0 6 ∆23 6 eVsd,dot.

Coming from negative detuning∆23, the current Idot increases toward
∆23 = 0. For Vsd,dot = 0.9mV , the current hereby starts at Idot ≈ 0,
whereas for Vsd,dot = 1.5mV the current is �nite at negative detun-
ing due to overlap with a di�erent triangular structure. Toward positive
detuning ∆23 the current then goes through a maximum for both bias
voltages and then decreases again, dropping to zero for large detuning.
However, in contrast to the DQD case described in section 4.1, the cur-
rent here does not show relatively smooth peaks, but both cuts show ad-
ditional substructures.

A very pronounced structure is given by the double peak around∆23 =

0 for the Vsd,dot = 1.5mV case. The color plot in �gure 4.17 (b) shows
almost vertical features around∆23 = 0, providing a strong indication for
a process strongly in�uenced by QD1. Additionally, the almost vertical
feature to the left of the cut line at VDg1 ≈ −0.55V shows a bulge in
VDg1-direction at VDg3 ≈ −0.51V . This bulge indicates the presence of
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a) b)

c)

Figure 4.17.: Further zoom into the triangular shaped regions of �nite current
Idot for (a) Vsd,dot = 0.9mV and (b) Vsd,dot = 1.5mV in linear scale.
(c) Current along the arrows in (a) and (b) as function of the detuning ∆23
between QD2 and QD3. The colored parts of the background indicate the
intervals 0 6 ∆23 6 eVsd,dot for the two bias values. For both bias values,
the �nite current and hence the triangular features in the stability diagram
clearly exceed ∆23 = eVsd,dot.

126



4.3. Quadruple Quantum Dot

an additional QD4 charging line crossing this point. The dominant double
peak structure is thus most likely a feature due to a QQD resonance, which
would also be conductive for very small bias voltages. Also the smaller
�uctuations to the right of the dominant double peak structure, as well
as those observed over the full width of the peak for Vsd,dot = 0.9mV
follow a systematic behavior in the two-dimensional gate space. Thus,
the �uctuations are most likely not due to noise but originate from the
arrangement of the energy levels in the QQD. However, although sys-
tematic behavior is observed, some of the features consist only of two
to three datapoints, so that assigning the smaller features to speci�c res-
onances would be questionable, especially in the presence of capacitive
coupling between the QDs and the possibility of excited states playing a
role, as seen for the TQD under applied bias in section 4.2.

The smaller �uctuations as well as the Vsd,dot = 1.5mV cut line
showing a double peak structure around ∆23 ≈ 0 are thus most likely
explained by the presence of additional resonances with QD1 and QD4.
Apart from the smaller �uctuations, the overall trend of the Vsd,dot =

0.9mV cut line shows a broad and �at peak structure as function of the
detuning ∆23. For the Vsd,dot = 1.5mV case, the double peak structure
around ∆23 ≈ 0 dominates the observed current. However, for larger
detuning values ∆23 & 1meV , i.e. far away from the double peak struc-
ture, the curve resembles the right half of a broad and �at peak struc-
ture. Similar peak structures were observed for the DQD under applied
bias discussed in section 4.1, where the width of the peaks was given by
w ≈ eVsd,dot. For the cut lines as function of detuning ∆23 in �gure
4.17 (c), the colored parts of the background correspond to the detuning
interval 0 6 ∆23 6 eVsd,dot. The �nite current and hence the triangu-
lar structures clearly exceed the detuning ∆23 = eVsd,dot for both bias
voltages.

For the data shown here, there are two possible explanations for this
behavior. First, the lever arms of the plunger gates on the corresponding
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QD αDgi, i have been determined via Coulomb diamond measurements
of the individual quantum dots and the cross lever arms αDgi, j with i 6= j
were thereafter calculated from the slopes of the charging lines. In ad-
dition to the readout error for the charging energies of the single quan-
tum dots and the determination of the slopes, both typically of the order
of 10%, the lever arms were determined for single quantum dots with a
very di�erent potential landscape compared to the QQD, so that larger
deviations are possible. An indicator that such deviations play a role is
found in the cut lines in �gure 4.17 (c). For Vsd,dot = 0.9mV , the full
width at half maximum (FWHM) for the peak can be approximated to
w ≈ 1.25meV ≈ 1.4 eVsd,dot. For the Vsd,dot = 1.5mV cut line,
the same scaling would result in w = 2.1meV . Based on the trend of
the Vsd,dot = 1.5mV curve for larger detunings, i.e. far away from the
dominant double peak structure, this seems a reasonable value for the
FWHM.

In a more quantitative way, the width can be estimated by analyzing the
detuning dependency of theVsd,dot = 1.5mV in more detail. Figure 4.18
shows a slightly larger detuning window, including an additional peak in
the negative detuning direction. With the current at both ends for the
given detuning window dropping down to approximately zero, the shown
curve can be treated as an isolated feature and no overlap with additional
structures has to be considered.

The full curve of the current Idot as function of the detuning ∆23 is
�tted by a sum of three Lorentzians, and an additional Gaussian. The
three Lorentzians describe the triple peak structure for ∆23 . 1meV

originating from resonances with QD1 and QD4, the additional Gaussian
describes the remaining background, which is attributed to the applied
bias voltage. The resulting �t, shown in black, reproduces the data nicely.
Additionally, the green curve shows separately the contribution of the
three Lorentzians, the Gaussian contribution is shown in blue. The Gaus-
sian describes a broad peak centered at a positive detuning value, similar
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Figure 4.18.: Slightly larger range for the Vsd,dot = 1.5mV cut (red dots)
shown in �gure 4.17 (c), including the left peak. The data is nicely �tted
(black) by the sum of three Lorentzian and a Gaussian peak. The green line
shows the Lorentzian contributions, and the blue line the Gaussian contribu-
tion. With σ = 0.85meV for the Gaussian distribution, the FWHM becomes
FWHM ≈ 2meV , supporting the argumentation of a scaled detuning axis.

to the Vsd,dot = 0.9mV case and the bias dependent current peaks ob-
served for the DQD. With �t parameter σ = 0.85meV for the Gaussian
distribution, the FWHM becomesw ≈ 2meV , very close to 1.4 eVsd,dot,
supporting the argumentation of a scaled detuning axis.

A second reason for the triangular structures exceeding the detuning
∆23 = eVsd,dot are overlapping resonance features. The triangular struc-
tures observed in the more positive gate voltage regime, i.e. for stronger
coupling of QD1 and QD4, are even larger compared to those analyzed
here (compare �gure 4.16 (a) and (b)). Additionally, the triangular struc-
tures at more positive voltages show a pronounced pattern of the almost
vertical QD1 and the almost horizontal QD4 resonances. The larger ex-
tent of the triangular structures at more positive gate voltages is therefore
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most likely due to the combination of strong coupling, leading to high cur-
rents also for the tails of the peaks, and overlap with di�erent resonances
with their individual bias dependent transport characteristics close to the
resonances. The most accurate results can thus be obtained for the weak
coupling regime.

Nevertheless, the size of the triangular structures of �nite current in
the stability diagram of a biased QQD show a linear dependence on the
applied bias voltage Vsd,dot. With the width of the peaks in detuning
direction being w ≈ eVsd,dot, this allows to directly determine the gate
lever arms in the QQD con�guration, instead of relying on the values de-
termined from single QD measurements with their signi�cantly di�erent
potential landscapes.

To summarize, this part discussed electronic transport through a serial
QQD system. An introduction was given based on a stability diagram
as function of the outer plunger gate voltages. In the current through
the QQD, the two center QDs, which are only indirectly coupled to the
electron reservoirs, showed a dominant behavior, so that a DQD typical
honeycomb pattern of the two center QDs was observed. On top of this
honeycomb pattern, modulations due to resonances with the outer QDs
were observed. A QQD resonance was identi�ed in the regime, where o�-
resonant transport is strongly suppressed. Even though the center QDs
are dominant, the current in the resonance area was found to occur asym-
metrically with respect to the QD2-QD3 charging lines. Bias dependent
transport through the QQD was analyzed to investigate the in�uence on
this symmetry. Close to zero bias voltage, the transport through the QQD
was found to be strongly dependent on the coupling con�guration and
thus the states involved. Areas favoring positive current as well as areas
favoring the opposite transport direction were observed. For larger bias
voltages, triangular structures of �nite current formed, originating from
the QD2-QD3 resonances, similar to the structures observed for the bias
dependent transport through the DQD. This leads to a clear asymmetry of
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the transport with respect to the QD2-QD3 resonances. The dependency
of the current on the detuning between QD2 and QD3 was analyzed for a
well de�ned triangular structure with only small overlap to other current
features. The extent of the triangular structures was found to increases
with bias voltage but can be strongly modulated by the exact arrangement
of the energy levels, including those of QD1 and QD4. The bias depen-
dent extent of the observed triangular structures provides an opportunity
to directly determine the gate lever arms in a system as complex as a
QQD.
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5
Transport in �antum Dot Arrays

A critical aspect for the implementation of semiconductor QDs for ap-
plications is the potential for scaling toward larger array sizes. As al-
ready seen in the last chapter, where transport through double, triple,
and quadruple quantum dots was discussed, larger array sizes do not only
come with more functionality, but the number of control parameters in-
creases as well. At the same time, the internal energy level alignment
becomes relevant, especially under availability of energy. This drastically
increases the tuning complexity of larger arrays. Successful operation of
QD arrays therefore requires e�cient and scalable methods for tuning the
device into the desired con�guration while maintaining the high level of
�exibility and tunability.

In the past few years, a variety of di�erent approaches has already
demonstrated remarkable progress in this direction. Computer automated
tuning protocols have been implemented to tune a double quantum dot
into the single-electron regime [134], to determine the initialization, ma-
nipulation and read-out points for a two-electron spin qubit [135], or to
manipulate the interdot coupling without in�uencing the chemical po-
tentials of the quantum dots [136]. The latter made use of so-called vir-
tual gates, which are a linear combination of multiple physical gates, to
compensate the capacitive cross-talk from the tunnel barrier gate to the
energy levels of the quantum dots. The scheme of virtual gates has also
been implemented to individually tune the tunnel couplings and the elec-
tron numbers of a triple quantum dot over a wide range [57]. Similarly, a
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high level of control over the interdot couplings was achieved on a 2 x 2
quantum dot matrix [58].

This chapter focuses on a complementary approach to tune quantum
dot arrays in a de�ned way. The approach is based on isolating the quan-
tum dot array from the electron reservoirs. By isolating a quantum dot
array from the electron reservoirs, the total number of electrons inside the
array is �xed. However, the electrostatic environment is still tunable by
the gate voltages, which allows to tune the energy level alignment. Even
though current through the device is blocked in these isolated systems,
electrons can still tunnel between di�erent quantum dots inside the array.
A sensitive charge detector [22, 65] allows to observe these transitions
[137], which are a direct measure of the internal energy level alignment.
Some of the potential of this isolation scheme has already been demon-
strated. For example, coherent manipulation of two-electron spin states
in an isolated double quantum dot at a sweet spot with respect to the
charge detuning noise was shown [138], and signi�cant improvement of
the coherence time of a charge qubit was reported for an isolated double
quantum dot on silicon basis [28]. In larger arrays, signi�cant simpli�ca-
tion of the stability diagram was shown for small electron numbers [139–
141], and highly tunable co-tunneling between non-neighboring quan-
tum dots was found [140, 141]. In a two-dimensional 3 x 3 quantum dot
matrix, the isolation scheme was utilized to �x the number of electrons in
the array and coherent control over the electron spins was demonstrated
[142]. At the same time, the isolation naturally prevents reservoir induced
limiting e�ects such as metastabilities [143].

In the following, experimental results on isolated double, triple, and
quadruple quantum dot arrays are discussed. Capacitive model simu-
lations are performed to complement the understanding of the interdot
transitions in isolated arrays. Parts of this chapter are published in [140,
141].
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5.1. Double �antum Dot

A DQD provides an excellent system to introduce the fundamental e�ects
of isolating a QD array due to its relatively low complexity compared to
larger arrays. To isolate a QD array from the electron reservoirs, the tun-
neling rates between QDs and reservoirs have to become small compared
to the measurement timescale. A direct consequence of this is, that the
transport through the QD array is blocked and information about the sys-
tem is only obtained from the charge detector signal.

A DQD charge stability diagram showing the transition from a DQD
well coupled to the reservoirs to an isolated DQD is shown in �gure
5.1. The coloration of the device image (top) illustrates the voltages ap-
plied to the gates. Gates, which are colored in gray, do not deplete the
2DEG, golden gates deplete the 2DEG and are kept at �xed voltages. Red-
dish colored gates are measurement parameters. The DQD consists of
QD2 and QD3, the two outer tunnel barrier gate voltages VTg2 and VTg4
are the measurement parameters. This results in large changes of the
coupling strength between the DQD and both reservoirs over the mea-
surement range. The �xed gate voltages are VBg1 = VBg2 = −0.55V ,
VDg2 = VDg3 = −0.5V , and VTg3 = −0.6V . The signal shown is the
detector signal, which is given by the numerical derivative of the DC de-
tector current in x-direction dIqpc/dVTg2. White and red color hereby
corresponds to decreasing negative potential in the vicinity of the detec-
tor QPC, for example due to an electron tunneling out of the DQD. Dark
blue color is observed for increasing negative potential at the detector
QPC.

Two di�erent slopes of white/red charging lines are visible in the detec-
tor signal. Equivalent to the transport regime, discussed in 4.1, the slopes
of the charging lines can be assigned to the two QDs. The charging lines
with the larger slope belong to (dis-)charging of QD2, the charging lines
with the smaller slope belong to (dis-)charging of QD3.
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2 3

Figure 5.1.: Charge detector signal of a DQD stability diagram as a function
of the tunnel barrier gate voltages VTg2 and VTg4. Red dashed lines indicate
the voltages, where the respective tunnel barriers becomes isolating. The lines
divide the stability diagram in three regimes of di�erent coupling between the
DQD and the electron reservoirs. Region I is well coupled to both reservoirs,
regions II and III are coupled to only one reservoir, and in region IV the DQD
is isolated from both reservoirs. Black arrows connect the four energy level
diagrams to positions, where the tunnel barriers match the depicted situation.
Red crosses indicate isolating tunnel barriers. The device image on top is
colored to represent the measurement conditions. Reddish colored gates are
measurement parameters, golden gates are on �xed voltages, gray gates do
not deplete the 2DEG.
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Referring to the coupling between the DQD and the reservoirs, the sta-
bility diagram can be divided into three qualitatively di�erent regimes.
For the most positive gate voltages VTg2 & −0.7V (right of the vertical
red dashed line) and VTg4 & −0.82V (above the horizontal red dashed
line) both tunneling barriers are transparent and the DQD is well coupled
to both reservoirs. In this region I, electrons can tunnel into the DQD
from both reservoirs and tunnel out of the DQD into both reservoirs, as
depicted by the top right energy diagram. In consequence, current can
�ow through the DQD in this regime (see appendix A.4) and the charge
detector signal nicely resolves the honeycomb pattern, the characteris-
tic charging line pattern of a DQD [59]. In addition to shifting the energy
levels of both QDs via the lever arms, which results in the honeycomb pat-
tern, the voltages VTg2 and VTg4, applied to the tunnel barrier gates are
control parameters for the coupling strength to the respective reservoir.
More negative voltages correspond to larger tunnel barriers and therefore
weaker coupling. Beginning in region I, and moving toward more neg-
ative voltage VTg4 therefore reduces the coupling strength to the right
reservoir. At a certain threshold value VTg4 ≈ −0.82V , marked by the
horizontal red dashed line in �gure 5.1, the tunneling rate through the
right barrier drops below the measurement speed of 28.6Hz. Even more
negative VTg4 further reduce this tunneling rate and the DQD e�ectively
gets isolated from the right reservoir.

In this region II, where VTg4 < −0.82V and VTg2 & −0.7V , the DQD
is well coupled to the left reservoir but isolated from the right reservoir,
as depicted in the bottom right energy diagram. Nevertheless, the detec-
tor signal still shows the charging lines of both QDs in this region. Since
the detector signal is only sensitive to potential changes, this means both
QDs can still be discharged, even though QD3 is not directly coupled to a
reservoir. In this region, the DQD typical honeycomb pattern is preserved
in the presence of co-tunneling-mediated charge transitions, which allow
electrons to tunnel between QD3 and the left reservoir through a virtual
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energy state despite QD2 being in Coulomb-blockade [144]. Since these
co-tunneling-mediated transitions occur more likely for stronger inter-
dot coupling [59], co-tunneling is suppressed for weak interdot coupling.
QD3 can then only be discharged in situations, where sequential tunnel-
ing via an unoccupied state of QD2 is energetically available, which leads
to a hysteretic behavior of the charge states [145]. Since the suppression
of co-tunneling changes the energetic conditions under which QD3 can
be charged or discharged, the shape of the charging lines in the stabil-
ity diagram changes as well. The two QD3 charging lines at the most
negative VTg4 indeed appear di�erently compared to those at more pos-
itive VTg4. However, changes in neither VTg2 nor VTg4 are expected to
have a large in�uence on the interdot coupling. Since these two charging
lines correspond to the �rst and the second electron on QD3, the reason
for the interdot coupling to be weaker is most likely due to the electron
wavefunction being smaller for lower orbital shells [58], which e�ectively
increases the tunnel barrier width.

In region III (VTg2 < −0.7V , VTg4 & −0.82V), the situation is similar.
Here, the DQD is well coupled to the right reservoir while being isolated
from the left reservoir, as depicted by the top left energy diagram. Conse-
quently, region III behaves similar to region II but with reversed roles of
QD2 and QD3. The charging line at the most negative VTg2 corresponds
to the �rst electron on QD2.

For tunnel barrier gate voltages VTg2 < −0.7V and VTg4 < −0.82V ,
both tunnel barriers are isolating with respect to the measurement
timescale. In this region IV, electrons are trapped inside the DQD [104,
137, 138] and the pattern observed in the detector signal changes drasti-
cally with respect to the pattern observed for a DQD coupled to at least
one reservoir. Due to the isolation from both reservoirs, the total num-
ber of electrons in the DQD is �xed when entering this region and occu-
pied energy levels are lifted above the Fermi level. The potential changes
observed in the detector signal are therefore only due to charge recon-
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�gurations inside the DQD. The experiment was performed by sweeping
VTg2 from more positive to more negative voltages, beginning at a point
well coupled to the left reservoir for each value of VTg4. For this sweep
direction, electrons are exclusively transferred from QD2 to QD3, thus
closer to the detector QPC, which is located below QD3. In the detector
signal, these transitions occur in dark blue color. By changing the voltage
VTg4, the energy levels of both QDs are energetically shifted with respect
to reservoir chemical potentials. However, the voltage VTg2 ≈ −0.7V ,
where the left barrier becomes isolating is �rst order insensitive to VTg4.
Therefore the number of electrons trapped in the DQD changes in VTg4
direction.

A capacitive model including the trapping of electrons can now be
set up to model the experimental DQD including the di�erent coupling
regimes. On the one hand, the implementation of such a model allows to
review the given interpretation of a DQD in the transition to the isola-
tion. On the other hand, by extending the model toward more QDs, the
model provides a useful tool to complement the understanding of charge
recon�gurations in isolated QD arrays. Similar to the experiment, the ca-
pacitive model uses QDs and two gates. Each QD is implemented as a set
of energies with �xed energy distances as the energy levels. Each of the
energy levels can either be occupied or unoccupied. In the model, virtual
gate voltages VG are used to shift the energy levels of QDi via a lever arm
αG,i, so that ∆Ei = −eαG,i∆VG (see equation 2.13). As long as coupled
to a reservoir, all energy levels below the Fermi level are occupied, energy
levels above the Fermi level are unoccupied. A threshold voltage VG,th
is introduced for both gates, which allows to transfer the system into the
isolated con�guration, if VG < VG,th is ful�lled for both gates. Here, the
total number of electrons in the array is �xed to the value when enter-
ing the isolated con�guration, but electrons can be transferred between
the QDs, if an unoccupied energy level of lower energy is present. The
simulation yields the number of electrons in each QD, which can be used
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to generate a signal similar to the experimental detector signal by linear
combinations of these electron numbers. No tunneling rates or integra-
tion times feed into the simulation, all transitions are therefore abrupt.

A comparison between experimental and calculated stability diagrams
is shown in �gure 5.2. The experimental signal (a) is identical to the data
already presented in �gure 5.1. For the calculated stability diagram, the
energy level alignment and the lever arm ratios have been extracted from
the experimental data and adjusted to achieve good comparability with re-
spect to the electron numbers. The simulated stability diagram is shown
in �gure 5.2 (b). Beginning from the lowest electron number, the imple-
mented charging energies EC2 for QD2 and EC3 for QD3 are

EC2 = [2.25, 2.16, 1.76, 1.42, 1.50, 1.31, 1.31, …]meV

EC3 = [3.17, 2.60, 2.02, 1.73, 1.44, 1.27, 1.27, …]meV

with all following being 1.31meV for EC2 and 1.27meV for EC3. The
lever arms αG,i between the gates and both QDs used for this simulation
are given in table 5.1. To account for the interdot capacitance, a mutual
charging energy ∆2,3 = 100 µeV was implemented. the energy levels
of QD2 are energetically lifted by ∆2,3 for each electron in QD3 and vice
versa. Note, that a di�erent set of parameters can yield an identical result,
as long as all ratios remain constant.

QD2 QD3
αTg2 0.0405 0.0116
αTg4 0.0076 0.0341

Table 5.1.: Gate to dot lever arms used for the DQD simulation.

Comparing the experimental and the simulated stability diagram in �g-
ure 5.2 (a) and (b), reveals several di�erences and similarities. The purely
classical simulation can naturally not reproduce tunnel coupling induced
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e�ects such as the broadening of the charging and recon�guration lines
or the formation of bonding and anti-bonding states, which leads to the
additional energy splitting found in region I. Additionally, the simulation
allows all energy levels to be discharged in equilibrium as long as the
system is not isolated, which in regions II and III leads to a behavior as
if co-tunneling mediated transitions are present. However, concerning
the general pattern, experiment and simulation are in good agreement,
especially the charge recon�guration pattern in the isolated region IV is
nicely reproduced by the capacitive model simulation, showing that the
underlying assumptions are valid. For comparison, �gure 5.2 (c) shows a
simulated stability diagram using identical parameters but with the isola-
tion threshold values VTg2,th and VTg4,th chosen more negative, so that
isolation is not reached within the given range. The simulation then yields
the typical honeycomb pattern over the full range.

For the isolated situation, the number and distribution of electrons
trapped in the DQD for each VTg4-value is a parameter exactly known
for the simulation. From this information, the charge recon�guration
pattern in the isolated regime can be understood. The number of charge
recon�gurations occurring in a single VTg2 line is equal to the number
of electrons N2 in QD2 at the isolation point. This is a consequence of
the sweep direction. While sweeping VTg2 from more positive to more
negative voltages, the energetic shift on the QD2 energy levels is larger
than on the QD3 energy levels, due to αTg2,2 > αTg2,3. Therefore, the oc-
cupied energy levels of QD2 are lifted faster than the unoccupied energy
levels of QD3. At some point, the highest occupied energy level of QD2
comes into resonance with the lowest unoccupied energy level of QD3
and the electron can tunnel between QD2 and QD3. By sweeping VTg2
further negative, the QD3 energy level becomes lower in energy and the
electron remains in QD3. This process then repeats until QD2 is empty,
which opens up a possibility to exactly determine the number of electrons
on a QD.
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a)

b)

c)

d)

e)

f)

Figure 5.2.: (a) DQD stability diagram as a function of the tunnel barrier gate
voltages VTg2 and VTg4, same data as in �gure 5.1. Red dashed lines again
indicate the isolation points of the tunnel barriers. (b) Corresponding ca-
pacitive model simulation with energy level alignment and lever arm ratios
adjusted so that the electron numbers match the experiment. The recon�g-
uration pattern in the isolated region IV is nicely reproduced, especially for
small electron numbers. (c) Simulated stability diagram using identical pa-
rameters except for the isolation threshold values. The simulation yields the
typical honeycomb pattern, since isolation is not reached within the given
range. (d-f) Energy level schemes for the points d, e, and f, marked in (a) and
(b).
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Compared to the spacing between two QD2 charging lines in the reser-
voir coupled regime, the spacing between two recon�guration lines in
the isolated regime is considerably larger. Two e�ects are contributing
to this increase. First, in the regime well coupled to a reservoir, the
gate voltage distance between the charging lines of QD2 in the reser-
voir coupled regime is determined by the charging energy EC2 and the
lever arm αTg2,2. In the isolated regime, only the relative energetic shift
between the QD2 and the QD3 energy levels is relevant, which is char-
acterized by αTg2,2 − αTg2,3. The second e�ect is illustrated in the three
energy level diagrams �gure 5.2 (d-f), which correspond to the three po-
sitions marked accordingly in 5.2 (a) and (b), where the electron con-
�guration at the isolation point is (N2,N3) = (2, 0). The energy dia-
gram (d) shows the con�guration at the transition (2, 0) → (1, 1) in the
isolated regime. Changing VTg2, so that the relative energetic shift be-
tween QD2 and QD3 energy levels matches the charging energy of QD2
∆µ23 = −e(αTg2,2 − αTg2,3)∆VTg2 = EC2 results in an internal energy
level alignment as depicted in (e). Here, the lowest energy level of QD2
is in resonance with the lowest energy level of QD3. However, no tran-
sition occurs in the experimental and simulated stability diagrams, since
both resonant levels are already occupied by an electron. Providing an
additional relative energy shift of ∆µ23 = EC3 then ends up in point (f),
where the (1, 1) → (0, 2) transition occurs. The gate voltage di�erence
between two recon�guration lines is therefore given by

∆VTg2 = −
EC2 + EC3

e(αTg2,2 − αTg2,3)
.

This second e�ect also explains the general charge recon�guration pat-
tern observed in the isolated regime. The resonances, which are visible as
transitions in the detector signal are determined by the electron con�gu-
ration (N2,N3) at the isolation point. For the measurement and simula-
tion presented in �gure 5.2 (a) and (b), VTg4 acts as a control parameter
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for this electron con�guration. With changing VTg4, the energy levels
of both QDs are energetically shifted with respect to the isolation point.
For every change in electron number or distribution, a di�erent set of
transitions becomes observable, where each recon�guration line visible
in the isolated regime corresponds to one speci�c transition between two
charge states of the DQD.

This now opens up the possibility of preparing a DQD into a state with a
de�ned number of electrons simply by entering the isolated regime in the
desired con�guration. Additionally, the interdot charge transitions ob-
served in the isolated regime are energetically well separated from other
charge states. For the reservoir coupled regime, the charge recon�gu-
ration lines interconnect the triple points of the DQD resonances. As
described in section 2.2, the energetic separation between the two triple
points of a resonance is de�ned by the mutual charging energy Em due to
the capacitive coupling and the additional splitting 2|̃t| due to the tunnel
coupling. In similar devices, the total splitting is typically of the order
∆E = Em + 2|̃t| . 0.2EC [97, 146, 147], with EC being the charg-
ing energy of a single QD. Assuming a (for similar devices) relatively
large charging energy of EC ≈ 2meV , the maximum energetic distance
to di�erent charge con�gurations, in the center between the two triple
points, is thus ∆E/2 . 0.1EC = 200 µeV . By using �oating gates to
increase the capacitive coupling between the two QDs, this can be ap-
proximately increased by a factor of two [148, 149]. Isolating and manip-
ulating one of these transition lines thus requires very low temperatures
(kBT1.5K ≈ 130 µeV) and accurate tuning. In contrast, in the isolated
regime, the energetic separation to the next transition is∆E ≈ 2EC, mak-
ing the charge recon�guration lines in the isolated regime very robust and
e�ciently tunable.

An e�cient way of tuning the interdot coupling is given by the vari-
ation of the tunnel barrier gate voltage VTg3. Figure 5.3 (a) shows the
charge detector signal dIqpc/dVTg2 of the (1, 1) ⇒ (0, 2) recon�gura-
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tion line as function of VTg2 and the interdot tunnel barrier gate voltage
VTg3, where again VTg2 was swept from more positive to more nega-
tive voltages. The right tunnel barrier gate voltage was �xed at VTg4 =

−1.4V , all other voltages are equal to �gure 5.2 (a). The VTg3 = −0.6V
line therefore corresponds to a small range around point (f). Due to the
large di�erence in gate voltage range of ∆VTg2 = 30mV compared to
∆VTg3 = 150mV , the two axes in 5.3 (a) are scaled di�erently for better
visibility.

From more positive (top) to more negative (bottom) VTg3 the interdot
tunnel barrier is enlarged, which decreases the interdot coupling. In the
weak coupling regime, for the most negative−0.6V 6 VTg3 6 −0.575V ,
the recon�guration line is not a single line, but is split into two tran-
sitions. With increasing the coupling strength these two lines merge
into a single line at VTg3 ≈ −0.565V . Further increasing the tun-
nel barrier gate voltage further increases the interdot coupling, result-
ing in a broadening of the recon�guration line, which is observed for
−0.55V . VTg3 . −0.475V . For even more positive VTg3 & −0.45V ,
the recon�guration line vanishes. In this regime, the interdot tunnel bar-
rier becomes too small to distinguish between QD2 and QD3 and both
QDs merge into one large single QD.

By moving over the recon�guration line, the amount of charge trans-
ferred from one QD to the other is always exactly one electron. This
charge transfer leads to a step in the detector current Iqpc, where the
width of this step is a function of the electron temperature Te and the
interdot coupling. DiCarlo et. al. [150] set up a model for the charge sen-
sor conductance of such a step. The model accounts for the sensor o�set
conductance, the gate voltage dependence of the sensor conductance and
the excess charge on the QDs. Hensgens et. al. [57] expanded this model
to �rst-order correct the back-e�ect of the excess charge on the charge
sensor. The model can be used to �t the detector step, which allows to
determine the tunnel coupling between the QDs. The blue dots in �gure
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a) b)

c)

Figure 5.3.: (a) (1, 1) ⇒ (0, 2) transition as function of the interdot tunnel bar-
rier gate voltage VTg3. The interdot coupling strength and therefore the re-
con�guration line width increases toward more positive VTg3. (b) Exemplary
detector signal and �t to extract tunnel coupling t23 and excess charge dis-
tribution. Negative detuning ∆23 corresponds to µ(1, 1) < µ(0, 2). (c) Log-
arithmic plot of the interdot tunnel coupling strength as function of VTg3,
extracted in the range between the horizontal black lines in (a).
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5.3 (b) are an exemplarily curve at VTg3 = −0.507V , which show such a
step in the detector current as function of the detuning ∆23 between both
QDs. Negative detuning corresponds to µ(1, 1) < µ(0, 2), i.e. the electron
being in QD2. The red line is a �t to the data according to ref. [57]. The
�t allows to extract the excess charge in QD3

Q(∆23) =
1
2

(
1 + ∆23

Ω
tanh

(
Ω

2kBTe

))
, (5.1)

with Ω =
√
∆2

23 + 4t2
23, which is a function of electron temperature Te

and tunnel coupling t23 and shown as green crosses in �gure 5.3 (b). By
using the same �tting routine in a regime, where the tunnel coupling is
small, the electron temperature can be determined to Te ≈ 140mK. With
the given electron temperature, it is then possible to determine the tunnel
coupling.

As function of the interdot tunnel barrier gate voltage VTg3, �gure 5.3
(c) shows a logarithmic plot of the tunnel coupling obtained by �tting the
step in Iqpc within the horizontal black dashed lines in (a). The window
−0.54V 6 VTg3 6 −0.49V was chosen to ensure reasonable �ts to the
data. In this voltage range, the tunnel coupling strength t23 between QD2
and QD3 ranges from t23 ≈ 5.5 µeV for VTg3 = −0.54V to t23 ≈ 46 µeV
for VTg3 = −0.49V . The red line in (c) marks the thermal energy kBT ≈
12 µeV . The red line in (a) marks the VTg3-value, where t23 ≈ kBT .
The blue line in (c) provides an exponential �t to the tunnel coupling as
function of the barrier gate voltage, which allows to calculate the change
in tunnel coupling to an order of magnitude per ∆VTg3 ≈ 55meV . Over
the full range ∆VTg3 = 150mV of panel (a) the tunnel coupling was
therefore tuned over more than two orders of magnitude, while the whole
stability diagram was measured with the two particular electrons which
were trapped in the DQD when entering the isolation.

The exponential �t allows to estimate the tunnel coupling for VTg3 =

−0.6V , where the recon�guration line does not appear as a single tran-
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sition. By extrapolation, t23 ≈ 0.45 µeV is obtained. This splitting was
not observed in the original stability diagram in �gure 5.1 and 5.2 (a),
which can be explained by the low resolution of ∆Tg2 = 4mV with
which the stability diagram was taken. A similar stability diagram but
with both plunger gates 50mV more negative and a higher resolution of
∆VTg2 = 0.7mV is shown in �gure 5.4 (a). Due to the more negative
plunger gate voltages, the energy levels of both QDs are lifted with re-
spect to the isolation point, which results in di�ering electron numbers
in the isolated regime. The stable charge con�guration (N2,N3) is given
for up to two electrons per QD at the isolation point.

The given higher resolution allows to observe additional features in the
stability diagram. The (2, 0) → (1, 1) and the upper part of the (1, 0) →
(0, 1) transition are dominated by stochastic behavior. Here, the interdot
coupling is very weak, resulting in tunneling times being comparable to
the integration time tint = 20ms of the detector current. The charge
detector therefore does not integrate over a large number of tunneling
events in this regime, but resolves single events. This results in a bistable
detector current close to the degeneracy lines.

When following the (1, 0)→ (0, 1) recon�guration line from the most
positive voltages toward more negative voltages, this stochastic behav-
ior vanishes. Even though VTg3 is kept constant, the interdot coupling
increases toward more negative VTg2 and VTg4. Here, the tunnel bar-
rier does not change, but the energy levels of both QDs are energet-
ically lifted, which e�ectively reduces the tunnel barrier width. For
−1.3V & VTg4 & −1.45V , parallel substructures are observed in the
(1, 0)→ (0, 1) recon�guration line. As function of the detuning, four line
cuts along the black lines are shown in �gure 5.4 (b). The cuts are verti-
cally o�set for better visibility. Due to the sign change in the voltage to
energy conversion, the direction of the line cuts is inverted. The line cuts
show a series of three dips, which are marked by the vertical red lines.
The position of the center dip was chosen to ∆23 = 0. The energy di�er-
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a) b)

Figure 5.4.: (a) DQD stability diagram as a function of the tunnel barrier gate
voltages VTg2 and VTg4. Red dashed lines indicate the voltages, where the
respective tunnel barriers becomes isolating. The resolution of ∆VTg2 =
0.7mV allows to observe substructures in the recon�guration lines. (b) Line
cuts through the (1, 0) → (0, 1) transition along the black lines in (a). Due
to the sign change in voltage to energy conversion, the direction of the line
cuts is inverted. Curves are vertically o�set for better visibility. The vertical
red lines mark three dips occurring in the detector signal. The dips corre-
spond to the average occupation being shifted more toward the right QD. The
reference value ∆23 = 0 for the detuning was chosen on the dip most likely
corresponding to the ground state to transition.
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ences between the left (l), center (c), and right (r) dip are∆Elc ≈ 130 µeV ,
∆Ecr ≈ 300 µeV , and ∆Elr ≈ 430 µeV . Additionally, between the cen-
ter and right dip, the detector signal increases to values larger than the
background, so that this increase has to be considered as a peak (p) with
∆Ecp ≈ 130 µeV . Comparing these energy di�erences to the excitation
spectra of the single QDs, which are obtained via Coulomb diamonds, the
�rst excited state of the �rst electron is of the order of ∆Ecr ≈ 300 µeV
for both QDs.

The fact that multiple transitions are observed despite having only a
single electron trapped in the DQD can be explained by the detector in-
tegration time tint. For tunneling rates Γ >> 1/tint, the detector signal
does not observe single events, but averages over many back and forth
tunneling events. From �gure 5.3, the coupling strength was estimated
to t23 ≈ 0.45 µeV for the regime, where the recon�guration line is split.
Via E = hΓ , this converts into Γ ≈ 0.1GHz. In this regime, the detector
indeed integrates over many events. The detector signal then depends on
the ratio Γl/Γr, where Γl is the tunneling rate from the right to the left
QD, Γr is the tunneling rate from the left to the right QD. The only tran-
sitions, which are expected to occur in equilibrium are ground state to
ground state transitions. However, the charge detector QPC was biased
with Vqpc = 0.5mV for this measurement. A biased QPC charge de-
tector acts as a source of phonons with energies up to Emax = |eVqpc|

[74, 75]. Plausible processes in the system are thus the ground state to
ground state transition, inelastic tunneling, for example by absorbing a
phonon, and exciting the electron followed by an excited state to ground
state transition. The line cuts shown in �gure 5.4 (b) show two small dips,
followed by a peak and a larger dip. A dip hereby corresponds to the occu-
pation probability being shifted more toward the right QD3, a peak shifts
the occupation probability more toward the left QD2. As function of the
detuning, the occupation probability is thus shifted toward the right QD3,
back to the left QD2 and then toward the right QD3 again.
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5.1. Double Quantum Dot

With the equal energy spacing ∆Elc ≈ ∆Ecp the center dip is sym-
metrically enclosed by two features of opposite sign. Due to this symme-
try, the center dip most likely corresponds to the ground state to ground
state transition. Considering ∆23 = 0 as the ground state resonance, the
left dip and the peak are then due to inelastic tunneling at a detuning of
±130 µeV . For negative detuning, where QD2 is energetically more fa-
vorable, inelastic tunneling results in an occupation increase of QD3 and
thus a dip. Vice versa, inelastic tunneling at the same but positive detun-
ing, where QD3 is energetically more favorable, results in an occupation
increase of QD2 and thus a peak. Further increasing the detuning, more
energy is needed for inelastic tunneling from QD3 to QD2. If this energy
can not be provided, the system will remain in the ground state with the
electron occupying QD3. The decrease of the inelastic tunneling rate then
leads to the right dip in the detector signal.

For even more negative voltages VTg2 and VTg4, the coupling strength
further increases. The parallel substructures occurring in the (1, 0) →
(0, 1) transition merge into a single recon�guration line. Excitation rates,
for example due to QPC phonons, do not depend on the coupling strength
between the two QDs, whereas the relaxation process might. Due to the
time average of the detector signal, the charge detector shows the occu-
pation probability. In a situation with an excitation rate large compared
to the relaxation rate, the detector will show the excited con�guration.
Vice versa, for a relaxation rate large compared to the excitation rate, the
detector response will mainly show the ground state con�guration. In
the low coupling regime, the relaxation process might be the bottleneck
and excited con�gurations occur in the detector signal. Whereas for large
coupling, the system relaxes to the equilibrium con�guration fast, so that
the ground state transition becomes dominant.

To summarize, this part introduced a DQD system isolated from the
electron reservoirs. While current through the system is blocked in this
situation, a charge detector is able to resolve electron transport inside
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the isolated DQD, from one QD to the other. An introduction was given,
showing the DQD typical honeycomb pattern and the transition into the
isolated regime. The total number of electrons in the DQD is preserved
in the isolated con�guration and the observable charge recon�gurations
depend on this number of electrons. A capacitance model was set up and
the calculated stability diagrams nicely reproduced the observed charge
recon�guration pattern. With two electrons isolated in the DQD, the
tunability of the recon�guration resonances was discussed based on the
(1, 1) ↔ (0, 2) transition. As function of the center tunnel barrier gate,
the tunnel coupling strength between the two QDs was determined. The
coupling was shown to be tunable from merging the two QDs into a sin-
gle larger QD to a regime, where excited states become observable due to
the interdot tunneling becoming slow compared to excitation rates.

5.2. Triple �antum Dot

With increasing the number of quantum dots in the array, the concept of
isolating the array from the electron reservoir becomes even more rele-
vant. A triple quantum dot coupled to electron reservoirs is character-
ized by a three-dimensional energy space [116, 124, 126], where each QD
contributes its own energy scale. By isolating the TQD from the elec-
tron reservoirs only relative energies remain relevant, which reduces the
number of independent energy scales to two. A stability diagram of a
TQD (QD1, QD2, QD3) in the isolated regime is shown in �gure 5.5 (a)
as function of the two outer plunger gate voltages VDg1 and VDg3. Us-
ing the plunger gates as parameters allows to investigate a larger region
in the energy space of the TQD, while the in�uence on the outer tunnel
barriers is large enough to isolate the system. The constant gate volt-
ages are VBg1 = VBg1 = −0.55V , VTg1 = −0.675V , VTg2 = −0.35V ,
VTg3 = −0.5V , VTg4 = −0.7V , and VDg2 = −0.5V . The coloration of
the inset again illustrates the device and the applied voltages.
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a)

b) c)

d)

e)
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Figure 5.5.: (a) TQD stability diagram in the isolated regime as a function of the
plunger gate voltages VDg1 and VDg3 with inset sample scheme. Three di�er-
ent slopes of charging lines are observed. Sequential transitions are marked in
orange and green, a co-tunneling transition between QD1 and QD3 is marked
in red. (b) Capacitive model simulation of an isolated TQD stability diagram
excluding and (c) including transitions directly between QD1 and QD3. Tran-
sitions are marked equal to (a). (d) Energy diagram illustrating co-tunneling
transitions between QD1 and QD3 via two di�erent states of the center QD2.
(e) Energy level diagram illustrating a TQD resonance in the isolated regime.
(f, g) Zoom into two simulated resonances. The qualitatively di�erent behav-
ior allows the distinction between resonances with one resonant electron (f)
and two resonant electrons (g). Points A and B in (a) mark two resonances
similar to (f) and (g), respectively.
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Similar to the DQD overview stability diagram in �gure 5.2 (a), the TQD
presented here was reset to a state well coupled to at least one reservoir at
the beginning of each VDg1-line. The number of electrons trapped in the
TQD is therefore constant in VDg1-direction but may change for di�er-
ent VDg3. The number and distribution of electrons at the isolation point
again determines the transitions occurring during a single VDg1 sweep.
Charge recon�guration lines of three di�erent slopes are observed in the
isolated TQD stability diagram. One recon�guration line of each slope is
highlighted by an ellipse in �gure 5.5 (a). The largest slope, marked in
orange, corresponds to an electron being transferred from QD1 to QD2.
A recon�guration line of the smallest slope, corresponding to a transi-
tion from QD2 to QD3, is marked by the green ellipse. The occurrence
of the intermediate slope, which is marked in red, can be understood by
comparing two capacitive model simulations. A simulated TQD stability
diagram in the isolated regime is shown in �gure 5.5 (b). For this case, the
model was set up to only allow nearest neighbor transitions. Only two
di�erent slopes of recon�guration lines (orange, green) are observed in
the simulation. Enabling direct transitions between the non-neighboring
QD1 and QD3 in the model changes the outcome to what is shown in
�gure 5.5 (c). A third, intermediate slope emerges, which is consistent
with the experimental observation. The origin of this intermediate slope
of recon�guration lines can therefore be found in direct transitions be-
tween QD1 and QD3 with QD2 being o�-resonant. These transitions can
be understood, when taking higher order tunneling, e.g., co-tunneling via
virtual occupation of the center QD, into account [127, 128, 151], which
is sketched in the energy diagram in �gure 5.5 (d).

Whenever two charge recon�guration lines meet in the isolated sta-
bility diagram, all three QDs are in resonance. At this resonances, three
charge states are degenerate, as depicted in �gure 5.5 (e). Comparable
to a DQD coupled to electron reservoirs, two species of resonances are
found in the stability diagram [61]. With zero referring to the back-
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ground charge con�guration, one possibility is given by a degeneracy
between the (1, 0, 0), (0, 1, 0), and (0, 0, 1) charge states, which is a TQD
resonance occupied by one electron. The other possibility is a TQD reso-
nance, occupied by two electrons, with degenerate charge states (1, 1, 0),
(1, 0, 1), and (0, 1, 1). In the stability diagram these two cases are distin-
guishable due to di�erences in the electrostatic environment. Two zooms
into the simulated stability diagram �gure 5.5 (c), where co-tunneling is
present, are shown in �gure 5.5 (f) and (g). In the �rst case (f), the res-
onance is occupied by one electron. When starting from the resonance
and changing VDg1 and VDg3 so that the energetic shifts ∆E1 = ∆E3
(µQD1 = µQD3 degeneracy line), the energetic shift of the center QD2
∆E2 is generally not equal to ∆E1 and ∆E3. For the given lever arm con-
�guration (cf. tabular 4.1) and along the µQD1 = µQD3 degeneracy line,
|∆E2| < |∆E1| = |∆E3|. By going toward more negative voltages, i.e.,
increasing the energy, the (0, 1, 0) state therefore becomes energetically
most favorable. In aVDg1-sweep this results in the electron being shuttled
sequentially from QD1 to QD2 to QD3, which is found in 5.5 (f) in every
line below the resonance. When moving toward more positive voltages
on the µQD1 = µQD3 degeneracy line, the (0, 1, 0) state is energetically
least favorable. In a VDg1 sweep, this results in the electron being shut-
tled directly from QD1 to QD3 via co-tunneling, which is found in every
line above the resonance.

The resonance shown in 5.5 (g) is occupied by two electrons with reso-
nant charge states (1, 1, 0), (1, 0, 1), and (0, 1, 1). From the energetic point
of view, the situation is the same as for the single electron resonance,
however, the additional electron always occupies the energetically most
favorable energy level. Coming from the resonance and going toward
more negative voltages along the µQD1 = µQD3 degeneracy line, QD2
is therefore occupied by the additional electron. A co-tunneling transi-
tion from QD1 to QD3 is thus the energetically most favorable option for
the transition from (1, 1, 0) to (0, 1, 1) in a VDg1-sweep. In the opposite
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direction, where µQD2 is higher in energy at the µQD1 = µQD3 degener-
acy line, two sequential transitions via the intermediate state (1, 0, 1) are
the energetically most favorable option for the transition from (1, 1, 0) to
(0, 1, 1) in a VDg1-sweep. Depending on the transitions observed around
the resonance, it is thus possible to distinguish between one-electron and
two-electron resonances in an isolated TQD stability diagram. In �gure
5.5 (a), a resonance occupied by one electron is marked by point A, point
B marks a two-electron resonance. However, due to the electron number
stochastically changing at the isolation point, the visible transitions dif-
fer from line to line, which leads to fragmented charge recon�guration
lines and thereby complicates the interpretation of the isolated stability
diagram. This can be overcome by isolating the system in a more de�ned
way.

5.2.1. Controlled Electron Loading

An important step toward e�cient control over quantum dot arrays is
the possibility to load the array with a de�ned number of electrons. The
number of electrons inside an isolated quantum dot array is constant and
the value is given by the number of electrons occupying the system at
the transition point into the isolation. By controlling the number of elec-
trons at the isolation point, it is therefore possible to de�ne the number of
electrons loaded into an isolated quantum dot array. Figure 5.6 illustrates
one possible way to set up a control procedure, which allows to load and
isolate a TQD with a de�ned number of electrons NTQD.

An overview stability diagram of the TQD is presented in �gure 5.6
(a) as function of both outer plunger gate voltages VDg1 and VDg3. The
overview shows the transition from reservoir coupled TQD to the iso-
lated TQD in VDg1-direction. Depending on the gate voltages, which are
not used as measurement parameters, such an overview can include the
charging lines of the �rst electron for QD2 and QD3. In the stability dia-
gram, these two charging lines are highlighted by the black dashed lines,
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where the smaller slope corresponds to the QD3 charging line, and the
larger to QD2, respectively. Below these two charging lines both QD2 and
QD3 are empty,N2 = N3 = 0. In this situation, the total number of elec-
trons in the TQD equals the number of electrons in QD1, NTQD = N1.

1 2 3

1 2 3

a) b)

Figure 5.6.: (a) Overview stability diagram of a TQD as function of the outer
plunger gate voltages VDg1 and VDg3. Dashed lines mark the charging lines
of the �rst electron for QD2 and QD3. Below these lines, N2 = N3 = 0. (b)
Sweep along the orange arrow in (a) as function of the tunnel barrier gate
voltage VTg1. The energy levels of QD1 are shifted with respect to the iso-
lation point, which allows to change the number of electrons in QD1 at the
isolation point. This can be used to de�ne the number of electrons trapped
in the TQD, due to NTQD = N1. Following the upper red arrow, the most
probable number of electrons loaded is N1 = 1, the lower red arrow most
likely loads N1 = 2 electrons. Stochastic �uctuations can be reduced by im-
plementing a more complex loading procedure, for example along the green
arrow. The transition into the isolation is hereby achieved while the desired
electron number is the equilibrium charge con�guration.

By scanning a line along the orange arrow, where N2 = N3 = 0, QD1
can still be discharged until the isolation threshold is reached. The num-
ber of electrons isolated in the TQD therefore solely depends on the num-
ber of electrons on QD1 at the isolation point. This line can now be mea-
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sured as function ofVDg1 andVTg1, as shown in �gure 5.6 (b). SinceVTg1
has a larger in�uence on the tunnel barrier than VDg1, while VDg1 has a
larger in�uence on the energy levels, a measurement as function of these
two gate voltages tunes the energy levels of QD1 with respect to the isola-
tion point. Up to the uncertainty given by the stochastic nature of the tun-
neling process, this allows to isolate a well de�ned number of electrons.
Simply by �xing VTg1 = −0.63V (upper red arrow) and sweeping VDg1
equal to the measurement, it is most likely to have one electron in QD1 at
the isolation point, which results inNTQD = N1+N2+N3 = 1+0+0 = 1
electron isolated in the TQD. By using the same sweep but with a di�er-
ent VTg1 = −0.67V (lower red arrow), the most probable number of
electrons trapped can be changed to NTQD = N1 = 2.

However, due to the stochastic nature of tunneling, the error rate is
quite large in this simple approach. One parameter, that in�uences the
error rate is given by the measurement speed. The stability diagram in
�gure 5.6 (b) has been measured relatively slow, so that a voltage change
of ∆VDg1 = 0.1V took t ≈ 1.75 s. At the same time, the in�uence of the
plunger gate voltage on the tunnel barrier is not very large. This results
in a slow transition into the isolation, and therefore a long time, in which
electrons might tunnel out. A way to overcome this is by using rapid
voltage pulses to transfer fast and deep into the isolated regime [139].
Another option is given by using a sequence depicted by the green arrow.
QD1 is hereby loaded by the desired amount of electrons in a regime,
where the tunneling rates are large (horizontal part). By implementing
a virtual gate consisting of VTg1 and VDg1, the tunneling rate can now
be reduced, while the energy levels are kept constant with respect to the
source potential (sloped part, parallel to the QD1 charging lines). This
allows to transfer deep into the isolated regime, with the desired elec-
tron number N1 being the equilibrium charge state. Even though a real
isolation can not be achieved, since tunneling is a stochastic process, the
system is e�ectively isolated for Γ << 1/tmeas, where tmeas is the time
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of a complete measurement. Macroscopic timescales can be achieved, as
already presented for the DQD, where �gure 5.3 (a) was measured without
leaving the isolated regime and with tmeas ≈ 1.5h.

Once in the e�ective isolation, the tunability of the system is fully re-
stored. All gates in the center of the device can be varied over large volt-
age ranges, which enables the tuning of the interdot tunnel couplings and
the energy level alignment between the QDs. In this state of extremely
wide tunnel barriers between the reservoirs and the QDs it is possible to
use the individual, trapped electrons to obtain charge stability diagrams
or to apply manipulation schemes. Additionally, the array can be investi-
gated below the Fermi energy, since tunneling into the array is suppressed
as well. The principle of the described controlled loading procedure is also
scalable to larger array sizes. When all QDs except one, which is coupled
to a reservoir, are empty, the number of electrons isolated in the array is
de�ned by the number of electrons on this QD when entering the isola-
tion.

5.2.2. Single Electron

A comparison between two di�erent situations of a single electron iso-
lated in a TQD is presented in �gure 5.7. The two measurements in (a)
and (b) correspond to two di�erent coupling regimes of the TQD. A fur-
ther di�erence is given by the isolation method. In (a) a simple and non-
optimized loading procedure was repeated at the beginning of each line,
whereas in (b) a loading procedure has been used to trap a single elec-
tron and the whole stability diagram was measured with this particular
electron. Consequently, not every line in �gure 5.7 (a) corresponds to
a single electron trapped, but stochastically zero or two electrons were
loaded. This leads to fragmentation of the charge recon�guration lines,
since di�erent transitions are observed for two electrons in the TQD and
no transitions happen for zero electrons. In contrast, �gure 5.7 (b) does
not show any fragmentation, due to the fact that the stability diagram was
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measured with one particular electron, which was trapped in the TQD by
using a loading procedure. The voltages equal for both measurements are
VBg1 = VBg2 = −0.6V , VTg1 = −0.85V , and VTg4 = −0.8V . The
unequal voltages are given in table 5.2.

VTg2 VTg3 VDg2
(a) 0.05V 0.15V −1.125V
(b) 0.125V 0.3V −0.85V

Table 5.2.: Gate voltages, which are unequal in �gure 5.7 (a) and (b).

Panels (c) and (d) in �gure 5.7 show two capacitive model simulations
corresponding to the measurements in (a) and (b), respectively. Both sim-
ulations were performed with the same gate to dot lever arms, which are
given in table 5.3. As there is only a single electron loaded into the TQD,
only the lowest energy level of each QD can be occupied, making the
implementation of charging energies redundant for the simulations. The
electron can either occupy QD1, QD2 or QD3. This results in a signi�cant
simpli�cation of the stability diagram with only three di�erent charge
states. The three charge states are interconnected by three di�erent re-
con�guration lines and are labeled in both simulations. The di�erence
between both simulations is given by disabled (c) and enabled (d) long
range transitions between both outer QDs.

QD1 QD2 QD3
αDg1 0.105 0.410 0.010
αDg3 0.013 0.033 0.082

Table 5.3.: Gate to dot lever arms for the single electron TQD simulation.

As seen in table 5.2, both tunnel barrier gate voltages VTg2 and VTg3,
and the plunger gate voltage in the center of the TQD are more positive for

160



5.2. Triple Quantum Dot

a) c)

b) d)

Figure 5.7.: Experimental stability diagram of a single electron isolated in a TQD
in the weak (a) and strong (b) coupling regime. Qualitative di�erences are
found for the (1, 0, 0) → (0, 0, 1) long range transition. In the weak coupling
regime, this transitions is a two-step sequential process, whereas in the strong
coupling regime the transition is co-tunneling mediated. Capacitive model
simulations for a single electron in a TQD excluding (c) and including (d) long
range transitions nicely reproduce the weak coupling and the strong coupling
stability diagrams, respectively.
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�gure 5.7 (b). Especially the tunnel barrier gates hereby have a large in�u-
ence on the interdot coupling. When comparing the recon�guration lines
of the sequential transitions (1, 0, 0) → (0, 1, 0) and (0, 1, 0) → (0, 0, 1),
the more positive voltages in (b) result in signi�cant broadening of the re-
con�guration lines, which is consistent with the expected larger interdot
coupling.

For the (1, 0, 0)→ (0, 0, 1) recon�guration line, which corresponds to a
long range transition, the di�erence in interdot coupling leads to qualita-
tively di�erent behavior. The weak coupling case in �gure 5.7 (a) is nicely
reproduced by the simulation (c), where only sequential transitions are
permitted. Here, the electron transfer from QD1 to QD3 is only possi-
ble, if an energy level of QD2 is energetically available as an intermediate
state. This condition is met at the (1, 0, 0) − (0, 1, 0) degeneracy line. In
both experiment (a) and simulation (c), the long range transition from
QD1 to QD3 (above the resonance) occurs at this QD1 - QD2 degeneracy,
which leads to a continuation of the (1, 0, 0)→ (0, 1, 0) sequential recon-
�guration line. However, the color of the recon�guration line changes
toward darker blue, which corresponds to more negative potential in the
vicinity of the charge detector. This implies, the electron is indeed trans-
ferred from QD1 to QD3. The (1, 0, 0) → (0, 0, 1) long range transition
in the weak coupling regime in �gure 5.7 (a) can therefore be ascribed to
a two-step sequential process. The electron tunnels from QD1 to QD2 as
soon as an energy level of QD2 becomes energetically available for se-
quential transport, followed by an inelastic tunneling process from QD2
to QD3.

In the strong coupling regime in �gure 5.7 (b), three di�erent slopes of
charge recon�guration lines are observed. This regime is nicely repro-
duced by the capacitive model simulation where long range transitions
between QD1 and QD3 are permitted (d). Since the underlying process
for the sequential recon�guration lines does not change compared to the
weak coupling regime, the major di�erence is here given by the broaden-
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ing of the recon�guration lines due to the larger interdot coupling. The
long range (1, 0, 0)→ (0, 0, 1) recon�guration line however shows quali-
tatively di�erent behavior in terms of a di�erent slope, which means the
underlying process depends on di�erent energetic conditions. Here, the
long range transition is observed at the (1, 0, 0)−(0, 0, 1) degeneracy line,
with the lowest energy level of QD2 being o� resonant and higher in en-
ergy than those of QD1 and QD3. The (1, 0, 0) → (0, 0, 1) long range
transition in the strong coupling regime in �gure 5.7 (b) can therefore be
ascribed to a co-tunneling transition via virtual occupation of the cen-
ter QD2, which leads to an e�ective tunnel coupling between the non-
neighboring QD1 and QD3 [128].

The e�cient tunability of the individual tunnel couplings inside the
TQD here allows to switch co-tunneling on and o� within the measure-
ment timescale. This e�ectively enables a switching of long range inter-
action in quantum dot arrays and can be seen as an important step toward
controlled long distance correlations, which are important ingredients for
quantum computation and simulation.

5.2.3. Two Electrons

By slightly modifying the loading procedure, two electrons can be loaded
into the isolated TQD array. The tunnel barrier gate voltage VTg1 shifts
the isolation point with respect to the QD1 energy levels. More nega-
tive VTg1 result in the isolation point being reached for more positive
VDg1. Compared to the single electron case presented before, a larger
number of trapped electrons can therefore be achieved by simply chang-
ing VTg1 toward more negative voltages without changing anything else
in the loading procedure.

An experimental and a simulated stability diagram for two electrons
isolated in a TQD is shown in �gure 5.8 (a) and (b). The experimental
stability diagram was probed with two particular electrons, which were
loaded into the TQD in a preceding loading procedure. The simulation
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a) b)

Δ1

Δ2

Figure 5.8.: (a) Experimental and (b) simulated stability diagram of a two-
electron isolated TQD. All possible charge con�gurations (N1,N2,N3) and
transitions for a two-electron TQD are visible in the simulation. The experi-
mental stability diagram was probed with two particular electrons and shows
a similar pattern, but with low contrast of the sequential recon�guration lines
due to the coupling induced broadening. A, B, and C provide schematic en-
ergy diagrams for the three positions marked in (a) and (b). Point A marks the
(1, 1, 0)−(1, 0, 1)−(0, 1, 1) resonance, where both electrons tunnel resonantly
between the three QDs. Point C marks the (1, 1, 0) − (0, 2, 0) − (0, 1, 1) reso-
nance, where one electron tunnels resonantly between the three QDs, while
the second electron remains in the center QD2. Both resonances are con-
nected by the (1, 1, 0) − (0, 1, 1) co-tunneling recon�guration line. At point
B, centered between both resonances, both outer QDs are resonant, while the
occupied and the lowest unoccupied energy level of QD2 being equally de-
tuned.
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was performed with all gate to dot lever arms except αDg3,3 equal to the
single electron TQD simulation in �gure 5.7 (d). Here, αDg3,3 = αDg1,1 =

0.105 was chosen to achieve a better agreement between the experimental
and the simulated co-tunneling recon�guration line slope. The charging
energies implemented in the simulation are given by EC1 = 3.1meV ,
EC2 = 2.8meV , and EC3 = 3.1meV . The constant gate voltages
for the experimental stability diagram are VBg1 = VBg2 = −0.6V ,
VTg1 = −0.85V , VTg = 0.15V , VTg3 = 0.275V , VTg4 = −0.8V , and
VDg2 = −0.85V . The gate voltages in the center of the device are sim-
ilar to the strong coupling regime of the single electron TQD presented
before, where co-tunneling was present.

Two electrons in a TQD result in six possible charge con�gurations.
In the simulated stability diagram �gure 5.8 (b), all six charge con�gu-
rations are visible and labeled (N1,N2,N3) and all transitions possible
in this system are observed. Both sequential transitions QD1 → QD2
and QD2 → QD3, as well as the co-tunneling transition QD1 → QD3
occur three times in the stability diagram. The resonant states hereby dif-
fer due to the remaining electron, which can occupy either of the three
QDs. All charge states and transitions are as well found in the experi-
mental stability diagram shown in �gure 5.8 (a). However, the sequential
recon�guration lines show signi�cant broadening due to the strong in-
terdot coupling, which results in low contrast in the stability diagram.
Especially toward the most negative VDg1 and VDg3, where the energy
levels are located at higher energies, which e�ectively decreases the tun-
nel barrier width, the sequential recon�guration lines are only vaguely
visible.

In both, the experimental and the simulated stability diagram, three
speci�c situations A, B, and C are marked on the (1, 1, 0) → (0, 1, 1) co-
tunneling recon�guration line. The three energy level schemes in �gure
5.8 depict the energetic situation for these three points. Point A marks a
TQD resonance with the resonant states (1, 1, 0), (1, 0, 1), (0, 1, 1). Here,
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both electrons can tunnel resonantly between the three QDs. A sec-
ond TQD resonance is marked by point C, where the resonant states are
given by (1, 1, 0), (0, 2, 0), (0, 1, 1). Only one electron tunnels resonantly
between the three QDs, while the other electron occupies the lowest en-
ergy level of the center QD2. While both resonances involve only the low-
est energy level of both QD1 and QD3, the resonant energy level of QD2
is the lowest energy level for resonance A, but the second energy level for
resonance C. When moving from resonance A to C, the energy levels of
the center QD2 are therefore exactly shifted by the charging energy EC2
with respect to the resonant states of QD1 and QD3. Between these two
resonances and on the co-tunneling recon�guration line, the two outer
QDs are resonant with the center QD2 being o�-resonant. Point B, found
in the center between both resonances, hereby marks a special situation,
where the detuning ∆1 of the occupied energy level of QD2 and the de-
tuning ∆2 of the lowest unoccupied energy level of QD2 with respect to
the resonant states of QD1 and QD3 are equal.

The pattern observed in the stability diagram of this serial TQD array
is found to be very similar to that of a two electron isolated TQD in a
triangular con�guration [123]. The presence of co-tunneling leads to an
e�ective tunnel coupling between both outer QDs in a serial TQD array,
which leads to a con�guration, where each QD is tunnel coupled to both
others, similar to a triangular con�guration. The co-tunneling coupling
strength tco is hereby a function of the nearest neighbor interdot cou-
plings, and of the detuning of the relevant energy levels [128]

tco =
t12t23
∆1

+
t
′
12t
′
23

∆2
, (5.2)

where t12 (t23) is the coupling strength between QD1 (QD3) and the oc-
cupied energy level of QD2. The couplings to the unoccupied states are
given by t ′12 and t ′23. ∆1 and ∆2 are the detunings of the respective QD2
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energy level with respect to the resonant states of QD1 and QD3. Equa-
tion 5.2 is valid, as long as the detuning ∆13 between the energy levels
of the outer QDs is small compared to the detuning of the center QD2
∆13 << ∆1/2, i.e. invalid close to the TQD resonance, where the detun-
ing of the center QD goes to zero and resonant tunneling between the
three QDs occurs.

When moving from resonance A to resonance C, the energy levels of
QD2, and therefore the detuning values ∆1 and ∆2, are shifted by the
charging energy EC2 = 2.8meV . The e�ective tunnel coupling strength
tco between the outer QDs via virtual states of QD2 is therefore expected
to decrease when moving from point A, where∆1 = EC2 and∆2 = 0, to B,
where ∆1 = ∆2 = EC2/2. Going further to point C results in ∆1 = 0 and
∆2 = EC2. Since tco is an e�ective tunnel coupling, the coupling strength
is expected to induce a broadening of the co-tunneling recon�guration
line. An analysis of the width of such a co-tunneling recon�guration line
is shown in �gure 5.9. Panel (a) shows a stability diagram of the (1, 1, 0)−
(0, 1, 1) co-tunneling transition, where the points A, B, and C are marked
as in �gure 5.8. The horizontal dashed lines mark the region, in which the
analysis is performed. The interval is chosen between the two resonances
but not including them, to avoid the in�uence of the TQD resonance on
the width of the recon�guration line.

Due to the low resolution and a high level of noise in the experimen-
tal data, �tting the recon�guration line to extract the tunnel coupling, as
performed for the DQD in section 5.1, was not possible. To extract in-
formation about the trend of the co-tunneling coupling, the detector sig-
nal dIqpc/dVDg1 was smoothed using a Gaussian �lter and afterwards
�tted by a Gaussian. The width of this Gaussian is overestimated due
to the �ltering and should not be interpreted quantitatively. Figure 5.9
(b) exemplarily shows the absolute value of the �ltered detector signal
|dIqpc/dVDg1| and the corresponding Gaussian �t at VDg3 = −1.225V .
The full width half maximum (FWHM) of such a �t is now a parame-
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a)

b)

c)

Figure 5.9.: (a) Stability diagram of a two-electron isolated TQD around the
(1, 1, 0) − (0, 1, 1) co-tunneling recon�guration line. Points A, B, and C are
marked as in �gure 5.8. (b) Exemplary curve of the �ltered detector signal
|dIqpc/dVDg1| of the (1, 1, 0) − (0, 1, 1) co-tunneling charge recon�guration
(blue). Gaussian �tting (red) allows to extract the FWHM, which depends on
the co-tunneling coupling tco between QD1 and QD3. (c) FWHM of Gaussian
�ts to the (1, 1, 0)−(0, 1, 1) co-tunneling recon�guration line. Fitting was done
for VDg3 values between the dashed lines in (a). Within this VDg3 interval,
the detuning of the center QD2 is varied over almost the charging energy
EC2. The FWHM of the co-tunneling recon�guration line increases for the
most negative VDg3 (close to C), which indicates an increasing co-tunneling
coupling. No increase in the recon�guration line width is found toward the
most positive VDg3 (close to A), which can be explained by competing e�ects
due to the changes in both VDg1 and VDg3.
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ter depending on the broadening of the recon�guration line, which in
turn depends on the co-tunneling coupling strength tco. Figure 5.9 (c)
shows the FWHM in mVDg1 of the Gaussian �ts to each line between
the horizontal dashed lines in (a) as function of VDg3, which is a mea-
sure for the detuning values ∆1 and ∆2. The positions A, B, and C are
marked by the red arrows. Point B, where ∆1 = ∆2 = EC2/2, is located
at VDg3 = −1.242V .

For the most positive voltages VDg3 the situation is close to the
(1, 1, 0) − (1, 0, 1) − (0, 1, 1) resonance (A), the most negative voltages
are close to the (1, 1, 0) − (0, 2, 0) − (0, 1, 1) resonance (C). Both detun-
ings ∆1 and ∆2 are therefore changed over almost the charging energy
EC2. From equation 5.2, the resulting co-tunneling coupling strength tco
is expected to have a minimum around point B, where ∆1 = ∆2, and
an increasing behavior toward the two TQD resonances, where one of
the detunings becomes small. Experimentally, a clear increase of the co-
tunneling recon�guration line width and therefore the co-tunneling cou-
pling strength tco is observed for the most negative voltage VDg3, i.e. for
decreasing ∆2. For the most positive VDg3 however, where ∆1 becomes
small, no increasing tendency of the recon�guration line width is found.

This behavior can be explained by competing e�ects, which occur as
a result of changing the gate voltages VDg1 and VDg3 along the co-
tunneling recon�guration line. On the one hand, there is �nite crosstalk
from plunger gate voltages to the tunnel barriers. More negative VDg1
decreases the coupling between QD1 and QD2, more negative VDg3 de-
creases the coupling between QD2 and QD3. This e�ect however de-
creases both t12 and t23, and therefore tco, toward more negative voltages,
whereas the trend observed in �gure 5.9 (c) shows increasing coupling to-
ward more negative voltages. On the other hand, the energy levels of all
three QDs are energetically lifted with increasingly negative gate volt-
ages. This e�ectively decreases the tunnel barrier widths, which there-
fore increases both interdot couplings t12 and t23, and therefore tco. The
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∆VDg1 ≈ 50mV gate voltage di�erence between points A and C hereby
corresponds to an energy shift of ∆µ ≈ 3.5meV of the energy levels
of QD1. The trend of the co-tunneling recon�guration line width indi-
cates the latter mechanism being dominant, which is supported by the
appearance of the sequential recon�guration lines in the stability diagram
in �gure 5.9 (a). The broadening of the sequential recon�guration lines
below resonance C is considerably larger than the broadening of those
above resonance A, which corresponds to larger interdot couplings t12
and t23 for more negative VDg1 and VDg3. This is also in agreement with
the DQD case, where the energy level lifting was as well found to be the
dominant e�ect in the discussion of �gure 5.4 (a).

The in�uence of these competing e�ects prevents to resolve a behav-
ior as expected for the co-tunneling coupling strength tco as function of
the energy level detunings in the given con�guration. Nevertheless, the
width of the co-tunneling recon�guration line is found to increase to-
ward the (1, 1, 0) − (0, 2, 0) − (0, 1, 1) resonance. This shows, that the co-
tunneling coupling, which is an e�ective tunnel coupling between non-
neighboring QDs, is a tunable parameter in this system. The e�cient
tunability of the interdot tunnel couplings via the tunnel barrier gates,
which was discussed for the DQD in �gure 5.3, could provide a way to
overcome the in�uence of the competing e�ects. By implementing a vir-
tual gate, where the tunnel barrier gates are coupled to the plunger gates,
more negative tunnel barrier gate voltages can be used to compensate for
the e�ect of lifting the energy levels.

Overall, this leads to a highly tunable long range coupling in an iso-
lated TQD system. According to equation 5.2, the co-tunneling coupling
strength tco is a function of the interdot couplings and of the energy level
detunings of the center QD. Both interdot couplings can be e�ciently
tuned via the tunnel barrier gate voltages, and additionally by energet-
ically shifting the resonant energy levels, which in�uences the e�ective
the tunnel barrier widths. The detuning of the center QD2 can be varied
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over the full range of the charging energy EC2. Due to this high level of
tunability of the long range coupling between non-neighboring QDs, the
isolated regime provides a versatile platform for example for photon as-
sisted co-tunneling experiments or the investigation of dark states [152–
154].

In summary, this part discussed the charge recon�guration inside an
isolated serial triple quantum dot system. Three di�erent slopes of recon-
�guration lines are present in the stability diagram of an isolated triple
quantum dot. By comparison to calculated stability diagrams based on a
capacitance model, these were attributed to two sequential transitions be-
tween neighboring QDs and an additional long-range transition directly
between the non-neighboring outer QDs. The arrangement of the se-
quential and the long-range transition close to a resonance between all
three QDs allows to distinguish between electron-like resonances with
a single electron tunneling between the three resonant states and hole-
like resonances, where two electrons tunnel between the resonant states.
A loading procedure was implemented and used to load the TQD with a
�xed number of electrons before isolating from the reservoirs. Stability
diagrams for a single electron isolated in the TQD were discussed and
the ability to suppress the long-range tunneling by decreasing the cou-
pling between the QDs was demonstrated. For two electrons isolated
in the TQD, the full energy space with all six possible charge con�g-
urations was measured and compared to model calculations. With all
charge states and transitions known, a highly tunable long-range tran-
sition (1, 1, 0) ↔ (0, 1, 1) could be identi�ed, providing a candidate for
the investigation of interference e�ects in co-tunneling via two di�erent
virtual paths under full control over the detunings and tunnel couplings.
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5.3. �adruple �antum Dot

With negative voltages applied to all gates of the device, a QQD is formed.
As an extension of the TQD, the QQD naturally inherits the functionality
of the smaller QD arrays. Similar to the DQD and TQD, the QQD can
be brought into the isolated con�guration by applying highly negative
voltages to the outermost gates of the device. For an isolated TQD, three
di�erent transitions are possible. Two sequential tunneling transitions
(QD1 → QD2) and (QD2 → QD3), as well as a co-tunneling transition
(QD1 → QD3). With including the fourth QD, another sequential tran-
sition (QD3 → QD4) and an additional co-tunneling transition (QD2 →
QD4) are expected to occur, since these transitions are equivalent to the
transitions already observed for the TQD.

In addition, there is another plausible option in a serial QQD device, a
transition directly between the outer QDs (QD1→QD4) via two interme-
diate QDs. In the context of metrological junction charge pump experi-
ments [91, 155, 156], co-tunneling rates and higher order co-tunneling
rates for more than one intermediate tunnel junction were calculated
[157–159] and found to be a limiting factor for the accuracy of these de-
vices. In terms of the QQD, this implies that higher order co-tunneling
transitions via more than one intermediate QD might occur, despite the
long distance.

A stability diagram of an isolated QQD as function of the outer plunger
gate voltages VDg1 and VDg4 is shown in �gure 5.10 (a). A corresponding
capacitive model simulation is given in �gure 5.10 (b). The experimental
stability diagram was obtained by sweeping VDg1 from more positive to
more negative voltages. At the beginning of each VDg4-line, the system
was reset to a state well coupled to the left reservoir, so that the number of
electrons trapped in the QQD can change inVDg4-direction. The constant
center gate voltages are VBg1 = VBg2 = −0.4V , the tunnel barrier gate
voltages are VTg1 = −0.45V , VTg2 = −0.2V , VTg3 = −0.1V , VTg4 =
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−0.4V , and VTg5 = −0.45V , and the two constant plunger gate voltages
are VDg2 = VDg3 = −0.375V . Based on this gate voltage con�guration,
the electron numbers in the QQD array can be estimated. Comparing
the applied voltages with another measurements of the same cooldown
of the device, in particular with �gure 4.2, the electron numbers for the
two center QDs can be estimated to around N2 ≈ N3 ≈ 10. The slightly
more negativeVDg1 compared toVDg2 andVDg3 suggestsN1 < N2,N3.
Similarly the voltages de�ning QD4 are more negative than those de�ning
the other QDs, so that N4 < N1 < N2 ≈ N3 can be estimated.

The capacitive model simulation, shown in �gure 5.10 (b), was ob-
tained using the gate to dot lever arms given in table 5.4. The imple-
mented charging energies range between 1.4meV 6 EC1 6 3.3meV ,
1.5meV 6 EC2 6 2.8meV , 2.3meV 6 EC3 6 2.6meV , and
1.7meV 6 EC4 6 2.4meV .

QD1 QD2 QD3 QD4
αDg1 0.085 0.036 0.012 0.007
αDg4 0.007 0.012 0.032 0.081

Table 5.4.: Gate to dot lever arms for the QQD simulation.

Similar to the DQD and TQD case, resetting the system to a state well
coupled to the left reservoir leads to a fragmented appearance of the
experimental recon�guration lines due to stochastic �uctuations of the
charge con�guration at the isolation point. Comparing the DQD, TQD,
and QQD, these fragmentation become a more and more dominant e�ect
with an increasing number of QDs. For the QQD case, the observable tran-
sitions in the isolated con�guration are determined by the con�guration
(N1,N2,N3,N4) at the isolation point. The �uctuations increase with an
increasing number of QDs, since the number of electrons on each QD
may �uctuate due to the stochastic nature of tunneling. Additionally, the
system is only well coupled to the left reservoir at the beginning of each
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Figure 5.10.: (a) Experimental and (b) simulated stability diagram of an isolated
QQD in the many electron regime. The six possible transitions are color coded
in the simulation. Four of these transitions can be clearly identi�ed in the
experimental data, where one of each transition is marked by an ellipse with
colors according to the simulation. The green boxes in (a) and (b) highlight a
situation similar to a single electron TQD resonance.
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line, while being isolated from the righ reservoir. Consequently, QD2,
QD3, and QD4 are only indirectly coupled to the reservoir. The coupling
hereby decreases with increasing distance from the reservoir. Decreasing
coupling corresponds to decreasing tunneling rates, which eventually re-
sults in metastable states, even before the isolation point is reached. The
electron con�guration at the isolation point therefore depends on the life-
times of the metastable states and the measurement frequency.

In contrast to the DQD and TQD case, not only dark blue, but also white
recon�guration lines are found in the experimental stability diagram. The
dark blue recon�guration lines correspond to increasing negative poten-
tial in the vicinity of the detector, i.e., electrons tunneling toward the de-
tector. In contrast, white and red color correspond to negative potential
being removed from the vicinity of the detector. Since the detector is lo-
cated below QD3, the white recon�guration lines can be attributed to the
(QD3→ QD4) sequential transition. The noisy part in the upper left part
of the experimental stability diagram stems from electrons tunneling out
of the QQD into the right reservoir.

All six types of transitions are found in the simulated stability dia-
gram in �gure 5.10 (b). The transitions are color coded for clarity. The
three sequential transitions (QD1→ QD2), (QD2→ QD3), and (QD3→
QD4) are colored in orange, black, and red, respectively. The co-tunneling
transition (QD1 → QD3), which was already observed for the isolated
TQD, is colored in magenta. Green recon�guration lines correspond to
the equivalent (QD2 → QD4) co-tunneling transition. The higher order
co-tunneling transitions directly between the outer QDs (QD1→ QD4) is
marked in yellow.

Comparing the simulated and the experimental stability diagram al-
lows to clearly identify four of the six transitions in the experiment. All
three sequential transitions are present in the experimental stability di-
agram, where one of each transition is marked by an ellipse, colored ac-
cording to the simulation. Additionally, the co-tunneling transition (QD1
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→ QD3), which was already present in the TQD, can be identi�ed in the
experimental data. However, the (QD2→ QD4) co-tunneling transition,
even though it is equivalent, can not be clearly identi�ed. A reason for
this transition not to be observed can be found in the device design. The
detector used for the measurements is located below QD3, which means
QD2 and QD4 are located at a similar distance from the detector. Due to
this symmetric arrangement with respect to the detector, the potential of
an electron being in QD2 or QD4 is similar at the detector, which leads
to a vanishing detector signal. Even if (QD2→ QD4) co-tunneling transi-
tions are present in the experimental stability diagram, it is therefore not
expected to observe these transitions in the detector signal.

The remaining transition is the special case for the QQD, the higher or-
der co-tunneling transition directly between the outer QDs (QD1→QD4).
For symmetry reasons, the slope of the recon�guration lines correspond-
ing to these transitions is expected to be similar to the (QD2 → QD3)
sequential recon�guration lines (marked in black). Additionally, due to
the long distance and the two intermediate QDs, the coupling between
QD1 and QD4 is expected to be much smaller than the coupling between
the neighboring QD2 and QD3. The sequential transitions are therefore
expected to be dominant. It is therefore not possible to assign one of the
recon�guration lines in the experimental stability diagram in �gure 5.10
(a) to the (QD1→ QD4) higher order co-tunneling transition without any
doubt.

However, by comparing the simulated and the experimental stability
diagram, an energetic situation is found, where the (QD1→ QD4) transi-
tion is energetically favorable. The green boxes in �gure 5.10 (a) and (b)
highlight the region, where this con�guration is found. Zooms into these
green boxes are shown in �gure 5.11.

The recon�guration line pattern shown in the experimental (a) and sim-
ulated (b) stability diagram is similar to that of a TQD resonance charged
with one electron, which was already discussed in section 5.2. The transi-
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a) b)

Figure 5.11.: Zoom into the (a) experimental and (b) simulated stability diagram
of �gure 5.10. The recon�guration line pattern is similar to a singly charged
TQD resonance. The three resonant QDs are QD1, QD3, and QD4, which
results in the energetically favorable transition above the resonance being the
higher order co-tunneling transition directly between QD1 and QD4.

tion found on the left side of the resonance corresponds to the sequential
(QD3 → QD4) transition, which is colored in red in the simulation. In
the experimental stability diagram, this recon�guration lines appears in
white due to an electron being transferred away from the detector. The
recon�guration line below the resonance, magenta in the simulation, dark
blue in the experimental data, can be attributed to the (QD1→ QD3) co-
tunneling transition. Since both recon�guration lines coincide with the
degeneracy between an energy level of each involved QD, the respective
energy levels of all three QDs are degenerate at the position, where the
two recon�guration lines meet. The TQD resonance pattern is therefore
de�ned by a resonance of QD1, QD3, and QD4.

The third recon�guration line de�ning this TQD resonance pattern is
located in the upper right. The slope of this recon�guration line is close to
diagonal. Due to symmetry reasons, only two of the possible transitions in
a QQD system are expected to exhibit a recon�guration line slope close
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to diagonal as function of VDg1 and VDg3. The two options are given
by either the sequential (QD2→ QD3) transition or the higher order co-
tunneling (QD1→QD4) transition directly between both outer QDs. The
resonance is de�ned by QD1, QD3, and QD4, without including QD2. As
seen in the simulated case in �gure 5.11 (b), the transition is therefore not
expected to involve QD2, but being a transition directly between the outer
QDs (QD1 → QD4). The TQD resonance pattern in �gure 5.11 (a) can
therefore be seen as experimental evidence of a higher order co-tunneling
charge recon�guration inside this QQD device.

Implementing a controlled loading procedure, as described for the TQD
in 5.2.1, to load the QQD with a well de�ned number of electrons would be
a way to con�rm this observation and additionally provides the possibility
to investigate these higher order co-tunneling transitions in more detail.
A controlled electron number hereby provides multiple bene�ts.

Figure 5.12.: Capacitive model calculation of the stability diagram of a single
electron isolated in a quadruple quantum dot with all long-range transitions
allowed. The drastic simpli�cation in comparison with the many electron
regime provides a suitable basis for the investigation of co-tunneling and
higher order co-tunneling under well controlled conditions.

A simulated stability diagram for a single electron isolated in a QQD
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is exemplarily shown in �gure 5.12. Similar to the TQD, the stability di-
agram of a QQD signi�cantly simpli�es when only a single electron is
loaded into the system. Only four di�erent charge con�gurations are
possible in this con�guration, one for each QD the electron can be lo-
cated in. The four charge con�gurations are given by (1, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 1, 0), and (0, 0, 0, 1), and the total number of transitions is reduced
to the transitions between these four charge states. At the same time,
the loading procedure eliminates the stochastic �uctuations of the num-
ber of electrons isolated in the QQD, which in turn eliminates the frag-
mentation of the charge recon�guration lines and therefore simpli�es the
assignment of observed transitions.

These simpli�cations might provide the possibility to clearly assign all
transitions in a QQD stability diagram in the isolated con�guration, in-
cluding higher order co-tunneling transitions directly between both outer
QDs. At this point, the high level of control over the tunnel couplings and
the internal energy level alignment in the isolated con�guration provides
a versatile platform for further investigations of these long range transi-
tions, which are already known to be a limiting factor for the accuracy of
junction charge pumps. Similarly, the accuracy of other QD array devices,
for example QD qubit arrays, might also be negatively a�ected by these
long range transitions. On the other hand, a long range coupling also pro-
vides an opportunity in terms of implementing long range interactions in
QD array devices.

In a situation, where all transitions can be clearly assigned, the iso-
lated QQD system provides a versatile platform for further investigations
on long range transitions. The high level of control over the energy level
alignment, which comes as a consequence of isolating the system, allows
to tune the device into con�gurations, where long range transitions are
energetically favorable and the detuning of the energy levels of the inter-
mediate QDs can be adjusted. At the same time, the high level of control
over the interdot couplings provides an additional way to increase or de-
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crease the virtual coupling between the non-neighboring QDs. This high
level of tunability combined with a known number of electrons enables
the investigation of long range transitions under well de�ned conditions.
Increasing the number of trapped electrons to two or more and using the
single electron case as a reference might provide a way to identify inter-
action e�ects or for example interference e�ects between di�erent virtual
paths of higher order tunneling.

To summarize, this part presented a serial quadruple quantum dot in
the isolated con�guration. In the many electron regime, all three sequen-
tial transitions could be identi�ed, as well as the long-range transition
already present in the TQD. The second possible and equivalent next-
nearest neighbor long-range transition can not be resolved due to the
symmetric alignment of the respective QDs with respect to the charge
detector. However, a resonance between three of the four QDs was iden-
ti�ed, where the surrounding recon�guration pattern strongly suggests
the presence of a higher order co-tunneling transition directly between
QD1 and QD4 via two intermediate QDs. A capacitance model simula-
tion was used to show the drastic simpli�cation of the recon�guration
pattern, when only a single electron is isolated in the QQD. The single
electron QQD would therefore provide a suitable basis for the investiga-
tion of these higher order co-tunneling transitions under controlled con-
ditions.
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6
Time-Resolved Electron

Tunneling

The previous chapter discussed the charge recon�guration behavior and
the tunability of isolated quantum dot arrays based on charge stability
diagrams. The focus of this chapter lies on an isolated double quantum dot
system and the statistical analysis of time-resolved tunneling between the
two quantum dots. The �rst part will introduce the time-resolved charge
detection and the statistical analysis, followed by a detailed analysis of the
tunneling statistics for di�erent electron numbers isolated in the double
quantum dot.

6.1. Time-Resolved Charge Detection

The detection of individual tunneling events in or through quantum dots
in a time-resolved manner is a way to acquire information about dynamic
properties of the quantum dot system, for example the tunneling rates
into or out of a quantum dot. To resolve individual tunneling events in
the charge detector signal, the time resolution of the measured detector
current Iqpc has to be large compared to the time between two tunneling
events. All time-resolved data discussed in this chapter was acquired us-
ing the ADwin-Pro II real-time controller with a sampling rate of 400 kHz.
In addition, each tunneling event has to create an observable change in the
detector current Iqpc. In order to achieve a low noise �oor and therefore
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a high sensitivity, the QPC drain was connected to a low capacitance line
(∼ 30 pF) and a low-noise FEMTO LCA-100K-50M current ampli�er. All
time-resolved measurements were performed in an Oxford Instruments
Teslatron cryostat with variable temperature insert (VTI) at T ≈ 1.5K.

a) b)

500nm

e-

�

�

Iqpc
Vsd,qpc

�

�

Figure 6.1.: (a) SEM image of the device. A double quantum dot and a QPC
charge detector are formed by applying negative potentials to the golden
colored gates while keeping the gray gates grounded. By isolating the dou-
ble quantum dot from the electron reservoirs, the total number of electrons
trapped inside the double quantum dot is �xed. In the proximity of a recon-
�guration line, the electrons can however still tunnel back and forth between
the two quantum dots with tunneling rates Γr from QD2 to QD3 (left to right)
and Γl from QD3 to QD2 (right to left). The back and forth tunneling can be
tracked by monitoring the detector current Iqpc as function of time. (b) Sim-
pli�ed energy level schematic of an isolated double quantum dot. Whenever
an occupied level of one quantum dot is resonant with an unoccupied level of
the other quantum dot, back and forth tunneling between the two quantum
dots becomes possible.

A �rst important step for the time-resolved analysis of electron tun-
neling events lies in the de�nition of an appropriate operation point for
the device, where the requirements for the time resolution and the detec-
tor sensitivity are met. Additionally, the tunneling rates should be large
enough so that a large number of events, required for statistical analysis,
can be detected within a reasonable time frame. As indicated in �gure
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6.1. Time-Resolved Charge Detection

6.1 (a), the system of choice here is a double quantum dot, formed by the
gates colored in gold in the SEM image. The double quantum dot is then
initialized by using a loading procedure similar to the one discussed in
section 5.2.1 to load a speci�c number of electrons into the double quan-
tum dot and then isolate it from the electron reservoirs. In this con�gu-
ration, tunneling events can only occur between the two quantum dots.
The tunneling rates Γr from QD2 to QD3 (left to right) and Γl from QD3
to QD2 (right to left) then depend on the barrier between the two QDs
and the alignment of the energy levels.

For tunneling to occur, there has to be an occupied state in one of the
QDs with an energetically accessible empty state in the other QD, exactly
the condition for the occurrence of recon�guration lines in the stability
diagram, as discussed in section 5.1. Figure 6.1 (b) shows two energy level
schematics for such a resonance. After each tunneling event in one direc-
tion the prerequisites for tunneling into the other direction are met, lead-
ing to a cycle of back and forth tunneling between the two QDs. Even
though these tunneling events do not change the total number of elec-
trons in the DQD, there is a potential change at the charge detector due
to the right QD3 being located closer to the charge detector than the left
QD2, allowing to di�erentiate between the two charge states.

For a single electron loaded into the DQD and in the vicinity of the
(1, 0)↔ (0, 1) resonance, a short window of a detector current trace Iqpc
as function of time is shown in �gure 6.2 (a). Whenever the electron tun-
nels from the left QD2 to the right QD3, the electron moves closer to
the detector channel, thereby increasing the negative potential and thus
decreasing Iqpc. As the electron tunnels back into QD2, this e�ect is re-
versed and Iqpc returns to the original value. This cycle repeats multiple
times within the shown time window, where each jump in Iqpc repre-
sents a single tunneling event.

The histogram of the full 3min time trace of Iqpc in �gure 6.2 (b)
shows two distinct peaks. The higher current peak corresponds to the
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a) b)

c)

Figure 6.2.: (a) Short window of a detector current Iqpc time trace with a single
electron isolated in a DQD and close to the degeneracy of the (N2,N3) = (1, 0)
and (N2,N3) = (0, 1) charge states. A series of abrupt jumps is observed as
function of time. Whenever the electron tunnels to the right quantum dot,
and thus closer to the detector, the current decreases. As the electron tunnels
back into the left quantum dot, the current returns to the original level. (b)
The histogram of Iqpc is used to de�ne a current interval for each charge
states, as indicated by the gray bars. (c) Transitions extracted from the time
trace (a), by assigning each datapoint to one of the two charge states. Red bars
represent tunneling events from the left to the right quantum dot ((1, 0) →
(0, 1)), whereas blue bars show the timing of right to left ((0, 1) → (1, 0))
tunneling events. The residence times τlr and τrl, as well as the return times
τll and τrr can be extracted from the time sequence of the tunneling events.
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6.1. Time-Resolved Charge Detection

(1, 0) charge state of the DQD, the lower one to the (0, 1) state, respec-
tively. Experimentally, these two states are not perfectly sharp, but each
level is given by a broadened distribution due to the noise �oor of the
detector. In typical measurement setups and in the absence of additional
intrinsic noise sources, as for example given by charge traps in the vicin-
ity of the QPC, this noise band is dominated by the noise band of the
current ampli�er [160, 161].

A �rst statement about the tunneling rates can already be made based
on the histogram. The di�erence in height of the two peaks in the his-
togram means that the system is more often found in the (1, 0) state (large
peak) and less often in the (0, 1) state (small peak). The operation point
is therefore not exactly at the resonance condition but in a regime, where
Γl > Γr. Detailed information about the individual rates is however not
accessible from only the histogram but can be obtained from statistical
analysis of all detected tunneling events.

To perform statistical analysis on the tunneling dynamics of such a two
level system, the measured current has to be assigned to either one of the
two charge states, so that the timing of transitions between the two states
can be determined. Here, this assignment was done using a post process-
ing algorithm based on de�ning a current interval for each of the charge
states. Each point inside one of the intervals was assigned to the corre-
sponding state, while values lying outside of both intervals are assigned
to the last known state. The time of a detected transition is therefore the
time, when the �rst datapoint lies in the interval of the new state. The ac-
curacy of this type of detection algorithm depends on the signal to noise
ratio, given by the peak separation compared to the peak width for the
peaks in the histogram. For ideal situations with well separated peaks,
large current intervals can be chosen for each state without detecting sta-
tistically relevant numbers of false events due to the noise �oor. For less
ideal systems with more overlap between the two peaks, it can be ben-
e�cial to choose smaller intervals for the states or average over several
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6. Time-Resolved Electron Tunneling

datapoints in order to reduce the probability for detecting noise induced
false events. Both methods however come at the cost of bandwidth, thus
increasing the probability of missing fast events. For the statistical anal-
ysis, the highest impact of both detection errors, the detection of false
events, as well as missing fast events is on short timescales.

The gray bars in �gure 6.2 (a) and (b) represent the intervals used for
the detection algorithm, and (c) shows the detected tunneling events using
these intervals and averaging the time trace over three points. Red bars
mark detected tunneling events from left to right, and blue bars tunneling
events from right to left, respectively. The obtained sequence of tunneling
events is now used to determine the time intervals annotated in �gure 6.2
(c). The two time intervals τlr (blue to red; tunneling left - right) and
τrl (red to blue; tunneling right - left) between consecutive tunneling
events will be called residence times, since they represent the time the
electron resides in the left (τlr) and right (τrl) quantum dot, respectively.
Additionally, the time intervals between consecutive tunneling events of
the same direction τll (blue to blue; tunneling left - left) and τrr (red to
red; tunneling right - right) are determined. The latter two time intervals
represent the time it takes the system to ful�l one tunnel cycle and return
to the original condition. In literature in the context of single electron
tunneling, these times are often called waiting times [162–164]. However,
the term waiting times is rather generic and would also be a reasonable
choice for the times introduced as residence times. To avoid confusion,
the times τll and τrr will therefore be referred to as return times.

6.2. Single Electron in a Double �antum Dot

The case of a single electron isolated in a DQD provides a two state sys-
tem, where the electron can either be located in the left or in the right
quantum dot. In a time-resolved charge detector signal, this results in a
two-level system, very similar to the case electron transport through a
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6.2. Single Electron in a Double Quantum Dot

single quantum dot, where the two levels are de�ned by the presence or
absence of an additional electron in the quantum dot [86, 99, 165]. While
this allows to use identical methods, the physical meaning of the resulting
quantities can di�er from the single quantum dot case.

With extracting all residence times τlr and τrl from a time trace, the
individual tunneling rates can be calculated [87, 160, 166]

Γl =
1
〈τrl〉

, Γr =
1
〈τlr〉

, (6.1)

where 〈τlr〉 and 〈τrl〉 are the average values of the extracted residence
times.

For the time trace shown in �gure 6.2 (a), the tunneling rates become
Γl = 8.7 kHz and Γr = 2.8 kHz, calculated from approximately 75 000
detected tunneling events for each direction. Thus, Γl ≈ 3Γr, in good
agreement with the detector current histogram in �gure 6.2 (b), where
the peak height of the higher current peak is approximately three times
the peak height of the lower current peak.

The approach of using equation 6.1 to determine the tunneling rates is
based on the assumption that the probability to observe a residence time
τ is given by a single stochastic process with a characteristic rate Γ . The
probability distribution ρ(τ) of the residence times in this case follows an
exponential decay with only a single exponent [166, 167]

ρ(τrl) = Γle
−Γlτrl , (6.2)

ρ(τlr) = Γre
−Γrτlr . (6.3)

The distribution of the residence times τlr and τrl extracted from the
experiment, as shown in logarithmic scale in �gure 6.3 (a), can be used to
validate this assumption and to obtain information about deviations. Both
distributions clearly follow a single exponential decay. The solid lines are
�ts according to equations 6.2 and 6.3 with tunneling rates Γl = 9.0 kHz
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a) b)

Figure 6.3.: (a) Probability distribution of the residence times ρ(τlr) (red) and
ρ(τrl) (blue) of a 3min detector time trace containing approximately 150 000
events in total. The solid lines are �ts using equations 6.2 - 6.3 with tunneling
rates Γl = 9.0 kHz and Γr = 2.9 kHz. (b) Probability distribution of the return
times ρ(τll) (green) and ρ(τrr) (orange, o�set for clarity). The dashed lines
are are based on equation 6.4 with tunneling rates determined from (a).
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and Γr = 2.9 kHz. Both rates are slightly larger than the values deter-
mined via the inverse average residence times (equation 6.1). These devi-
ations most likely originate from the �nite detector bandwidth Γdet [168].
Due to the �nite bandwidth, the detector signal does not follow changes
in the DQD state instantly. The faster consecutive tunneling events occur,
the more likely the charge detector signal does not change its state before
the DQD returns to the original state. As a result, the number of events
missed by the detection algorithm unavoidably increases toward shorter
times. Additionally, missing an event merges residence times into a single
but longer detected time, resulting in an overestimation of longer times
τ. These two e�ects result in an overall underestimation of the extracted
tunneling rates.

Increasing the detector bandwidth reduces the number of missed
events, however, at the same time increases the measurement noise,
which in turn increases the number of false events detected by the al-
gorithm. To achieve a consistent analysis for the single electron data, the
here used detection algorithm sacri�ces parts of the bandwidth for �lter-
ing the noisy data, which in return allows to use the same algorithm for
all measured time traces.

While the residence time distributions ρ(τlr) and ρ(τrl) are valuable
to obtain information about the individual tunneling rates, the return time
distributions ρ(τll) and ρ(τrr), as shown in �gure 6.3 (b), contain infor-
mation about the total two-level system. Both distributions start at zero,
since no two electrons can tunnel at the same time, run through a max-
imum, followed by an exponential decay on longer times. Interestingly,
the dashed lines, which are based on the theoretical distributions for elec-
trons tunneling through a single quantum dot [162, 169]

ρ(τll) = ρ(τrr) =
ΓlΓr

Γl − Γr

(
e−Γrτ − e−Γlτ

)
(6.4)

but with substituting the tunneling rates into and out of the quantum
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dot with the already determined rates for tunneling to the left QD2 Γl =
9.1 kHz and to the right QD3 Γr = 2.9 kHz, respectively, nicely describe
the observed distributions. Due to the distributions being equal, ρ(τrr)
(orange) was o�set for clarity in �gure 6.3 (b). For equal tunneling rates
Γl = Γr = Γ , equation 6.4 simpli�es to ρ(τ) = Γ 2τe−Γτ [162].

Even though a lot of similarities can be found, when comparing the
here observed distribution with those of single particle sources, such as
single photon emitters [170, 171] or single electron emitters [164], the
here presented system does not act as a single particle emitter. In contrast
to single particle sources, the single electron in the isolated double quan-
tum dot is only ringing back and forth and is never emitted into one of
the reservoirs. At the same time, also the interpretation of the short time
behavior is slightly di�erent compared to electrons tunneling through a
single quantum dot. For the single quantum dot case, Coulomb blockade
prevents double occupation of the quantum dot, so that no two tunneling
events of the same type can occur simultaneously. For the isolated dou-
ble quantum dot loaded with a single electron however, the absence of si-
multaneous tunneling events in the same direction is not due to Coulomb
blockade but directly results from the absence of other electrons. With
only one electron inside the DQD, the electron has to tunnel back before
tunneling in the same direction can occur again.

In a double quantum dot system, the two main contributions to the in-
terdot tunneling are the tunnel coupling strength and the detuning of the
energy levels. A detailed discussion about the tunability of the tunnel cou-
pling strength in an isolated DQD by changing the interdot tunnel barrier
gate voltage VTg3 was already given based on the analysis of stability di-
agrams in section 5.1. The direct method of analyzing the time-resolved
tunneling is now used to analyze the e�ect of the detuning between the
energy levels.

The tunnel barrier gate voltage VTg2 was hereby used as a control pa-
rameter for the detuning of the DQD. For the DQD consisting of QD2
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6.2. Single Electron in a Double Quantum Dot

and QD3, this gate is closer to QD2 than to QD3, leading to a di�erence
in lever arms and therefore to a di�erent e�ect on the energy levels of
the two QDs for a �xed voltage di�erence. A loading procedure was used
to initialize the system each time before recording the time-resolved data.
Since the loading procedure is not fully deterministic but involves tunnel-
ing, this leads to an uncertainty in the electron number. Additionally, the
system is not ideally isolated but only separated from the reservoirs by
very large tunneling barriers. However, even though the rates are small
compared to the measurement times, every once in a while an electron
might tunnel out of the DQD during the data acquisition. An additional
electron tunneling into the DQD is even less likely, since the QDs are op-
erated with their lowest energy level well above the chemical potentials
of the source and drain reservoirs. Both scenarios, zero or two electrons
in the DQD, will change the interdot tunneling characteristics. Zero elec-
trons trivially prevents tunneling events, therefore no transitions will be
observable. Interestingly, also the two electron case prevents tunneling in
the region close to the (1, 0) ↔ (0, 1) transition. Due to Coulomb block-
ade, the ground state becomes (1, 1) and no empty states are energetically
accessible to tunnel into. Only by providing energy of the order of the
single QD charging energy (& 3meV for the 2nd electron), this block-
ade could be overcome. To reliably obtain data for the single electron in
a DQD scenario, a set of three time trace of 3min length was taken for
each gate voltage value. Each of the three time traces was individually
initialized before recording the data.

For voltages −0.7V > VTg2 > −0.76V �gure 6.4 (a) shows the tun-
neling rates Γl (blue) and Γr (red). The rates were determined via equation
6.1. The �lled circles are the average tunneling rates, whereas crosses cor-
respond to the values obtained from the individual 3min time traces. For
the most positive voltages, the DQD is almost exclusively in the (1, 0)-
state, for the most negative voltages, the DQD is almost exclusively in
the (0, 1)-state. In the intermediate regime −0.72V & VTg2 & −0.74V ,
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a) b)

Figure 6.4.: (a) Tunneling rates Γl and Γr of a single electron tunneling back
and forth inside an isolated DQD as function of the gate voltage VTg2. The
gate voltage shifts the energy levels of the QDs relative to each other. Since
the tunnel coupling is the same for both directions, the tunneling rates only
depend on the detuning of the energy levels. Both rates thus increase and de-
crease symmetrically when crossing the resonance, resulting in two strongly
overlapping peaks. The small o�set between the peaks resembles one level
being energetically more favorable, except for the exact resonance condition
in the center of the peak. Due to the tunneling rates being of the order of the
detector bandwidth, the tunneling rates in the center could not be determined.
(b) Same as in (a) but in logarithmic scale with the gate voltage converted into
energy via the detailed balance condition.
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a peak is observed for both rates. The value for VTg2 = −0.726V is
missing. For this voltage, the tunneling rates are too close to the detector
bandwidth, so that the two levels can not be distinguished in the detector
current histogram. Thus, the detection algorithm could not be applied.

The overall behavior of the tunneling rates as function of VTg2 is in
strong contrast to the behavior observed for a single quantum dot. Tun-
neling into and out of a single quantum dot probes the occupied and un-
occupied states of the electron reservoirs, respectively, and thus typically
resolves the Fermi distributions in the reservoirs [56, 86, 87, 172]. In con-
trast, the single electron in the coupled DQD forms a bonding and an an-
tibonding state and the transition rates are de�ned by the interdot tunnel
coupling strength t23 and the energy level detuning∆23. Within the small
range of gate voltage VTg2 shown in �gure 6.4 (a) the tunnel coupling
strength can safely be assumed to be constant. In addition, a rough esti-
mate of t23 can be given by estimating the tunneling rates at zero detun-
ing. Assuming a tunneling rate of Γ = 100 kHz the coupling strength be-
comes t23 = hΓ ≈ 0.4neV . In contrast, the stepsize ∆VTg2 = 2mV be-
tween the datapoints results in a detuning of ∆23 = αe∆VTg2 ≈ 60 µeV .
The dominant contribution in the gate voltage dependence is thus the de-
tuning between the energy levels. The fact that the detuning is a relative
quantity between the energy levels already explains the similar behavior
of the rates Γl and Γr as function of the voltage, with both rates showing
a similar peak around the resonance condition. In contrast, probing the
Fermi distribution of a reservoir with a single quantum dot leads to an
opposite behavior of the rates as function of gate voltage. The tunneling
rate into the quantum dot is proportional to the occupied states in the
reservoirs, whereas the tunneling rate out of the quantum dot is propor-
tional to the unoccupied states, so that when one rate increases, the other
rate decreases.

For a single electron isolated in the DQD, the ratio of two rates Γl and
Γr directly resembles the ratio of the occupation probabilities of the two
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QDs. This ratio of the occupation probabilities is the Boltzmann factor, so
that

pl
pr

=
Γl
Γr

= exp

(
εr − εl
kBT

)
= exp

(
∆rl
kBT

)
, (6.5)

where pl(r) is the probability to �nd the electron in the left (right) QD,
εl(r) is the energy of the left (right) level, kB is the Boltzmann constant,
T is the temperature, and ∆rl is the energy detuning between the two
levels.

With the given temperature T = 1.5K and the experimentally deter-
mined rates Γl and Γr in the regime around the resonance, equation 6.5
can be used to convert the gate voltage into energy detuning ∆rl.

For the gate voltage range −0.72V & VTg2 & −0.74V , the detuning
∆rl = log(

Γl
Γr
)kBT changes linearly and �tting yields a lever arm of VTg2

on the detuning ∆rl of αTg2,∆rl = 0.021. Using this lever arm, �gure 6.4
(b) shows the rates Γl and Γr in logarithmic scale as function of the detun-
ing ∆rl. The mirror symmetry of the central peak around ∆rl = 0 nicely
underlines the relative quantity ∆rl to be the main tuning parameter for
the two rates.

In addition to the main peak around ∆rl = 0, there are two smaller
peaks found close to ∆rl ≈ ±0.5mV . Similar to the central peak, the
two peaks are again observed in both rates, again indicating a mechanism
that is based on the detuning. The energetic detuning |∆rl| ≈ 0.5meV is
hereby of the expected order of the level spacing of the individual QDs,
so that the side peaks could be due to transitions involving excited states.

In general, there are two possibilities how excited state transitions be-
come observable. The �rst being a direct excitation of the electron inside
the QD, leading to a �nite population of the excited state. As long as the
electron resides in the excited state, the excited state interacts with all
available states of the other QD. The second possibility inversely relies
on �nite tunneling rates between the detuned QDs, for example due to
inelastic tunneling or thermal occupation. As long as the electron resides
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in the energetically unfavorable QD, excited states of the energetically
favorable QD can be tunneled into.

Due to the charge detector bias of Vsd,qpc = 0.5mV , a �nite popu-
lation of the excited state via phonon excitation, as well as inelastic tun-
neling between the QDs is plausible. However, for the given temperature
T = 1.5K and detuning ∆rl = 0.5mV , the thermal occupation of the
higher energy state, given by the Boltzmann factor, is phighplow

≈ 2%, so
that the origin of the side peaks cannot be clearly determined. With mea-
suring the tunneling rates of the side peaks as function of the QPC bias
voltage, the contribution of phonons emitted by the QPC could be deter-
mined. Temperature dependent measurements on the other hand directly
a�ect the thermal occupation. Even though such measurements have not
been performed, the presence of the side peak is a clear indicator for �-
nite occupation of non-equilibrium charge con�gurations in the system.
For a stability diagram of the isolated DQD, as discussed in section 5.1,
the charge detector signal resolves the average occupation of the QDs, so
that the here observed side peaks con�rm the origin of the substructures
in the charge recon�guration lines in the low coupling regime being due
to �nite population of excited charge con�gurations.

6.3. Two Electrons in a Double �antum Dot

With using a slightly di�erent loading procedure, two electrons can be
loaded into the isolated DQD. With an additional electron present in the
system, interaction between the electrons can become relevant. In the
following, the two-electron tunneling dynamics will be analyzed using
time-resolved charge detection close to the degeneracy between the (2, 0)
and the (1, 1) charge states. Figure 6.5 (a) and (b) each show a 50ms time
intervals of the detector current Iqpc for two di�erent values of VTg2.
Converting the gate voltage di�erence into a detuning di�erence, via the
lever arm αTg2,∆rl = 0.021 determined for the single electron, the situ-
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ation shown in (a) is ∆rl ≈ 25 µeV further away from the (2, 0) - (1, 1)
degeneracy. An absolute detuning can not be provided, since the tunnel-
ing rates at the resonance again exceed the detector bandwidth, and thus
can not be determined.

(2,0)

(1,1)

a) c)

b) d)

(2,0)

(1,1)

Figure 6.5.: (a, b) Time-resolved charge detector current Iqpc for two situations
close to the (2, 0) - (1, 1) degeneracy. The detuning between the two QDs is
reduced by ∆rl ≈ 25 µeV from (a) to (b), leading to larger tunneling rates for
(b). Clustering of the tunneling events occurs, and longer intervals without
events can occur when the system is in the (1, 1)-state. The digitized signal is
shown in red, o�set for clarity. (c, d)Detector current histograms correspond-
ing to (a) and (b), respectively. Both show two peaks, corresponding to two
charge states of the DQD. The lower current state corresponds to the (1, 1)
con�guration, the higher current to the (2, 0) con�guration, respectively.

The two panels (c) and (d) in �gure 6.5 show the detector current
Iqpc histograms corresponding to (a) and (b), respectively, over the en-
tire 3min time traces. Both show clearly a two-level system, so that a
detection algorithm very similar to the single electron case is applicable.
The lower current state, corresponding to more negative potential at the
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charge detector, can be assigned to the (1, 1) state, since the detector is
located below the right QD. A digitized version of the two time traces
obtained by the detection algorithm is shown in (a) and (b) in red. The
detected tunneling events well reproduce the switching between the two
states.

Many tunneling events are present in the two time intervals shown
in �gure 6.5 (a) and (b). However, with considerably more events and
thus larger tunneling rates in (b), where the actual resonance condition
is energetically closer. For both cases, but much more noticeable for the
larger tunneling rates, there are several long time intervals without any
events separating clusters of fast back and forth tunneling, an indication
for competing processes acting on di�erent timescales being relevant in
the system.

Information about the underlying rates can be obtained from the resi-
dence times, which are the time intervals between successive events. In
case of two competing rates, using equation 6.1 to determine the tun-
neling rates via the inverse of the average residence times is not valid
anymore. However, information about the rates can still be obtained via
the residence time distribution ρ(τ). Figure 6.6 shows the experimentally
obtained probability distribution of the residence times ρ(τlr) in red and
ρ(τrl) in blue for the two situations shown before. Panels (a) and (b) again
correspond to more and less detuned from the (2, 0)-(1, 1) degeneracy, re-
spectively. The residence time τlr corresponds to tunneling from the left
QD to the right QD, i.e. to transitions (2, 0)→ (1, 1). Vice versa, τrl cor-
responds to tunneling from the right QD to the left QD, i.e. to transitions
(1, 1)→ (2, 0).

For the two detuning con�gurations, the residence time distributions
are quite similar. However, the distributions for the two tunneling di-
rections are signi�cantly di�erent. For tunneling to the right, both dis-
tributions ρ(τlr) are straight lines in the logarithmic scale, the same as
observed in the single electron case, showing that the process is deter-
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a) b)

Figure 6.6.: Probability distribution of the residence times τlr (red) for tunnel-
ing to the right QD and τrl (blue) for tunneling into the left QD for (a) fur-
ther away from and (b) closer to the degeneracy between the (2, 0) and (1, 1)
charge states. The tunneling times τrl from the (1, 1) into the (2, 0) state in-
dicate the presence of two competing rates. The rates are �t individually with
�ts provided by the dashed lines. Due to spin-�ips, the two-electron DQD can
be spin blocked in the (1, 1) con�guration. The slow rates ΓS are the rate with
which the blockade is lifted, i.e the spin-�ip rates in the system.
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mined by a single rate parameter. By �tting the distribution using equa-
tion 6.3, the underlying tunneling rates from left to right are determined
to Γr = 6.8 kHz and Γr = 10.3 kHz, the corresponding �ts are given by
the orange dashed lines in �gure 6.6 (a) and (b).

In contrast, the distributions ρ(τrl) for tunneling to the left do not
show straight lines but start with a large slope at short times τ decreas-
ing toward longer times τ. However, for both the shortest times as well
as the longest times, ρ(τrl) is well described by a straight line. Only for
intermediate times, i.e. in the regime, where the two straight lines would
intersect, a signi�cant curvature is found. Both, the short times as well as
the long times thus follow an exponential decay with a single exponent.
By separating the two regimes and �tting them individually, the two cor-
responding rates can be determined. For the two con�gurations discussed
here, the fast rates are given by Γl = 2.9 kHz and Γl = 7.4 kHz, the cor-
responding �ts are given by the blue dashed lines. The same procedure
for the slower rates yields ΓS = 301Hz and ΓS = 373Hz with �ts given
by the black dashed lines.

The fact that two regimes exist, each following an individual rate de-
pendence, shows clearly, that these are competing processes. For inde-
pendent processes starting from the same level, fast events of one process
prevent the occurrence of slow processes of the other, so that the individ-
ual dependencies mask each other and combine into a single but faster
rate dependence of the events.

For the here presented case, the tunneling from the (2, 0) into the (1, 1)
state is determined by a single rate, the tunneling rate Γr. For tunneling
from the (1, 1) into the (2, 0) state, two competing processes are present,
a fast process with rate Γl and a slow process with rate ΓS. This can be
understood by taking the spin blockade in quantum dots and spin �ips
into account [173]. With two electrons occupying the left quantum dot,
the right quantum dot is empty and tunneling is always possible, leading
to a single rate Γr observed for tunneling from the left QD to the right
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6. Time-Resolved Electron Tunneling

QD. However, in the (1, 1) con�guration, spin conserving tunneling into
the ground state is only possible if the two spins are aligned anti-parallel.
In case a spin �ip occurs, either due to spin �ip tunneling or due to a
spin �ip in the (1, 1) con�guration, tunneling back into the into the (2, 0)
ground state is spin blocked. As long as the triplet state is energetically
not accessible for tunneling, tunneling back into the (2, 0) state is blocked
until another spin �ip occurs. The slow rates ΓS, which are blocking the
faster events, are thus the spin �ip rates of the system.

6.4. Three Electrons in a Double �antum Dot

This part will discuss time-resolved charge detection with three electrons
trapped inside an isolated double quantum dot and around the degeneracy
of the (3, 0) and (2, 1) charge states. A naive expectation for this system
is sketched in �gure 6.7 (a). In an energetic situation close to the (3, 0)
and (2, 1) degeneracy, two electrons are expected to always remain in
the left QD. The box containing the up and down arrow depicts these two
electrons occupying the two spin con�gurations of the lowest energy level
of the QD. The third electron is then unpaired on the next energy level,
and in resonance with the lowest level of the right quantum dot. Since the
lowest energy level of the left QD is much lower in energy, these electrons
are not expected to tunnel.

In such an idealized situation, looking at a time resolved charge de-
tector signal, the behavior would be very similar to the one observed for
the single electron case, since only one of the three electrons in the DQD
has an energetically accessible state to tunnel into. Surprisingly, the his-
togram of a 500 s long time-resolved measurement of the charge detector
current Iqpc, as shown in �gure 6.7 (b), reveals a much more complex
level structure with multiple peaks. The purple dotted line is a 50 times
magni�cation of the blue curve. In total, there are eight di�erent peaks
(L0 - L7) with di�erent weightings found in the histogram, correspond-

200



6.4. Three Electrons in a Double Quantum Dot

�

�

a) b)

L0

L6

L1
L2

L3
L4
L5

L7

Figure 6.7.: (a) Energy level schematic of the expected con�guration of an iso-
lated DQD loaded with three electrons at the (3, 0)-(2, 1) degeneracy. Two
electrons with opposite spins, indicated by the arrows, populate the lowest
energy level of the left QD. The third electron can tunnel back and forth be-
tween a higher state of the left QD and the ground state of the right QD.
(b) Histogram of a time-resolved detector current measurement close to the
(3, 0)-(2, 1) degeneracy (blue). The purple dotted line is a 50x magni�cation
of the histogram. A total of eight peaks are observed in the histogram, corre-
sponding to eight di�erent charge con�gurations seen by the charge detector.
Due to the presence of more than two charge distributions, the transition be-
havior clearly deviates from the simple model shown in (a).
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6. Time-Resolved Electron Tunneling

ing to eight di�erent potential distributions seen by the charge detector,
in clear contrast to the naive expectation of a two level system. A smaller
detector current Iqpc hereby correspond to a more negative potential at
the detector, i.e. electrons being closer to the detector, which is located
below the right QD3.

Even though the observed histogram is not only a two level system,
a post-processing algorithm very similar to the single electron case can
be used to digitize that data. A current interval is assigned to each of
the peaks and each measured current value inside one of the intervals is
assigned to the respective level. Points lying in none of the intervals are
assigned to the last known state. The algorithm yields the level and the
timing of each transition out of this level, the values necessary for a full
reconstruction of the time trace. Due to considerable overlap between
some of the neighboring peaks, a combination of averaging and small
level intervals has been used to minimize the detection of noise induced
false events but at the cost of increasing the probability to miss fast events.

A ∆t = 1 s time window of a detector current time trace at refer-
ence time t0 = 0 is shown in blue in �gure 6.8 (a). The reference time
t0 = 0 is set at the beginning of a time-resolved measurement, directly
after initializing the system by loading three electrons, transferring the
DQD into the isolated con�guration, and moving to the (3, 0)-(2, 1) de-
generacy line. The corresponding digitized signal obtained from the de-
tection algorithm is shown in red (o�set for clarity). Similar to the single
electron case, switching events between di�erent states are observed in
the time-resolved detector current. However, the current does not switch
back and forth between two states, but between multiple levels, as already
indicated by the number of peaks observed in the current histogram. Nev-
ertheless, the digitized signal obtained by the detection algorithm shows
a good agreement with the measured time trace.

The 1 s time window shown in �gure 6.8 (b) is part of the same time
trace as shown in (a), but starting at time t0 = 10 s. As before, the cur-
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a)

b)

Figure 6.8.: (a) ∆t = 1 s time window of a detector current time trace (blue)
at time t0 = 0, directly after the initialization of the DQD by loading three
electrons, isolating the DQD from the reservoirs, and moving to the (3, 0) −
(2, 1) degeneracy. A post processing detection algorithm was used to assign
the current values to a total of eight di�erent levels and thereby determine the
time intervals τ the system resides in each level. The digitized version of the
time trace is shown in red and shows a good agreement with the experimental
data. (b) Same as in (a) but for t0 = 10 s after starting the data acquisition.
The number of transitions observed for the same time interval of ∆t = 1 s is
drastically lower, an indication for the occurrence of relaxation in the system.
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rent jumps between di�erent levels and the digitized signal nicely repro-
duces the measured signal. However, the time intervals between succes-
sive events are larger and thus the number of events in the same time
interval is smaller. Since tunneling events are distributed statistically for
a �xed tunneling rate, this observation could be due to statistical extreme
values for the given time windows. However, there is an initialization
process happening before the time t0 = 0 (a) but not before t0 = 10 s

(b), so that the initial conditions are not identical, and the possibility of
time dependent switching rates Γij(t) between level i and level j has to
be taken into account.

In the latter case, the absolute time dependence of the system parame-
ters has to be taken into account for the statistical analysis. Single quan-
tum dots with time-dependent tunneling rates have been discussed under
periodic manipulation of the tunneling rates in [99, 164, 174], and based
on the real-time analysis of short time intervals, a stabilization of the sin-
gle electron tunneling process was achieved by manipulating the tunnel-
ing rates in a closed-loop feedback control [99, 165, 175]. In a similar way,
the time dependency of the here presented system will in the following
be characterized by analyzing and comparing short time intervals of the
full time traces.

To achieve a better basis for the statistical analysis, the time-resolved
measurement was repeated three times under the same conditions, each
time beginning with an initialization procedure and thereafter measuring
the detector current Iqpc for 500 s. As a �rst step, the time traces are
divided into intervals of ∆t = 5 s and the total occupation time of each
state within each time interval is calculated. For the levels L1 - L4, the
occupation times are shown in �gure 6.9 as function of time t0 after start-
ing the time-resolved measurement. The remaining levels L0, L5, L6, and
L7 are not shown, since their combined total occupation sums up to less
than 5%.

Colored dots are the occupation values for the individual time traces,
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Figure 6.9.: Occupation probability of the levels L1 - L4 evaluated for time inter-
vals of∆t = 5 s and shown as function of time distance t0 to the beginning of
the measurements directly after the initialization procedure. The colored dots
correspond to three individual time traces measured under the same condi-
tions. The grey bars are an average over the individual time traces. The oc-
cupation probability of L1 decays with increasing t0, whereas the occupation
of L2 increases for approximately the same amount, indicating an excitation
process driving the transition from L2 to L1 that relaxes over time. The oc-
cupation probability of both levels L3 and L4 stays approximately constant as
function of t0.
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the gray bars are the average over the individual time traces, the errorbars
show the standard deviation. Although the values of the individual traces
scatter due to the small data basis for each datapoint, there is a clear ten-
dency observable for all four levels. Averaging over the three time traces
results in a more or less smooth behavior of the occupation for all levels.
While the occupation of the levels L3 and L4 are approximately indepen-
dent of the absolute time, level L1 is occupied about 21.0% ± 5.1% of the
time at the beginning of the time-resolved measurement (t0 = 0), which
decreases to less than 5% until t0 = 30 s. The opposite trend is observed
for L2, where the occupation at t0 = 0 is 44.5% ± 2.2% and increases to
above 60% until t0 = 30 s. The sum of the occupation of the two levels
L1 and L2 is thus approximately constant. This indicates the presence of
a decaying excitation process driving the transition from L2 to L1.

Such an excitation could be a reason for a time dependence of the tran-
sitions between L1 and L2. However, the two parts of the time trace in
�gure 6.8 show many and fast events between all levels at the beginning
of the time-resolved measurement (t0 = 0) compared to the much less
and slower transitions at t0 = 10 s. This behavior rather implies a time
dependency of the overall system than only of an individual transition.

This time dependence however becomes clearly observable in the
switching characteristics. For the two transitions L2→ L3 and L2→ L1,
�gure 6.10 (a) shows the inverse of the mean residence times 1/ < τ23 >

and 1/ < τ21 > as function of time t0 after starting the time-resolved
measurement. The residence time τij hereby is the time interval between
entering the state Li and leaving into state Lj. The dots show the values
obtained from the individual time traces, the lines are the average over the
three traces. Each datapoint is evaluated over a time interval∆t = 5 s and
assigned to the value t0 centered in the interval.

For the smallest value t0 = 2.5 s the two rates are of the order of
Γ = 100Hz, sharply dropping with increasing time, and with both curves
following the same baseline. The latter is an e�ect of the shared initial
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a) b)

c) d)

Figure 6.10.: Determination of the time dependent switching rates from L2 to
the neighboring L1 and L3 as function of the time distance t0 to the beginning
of the time-resolved measurements by analyzing time windows of ∆t = 5 s.
(a) Switching rates 1/ < τ23 > from L2 to L3 and 1/ < τ21 > from L2
to L1 calculated from the average residence times. Due to the shared initial
state the residence times for the two possible switching directions follow the
same statistics and thus the same time dependency. (b) In contrast number of
events for the two possible transitions di�ers. (c) The switching rates of the
individual processes are given by the observed transitions (counts) per time
spent in the initial state L2. (d)The rates shown in (a) and additionally the sum
of the individual switching rates Γ23 + Γ12 (green) in log-log scale. The sum of
the individual rates determines the statistics for the observed residence times.
The approximately linear behavior with slope −1 implies a t−1

0 dependency
for the tunneling rates.
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state L2. Observing an event τ23 requires that no event into L1 has oc-
curred before. Thus, every observed residence time τ23 prevents the ob-
servation of a longer residence time τ21, and vice versa. The waiting times
τ23 and τ21 are thus not independent, but follow a shared distribution.
This also directly implies that the rates 1/ < τ23 > and 1/ < τ21 > are
not equal to the individual switching rates Γ23 and Γ21.

In contrast, for the number of transitions observed within the same
time intervals, shown in �gure 6.10 (b), the result di�ers for the two tran-
sitions. The dots again are the values obtained from the individual time
traces, the lines are averaged over the traces. Again, both transitions show
a strong t0 dependency with a high number of counts per time interval
∆t = 5 s at small t0, and them dropping fast with more distance to the
start of the time-resolved measurement. The number of events is, how-
ever, greater for the L2→ L1 transition compared to the L2→ L3 transi-
tion. The state L2 thus favors switching into L1, implying that Γ21 > Γ23.
The ratio of the counts hereby equals the ratio of the individual switching
rates.

The switching rates de�ne the number of switching events expected
per second. Thus, they can be estimated by dividing the number of tran-
sitions observed within a time interval ∆t by the total time spent in the
initial state L2 during the same time interval. The number of transitions
has to be compared to the lifetime of the state rather than to the total time
interval, since the respective transitions can only occur while the system
is in state L2. The individual switching rates Γ23 (red) and Γ21 (blue) cal-
culated this way are shown in �gure 6.10 (c). In addition, the green curve
shows the sum of the two switching rates Γ23 + Γ21, which can be seen as
the decay rate of L2. This decay rate de�nes the two rates obtained from
the observed residence times < τij > in (a). The fact that the occupation
of L2 is not constant over time but increases for small t0, as shown ear-
lier in �gure 6.9, does not a�ect the qualitative behavior of the switching
rates Γ23 and Γ21 compared to the number of counts, but only results in a
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slightly smaller slope observed at small t0.
Figure 6.10 (d) shows the same data as in (a) but in log-log scale and

additionally the sum of the individual switching rates Γ23 + Γ21 is shown
in green. The similarity between the three curves clearly underlines that
the residence time statistics is determined by the sum of the two switching
rates. Additionally, the approximately linear behavior in the log-log plot
indicates a power law dependence of the rates as function of t0 with Γ ∝
t−1

0 .
The discussed procedure of calculating the individual switching rates

via the number of observed transitions divided by the lifetime of the state
can now be used to also determine other switching rates of the system.
However, for some of the individual transitions, the lifetimes of the initial
state as well as the number of events is small or even zero for most of
the ∆t = 5 s time windows, so that this procedure for determining the
tunneling rates as function of t0 is not applicable. For the six transitions
providing a suitable data basis, these switching rates are shown as dots in
�gure 6.11 in (a) linear scale and (b) log-log scale.

Additionally, for each rate except Γ12, which does not show a clear time
dependency, the data was �t using the empirical formula

Γ(t0) = c+
1

at0 + b
(6.6)

with �tting parameters a, b, and c. The corresponding �ts are shown
as black dashed lines in �gure 6.11 and describe the observed time de-
pendency of the switching rates reasonably well, clearly underlining the
presence of a 1/t0 decay in the system. The obtained �tting parameters
aij, bij, and cij for transitions Li → Lj are given in table 6.1. The pa-
rameter a hereby scales the timescale of the decay, parameter b prevents
divergence at t0 = 0, and parameter c can be interpreted as the equilib-
rium switching rate, since lim

t0→∞ Γij(t0) = c.

Interestingly, the �ts yield cij = 0 for all switching rates except Γ43,
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a) b)

Figure 6.11.: Switching rates Γij as function of t0 for transitions from Li to Lj in
(a) linear scale and (b) log-log scale. The lowest level L0 and the higher levels
L5-L7, are only rarely occupied, so that the transitions involving these levels
are not evaluated due to a lack of information for most of the times t0. All
transition rates, except Γ12 show a pronounced time dependency with larger
rates close to the beginning of the measurement at t0 = 0. The black dashed
lines are �ts to each switching rate individually via Γ(t) = c + 1

at+b . The
good agreement between data and �ts clearly underlines a 1/t time depen-
dency. The rate Γ12 on the other hand does not show a clear time dependency.
In combination with Γ21 decreasing over time, this explains the correlation
between the occupation times of L1 and L2.
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where, however, the �tting error is greater than c43. One the one hand,
the vanishing cij could be an artifact due to the small data basis for large
t0, where the number of events within a time interval ∆t = 5 s becomes
small for all transitions. On the other hand, from the electrostatics point of
view switching is only expected to occur between two charge states, (3, 0)
and (2, 1). It is thus plausible, that most of the transitions are observed
only due to excitation during the initialization procedure and disappear
on longer timescales due to relaxation of the system.

aij bij(s) cij(Hz)
Γ21 5.34 · 10−3 2.55 · 10−3 0
Γ23 12.67 · 10−3 6.64 · 10−3 0
Γ32 4.26 · 10−3 5.23 · 10−3 0
Γ34 8.99 · 10−3 5.91 · 10−3 0
Γ43 3.17 · 10−3 1.93 · 10−3 276 · 10−3

Table 6.1.: Fit parameters a, b, and c obtained for �tting Γij(t) = c+ 1
at+b .

For the other two parameters aij and bij the values �uctuate be-
tween the individual rates but are of the same order of magnitude with
amax/amin ≈ 4 and bmax/bmin ≈ 3.5. Hereby, amax = a23 and
amin = a43. As can be seen in �gure 6.11, these are the two transitions
with the overall smallest transition rate Γ23 (red circles) and the overall
highest transition rate Γ43 (light green circles). This provides an indica-
tion on a dependency between the scaling parameteraij and the observed
switching rates Γij.

Normalizing the rates determined from the time traces on the value
obtained for the �rst time interval 0 6 t0 6 5 s (datapoint at t0 = 2.5 s),
the time dependencies of the individual rates become similar. Figure 6.12
shows the normalized rates Γ/Γ0 with Γ0 = Γ|t0=2.5s in (a) normal scale
and (b) log-log scale. Except for Γ12, which does not show a signi�cant
time dependence, all other normalized rates collapse onto a single curve.
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For larger times t0 the �uctuations hereby increase due to the number of
events per time interval becoming small. Apart from the �uctuations, all
normalized rates show an almost identical behavior as function of t0.

Figure 6.12.: Tunneling rates Γij relative to the value at t0 = 2.5 s. All rates
except Γ12 show a 1/t time dependency and collapse on a single curve. A
global �t to all rates except Γ12 via Γ(t) = c + 1

at+b yields parameters a =
0.306Hz, b = 0.228, and c = 0.

The collapse of all time dependent rates on a single curve allows to �t
the rates globally instead of individually. The global �t via equation 6.6
hereby yields a = 0.306Hz, b = 0.222, and c ≈ 0. The values a and b
obtained from the global �t after the normalization are large compared to
the ones for the individual rates. However, using the parameters aij and
bij obtained by �tting the rates individually (table 6.1) and multiplying
them by the normalization coe�cient Γ0,ij of the respective transitions
shows a ≈ aijΓ0,ij and b ≈ bijΓ0,ij. Hereby, aijΓ0,ij = 0.310Hz± 0.021
and bijΓ0,ij = 0.211± 0.062 (mean ± standard deviation).

Over all, the normalized rates can be described by the same 1/t0 de-
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cay, an indication for a single shared relaxation parameter in the system.
Unfortunately, the origin of this 1/t0 decay cannot be conclusively deter-
mined at this point. However, the shared relaxation parameter implies a
likewise shared excitation parameter. Combined with the 1/t0 decay, this
points toward a two-dimensional di�usion process. With (isotropic) dif-
fusion coe�cient D and concentration U, the two-dimensional di�usion
equation is given by

∂2U

∂x2 +
∂2U

∂y2 =
1
D

∂U

∂t
. (6.7)

For an instantaneous point source, i.e., a concentration U, instanta-
neously released at time t = 0 at location r =

√
x2 + y2 = 0, a solution

for equation 6.7 is given by [176]

U =
M

4πDt exp
(
−r2

4Dt

)
, (6.8)

whereM is the total amount of di�using substance. At the position of the
point source r = 0, equation 6.8 simpli�es to

U =
M

4πDt ∝
1
t

, (6.9)

resulting in a 1/t dependency.

A candidate for a local source of non-equilibrium leading to di�u-
sion would be Joule heating at the QPC due to the QPC current be-
ing larger during the initialization. The power P = Vsd,qpc · Iqpc ≈
0.5mV ·10nA = 5 pW dissipated near the QPC during the initialization
is approximately three times the power dissipated during the measure-
ment. This can be considered as a heat source that is regulated down at
the beginning of the time-resolved measurement so that a cooling pro-
cess takes place. Indeed, for low temperatures, the heat capacitance of a
2DEG becomes very small [177], and a QPC operated at P ≈ 1.25 pA has
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already been used for heating a 2DEG [178], however, at temperatures
even smaller than the T ≈ 1.5K present here.

Another possibility is a local excitation due to the gate voltage ramp
used for the initialization. The gate voltage change was ∆VTg2 ≈ 0.5V
at a rate of 0.3V/s. The gate is located on the surface of the sample,
while the 2DEG is located approximately 110nm below the surface. In-
between, there is the Si-δ-doping layer, located 70nm below the surface,
consisting of positively charged donor atoms. Changing the gate volt-
age could locally modify the charge distribution, for example by injecting
electrons due to gate leakage, which can then accumulate at the doping
layer. This local non-equilibrium would then equilibrate via di�usion.

In any case, the 1/t0 dependency was only observed for the three elec-
tron system but not for the single or two electron case, where very similar
initialization procedures were used. At the same time, also the number
of charge con�gurations observed for the three electron case exceeds the
number of possible distributions of the electrons inside the DQD. Even
if taking large excitation energies into account and thereby allowing all
possible con�gurations with three electrons, instead of only the (3, 0) and
(2, 1) con�gurations, which are close to degenerate, only the four charge
states (3, 0), (2, 1), (1, 2), and (0, 3) exist. However, there were eight levels
present in the charge detector signal histogram, corresponding to eight
di�erent charge con�gurations.

Nevertheless, both scenarios could be the reason for the observed time
dependency, since the three electron con�guration qualitatively di�ers
from the single and two electron case. While the �rst two electrons oc-
cupy the two spin con�gurations of the ground state of a quantum dot
and thus have an s-type wave function, the third electron has to occupy
the next higher level with a p-type wave function. In contrast to the s-
type wave function, a p-type wave function is not centered in the QD and
the position of the wave function maxima becomes sensitive to the shape
and symmetry of the QD. The exact shape of the potential forming the
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here discussed QDs is not known. However, due to the system being a
DQD there is some initial asymmetry present. In the presence of �uc-
tuations or deformations of the potential landscape, for example due to
charge �uctuations in trap states near the QD, the shape and symmetry
of the QD can change as function of time. Changing the shape of the QD
can then e�ectively displace the charge within the quantum dot, which
could change the potential at the QPC. For a p-type wave function, the
length over which charges can be displaced is hereby signi�cantly larger
than for the s-type wave function, which is centered in the QD.

In summary, this chapter presented time-resolved single electron tun-
neling measurements on a single, two, and three electrons isolated in a
double quantum dot. For the single electron case, a two-level system was
observed, so that statistical analysis similar to a single quantum dot cou-
pled to reservoirs was applicable. After an introduction into the process-
ing of the time-resolved charge detector signal, the residence time and
return time distributions were evaluated and the tunneling rates back and
forth between the two QDs could be determined. A gate voltage was used
to change the detuning between the QDs, showing a symmetric behav-
ior of the two tunneling rates with both rates increasing toward smaller
detunings. This symmetric behavior is a clear indicator for the relative
quantity of the energetic detuning between the QDs being the tuning pa-
rameter for the rates. From the gate voltage dependence, the detailed bal-
ance approach allows to calculate the lever arms for a known temperature
or vice versa.

With two electrons isolated in the DQD, similar switching between two
charge states was observed. The waiting time distributions showed a sin-
gle rate dependency for the (2, 0)→ (1, 1) transition, and two competing
rate dependencies for the (1, 1) → (2, 0) transition. For the latter tran-
sition, tunneling becomes spin-blocked after a spin-�ip occurs, so that a
second spin-�ip is needed to lift the blockade. The tunneling rates and
the spin-�ip rate was extracted from the residence time distribution.
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For three electrons isolated in the DQD close to the degeneracy of the
(3, 0) and (2, 1) con�gurations, eight di�erent charge states were observed
in the time-resolved charge detector signal. Additionally, a signi�cant
time-dependency of the switching rates was observed. After introduc-
ing the procedure to extract the switching rates in a multi-level system,
small time intervals were analyzed as function of the time t0 after start-
ing the time-resolved charge detection. A 1/t0 dependency was found for
most of the switching rates. By normalizing the switching rates to their
initial value Γ0 at t0 = 0, all time-dependent rates collapsed on a single
curve, a clear signature of a shared relaxation process. The 1/t0 depen-
dency hereby indicates a relaxation process based on a two-dimensional
di�usion process.
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Summary

This thesis covers experimental approaches to characterize and control
the electronic properties of quantum dot arrays. Arrays consisting of two
to four tunnel coupled quantum dots were investigated using transport
spectroscopy and successfully transferred into a con�guration isolated
from the electron reservoirs, where the number of electrons inside the
quantum dot array is �xed. In the isolated con�guration, a simpli�cation
of the parameter space and a high level of tunability of the interdot tran-
sitions, including long-range transitions between non-neighboring quan-
tum dots, was demonstrated. The �ndings contribute to enabling and
simplifying the tuning of coupled quantum dot systems for applications
in quantum technologies.

The device used was based on a two-dimensional electron gas (2DEG)
formed in a GaAs/AlGaAs heterostructure. Lithographically de�ned
Ohmic contacts allowed to perform electronic transport measurements.
A total of 13 gate electrodes on the surface of the heterostructure were
used to electrostatically form and control the quantum dot arrays inside
the 2DEG. The energy levels of the quantum dots, as well as the tunnel
barriers, and thus the coupling parameters, were controlled by voltages
applied to the gate electrodes. A quantum point contact (QPC), capaci-
tively coupled to the quantum dots, was used as a charge detector. Tuning
the QPC into the transition regime between two conductance plateaus,
the QPC conductance becomes very sensitive to changes in the potential
landscape. This high sensitivity was utilized to detect charging events
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into and out of the quantum dot arrays, and to observe charge recon�gu-
rations inside the arrays. Three di�erent sizes of serially coupled quantum
dot arrays were analyzed, the double quantum dot (DQD), triple quantum
dot (TQD), and the quadruple quantum dot (QQD) array.

A combination of electronic transport measurements and charge de-
tection was used to introduce the basic transport phenomena through the
di�erent array sizes and to extract electrostatic properties. For small bias
voltages, the stability diagram of a DQD was introduced, the energetic
extent of a TQD resonance in its three-dimensional energy space was de-
termined, and a QQD resonance could be identi�ed. For larger bias volt-
ages, the characteristic bias triangles emerged in the DQD stability dia-
grams, showing �nite current up to a detuning between the quantum dots
equal to the energy window opened up by the applied bias voltage. Sim-
ilar bias dependent structures, originating from resonances between two
of the quantum dots, were analyzed for the TQD and showed additional
substructures under asymmetric coupling conditions. Excited state reso-
nances were identi�ed as the origin of the substructures enabling excited
states spectroscopy. Bias triangles originating from resonances between
two center quantum dots were analyzed for the QQD. In the weak cou-
pling regime, the linear dependence between detuning and applied bias
could be con�rmed, providing a characterization method directly in the
QQD con�guration instead of relying on single quantum dot characteri-
zations with their strongly di�ering potential landscapes.

For all array sizes, a strong dependency of the transport characteristics
on the coupling parameters was observed. In the weak coupling regime,
transport through the quantum dot arrays was only observed close to res-
onances between all quantum dots. With increasing the coupling, �nite
current through the arrays also emerged for situations, where only one
of the quantum dots was in resonance with the electron reservoirs. Fi-
nite current through serially coupled quantum dots with one or more of
the quantum dots in Coulomb blockade shows that long-range tunneling
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with an energetically detuned quantum dot in between is experimentally
accessible in these systems. For the DQD system, this long-range tun-
neling was shown to depend in a non-monotonic way on the number of
electrons in the o�-resonant quantum dot, �tting well to changes in the
coupling originating from a two-dimensional electronic shell structure.

By isolating the quantum dot arrays from the electron reservoirs, a
framework was realized that allowed for a detailed analysis of the inter-
dot transitions. While transport through the array is blocked in such iso-
lated systems, the charge detector allows tracking of electrons transferred
within the array. Complemented by capacitance model simulations, the
example of the DQD was used to introduce the transfer to the isolated con-
�guration and the arising pattern of charge recon�guration lines. With
two electrons isolated in the DQD, a high level of control over the inter-
dot couplings was demonstrated, from a fully delocalized electron down
to interdot tunneling rates of only a fewHz. For the isolated TQD, charge
recon�guration lines corresponding to three di�erent interdot tunneling
transitions have been found. The recon�guration line pattern was only
reproduced in the capacitance model simulations by allowing long-range
transitions directly between the non-neighboring quantum dots. It was
shown experimentally that the number of electrons loaded into the array
before isolation can be controlled. With a single electron isolated in the
TQD, it was successfully demonstrated that long-range transfer can be
suppressed by reducing the interdot coupling. The ability to control the
strength of the long-range coupling between the non-neighboring quan-
tum dots was demonstrated with two electrons isolated in the TQD. Sig-
natures indicating the experimental presence of long-range transitions
across two intermediate quantum dots have been found for the isolated
QQD array.

The tunneling dynamics inside an isolated quantum dot array were an-
alyzed on the basis of a DQD by detecting tunneling events in a time-
resolved manner. With a single electron isolated in the DQD, back and
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7. Summary

forth tunneling between the two quantum dots could be detected over
timescales of minutes and the time intervals between the tunneling events
were analyzed statistically. The tunneling rates were controllable by the
detuning between the quantum dots. For two electrons isolated in the
DQD, two competing rates were observed due to spin-�ips leaving the
system in spin blockade and the spin-�ip rate could be determined. A
qualitatively di�erent switching behavior was observed for three elec-
trons loaded into the DQD. Multiple charge states were detected by the
charge sensor and time dependent switching rates were observed and an-
alyzed. The rates showed a decreasing behavior with temporal distance
from the loading procedure, �tting to an excitation during the loading
procedure and relaxation based on a two-dimensional di�usion process.

Overall, the operation of quantum dot arrays in the regime isolated
from the electron reservoirs has been shown to be bene�cial. Decoupling
from the electron reservoirs simpli�es the energy space of the array and
increases the energy distance between di�erent charge states while pro-
viding a high degree of tunability over the interdot tunneling, including
long-range tunneling between non-neighboring quantum dots.
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Figure A.1.: (a) Evolution of the charging energies for reference data (blue) and
data from �g 4.2(a) (red) with an o�set of �ve electrons in QD2. (b) RMSD for
di�erent o�set electrons in QD2. The clear minimum at �ve o�set electrons
determines the number of electrons in QD2.
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Figure A.2.: Coulomb diamond measurements of the four single quantum dots,
used to extract the charging energies EC and gate voltage distances ∆Vgate
to calculate the lever arm αgate.
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Figure A.3.: Detector signals corresponding to �gure 4.9. A typical stability
diagram is obtained for Vsd,dot = 0V . With increasing |Vsd,dot|, the appear-
ance of the charging lines changes and charge recon�guration (dark blue) and
charging events involving more than one electron (red) become increasingly
dominant.
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Figure A.4.: Current Idot corresponding to �gure 5.1 for the same voltage range
and with the same annotations for the di�erent coupling regions. Current
through the DQD is only found in region I, where the DQD is well coupled
to both reservoirs. The bending of the charging lines and their visibility also
away from the triple points is the typical behavior of a strongly coupled DQD.
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