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The goal of this paper is to prove a compact embedding result for spaces of forward rate curves. As a consequence of this result, we
show that any forward rate evolution can be approximated by a sequence of finite dimensional processes in the larger state space.

1. Introduction

The Heath-Jarrow-Morton-Musiela (HJMM) equation is a
stochastic partial differential equation that models the evo-
lution of forward rates in a market of zero coupon bonds; we
refer to [1] for further details. It has been studied in a series
of papers; see, for example, [2–5] and references therein. The
state space, which contains the forward curves, is a separable
Hilbert space 𝐻 consisting of functions ℎ : R

+
→ R. In

practice, forward curves have the following features.

(i) The functions ℎ ∈ 𝐻 become flat at the long end.
(ii) Consequently, the limit lim

𝑥→∞
ℎ(𝑥) exists.

The second property is taken into account by choosing the
Hilbert space

𝐿
2

𝛽
⊕R, (1)

where 𝐿2
𝛽
denotes the weighted Lebesgue space

𝐿
2

𝛽
:= 𝐿

2

(R
+
, 𝑒
𝛽𝑥

𝑑𝑥) , (2)

for some constant 𝛽 > 0. Such spaces have been used, for
example, in [2, 3]. As flatness of a function is measured by its
derivative, the first property is taken into account by choosing
the space

𝐻
𝛾

:={ℎ : R
+
󳨀→R : ℎ is absolutely continuous with ‖ℎ‖

𝛾
<∞},

(3)

for some constant 𝛾 > 0, where the norm is given by

‖ℎ‖
𝛾
:= (|ℎ (0)|

2

+ ∫
R
+

󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠

(𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑒
𝛾𝑥

𝑑𝑥)

1/2

. (4)

Such spaces have been introduced in [1] (even with more
general weight functions) and further utilized, for example, in
[4, 5]. Our goal of this paper is to show that for all 𝛾 > 𝛽 > 0

we have the compact embedding

𝐻
𝛾
⊂⊂ 𝐿

2

𝛽
⊕R, (5)

that is, the forward curve spaces used in [1] and forthcoming
papers are contained in the forward curve spaces used in
[2], and the embedding is even compact. Consequently, the
embedding operator between these spaces can be approx-
imated by a sequence of finite-rank operators, and hence,
when considering the HJMM equation in the state space𝐻

𝛾
,

applying these operators its solutions can be approximated by
a sequence of finite dimensional processes in the larger state
space 𝐿2

𝛽
⊕R; we refer to Section 3 for further details.

The remainder of this paper is organized as follows. In
Section 2, we provide the required preliminaries. In Section 3,
we present the embedding result and its proof, and we outline
the described approximation result concerning solutions of
the HJMM equation.

2. Preliminaries and Notation

In this section, we provide the required preliminary results
and some basic notation. Concerning the upcoming results
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about Sobolev spaces and Fourier transforms, we refer to any
textbook about functional analysis, such as [6] or [7].

As noted in the introduction, for positive real numbers
𝛽, 𝛾 > 0, the separable Hilbert spaces 𝐿2

𝛽
⊕R and𝐻

𝛾
are given

by (2) and (3), respectively.These spaces and the forthcoming
Sobolev spaces will be regarded as spaces of complex-valued
functions. For every ℎ ∈ 𝐻

𝛾
, the limit ℎ(∞) := lim

𝑥→∞
ℎ(𝑥)

exists, and the subspace

𝐻
0

𝛾
:= {ℎ ∈ 𝐻

𝛾
: ℎ (∞) = 0} (6)

is a closed subspace of𝐻
𝛾
; see [1]. For an open setΩ ⊂ R, we

denote by𝑊1
(Ω) the Sobolev space

𝑊
1

(Ω) := {𝑓 ∈ 𝐿
2

(Ω) : 𝑓
󸀠

∈ 𝐿
2

(Ω) exists} , (7)

which, equipped with the inner product

⟨𝑓, 𝑔⟩
𝑊
1
(Ω)

= ⟨𝑓, 𝑔⟩
𝐿
2
(Ω)

+ ⟨𝑓
󸀠

, 𝑔
󸀠

⟩
𝐿
2
(Ω)

, (8)

is a separable Hilbert space. Here, derivatives are understood
as weak derivatives.

For a function ℎ ∈ 𝑊
1
((0,∞)), the extension ℎ1

(0,∞)
:

R → C in general, does not belong to𝑊1
(R). In the present

situation, this technical problem can be resolved as follows.
Let ℎ : (0,∞) → C be a continuous function such that
the limit ℎ(0) := lim

𝑥→0
ℎ(𝑥) exists. Then, we define the

reflection ℎ∗ : R → C as

ℎ
∗

(𝑥) := {
ℎ (𝑥) , if 𝑥 ≥ 0,

ℎ (−𝑥) , if 𝑥 < 0.
(9)

Lemma 1. The following statements are true.

(1) For each ℎ ∈ 𝑊1
((0,∞)), one has ℎ∗ ∈ 𝑊1

(R).
(2) The mapping 𝑊1

((0,∞)) → 𝑊
1
(R), ℎ 󳨃→ ℎ

∗ is a
bounded linear operator.

(3) For each ℎ ∈ 𝑊1
((0,∞)), one has

‖ℎ‖
𝑊
1
((0,∞))

≤
󵄩󵄩󵄩󵄩ℎ

∗󵄩󵄩󵄩󵄩𝑊1(R)
≤ √2‖ℎ‖

𝑊
1
((0,∞))

,

‖ℎ‖
𝐿
2
((0,∞))

≤
󵄩󵄩󵄩󵄩ℎ

∗󵄩󵄩󵄩󵄩𝐿2(R)
≤ √2‖ℎ‖

𝐿
2
((0,∞))

.

(10)

Proof. This follows froma straightforward calculation follow-
ing the proof of [8, Theorem 8.6].

Lemma 2. Let 𝛾 > 𝛽 > 0 be arbitrary. Then, the following
statements are true.

(1) One has𝐻0

𝛾
⊂ 𝐻

0

𝛽
, and

‖ℎ‖
𝛽
≤ ‖ℎ‖

𝛾
∀ℎ ∈ 𝐻

0

𝛾
. (11)

(2) One has𝐻0

𝛾
⊂ 𝐿

2

𝛽
, and there is a constant 𝐶

1
= 𝐶

1
(𝛽,

𝛾) > 0 such that

‖ℎ‖
𝐿
2

𝛽

≤ 𝐶
1
‖ℎ‖

𝛾
∀ℎ ∈ 𝐻

0

𝛾
. (12)

(3) For each ℎ ∈ 𝐻0

𝛾
, one has

ℎ𝑒
(𝛽/2)∙󵄨󵄨󵄨󵄨󵄨(0,∞)

∈ 𝑊
1

((0,∞)) , (ℎ𝑒
(𝛽/2)∙󵄨󵄨󵄨󵄨󵄨(0,∞)

)

∗

∈ 𝑊
1

(R) ,

(13)

and there is a constant 𝐶
2
= 𝐶

2
(𝛽, 𝛾) > 0 such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(ℎ𝑒

(𝛽/2)∙󵄨󵄨󵄨󵄨󵄨(0,∞)

)

∗󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑊1(R)
≤ 𝐶

2
‖ℎ‖

𝛾
∀ℎ ∈ 𝐻

0

𝛾
. (14)

Proof. Thefirst statement is a direct consequence of the repre-
sentation of the norm on 𝐻

0

𝛾
given by (4). Let ℎ ∈ 𝐻

0

𝛾
be

arbitrary. By the Cauchy-Schwarz inequality, we obtain

‖ℎ‖
2

𝐿
2

𝛽

= ∫
R
+

|ℎ (𝑥)|
2

𝑒
𝛽𝑥

𝑑𝑥

= ∫
R
+

(∫

∞

𝑥

ℎ
󸀠

(𝜂) 𝑒
(𝛾/2)𝜂

𝑒
−(𝛾/2)𝜂

𝑑𝜂)

2

𝑒
𝛽𝑥

𝑑𝑥

≤ ∫
R
+

(∫

∞

𝑥

󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠

(𝜂)
󵄨󵄨󵄨󵄨󵄨

2

𝑒
𝛾𝜂

𝑑𝜂)(∫

∞

𝑥

𝑒
−𝛾𝜂

𝑑𝜂) 𝑒
𝛽𝑥

𝑑𝑥

≤ ∫
R
+

(∫
R
+

󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠

(𝜂)
󵄨󵄨󵄨󵄨󵄨

2

𝑒
𝛾𝜂

𝑑𝜂)
1

𝛾
𝑒
−𝛾𝑥

𝑒
𝛽𝑥

𝑑𝑥

≤
1

𝛾
(∫

R
+

𝑒
−(𝛾−𝛽)𝑥

𝑑𝑥) ‖ℎ‖
2

𝛾
=

1

𝛾 (𝛾 − 𝛽)
‖ℎ‖

2

𝛾
,

(15)

proving the second statement. Furthermore, by (12) we have
󵄩󵄩󵄩󵄩󵄩󵄩
ℎ𝑒

(𝛽/2)∙󵄨󵄨󵄨󵄨󵄨(0,∞)

󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
((0,∞))

= ∫
R
+

󵄨󵄨󵄨󵄨󵄨
ℎ (𝑥) 𝑒

(𝛽/2)𝑥󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 = ∫
R
+

|ℎ (𝑥)|
2

𝑒
𝛽𝑥

𝑑𝑥

= ‖ℎ‖
2

𝐿
2

𝛽

≤ 𝐶
2

1
‖ℎ‖

2

𝛾
,

(16)

and by estimates (11), (12), we obtain
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
𝑑

𝑑𝑥
) (ℎ𝑒

(𝛽/2)∙󵄨󵄨󵄨󵄨󵄨(0,∞)

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
((0,∞))

= ∫
R
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑

𝑑𝑥
(ℎ (𝑥) 𝑒

(𝛽/2)𝑥

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

= ∫
R
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ℎ
󸀠

(𝑥) 𝑒
(𝛽/2)𝑥

+
𝛽

2
ℎ (𝑥) 𝑒

(𝛽/2)𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ 2(∫
R
+

󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠

(𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑒
𝛽𝑥

𝑑𝑥 +
𝛽
2

4
∫
R
+

|ℎ (𝑥)|
2

𝑒
𝛽𝑥

𝑑𝑥)

≤ 2‖ℎ‖
2

𝛽
+
𝛽
2

2
‖ℎ‖

𝐿
2

𝛽

≤ (2 +
𝛽
2
𝐶
2

1

2
) ‖ℎ‖

2

𝛾
,

(17)

which, together with Lemma 1, concludes the proof.

For ℎ ∈ 𝐿
1
(R), the Fourier transform Fℎ : R → C is

defined as

(Fℎ) (𝜉) :=
1

√2𝜋
∫
R

ℎ (𝑥) 𝑒
−𝑖𝜉𝑥

𝑑𝑥, 𝜉 ∈ R. (18)
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Recall that 𝐶
0
(R) denotes the space of all continuous func-

tions vanishing at infinity, which, equipped with the supre-
mum norm, is a Banach space. We have the following result.

Lemma 3. The Fourier transform F : 𝐿
1
(R) → 𝐶

0
(R) is a

continuous linear operator with ‖F‖ ≤ 1/√2𝜋.

Lemma 4. Let 𝛾 > 𝛽 > 0 be arbitrary. Then, the following
statements are true.

(1) For each ℎ ∈ 𝐻0

𝛾
, one has (ℎ𝑒(𝛽/2)∙|

(0,∞)
)
∗

∈ 𝐿
1
(R), and

there is a constant 𝐶
3
= 𝐶

3
(𝛽, 𝛾) > 0 such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(ℎ𝑒

(𝛽/2)∙󵄨󵄨󵄨󵄨󵄨(0,∞)

)

∗󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿1(R)
≤ 𝐶

3
‖ℎ‖

𝛾
∀ℎ ∈ 𝐻

0

𝛾
. (19)

(2) For each 𝜉 ∈ R, the mapping

𝐻
0

𝛾
󳨀→ R, ℎ 󳨃󳨀→ F(ℎ𝑒

(𝛽/2)∙󵄨󵄨󵄨󵄨󵄨(0,∞)

)

∗

(𝜉) (20)

is a continuous linear functional.

Proof. We set 𝛿 := (1/2)(𝛽 + 𝛾) ∈ (𝛽, 𝛾). Let ℎ ∈ 𝐻
0

𝛾
be

arbitrary. By the Cauchy-Schwarz inequality and Lemma 2,
we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(ℎ𝑒

(𝛽/2)∙󵄨󵄨󵄨󵄨󵄨(0,∞)

)

∗󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿1(R)

= 2
󵄩󵄩󵄩󵄩󵄩
ℎ𝑒

(𝛽/2)∙󵄩󵄩󵄩󵄩󵄩𝐿1(R
+
)

= 2∫
R
+

󵄨󵄨󵄨󵄨󵄨
ℎ (𝑥) 𝑒

(𝛽/2)𝑥󵄨󵄨󵄨󵄨󵄨
𝑑𝑥

= 2∫
R
+

|ℎ (𝑥)| 𝑒
(𝛿/2)𝑥

𝑒
−((𝛿−𝛽)/2)𝑥

𝑑𝑥

≤ 2(∫
R
+

|ℎ (𝑥)|
2

𝑒
𝛿𝑥

𝑑𝑥)

1/2

(∫
R
+

𝑒
−(𝛿−𝛽)𝑥

𝑑𝑥)

1/2

= 2√
1

𝛿 − 𝛽
‖ℎ‖

𝐿
2

𝛿

≤ 2𝐶
1
(𝛿, 𝛾)√

1

𝛿 − 𝛽
‖ℎ‖

𝛾
,

(21)

showing the first statement. Moreover, we have

󵄩󵄩󵄩󵄩󵄩
𝑒
((𝛽/2)−𝛿)∙󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

𝛿

= ∫
R
+

𝑒
2((𝛽/2)−𝛿)𝑥

𝑒
𝛿𝑥

𝑑𝑥

= ∫
R
+

𝑒
−(𝛿−𝛽)𝑥

𝑑𝑥 =
1

𝛿 − 𝛽
,

(22)

showing that 𝑒((𝛽/2)−𝛿)∙ ∈ 𝐿
2

𝛿
. Let ℎ ∈ 𝐻

0

𝛾
and 𝜉 ∈ R be

arbitrary. By Lemma 2, we have ℎ ∈ 𝐿2
𝛿
, and hence

F(ℎ𝑒
(𝛽/2)∙󵄨󵄨󵄨󵄨󵄨(0,∞)

)

∗

(𝜉)

=
1

√2𝜋

(∫

∞

0

ℎ (𝑥) 𝑒
(𝛽/2)𝑥

𝑒
−𝑖𝜉𝑥

𝑑𝑥

+∫

0

−∞

ℎ (−𝑥) 𝑒
−(𝛽/2)𝑥

𝑒
−𝑖𝜉𝑥

𝑑𝑥)

=
1

√2𝜋

(∫

∞

0

ℎ (𝑥) 𝑒
(𝛽/2)𝑥

𝑒
−𝑖𝜉𝑥

𝑑𝑥 +∫

∞

0

ℎ (𝑥) 𝑒
(𝛽/2)𝑥

𝑒
𝑖𝜉𝑥

𝑑𝑥)

=
1

√2𝜋

⟨ℎ, 𝑒
((𝛽/2)−𝛿)∙

(𝑒
−𝑖𝜉∙

+ 𝑒
𝑖𝜉∙

)⟩
𝐿
2

𝛿

,

(23)

proving the second statement.

We can also define the Fourier transform on 𝐿2(R) such
that F : 𝐿

2
(R) → 𝐿

2
(R) is a bijection, and we have the

Plancherel isometry

⟨F𝑓,F𝑔⟩
𝐿
2
(R)

= ⟨𝑓, 𝑔⟩
𝐿
2
(R)

∀𝑓, 𝑔 ∈ 𝐿
2

(R) . (24)

Moreover, the two just reviewed definitions of the Fourier
transform coincide on 𝐿1(R) ∩ 𝐿

2
(R). For each ℎ ∈ 𝑊

1
(R),

we have

(Fℎ
󸀠

) (𝜉) = 𝑖𝜉 (Fℎ) (𝜉) , 𝜉 ∈ R. (25)

Lemma 5. For every ℎ ∈ 𝑊1
(R), one has

‖∙Fℎ‖
𝐿
2
(R) ≤ ‖ℎ‖

𝑊
1
(R). (26)

Proof. Let ℎ ∈ 𝑊
1
(R) be arbitrary. By identity (25) and the

Plancherel isometry (24), we have

‖∙Fℎ‖
𝐿
2
(R) =

󵄩󵄩󵄩󵄩󵄩
Fℎ

󸀠󵄩󵄩󵄩󵄩󵄩𝐿2(R)
=
󵄩󵄩󵄩󵄩󵄩
ℎ
󸀠󵄩󵄩󵄩󵄩󵄩𝐿2(R)

≤ ‖ℎ‖
𝑊
1
(R), (27)

finishing the proof.

3. The Embedding Result and Its Proof

In this section, we present the compact embedding result and
its proof.

Theorem6. For all 𝛾 > 𝛽 > 0, one has the compact embedding

𝐻
𝛾
⊂⊂ 𝐿

2

𝛽
⊕R. (28)

Proof. Noting that 𝐻
𝛾
≅ 𝐻

0

𝛾
⊕ R, it suffices to prove the

compact embedding 𝐻
0

𝛾
⊂⊂ 𝐿

2

𝛽
. Let (ℎ

𝑗
)
𝑗∈N ⊂ 𝐻

0

𝛾
be a

bounded sequence. Then, there exists a subsequence which
converges weakly in 𝐻

0

𝛾
. Without loss of generality, we may

assume that the original sequence (ℎ
𝑗
)
𝑗∈N converges weakly



4 Abstract and Applied Analysis

in𝐻0

𝛾
. We will prove that (ℎ

𝑗
)
𝑗∈N is a Cauchy sequence in 𝐿2

𝛽
.

According to Lemma 2, the sequence (𝑔
𝑗
)
𝑗∈N given by

𝑔
𝑗
:= (ℎ

𝑗
𝑒
(𝛽/2)∙󵄨󵄨󵄨󵄨󵄨(0,∞)

)

∗

, 𝑗 ∈ N, (29)

is a bounded sequence in 𝑊
1
(R). By Lemma 1 and the

Plancherel isometry (24), for all 𝑗, 𝑘 ∈ N, we get

󵄩󵄩󵄩󵄩󵄩
ℎ
𝑘
− ℎ

𝑗

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

𝛽

=
󵄩󵄩󵄩󵄩󵄩
ℎ
𝑘
𝑒
(𝛽/2)∙

− ℎ
𝑗
𝑒
(𝛽/2)∙󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(R
+
)

≤
󵄩󵄩󵄩󵄩󵄩
𝑔
𝑘
− 𝑔

𝑗

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(R)

=
󵄩󵄩󵄩󵄩󵄩
F𝑔

𝑘
−F𝑔

𝑗

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(R)

= ∫
R

󵄨󵄨󵄨󵄨󵄨
(F𝑔

𝑘
) (𝑥) − (F𝑔

𝑗
) (𝑥)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥.

(30)

Thus, for every 𝑅 > 0 we obtain the estimate

󵄩󵄩󵄩󵄩󵄩
ℎ
𝑘
− ℎ

𝑗

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

𝛽

≤ ∫
{|𝑥|≤𝑅}

󵄨󵄨󵄨󵄨󵄨
(F𝑔

𝑘
) (𝑥) −F (𝑔

𝑗
) (𝑥)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

+ ∫
{|𝑥|>𝑅}

󵄨󵄨󵄨󵄨󵄨
(F𝑔

𝑘
) (𝑥) −F (𝑔

𝑗
) (𝑥)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥.

(31)

By Lemma 5, the sequence (∙F𝑔
𝑗
)
𝑗∈N is bounded in 𝐿

2
(R).

Therefore, for an arbitrary 𝜖 > 0 there exists a real number
𝑅 > 0 such that

∫
{|𝑥|>𝑅}

󵄨󵄨󵄨󵄨󵄨
(F𝑔

𝑘
) (𝑥) − (F𝑔

𝑗
) (𝑥)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤
1

𝑅2
∫
{|𝑥|>𝑅}

|𝑥|
2󵄨󵄨󵄨󵄨󵄨
(F𝑔

𝑘
) (𝑥) − (F𝑔

𝑗
) (𝑥)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 < 𝜖

∀𝑗, 𝑘 ∈ N.

(32)

By Lemma 4, for each 𝜉 ∈ R the mapping

𝐻
0

𝛾
󳨀→ R, ℎ 󳨃󳨀→ F(ℎ𝑒

(𝛽/2)∙󵄨󵄨󵄨󵄨󵄨(0,∞)

)

∗

(𝜉) (33)

is a continuous linear functional. Consequently, since (ℎ
𝑗
)
𝑗∈N

converges weakly in 𝐻
0

𝛾
, for each 𝜉 ∈ R, the real-valued

sequence ((F𝑔
𝑗
)(𝜉))

𝑗∈N is convergent. Moreover, by Lemmas
3 and 4, for all ℎ ∈ 𝐻0

𝛾
, we have the estimate

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
F ((ℎ𝑒

(𝛽/2)∙󵄨󵄨󵄨󵄨󵄨(0,∞)

)

∗

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐶
0
(R)

≤
1

√2𝜋

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(ℎ𝑒

(𝛽/2)∙󵄨󵄨󵄨󵄨󵄨(0,∞)

)

∗󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿1(R)
≤

𝐶
3

√2𝜋
‖ℎ‖

𝛾
.

(34)

Therefore, the sequence (F𝑔
𝑗
)
𝑗∈N is bounded in𝐶0(R). Using

Lebesgue’s dominated convergence theorem, we deduce that

∫
{|𝑥|≤𝑅}

󵄨󵄨󵄨󵄨󵄨
(F𝑔

𝑘
) (𝑥) − (F𝑔

𝑗
) (𝑥)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 󳨀→ 0 for 𝑗, 𝑘 󳨀→ ∞.

(35)

Combining (31) togetherwith (32) and (35) shows that (ℎ
𝑗
)
𝑗∈N

is a Cauchy sequence in 𝐿2
𝛽
, completing the proof.

Remark 7. Note that the proof of Theorem 6 has certain
analogies to the proof of the classical Rellich embedding
theorem (see, e.g., [7, Theorem V.2.13]), which states the
compact embedding𝐻1

0
(Ω) ⊂⊂ 𝐿

2
(Ω) for an open, bounded

subset Ω ⊂ R𝑛. Here, 𝐻1

0
(Ω) denotes the Sobolev space

𝐻
1

0
(Ω) = D(Ω), whereD(Ω) is the space of all𝐶∞-functions

on Ω with compact support, and where the closure is taken
with respect to the topology induced by the inner product
⟨⋅, ⋅⟩

𝑊
1 . Let us briefly describe the analogies and differences

between the two results as follows.

(i) In the classical Rellich embedding theorem, the
domain Ω is assumed to be bounded, whereas in
Theorem 6 we have Ω = R

+
. Moreover, we consider

weighted function spaces with weight functions of
the type 𝑤(𝑥) = 𝑒

𝛽𝑥 for some constant 𝛽 > 0.
This requires a careful analysis of the results regarding
Fourier transforms which we have adapted to the
present situation; see Lemma 4.

(ii) 𝐻
𝛾
and𝐻1

0
(Ω) are different kinds of spaces.While the

norm on𝐻1

0
(Ω) given by (8) involves the 𝐿2-norms of

a function ℎ and its derivative ℎ󸀠, the norm (4) on𝐻
𝛾

only involves the 𝐿2-norm of the derivative ℎ󸀠 and a
point evaluation. Therefore, the embedding𝐻1

0
(Ω) ⊂

𝐿
2
(Ω) follows right away, whereas we require the

assumption 𝛽 < 𝛾 for the embedding 𝐻0

𝛾
⊂ 𝐿

2

𝛽
; see

Lemma 2.
(iii) The classical Rellich embedding theorem does not

need to be true with𝐻1

0
(Ω) being replaced by𝑊1

(Ω).
The reason behind this is that, in general, it is not
possible to extend a function ℎ ∈ 𝑊

1
(Ω) to a

function ℎ̃ ∈ 𝑊
1
(R𝑛

), which, however, is crucial in
order to apply the results about Fourier transforms.
Usually, one assumes that Ω satisfies a so-called cone
condition; see, for example, [9] for further details. In
our situation, we have to ensure that every function
ℎ ∈ 𝐻

0

𝛾
can be extended to a function ℎ̃ ∈ 𝑊

1
(R),

and this is provided by Lemma 2.

For the rest of this section, we will describe the
announced application regarding the approximation of solu-
tions to semilinear stochastic partial differential equations
(SPDEs), which in particular applies to the modeling of
interest rates. Consider a SPDE of the form

𝑑𝑟
𝑡
= (𝐴𝑟

𝑡
+ 𝛼 (𝑡, 𝑟

𝑡
)) 𝑑𝑡 + 𝜎 (𝑡, 𝑟

𝑡
) 𝑑𝑊

𝑡

+ ∫
𝐸

𝛾 (𝑡, 𝑟
𝑡−
, 𝜉) (p (𝑑𝑡, 𝑑𝜉) − ] (𝑑𝜉) 𝑑𝑡)

𝑟
0
= ℎ

0
,

(36)

on some separable Hilbert space 𝐻
1
with 𝐴 denoting the

generator of some strongly continuous semigroup on 𝐻
1
,

driven by a Wiener process 𝑊 and a homogeneous Poisson
random measure p with compensator 𝑑𝑡 ⊗ ](𝑑𝜉) on some
mark space 𝐸. We assume that the standard Lipschitz and
linear growth conditions are satisfied which ensure for each



Abstract and Applied Analysis 5

initial condition ℎ
0
∈ 𝐻

1
the existence of a unique weak

solution 𝑟 to (36); that is, for each 𝜁 ∈ D(𝐴
∗
), we have almost

surely

⟨𝜁, 𝑟
𝑡
⟩ = ⟨𝜁, ℎ

0
⟩
𝐻
1

+ ∫

𝑡

0

(⟨𝐴
∗

𝜁, 𝑟
𝑠
⟩
𝐻
1

+ ⟨𝜁, 𝛼 (𝑠, 𝑟
𝑠
)⟩
𝐻
1

) 𝑑𝑠

+ ∫

𝑡

0

⟨𝜁, 𝜎 (𝑠, 𝑟
𝑠
)⟩
𝐻
1

𝑑𝑊
𝑠

+ ∫

𝑡

0

∫
𝐸

⟨𝜁, 𝛾 (𝑠, 𝑟
𝑠−
, 𝜉)⟩

𝐻
1

(p (𝑑𝑠, 𝑑𝜉) − ] (𝑑𝜉) 𝑑𝑠)

∀𝑡 ≥ 0;

(37)

see, for example, [10] for further details. Let 𝐻
2
be a larger

separable Hilbert space with compact embedding𝐻
1
⊂⊂ 𝐻

2
.

By virtue of Theorem 6, this is in particular satisfied for the
forward curve spaces 𝐻

1
= 𝐻

𝛾
and 𝐻

2
= 𝐿

2

𝛽
⊕ R for 𝛾 >

𝛽 > 0. If, furthermore, 𝐴 = 𝑑/𝑑𝑥 is the differential operator,
which is generated by the translation semigroup (𝑆

𝑡
)
𝑡≥0

given
by 𝑆

𝑡
ℎ = ℎ(𝑡 + ∙), and 𝛼 = 𝛼HJM is given by the so-called HJM

drift condition

𝛼HJM (𝑡, ℎ)

= ∑

𝑗

𝜎
𝑗

(𝑡, ℎ) ∫

∙

0

𝜎
𝑗

(𝑡, ℎ) (𝜂) 𝑑𝜂

− ∫
𝐸

𝛾 (𝑡, ℎ, 𝜉) [exp(−∫
∙

0

𝛾 (𝑡, ℎ, 𝜉) (𝜂) 𝑑𝜂) − 1] ] (𝑑𝜉) ,

(38)

then the SPDE (36), which in this case becomes the men-
tioned HJMM equation, describes the evolution of interest
rates in an arbitrage free bond market; we refer to [5] for
further details.

By virtue of the compact embedding 𝐻
1
⊂⊂ 𝐻

2
, there

exist orthonormal systems (𝑒
𝑘
)
𝑘∈N of 𝐻

1
and (𝑓

𝑘
)
𝑘∈N of 𝐻

2
,

and a decreasing sequence (𝑠
𝑘
)
𝑘∈N ⊂ R

+
with 𝑠

𝑘
→ 0 such

that

ℎ =

∞

∑

𝑘=1

𝑠
𝑘
⟨ℎ, 𝑒

𝑘
⟩
𝐻
1

𝑓
𝑘

∀ℎ ∈ 𝐻
1
; (39)

see, for example, [7,TheoremVI.3.6].The numbers 𝑠
𝑘
are the

singular numbers of the identity operator Id : 𝐻
1
→ 𝐻

2
.

Defining the sequence (𝑇
𝑛
)
𝑛∈N of finite-rank operators

𝑇
𝑛
: 𝐻

1
󳨀→ 𝐹

𝑛
, 𝑇

𝑛
ℎ :=

𝑛

∑

𝑘=1

𝑠
𝑘
⟨ℎ, 𝑒

𝑘
⟩
𝐻
1

𝑓
𝑘
, (40)

where 𝐹
𝑛
:= ⟨𝑓

1
, . . . , 𝑓

𝑛
⟩, we even have 𝑇

𝑛
→ Id with respect

to the operator norm

‖𝑇‖ := sup
‖ℎ‖
𝐻
1
≤1

‖𝑇ℎ‖
𝐻
2

; (41)

see, for example, [7, Corollary VI.3.7]. Consequently, denot-
ing by 𝑟 the weak solution to the SPDE (36) for some initial

condition ℎ
0
∈ 𝐻

1
, the sequence (𝑇

𝑛
(𝑟))

𝑛∈N is a sequence of
𝐹
𝑛
-valued stochastic processes, and we have almost surely

󵄩󵄩󵄩󵄩𝑇𝑛 (𝑟𝑡) − 𝑟𝑡
󵄩󵄩󵄩󵄩𝐻
2

≤
󵄩󵄩󵄩󵄩𝑇𝑛 − Id󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑟𝑡
󵄩󵄩󵄩󵄩𝐻
1

󳨀→ 0 ∀𝑡 ≥ 0, (42)

showing that the weak solution 𝑟—when considered on the
larger state space𝐻

2
—can be approximated by the sequence

of finite dimensional processes (𝑇
𝑛
(𝑟))

𝑛∈N with distance
between 𝑇

𝑛
(𝑟) and 𝑟 estimated in terms of the operator norm

‖𝑇
𝑛
− Id‖, as shown in (42). However, the sequence (𝑇

𝑛
(𝑟))

𝑛∈N

does not need to be a sequence of Itô processes. This issue is
addressed by the following result.

Proposition 8. Let (𝜖
𝑛
)
𝑛∈N ⊂ (0,∞) be an arbitrary decreas-

ing sequence with 𝜖
𝑛
→ 0. Then, for every initial condition

ℎ
0
∈ 𝐻

1
, there exists a sequence (𝑟(𝑛))

𝑛∈N of 𝐹
𝑛
-valued Itô pro-

cesses such that almost surely

󵄩󵄩󵄩󵄩󵄩
𝑟
(𝑛)

𝑡
− 𝑟

𝑡

󵄩󵄩󵄩󵄩󵄩𝐻
2

≤ (
󵄩󵄩󵄩󵄩𝑇𝑛 − Id󵄩󵄩󵄩󵄩 + 𝜖𝑛)

󵄩󵄩󵄩󵄩𝑟𝑡
󵄩󵄩󵄩󵄩𝐻
1

󳨀→ 0 ∀𝑡 ≥ 0, (43)

where 𝑟 denotes the weak solution to (36).

Proof. According to [6, Theorems 13.35.c and 13.12], the
domainD(𝐴

∗
) is dense in𝐻

1
.Therefore, for each 𝑛 ∈ N, there

exist elements 𝜁(𝑛)
1
, . . . , 𝜁

(𝑛)

𝑛
∈ D(𝐴

∗
) such that

󵄩󵄩󵄩󵄩󵄩
𝜁
(𝑛)

𝑘
− 𝑒

𝑘

󵄩󵄩󵄩󵄩󵄩𝐻
1

<
𝜖
𝑛

2𝑘 ⋅ 𝑠
𝑘

∀𝑘 = 1, . . . , 𝑛, (44)

where we use the convention 𝑥/0 := ∞ for 𝑥 > 0. We define
the sequence (𝑆

𝑛
)
𝑛∈N of finite-rank operators as

𝑆
𝑛
: 𝐻

1
󳨀→ 𝐹

𝑛
, 𝑆

𝑛
ℎ :=

𝑛

∑

𝑘=1

𝑠
𝑘
⟨ℎ, 𝜁

(𝑛)

𝑘
⟩
𝐻
1

𝑓
𝑘
. (45)

By the geometric series, for all 𝑛 ∈ N, we have

󵄩󵄩󵄩󵄩𝑆𝑛 − Id󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑆𝑛 − 𝑇𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑛 − Id󵄩󵄩󵄩󵄩

≤

𝑛

∑

𝑘=1

𝑠
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩
⟨∙, 𝜁

(𝑛)

𝑘
− 𝑒

𝑘
⟩
𝐻
1

󵄩󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩𝑇𝑛 − Id󵄩󵄩󵄩󵄩

≤ 𝜖
𝑛

𝑛

∑

𝑘=1

1

2𝑘
+
󵄩󵄩󵄩󵄩𝑇𝑛 − Id󵄩󵄩󵄩󵄩 ≤ 𝜖

𝑛
+
󵄩󵄩󵄩󵄩𝑇𝑛 − Id󵄩󵄩󵄩󵄩 .

(46)

For each 𝑛 ∈ N, let 𝑟(𝑛) be the 𝐹
𝑛
-valued Itô process

𝑟
(𝑛)

𝑡
= ℎ

(𝑛)

0
+ ∫

𝑡

0

𝛼
(𝑛)

𝑠
𝑑𝑠 + ∫

𝑡

0

𝜎
(𝑛)

𝑠
𝑑𝑊

𝑠

+ ∫

𝑡

0

∫
𝐸

𝛿
(𝑛)

𝑠
(𝜉) (p (𝑑𝑠, 𝑑𝜉) − ] (𝑑𝜉, 𝑑𝑠)) ,

(47)
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with parameters given by

ℎ
(𝑛)

0
=

𝑛

∑

𝑘=1

𝑠
𝑘
⟨𝜁

(𝑛)

𝑘
, ℎ

0
⟩
𝐻
1

𝑓
𝑘
,

𝛼
(𝑛)

𝑡
=

𝑛

∑

𝑘=1

𝑠
𝑘
(⟨𝐴

∗

𝜁
(𝑛)

𝑘
, 𝑟
𝑡
⟩
𝐻
1

+ ⟨𝜁
(𝑛)

𝑘
, 𝛼 (𝑡, 𝑟

𝑡
)⟩

𝐻
1

)𝑓
𝑘
,

𝜎
(𝑛)

𝑡
=

𝑛

∑

𝑘=1

𝑠
𝑘
⟨𝜁

(𝑛)

𝑘
, 𝜎 (𝑡, 𝑟

𝑡
)⟩

𝐻
1

𝑓
𝑘
,

𝛿
(𝑛)

𝑡
(𝜉) =

𝑛

∑

𝑘=1

𝑠
𝑘
⟨𝜁

(𝑛)

𝑘
, 𝛿 (𝑡, 𝑟

𝑡−
, 𝜉)⟩

𝐻
1

𝑓
𝑘
.

(48)

Since 𝑟 is a weak solution to (36), we obtain almost surely

𝑆
𝑛
(𝑟
𝑡
) =

𝑛

∑

𝑘=1

𝑠
𝑘
⟨𝜁

(𝑛)

𝑘
, 𝑟
𝑡
⟩
𝐻
1

𝑓
𝑘

=

𝑛

∑

𝑘=1

𝑠
𝑘
(⟨𝜁

(𝑛)

𝑘
, ℎ

0
⟩
𝐻
1

+ ∫

𝑡

0

(⟨𝐴
∗

𝜁
(𝑛)

𝑘
, 𝑟
𝑠
⟩
𝐻
1

+ ⟨𝜁
(𝑛)

𝑘
, 𝛼 (𝑠, 𝑟

𝑠
)⟩

𝐻
1

) 𝑑𝑠

+ ∫

𝑡

0

⟨𝜁
(𝑛)

𝑘
, 𝜎 (𝑠, 𝑟

𝑠
)⟩

𝐻
1

𝑑𝑊
𝑠

+ ∫

𝑡

0

∫
𝐸

⟨𝜁
(𝑛)

𝑘
, 𝛿 (𝑠, 𝑟

𝑠−
, 𝜉)⟩

𝐻
1

× (p (𝑑𝑠, 𝑑𝜉) − ] (𝑑𝜉, 𝑑𝑠)))𝑓
𝑘

= ℎ
(𝑛)

0
+ ∫

𝑡

0

𝛼
(𝑛)

𝑠
𝑑𝑠 + ∫

𝑡

0

𝜎
(𝑛)

𝑠
𝑑𝑊

𝑠

+ ∫

𝑡

0

∫
𝐸

𝛿
(𝑛)

𝑠
(𝜉) (p (𝑑𝑠, 𝑑𝜉) − ] (𝑑𝜉, 𝑑𝑠))

= 𝑟
(𝑛)

𝑡
∀𝑡 ≥ 0,

(49)

which finishes the proof.

We will conclude this section with further consequences
regarding the speed of convergence of the approximations
(𝑟
(𝑛)
)
𝑛∈N provided by Proposition 8. Let ℎ

0
∈ 𝐻

1
be an

arbitrary initial condition and denote by 𝑟 the weak solution
to (36). Furthermore, let 𝑇 > 0 be a finite time horizon. Since

E[ sup
𝑡∈[0,𝑇]

󵄩󵄩󵄩󵄩𝑟𝑡
󵄩󵄩󵄩󵄩

2

𝐻
1

] < ∞, (50)

see, for example, [10, Corollary 10.3], by (43) there exists a
constant𝐾 > 0 such that

E[ sup
𝑡∈[0,𝑇]

󵄩󵄩󵄩󵄩󵄩
𝑟
(𝑛)

𝑡
− 𝑟

𝑡

󵄩󵄩󵄩󵄩󵄩

2

𝐻
2

]

1/2

≤ 𝐾 (
󵄩󵄩󵄩󵄩𝑇𝑛 − Id󵄩󵄩󵄩󵄩 + 𝜖𝑛) 󳨀→ 0, (51)

providing a uniform estimate for the distance of 𝑟(𝑛) and 𝑟

in the mean-square sense. Moreover, considering the pure
diffusion case

𝑑𝑟
𝑡
= (𝐴𝑟

𝑡
+ 𝛼 (𝑡, 𝑟

𝑡
)) 𝑑𝑡 + 𝜎 (𝑡, 𝑟

𝑡
) 𝑑𝑊

𝑡

𝑟
0
= ℎ

0
,

(52)

the sample paths of 𝑟 are continuous; for every constant 𝐾 >

‖ℎ
0
‖
𝐻
1

the stopping time

𝜏 := inf {𝑡 ≥ 0 :
󵄩󵄩󵄩󵄩𝑟𝑡
󵄩󵄩󵄩󵄩 ≥ 𝐾} (53)

is strictly positive, and by (43) for the stopped processes we
obtain almost surely

sup
𝑡∈R
+

󵄩󵄩󵄩󵄩󵄩
𝑟
(𝑛)

𝑡∧𝜏
− 𝑟

𝑡∧𝜏

󵄩󵄩󵄩󵄩󵄩𝐻
2

≤ 𝐾 (
󵄩󵄩󵄩󵄩𝑇𝑛 − Id󵄩󵄩󵄩󵄩 + 𝜖𝑛) 󳨀→ 0; (54)

that is, locally the solution 𝑟 stays in a bounded subset of𝐻
𝛾

and we obtain the uniform convergence (54).
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