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Abstract

Climate change drives a northward shift of biomes in high-latitude regions. This

might have consequences on the decomposition of plant litter entering the soil,

including its lignin component, which is one of the most abundant components

of vascular plants. In order to elucidate the combined effect of climate and soil

characteristics on the decomposition pattern of lignin, we investigated lignin con-

tents and its degree of oxidative decomposition within soil profiles along a climo-

sequence in western Siberia. Soil samples were collected from organic topsoil to

mineral subsoil at six sites along a 1500-km latitudinal transect, stretching from

tundra, through taiga and forest steppe to typical steppe. The stage of lignin deg-

radation, as mirrored by decreasing organic carbon-normalized lignin contents

and increasing oxidative alteration of the remnant lignin (acid-to-aldehyde ratios

of vanillyl- and syringyl-units [(Ac/Al)V and (Ac/Al)S]) within soil horizons,

increased from tundra to forest steppe and then decreased to the steppe. Principal

component analysis, involving also climatic conditions such as mean annual tem-

perature and aridity index, showed that the different states of lignin degradation

between horizons related well to the activity of phenoloxidases and peroxidases,

enzymes involved in lignin depolymerization that are produced primarily by fungi

and less importantly by bacteria. The low microbial lignin decomposition in the

tundra was likely due to low temperature and high soil moisture, which do not

favour the fungi. Increasing temperature and decreasing soil moisture, facilitating

a higher abundance of fungi, led to increased fungal lignin decomposition

towards the forest-steppe biome, while drought and high pH might be responsible

for the reduced lignin decomposition in the steppe. We infer that a shift of biomes

to the north, driven by climate change, might promote lignin decomposition in

the northern parts, whereas in the south a further retardation might be likely.
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1 | INTRODUCTION

Most biomes on Earth are affected by global warming
(Dillon et al., 2010; Pereira et al., 2010), potentially alter-
ing the carbon balance between terrestrial ecosystems
and the atmosphere (Bond-Lamberty & Thomson, 2010).
Expected changes include a shift of biomes particularly at
high latitudes (Jiang et al., 2012; Schepaschenko
et al., 2013), likely leading to a northward greenness
expansion. This will increase the input of aboveground
and belowground litter to soils, modify the litter chemical
composition and alter the microbial community composi-
tion and activity (Grosse et al., 2011). Likewise, changing
environmental conditions such as temperature and pre-
cipitation may affect soil organic matter (SOM) decompo-
sition and stabilization, with a direct impact on the
release of greenhouse gases to the atmosphere (Conant
et al., 2011; Grosse et al., 2011; McGuire et al., 2006;
Schepaschenko et al., 2013).

Lignin is the second most important plant constitu-
ent, entering the soil via aboveground plant litter and
roots, and is considered to play an important role in
controlling litter decomposition (Hobbie, 1996; Hobbie
et al., 2006). Lignin structurally comprises three differ-
ent monolignols, vanillyl (V), syringyl (S) and cinnamyl
(C), and has long been thought to be more stable against
microbial decomposition than other major components
of plant litter, that is, cellulosic and noncellulosic poly-
saccharides and proteins (Haider, 1992; Martin et al.,
1980). Whereas gymnosperms are dominated by V units,
angiosperms are richer in S units and grasses in C units
(Hedges & Mann, 1979; Kögel-Knabner et al., 1988). The
concentration of the V + S + C units (VSC) varies
between different plant taxa and decreases in the order
coniferous trees (Raich et al., 2007; Sterjiades & Erikson,
1993), deciduous trees (Devi & Yadava, 2007; Vivanco &
Austin, 2008), shrubs (Laishram & Yadava, 1988) and
graminoids, mosses and lichens (Dao et al., 2018;
Winterfeld et al., 2015).

The best understood mechanism for lignin degrada-
tion is associated with fungi, particularly white-rot fungi
such as basidiomycetes (Haider, 1986; Kirk et al., 1976).
However, bacteria are also known to potentially degrade
lignin such as alphaproteobacteria, gammaproteobac-
teria and actinomycetes (Bugg et al., 2011), with the
best-characterized bacterium being Streptomyces viridos-
porus (Ramachandra et al., 1988). In soil, lignin decom-
position is generally performed by biologically
mediated, oxidative reactions which use free oxygen or
ferric iron-bearing minerals as terminal electron accep-
tors for environments lacking oxygen (Patzner
et al., 2020; Peng et al., 2008).

Temperature frequently affects turnover rates of SOM
(Conant et al., 2011; Davidson & Janssens, 2006) by gener-
ally following three basic theories of decomposition kinetics:
(1) when substrate availability and enzyme activity do not
constrain reaction rates, decomposition rates increase with
temperature (Arrhenius, 1889), (2) increases in decomposi-
tion rates with warming temperature should be greatest at
cold temperatures (Lloyd & Taylor, 1994) and (3) organic
substrates with high activation energies (i.e., slow rates)
experience greater proportional increases in decomposition
with increasing temperature than those with low activation
energy (Davidson & Janssens, 2006). For example, an
increase of 2�C has been suggested to accelerate the decom-
position of chemically recalcitrant carbon by 21%, compared
with only 10% for chemically labile carbon (Davidson &
Janssens, 2006). As lignin has a high activation energy, it
might be strongly affected by temperature changes, espe-
cially in cold climates. Furthermore, soil temperature affects
lignin decomposition indirectly by controlling substrate
availability for microorganisms as lignin decomposition is a
co-metabolic process (Conant et al., 2011). Warming can
also promote plant root exudation and generally increase
labile SOM forms (Yin et al., 2013), which in turn can accel-
erate the degradation of old and recalcitrant SOM in high-
latitude soils (Keuper et al., 2020; Mau et al., 2018; Wild
et al., 2016).

In addition to temperature, soil moisture is one of the
most important abiotic variables controlling SOM decom-
position (Lawrence et al., 2015; Oechel et al., 1998; Shaver
et al., 2006). Warming and drying of wet sedge tundra soils
lead to higher soil respiration rates than warming alone
(Natali et al., 2015; Oberbauer et al., 2007). In general,
moisture affects the quantity and activity of microorgan-
isms and their enzymes through controlling the substrate
diffusion and O2 supply and may also destabilize SOM

Highlights

• Lack of lignin contribution to soil organic mat-
ter and its degradation in different Siberian
biomes.

• The dependency of lignin decomposition pre-
dicts the fate of lignin under climate warming.

• Climate warming accelerates lignin degrada-
tion at high latitude, while in the south it is
likely retarded.

• Lignin alteration with climate change has
impacted on long‐term development of soil car-
bon stock.
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especially under reductive conditions (Patzner et al., 2020).
On the other hand, long-term soil drought may slow down
the rate of SOM mineralization by reducing microbial bio-
mass and activity (Tulina et al., 2009). Several studies, for
example, indicated that microbial respiration increases
with soil water content from the dry state to normal mois-
ture but decreases if water content further increases
(Edwards, 1975; Kowalenko et al., 1978; Wu et al., 2006).

Many studies of lignin in temperate and tropical
soils indicated decreasing OC-normalized lignin con-
tents and increasing acid-to-aldehyde ratios of V and S
units [(Ac/Al)V and (Ac/Al)S] with soil depth as a
result of continuous degradation of lignin (Rumpel
et al., 2002; Wang et al., 2018). In some cases, lignin
has been shown to preferentially accumulate in the
subsoil, either due to input of fresh root litter (Angst
et al., 2016), low microbial decomposition (Bourdon
et al., 2000; Dao et al., 2018; Tareq et al., 2004), or by
sorption to reactive mineral surfaces (K. Kaiser &
Zech, 1997; Klotzbücher et al., 2016). Soil pH addition-
ally exerts a control on lignin degradation, with an
optimal pH for lignin degrading-fungi around 5 and for
lignin degradation by Streptomyces around 9.5
(reviewed by Thevenot et al., 2010).

Uncertainty remains regarding the interplay between
the varying controls on lignin degradation in soil and on
the contribution of lignin to SOM in different biomes
and soil depths. Here, we investigated the dependency of
lignin decomposition on biotic and abiotic soil parame-
ters under natural conditions. To that end, we used a
1500 km long latitudinal bioclimatic transect in western
Siberia, stretching from the arctic tundra to the steppe
biome. The contents of lignin-derived phenols and their
degree of oxidative degradation at different depths of soil
profiles along the climosequence were assessed by using
the CuO oxidation method. We hypothesized that lignin
decomposition along the climosequence is varied across
the gradient of temperature and soil moisture. In addi-
tion to the direct temperature and moisture effects, we
expect the impact on lignin decomposition to be indirect
as climatic driving factors are affecting soil parameters,
such as litter quality, pH, enzyme composition and
activity and microbial community. To disentangle direct
and indirect effects of climate parameters on soil lignin
degradation along the climosequence, statistical analysis
principle component analysis (PCA) and structural
equation modelling (SEM) were conducted. For that, we
used climatic parameters that is, temperature and aridity
index, dominating vegetation, soil pH and C and N
availability as assessed by soil C/N ratio, phenoloxidase
and peroxidase activities and phospholipid fatty acid
(PLFA) patterns as a proxy for bacterial and fungal
abundance.

2 | MATERIALS AND METHODS

2.1 | Sampling sites

Soil samples were collected from six biomes along a
1500-km latitudinal transect (67�160N to 54�410N) in west-
ern Siberia, including tundra, northern taiga, middle taiga
and southern taiga, forest steppe and typical steppe
(Figure 1). Mean annual temperature (MAT) increased
southward from �7.6 to 1.0�C, while mean annual precipi-
tation (MAP) was highest in the middle taiga (438 mm)
and lowest in the steppe (309 mm) (Stolbovoi & McCal-
lum, 2002; Table 1). Concurrently, the length of the grow-
ing season with daily mean temperatures above 5�C
increased towards the southern biomes. Dryness of biome,
expressed as aridity index and defined as the ratio of
potential evaporation to precipitation (reviewed by
Stadler, 2005; Walton, 1969), increased from north (0.44 in
tundra) to south (1.30 in steppe) (Schnecker et al., 2015).
Dominant vegetation varied among biomes, that is, tundra
was characterized by shrubs and lichens, taiga by conifer-
ous trees, the forest steppe was richer in deciduous trees
and herbaceous plants, and the steppe showed abundant
herbaceous perennials (Table 1).

Soils were sampled in August 2012 during the late
growing season at the respective sites. At each site, three
replicate soil pits were sampled, in which dominant soil
horizons were collected. Soil horizons were designated
according to World Reference Base for Soil Resources
(IUSS Working Group World Reference Base, 2015). Fol-
lowing Wild et al. (2015), the O and OA horizons were
referred to as organic topsoil, the A, AE and EA horizons
as mineral topsoil, and the E, B and BC horizons as mineral
subsoil (Table 1). Directly after sampling, living plant roots
were manually removed, and soil samples were sieved to
<2 mm, except for the tundra soil, where samples were too
moist for sieving and instead homogenized by hand.

2.2 | Lignin analysis

Concentrations of lignin-derived phenols and their
degree of oxidative alteration in soil samples were deter-
mined using the alkaline CuO oxidation following the
method of Hedges and Ertel (1982) with modifications by
Kögel and Bochter (1985). In brief, lignin-derived phenols
were released by oxidation with CuO in the presence of
[Fe(NH4)2(SO4)2 � 6H2O], glucose and 2 M NaOH at
170�C for 3 h. The lignin-derived monomers were
purified using a conditioned C18 column and converted
to trimethylsilyl (TMS) derivatives by reaction with (N,O-
bis-(trimethylsilyl)-trifluoroacetamide) (BSTFA) in pyri-
dine. Thereafter, derivatized-lignin monomers were
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identified and quantified using gas chromatography–
mass spectrometry (450-GC, ion trap 220MS Varian, Palo
Alto, CA, USA). Ethylvanillin was used as recovery stan-
dard, and added prior to the CuO-oxidation, while pheny-
lacetic acid was used as an internal standard, and added
prior to the derivatization. Monomeric lignin-derived
phenols were vanillin, acetovanillone, vanillic acid, syrin-
galdehyde, acetosyringone, syringic acid, ferulic acid and
p-coumaric acid. Vanillyl (V) and syringyl (S) units were
calculated as the sum of their aldehyde, ketone and car-
boxylic acid forms and cinnamyl units (C) are the sum of
ferulic acid and p-coumaric acid. The (Ac/Al)V and
(Ac/Al)S ratios were used to assess the degree of lignin
alteration (Hedges & Ertel, 1982). The concentration of
total lignin was defined as the sum of the eight lignin-
derived phenols (VSC) normalized to the soil dry weight
(g VSC kg�1 soil) or normalized to the organic carbon
(OC) content of the soil and the C content of the individ-
ual lignin-derived phenols (g VSC-C kg�1 OC). While the
former informs on storage of lignin-derived phenols,
the latter is suitable to assess the relative enrichment or
depletion of lignin-derived phenols during SOM transfor-
mation with increasing soil depth (Kögel-Knabner, 1993).

2.3 | Soil parameters

The data on soil pH, OC, total nitrogen (TN) content and
the δ13C value of SOM were taken from Wild et al. (2015)
and data of phenoloxidase and peroxidase activity and the
bacteria/fungi ratio of the microbial community from
Schnecker et al. (2015). The pH was determined potentio-
metrically using 1 M KCl extracts. Organic C and TN con-
tents as well as the δ13C value were analysed by elemental
analysis-isotope ratio mass spectrometry (EA-IRMS), con-
sisting of a Carlo Erba EA 1110 elemental analyser,

coupled to a Finnigan MAT DeltaPlus IRMS with a Finni-
gan MAT ConFlo II Interface (Thermo Fisher Scientific,
Waltham, MA, USA). Mineral topsoil and subsoil at both
forest steppe sites, and all horizons of the steppe site, con-
tained traces of carbonate, which were removed by acidifi-
cation with HCl before EA-IRMS analysis (Prommer et al.,
2014). The C/N ratios of soil samples were calculated on a
mass basis between OC and TN. Phenoloxidase activities
were measured using L-3,4-dihydroxyphenylalanine
(DOPA) as substrate in a photometric assay (Schnecker
et al., 2015). Phospholipid fatty acids were determined
according to Frostegård et al. (1991) with the modification
by C. Kaiser et al. (2010). The bacteria/fungi ratio of the
microbial community was estimated by the ratios of
PLFAs assigned to bacteria and fungi (for more details see
Schnecker et al., 2015).

2.4 | Statistics

One-way ANOVA followed by Tukey's HSD post hoc test
was used to test for significant differences in lignin-
derived phenol contents and indicators of oxidative lignin
alteration between sites and horizons at a significance
level of p ≤ 0.05. Two-way ANOVA was used to test the
effect of site and horizon and their interactions. All vari-
ables were tested for normal distribution and log trans-
formed if needed. The strength of correlation between
parameters was calculated with the Pearson correlation
coefficient. Mean differences between the upper and
lower horizons were calculated for OC-normalized lignin
contents as well as for (Ac/Al)V ratios in order to describe
their relative changes within the soil profiles. Principal
component analysis (PCA) and structural equation
modelling (SEM) were used to test for relationships
between the degree of lignin degradation at different depths

FIGURE 1 Map of sampling sites

along the bioclimatic transect in western

Siberia.
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of soil profiles along the climosequence to climatic parame-
ters, soil pH, the C/N ratio of SOM, phenoloxidase and per-
oxidase activities and PLFA patterns. The PCA was
performed using the ‘ggbiplot’ package in R 4.0.3 in order to
reduce the multivariate matrix into a bidimensional space.
The SEM analysis was used as a multivariate statistical
method to estimate the relative relationships between
observed variables, that is, abiotic and abiotic soil parame-
ters, and a latent (unobserved) variable, that is, degree of lig-
nin degradation. The latent variable is a hypothetical
construct that involves a confirmatory factor analysis of
related measures, that is, the greater degree of lignin degra-
dation is concurring with the increasing ratios of (Ac/Al)V
(Ac/Al)S and the decreasing VSC-C contents on basis of soil
OC. According to Eisenhauer et al. (2015), we hereby distin-
guish observed variables into exogenous variables (predictor
variables that are not influenced by any other variable in the
model, i.e., MAT) and endogenous variables (variables that
respond to the influence of other variables, that is, soil pH,
C/N, enzyme activity, bacteria/fungi ratio). The SEM was
run in R 4.0.3 using the ‘lavaan’ package (Rosseel, 2012).

3 | RESULTS

3.1 | Lignin patterns in the surface
layers

For surface layers, concentrations of lignin-derived phe-
nols were lowest in the steppe (0.7 ± 0.3 g VSC kg�1 soil
dw) and highest in the southern taiga (11.5 ± 4.9 g VSC

kg�1 soil dw) (Figure 2). Normalized to OC, lignin-
derived phenols ranged from 5.2 ± 2.1 to 14.7 ± 4.5 g
VSC-C kg�1 OC (Figure 3), which were lowest for organic
topsoil of the tundra and tended to increase towards the
south. The (Ac/Al)V ratios were significantly higher in
the organic topsoil of forest steppe and uppermost layer
of steppe than those of the northern sites, while the
(Ac/Al)S ratios did not show clear differences between
sites (Figure 3). Similarly, S/V ratios were higher in the
forest steppe and the steppe than in the taiga and tundra,
while no significant difference between sites was
observed for the C/V ratios (Figure 3).

3.2 | Lignin patterns in the mineral soils

In the mineral topsoil, lignin-derived phenols accounted
for 0.2 ± 0.01 to 0.9 ± 0.5 g VSC kg�1 soil dw (Figure 2).
Concentrations were highest in the middle and southern
taiga, and lowest in the steppe. Mineral subsoil horizons
exhibited 0.03 ± 0.002 to 0.2 ± 0.1 g VSC kg�1 soil, with
lowest contents at the southern taiga and the forest
steppe sites (Figure 2). On an OC basis, lignin-derived
phenol contents in the mineral topsoil ranged from 5.5
± 3.4 to 11.6 ± 2.6 g VSC-C kg�1 OC, and were lowest in
the forest steppe, while no difference was observed for
the other sites (Figure 3). In the mineral subsoil, the
lignin-derived phenol contents ranged from 2.7 ± 0.8 to
12.3 ± 6.1 g VSC-C kg�1 OC, with largest values in the
steppe (Figure 3). The (Ac/Al)V of mineral topsoils and
subsoils appeared to increase from north to south. Values

FIGURE 2 Total lignin-derived phenol contents (vanillyl, syringyl and cinnamyl units; VSC) normalized to soil dry weight (dw) within

soil profiles at each site (note the log-scale). Error bars represent SDs with n = 3. The letters indicate significant differences between

horizons of each site, and the symbols * indicate significant differences between sites for each horizon with a significance level p < 0.05.

Min. Sub, mineral subsoils; Min. Top, mineral topsoils; Org. Top, organic topsoils.
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FIGURE 3 Total lignin-derived phenol contents (VSC-C) normalized to organic carbon (OC) within soil profiles at all sampling sites

(a) along with ratios of vanillic acid to vanillin [(Ac/Al)V] and syringic acid to syringaldehyde [(Ac/Al)S] (b), syringyl units to vanillyl units

(S/V) and cinnamyl units to vanillyl units (C/V) (c). Error bars represent SDs with n = 3. The letters indicate significant differences between

horizons of each site, and the symbols * indicate significant differences between sites for each horizon with a significance level p < 0.05.

Min. Sub, mineral subsoils; Min. Top, mineral topsoils; Org. Top, organic topsoils.
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of (Ac/Al)S in the mineral topsoil and subsoil exceeded
those of (Ac/Al)V at most sites, and generally increased
from the tundra to the southern taiga, and then declined
to the steppe (Figure 3).

3.3 | Variability in lignin patterns
between horizons

Two-way ANOVA indicates that lignin-derived phenol
contents normalized to soil dry weight and OC differed
more strongly with soil horizons than with sites
(Table 3). Similarly, soil horizons had a larger impact on
(Ac/Al)V than sites. In contrast, (Ac/Al)S was more vari-
able between sites than soil horizons. Figure 4 reveals
the depth-dependent changes of the OC-normalized
lignin-derived phenol content and (Ac/Al)V, which are
given as the mean difference between the upper and
lower horizons. Negative mean differences of OC-
normalized lignin-derived phenol contents between the
mineral topsoils and the organic topsoils reflect the selec-
tive depletion of SOM in lignin from the organic topsoil to
the mineral topsoil, except for the tundra (Figure 4a).
These differences tended to increase from the northern
taiga to the forest steppe, but slightly decreased in the
steppe. The difference between mineral subsoils and min-
eral topsoils was also negative, with the exception of the
steppe (Figure 4b). However, they were smaller than those

between organic topsoil and mineral topsoil, and did not
show a clear latitudinal trend. Due to cumulative effects,
largest mean differences were observed between mineral
subsoils and organic topsoils and were strongest at the for-
est steppe-forest site (Figure 4c).

A positive mean difference of (Ac/Al)V between min-
eral topsoils and organic topsoils as well as between
mineral subsoils and mineral topsoils was observed, indi-
cating increasing oxidative alteration of lignin with soil
depth (Figure 4d–f). However, the mean differences of
(Ac/Al)V between the horizons showed no clear trends
between sites. At the basis of the whole soil profile, the
largest relative increase of (Ac/Al)V was observed for
the middle and southern taiga sites (Figure 4f). A similar
trend was also found for (Ac/Al)S ratios, but not shown.

3.4 | Lignin patterns in relation to biotic
and abiotic parameters

The PCA indicates that soil dw- and OC-normalized con-
tents of lignin-derived phenols were negatively related to
(Ac/Al)V and (Ac/Al)S (Figure 5). There was a positive
relation of (Ac/Al)V and (Ac/Al)S with phenoloxidase
activities, bacteria/fungi ratios and δ13C. The PCA plot
exhibited decreasing VSC contents (both based on soil dry
weight and OC) and increasing (Ac/Al)V and (Ac/Al)S
values with soil depth. Further, the different sites were
clustered following the north–south gradient. The SEM
reveals a complex impact of climatic and soil parameters
on the stage of lignin decomposition (Figure 6). Of the cli-
matic variables, MAT tended to have a positive impact on
lignin decomposition. Phenoloxidase activity was signifi-
cantly positively related to the stage of lignin degradation,
and also the bacteria/fungi ratio exerted a positive impact
on lignin decomposition (Figure 6). In contrast, the C/N
ratio and soil pH showed a negative effect on lignin
decomposition in soils along the climosequence.

4 | DISCUSSION

4.1 | Vegetation effects on organic layer
lignin properties

Lignin content and chemical composition in the organic
layer samples of the tundra, taiga and forest steppe and
the uppermost layer of the steppe reflected the wide vari-
ety of vegetation types along our 1500 km latitudinal
transect. The average lignin contents of the organic hori-
zons along the climosequence ranged from 3.1 ± 0.6 to
22.9 ± 6.3 g VSC kg�1 OC (Figures 2 and 3), which mir-
rors well that of 2.3–59.4 g VSC kg�1 OC reported in a

TABLE 3 F statistics for bi-factorial ANOVA, testing the effects of

site and horizon lignin patterns.

Lignin patterns F values

VSC (g kg�1 dw)

Site 7.6***

Horizon 191.8***

Site � Horizon 18.8***

VSC (g VSC-C kg�1OC)

Site 9.3***

Horizon 37.5***

Site � Horizon 6.8***

(Ac/Al)V

Site 11.0***

Horizon 14.8***

Site � Horizon 2.2*

(Ac/Al)S

Site 20.9***

Horizon 10.3***

Site � Horizon 1.9*

*p < 0.05.***p < 0.001.
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review of Thevenot et al. (2010). Tundra vegetation is
mainly composed of lichens, mosses and shrubs (Table 1),
with only minor production of aboveground litter (Fu
et al., 2017). Low litter input rates along with a small
contribution of lignin-derived phenols in plant tissues
(0.4–20.7 g VSC-C kg�1 OC; Dao et al., 2018) might have
contributed to the low lignin contents of tundra organic
layers. As compared to mosses, vascular plants were
shown to have up to twice as high net biomass produc-
tion in alpine peatlands (Gerdol et al., 2010) and have
higher input of fresh root litter (Schellekens &
Buurman, 2011) and living roots (Zeh et al., 2019). The
general southward increase in OC-normalized lignin-
derived phenols in the organic topsoil from tundra to
forest steppe was likely driven by a growing proportion

of vascular plants relative to moss litter, which was in
line with a study of a latitudinal transect in boreal
Canada (Kohl et al., 2017).

The effect of different vegetation on lignin is also
reflected in the relative contribution of the V, S and C
units in the organic topsoil. The trend of increasing S/V
ratios from the taiga to the forest steppe likely reflects the
higher proportion of lignin derived from angiosperms as
related to gymnosperms (Hedges & Mann, 1979; Kögel-
Knabner et al., 1988). As lignin in grass litter is more
enriched in C units (Iiyama et al., 1990; Lam et al., 2001),
the C/V ratios in the uppermost layer of the steppe were
higher than at the other sites. Hence, the lignin signature
in the organic layer reflects the prevailing vegetation
along the climosequence.

FIGURE 4 Differences between horizons in OC-normalized lignin concentration (a–c) and in (Ac/Al)V ratios (d–f). Values are the mean

difference between the respective shown horizons. Error bars are SDs with n = 3. The letters indicate significant differences between sites.

FS, forest steppe; Min. Sub, mineral subsoils; Min. Top, mineral topsoils; MT, middle taiga; NT, northern taiga; Org. Top, organic topsoils;

SP, steppe; ST, southern taiga; TU, tundra.
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4.2 | Lignin decomposition dynamics
within the soil profiles

Decreasing OC-normalized lignin contents and increasing
oxidative alteration of lignin indicate progressing lignin
decomposition with soil depth. The sites from the tundra
to the forest steppe showed increasing (Ac/Al)V and

(Ac/Al)S ratios with soil depth. These climosequences also
showed decrease of OC-normalized lignin contents with
soil depth, except the tundra. Moreover, the varying mean
differences of the oxidative ratios and lignin contents
between deeper and upper horizons were more pro-
nounced in the southern taiga and forest steppe than in
the northern sites. These findings suggested an increased

FIGURE 5 Biplot of the first two PCA axes of lignin patterns (VSC, (Ac/Al)V, (Ac/Al)S), environmental factors (MAT, aridity index),

biological factors (phenoloxidase activity, bacteria/fungi ratio) and soil and SOM factors (soil pH, C/N ratio) for all horizons of all sites. A,

mineral topsoils; FS, forest steppe; M, mineral subsoils; MT, middle taiga; NT, northern taiga; O, organic topsoils; SP, steppe; ST, southern

taiga; TU, tundra.

FIGURE 6 Structural equation model showing the effects of mean annual temperature (MAT) and soil parameters (phenoloxidase

activity, bacteria/fungi, C/N, pH) on the stage of lignin decomposition which is described by decreasing OC-normalized lignin-derived

phenols (VSC-C) and increasing (Ac/Al)V and (Ac/Al)S ratios of all studied sites. Numbers on arrows depict standardized path coefficients

with their significance indicated as ***p < 0.001, **p < 0.01 and *p < 0.05.
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degree of lignin decomposition from tundra towards forest
steppe. The increasing temperature from the north to
south primarily explained the increasing degree of lignin
decomposition. According to kinetic theory, SOM decom-
position increases with temperature, especially in cold
regions (Conant et al., 2011). This finding was supported
by a significant relationship between the degree of lignin
degradation and MAT as shown in PCA and SEM
(Figures 5 and 6). In addition to temperature, soil moisture
affects microbial community composition and enzyme
activity through managing oxygen availability (Tulina
et al., 2009). Because the underlying permafrost impedes
subsurface drainage, tundra soils are often wet and the
soils become drier to the south with thinner/no perma-
frost. Consequently, O2 limitation increased towards the
southern biomes. Since lignin-degrading enzymes such as
phenoloxidases and peroxidases are oxygen-dependent, lig-
nin decomposition is more pronounced in southern soils
with better O2 supply. Using the same set of samples as
this study, Schnecker et al. (2015) showed that the soil
microbial community composition and their phenoloxi-
dase and peroxidase activity differed more strongly
between soil horizons than between biomes. (Table 2).
Similarly, we here found that also the lignin-derived phe-
nol contents and (Ac/Al)V ratios were more different
between horizons rather than sites (Table 3). In compari-
son between biomes, the bacteria/fungi ratios were likely
higher in the tundra than south located biomes corre-
sponding to soil horizons (Table 2). This finding suggested
the abundance of fungal community, which was most effi-
cient in lignin degradation, was more pronounced in the
southern biomes than in the tundra. Overall, we found the
positive relationship between the degree of lignin degrada-
tion and the activities of phenoloxidase and peroxidase
enzymes (Figures 5 and 6), suggesting that these enzymes
were primarily accounted for lignin decomposition. The
effect of soil moisture on lignin decomposition was in line
with a previous study of Dao et al. (2022) who indicated
that lignin appeared to slightly decompose with soil depth
in western Siberian tundra, although it was selectively pre-
served in central and eastern Siberia due to differences in
the stage of anaerobiosis. We hence implied that the
impact on lignin decomposition to be indirect as climatic
driving factors are affecting enzyme composition and
activity, and microbial community.

Although the (Ac/Al)V and (Ac/Al)S of lignin was
increased with soil depth, no trend for VSC contents
was observed in the tundra. The weak trend in lignin con-
tents with depth of tundra may be explained by preferential
sorption of lignin to mineral surfaces (K. Kaiser et al., 2001;
K. Kaiser & Zech, 2000; and as reviewed by Angst et al.,
2021) rather than by from plant input. Since tundra is char-
acterized by vegetation with no (e.g., mosses, lichens) or T
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shallow roots (Iversen et al., 2015), lignin input from fresh
roots into mineral horizons, especially in the mineral sub-
soil, is restrained and thus hardly can be the reason for the
observed lacking decrease in OC-normalized VSC-C con-
tents. On the other hand, the permafrost soil layer impairs
fast water drainage, which may support the interaction of
dissolved OM with soil minerals (Ostroumov, 2004). In
addition, the higher contribution of lignin in mineral topsoil
may be due to cryoturbation which causes a mixing of par-
ticulate OM (POM) from organic topsoil to mineral topsoil.
In line with this finding, Gentsch et al. (2015) showed one-
third of POM-C in topsoil of tundra compared to bulk
OC. We therefore speculate that cryoturbative processes
might also affect ‘non-buried’ topsoil horizons via incorpo-
ration of lignin-containing plant residues.

In the steppe, however, no trend of VSC contents as
well as (Ac/Al)V and (Ac/Al)S were observed with depth,
likely indicating a restrained lignin decomposition in the
subsoils, or reflecting the fact that its surface soil layer
was quite mineral and that caused a weaker gradient in
soil properties than at the other sites. According to Cli-
mate classification and dryland subtypes based on aridity
index (Middleton & Thomas, 1997), the steppe site was in
the range of a semiarid climate (aridity index = 0.44,
Table 1), which is characterized by insignificant rainfall
and snowmelt. Therefore, steppe soil often remains dry,
especially in the subsoil (Monger et al., 2005). Low soil
moisture reduces microbial activities in general (Gill &
Burke, 2002; Klotzbücher et al., 2016; Liu et al., 2009)
and restricts the availability of substrates to microorgan-
isms (Amelung et al., 1999; Moyano et al., 2013), leading
to retarded SOM degradation, including that of lignin.
Further, slower lignin degradation in subsoil horizons of
the steppe could additionally be favoured by the slightly
alkaline pH (8.0 ± 1.0, Table 2), which might impair the
activity of lignin-degrading enzymes (reviewed by
Thevenot et al., 2010). Hence, both soil moisture and pH
might contribute to the lower lignin degradation at the
steppe, which is supported by the negative correlations
between lignin decomposition and aridity index and pH
(Figures 5 and 6). These findings are also consistent with
the study of Kayler et al. (2018) who found a faster SOM
turnover in southern taiga than in steppe soils.

The C/N ratio of SOM and plant litter inputs is
expected to decrease with depth and latitude, that is,
from arctic over boreal and temperate to tropical systems
(Post et al., 1985; Xu et al., 2013). In line with these stud-
ies, the C/N ratios decreased from tundra to forest-steppe,
and from organic topsoil to mineral subsoil (Table 2;
Wild et al., 2015). The SEM and PCA analyses showed a
decreasing state of lignin degradation with increasing
C/N ratio of SOM (Figures 5 and 6). The fact that, the
C/N ratio is decreasing with increasing SOM

decomposition due to an increasing proportion of micro-
bial residues on the SOM (Hoorman & Islam, 2010). Con-
currently, the proportion of plant-derived substances,
including lignin, on SOM is decreasing. Hence, with
increasing soil depth decreasing C/N ratios go along with
increasing lignin degradation (i.e., decreasing VSC con-
tents and increasing (Ac/Al)V and (Ac/Al)S ratios). Our
findings thus mirror the higher proportion of microbial
substances and the concurrent lower proportion of plant-
derived substances (i.e., lignin) with soil depth.

5 | CONCLUSIONS

Our study revealed that the pattern of decomposition and
preservation of lignin along a climosequence in western
Siberia depends on a complex interaction of direct and
indirect effects of environmental parameters. In the tun-
dra, lignin decomposition is less decomposed due to fro-
zen soils and anaerobiosis, which are not favouring the
fungi, the most efficient lignin decomposer. In
mid-latitude soils, the acidic pH and drier soils are prefer-
entially attracting fungi, leading to advanced lignin deg-
radation. In the steppe, limited water, but also high pH,
retard lignin degradation. These findings suggest that
warmer and drier conditions with climate change could
accelerate lignin decomposition at high latitudes. An
expansion of the steppe biome towards the southern taiga
may in contrast lead to a retardation of lignin decomposi-
tion in these areas. Such changes may also have an
impact on the overall long-term development of soil
organic carbon stocks.
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