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Abstract
Yang–Baxter integrable vertex models with a generic Z2-staggering can be
expressed in terms of composite R-matrices given in terms of the elementary
R-matrices. Similarly, integrable open boundary conditions can be constructed
through generalized reflection algebras based on these objects and their repres-
entations in terms of composite boundary matricesK±. We show that only two
types of staggering yield a local Hamiltonian with integrable open boundary
conditions in this approach. The staggering in the underlying model allows for
a second hierarchy of commuting integrals of motion (in addition to the one
including the Hamiltonian obtained from the usual transfer matrix), starting
with the so-called quasi momentum operator. In this paper, we show that this
quasi momentum operator can be obtained together with the Hamiltonian for
both periodic and open models in a unified way from enlarged Yang–Baxter
or reflection algebras in the composite picture. For the special case of the
staggered six-vertex model, this allows constructing an integrable spectral flow
between the two local cases.
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finite-size scaling, spectral flow, staggering

(Some figures may appear in colour only in the online journal)

∗
Authors to whom any correspondence should be addressed.

Original Content from this work may be used under the terms of the Creative Commons Attribution
4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the

title of the work, journal citation and DOI.

1751-8121/23/025001+32$33.00 © 2023 The Author(s). Published by IOP Publishing Ltd Printed in the UK 1

https://doi.org/10.1088/1751-8121/acb29f
https://orcid.org/0000-0003-4629-6612
https://orcid.org/0000-0002-9817-3000
mailto:frahm@itp.uni-hannover.de
mailto:sascha.gehrmann@itp.uni-hannover.de
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8121/acb29f&domain=pdf&date_stamp=2023-1-26
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


J. Phys. A: Math. Theor. 56 (2023) 025001 H Frahm and S Gehrmann

1. Introduction

Integrable lattice models based on representations of the Yang–Baxter algebra have proven to
be extremely useful in the understanding of non-perturbative phenomena in one-dimensional
many-body systems. Given a particular R-matrix, it is possible to consider variations in the
spectral parameter leading to local inhomogeneities preserving the integrability of such mod-
els. This has first been used by Baxter in the context of the six-vertex model [1]. In particular,
models with periodically repeating inhomogeneities (or staggered models) have proven to be
applicable to a wide range of problems. Apart from the construction of integrable spin chains
with larger unit cells [2, 3] inhomogeneous vertex models have been used, e.g. to formulate the
Potts model as a Z2-staggered six-vertex model [4], for the lattice regularization of field the-
ories such as the principal chiral model [5, 6], in the quantum transfer matrix approach to the
thermodynamics of integrable models [7], and to study integrable perturbations of conformal
field theories [8]. Alternatively, the staggering can be realized by choosing alternating local
representations of the underlying symmetry algebra. Such a staggering appears quite naturally
in the superspin formulation of network models describing the disorder induced plateau trans-
ition in integer quantum Hall systems [9, 10] which can be made integrable by fine-tuning
of the coupling constants [11, 12]. Extensions of such staggered models to open boundary
conditions with their integrability encoded in representations of the corresponding reflection
algebra [13, 14] allow for the construction of spin chains with soliton non-preserving bound-
ary conditions [15]. Similar algebraic structures emerge in the study of certain AdS/CFT-type
integrability theories [16, 17].

Interestingly, finite-size studies of certain staggered models based both on variations of the
spectral parameter or the local representations have revealed that their continuum limit—in
spite of the compact formulation as a spin chain—is described by conformal field theories
with a non-compact target space [12, 18–20]. Among these the most studied example is the
periodically staggered six-vertex model whose low energy effective theory has been identified
to be the SL(2,R)/U(1) black hole conformal field theory (CFT) [18, 21–25]. More recently,
the influence of open Uq(sl(2))-invariant boundary conditions in this model has been studied,
both for the self-dual staggering related to the Potts model [26, 27] and also away from the
self-dual line [28]. These studies have shown that boundary conditions have a profound effect:
depending on their choice the symmetry of the ground state may be spontaneously broken or
the continuous component of the conformal spectrum disappears completely.

A conserved quantity existing in these models which has been particularly useful for the
identification of the conformal field theory is the so-called quasi momentum operator. Its role
in staggered models without a non-compact continuum limit, however, has not been studied
yet. The definition of the quasi momentum relies on the possibility to introduce a staggering in
the vertical direction of the vertex model which is compatible with the horizontal one [21, 23,
28, 29]. That such an operator cannot be defined in the homogeneous case has impeded pro-
gress in the analysis of the spectrum other models where indications for a continuous spectrum
of conformal weights have been observed, namely the a(2)N−1 models and a family of orthosym-
plectic superspin chains [30–36].

In this work, we will use a different perspective on the staggered models to address the
question of whether the quasi momentum can be constructed in an alternative approach which
may be applicable for homogeneous models, too. After a brief review of the construction of
integrable models with periodic and open boundary conditions based on an ‘elementary’ R-
matrix solving the Yang–Baxter equation (YBE) and corresponding boundary matrices, we
construct ‘composite’ R-matrices using the co-multiplication property of the Yang-Baxter
algebra. These R-matrices satisfy a generalized YBE (2.18) and depend on the staggering
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parameters through additional arguments. For periodic boundary conditions this allows to
define a homogeneous transfer matrix generating both the local integrals of motions such as
the Hamiltonian and the quasi momentum operator.

In section 3 we generalize this procedure to the open case, where we express compos-
ite boundary matrices in terms of the elementary ones. Depending on the properties of the
elementary R-matrices (and unlike in the periodic case) we identify two different choices of
the staggering parameters leading to a transfer matrix constructed from the composite R- and
boundarymatrices which generates a Hamiltonianwith local interactions in the bulk (similar as
in references [37, 38]). For one of these choices a second homogeneous transfer matrix with
boundary matrices satisfying a different reflection equation generates the quasi momentum.
The commutativity of these objects is guaranteed by a set of intertwining relations between
the two sets of boundary matrices.

Finally we apply our findings to the self-dual staggered six-vertex model. Based on this
construction the spectral flow between the models with compact and non-compact continuum
limits can be studied in a family of integrable models. Although one has to give up locality
at the intermediate steps one finds that the two endpoints of this scheme are separated by two
first-order transitions where massive degeneracies lead to a reordering of levels. Based on the
numerical solution of the Bethe equations we provide some insights into the role of the quasi
momentum in the model with compact continuum limit.

2. Basic ingredients

2.1. Yang–Baxter integrable models

Let V= V0 ⊗V0̄ ⊗
⊗L ′

j=1Vj be the tensor product of 2+L ′ copies of a vector space V . Given
an operator A acting on the space V⊗n we define Aj1,...,jn to be the operator onVwhich acts as A
on
⊗n

m=1Vjm ∼= V⊗n and as the identity on all the other factors (assuming implicitly that all jk
are different). We will use this notation throughout the study. Denote by R(u) a linear operator
depending meromorphically on u ∈ C and acting on the twofold tensor product V ⊗V which
satisfies the YBE

Ri,j(u− v)Ri,k(u)Rj,k(v) = Rj,k(v)Ri,k(u)Ri,j(u− v). (2.1)

In the following we will call R the R-matrix. We assume it to satisfy the initial condition

Ri,j(0) = Pi,j, (2.2a)

with the permutation operator Pi,j on Vi⊗Vj. Note that initial condition guarantees that Ri,j(u)
is differentiable near u= 0. In addition to this regularity condition we require several properties
of the R-matrix throughout this paper, namely unitarity, PT-symmetry, crossing symmetry and
crossing unitarity1

Ri,j(u)Rj,i(−u) = ξ(u)1, (2.2b)

Rtitji,j (u) = Rj,i(u), (2.2c)

Ri,j(u) = ViR
tj
i,j(−u− η)V−1

i (2.2d)

Rtii,j(u)MiR
tj
i,j(−u− 2η)M−1

i = ξ(u+ η)1, (2.2e)

1 The stated properties are not independent from each other. The initial condition pairedwith theYang–Baxter equation
gives unitarity. In turn, the combination of (2.2b)–(2.2d) imply (2.2e).

3



J. Phys. A: Math. Theor. 56 (2023) 025001 H Frahm and S Gehrmann

with the crossing parameter η ∈ C, a scalar function ξ(u) and some invertible matrix V ∈
End(V) and M= V tV=M t being a symmetry transformation of the R-matrix

M−1
i Ri,j(u)Mi =MjRi,j(u)M

−1
j . (2.2f )

The first study of such type of R-matrix in the context of open spin chains was carried out
in [39].

In a later section we will assume that the R-matrix is quasi periodic i.e.

Ri,j(u+ p) = fpGiRi,j(u)G
−1
i , (2.3)

where p ∈ C is non-zero constant. Using the properties ( 2.2) of the R-matrix, we find that
f 2p = 1 and G is an invertible matrix, in fact G−1 ∝ V−1GV. Further, one concludes that G
must be a symmetric or anti-symmetric matrix. Using its (anti-)symmetry one deduces by
using PT-symmetry in the transposed version of (2.3) with i and j interchanged that R is G-
invariant, i.e.

GiGjRi,j(u)G
−1
i G−1

j = Ri,j(u). (2.4)

Trigonometric and elliptic R-matrices which obey the quasi periodicity condition (2.3) have
been constructed for example in [40, 41]. We will state explicitly whenever we use the quasi
periodicity assumption in addition to equations (2.2).

Based on the YBE (2.1) an algebraic structure equipped with a coproduct can be introduced.
This allows for the construction of a monodromy matrix

T0(u,{uℓ}) = R0,L ′(u+ uL ′)R0,L ′−1(u+ uL ′−1) . . .R0,1(u+ u1), (2.5)

which obeys the following equivalent (RTT-)relations

Ri,j(u− v)Ti(u,{uℓ})Tj(v,{uℓ}) = Tj(v,{uℓ})Ti(u,{uℓ})Ri,j(u− v), (2.6a)

Ti(u,{uℓ})Ri,j(u+ v)T−1
j (−v,{uℓ}) = T−1

j (−v,{uℓ})Ri,j(u+ v)Ti(u,{uℓ}), (2.6b)

Ri,j(u− v)T−1
i (u,{uℓ})T−1

j (v,{uℓ}) = T−1
j (v,{uℓ})T−1

i (u,{uℓ})Ri,j(u− v). (2.6c)

Each R-matrix in (2.5) acts on the auxiliary space V0 and one of the factors in the quantum
spaceH=⊗L ′

j=1Vj. The parameters {uℓ} are called inhomogeneities. Taking the trace of (2.5)
one obtains the transfer matrix

τ pbc(u,{uℓ}) = tr0

(
T0(u,{uℓ})

)
, (2.7)

which, as a consequence of (2.6a), commutes for different values of the spectral parameter u.
Therefore, it generates integrals of motion for a model defined on the Hilbert spaceH corres-
ponding to an L

′
site lattice subject to periodic boundary conditions.

For models with integrable open boundary condition one needs, in addition, representations
K±(u) ∈ End(V) of the reflection algebras [13]

Ri,j(u− v)K−
i (u)Rj,i(u+ v)K−

j (v) = K−
j (v)Ri,j(u+ v)K−

i (u)Rj,i(u− v), (2.8a)

and

Ri,j(−u+ v)
(
K+
i (u)

)tiM−1
i Rj,i(−(u+ v)− 2η)Mi

(
K+
j (v)

)tj
=
(
K+
j (v)

)tj
MiRi,j(−(u+ v)− 2η)M−1

i

(
K+
i (u)

)ti Rj,i(−u+ v). (2.8b)

For the six- and eight-vertex models (or spin-1/2 chains) the most general c-number solu-
tions to these equation have been constructed in references [14, 39, 42]. K-matrices for more
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general cases of quantum affine algebras have been constructed [43–45]. In the following we
will assume the unitarity property

K−(u)K−(−u)∝ 1, (2.9)

which can be shown to hold for a large number of K-matrices, see e.g. [46] and references
therein. Given the form of the reflection equation (2.8a) with a quasi periodic R-matrix (2.3)
we further assume that2

K−(u+ p)∝ GK−(u)G. (2.10)

Finally, it is natural, especially with regard to local Hamiltonian’s discussed in section 3.5, to
assume that K−(u) is meromorphic in u, too, and obeys

K−(0)∝ 1, K−
(p
2

)
∝ G. (2.11)

The corresponding properties for K+ follow from the isomorphisms of the algebras given in
[14]. Given representations of (2.8) one obtains the transfer matrix

τ(u,{uℓ}) = tr0
(
K+
0 (u)T0(u,{uℓ})K

−
0 (u)T

−1
0 (−u,{uℓ})

)
, (2.12)

which can be shown [14, 39] to commute for different values of the spectral parameter i.e.

[τ(u,{uℓ}), τ(v,{uℓ})] = 0. (2.13)

Hence, it generates commuting integrals of motion of a lattice model on H with boundary
conditions defined by K±(u).

Note that the unitarity relation (2.2b) allows to rewrite the inverse monodromy matrix T−1
0

in (2.12) as

T−1
0 (−u,{uℓ}) = R1,0(u− u1)R2,0(u− u2) . . .RL ′,0(u− uL ′)

 L ′∏
j=1

ξ(−u+ uj)

−1

. (2.14)

In the following of this study we will consider lattices of even length L ′ = 2L and restrict to a
Z2-staggering of the inhomogeneities, i.e.

u2j = δ1, u2j−1 = δ2, j= 1, . . . ,L, (2.15)

where δ1, δ2 ∈ C. The tuple of inhomogeneities {δ2, δ1, . . . ..δ2, δ1} will be abbreviated by
{δ1, δ2} below. Further, we define the function

cτ (u,{δ1, δ2}) = [ξ(−u+ δ1)ξ(−u+ δ2)]
−L

. (2.16)

2.2. The composite R-matrix

Using the coproduct of the Yang–Baxter algebra a solution of the YBE (2.1) can be extended
to act as an endomorphism on W⊗W with W = V ⊗V (or, more generally, n-fold tensor
products of the vector space V). Specifically, we define

Ri,j|k,ℓ(u,∆ij,∆kℓ) = Ri,ℓ(u+∆ij)Ri,k(u+∆ij−∆kℓ)Rj,ℓ(u)Rj,k(u−∆kℓ), (2.17)

2 Note that both conditions (2.10) and (2.11) are satisfied by the generalK-matrices for the anisotropic spin-1/2 chains
[42].
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Figure 1. The composite R-matrix (2.17), where ∆ij = δi− δj.

Figure 2. R, G, G−1,M, M−1 and K-matrices in graphical notation.

where∆ij,∆kℓ are arbitrary parameters. The explicit form is motivated by a general choice of
inhomogeneities in both the horizontal and vertical direction as displayed in figure 1 using the
graphical notation introduced in figure 2.

The index notation implies thatRi,j|k,ℓ acts on the tensor product of the two copies (Vi⊗Vj)
and (Vk⊗Vℓ) of W . We will use this notation throughout this paper. By construction this R-
matrix satisfies the generalized YBE

Ri,j|k,ℓ(u− v,∆ij,∆kℓ)Ri,j|m,n(u,∆ij,∆mn)Rk,ℓ|m,n(v,∆kℓ,∆mn)

= Rk,ℓ|m,n(v,∆kℓ,∆mn)Ri,j|m,n(u,∆ij,∆mn)Ri,j|k,ℓ(u− v,∆ij,∆kℓ), (2.18)

and therefore allows to introduce commuting transfer matrices as in section 2.1. Since this
construction relies on the properties (2.2) of R(u) it is natural to ask which of these are inherited
to the R-matrix. It turns out that the R-matrix obeys the following properties

Ri,j|k,ℓ(0,∆,∆) = ξ(∆)Pi,j|k,ℓ, (2.19a)

Ri,j|k,ℓ(u,∆ij,∆kℓ)Rk,ℓ|i,j(−u,∆kℓ,∆ij) = Ξ(u,∆ij,∆kℓ)1, (2.19b)

Rtitjtktℓ
i,j|k,ℓ(u,∆ij,∆kℓ) = Rk,ℓ|i,j(u,−∆kℓ,−∆ij), (2.19c)

Rtitj
i,j|k,ℓ(u,∆ij,∆kℓ)Mi,jRtktℓ

i,j|k,ℓ(−u− 2η,−∆ij,−∆kℓ)M−1
i,j = Ξ(u+ η,∆ij,∆kℓ)1, (2.19d)
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M−1
i,j Ri,j|k,ℓ(u,∆ij,∆kℓ)Mi,j =Mk,ℓRi,j|k,ℓ(u,∆ij,∆kℓ)M−1

k,ℓ , (2.19e)

G−1
i,j Ri,j|k,ℓ(u,∆ij,∆kℓ)Gi,j =Gk,ℓRi,j|k,ℓ(u,∆ij,∆kℓ)G−1

k,ℓ , (2.19f )

Ri,j|k,ℓ(u+ p,∆ij,∆kℓ) = GiGjRi,j|kℓ(u,∆ij,∆kℓ)G
−1
i G−1

j , (2.19g)

which we discuss in the following order by order. Equation (2.19a) is a regularity property
(with a different normalization) where Pi,j|k,ℓ is the enlarged permutation operator acting on
the state (a⊗ b)⊗ (c⊗ d) ∈W ⊗W = (Vi⊗Vj)⊗ (Vk⊗Vℓ) as

Pi,j|k,ℓ(a⊗ b)⊗ (c⊗ d) = (c⊗ d)⊗ (a⊗ b).

Equation (2.19b) is the unitarity condition where the proportionality constant is given by

Ξ(u,∆ij,∆kℓ) = ξ(u+∆ij)ξ(u+∆ij−∆kℓ)ξ(u)ξ(u−∆kℓ).

The third property, equation (2.19c), is a generalized PT-symmetry ofR, where the parameters
in R change sign due to the reordering caused by the transposition:

Rtitjtktℓ
i,j|k,ℓ(u,∆ij,∆kℓ) = (Ri,ℓ(u+∆ij)Ri,k(u+∆ij−∆kℓ)Rj,ℓ(u)Rj,k(u−∆kℓ))

titjtktℓ

= Rtjtkj,k (u−∆kℓ)R
titk
i,k (u+∆ij−∆kℓ)R

tjtℓ
j,ℓ (u)R

titℓ
i,ℓ (u+∆ij)

= Rk,j(u−∆kℓ)Rk,i(u+∆ij−∆kℓ)Rℓ,j(u)Rℓ,i(u+∆ij)

= Rk,ℓ|i,j(u,−∆kℓ,−∆ij).

As the PT-symmetry is related to the crossing unitary, the R-matrix satisfies a generalized
crossing unitarity relation given in the fourth equation whereMi,j =MiMj.

Finally, also the symmetry relation (2.2f ) and the quasi periodicity (2.3) and its implica-
tion (2.4) can be directly transferred to theR-matrix, yielding the last three equations of (2.19)
where Gi,j = GiGj.3

2.3. Staggered vertex models with periodic boundary conditions

These properties suffice to construct Z2-staggered models with periodic boundary conditions.
Here we show how their formulations in terms of the elementary and the composite R-matrices
are related. Consider the product of two transfer matrices (2.7) with different spectral paramet-
ers corresponding to a staggering in the auxiliary direction (0 and 0 label different auxiliary
spaces)

T pbc(u,{δ0, δ0, δ1, δ2}) = τ pbc(u+ δ0,{δ1, δ2})τ pbc(u+ δ0,{δ1, δ2})

= tr0

(
R0,2L(u+ δ0 + δ1)R0,2L−1(u+ δ0 + δ2) . . .R0,1(u+ δ0 + δ2)

)
× tr0

(
R0,2L(u+ δ0 + δ1)R0,2L−1(u+ δ0 + δ2) . . .R0,1(u+ δ0 + δ2)

)
.

(2.20)

3 Note that the R-matrix, depending on the choice of the parameters in (2.17), may have an extended symmetry. This
has been discussed recently in the context of the antiferromagnetic Potts model where this construction leads to an

integrable model based on the affine D(2)
2 Lie algebra starting from the Uq[sl(2)] (or A

(1)
1 ) invariant R-matrix of the

six-vertex model [47].
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By reordering the R-matrices we obtain

T pbc(u,{δ0, δ0, δ1, δ2})

= tr00

(
R0,2L(u+ δ0 + δ1)R0,2L(u+ δ0 + δ1)R0,2L−1(u+ δ0 + δ2)R0,2L−1(u+ δ0 + δ2) . . .

. . .R0,2(u+ δ0 + δ1)R0,1(u+ δ0 + δ2)R0,1(u+ δ0 + δ2)R0,1(u+ δ0 + δ2)

)
.

The products of four R-matrices appearing in each row can be expressed in terms of the com-
posite R-matrix (2.17). Shifting the spectral parameter as u→ u− δ0 − δ1 we obtain a homo-
geneous transfer matrix

T pbc(u,{∆00,∆12}) = tr00

(
R0,0|2L−1,2L(u,∆00,∆12) . . .R0,0|1,2(u,∆00,∆12)

)
. (2.21)

For the physical interpretation as a lattice model with local (i.e. finite range) interactions addi-
tional conditions have to be satisfied. Typically, locality can be derived from the regularity
property of the R-matrix, i.e. that it becomes a permutation operator at a shift point u= u0. In
the present case, (2.19a), we have u0 = 0 and need to tune the staggering parameters such that

∆00 =∆12 ≡∆. (2.22)

With this constraint a Hamiltonian coupling the degrees of freedom from nearest neighbor
quantum spacesW is obtained from

Hpbc ∝ ∂

∂u
log(T pbc(u,∆,∆))

∣∣∣∣
u=0

, (2.23)

where we have assumed, in addition, that R is differentiable at±∆. The staggering in the auxil-
iary direction allows to construct another operator, generating a family of commuting integrals
deriving from (2.7): instead of (2.20) we can consider the so-called quasi shift operator, given
by the quotient of single row transfer matrices

τ pbc(u+ δ0,{δ1, δ2})
τ pbc(u+ δ0,{δ1, δ2})

.

As done for the product of transfer matrices, we shift the spectral parameter u→ u− δ0 − δ1,
leading to

Q̃pbc(u,{δ0, δ0, δ1, δ2}) =
τ pbc(u− δ1,{δ1, δ2})

τ pbc(u+∆00 − δ1,{δ1, δ2})
. (2.24)

Restricting the staggering parameters δ1, δ2, δ0 and δ0 to be compatible with (2.22) and taking
the logarithm of this operator at the shift point, u0 = 0, we obtain the ‘quasi momentum’

Qpbc = log
[
Q̃pbc(0,{δ1, δ2})

]
= log

[
τ pbc(−δ1,{δ1, δ2})
τ pbc(−δ2,{δ1, δ2})

]
. (2.25)

This operator has proven to be particularly useful for the characterization of low energy effect-
ive behavior of several staggered vertexmodels, see e.g. [21–23, 28, 29] and has found recently
application as a Floquet Hamiltonian [48].

We now want to generate the quasi momentum from an operator constructed from the com-
posite R-matrix (2.17). It is straightforward to invert the single row transfer matrix (2.7) in the
denominator of (2.25) by using regularity and unitarity of the R-matrix:(

τ pbc(−δ2,{δ1, δ2})
)−1 ∝ tr0 (R1,0(0)R2,0(−∆) . . .R2L−1,0(0)R2L,0(−∆)) . (2.26)

8
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With the definition of

Qpbc(u) = tr0 (R1,0(−u)R2,0(−u−∆) . . .R2L−1,0(−u)R2L,0(−u−∆))

× tr0

(
R0,2L(u)R0,2L−1(u−∆) . . .R0,2(u)R0,1(u−∆)

)
,

we obtain a product of R-matrices depending on a spectral parameter which after taking the
logarithm becomes proportional to (2.25) at the shift point. Using crossing symmetry (2.2d)
and expressing the result in terms of the composite R-matrices we find:

Qpbc(u) = tr00
(
R0,2L(u+∆− η)R0,2L−1(u− η) . . .R0,2(u+∆− η)R0,1(u− η)

×R0,2L(u)R0,2L−1(u−∆) . . .R0,2(u)R0,1(u−∆)
)

= tr00

(
R0,0|2L−1,2L(u,∆− η,∆) . . .R0,0|1,2(u,∆− η,∆)

)
= T pbc (u,{∆− η,∆}) . (2.27)

Note that this becomes the product of single row transfer matrices with arguments differing
by the crossing parameter η in the homogeneous limit, ∆→ 0,

lim
∆→0

Qpbc(u) = tr00
(
R0,2L(u− η)R0,2L(u) . . .R0,1(u− η)R0,1(u)

)
= τ pbc(u− η)τ pbc(u). (2.28)

This product can be related to the higher-spin transfer matrices through the T-system bilinear
functional relations [49].

In summary the transfer matrices

T pbc(u,{θ,∆}) = tr00

(
R0,0|2L−1,2L(u,θ,∆) . . .R0,0|1,2(u,θ,∆)

)
(2.29)

provide a unified framework generating both local integrals of motion such as the Hamiltonian
under the locality condition (2.22), i.e. θ =∆, and the quasi momentum (2.25) for θ =∆− η.
Note that the third arguments of all R-matrices in (2.29) coincide. Therefore, commutativity
of T pbc (u,{θ,∆}) for different u and θ (which includes Qpbc(u)) follows directly from the
generalized YBE (2.18). Moreover, let us note that Qpbc, unlike the Hamiltonian, is a non-
local operator.

3. Integrable open boundary conditions for staggered models

3.1. Composite picture for open models

We now want to address the question to which extent this procedure can be applied to con-
struct staggered models with open boundary conditions. The strategy is the same: we begin by
considering the product of two transfer matrices (2.12) built out of generic R and K-matrices
satisfying the Yang–Baxter and reflection equations, respectively, i.e.

T (u,{δ0, δ0, δ1, δ2}) = tr0

(
X0(u+ δ0)

)
tr0

(
Y0(u+ δ0)

)
= tr00

(
X0(u+ δ0)Y

t0
0
(u+ δ0)

)
, (3.1)

9
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Figure 3. Graphical representation of the product (3.1) of two transfer matrices with
arbitrary Z2 staggering by using the conventions defined in figure 2.

where we have defined

X0(u)≡ K+
0 (u)T0(u,{δ1, δ2})K

−
0 (u)T

−1
0 (−u,{δ1, δ2}),

Y0(u)≡ T0(u,{δ1, δ2})K
−
0
(u)T−1

0
(−u,{δ1, δ2})K+

0
(u).

(see figure 3 for a graphical representation of T (u)). Inserting a crossing unitarity (2.2e) and
using cyclicity of the trace and PT-symmetry we obtain

T (u,{δ0, δ0, δ1, δ2})ξ(2u+ δ0 + δ0 + η)

= tr00

(
M0R0,0(−2u− δ0 − δ0 − 2η)M−1

0 X0(u+ δ0))R0,0(2u+ δ0 + δ0)Y0(u+ δ0)

)
= tr00

(
M0R0,0(−2u− δ0 − δ0 − 2η)M−1

0 K+
0 (u+ δ0)

×T0(u+ δ0,{δ1, δ2})K−
0 (u+ δ0)T

−1
0 (−u− δ0,{δ1, δ2})R0,0(2u+ δ0 + δ0)

×T0(u+ δ0,{δ1, δ2})K
−
0
(u+ δ0)T

−1
0

(−u− δ0,{δ1, δ2})K
+

0
(u+ δ0)

)
.

Now we use equation (2.6b) and rearrange the K-matrices to get:

T (u,{δ0, δ0, δ1, δ2}) = tr00

(
K+

0
(u+ δ0)M0R0,0(−2u− δ0 − δ0 − 2η)M−1

0 K+
0 (u+ δ0)

×T0(u+ δ0,{δ1, δ2})T0(u+ δ0,{δ1, δ2})
×K−

0 (u+ δ0)R0,0(2u+ δ0 + δ0)K
−
0
(u+ δ0)

×T−1
0 (−u− δ0,{δ1, δ2})T−1

0

(
−u− δ0,{δ1, δ2}

))
× ξ−1(2u+ δ0 + δ0 + η).

10
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Figure 4. Graphical representation of the product of transfer matrix (3.2) after the mer-
ging procedure. The merged R-matrix here is given by four vertices as in figure 1 as
indicated as an example by the red box. Further we see we obtain some enlarged bound-
ary matrices as emphasized by the blue box.

Finally, using the expression for the monodromy matrices in terms of the elementary R-
matrices this transfer matrix can be represented graphically as shown in figure 4 (up to a scalar
factor). Clearly, this can be expressed in terms of the composite R-matrices (2.17) giving

T (u,{δ0, δ0, δ1, δ2}) = cτ (u+ δ0,{δ1, δ2})cτ (u+ δ0,{δ1, δ2})ξ
−1(2u+ δ0 + δ0 + η)

× tr00

(
K+
0
(u+ δ0)M0R0,0(−2u− δ0 − δ0 − 2η)M−1

0 K+
0 (u+ δ0)

×R0,0|2L−12L(u+ δ0 + δ1,∆00,∆12) . . .R0,0|1,2(u+ δ0 + δ1,∆00,∆12)

×K−
0 (u+ δ0)R0,0(2u+ δ0 + δ0)K

−
0
(u+ δ0)

×R1,2|0,0(u+ δ0 − δ1,∆12,∆00) . . .R2L−1,2L|0,0(u+ δ0 − δ1,∆12,∆00)

)
.

(3.2)

3.2. Local interactions I: alternating staggering

As for periodic boundary conditions the staggering parameters {δ0, δ0, δ1, δ2} have to satisfy
constraints to generate local interactions from this open boundary transfer matrix. Nearest
neighbor interactions between the composite degrees of freedom of the staggered model are
obtained by taking the derivative (assuming all quantities to be differentiable at the corres-
ponding points) of T (u) with respect to the spectral parameter [14]

H∝ ∂

∂u
T
(
u,{δ0, δ0, δ1, δ2}

)∣∣∣∣
u=u0

. (3.3)

Again, locality derives from the regularity of R. To make use of (2.19a) three conditions are
needed to be met:

(a) The R-matrices in (3.2) need to act on the same auxiliary space e.g.W00.
(b) As in the periodic case the staggering parameters have to satisfy the constraint (2.22).

11



J. Phys. A: Math. Theor. 56 (2023) 025001 H Frahm and S Gehrmann

Figure 5. (a) To establish bulk locality at u= 0 the parameters δ0, δ0, δ1, δ2 have to be
fine tuned such that the conditions (a)–(c) hold. The diagrammatic schemes of the bulk
elementary cells at the shift point u= 0 for all possible non-trivial choices of staggering
are displayed in (b) & (c) (alternating case (3.4)) and (d) (quasi periodic case (3.8)).
Using regularity (2.2a), unitarity (2.2b), and in (d) quasi periodicity (2.3) of the ele-
mentary R-matrix gives the identity (e) in the bulk.

(c) The staggering parameters have to be chosen such that all R in (3.2) can simultaneously
be evaluated at the shift point u0 = 0.

For (a) we use the identity Ri,j|0,0 = P0,0Ri,j|0,0P0,0. Conditions (b) and (c) are achieved by
choosing the staggering parameters to be opposite and equal in both the horizontal and the
vertical direction, i.e.

δ0 =−δ0 = δ1 =−δ2 (3.4)

(depicted in figure 5(c)) or the equivalent choice of parameters obtained by changing δ0 →−δ0
(see figure 5(b)). These constraints on the staggering parameters imply∆00 =∆12 = 2δ0 with
δ0 remaining as a free parameter. The resulting transfer matrix is

T (u,{δ0,−δ0, δ0,−δ0}) = cτ (u+ δ0,{δ0,−δ0})cτ (u− δ0,{δ0,−δ0})

× tr00

(
K+

0,0
(u,2δ0)R0,0|2L−1,2L(u,2δ0,2δ0) . . .R0,0|1,2(u,2δ0,2δ0)

×K−
0,0
(u,2δ0)R1,2|0,0(u,2δ0,2δ0) . . .R2L−1,2L|0,0(u,2δ0,2δ0)

)
,

where we have introduced

K−
i,j(u,2δ0) = Pi,jK

−
j (u+ δ0)Ri,j(2u)K

−
i (u− δ0), (3.5a)

K+
i,j(u,2δ0) =

1
ξ(2u+ η)

Pi,jK
+
j (u− δ0)MiRi,j(−2u− 2η)M−1

i K+
i (u+ δ0). (3.5b)

In terms of the monodromy matrix built from the composite R-matrices,

T0,0(u,∆00,∆12) = R0,0|2L−1,2L(u,∆00,∆12) . . .R0,0|1,2(u,∆00,∆12), (3.6)

12
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the transfer matrix for alternating staggering (3.4) is brought into standard form (2.12)4

T alt(u,2δ0)≡ T (u,{δ0,−δ0, δ0,−δ0)

= tr00

(
K+

0,0
(u,2δ0)T0,0(u,2δ0,2δ0)K

−
0,0
(u,2δ0)T−1

0,0
(−u,2δ0,2δ0)

)
. (3.7)

3.3. Local interactions II: quasi periodic staggering

Interestingly, there exists a second choice of the staggering parameters leading to a local
Hamiltonian (3.3) when the elementary R-matrix is quasi periodic (2.3), namely

δ0 =
p
2
, δ0 = 0, δ1 = 0, δ2 =

p
2
, (3.8)

which is displayed in figure 5(d). Again, we have to implement three steps to bring the transfer
matrix into a form generating a local Hamiltonian: for step (a), i.e. switching the auxiliary space
W0,0 to W0,0, we use the YBE (2.1) for v=−p/2 giving

Ri,j|0,0

(
u+

p
2
,−p

2
,
p
2

)
R0,0

(
−p
2

)
= R0,0

(
−p
2

)
Ri,j|0,0

(
u,−p

2
,−p

2

)
. (3.9)

For step (b), i.e. preparingR such that the regularity (2.19a) can be exploited, we use the quasi
periodicity of R which implies

R0,0|i,j

(
u,
p
2
,−p

2

)
= G0R0,0|i,j

(
u,−p

2
,−p

2

)
G−1

0 . (3.10)

Together with the unitarity conditionR0,0(−
p
2 )R0,0(

p
2 ) = ξ( p2 )1 these identities allow to rewrite

the transfer matrix (3.2) such that also condition (c) is satisfied, i.e.

T
(
u,
{p
2
,0,0,

p
2

})
= cτ

(
u+

p
2
,
{
0,
p
2

})
cτ
(
u,
{
0,
p
2

})
ξ−1

(p
2

)
× tr00

(
K+

0,0

(
u,−p

2

)
R0,0|2L−1,2L

(
u,−p

2
,−p

2

)
. . .R0,0|1,2

(
u,−p

2
,−p

2

)
×K−

0,0

(
u,−p

2

)
R1,2|0,0

(
u,−p

2
,−p

2

)
. . .R2L−1,2L|0,0

(
u,−p

2
,−p

2

))
, (3.11)

with

K−
i,j

(
u,−p

2

)
= G−1

i K−
i

(
u+

p
2

)
Rj,i
(
2u+

p
2

)
K−
j (u)Ri,j

(
−p
2

)
, (3.12a)

K+
i,j

(
u,−p

2

)
=

1
ξ
(
2u+ p

2 + η
)Rj,i(p

2

)
K+
j (u)MiRi,j

(
−2u− p

2
− 2η

)
M−1
i K+

i

(
u+

p
2

)
Gi. (3.12b)

Using the monodromy matrix (3.6) for the compositeR-matrices the transfer matrix for the
quasi periodic staggering (3.8) can be written as

T qp
(
u,−p

2

)
≡ T

(
u,
{
−p
2
,0,0,−p

2

})
= tr00

(
K+

0,0

(
u,−p

2

)
T0,0

(
u,−p

2
,−p

2

)
K−

0,0

(
u,−p

2

)
T−1
0,0

(
u,−p

2
,−p

2

))
× ξ−1

(p
2

)
. (3.13)

4 If one drops the constraint 3.4, a shift in the of the spectral parameter in (3.2) leads to a transfer matrix with a moving
boundary [37]. This transfer matrix does not lead in general, however, to a local Hamiltonian.
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Figure 6. In the periodic case (a) a shift in the spectral parameter allows to adjust one
inhomogeneity to zero e.g. δ1 = 0. This is not possible in the open case (b) where each
inhomogeneity appears twice with different signs.

Note that the composite monodromy matrix T (3.6) enters in the transfer matrices (3.7)
and (3.13) with identical arguments for the particular choice of 2δ0 =− p

2 . Hence, the bulk
of these models coincides while the reflection matrices K (3.5) and K (3.12) correspond to
different boundary conditions5. This has been discussed recently in the context of a staggered
six-vertex (or A(1)

1 ) model [37, 38, 47]: for 2δ0 =− p
2 the resulting composite model is a vertex

model based on the twisted affine Lie algebraD(2)
2 . TheD(2)

2 boundary matrices corresponding
to K and K were known previously [50] and can be factorized into objects of the six-vertex
model subject to Uq[sl2] boundary conditions.

3.4. Associated reflection algebras and composite K-matrices

We are left to prove that the reflection matrices (3.5) and (3.12) are indeed representations of a
reflection algebra associated with theR-matrix. We define the following generalized reflection
algebras:

Ri,j|k,ℓ(u− v,θ,θ)K−
i,j(u,θ)Rk,ℓ|i,j(u+ v,θ,θ)K−

k,ℓ(v,θ)

=K−
k,ℓ(v,θ)Ri,j|k,ℓ(u+ v,θ,θ)K−

i,j(u,θ)Rk,ℓ|i,j(u− v,θ,θ) (3.14a)

5 This does not lead to different models in the case of periodic boundary conditions where different choices of the
horizontal staggering can be related by a shift in the spectral parameter (see figure 6).
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and

Ri,j|k,ℓ(−u+ v,−θ,−θ)
(
K+
i,j(u,θ)

)titj
M−1

i,j Rk,ℓ|i,j(−u− v− 2η,−θ,−θ)Mi,j

(
K+
k,ℓ(v,θ)

)tktℓ
=
(
K+
k,ℓ(v,θ)

)tktℓ
Mi,jRi,j|k,ℓ(−u− v− 2η,−θ,−θ)M−1

i,j

(
K+
i,j(u,θ)

)titj
×Rk,ℓ|i,j(−u+ v,−θ,−θ) (3.14b)

Note that the sign of the free parameter θ in the arguments of the composite R-matrices
differs between (3.14a) and (3.14b). One of the main results is that for given K± satisfying
equations ( 2.8) thematricesK (3.5) andK (3.12) obey the equations ( 3.14) with the composite
R-matrix R(u,θ,θ) for θ = 2δ0, δ0 arbitrary, and θ =− p

2 , respectively. The proof for (3.5b) is
given in appendix. The one for (3.5a) works along the same line, for (3.12) one needs to use
multiple times the quasi periodicity in addition.

Based on the reflection algebra it is straightforward to show the commutativity of the trans-
fer matrices for both alternating and quasi periodic boundary conditions. i.e.

[T (u, ϵ),T (v, ϵ)] = 0, ϵ= 0,1.

3.5. Boundary terms in the Hamiltonian

Above we have identified two types of staggering, (3.4) and (3.8), allowing for the construction
of a local bulk Hamiltonian from the corresponding transfer matrix of the composite model.
For a compact presentation we define

Ri,j|k,ℓ(u, ϵ) =

{
Ri,j|k,ℓ(u,− p

2 ,−
p
2 ) ϵ= 0

Ri,j|k,ℓ(u,2δ0,2δ0) ϵ= 1
, K±

i,j(u, ϵ) =

{
K±
i,j(u,−

p
2 ) ϵ= 0

K±
i,j(u,2δ0) ϵ= 1

(3.15)

where ϵ= 1 (0) corresponds to the alternating (3.7) and the quasi periodic staggering (3.13),
respectively. Note thatK−(0, ϵ)∝ 1 by (2.9) for ϵ= 1 and by (2.11) for ϵ= 0. Hence, we obtain
a local6 Hamiltonian [14] via (3.3) whose bulk contribution is found to be

Hϵ
bulk =

2
ξ(∆)

L−1∑
j=1

P2j,2j−1|2j+2,2j+1R
′
2j,2j−1|2j+2,2j+1(0, ϵ). (3.16)

Here and in the following the prime indicates the derivative with respect to the first argument
where we assume that all quantities are differentiable at the corresponding points. The bound-
ary contributions read

Hϵ
left =

tr00

(
K

′+

0,0
(0, ϵ)

)
tr00

(
K+

0,0
(0, ϵ)

) +

2tr00

(
K+

0,0
(0, ϵ)P0,0|2L−1,2LR

′
0,0|2L−1,2L

(0, ϵ)

)
tr00

(
K+

0,0
(0, ϵ)

)
ξ(∆)

,

Hϵ
right =

K− ′

1,2(0, ϵ)

K−
1,2(0, ϵ)

. (3.17)

Note that, to obtain the spectrum of the above Hamiltonians it is sufficient to use the Bethe
Ansatz for the single double row transfer matrix τ(u) (2.12). Knowing the eigenvalue Λ(u) of

6 It is noteworthy, that for K−(0) ̸∝ 1, inducing an alternating staggering is sufficient to define a local Hamiltonian.
See also [15] for a similar approach.
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τ(u) the energies can be calculated via equations (3.1) and (3.3) with operators replaced by
their eigenvalues.

4. Quasi momentum for open systems

As pointed out for the periodic case above, there exist two families of conserved quantities for
the staggered models considered in this paper: in addition to the ones generated to the product
of elementary transfer matrices (3.1) (or equations (3.7) and (3.13) for the two cases discussed
above) one can consider operators such as the quasi momentum generated from the quotient
of elementary transfer matrices. For the staggered model with open boundary conditions built
from arbitrary elementary R- and K-matrices we replace (2.25) by

Q= log

[
τ(−δ1,{δ1, δ2})
τ(−δ2,{δ1, δ2})

]
. (4.1)

To express this operator in the composite picture, we adopt the idea from the periodic case:
we look for a generating function built out of a product of transfer matrices giving (4.1) as the
leading term.

4.1. Alternating staggering

For the alternating staggering case the quasi momentum operator can be directly related (up
to an additive constant) to a single double row-transfer matrix

Qalt = log

(
τ 2(−δ0,{δ0,−δ0})

)
. (4.2)

In this case the quasi momentum can be represented in the rotated geometry as displayed in
figure 7. Starting from τ(u− δ0,{δ0,−δ0})2 and repeating the steps in section 3.1 to reach (3.2)
and then the manipulations (a)–(b) in section 3.2 we obtain another generating functional for
the quasi momentum operator:

Q(u) = tr00

(
K+

0,0
(u,2δ0)T0,0(u,0,2δ0)K

−
0,0
(u,2δ0)T−1

0,0
(−(u− 2δ0),0,2δ0)

)
, (4.3)

where the K-matrices

K−
i,j(u,2δ0) = Pi,jK

−
j (u− δ0)Ri,j(2u− 2δ0)K

−
i (u− δ0), (4.4a)

K+
i,j(u,2δ0) =

1
ξ(2u− 2δ0 + η)

Pi,jK
+
j (u− δ0)MiRi,j(−2u+ 2δ0 − 2η)M−1

i K+
i (u− δ0), (4.4b)

obey the reflection algebras

Ri,j|k,ℓ(u− v,0,0)K−
i,j(u,2δ0)Rk,ℓ|i,j(u+ v− 2δ0,0,0)K−

k,ℓ(v,2δ0)

=K−
k,ℓ(v,2δ0)Ri,j|k,ℓ(u+ v− 2δ0,0,0)K−

i,j(u,2δ0)Rk,ℓ|i,j(u− v,0,0) (4.5a)

and

Ri,j|k,ℓ(−u+ v,0,0)
(
K+
i,j(u,2δ0)

)titj
M−1

i,j Rk,ℓ|i,j(−u− v+ 2δ0 − 2η,0,0)Mi,j

(
K+
k,ℓ(v,2δ0)

)tktℓ
=
(
K+
k,ℓ(v,2δ0)

)tktℓ
Mi,jRi,j|k,ℓ(−u− v+ 2δ0 − 2η,0,0)M−1

i,j

(
K+
i,j(u,2δ0)

)titj
×Rk,ℓ|i,j(−u+ v,0,0), (4.5b)

respectively. Again, the proof is analogous to the one shown in appendix for K+. Reflection
algebras are of this type were introduced by Nepomechie and Retore [37, 51]: they describe a
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Figure 7. Graphical representation of the quasi momentum operator for alternating stag-
gering in the rotated geometry. One can see that the quasi momentum operator is acting
non-locally. The loops at the right and left ending are due to the influences of the bound-
ary matrices.

moving boundary where reflection of a particle at the boundary not only changes the sign of
its rapidity but also leads to the shift by 2δ0 appearing in the argument of R-matrix containing
the sum of u+ v.

These reflection algebras together with the generalized YBE (2.18) ensure the commutativ-
ity of the Q with itself for different arguments. Finally, we need to prove the commutativity
with the transfer matrix (3.7) in the composite picture. For the open chain with alternating stag-
gering this is not obvious because the boundary matrices K± and K± are representations of
different reflection algebras. Remarkably it turns out that they are intertwined by the following
relations

Ri,j|k,ℓ(u− v,0,−2δ0)K−
i,j(u,2δ0)Rk,ℓ|i,j(u+ v− 2δ0,2δ0,0)K−

k,ℓ(v,2δ0)

=K−
k,ℓ(v,2δ0)Ri,j|k,ℓ(u+ v,0,−2δ0)K−

i,j(u,2δ0)Rk,ℓ|i,j(u− v− 2δ0,2δ0,0) (4.6a)

and

Ri,j|k,ℓ(−u+ v,0,2δ0)
(
K+
i,j(u,2δ0)

)titj
M−1

i,j Rk,ℓ|i,j(−u− v+ 2δ0 − 2η,−2δ0,0)

×Mi,j

(
K+
k,ℓ(v,2δ0)

)tktℓ
=
(
K+
k,ℓ(v,2δ0)

)tktℓ
Mi,jRi,j|k,ℓ(−u− v− 2η,0,2δ0)

×M−1
i,j

(
K+
i,j(u,2δ0)

)titj
Rk,ℓ|i,j(−u+ v+ 2δ0,−2δ0,0).

(4.6b)

Again this can be proven as in appendix. Using these algebras one can show on the com-
posite level that

Q(u)T alt(v,2δ0) = T alt(v,2δ0)Q(u). (4.7)

We want to stress that the intertwining relations (4.6) ensure the commutativity of transfer
matrices with different boundary matrices. It would interesting to address whether similar
relations between already other known boundary matrices exists.

4.2. Quasi periodic staggering

For the quasi periodic staggering the single ingredients τ(− p
2 ,{0,

p
2}) and τ(0,{0,

p
2}) become

trivial in the bulk, see figure 8. Under the assumptions (2.11) the quasi momentum operator is
trivial

Qqp ∝ 1. (4.8)
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Figure 8. The two double row transfer matrices defining the quasi momentum as in (4.1)
for quasi periodic staggering evaluated at the shift point. We see that both at their own
become trivial in the bulk and if one assumes that K−(0),K− ( p

2

)
∝ 1 then the whole

transfer matrices become essentially the identity leading to a trivial quasi momentum.

Instead of constructing a generating functional in the composite picture for this trivial quasi
momentum we consider the next to leading term in the expansion of the corresponding quasi
shift operator, i.e.

Qqp ∝ d
du

τ(u,{0, p2})
τ(u− p

2 ,{0,
p
2})

∣∣∣∣
u=0

, (4.9)

where we assume that τ is differentiable at u= 0,−p/2. Below we study the properties of
Qqp

in the special case of the staggered six-vertex model with quasi periodic staggering in the
following chapter.

5. Example: the staggered A(1)
1 (or D(2)

2 ) model

In this last section we want to apply our findings to the staggered six-vertex model with ele-
mentary R-matrix

R(u) =


sinh(u+ iγ) 0 0 0

0 sinh(u) sinh(iγ) 0
0 sinh(iγ) sinh(u) 0
0 0 0 sinh(u+ iγ)

 . (5.1)
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Up to different normalizations of the regularity and crossing symmetry this R-matrix obeys
the characteristic equations (2.1)–(2.3) with

M= 1, η = iγ, fp =−1, V=

(
0 1
−1 0

)
,

p= iπ, G= σz, ξ(u) =
1
2
(cos(2γ)− cosh(2u)).

(5.2)

Moreover, we restrict ourselves to the case of Uq(sl(2))-invariant boundary conditions

K−(u) =

(
eu 0
0 e−u

)
, K+(u) =

(
K−(−u− iγ)

)t
. (5.3)

The double row transfer matrix (2.12) can be diagonalized by means of the algebraic Bethe
Ansatz [52]. For the Z2-staggering (2.15) its eigenvalues are given as

Λ(u) =
sinh(2u+ 2iγ)
sinh(2u+ iγ)

(
sinh(u− δ1 + iγ)sinh(u− δ2 + iγ)sinh(u+ δ1 + iγ)sinh(u+ δ2 + iγ)

)L

× 1

qdet(T(−u− iγ
2 ))

M∏
m=1

sinh(u− vm− iγ
2 )sinh(u+ vm− iγ

2 )

sinh(u− vm+ iγ
2 )sinh(u+ vm+ iγ

2 )

+
sinh(2u)

sinh(2u+ iγ)

(
sinh(u+ δ1)sinh(u+ δ2)sinh(u− δ1)sinh(u− δ2)

)L

× 1

qdet(T(−u− iγ
2 ))

M∏
m=1

sinh(u− vm+ 3iγ
2 )sinh(u+ vm+ 3iγ

2 )

sinh(u− vm+ iγ
2 )sinh(u+ vm+ iγ

2 )
(5.4)

in terms of the parameters vm, m= 1 . . .M, solving the Bethe equations(
sinh(vm− δ1 +

iγ
2 )

sinh(vm+ δ1 − iγ
2 )

sinh(vm− δ2 +
iγ
2 )

sinh(vm+ δ2 − iγ
2 )

sinh(vm+ δ1 +
iγ
2 )

sinh(vm− δ1 − iγ
2 )

sinh(vm+ δ2 +
iγ
2 )

sinh(vm− δ2 − iγ
2 )

)L

(5.5)

=
M∏

k=1̸=m

sinh(vm− vk+ iγ)sinh(vm+ vk+ iγ)
sinh(vm− vk− iγ)sinh(vm+ vk− iγ)

.

In (5.4) the quantum determinant reads

qdet(T(u)) =sinhL
(
u+ δ1 −

iγ
2

)
sinhL

(
u+ δ1 +

3iγ
2

)
× sinhL

(
u+ δ2 −

iγ
2

)
sinhL

(
u+ δ2 +

3iγ
2

)
.

(5.6)

From our discussion above we know that only the alternating or quasi periodic staggering
leads to a local Hamiltonian. Both cases have been studied extensively in [27, 28] and [26]
respectively. Using the vertex representation of the Temperley–Lieb generators ei,i+1:

ej,j+1 = (1C2)
⊗j−1 ⊗


0 0 0 0
0 −e−iγ 1 0
0 1 −eiγ 0
0 0 0 0

⊗ (1C2)
⊗2L−j−1

, (5.7)
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obeying

e2j,j+1 =−2cos(γ)ej,j+1,

ej,j+1ej+1,j+2ej,j+1 = ej,j+1,

ej+1,j+2ej,j+1ej+1,j+2 = ej+1,j+2,

ek,k+1ej,j+1 = ej,j+1ek,k+1, |k− j|> 1.

(5.8)

the Hamiltonian with alternating staggering (3.4) can be written as

Halt(2δ0) =− 1
sin(γ)ξ(2δ0)

(
2L−1∑
j=1

2ξ(2δ0)ej,j+1 − sinh(2δ0)
2L−1∑
j=2

sinh(2δ0 + i(−1)j+1γ)ej,j+1ej−1,j

− sinh(2δ0)
2L−1∑
j=2

sinh(2δ0 + i(−1)jγ)ej−1,jej,j+1

)
.

As discussed in section 3.3 the model where the free staggering parameter is related to the
quasi period as 2δ0 =

p
2 =

iπ
2 deserves special attention. In this case the Hamiltonian of the

staggered model becomes

Halt

(
iπ
2

)
= − 2

sin(2γ)

2cos(γ)
2L−1∑
j=1

ej,j+1 +
2L−1∑
j=2

ej,j+1ej−1,j+ ej−1,jej,j+1

 . (5.9)

This expression coincides with the Hamiltonian of the model with quasi periodic stagger-
ing (3.8) up to boundary terms

Hqper = Halt

(
iπ
2

)
+

2
sin(2γ)cos(γ)

(e1,2 + e2L−1,2L) . (5.10)

As mentioned earlier, the staggered model for 2δ0 = iπ
2 has an extended underlying D(2)

2 sym-
metry. In this context the boundary matrices (3.5), (3.12) are different representations [50, 53,
54] of the corresponding D(2)

2 reflection algebra.

5.1. Spectral flow between the integrable points

Remarkably, the choice of boundary conditions has a profound influence on the low energy
properties of the staggered models: the effective theory of (5.9) with anisotropy γ < 2δ0 <
π− γ has been identified to be the SL(2,R)/U(1) sigma model at level k= π/γ with a non-
compact spectrum of conformal weights [27, 28]. On the contrary, Robertson et al found that
the continuum limit of the model (5.10) is compact [47]. The boundary RG flow between these
two critical fixed points has been studied numerically: based on finite size estimates of the gap
between the ground state and the lowest excitation when the amplitude of the boundary term
in (5.10) is varied between the two integrable points it has been concluded that the fixed points
corresponding to (5.9) and (5.10) are unstable and stable, respectively [27].

In the setting established in this paper both (5.9) and (5.10) originate from a staggered ver-
tex model with the A(1)

1 R-matrix (5.1). This allows to study the spectral flow between (5.9)
and (5.10) in an integrable setting with a fixed choice of the boundary matrices under the vari-
ation of the bulk inhomogeneities. The price to pay for integrability is giving up locality of
the Hamiltonian at the intermediate points. Using the same staggering in the vertical and hori-
zontal directions of the vertex model, i.e. {δ0, δ0}= {δ1, δ2}, we tune δ1 and δ2 to interpolate
between the integrable models with local interactions. We choose the following normalization
of the non-local ‘Hamiltonian’
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H=
qdet

(
T
(
−δ1 − iγ

2

))
qdet

(
T
(
−δ2 − iγ

2

))
2if(δ1)f(δ2)

×
(

d
du

∣∣∣∣
u=0

T (u,{δ1, δ2, δ1, δ2})−
d
du

∣∣∣∣
u=0

f(u+ δ1)f(u+ δ2)

)
(5.11)

with

f(u) =
sinh(2u+ 2iγ)
sinh(2u+ iγ)

sinhL(u− δ1 + iγ)sinhL(u− δ2 + iγ)

× sinhL(u+ δ1 + iγ)sinhL(u+ δ2 + iγ). (5.12)

Specifically, we choose for the remaining inhomogeneities the parameterization

δ1 =
iϑ
2
+

iπ
4
, δ2 =

iϑ
2
− iπ

4
, −π

2
⩽ ϑ⩽ 0, (5.13)

resulting in alternating (quasi periodic) staggering for ϑ= 0 and −π/2, respectively.
The eigenvalues of the ‘Hamiltonian’ (5.11) in this parameterization are given in terms of

the Bethe roots {vm} solving (5.5) as

E=

(
− 4Lcot(2γ)+ L

2sin(2ϑ)
sin(2γ)sin(2(γ+ϑ))

− 2sin(ϑ)
cos(γ)cos(γ+ϑ)

+
2sin(ϑ)

cos(2γ)cos(2γ+ϑ)

+
2tan(γ)
cos(2γ)

)
×

(
M∏

m=1

cos(2(γ−ϑ))+ cosh(4vm)
cos(2(γ+ϑ))+ cosh(4vm)

− 1

)
− 4sin(2γ)

×
M∑
k=1

{
cos(2γ)+ cos(ϑ)cosh(4vk)
(cos(2(γ+ϑ))+ cosh(4vk))2

}
×

M∏
m=1
m ̸=k

cos(2(γ−ϑ))+ cosh(4vm)
cos(2(γ+ϑ))+ cosh(4vm)

.

(5.14)

As expected, this expression reduces to a sum of bare quasi-particle energies ϵ0(vm) for ϑ=
0,±π/2 where the Hamiltonian becomes local. Away from these points, the normalization
of (5.14) leads to singularities at particular values of the flow parameter: the one at ϑ= π

2 − 2γ
can be removed by multiplying the Hamiltonian by the ϑ-dependent factor cos(2γ+ϑ) while
ϑ= π

2 − γ > 0 does not lie on the spectral flow (5.13). The remaining singularity at ϑc1 =−γ
depends on the state considered. In terms of the corresponding Bethe root configuration this
can be related to the low energy root configurations of the quasi periodic model (5.10). These
consists of pairs of complex conjugate roots with imaginary part ±π

4 and an additional root at
iπ
4 for Mqper odd [47]:

vqper ∈
{
xm+

iπ
4
,xm−

iπ
4

∣∣∣∣xm ∈ R>0,m= 1, . . . ,

⌊
Mqper

2

⌋}
∪
{
iπ
4

}
. (5.15)

Here ⌊. . .⌋ denotes the Gaussian bracket. Exact diagonalization of the Hamiltonian for small
systems together with the determination of the corresponding Bethe roots shows that root pat-
terns of this type persist throughout the interval ϑ=−π/2 . . .ϑc1. At ϑc1, however, several
roots become purely imaginary, vm = iπ/4, changing the order of the pole in (5.14). This sin-
gularity can be removed by renormalization of the spectrum by a factor sinν(ϑ+ γ) with an
appropriate choice of an integer ν.

The spectral flow starting from the alternating model (5.9), ϑ= 0, can be studied in a sim-
ilar way: here a class of low energy states (including the ground state) is known [27, 28] to
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Figure 9. Rescaled real parts Ẽ of the eigenenergies of the staggered six-vertex Hamilto-
nian with 2L= 8 sites, anisotropy γ= 0.9 for the charge sector Sz = 2 for the spectral
flow (5.13). Energies have been multiplied with −cos(ϑ+ 2γ)sin5(ϑ+ γ) to regular-
ize the singularities as described in the main text. The mapping between low and high
energy states in the local models is clearly seen. In the lower plots the level crossings at
ϑ= ϑc1,ϑc2 of low lying states evolving from the respective ground states are resolved
within the ϑ-intervals indicated in the upper image details.

be described by configurations consisting of real roots and ones having an imaginary part
of π

2 :

valt =

{
xm,yn+

iπ
2

∣∣∣∣xm,yn ∈ R>0, m= 1, . . . ,M0, n= 1, . . . ,M iπ
2

}
. (5.16)

Configurations of this type exist in the interval ϑ= ϑc2 . . .0 where roots with vanishing real
parts appear for ϑc2 = γ−π/2. These do not, however, lead to singularities in the eigenvalues
of (5.14).

Both at ϑc1 and ϑc2 the appearance of purely imaginary Bethe roots leads to degeneracies
involving many states, as shown in results from exact diagonalization for a spin chain with
2L= 8 sites, anisotropy γ= 0.9 for the charge sector Sz = 2 shown in figure 9. Under the
spectral flow low energy states of the local Hamiltonian (5.9) are mapped to high energy ones
for (5.10) and vice versa. The crossing of a large number of levels indicates the presence of
first-order transitions when the flow parameter is ϑc1 or ϑc2.
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Support for this interpretation is obtained by studying the spectral flowwithin the root dens-
ity formalism [55]: in the thermodynamic limit the densities of roots in the configuration (5.16)
of the alternating model are found to be

ρa(v) = σa(v)+
1
L
τ a(v), a= x,y, (5.17)

with bulk and surface contributions

σx(v) = σy(v) =
cos
(

πϑ
π−2γ

)
π− 2γ

 1

cosh
(

2πv
π−2γ

)
+ sin

(
πϑ

π−2γ

) +
1

cosh
(

2πv
π−2γ

)
− sin

(
πϑ

π−2γ

)
 ,

τ x(v) = τ y(v) =
1
4π

ˆ ∞

−∞
dωeiωv

sinh
(
3γ−π

4 ω
)

sinh
(γω

4

)
cosh

(
2γ−π

4 ω
) .

Similarly, the density ρ̄(x) of root configurations (5.15) of the quasi periodic model is found
to be

σ̄(x) =
4

π− 2γ

cos
(

π
2
π+2ϑ
π−2γ

)
cosh

(
2πx

π−2γ

)
cosh

(
4πx

π−2γ

)
+ cos

(
π π+2ϑ

π−2γ

) , τ̄(x) =
1

π− 2γ
1

cosh
(

2πx
π−2γ

) . (5.18)

That the bulk densities σx,y(v) (σ̄(x)) vanish at ϑc2 (ϑc1) indicates a transition into a different
state in accordance with our results for small system sizes.

5.2. Role of the quasi momentum in the quasi periodic model

As mentioned above the continuum limit of the alternating model (5.9) is described by a non-
compact conformal field theory. In the lattice model this is manifest in the finite size gaps
closing as

∆Ealt
n = Ealt

n −Lealt∞ − falt∞ ∼ πvaltF
L

(
const.+ const.

(dNalt)2

log(L)2

)
, (5.19)

where Lealt∞ and falt∞ are the bulk and surface contributions to the energy and valtF is the Fermi
velocity. On the level of the Bethe configurations (5.16) logarithmic corrections arise when
the numbersM0 (M iπ

2
) of roots with Im(valtm ) = 0 (π2 ) are different, i.e. dN

alt =M0 −M iπ
2
̸= 0.

For large L the eigenvalues of the quasi momentum operator are proportional to dNalt/ log(L),
which allows a direct identification of the underlying CFT [21, 23, 28].

In this section, we reconsider the finite-size analysis of the quasi periodic chain using the
definition (4.9). Motivated by the insights gained in the alternating model we consider Bethe
configurations (5.15) with different numbers M± iπ

4
of roots on the lines Im(valtm ) =±π

4 . To
investigate the scaling behavior of those states, we consider the rescaled energy gaps

hneff =
L

πvqpF
(Eqp

n −Leqp∞ − f qp∞ ) . (5.20)

The energies eqp∞, f qp∞ and Fermi velocity of the quasi periodic model are obtained in the root
density formalism using (5.18) with ϑ=−π

2

eqp∞ = 2f qp∞ = − 1
2

ˆ ∞

−∞
dω

sinh
(
γω
2

)
sinh

(
πω
4

)
cosh

(
1
4 (π− 2γ)ω

) , vqpF =
2π

π− 2γ
. (5.21)
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Figure 10. Scaling of energy gaps (5.20) of the quasi periodic chain in the sector Sz = 7
weighted by 1/(dNqp)2 obtained by solving the Bethe-Ansatz equations for various dNqp

and L and fixed γ= 0.9. We see that the scaling dimensions of those state depend on
(dNqp)2 and display a clear logarithmic divergence as L→∞. While solving the Bethe
equations numerically, we found that the dNqp needs to be smaller than Sz for numerical
convergence.

Using the Bethe-Ansatz we have calculated hneff for states with various dNqp =M− iπ
4
−M iπ

4
as displayed in figure 10. Differing from the alternating model, we see that the hneff diverge
logarithmically with an amplitude proportional to (dNqp)

2.We interpret these diverging scaling
dimensions in the quasi periodic case in the manner that states with dNqp ≠ 0 disappear from
the low energy sector in the thermodynamic limit. Only states with dNqp = 0 stay in the low
energy regime as L tends to infinity which have been extensively studied in [47].

To parameterize this behavior in terms of the quasi momentum we consider (4.9) (recall
that the lowest order term in the expansion of the quasi shift operator (4.8) is trivial for the
quasi periodic model). For the staggered six-vertex model this operator can be expressed in
terms of Pauli matrices as

Qqp
=

{
2cos(γ)

2L−2∑
j=1

(σ−
j σ

+
j+1σ

z
j+2 −σ+

j σ
−
j+1σ

z
j+2 +σzjσ

−
j+1σ

+
j+2 −σzjσ

+
j+1σ

−
j+2)


+

cos(γ)
sin(γ)

2L−2∑
j=1

(−1)j
(
2
(
σ−
j+2σ

+
j +σ+

j+2σ
−
j

)
+σzjσ

z
j+2

)
− 2isin(γ)

(
σ+
1 σ

−
2 −σ−

1 σ
+
2

)
+ 2isin(γ)(σ−

2Lσ
+
2L−1 −σ+

2Lσ
−
2L−1)

− iσz1 + iσz2 + iσz2L−1 − iσz2L

}
1

icos2(γ)
.

(5.22)
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Figure 11. The quasi momentum of Bethe states having a non vanishing quantum num-
ber dNqp.

Note this this a sum of local operators in contrast to the alternating case, see figure 7. The
normalization of in (5.22) is chosen such that its eigenvalueQqp

can be expressed in a simple
form in terms of the Bethe roots:

Qqp
=
∑
j

q0(vj) with q0(u) =
16isin(γ)cosh(2vj)
cosh(4u)− cos(2γ)

. (5.23)

Note that Qqp
measures the difference of the number of Bethe roots on the lines ± iπ

4 :

q0

(
x+

iπ
4

)
=−q0

(
x− iπ

4

)
. (5.24)

This is similar to the role of (4.2) in the alternating case. In the present case, however, the
Qqp ∝ dNqp as L→∞, see figure 11. Hence,Qqp

does not capture the L-dependence observed
in figure 10.

6. Conclusion

Starting from an elementary solution R of the YBE (2.1) we have constructed the compositeR-
matrix (2.17). In addition to the spectral parameter the composite matrix depends on two free
parameters related to the staggering of the elementary vertices (see figure 1). PT-symmetry,
unitarity, regularity and crossing unitarity are inherited from the elementary R-matrix. Most
importantly, the composite R-matrix obeys a generalized YBE (2.18). In this picture the com-
muting transfer matrices of arbitrary Z2-staggered models can be rewritten as homogeneous
ones where the staggering parameters enter through the additional arguments of the compos-
ite R-matrices (and reflection matrices in the case of open boundary conditions). Integrals of
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motion (including the quasi momentum operator) whose natural definition relies on the stag-
gering of the model have been described in the homogeneous picture based on the composite
R-matrix. In the case of open boundary conditions the Hamiltonian and the quasi momentum
are defined in terms of different representations of the reflection algebra intertwined by (4.6).
This construction may provide insights into a definition of this operator in homogeneous mod-
els (lacking a known factorization of the transfer matrix). This is of particular interest for
such models featuring a continuous component of the conformal spectrum at criticality [30,
31, 34, 35]. Knowing the quasi momentum operator in these models is expected to foster the
identification of the CFT describing the low energy regime.

Demanding locality in the Hamiltonian limit leads to constraints on the staggering paramet-
ers: in the case of periodic boundary conditions they have to be tuned to satisfy (2.22). For open
boundary conditions the staggering has to satisfy equation (3.4) for ‘alternating staggering’.
Moreover, for quasi periodic R- (and R-) matrices the inequivalent choice of ‘quasi periodic
staggering’ (3.8) leads to a different Hamiltonian with local interactions. For both cases we
have identified the corresponding composite boundary matrices which generalizes the findings
of the factorization [38] for the D(2)

2 boundary matrices [50, 53, 54] to arbitrary algebras.
Applying our construction to this model we have studied the spectral flow between the

alternating and the quasi periodic model. Following this flow along a line of integrable models
we find that the endpoints are separated by two first-order transitions which is consistent with
the different properties of the corresponding spectra observed previously. The different role of
the quasi momentum operator in the alternating and quasi periodic model are briefly discussed.
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Appendix. Proof of the reflection algebra (3.14b) for K+

Using the definitions of the composite quantities in the LHS of the reflection algebra (3.14b)
we obtain (we omit the prefactor of K+ and set ijkℓ= 1234 for notational clarity):

R1,2|3,4(−u+ v,−θ,−θ)
(
K+

1,2(u,θ)
)t1t2

M−1
1,2R3,4|1,2(−u− v− 2η,−θ,−θ)M1,2

(
K+

3,4(v,θ)
)t3t4

= R1,4(−u+ v− θ)R1,3(−u+ v)R2,4(−u+ v)R2,3(−u+ v+ θ)

×
(
P1,2K

+
2

(
u− θ

2

)
M1R1,2(−2u− 2η)M−1

1 K+
1

(
u+

θ

2

))t1t2

M−1
1 M−1

2

×R3,2(−u− v− 2η− θ)R3,1(−u− v− 2η)R4,2(−u− v− 2η)R4,1(−u− v− 2η+ θ)

×M1M2

(
P3,4K

+
4

(
v− θ

2

)
M3R3,4(−2v− 2η)M−1

3 K+
3

(
v+

θ

2

))t3t4

.
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Resolving the transpositions and reordering the permutation operators gives:

R1,2|3,4(−u+ v,−θ,−θ)
(
K+

1,2(u,θ)
)t1t2

M−1
1,2R3,4|1,2(−u− v− 2η,−θ,−θ)M1,2

(
K+

3,4(v,θ)
)t3t4

= P3,4R1,3(−u+ v− θ)R1,4(−u+ v)R2,3(−u+ v)R2,4(−u+ v+ θ)

×
(
K+
1

(
u+

θ

2

))t1

M−1
1 R2,1(−2u− 2η)M1

(
K+
2

(
u− θ

2

))t2

M−1
1 M−1

2

×R4,1(−u− v− 2η− θ)R4,2(−u− v− 2η)R3,1(−u− v− 2η)R3,2(−u− v− 2η+ θ)

×M1M2

(
K+
4

(
v+

θ

2

))t4

M−1
4 R3,4(−2v− 2η)M4

(
K+
3

(
v− θ

2

))t3

P1,2.

We present from now on also the graphical proof for maximal clarity:

Canceling the operator insertions gives:
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Using the YBE to pass the weight −2u− 2η to the right side gives:

Using the reflection algebra (2.8b) move the K+-matrix with weight v+ θ/2 upwards we
obtain:

Using (2.8b) again this yields:
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Reshuffling the operator insertions via (2.2f ) we get

By using the YBE to bring the weight −2v− 2η to the top we obtain:

Similar as above we use the reflection algebra (2.8b) twice to get
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We reshuffle the operator insertions again to obtain:

Now we can use the YBE to bring the weight −2u− 2η back to left.

Now we reshuffle the operator insertion a last time (2.2f ) to obtain finally:
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Now we proceed algebraically. We reorder the permutation operators

R1,2|3,4(−u+ v,−θ,−θ)
(
K+

1,2(u,θ)
)t1t2

M−1
1,2R3,4|1,2(−u− v− 2η,−θ,−θ)M1,2

(
K+

3,4(v,θ)
)t3t4

=

(
K+
3

(
v+

θ

2

))t3

M−1
3 R4,3(−2v− 2η)M3

(
K+
4

(
v− θ

2

))t4

P3,4M1M2

×R1,4(−u− v− 2η− θ)R1,3(−u− v− 2η)R2,4(−u− v− 2η)R2,3(−u− v− 2η+ θ)

×M−1
1 M−1

2

(
K+
1

(
u+

θ

2

))t1

M−1
1 R2,1(−2u− 2η)M1

(
K+
2

(
u− θ

2

))t2

P1,2

×R3,2(−u+ v− θ)R4,2(−u+ v)M3R3,1(−u+ v)R4,1(−u+ v+ θ)M1M2M4,

and reintroduce the transposition, while using (2.2c) to obtain

R1,2|3,4(−u+ v,−θ,−θ)
(
K+

1,2(u,θ)
)t1t2

M−1
1,2R3,4|1,2(−u− v− 2η,−θ,−θ)M1,2

(
K+

3,4(v,θ)
)t3t4

=

(
P3,4K

+
4

(
v− θ

2

)
M3R3,4(−2v− 2η)M−1

3 K+
3

(
v+

θ

2

))t3t4

M1M2

×R1,4(−u− v− 2η− θ)R1,3(−u− v− 2η)R2,4(−u− v− 2η)R2,3(−u− v− 2η+ θ)

×M−1
1 M−1

2

(
P1,2K

+
2

(
u− θ

2

)
M1R1,2(−2u− 2η)M−1

1 K+
1

(
u+

θ

2

))t1,t2

×R3,2(−u+ v− θ)R4,2(−u+ v)M3R3,1(−u+ v)R4,1(−u+ v+ θ)M1M2M4

=
(
K+

3,4(v,θ)
)t3t4

M1,2R3,4|1,2(−u− v− 2η,−θ,−θ)M−1
1

(
K+

1,2(u,θ)
)t1t2

×R1,2|3,4(−u+ v,−θ,−θ),

which completes the proof.
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