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Abstract
We study the dimension of loci of special line bundles on stable curves and for a fixed
semistable multidegree. In case of total degree d = g − 1, we characterize when
the effective locus gives a Theta divisor. In case of degree g − 2 and g, we show
that the locus is either empty or has the expected dimension. This leads to a new
characterization of semistability in these degrees. In the remaining cases, we show
that the special locus has codimension at least 2. If the multidegree in addition is
non-negative on each irreducible component of the curve, we show that the special
locus contains an irrreducible component of expected dimension.

Mathematics Subject Classification 14H51 · 14H40 · 14H20

1 Introduction

If X is a smooth curve of genus g, then a general line bundle L of degree d satisfies

h0(X , L) = max {0, d − g + 1} .

The locus of special line bundles in Picd(X), those that have additional global sections,
is empty for d < 0 and d > 2g − 2, and irreducible of dimension d if 0 ≤ d ≤ g − 1
and irreducible of dimension 2g − 2 − d if g − 1 ≤ d ≤ 2g − 2.
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In this paper, we are interested in how this picture changes if X is no longer assumed
to be a smooth curve, but allowed to have nodal singularities. More precisely, we
assume X to be a stable curve. Stable curves give a well-understood compactification
of the moduli space of smooth curves. In this way they provide important tools for
understanding the geometry of the moduli space, as well as studying smooth curves
via degeneration techniques.

Two basic properties remain as in the smooth case: First, theRiemannRoch theorem
still holds, and hence also the lower bound h0(X , L) ≥ d − g + 1. And second, loci
of special line bundles (or, more generally, any Brill Noether locus) can be realized as
a degeneracy locus of a map between vector bundles. Such a locus is either empty, or
each of its irreducible components has at least the expected dimension.

If X is reducible, the similarities with the case of smooth curves do not go much
further. More precisely, in this case also the degree d Picard scheme Picd(X) is no
longer irreducible. To be able to talk about generic behaviour, one thus needs to restrict
to an irreducible component of Picd(X). We denote such an irreducible component
by Picd(X), parametrizing line bundles on X of fixed multidegree d . A multidegree
is a tuple of integers, one for each irreducible component Xv of X , that prescribes the
degree of the restriction of a line bundle to Xv .

For almost all choices ofmultidegree d of fixed total degree d none of the statements
for smooth curves in the first paragraph remains true if X is reducible. In fact, for any
integer r and fixed total degree d, there are only finitely many multidegrees d of total
degree d such that there exists a line bundle L of multidegree d and with h0(X , L) ≤ r
– whereas there are infinitely many multidegrees of fixed total degree d.

To remedy this, we focus in this paper on semistable multidegrees, as introduced
by Caporaso to construct a universal compactified Jacobian over the moduli space of
stable curves [5]. See Definition 3.1. Line bundles with semistable multidegree are
those that are slope semistable with respect to the dualizing sheaf ωX of X by [3, §1].

Our choice of multidegrees is motivated by two previous results. First, as in the
case of smooth curves, outside of the range 0 ≤ d ≤ 2 g − 2 every line bundle with
semistable multidegree is non-special by [7, Theorem 2.3]. And second, the case of
d = g − 1 allows for a theory of Theta divisors, as we explain below. Even more,
one can characterize semistability for degree g − 1 in these terms. We note however,
that in other regards there are better-behaved classes of multidegrees, and there seems
to be no overall best-behaved choice. See for example [11, 12] for the question of an
upper bound on h0(X , L) for all line bundles L of fixed multidegree.

1.1 Results

Suppose d is a multidegree of total degree d ≤ g − 1. Then the expected dimension
of the effective locus

Wd(X):=
{
[L] ∈ Picd(X) | h0(X , L) ≥ 1

}

is d. In particular, if d = g − 1, Wd(X) is expected to be a divisor in Picd(X), called
the Theta divisor.
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Since Wd(X) can be realized as a degeneracy locus, there are three options for
the actual dimension of Wd(X) in degree g − 1: Wd(X) is either empty, a divisor
in Picd(X), or all of Picd(X). Thus to show that Wd(X) is a divisor, it suffices to
show that there exist both an effective and a non-effective line bundle of multidegree
d. For the latter, a very pleasing answer was found by Beauville [4, Lemma 2.1].
Namely, a multidegree d of total degree g − 1 is semistable if and only if there exists
a non-effective line bundle of multidegree d.

In this paper, we first settle the remaining part of the question, namely when the
effective locusWd(X) is empty. It turns out, thatWd(X) indeed can be empty, even if d
is semistable of degree g− 1. Example 4.7 gives instances for arbitrary g ≥ 2. Before
we can characterize when this happens, we need to recall one particularly convenient
combinatorial description of semistable multidegrees of total degree g − 1.

We denote by GX the dual graph of X . To an orientation O of the edges of GX , one
can associate a multidegree dO . Namely, the value of dO on an irreducible component
Xv of X is given by

indegO(v) − 1 + gv.

Here v is the vertex of GX corresponding to Xv , indegO(v) denotes the number of
incoming edges at v in the orientation O , and gv denotes the geometric genus of Xv .
As observed in [3, 4], a multidegree d is semistable of total degree g − 1 if and only
if d = dO for some orientation O . As a final ingredient, recall that a directed cycle in
an orientation O is a cycle in which every vertex is adjacent to one incoming and one
outgoing edge of the cycle.

Theorem 1.1 Let X be a stable curve and d a multidegree of total degree g − 1. Then
the effective locus Wd(X) ⊂ Picd(X) has codimension 1 if and only if d is semistable
and either X contains an irreducible component that is not rational, or the orientation
giving d contains a directed cycle.

See Theorem 4.8. One can view this as a small correction to [4, Proposition 2.2],
in which it is claimed that d is semistable if and only if a Theta divisor exists. The
possibility of an empty effective locus however is not considered.

The existence of a Theta divisor is a foundational result in the theory of compactified
Jacobians and generalized Prym varieties, since a Theta divisor allows to define a
canonical polarization on these varieties. See, for example, [1, 3, 4, 6, 13, 15]. In these
cases, the multidegrees d do satisfy the second condition of Theorem 1.1 and no issue
arises. See Remark 4.9 for a detailed discussion.

We use Theorem 1.1 and combinatorics of semistable multidegrees to obtain new
results for semistable multidegrees of total degrees other than g − 1. Recall that
a multidegree d itself is called effective, if it is non-negative on each irreducible
component of X .

Theorem 1.2 Let X be a stable curve and d a semistable multidegree of total degree
d ≤ g− 2. Then each irreducible component of the effective locus Wd(X) has dimen-
sion at most g−2. If d is in addition effective, then the effective locus Wd(X) contains
an irreducible component of expected dimension, d.
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See Theorem 6.5. It is not hard to see, that a line bundle L is semistable or special,
if and only if its residual ωX ⊗ L−1 is so (cf. Remark 3.6). Hence Theorem 1.2 also
gives the analogous statements for special loci in case d ≥ g.

The irreducible component of expected dimension in the last statement of Theo-
rem 1.2 is the image Ad(X) of the rational Abel map αd . This map is defined whenever
d is effective, as follows:

αd :
∏
v

(
X sm

v

)dv → Picd(X), (p1, . . . , pd) �→ OX (p1 + · · · + pd) .

Here X sm
v denotes the intersection of Xv with the smooth locus of X and dv the value

of the multidegree d on Xv . In general, the dimension of the image Ad(X) can be
smaller than d even if d ≤ g, and Ad(X) need not be an irreducible component of
the effective locus. See Remark 4.11. The claim of the theorem is, that both these
properties however do hold when d is semistable.

Notice next, that Theorem 1.2 shows that the effective locus is either empty or has
the expected dimension, when d is semistable of total degree d = g − 2. As opposed
to the case d = g − 1, this no longer characterizes semistability. See Examples 5.5
and 5.6. On the other hand, we obtain a new characterization of semistability in degree
g − 2 in Lemma 5.8. Since it allows for a more elegant formulation, we state here the
residual version for total degree g, as in Theorem 5.10.

Theorem 1.3 Let X be a stable curve and d a multidegree of total degree g. Then d is
semistable if and only if d is effective and the rational Abel map αd is dominant.

As mentioned above, it is well-known that semistability in degree g − 1 shows
many surprising interactions, among others with combinatorics and the existence of
Theta divisors. In addition to [8, 14], Theorem 1.3 provides further evidence that
semistability in degree g exhibits similarly special behaviour.

Finally, for d < g− 2 the effective locus can have larger than expected dimension,
even if d is semistable. This can be the case already for d = g − 3 as in Example 6.7.

1.2 Structure of the paper

In Sect. 2, we fix some notation. In Sect. 3, we recall basic properties of semistable
and special line bundles. In Sect. 4, we discuss the case d = g − 1 and the existence
of Theta divisors. To do so, we recall the description of semistability in terms of
orientations in Sect. 4.1. After establishing existence of Theta divisors in Sect. 4.2, we
recall a description of the irreducible components of Theta divisors due to Coelho and
Esteves [9] in Sect. 4.3. In Sect. 5, we discuss the case d = g − 2 and its residual case
d = g. We show that in these cases the special loci have expected dimension if d is
semistable in Sect. 5.1 and characterize semistability in Sect. 5.2. Finally, we discuss
in Sect. 6 the general case and prove Theorem 1.2.
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2 Notations and conventions

Throughout the paper, we work over an algebraically closed field k of characteristic
0. We consider a curve X over k, which we will always assume to be reduced with
nodal singularities. If not specified otherwise, we will assume X to be connected.

We denote the dual graph of X by GX . That is, GX contains a vertex v for every
irreducible component Xv of X ; an edge between vertices v and w for each node in
Xv ∩ Xw, possibly with v = w; and each vertex v is assigned the weight gv given by
the geometric genus of Xv . In particular, GX may contain multiple edges between the
same two vertices, as well as loop edges. We denote by V (GX ) and E(GX ) the sets
of vertices and edges of GX , respectively.

The genus of GX is defined as

g(GX ) = 1 − χ(GX ) +
∑

v∈V (GX )

gv, (1)

where χ(GX ) is the Euler characteristic of GX . That is, 1−χ(GX ) = 1−|V (GX )|+
|E(GX )|. The genus of GX equals the arithmetic genus g(X) of X . We write g :=
g(X) = g(GX ) if X is clear from the context. The valence val(v) of a vertex v is the
number of edges adjacent to v with loops counted twice.

For a subcurve Y ⊂ X we write Y c = X\Y for the closure of the complement in
X . In particular, Y ∩ Y c is a finite union of nodes. Any subcurve Y ⊂ X corresponds
to an induced subgraph GY of GX , that is, a subgraph that contains all edges of GX

between vertices contained in GY . We denote by G
c
Y the dual graph of Y c.

We denote byωX the dualizing sheaf of X . It has total degree 2g−2. The restriction
of ωX to a subcurve Y of X has total degree 2g(Y ) − 2 + |Y ∩ Y c|. In particular, the
restriction ofωX to an irreducible component Xv has degree 2gv −2+val(v). A curve
X is stable if it is connected, g(X) ≥ 2 and whenever an irreducible component Xv is
smooth and rational, then |Xv ∩ Xc

v| ≥ 3. Equivalently, X is stable if it is connected
and ωX is ample.

We write d for a multidegree, that is, a formal linear combination of vertices of
GX with integer coefficients. In particular, we can add and subtract multidegrees
coefficient-wise. We denote by dv the coefficient at a vertex v of GX . We write d ± v

for the multidegree obtained by adding or subtracting 1 from the coefficient at v. Any
line bundle L on X has an associated multidegree deg(L), defined by deg(L)v =
deg

(
L|Xv

)
. The total degree of d is

∑
v dv , which coincides with the total degree

deg(L) of L if d is the multidegree of L . A multidegree is effective, if dv ≥ 0 for all
vertices v of GX .

3 Semistable multidegrees and Brill Noether loci

In this section,we continue the preliminaries by introducing themain objects of interest
for this paper—semistable multidegrees in Sect. 3.1 and special loci in Sect. 3.2.
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3.1 Semistable multidegrees

We begin with semistable line bundles and their multidegrees in the sense of [5].

Definition 3.1 Let X be a stable curve. A line bundle L on X of total degree d is called
semistable if for any subcurve Y ⊂ X we have

g(Y ) − 1 + (d − g + 1)
2g(Y ) − 2 + |Y ∩ Y c|

2g − 2
≤ deg(L|Y ). (2)

The line bundle L is called stable if the inequality above is strict for every proper
subcurve Y � X .

Whether L is semistable or stable depends only on its multidegree d , since

deg(L|Y ) =
∑
Xv⊂Y

dv.

We will say that a multidegree d is semistable or stable, if the corresponding line
bundles are so.

Lemma 3.2 A line bundle L is semistable or stable if and only if its residualωX ⊗L−1

is so.

Proof Rearranging terms turns Inequality (2) into

d
2g(Y ) − 2 + |Y ∩ Y c|

2g − 2
− |Y ∩ Y c|

2
≤ deg(L|Y ). (3)

Wewant to apply Inequality (3) to the subcurve Y c = X \ Y . Before doing so, note that
deg(L|Y c) = d−deg(L|Y ) and recall that the degree of the restriction of the dualizing
sheaf ωX to Y is 2 g(Y ) − 2 + |Y ∩ Y c|. In particular, 2 g(Y c) − 2 + |Y ∩ Y c| =
2 g − 2 − (2 g(Y ) − 2 + |Y ∩ Y c|). We obtain from (3) applied to Y c:

d
2g(Y c) − 2 + |Y ∩ Y c|

2g − 2
− |Y ∩ Y c|

2
≤ deg(L|Y c)

⇔ d − d
2g(Y ) − 2 + |Y ∩ Y c|

2g − 2
− |Y ∩ Y c|

2
≤ d − deg(L|Y )

⇔ (2g − 2 − d)
2g(Y ) − 2 + |Y ∩ Y c|

2g − 2
− (

2g(Y ) − 2 + |Y ∩ Y c|) − |Y ∩ Y c|
2

≤ − deg(L|Y )

⇔ (2g − 2 − d)
2g(Y ) − 2 + |Y ∩ Y c|

2g − 2
− |Y ∩ Y c|

2
≤ 2g(Y ) − 2 + |Y ∩ Y c| − deg(L|Y )

The last inequality is Inequality (3) for ωX ⊗ L−1 and hence the claim follows. ��

123



On the rank of general linear series on stable curves...

3.2 Brill Noether loci

Given a multidegree d on X we write Pic(X) for the Picard scheme of X , and Picd(X)

for the connected component of Pic(X) that parametrizes line bundles of multidegree
d. For a line bundle L , we denote by [L] the corresponding point of Pic(X).

Definition 3.3 The Brill Noether locus Wr
d (X) is the subset of Picd(X) given by

Wr
d (X):=

{
[L] ∈ Picd(X) | h0(X , L) ≥ r + 1

}
.

We will write Wd(X) := W 0
d (X) for the effective locus.

The next proposition is the standard observation that the Brill Noether locusWr
d (X)

can be realized as a degeneracy locus of a map between vector bundles. We sketch the
argument for the convenience of the reader, following the presentation in the proof of
[4, Proposition 2.2].

Proposition 3.4 Let X be a stable curve and d a multidegree of total degree d. Then
Wr

d (X) is a closed subset of Picd(X) with either Wr
d (X) = ∅, or each irreducible

component of Wr
d (X) has dimension at least min {g, g − (r + 1)(g − d + r)}.

Note, in particular, that the effective locusWd (X) is either empty, or each irreducible
component has dimension at least min{d, g}.
Proof LetP → Picd(X)× X be a Poincaré bundle, that is, a line bundle that restricts
to L over [L]×X . Denote by pr1 and pr2 the projections from Picd(X)×X to Picd(X)

and X , respectively.
Recall that we denote by ωX the dualizing sheaf of X . We choose D = ∑k

i=1 pi
where the pi ∈ X are k smooth points, such that

h0
(
X , ωX ⊗ L−1 ⊗ OX (D)

) = deg
(
ωX ⊗ L−1 ⊗ OX (D)

) − g + 1 = g − 1 − d + k

for all [L] ∈ Picd(X). This is always possible, see [10, Lemma 2.1] or [7, Lemma
2.5]. We get a short exact sequence

0 → P ⊗ pr∗2OX (−D) → P → P ⊗ pr∗2OD → 0.

We apply (pr1)∗ to this sequence and set E1 = (pr1)∗(P ⊗ pr∗2OD), which is locally
free of rank k, and E2 = R1(pr1)∗

(
P ⊗ pr∗2OX (−D)

)
, which is locally free of rank

g − 1 − d + k by the choice of D. Since R1(pr1)∗
(
P ⊗ pr∗2OD

) = 0, the higher
direct image sequence induces an exact sequence

E1
u−→ E2 → R1(pr1)∗P → 0.

Over [L] ∈ Picd(X) it restricts to

(E1)[L]
u[L]−−→ (E2)[L] → H1(X , L) → 0.
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By the Riemann Roch theorem, h0(X , L) ≥ r+1 if and only if h1(X , L) ≥ g−d+r .
On the other hand, the exact sequence gives h1(X , L) = g−1−d+k−dim

(
Im(u[L])

)
.

ThusWr
d (X) is the locus where u has rank at most k − 1− r . The expected dimension

of this locus is the Brill Noether number

ρ = g − (k − k + 1 + r)(g − 1 − d + k − k + 1 + r) = g − (r + 1)(g − d + r).

The claim now follows by the observation that a degeneracy locus is either empty, the
whole space, or each of its irreducible components has dimension at least the expected
dimension (see, e.g., [2, Section 2.4]). ��

We will be interested in loci of special line bundles, which are the first of the
Brill Noether loci defined above: We call a line bundle L of total degree d special, if
h0(X , L) > max{0, d − g + 1}. The term ‘special’ is of course taken from the case
of irreducible curves, where non-special line bundles are dense in Picd(X).

Lemma 3.5 Let X be a stable curve with dualizing sheaf ωX . Then a line bundle L on
X is special, if and only if its residual ωX ⊗ L−1 is.

Proof Suppose d = deg(L) ≤ g−1, the case d ≥ g−1 is analogous. By the Riemann
Roch theorem we have h0(X , L) = d − g + 1 + h0(X , ωX ⊗ L−1). Thus

h0(X , L) > 0 ⇔ h0(X , ωX ⊗ L−1) > g − d − 1 = (2g − 2 − d) − g + 1,

and the claim follows, since deg
(
ωX ⊗ L−1

) = 2g − 2 − d. ��
Remark 3.6 By Lemmas 3.2 and 3.5, it suffices to restrict to semistable multidegrees
of total degree d ≤ g−1 and to consider effective lociWd(X) to obtain the analogous
information about special loci also for d > g − 1 by passing to residuals. More
precisely, if d is semistable of total degree d, then d ′ = deg(ωX ) − d is semistable of

degree 2 g− 2− d by Lemma 3.2 and the isomorphism Picd(X) → Picd
′
(X), [L] �→[

ωX ⊗ L−1
]
preserves special loci by Lemma 3.5.

4 Theta divisors

In this section, we consider the case d = g− 1. Semistable multidegrees admit a very
convenient description in this case, using orientations on the dual graph.We collect the
necessary notions in Sect. 4.1. In Sect. 4.2, we discuss existence of Theta divisors, with
the main results in Theorem 4.8. In Sect. 4.3, we recall a description of the irreducible
components of Theta divisors due to Coelho and Esteves [9], that will be useful in the
next section.

4.1 Graph orientations and their associatedmultidegrees

We begin by fixing some standard notions from graph theory. An orientation O on
the graph GX is the assignment of a direction to each edge of GX . The multidegree
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Fig. 1 An orientation and its
associated multidegree. Both
vertices are weightless and the
three edges form a directed cut

dO associated to an orientation O has by definition value

indegO(v) − 1 + gv

on a vertex v ∈ V (GX ), where indegO(v) is the number of edges adjacent to v that are
oriented towards v in O . A multidegree d is called orientable, if there is an orientation
O of the edges of GX such that d = dO . Note that an orientation O giving d need not
be unique. An orientable multidegree has total degree

∑
v∈GX

dv =
∑

v∈V (GX )

(
gv − 1 + indegO(v)

)

= |E(GX )| − |V (GX )| +
∑

v∈V (GX )

gv = g − 1.

Lemma 4.1 Let L be a line bundle on X of multidegree d. Assume d = dO and let O ′
be the orientation obtained from O by reversing the direction of each edge. Then

deg(ωX ⊗ L−1) = dO ′ .

Proof For any vertex v ∈ V (GX ), we have by definition dv = gv − 1 + indegO(v).
On the other hand,

deg(ωX ⊗ L−1)v = 2gv − 2 + val(v) − dv = gv − 1 + val(v) − indegO(v).

Any loop based at v contributes 2 to val(v) and 1 to indegO(v). Any other edge adjacent
to v is either oriented towards v or away from it. Thus val(v) − indegO(v) equals the
number of loop edges based at v plus the number of edges adjacent to v and oriented
away from v in O . This is by construction indegO ′(v) and hence the claim follows. ��

Recall that any subcurve Y ⊂ X defines an induced subgraph GY ⊂ GX . The
subset of edges of GX that are adjacent to a vertex in GY and a vertex not in GY is
called the cut defined by GY . They correspond to the nodes in Y ∩ Y c. If O is an
orientation on GX , a cut is called a directed cut if every edge in the cut is directed
towards GY .

A cycle in GX is a connected subgraph, in which each vertex has valence 2. A
directed cycle in an orientation O is a cycle in GX , such that every vertex has exactly
one edge directed towards it in the restriction of O to the cycle; in particular, a loop
edge gives a directed cycle in any orientation.
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Lemma 4.2 For every orientation O onGX , any edge e ofGX is contained in a directed
cut or a directed cycle, but not both.

Proof This is well-known and usually attributed to [18]. We sketch a proof for the
convenience of the reader. Let e be directed in O from v to w.

Suppose e is contained in a directed cut and a directed cycle. Then the directed cut
would restrict to a non-empty directed cut on the directed cycle, which is not possible.
Thus e is not contained in a directed cut and a directed cycle.

To see that e is contained in a directed cut or a directed cycle, let V ⊂ V (GX )

denote the set of vertices v′ for which there exists a directed path from w to v′ in O . If
v ∈ V , e completes the directed path from w to v to a directed cycle that contains e.
If v /∈ V , the induced subgraph with vertices V defines a directed cut containing e. ��

An orientation O is called acyclic if it contains no directed cycles, and hence by
Lemma 4.2 every edge is contained in a directed cut. It is called totally cyclic if every
edge is contained in a directed cycle, and hence by Lemma 4.2 it contains no directed
cuts.

A source of an orientation O is a vertex v such that all edges adjacent to v are
oriented away from v. The following lemma is another well-known fact from graph
theory.

Lemma 4.3 Let GX be a graph and O an orientation on GX .

(1) The multidegree dO is not effective, if and only if O contains a source v with
gv = 0.

(2) If O is an acyclic orientation, then it contains a source v.

Proof The first claim follows immediately from the definition of dO .
For the second claim observe that if O is acyclic, then Lemma 4.2 implies that GX

contains a directed cut oriented towards an induced subgraph GY . The restriction of
an acyclic orientation remains acyclic, and hence the restriction of O to a connected
component of G

c
Y is acyclic. We can repeat this argument, until G

c
Y , the complement

of GY , contains a single vertex, which by construction will be a source. ��
The following proposition motivates our interest in orientations in the context of

semistable multidegrees.

Proposition 4.4 [3, Proposition 3.6] Let X be a stable curve and d a multidegree of
total degree g − 1. Then d is semistable, if and only if d is orientable. It is stable, if
and only if it can be given by a totally cyclic orientation.

Remark 4.5 Inserting d = g−1 in Definition 3.1, a multidegree d of total degree g−1
is semistable, if and only if for every induced subgraph GY ⊂ GX , the total degree
of d on GY is at least g(GY ) − 1. In this formulation, Proposition 4.4 is a version of
Hakimi’s Theorem [16].

4.2 Existence of Theta divisors

Apart from the combinatorial characterization of semistability in terms of orientations,
there is the following characterization in terms of the existence of non-special line
bundles.
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Proposition 4.6 [4, Lemma 2.1] Let X be a stable curve and d a multidegree of total
degree g−1. Then d is semistable, if and only if there is a line bundle L of multidegree
d with h0(X , L) = 0.

Note that for d = g − 1, the expected dimension of the effective locus Wd(X) is
g − 1. Thus combining with Proposition 3.4, it follows that if d is semistable, Wd(X)

is either empty or a divisor in Picd(X), the so called Theta divisor. The next example
shows, that the effective locus can indeed be empty.

Example 4.7 Consider a curve X with dual graph GX that has two vertices v,w of
weight 0 and k edges between v and w. Let the multidegree d be given as dv = −1
and dw = k − 1 with total degree g − 1 = k − 2. Then d = dO , where O is given
by orienting all edges from v to w, and hence d is semistable by Proposition 4.4. See
Fig. 1 for the case k = 3. Let L be any line bundle of multidegree d on X . Since
L has negative degree on Xv , any global section s of L vanishes along all of Xv . In
particular, the restriction of s to Xw also vanishes at the k points in Xv ∩ Xw. Since
L|Xw has degree k − 1, this is only possible for the zero section. Thus h0(X , L) = 0
for all line bundles of multidegree d and Wd(X) = ∅.

Recall that a multidegree d is called effective, if dv ≥ 0 for all vertices v of GX .

Theorem 4.8 Let X be a stable curve and d a multidegree of total degree g − 1. Then
we have for the effective locus Wd(X) ⊂ Picd(X) :
(1) Wd(X) is empty or has pure dimension g − 1 if and only if d is semistable.
(2) Wd(X) is empty if and only if all irreducible components of X are rational and

d = dO with O acyclic. If d is effective, Wd(X) is not empty.

Proof Asmentioned above, the first claim follows by Propositions 3.4 and 4.6. For the
second claim, we show more generally that for an orientable multidegree d = dO on
a nodal curve X , which is not necessarily stable or connected,Wd(X) = ∅ if and only
if gv = 0 for all v ∈ V (GX ) and O is acyclic. Note first, that to prove this stronger
claim, we still may assume that X is connected, since the condition can be checked
on each connected component.

We first prove the last claim: if d is effective, then Wd(X) �= ∅. Indeed, in this
case let pi be a collection of smooth points of X , dv of them contained in Xv . Then
OXv (

∑d
i=1 pi ) is effective of multidegree d . Furthermore, if d is effective and ori-

entable, either gv �= 0 for some v or O is not acyclic by Lemma 4.3. Thus we can
assume from now on that d is not effective.

We show the claim by induction on the number of non-loop edges of GX . The base
case is if GX contains no non-loop edges, that is, X is irreducible and GX contains a
single vertex v. Since d is orientable and not effective, we need to have gv = 0 and
GX contains no edges, in which case dv = −1 and Wd(X) = ∅ is immediate.

For the induction step, let v be a vertex such that dv < 0. By Lemma 4.3 (1), we
need to have gv = 0 and v is a source in O . Let Xc

v be the closure of the complement
of Xv in X . For a line bundle L on X of multidegree d , let d ′ denote the multidegree
of L|Xc

v
(−Xv ∩ Xc

v). Since all vertices are oriented away from v in O , d ′ is orientable.
Namely, it is given by the restriction of O to the dual graph of Xc

v . Since any global
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section of L vanishes along all of Xv , we have

h0(X , L) = h0
(
Xc

v, L|Xc
v
(−Xv ∩ Xc

v)
)
. (4)

Indeed, H0
(
Xc

v, L|Xc
v
(−Xv ∩ Xc

v)
)
is naturally identified with the kernel of the eval-

uation map H0(X , L) → H0(Xv, L|Xv ). If all global sections of L vanish along Xv ,
then H0(X , L) coincides with this kernel and (4) follows.

Now suppose, that there is a line bundle L on X withmultidegree d and h0(X , L) ≥
1. Then also h0

(
Xc

v, L|Xc
v
(−Xv ∩ Xc

v)
) ≥ 0 by (4). By induction it follows that there

is either w ∈ V (GX )\{v} with gw �= 0 or d ′ = dO ′ with O ′ not acyclic. In the first
case, Xw is a non-rational component also of X . In the second case, we may extend
O ′ to an orientation O on GX by orienting the edges adjacent to v away from v. By
construction, we have d = dO . If C is an oriented cycle of O ′, then it is also an
oriented cycle of O and hence O is not acyclic.

Conversely, suppose that Wd(X) is empty. Then also Wd ′(Xc
v) is empty by (4). So

by induction, gw = 0 for all w ∈ V (GX )\{v} and d ′ = dO ′ with O ′ acyclic. By
assumption, we have also gv = 0, and hence all irreducible components of X are
rational. We can extend O ′ to an orientation O with d = dO as above by orienting the
edges adjacent to v away from v. We are finished if we can show that O is acyclic. To
this end, suppose to the contrary that C is an oriented cycle of O . By Lemma 4.2, C
contains none of the edges adjacent to v since they are all contained in a directed cut.
Thus C would restrict to an oriented cycle of O ′, which is not possible. ��

Remark 4.9 Example 4.7 contradicts [4, Proposition 2.2], in which it is claimed that
for total degree d = g − 1, the effective locus is a divisor in Picd(X) if and only if d
is semistable. The possibility of an empty effective locus is not accounted for in the
proof of loc. cit., and Theorem 4.8 provides the necessary correction.

In [4] Theta divisors are used to define a polarization on generalized Prym varieties.
The multidegree d giving the Theta divisor is that of a Theta characteristic L0, that
is, a line bundle such that L⊗2

0 is isomorphic to the dualizing sheaf of X . Thus the

multidegree d of a Theta characteristic has value dv = g(Xv)−1+ |Xv∩Xc
v |

2 on Xv . In
particular, d is effective whenever X is not a disjoint union of smooth rational curves.
The subcurves used in [4, Proposition 5.2 and Theorem 5.4] to define the generalized
Prym varieties are not the disjoint union of smooth rational curves. Thus no issue
arises, since a Theta divisor exists if d is effective and semistable by Theorem 4.8.

The second main application of Theta divisors concerns the theory of compacti-
fied Jacobians. Recall that the compactified Jacobian admits a stratification with strata
P(d,S), parametrizing line bundles that have stable multidegree d on the partial nor-
malization of X at a subset of nodes S. By Proposition 4.4, a stable multidegree d in
degree g − 1 is given by a totally cyclic orientation on the dual graph of this partial
normalization, i.e., a subgraph of GX . Since a totally cyclic orientation is acyclic only
if the graph has no edges, Theorem 4.8 gives that the only stratum in which Wd(X) is
not a divisor is the one in which S is the set of all nodes and then also only if gv = 0
for all irreducible components Xv of X . But in this case P(d,S) has dimension 0 so
no issue arises. In particular, the use of [4, Proposition 2.2] as [3, Lemma 3.8] and
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[6, Proposition 1.3.7] to extend the Theta divisor to compactified Jacobians causes no
issues.

4.3 Rational Abel maps and components of Theta divisors

We next recall a description of the irreducible components of a Theta divisor Wd(X)

given in [9].
For an irreducible component Xv of X , denote by X sm

v the locus of points in Xv

that are smooth points of X . Following [6, Section 1.2.7], we define the rational Abel
map associated to an effective multidegree d of total degree d as the map

αd :
∏

v∈V (GX )

(
X sm

v

)dv → Picd(X),

given by sending a d-tuple of points (p1, . . . , pd) to OX

(∑d
i=1 pi

)
. We denote the

image of αd by Ad(X); clearly, it is irreducible of dimension at most min{d, g}.
Lemma 4.10 Let d be an effective multidegree of total degree 0 ≤ d ≤ g. Then the
dimension of Ad(X) is d if and only if a general [L] ∈ Ad(X) satisfies h0(X , L) = 1.

Proof The domain of αd is irreducible of dimension d, thus Ad(X) has dimension d
if and only if αd is generically finite.

The fiber of αd over a point [L] =
[
OX

(∑d
i=1 pi

)]
in the image of αd consists

of tuples (p′
1, . . . , p

′
d) such that OX

(∑d
i=1 pi

)
� OX

(∑d
i=1 p

′
i

)
. In particular, if

h0(X , L) = 1 for a general L in Ad(X), then αd is generically finite.

Conversely, suppose a line bundle of the form L = OX

(∑d
i=1 pi

)
admits two

linearly independent global sections s1, s2, the first of them vanishing only at the pi .
Then the subspace of H0(X , L) spanned by the si consists of sections of the form
as1 + bs2 for a, b ∈ k. For general choices of a, b, these global sections do not vanish
along nodes or entire irreducible components of X , since this is true for s1. Hence their
associated divisor is of the form p′

1 + · · · + p′
d for smooth points p′

i and αd has fibers
of dimension at least 1 over such points [L]. Thus if the general [L] ∈ Ad satisfies
h0(X , L) ≥ 2, then αd is not generically finite, as claimed. ��
Remark 4.11 The assumption of Lemma 4.10, that a general [L] ∈ Ad(X) satisfies
h0(X , L) = 1, is not automatically satisfied, even if d ≤ g. For example, suppose
X contains a smooth rational component Xv , and d is the multidegree with value
dv = |Xv ∩ Xc

v| + 1 on v and 0 on all other irreducible components of X . Then every
line bundle L in Ad(X) satisfies h0(X , L) ≥ 2 even though d is effective. In this case
dim

(
Ad(X)

)
< d and it follows from Proposition 3.4, that Ad(X) is not an irreducible

component of the effective locus Wd(X).

Let L be a line bundle of multidegree d and Y ⊂ X a subcurve. Let ν : Xν → X
be the partial normalization of X at nodes in Y ∩ Y c. We obtain the pull-back map

ν∗ : Picd(X) → PicdY (Y ) × PicdYc (Y c),
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where dY and dYc are the multidegrees of L|Y and L|Y c , respectively. Suppose now,
that the multidegree d ′ of L|Y (−Y ∩ Y c) is effective on Y . Then we can define

V :=
{[
L ′(Y ∩ Y c)

] | [L ′] ∈ Ad ′(Y )
}

⊂ PicdY (Y )

and

Wd,Y (X):=(ν∗)−1
(
PicdYc (Y c) × V

)
⊂ Picd(X).

Thus, roughly speaking, Wd,Y (X) is the locus of line bundles on X of multidegree d,
that are in the image of a rational Abel map on Y shifted by Y ∩ Y c, and arbitrary
away from Y .

Recall that by Proposition 4.4 a multidegree d of total degree g − 1 is semistable
if and only if it is orientable, i.e., d = dO for some orientation O on GX .

Proposition 4.12 [9, Theorem 3.6] Let X be a stable curve and d = dO a semistable
multidegree of total degree g − 1. Then

Wd(X) =
⋃
Y

Wd,Y (X),

and the Wd,Y (X) are irreducible divisors in Picd(X). The union is over connected
subcurves Y ⊂ X, such that the multidegree associated to the restriction O|GY of O
is effective on the dual graph GY ⊂ GX , and GY defines a directed cut with edges
oriented towards GY in O.

Remark 4.13 In case that d = dO is a stable multidegree, O contains by Proposi-
tion 4.4 no directed cut except for the empty one given by Y = X . In this case,
Proposition 4.12 implies that Wd(X) is an irreducible divisor, as was established in
[6, Theorem 3.1.2]. Notice also, that Theorem 4.8 is consistent with Proposition 4.12
concerning emptiness of the effective locus: one can argue similar as in the proof of
Theorem 4.8, to show that there exists no connected subcurve Y of X as required in
Proposition 4.12 if and only if X has only rational components and O is acyclic.

Lemma 4.14 Let Wd,Y (X) be an irreducible component of Wd(X) as in Proposi-
tion 4.12. Let p ∈ Xv be a smooth point with Xv ⊂ Y . Then a general line bundle
[L] ∈ Wd,Y (X) satisfies h0(X , L) = 1 and p is not a base point of L.

Proof The first claim, that h0(X , L) = 1 for L general in Wd,Y (X), is part of [9,
Proposition 3.5]. The second claim follows, since global sections of L vanishing on
Y c can by construction of Wd,Y (X) be identified with those of a sheaf of the form

OY

(∑k
i=1 pi

)
for some smooth points pi . Thus for L such that p �= pi for all i , p is

not a base point of L . ��
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Fig. 2 Multidegrees given by partial orientations as in Remark 5.2, where bold vertices have weight 1 and
circled ones weight 0. Only the multidegree in the middle picture is semistable

5 The cases d = g− 2 and d = g

In this section, we study effective loci for semistable multidegrees of total degree
d = g − 2, and its residual case d = g. The main results are Proposition 5.4 and
Theorem 5.10.

5.1 Dimension of special loci

In [8], an analogue in degree g of the description in terms of orientations in degree
g − 1 of Proposition 4.4 was established. Recall that for an orientation O an induced
subgraph GY ⊂ GX induces a directed cut, if all edges of GX adjacent to GY but not
contained in GY are directed towards GY in O .

Lemma 5.1 [8, Lemmas 1.7.4 and 3.3.2]Amultidegree d of total degree g is semistable
if andonly if there isv ∈ V (GX )andanorientation O onGX , such that d = dO+v and
there is no directed cut oriented towards an induced subgraph GY with v ∈ V (GY ).
If d is semistable, such an orientation exists for every choice of vertex v ∈ V (GX ).

Remark 5.2 Recall that if deg(L) = dO is an orientable multidegree, then deg(ωX ⊗
L−1) = dO ′ , where O ′ is the orientation obtained from O by reversing the direction of
all edges (see Lemma 4.1). Since semistability is preserved in passing to the residual
by Lemma 3.2, Lemma 5.1 thus gives the following characterization in total degree
d = g − 2. A multidegree d of total degree d = g − 2 is semistable if and only if for
every vertex v ∈ V (GX ), we have d = dO − v with O an orientation on GX such that
there is no directed cut oriented away from an induced subgraph GY with v ∈ V (GY ).
If d is semistable, such an orientation exists for every choice of vertex v ∈ V (GX ).

The characterizations of semistability inLemma5.1 andRemark 5.2 can be encoded
conveniently by biorienting one edge, respectively leaving one edge unoriented in the
orientation. The condition then is that all directed cuts are oriented away from the
bioriented edge, respectively towards the unoriented edge. See [8] for examples in
degree g and Fig. 2 for an illustration in degree g − 2.

Lemma 5.3 Let X be a stable curve and d a multidegree of total degree d.

(1) If d = g − 2, d is semistable if and only if d + v is semistable for all vertices
v ∈ V (GX ).

(2) If d = g, d is semistable if andonly if d−v is semistable for all vertices v ∈ V (GX ).

Proof We show the second claim and assume d = g. The first statement for d =
g − 2 follows by Lemma 3.2 from the second statement via passing to residuals. So
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suppose first, that d is semistable of total degree g. Then Lemma 5.1 implies that
d − v is orientable for every vertex v ∈ V (GX ), and hence d − v is semistable by
Proposition 4.4.

Conversely, suppose d − v is semistable for every vertex v ∈ V (GX ). Again by
Proposition 4.4, it follows that dO = d − v for some orientation O . To conclude that
d is semistable, it suffices by Lemma 5.1 to show, that for every directed cut that is
oriented towards an induced subgraph GY we have v /∈ V (GY ).

Suppose to the contrary, that v ∈ V (GY ) and GY induces a directed cut oriented
towards GY . Let G

c
Y be the dual graph of Y c = X \ Y . Since by assumption all edges

that are directed towards a vertex in G
c
Y are already contained in G

c
Y , the restriction of

d toG
c
Y is induced by the restriction of O toG

c
Y . In particular, we have

∑
Xw⊂Y c dw =

g(Gc
Y ) − 1. Now fix a w′ ∈ V (Gc

Y ) and consider d − w′. Then

∑
Xw⊂Y c

(d − w′)w = g(Gc
Y ) − 2 < g(Gc

Y ) − 1

and thus d − w′ is not semistable by Remark 4.5. This contradicts the assumption. ��
Proposition 5.4 Let X be a stable curve and d a semistable multidegree of total degree
d.

(1) If d = g−2, the effective locus Wd(X) is either empty, or of pure dimension g−2.
(2) If d = g, the special locus W 1

d (X) is either empty, or of pure dimension g − 2.

Proof Suppose first d = g − 2. If Wd(X) = ∅, there is nothing to show. Otherwise,
let W ⊂ Wd(X) be an irreducible component. Let v ∈ V (GX ) be a vertex of the dual
graph. By Proposition 4.4 and Lemma 5.3, we have d + v = dO for some orientation
O of GX . Choose a smooth point p ∈ Xv and consider the isomorphism

ϕp : Picd(X) → PicdO (X), [L] �→ [L(p)].

If L is effective, then so is L(p). Thus the image ϕp(W ) is contained in an irreducible
component of the effective locus in PicdO (X). Recall that Proposition 4.12 gives a
description of such irreducible componentsWdO ,Y (X). Here Y is a subcurve such that
GY induces a directed cut in O , oriented towards GY . So we may assume ϕp(W ) ⊂
WdO ,Y (X).

By Remark 5.2, we need to have Xv ⊂ Y since the cut induced by GY is directed
towards GY in O and d is semistable. Thus we can apply Lemma 4.14, and obtain
that for a general line bundle [L ′] ∈ WdO ,Y (X), we have h0(X , L ′) = 1 and p is not
a base point of L ′. This in turn implies that ϕp(W ) �= WdO ,Y (X) since either p is a
base point of L(p) or h0(X , L(p)) = h0(X , L) + 1 ≥ 2. By Theorem 4.8, we have
dim

(
WdO ,Y (X)

) = g − 1 since dO is semistable. Since ϕp(W ) is a closed subset of
WdO ,Y (X), this implies dim(W ) ≤ g−2. The claim now follows fromProposition 3.4,
since the expected dimension of W is d = g − 2.

For d = g the claim follows from the case of d = g − 2 by passing to residuals
(see Remark 3.6). ��
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5.2 Characterizing semistability

Recall that Theorem 4.8 (1) states that in degree g − 1 the effective locus is empty or
of expected dimension if and only if d is semistable. Thus Proposition 5.4 generalizes
the ‘if’ part of this statement to degree g − 2. The ‘only if’ part no longer holds, as
the following examples show.

Example 5.5 Let GX be the graph with three vertices v1, v2, v3 of weight (0, 0, 1), a
triple edge between v1 and v2, and a single edge between v2 and v3. Consider the
multidegree d = (2,−1, 0). Its total degree is 1 = g − 2 and one checks that d is
not semistable. See the left picture in Fig. 2 for an illustration. However, the effective
locus Wd(X) is empty in this case. Notice also, that the multidegree (−1, 2, 0) on the
same graph, as in the middle picture in Fig. 2, is semistable with empty effective locus.

Example 5.6 Let GX be the graph with vertices v1, v2, v3, all of weight 0, and three
edges between each of the pairs v1, v2 and v2, v3. Denote by Xi the irreducible com-
ponent of X corresponding to vi . Consider the multidegree d = (2, 0, 0). Its total
degree is 2 = g − 2 and one checks that d is not semistable. See the right picture
in Fig. 2 for an illustration. Effective line bundles [L] ∈ Picd(X) are exactly those
with L|X2∪X3 = OX2∪X3 . Thus Wd(X) is irreducible and 2-dimensional, the two
parameters being given by the gluing data along the three nodes in X1 ∩ X2.

Note that for the dual graph in Example 5.5, the effective locus for a semistable
multidegree of total degree g − 1 is never empty by Theorem 4.8 (2) since there
is v with gv ≥ 1, whereas it is empty for the semistable multidegree (−1, 2, 0) of
total degree g − 2. In general, we do not know, how to generalize the second part of
Theorem 4.8 to degree g − 2, that is:

Question 5.7 When is the effective locus for a semistable multidegree of total degree
g − 2 empty?

Examples 5.5 and 5.6 show in particular, that semistability in degree g − 2 cannot
be characterized by the existence of non-special line bundles as in Proposition 4.6 for
degree g− 1. We next give a refinement that does allow for a similar characterization.

Lemma 5.8 Let X be a stable curve and d a multidegree of total degree g − 2. Then
d is semistable if and only if there is a line bundle L of multidegree d such that
h0(X , L) = 0 and for every irreducible component Xv of X and a general point
pv ∈ Xv , we still have h0 (X , L(pv)) = 0.

Proof If there is a line bundle L of multidegree d as described in the lemma, pick a
smooth point pv ∈ Xv for every irreducible component Xv such that h0(X , L(pv)) =
0. Thus d+v is semistable for every v ∈ V (GX ) by Proposition 4.6 and d is semistable
by Lemma 5.3.

Conversely, suppose d is semistable. Then d + v is semistable for all vertices
v ∈ V (GX ) by Lemma 5.3. Choose a smooth point pv ∈ Xv on each irreducible
component Xv . This gives the isomorphism

ϕpv : Picd(X) → Picd+v(X), [L] �→ [L(pv)].
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Under this identification, there is a dense open set Uv ⊂ Picd(X) such that for all
line bundles [L] ∈ Uv we have h0(X , L(pv)) = 0 by Theorem 4.8, since d + v

is semistable. Then an [L] in the intersection of the finitely many Uv satisfies the
conditions in the lemma by construction. ��

The residual statement of Lemma 5.8 gives the statement of Theorem 1.3. To prove
it, we will need the following easy consequence of the Riemann Roch theorem:

Lemma 5.9 Let X be a stable curve, p ∈ X a smooth point and L a line bundle on X.
Then p is a base point of L if and only if it is not a base point of

(
ωX ⊗ L−1

)
(p).

Proof Applying the Riemann Roch theorem gives on the one hand

h0 (X , L) − h0
(
X , ωX ⊗ L−1

)
= d − g + 1

and on the other

h0 (X , L(−p)) − h0
(
X , (ωX ⊗ L−1)(p)

)
= d − 1 − g + 1.

Hence h0(X , L) = h0 (X , L(−p)) if and only if h0
(
X , ωX ⊗ L−1

) = h0
(
X , (ωX ⊗

L−1)(p)
) − 1. ��

Recall that we defined the rational Abel map in Sect. 4.3.

Theorem 5.10 Let X be a stable curve and d a multidegree of total degree g. Then the
following are equivalent:

(1) The multidegree d is semistable.
(2) There is a line bundle L of multidegree d such that h0(X , L) = 1 and non-zero

global sections of L do not vanish along a whole irreducible component Xv of X.
(3) Themultidegree d is effective and the associated rational Abel mapαd is dominant.

Proof By Lemma 3.2 a line bundle L is semistable if and only if its residual ωX ⊗ L−1

is so. If L has total degree g, then ωX ⊗ L−1 has total degree g − 2. Thus, using
Lemma 5.8, d is semistable if and only if there is a line bundle L of multidegree d,
such that h0

(
X , ωX ⊗ L−1

) = 0 and for any irreducible component Xv of X and
general point pv ∈ Xv , pv is a base point of

(
ωX ⊗ L−1

)
(pv). By the Riemann Roch

theorem and Lemma 5.9, these two conditions translate to condition (2) on L . Thus
equivalence of (1) and (2) follows.

Next, we show that (3) implies (2). If the image Ad(X) of the rational Abel map αd

has dimension g, then a general [L] in Ad(X) satisfies h0(X , L) = 1 by Lemma 4.10.

By definition, such an L is of the formOX

(∑d
i=1 pi

)
, which satisfies also the second

part of condition (2), since the global sections of OX do not vanish along whole
irreducible components of X .

Finally, suppose thatd satisfies the equivalent conditions (1) and (2). If deg
(
L|Xv

)
<

0 for some irreducible component Xv , any global section of L vanishes along all of
Xv . Thus (2) immediately implies that d is effective and thus the rational Abel map
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αd is defined. By Lemma 4.10, if a general [L] ∈ Ad(X) satisfies h0(X , L) = 1, then
dim

(
Ad(X)

) = d = g. Since this is also the dimension of Picd(X), it suffices to show
this in order to prove (3).

Since d > 0 and d is effective, there exists a vertex v, such that d − v is still
effective. Hence we can consider the corresponding rational Abel map and its image
Ad−v(X) ⊂ Picd−v(X). Fix a smooth point pv ∈ Xv and consider once again the
isomorphism

ϕpv : Picd−v(X) → Picd(X), [L] �→ [L(pv)].

Then by construction ϕpv

(
Ad−v(X)

) ⊂ Ad(X). Since d − v is semistable by
Lemma 5.3, it follows that Ad−v(X) is an irreducible component of the effective
locus in Picd−v(X) by Proposition 4.12 and has dimension g − 1 by Theorem 4.8.
Since ϕpv is an isomorphism, we get that Ad(X) has dimension at least g − 1. In
particular, Ad(X) cannot be contained in the special locus, which by Proposition 5.4
is either empty or has dimension g−2. In other words, a general [L] ∈ Ad(X) satisfies
h0(X , L) = 1, as claimed. ��

6 Effective loci for general semistable multidegrees

Finally, we consider in this section the dimension of effective loci for semistable
multidegrees of total degree d ≤ g − 2. In Sect. 6.1 we lay some combinatorial
groundwork, and in Sect. 6.2 we prove Theorem 6.5, the main result of this section.
We conclude with some counterexamples to possible stronger claims in Sect. 6.3.

6.1 Combinatorial considerations

Recall that a line bundle L of total degree d is by definition semistable if and only if

g(Y ) − 1 + (d − g + 1)
2g(Y ) − 2 + |Y ∩ Y c|

2g − 2
≤ deg(L|Y ),

for every subcurve Y of X . Recall furthermore, that if d = g and X is stable, this is
equivalent to requiring

g(Y ) ≤ deg(L|Y )

for every subcurve Y of X , since 0 <
2 g(Y )−2+|Y∩Y c|

2 g−2 < 1 for proper subcurves Y .

Lemma 6.1 Let X be a stable curve and L a line bundle of total degree d > g. Suppose
g(Y ) ≤ deg(L|Y ) for all subcurves Y ⊂ X. Then there is a vertex v ∈ V (GX ) such
that for all subcurves Y with Xv ⊂ Y the strict inequality g(Y ) < deg(L|Y ) holds.

Proof Wefirst claim, that if L is as in the assumptions of the lemma and Y is a subcurve
such that deg (L|Y ) = g(Y ), then Y needs to be connected. Indeed, if to the contrary
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Y = Y1 � Y2, then g(Y ) = g(Y1) + g(Y2) − 1. Since deg (L|Y ) = deg
(
L|Y1

) +
deg

(
L|Y2

)
we thus need to have deg

(
L|Y1

)
< g(Y1) or deg

(
L|Y2

)
< g(Y2). But this

contradicts the assumption on L .
Now let Y , Z ⊂ X be two connected subcurves such that deg (L|Y ) = g(Y ) and

deg (L|Z ) = g(Z). Assume furthermore, that Y ∪ Z is connected, as well. Notice that
both Y and Z need to be proper subcurves of X , since d > g. We claim, that we then
need to also have deg (L|Y∪Z ) = g(Y ∪ Z). By assumption, we have deg (L|Y∪Z ) ≥
g(Y ∪ Z) and we need to show the other inequality.

On the one hand, we have

deg (L|Y∪Z ) = g(Y ) + g(Z) − deg (L|Y∩Z ) , (5)

where we set deg (L|Y∩Z ) = 0 if Y ∩ Z consists only of nodes of X . Write k for the
number of edges in GX that are adjacent to both dual graphs GY and GZ of Y and Z ,
but contained in neither. Then one checks using the definition of genus (1), that we
have on the other hand

g(Y ) + g(Z) = g(Y ∪ Z) + 1 − k + g(Y ∩ Z) − l, (6)

where l = 0 if Y ∩ Z consists only of nodes, in which case we set g(Y ∩ Z) = 0, and
l = 1 otherwise. Substituting (6) in (5) gives

deg (L|Y∪Z ) = g(Y ∪ Z) + 1 − k + g(Y ∩ Z) − l − deg (L|Y∩Z )

≤ g(Y ∪ Z) + 1 − k − l,

where we used that by assumption deg (L|Y∩Z ) ≥ g(Y ∩Z). Since Y ∪Z is connected,
not both k and l can be 0, and hence deg (L|Y∪Z ) ≤ g(Y ∪ Z), as claimed.

To conclude assume to the contrary, that for every vertex v there is a subcurve
Y ⊂ X containing Xv and such that deg (L|Y ) = g(Y ). Then the union of all such
subcurves for varying v covers X . Applying what we showed above to this union
implies d = g, a contradiction. ��

Recall that amultidegree e is called effective, if it is non-negative on each irreducible
component of X .

Lemma 6.2 Let X be a stable curve and d a semistable multidegree of total degree
d ≥ g. Then there are effective multidegrees e and e′ such that d − e and d − e′ are
semistable of total degree g and g − 1, respectively.

Proof We show the existence of e, that is, an effective multidegree such that d − e
is semistable of total degree g. Then d − e − v is semistable of degree g − 1 by
Lemma 5.3 for any vertex v and thus we obtain also e′:=e + v as claimed. If d = g,
there is nothing to show, so assume d > g and let L be a line bundle of multidegree d.

Since d is semistable, we have by definition that for all subcurves Y ⊂ X

g(Y ) − 1 + (d − g + 1)
2g(Y ) − 2 + |Y ∩ Y c|

2g − 2
≤ deg(L|Y ).

123



On the rank of general linear series on stable curves...

By assumption we have d − g + 1 > 1 and since X is stable, we have 0 <
2g(Y )−2+|Y∩Y c|

2g−2 . In particular, we have for any proper subcurve Y ⊂ X

g(Y ) ≤ deg(L|Y ).

Thus we can apply Lemma 6.1 and there is a vertex v ∈ V (GX ) such that g(Y ) <

deg(L|Y )whenever Xv ⊂ Y . Thus for every proper subcurve Y of X and smooth point
p ∈ Xv we have

g(Y ) ≤ deg (L|Y (−p)) . (7)

If d = g+1, then d−v has total degree g and Eq. (7) gives that d−v is semistable.
Otherwise, (7) ensures that d − v again satisfies the assumption of Lemma 6.1. We
obtainw such that d−v −w satisfies an inequality as in (7). Repeating this procedure
g−d times gives an effective multidegree e:=v+w+ . . . such that d−e is semistable
of total degree g, as claimed. ��

Since semistability is preserved in passing to residuals by Lemma 3.2, Lemma 6.2
gives an analogous statement in degrees d ≤ g− 2. We will later use this version, and
hence state it next.

Lemma 6.3 Let X be a stable curve and d a semistable multidegree of total degree
d ≤ g − 2. Then there are effective multidegrees e and e′ such that d + e and d + e′
are semistable of total degree g − 2 and g − 1, respectively.

The following example shows, that a claim analogous to Lemma 6.3 does not hold
for arbitrary total degrees. More precisely, it shows that for total degrees d < d ′ <

g − 2 and a semistable multidegree d of total degree d, there need not be an effective
multidegree e of total degree d ′ − d such that d + e is semistable.

Example 6.4 LetGX be the graphwith three vertices v1, v2, v3 with two edges between
v1 and v2 and two edges between v2 and v3. Let the weight of the vertices be (2, 1, 2)
and consider the multidegree d = (0, 3, 0). Then the total degree is 3 = g − 4 and
one checks that d is semistable. But d + v is not semistable for any vertex v of GX .
Indeed, a semistable multidegree on GX of total degree 4 needs to have value 1 or 2
on both v1 and v3.

6.2 Effective loci for semistable multidegrees

We are now ready to prove the main statement of this section. Recall that for a multi-
degree d we denote by Wd(X) the effective locus in Picd(X), that is, the locus of line
bundles L with multidegree d and h0(X , L) ≥ 1. Its expected dimension is d, but it
may very well be empty or of larger dimension. Recall furthermore, that the multide-
gree d itself is called effective, if it is non-negative on each irreducible component.

Theorem 6.5 Let X be a stable curve and d a semistable multidegree of total degree
d ≤ g − 2. Then each irreducible component of Wd(X) has dimension at most g − 2.
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If d is in addition effective, then the effective locus Wd(X) contains an irreducible
component of dimension d.

Proof Let d be a semistable multidegree of total degree d ≤ g − 2. If d < 0, then
the residual ωX ⊗ L−1 has total degree greater than 2g − 2 and is still semistable by
Lemma3.2.HenceωX⊗L−1 is non-special by [7,Theorem2.3] and thush0(X , L) = 0
byLemma3.5. So in this caseWd(X) = ∅. Since amultidegree of negative total degree
cannot be effective, this gives the claim.

Assume now d ≥ 0. By Lemma 6.3, there is a semistable multidegree d ′ of total
degree g − 2 such that e:=d ′ − d is effective. Fix a line bundle [Le] ∈ Ae(X) of
multidegree e, where Ae(X) denotes the image of the rational Abel map. Recall from
Sect. 4.3, that this means Le = OX

(
p1 + · · · + pg−2−d

)
for a collection of smooth

points pi , with ev of them contained in an irreducible component Xv of X . Consider
the isomorphism

ϕ : Picd(X) → Picd
′
(X), [L] �→ [

L ⊗ Le
]
.

That is, ϕ maps L to L
(
p1 + · · · + pg−2−d

)
. In particular, h0(X , L) ≤ h0

(
X , L

(
p1

+· · ·+ pg−2−d
))
and thus ϕ(Wd(X)) ⊂ Wd ′(X). Since d ′ is semistable of total degree

g − 2, Wd ′(X) is either empty or of pure dimension g − 2 by Proposition 5.4. Hence
the first claim follows.

For the second claim, we assume d is effective and thus we can consider the rational
Abel map for d. Its image Ad(X) ⊂ Picd(X) is irreducible and contained in an
irreducible componentW ofWd(X). By Lemma 6.3, there is a semistable multidegree
d ′′, this time of total degree g−1, such that e′:=d ′′ −d is effective. Consider the map

φ : W × Ae′(X) → V , ([L], [Le′ ]) �→ [L ⊗ Le′ ].

Here V is an irreducible component of the effective locus Wd ′′(X) containing the
image of φ. Since Ad(X) ⊂ W , we have Ad ′′(X) ⊂ V (note that d ′′ is effective
since d is). Thus Ad ′′(X) = V and dim(V ) = g − 1 by Proposition 4.12, since d ′′ is
semistable. In particular, the restriction of φ to Ad(X) × Ae′(X) is surjective onto V .

We claim that dim
(
Ae′(X)

) = g − 1 − d. Indeed, a general line bundle [L ′′] ∈
Ad ′′(X) satisfies h0(X , L ′′) = 1 by Lemma 4.14. Since h0(X , Le′) ≤ h0(X , Le′ ⊗ L)

for line bundles [Le′ ] ∈ Ae′(X) and [L] ∈ Ad(X), and the restriction of φ to Ad(X)×
Ae′(X) is surjective onto Ad ′′(X), it follows that h0(X , Le′) = 1 for a general line
bundle [Le′ ] ∈ Ae′(X). Thus dim

(
Ae′(X)

)
equals the total degree of e′, g − 1 − d,

by Lemma 4.10.
To finish the argument, choose [L] ∈ W and [Le′ ] ∈ Ae′(X). The restrictions

of φ to {[L]} × Ae′(X) and W × {[Le′ ]} are injective. Denote by WL and WLe′ the

respective images. By injectivity, we have WL ∩ WLe′ = {[L ⊗ Le′ ]}. Combining
these observations, we can use the usual estimate for the dimension of the intersection
(see, for example, [17, Proposition I.7.1]) to obtain

0 = dim
(
WL ∩ WLe′

)
≥ dim(W ) + dim

(
Ae′

) − dim
(
Ad ′′

)
= dim(W ) − d.
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Thus dim(W ) ≤ d. On the other hand, W is not empty, and hence dim(W ) ≥ d by
Proposition 3.4. ��

6.3 Further counterexamples

We conclude with two examples, that exclude some possible strengthenings of Theo-
rem 6.5.

First,wegive an example,whered is semistable, but the effective locus is irreducible
and of dimension greater than the expected dimension. In particular, requiring that d
is effective for the second claim in Theorem 6.5 is necessary.

Example 6.6 Let GX be the graph with two vertices v1 and v2, of respective weights 1
and 5, and three edges between them. Consider the multidegree d = (−1, 3), which
one checks to be semistable (in fact, stable). Denote by X1 and X2 the irreducible
components of X , corresponding to v1 and v2, respectively. The effective locusWd(X)

is then given as follows: any choice for L|X1 , any choice of gluing data, and L|X2 =
OX2(X1 ∩ X2). Thus Wd(X) is irreducible of dimension 3, whereas the total degree
of d is 2.

Finally, we give an example where the multidegree d is semistable and effective,
but Wd(X) has a component of dimension greater than the expected dimension. In
particular, in the second claim of Theorem 6.5 not all components need to be of
expected dimension.

Example 6.7 Let GX be the graph with two vertices v1 and v2, of respective weight
3 and 4, and a single edge between them. Hence g = 7. Consider the multidegree
d = (2, 2), which is effective and semistable (in fact, stable) of total degree 4 = g−3.
Denote by X1 and X2 the irreducible components of X , corresponding to v1 and v2,
respectively. Set p = X1 ∩ X2. The effective locus Wd(X) has three irreducible
components in this case: the first is the closure of Ad(X), which has dimension 4,
equal to the expected dimension. The second is Pic2(X1) × {

OX2(p + q)|q ∈ X2
}
,

which again has dimension 4. Finally, the third is
{
OX1(p + q)|q ∈ X1

} × Pic2(X2)

which has dimension 5 = g − 2.
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