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Abstract
We study the nontrivial elements in the Brauer group of a bielliptic surface and show that
they can be realized as Azumaya algebras with a simple structure at the generic point of the
surface. We go on to study some properties of the noncommutative Picard scheme associated
to such an Azumaya algebra.
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Introduction

According to Enriques’ classification of smooth complex algebraic surfaces, the surfaces
with Kodaira dimension zero can be divided into four classes: K3 surfaces, Enriques surfaces,
abelian surfaces and bielliptic surfaces, see [1].

The study of moduli spaces of sheaves on surfaces with Kodaira dimension zero gave rise
to a lot of interesting results, for example the construction of hyperkähler varieties, that is
irreducible holomorphic symplectic manifolds, of higher dimension. But it seems that the
case of bielliptic surfaces was not studied extensively in this direction.

This situation changed recently. On the one hand, Nuer studied stable sheaves and espe-
cially possible Chern characters of stable sheaves on bielliptic surface in detail, see [2]. On the
other hand, building on Beauville’s work in the case of Enriques surfaces in [3], Bergström,
Ferrari, Tirabassi and Vodrup studied the so-called Brauer map for bielliptic surfaces in [4].

In this article we want to combine both directions by studying a certain version of non-
commutative Picard schemes. Here we think of a noncommutative variety as a pair (X ,A)

consisting of a classical complex algebraic variety X and a sheaf of noncommutative OX -
algebrasA of finite rank as anOX -module. The algebras of interest in this article areAzumaya
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62 F. Reede

algebras. These are locally isomorphic to a matrix algebra Mr (OX ) with respect to the étale
topology and they are classified by the Brauer group Br(X) of X .

A noncommutative Picard scheme Pic(A) is the moduli scheme MA/X of certain sheaves
on X , which have the structure of a left A-module. These moduli schemes were constructed
by Hoffmann and Stuhler in [5].

In this article we study the situation of noncommutative bielliptic surfaces. The main
results of this article can be summarized as follows:

Theorem Let X be a bielliptic surface such that the Brauer group is nontrivial. Then every
nontrivial element inBr(X) can be represented by anAzumaya algebraA that is a generically
central simple cyclic division algebra.

Let (X ,A) be a noncommutative bielliptic surface defined by such an algebra. If the
Brauer map of X is injective then we have:

1. The noncommutative Picard scheme Pic(A) is smooth.
2. Every torsion free A-module of rank one can be deformed into a locally projective A-

module, that is the locus Pic(A)lp of locally projective A-modules is dense in Pic(A).

Let X be the canonically covering abelian surface and denote the pullback of the Azumaya
algebra to X by A, then Pic(A) has a symplectic structure. For fixed Chern classes c1 and
c2 we have

3. Pic(A)c1,c2 is a finite étale cover of a smooth projective subscheme Y in Pic(A)c1,c2 .
4. The subscheme Y is Lagrangian if and only if the canonical cover of X has degree two or

dim(Pic(A)c1,c2) = 1.

Most results in this article are direct counterparts or have immediate generalizations from
the case of noncommutative Enriques surfaces studied in [6]. But some results are new due
to new phenomena on bielliptic surfaces, for example Brauer classes of order three. In this
article we work over the field of complex numbers C.

1 Modules over an Azumaya algebra and cyclic Galois coverings

In this section we generalize the results of [6, Section 1] from étale double covers to arbitrary
cyclic étale Galois covers. So denote by W a smooth projective variety of dimension d
together with a nontrivial n-torsion line bundle L , that is n is the order of L in Pic(W ). By
[7, I.17] there is a cyclic étale Galois cover

q : W → W such that q∗OW
∼=

n−1⊕

i=0

Li . (1)

For every coherent sheaf E on W we denote by E the pullback of E to W along q .

Definition 1.1 A sheaf of OW -algebras A is called an Azumaya algebra if

• A is locally free of finite rank and
• for every point w ∈ W the fiber A(w) is a central simple algebra over the residue field

C(w).

Furthermore a coherent OW -module E is said to be an Azumaya module or an A-module if
E has the structure of a left A-module.
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Picard schemes of noncommutative bielliptic surfaces 63

Azumaya algebras on W are classified up to similarity by the Brauer group Br(W ). Here
similarity for two Azumaya algebras A and B is defined as follows:

A ∼ B if A ⊗ EndW (E) ∼= B ⊗ EndW (F),

where E and F are locally free OW -modules of finite rank.
We say A is trivial if [A] = [OW ] in Br(W ). A quick computation shows thatA is trivial

if and only if A ∼= EndW (P) for some locally free sheaf P of finite rank. From now on, if
not otherwise stated, an Azumaya algebra A is always a nontrivial Azumaya algebra such
that A is also nontrivial. The rank of an Azumaya algebra A is always a square so it makes
sense to define the degree of such an algebra by:

deg(A) := √
rk(A).

Using (1), the proof of [6, Lemma 1.4] immediately gives:

Lemma 1.2 Assume E and F are A-modules, then

HomA(E, F) ∼=
n−1⊕

i=0

HomA(E, F ⊗ Li ).

Applying Lemma 1.2 to the case F = E we find:

Corollary 1.3 Assume E is anA-module. E is a simpleA-module if and only if E is a simple
A-module and HomA(E, E ⊗ Li ) = 0 for 1 ≤ i ≤ n − 1.

We also have the following variant of Serre duality, see [5, Proposition 3.5.]:

Proposition 1.4 Assume E and F are A-modules, then for i ≥ 0 there are isomorphisms

ExtiA(E, F) ∼=
(
Extd−i

A (F, E ⊗ ωW )
)∨

.

In the case of surfaces, that is dim(W ) = 2, we find similar to [6, Lemma 1.7]:

Lemma 1.5 Assume E is an A-module which is torsion free as an OW -module. If E∗∗ is a
simple A-module, then HomA(E, E∗∗) ∼= C and for 1 ≤ i ≤ n − 1:

HomA(E, E∗∗ ⊗ Li ) = 0.

Recall that the relative automorphism group of the étale cyclic Galois cover q : W → W
is generated by a covering map ι of order n:

Aut(W/W ) = 〈ι〉 ∼= Z/nZ.

As the group Aut(W/W ) is cyclic, the descent condition for a coherent sheaf F onW , see
[8, https://stacks.math.columbia.edu/tag/0D1V], reduces to the existence of an isomorphism
ϕι : F → ι∗F such that the map:

ψ := (
ιn−1)∗

ϕι ◦ . . . ◦ ι∗ϕι ◦ ϕι : F → (
ιn

)∗
F ∼= F

is the identity map. If F is simple, then any ϕι satisfiesψ ∈ EndW (F) = C · idF . Hence after
multiplication with an appropriate scalar ϕι satisfies the descent condition and F descends,
that is F ∼= E for some coherent OW -module E . This standard result can be generalized to
the noncommutative situation:
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64 F. Reede

Theorem 1.6 Assume F is a simpleA-module with an isomorphism F ∼= ι∗F ofA-modules,
then there is an A-module E and an isomorphism of A-modules F ∼= E.

The proof of this theorem is the same as the proof of [6, Theorem 2.6]. One uses the
Brauer-Severi varieties p : Y → W and p : Y → W associated toA andA. By functoriality
of the Brauer-Severi variety and/or the functoriality of the étale cyclic Galois cover (as a
relative spectrum) we get a morphism q : Y → Y .

The idea is to reduce the question about descent ofA-modules onW to a descent argument
for classical OY -modules on Y . This works out well, as the morphism q : Y → Y is also a
cyclic étale Galois cover. It is induced by the n-torsion line bundle p∗L . The last fact follows
from the injectivity of p∗ : Pic(W ) → Pic(Y ), which in turn follows from the projection
formula and p∗OY ∼= OW , see [9, Lemma1.6].

2 Noncommutative bielliptic surfaces

Definition 2.1 A smooth projective minimal surface X is called a bielliptic surface if:

• κ(X) = 0 that is X has Kodaira dimension zero,
• q(X) = 1 that is H1(X ,OX ) ∼= C and
• pg(X) = 0 that is H2(X ,OX ) = 0.

It is well known that each such surface is of the form

X = (E × F)/G,

where E and F are elliptic curves and G is a finite abelian group. G acts via

g.(e, f ) = (e + g, �(g)( f )),

where we understand G ⊂ E as a finite subgroup and � : G → Aut(F) is an injective
group homomorphism. That is E/G is again an elliptic curve and F/G ∼= P

1. Furthermore
ωX ∈ Pic(X) is a torsion element of order n with n ∈ {2, 3, 4, 6}.

Using this structure theorem Bagnera and de Franchis were able to classify all bielliptic
surfaces. In fact, each such surface belongs to one of seven families, llowing table, see for
example [7, V.5] or [10, List VI.20]:

Type G Order of ωX Br(X)

1 Z/2Z 2 Z/2Z × Z/2Z

2 Z/2Z × Z/2Z 2 Z/2Z

3 Z/4Z 4 Z/2Z

4 Z/4Z × Z/2Z 4 0
5 Z/3Z 3 Z/3Z

6 Z/3Z × Z/3Z 3 0
7 Z/6Z 6 0

Remark 2.2 The Brauer group of a bielliptic surface can be found as follows: first note that
according to [11, Proposition 4] there is an isomorphism

Br(X) ∼= H3(X , Z)tor.
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Picard schemes of noncommutative bielliptic surfaces 65

Poincaré duality identifies the last group with H1(X , Z)tor. But these groups were, for exam-
ple, computed by Serrano in [12, Page 531, Table 3].

The table shows that we only need to work with bielliptic surfaces of type 1, 2, 3 and 5 in
the following, since we are interested in nontrivial Azumaya algebras.

Next we want to study the nontrivial elements in the Brauer group of a bielliptic surface.
For this we start with a field K . A central simple K -algebra A is called cyclic if A contains
a strictly maximal subfield L ↪→ A, such that L is a cyclic Galois extension of K . Here
L is called strictly maximal if [L : K ] = deg(A). These algebras are special cases of so
called crossed products and have the fairly simple description A = L[t, σ ]/(tn − a), where
L[t, σ ] is the skew-polynomial ring defined by a generator σ ∈ Gal(L/K ), a ∈ K× and
n = deg(A), see for example [13, Chapter 15] or [14, Part II: Sections 9 and 10].

If K contains a primitive n-th root of unity ζ and char(K ) � n, then cyclic algebras can
also be described as n-symbol algebras, see [15, Corollary 2.5.5]. Here for a, b ∈ K× the
n-symbol algebra 〈a, b〉n is the K -algebra generated by two elements u, v with the relations

un = a, vn = b and uv = ζvu.

The algebra 〈a, b〉n is central simple and satisfies

deg(〈a, b〉n) = n and ord(〈a, b〉n) = n in Br(K ).

Proposition 2.3 The nontrivial elements in the Brauer group of a bielliptic surface X can be
represented by Azumaya algebrasA on X that are generically central simple cyclic division
C(X)-algebras such that

deg(A) =
{
2 if ord ([A]) = 2

3 if ord ([A]) = 3.

Proof Looking at the list of types of bielliptic surface, we see that a nontrivial element
b ∈ Br(X) has order two or three. As X is smooth by [16, Théorème 2.4.] the restriction to
the generic point η gives an injection

rη : Br(X) ↪→ Br(C(X)).

So the image rη(b) has order two respectively three in Br(C(X)).
Since every class in Br(C(X)) contains (up to isomorphism) a unique division algebra, see

[13, 12.5. Proposition b], wemay assume that rη(b) is represented by a central simple division
algebra A. By a result of Artin and Tate, the division algebra A has index two respectively
three as C(X) has transcendence degree two over C, see [17, Appendix]. It remains to note
that the index of A is nothing but its degree, since A is a division algebra.

Due to Köthe’s theorem, see [14, Page 64], a division algebra over a field K contains a
maximal subfield L such that L/K is separable. But maximal subfields in a division algebra
are strictly maximal by [13, 13.1 Corollary b]. Thus if deg(A) = 2 then A contains a strictly
maximal subfield L with [L : C(X)] = 2, hence L/C(X) is cyclic Galois and so A is cyclic.
The fact that a division algebra of degree three is cyclic is a classical result due toWedderburn,
see [13, 15.6.].

As the class [A] = rη(b) comes from Br(X) it is unramified at every point of codimension
one in X , and thus by [16, Théorème 2.5.] there is an Azumaya algebra A on X with
A ⊗ C(X) = A such that [A] = b. ��
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66 F. Reede

Since the canonical bundle ωX ∈ Pic(X) is n-torsion, it induces a cyclic étale Galois
cover π : X → X of degree n, the so called canonical cover. This cover satisfies the property
ωX ∼= ωX = OX . It is known that X is an abelian surface. More exactly, if X = (E × F)/G
then we see by [4, 2.2.]:

X =
{
E × F if X is of type 1, 3, 5

(E × F)/H if X is of type 2 with H ∼= Z/2Z.

The canonical cover induces a morphism π∗ : Br(X) → Br(X), the so called Brauer
map. A natural question is, if the Brauer map is injective. Bergström, Ferrari, Tirabassi and
Vodrup give a complete answer to this question in [4]. It turns out that the answer is quite
complicated and subtle in some cases and the results are not easily stated. Here we only
record one example of these results, because it resembles most the case of Enriques surfaces
found by Beauville in [3], see [4, Theorem 5.3.]:

Theorem 2.4 Let X be a bielliptic surface with X = (E × F)/G. If the elliptic curves E and
F are not isogenous, then the morphism π∗ : Br(X) → Br(X) is injective.

Since the property that two elliptic curves E and F are not isogenous is very general
in the moduli of these curves, a very general bielliptic surface (in some "moduli" sense)
has injective Brauer map. Thus if X is a bielliptic surface with injective Brauer map then
the pullback A on X of an Azumaya algebra A constructed in Proposition 2.3 represents a
nontrivial class in Br(X).

3 Noncommutative Picard schemes and deformations

In this section we first start more generally with a smooth projective d-dimensional variety
W and an Azumaya algebra A on W . We can think of the pair (W ,A) as a noncommutative
version of W . We want to study moduli schemes of sheaves on such noncommutative pairs.

Definition 3.1 A sheaf E on W is called a generically simple torsion free A-module, if E is
a left A-module such that

• E is coherent and torsion free as a OW -module
• the stalk Eη over the generic point η ∈ W is a simple module over Aη.

If Aη is even a central simple division algebra over C(W ) then such a module is also called
a torsion free A-module of rank one.

Remark 3.2 An A-module is locally projective if and only if it is locally free as an OW -
module. IfAη is a central simple division algebra then locally projectiveA-modules of rank
one can be thought of as line bundles on the noncommutative variety (W ,A). Furthermore
a generically simple torsion free A-module is simple, see the argument after Remark 1.1. in
[5].

By fixing the Hilbert polynomial P of such sheaves (with respect to a chosen ample line
bundle), Hoffmann and Stuhler showed that these modules are classified by amoduli scheme,
see [5, Theorem2.4. iii), iv)]:

Theorem 3.3 There is a projective moduli scheme MA/W ,P classifying generically simple
torsion free A-modules with Hilbert polynomial P on W.
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Picard schemes of noncommutative bielliptic surfaces 67

According to [5, Page 379], the moduli scheme of all generically simple A-modules is
given by

MA/W :=
∐

P

MA/W ,P =
∐

c1,...,cd

MA/W ,c1,...,cd .

By the remark above MA/W can be understood as the Picard scheme Pic(A) of the noncom-
mutative variety (W ,A) in case the generic stalk is central simple division algebra.

We also note the following useful facts:

Remark 3.4 For a torsion freeA-module E of rank one on X , theA-modules E∗∗ and E ⊗ L
for L ∈ Pic(X) are also torsion free of rank one. In addition E is a torsion freeA-module of
rank one on X since π is flat.

We want to study these moduli schemes for a noncommutative bielliptic surfaces (X ,A)

with injective Brauer map.
Since the nontrivial elements in Br(X) can be represented by Azumaya algebras which

are generically central simple division algebras, we can work with torsion free A-modules
of rank one in the following. Note that the OX -rank of a torsion free A-module of rank one
E is

rkOX (E) =
{
4 if ord ([A]) = 2

9 if ord ([A]) = 3.

We can now state the main result of this section, whose proof is literally the same as for
[6, Theorem 4.10].

Theorem 3.5 Let (X ,A) be noncommutative bielliptic surface with injective Brauer map.

1 The moduli schemeMA/X of torsion free A-modules of rank one is smooth.
2 Every torsion free A-module of rank one can be deformed into a locally projective A-

module, that is the locusMlp
A/X of locally projective A-modules is dense in MA/X .

3 For fixed Chern classes c1 and c2 we have

dimMA/X ,c1,c2 =
⎧
⎨

⎩

1
4

(
8c2 − 3c21

) − c2(A) + 1 if ord ([A]) = 2

1
9

(
18c2 − 8c21

) − c2(A) + 1 if ord ([A]) = 3.

Remark 3.6 Part (2) of Theorem 3.5 is a new phenomenon in the noncommutative case. As
noted in [5, Remark 1.6], in the classical caseA = OX just torsion free and locally projective
generically simple A-modules lie in different connected components of the moduli scheme.
The reason is that locally projective A-modules do not satisfy the valuative criterion for
properness if A is nontrivial. That is the reason why one has to allow for just torsion free
A-modules to get a proper noncommutative Picard scheme Pic(A).

4 Lagrangian subschemes

Let ι : X → X still be a generator of Aut(X/X). This map induces an automorphism

ι∗ : MA/X ,c1,c2
→ MA/X ,c1,c2

, [F] �→ [
ι∗F

]
.
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68 F. Reede

Moreover, using Remark 3.4, the projection π : X → X induces a morphism

π∗ : MA/X ,c1,c2 → MA/X ,c1,c2
, [E] �→ [

E
]
,

where MA/X ,c1,c2
is the corresponding moduli scheme on the associated canonical cover. By

[5, Theorem 3.6.], the latter moduli space is smooth and posseses a symplectic structure.
Our goal in this section is to understand themorphisms ι∗ andπ∗ aswell as their connection

to the symplectic structure.

Theorem 4.1 The image of π∗ coincides with the fixed locus of ι∗, that is we have Im(π∗) =
Fix(ι∗). The latter space is a smooth projective subscheme in MA/X ,c1,c2

. Furthermore the
restriction of the symplectic form σ on the tangent bundle ofMA/X ,c1,c2

to Im(π∗) vanishes
identically.

Proof We certainly have Im(π∗) ⊂ Fix(ι∗). By Theorem 1.6 we also have the inclusion
Fix(ι∗) ⊂ Im(π∗). So Im(π∗) = Fix(ι∗). The subscheme Fix(ι∗) is projective and smooth
by [18, 3.1,3.4].

As E is simple by Remark 3.4, using Proposition 1.4 and Corollary 1.3 we compute:

Ext2A(E, E) ∼= (HomA(E, E ⊗ ωX ))∨ = 0 for all [E] ∈ MA/X ,c1,c2 .

Now the vanishing of the symplectic form follows similar to [19, Proof of (3), p.92] from
the following commutative diagram:

Ext1A(E, E)×Ext1A(E, E) −−−−→ Ext2A(E, E)

π∗
⏐⏐�

⏐⏐�π∗
⏐⏐�π∗

Ext1A(E, E)×Ext1A(E, E) −−−−→ Ext2A(E, E)

using Mukai’s description of the symplectic form on the tangent bundle of MA/X ,c1,c2
. ��

Remark 4.2 The vanishing of the symplectic form on Im(π∗) can also be seen by noting that
ι∗ is an antisymplectic automorphism of MA/X ,c1,c2

. More exactly we have ι∗σ = ζnσ for a
nontrivial n-th root of unity ζn . This follows as in the proof of [6, Lemma 4.7.]. One just has
to note that ι∗ acts as multiplication by ζn on H0(X , ωX ), since H0(X , ωX ) = 0.

The following two results also have analogues in the commutative case, see [2, Proposition
9.1].

Theorem 4.3 Let (X ,A) be noncommutative bielliptic surface with injective Brauer map.
The pullback map

π∗ : MA/X ,c1,c2 → MA/X ,c1,c2

realizes MA/X ,c1,c2 as a finite étale cover of the smooth subscheme Fix(ι∗) ⊂ MA/X ,c1,c2
.

Proof The previous theorem shows that π∗ factors through Fix(ι∗) giving rise to a surjective
morphism

ϕ : MA/X ,c1,c2 → Fix(ι∗).

Since π : X → X is the canonical cover one has isomorphisms

E ⊗ ω
j
X

∼= E for any 0 ≤ j ≤ n − 1.
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By Corollary 1.3 the E ⊗ ω
j
X are pairwise non-isomorphic since E is simple.

Now assume ϕ([E]) = ϕ([F]) that is E ∼= F and HomA(E, F) ∼= C. Then Lemma 1.2
says

C ∼= HomA(E, F) ∼=
n−1⊕

i=0

HomA(E, F ⊗ ωi
X )

and so by [6, Lemma 4.3] we have

E ∼= F ⊗ ω
j
X

for exactly one j with 0 ≤ j ≤ n−1. So ϕ is an unramified morphism of degree n. Moreover
the computations also show that ϕ is flat by [20, Lemma, p.675], hence ϕ is étale. ��

As the symplectic form vanishes on Fix(ι∗) one may ask if Fix(ι∗) is a Lagrangian sub-
scheme in MA/X ,c1,c2

. This question can be answered by a simple dimension computation.

Lemma 4.4 Let (X ,A) be noncommutative bielliptic surface with injective Brauer map. The
subscheme Fix(ι∗) of MA/X ,c1,c2

is Lagrangian if and only if the bielliptic surface X is of
type 1 or 2 or dim(MA/X ,c1,c2) = 1.

Proof By Theorem 4.3 we need to check in which cases we have

dim
(
MA/X ,c1,c2

)
= 2 dim

(
MA/X ,c1,c2

)
.

It is therefore enough to check in which cases we have

ext1A(E, E) = 2 ext1A(E, E) (2)

for a locally projective A-module E of rank one by part (2) of Theorem 3.5.
Since the canonical cover is finite étale of degree n we find using [6, Lemma 1.3]:

χ(HomA(E, E)) = χ(π∗HomA(E, E)) = nχ(HomA(E, E)).

Thus we have

2 − ext1A(E, E) = n
(
1 − ext1A(E, E)

)
.

Inserting equation (2) into the last equation and simplifying gives:

(n − 2)
(
1 − ext1A(E, E)

) = 0.

We conclude: Fix(ι∗) is a Lagrangian subscheme if and only if the canonical cover of X has
degree two, that is X is of type 1 or 2, or in case dim(MA/X ,c1,c2) = 1. ��
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