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Abstract: Successful experimental realizations of two-dimensional (2D) C60 fullerene networks have
been among the most exciting latest advances in the rapidly growing field of 2D materials. In this
short communication, on the basis of the experimentally synthesized full boron B40 fullerene lattice,
and by structural minimizations of extensive atomic configurations via density functional theory
calculations, we could, for the first time, predict a stable B40 fullerene 2D network, which shows
an isotropic structure. Acquired results confirm that the herein predicted B40 fullerene network is
energetically and dynamically stable and also exhibits an appealing thermal stability. The elastic
modulus and tensile strength are estimated to be 125 and 7.8 N/m, respectively, revealing strong
bonding interactions in the predicted nanoporous nanosheet. Electronic structure calculations reveal
metallic character and the possibility of a narrow and direct band gap opening by applying the
uniaxial loading. This study introduces the first boron fullerene 2D nanoporous network with an
isotropic lattice, remarkable stability, and a bright prospect for the experimental realization.
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1. Introduction

Fullerenes were originally zero-dimensional (0D) carbon-based polyhedral cages
consisting of hexagonal and pentagonal rings, which, depending on their number of
atoms and topology, can appear in diverse stable forms [1–6]. In 2022, Hou et al. [7]
reported the first successful synthesis of a quasi-hexagonal-phase C60 fullerene 2D lattice.
Shortly after, two other experimental groups also fabricated 2D forms of C60 fullerene
networks [8,9]. These latest experimental advances [7–9] offer novel fabrication approaches
to forming nanoporous and light-weight 2D systems made of 0D fullerene cages connected
by 1D bonds with remarkable stability [10–12] and low thermal conductivities [6,10]. It is
worth mentioning that after the discovery of C60 fullerene [2], it took almost two decades
for the experimental realization of the full boron B40 fullerene counterpart [13]. On the
other side, it also took almost a decade after the experimental realization of the single-
layer graphene [14–16] for three different 2D borophene lattices to be first successfully
synthesized using epitaxial growth over a silver substrate [17,18]. As an interesting matter
of fact, the possibility of the synthesis of borophene nanosheets and their metallic electronic
nature were theoretically predicted before their experimental fabrications [19,20].

Boron atoms, similar to their carbon neighbor, show outstanding capabilities to form
various bonding architecture, and in 2D form they can appear with buckled or fully planar
structures. As it is clear, the recent experimental accomplishments for the synthesis of
full carbon 2D fullerene networks [7–9] might be extendable for the case of boron-based
counterparts. In fact, B40 fullerene can be considered as the basis for the new experimental
and theoretical endeavors, taking into account that it is experimentally producible [13]
and is already predicted to form bonding interactions with neighboring cages [21]. In this
short communication, on the basis of the experimentally fabricated B40 boron fullerene, and
by the screening of diverse possible 2D configurations, we could successfully predict the
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first 2D boron fullerene network. To this aim, we conducted extensive density functional
theory (DFT) simulations to perform the energy minimization for detecting the stable
atomic configuration and, furthermore, investigated its corresponding bonding, structural,
stability, mechanical, and electronic features. The presented DFT results confirm the
remarkable energetic, thermal, dynamical, and mechanical stability of the herein predicted
isotropic B40 fullerene 2D lattice, which makes it highly appealing for further theoretical
and experimental endeavors.

2. Computational Methods

DFT calculations herein were carried out using the Vienna ab initio simulation package
(VASP) [22,23] on the basis of Perdew–Burke–Ernzerhof (PBE) and generalized gradient
approximation (GGA), using DFT-D3 [24] van der Waals (vdW) dispersion correction
and cutoff energy of 550 eV for plane waves. With the aforementioned details, in our
earlier study [10] the lattice parameters of the experimentally realized 2D C60 network
were precisely reproduced. In order to conduct the energy minimization, 5 × 5 × 1
Monkhorst–Pack [25] k-point grid was used, until the fulfilment of the energy and force
convergence of 10−5 eV and 0.001 eV/Å, respectively, with considering a fixed 20 Å
for the three-dimensional periodic box size along the thickness. Since the PBE/GGA
method methodically underestimates the band gap, HSE06 hybrid functional [26] was
also adopted for more accurate investigation of electronic band structure. For the single
B40 cage, we used 1×1×1 k-point with the fixed 17 Å box size along the three Cartesian
directions. Ab initio molecular dynamics (AIMD) simulations were carried out using
the 2 × 1 × 1 supercell and with a fixed time step of 1 fs, in order to inspect the thermal
stability. We trained a moment tensor potentials (MTP) [27] with cutoff distance of 3.5 Å
to examine the dynamical stability, using AIMD datasets prepared by employing the unit
cell structure, DFT-D3 [24] vdW correction, and a 3 × 3 × 1 Monkhorst–Pack K-point
grid. The training dataset was prepared by two separate AIMD calculations, for which
the systems’ temperature was gradually increased from 10 to 100, and from 100 to 2000 K
within 1000 time steps (simulation time of 1 ps). The original 2000 AIMD configurations
were subsampled, and 830 configurations were used for the fitting of the MTP, which was
subsequently used to obtain phonon dispersion relation over the 5 × 5 × 1 supercell, using
the PHONOPY package [28], as extensively validated in our earlier study [29].

3. Results and Discussion

We first investigate the structural, bonding, and energetic characteristics of the pre-
dicted full boron nanosheet. Figure 1a shows the molecular geometry of the experimentally
observed B40 cage and its corresponding energy, which was predicted to be −6.079 eV/atom.
In order to find the local minimum energy 2D lattice, after the energy minimization of
the B40 cage, we applied three random rotations along the three Cartesian directions with
respect to the center of the atomic mass. After randomly orienting the B40 cage, the simula-
tion box size was altered to form primary bonds with periodic images, following by the
DFT energy minimization step. By conducting the calculations for around 300 randomly
fabricated lattices, we could predict the first minimum energy B40-based 2D network,
which is shown in Figure 1b. This novel 2D netwrok presents an isotropic lattice with a
length of 7.638 Å, and corresponding energy of −6.230 eV/atom. As the first important
finding, the distinctly lower energy of the herein predicted B40 fullerene 2D lattice, lower by
−0.151 eV/atom compared to the native B40 cage, confirms its favorable energetic stability.
The lengths of various B-B bonds were found to be close to each other and around 1.75 Å. It
should be noted that according to the spin-polarized calculations, it was confirmed that the
herein predicted B40 fullerene network is not magnetic. In order to examine the bonding
mechanism, in Figure 1c the electron localization function (ELF) [30] of the B40 fullerene
network with an isosurface value of 0.75 is illustrated. ELF is a topological function and
varies from 0 to 1. Rather large ELF values over 0.75 around the center of B-B bonds
interestingly indicate the covalent nature of interactions in this novel full boron nanosheet.
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To facilitate the oncoming studies, atomic structures of the energy minimized 2D and 0D
B40 lattices are included in the Supporting Information document.
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Figure 1. (a) 3D view of the B40 cage. (b) Top and side views for the 2D boron fullerene network.
(c) 3D view for the electronic localization function (with yellow color) of the 2D boron fullerene
network with an isosurface value of 0.75, illustrated using the VESTA package [31]. Find the energy
minimized structures in the Supporting Information document.

We next elaborately examined the dynamical, thermal, and mechanical stability of the
herein predicted B40 fullerene nanosheet [32–36]. The phonon dispersion of the single-layer
B40 network is depicted in Figure 2a, along with the corresponding phonon group velocities
in Figure 2b. It is clearly observable that the three acoustic (find Figure 2a inset) and all
optical modes are free of imaginary frequencies, confirming the remarkable dynamical
stability of the predicted lattice. Moreover, it can be seen that for the frequencies over
10 THz, the phonon branches appear, generally, with flat dispersions, confirming low group
velocities, in agreement with results presented in Figure 3b. Consistent with the phonon
dispersion of full carbon fullerene nanosheets [6,10], significant band crossing is visible
for the both in-plane acoustic and entire optical phonon modes, revealing short phonon
lifetimes for the mainstream heat carriers in the predicted single-layer B40 network. The
in-plane acoustic modes show the highest group velocity of around 9.7 km/s, which is
lower than that of the 11.6 km/s predicted for the 2D C36 fullerene [6]. The suppressed
group velocity for the phonon modes in the predicted structure suggest its lower lattice
thermal conductivity compared to the C36 counterpart. The mechanical properties and the
corresponding stress–strain curve is shown in Figure 2c. The predicted stress–strain relation
is uniaxial, meaning that during the entire deformation process, the B40 monolayer is under
tension only along the loading and remains acceptably stress-free along the perpendicular
direction to the loading. The elastic modulus and tensile strength are predicted to be
125 and 7.8 N/m, respectively, revealing rather strong bonding in the predicted nanoporous
B40 network, consistent with the previously observed covalent interactions. Based on the
DFT results for the uniaxially stressed atomic configurations, we could not detect the clear
failure behavior, which can be a clear indication of the higher ductility of the predicted
boron fullerene structure than that of the carbon-based counterparts [6,10,11]. It is worth
noting that the Poisson’s ratio is found to be only 0.009. The thermal stability of the B40
network was, moreover, tested by the AIMD simulations at three temperatures of 500,
700, and 1000 K for 20 ps long calculations. The AIMD results for the evolution of the per
atom total energy for different temperatures are illustrated in Figure 2d, along with the
side views for the final atomic configurations. It is observable that up to a moderately
high temperature of 700 K, the single-layer B40 network stays completely stable, whereas
at 1000 K, the lattice is partially distorted. The presented DT results clearly confirm the
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outstanding energetic, thermal, dynamical, and mechanical stability of the herein predicted
B40 fullerene.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 7 
 

illustrated in Figure 2d, along with the side views for the final atomic configurations. It is 

observable that up to a moderately high temperature of 700 K, the single-layer B40 net-

work stays completely stable, whereas at 1000 K, the lattice is partially distorted. The 

presented DT results clearly confirm the outstanding energetic, thermal, dynamical, and 

mechanical stability of the herein predicted B40 fullerene. 

 

Figure 2. (a) Phonon dispersion and (b) group velocity of the predicted single-layer B40 network. (c) 

Uniaxial stress–strain at the ground state along with side views of the deformed structures. (d) The 

AIMD results for the per atom total energy of the B40 nanosheet during the simulations at temper-

atures of 500, 700, and 1000 K. The insets in panel (d) show the side views for the final atomic con-

figurations after 20 ps of AIMD simulations. 

Last, but not least, we briefly investigated the electronic character of the predicted 

B40 fullerene 2D network. From the results shown in Figure 3a for the stress-free fullerene 

network, the metallic electronic character is confirmed by the both considered methods of 

PBE and HSE06, consistent with those of pristine borophene monolayers. As shown in 

Figure 3b,c, we found that by applying the biaxial straining, the states around the Fermi 

level become denser and, consequently, enhance the metallicity of the system. On the 

other side, by applying the uniaxial loading, the valance and conduction bands around 

the Fermi energy start to separate, and, as shown in Figure 3e, for a relatively large strain 

of 0.1, a narrow and direct band gap of 0.07 appears in the electronic structure. These 

results confirm that the electronic structure of the unstrained and strained B40 fullerene 

monolayers mostly show a metallic nature, with a low possibility of yielding a narrow 

gap semiconducting character under large uniaxial loading. 
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(c) Uniaxial stress–strain at the ground state along with side views of the deformed structures.
(d) The AIMD results for the per atom total energy of the B40 nanosheet during the simulations at
temperatures of 500, 700, and 1000 K. The insets in panel (d) show the side views for the final atomic
configurations after 20 ps of AIMD simulations.
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Last, but not least, we briefly investigated the electronic character of the predicted
B40 fullerene 2D network. From the results shown in Figure 3a for the stress-free fullerene
network, the metallic electronic character is confirmed by the both considered methods
of PBE and HSE06, consistent with those of pristine borophene monolayers. As shown in
Figure 3b,c, we found that by applying the biaxial straining, the states around the Fermi
level become denser and, consequently, enhance the metallicity of the system. On the
other side, by applying the uniaxial loading, the valance and conduction bands around
the Fermi energy start to separate, and, as shown in Figure 3e, for a relatively large strain
of 0.1, a narrow and direct band gap of 0.07 appears in the electronic structure. These
results confirm that the electronic structure of the unstrained and strained B40 fullerene
monolayers mostly show a metallic nature, with a low possibility of yielding a narrow gap
semiconducting character under large uniaxial loading.

4. Concluding Remarks

In this short communication, by performing extensive DFT calculations, we could,
for the first time, predict a stable B40 boron fullerene nanosheet. The predicted novel full
boron 2D lattice shows an isotropic structure with noticeable contribution of covalent
interactions, and, excitingly, is energetically more stable than the experimentally available
B40 fullerene. The B40 fullerene 2D network is also confirmed to be dynamically stable, and
exhibits thermal stability at a moderately high temperature of 700 K. The elastic modulus,
Poisson’s ratio, and tensile strength of the predicted 2D lattice are estimated to be 125 N/m,
0.009, and 7.8 N/m, respectively. The unstrained and strained B40 fullerene networks
mostly show metallic electronic natures, with the possibility of evolving to a narrow and
direct gap semiconducting character under the uniaxial loading. This study introduces
the first boron fullerene 2D lattice on the basis of the already experimentally available B40
fullerene, which shows an isotropic lattice, remarkable stability and strength, and metallic
electronic nature, with a bright prospect for experimental synthesis, being highly appealing
for further theoretical and experimental endeavors.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/app13031672/s1, Supporting information: First theoretical realization of
a stable two-dimensional boron fullerene network.

Funding: This research was funded by Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy within the Cluster of Excellence PhoenixD (EXC
2122, Project ID 390833453).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Atomic structures of the energy-minimized 2D and 0D B40 lattices are
included in the Supporting Information document. Additional data presented in this study are also
available on request from the corresponding author.
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