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Abstract
We call a poset factorable if its characteristic polynomial
has all positive integer roots. Inspired by inductive and
divisional freeness of a central hyperplane arrangement,
we introduce and study the notion of inductive posets
and their superclass of divisional posets. It then moti-
vates us to define the so-called inductive and divisional
abelian (Lie group) arrangements, whose posets of lay-
ers serve as the main examples of our posets. Our first
main result is that every divisional poset is factorable.
Our secondmain result shows that the class of inductive
posets contains strictly supersolvable posets, the notion
recently introduced due to Bibby and Delucchi (2022).
This result can be regarded as an extension of a classical
result due to Jambu and Terao (Adv. in Math. 52 (1984)
248–258), which asserts that every supersolvable hyper-
plane arrangement is inductively free. Our third main
result is an application to toric arrangements, which
states that the toric arrangement defined by an arbitrary
ideal of a root system of type 𝐴, 𝐵 or 𝐶 with respect to
the root lattice is inductive.
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1 INTRODUCTION

A hyperplane arrangement ℋ is a finite set of hyperplanes (1-codimensional affine subspaces)
in a finite-dimensional vector space 𝑉. The intersection poset 𝐿(ℋ) of ℋ is the set of all
nonempty intersections of hyperplanes in ℋ, which is often referred to as the combinatorics of
ℋ. The arrangement ℋ is called factorable if its characteristic polynomial 𝜒ℋ(𝑡) has all non-
negative integer roots. In this case, we call the roots of 𝜒ℋ(𝑡) the (combinatorial) exponents
ofℋ.
An arrangement is called central if every hyperplane in it goes through the origin. A central

arrangement ℋ is said to be free if its module 𝐷(ℋ) of logarithmic derivations is a free module
(Definition 2.16). A remarkable theorem connecting algebra and combinatorics of arrange-
ments due to Terao asserts that if an arrangement ℋ is free, then it is factorable and its
combinatorial exponents coincide with the degrees of the derivations in any basis for 𝐷(ℋ)

(Theorem 2.17).

Definition 1.1. A property 𝑃 of arrangements is called a combinatorial property (or combinatori-
ally determined) if for any distinct arrangementsℋ1 andℋ2 in 𝑉 having the same combinatorics,
that is, their intersection posets are isomorphic 𝐿(ℋ1) ≃ 𝐿(ℋ2), then ℋ1 has property 𝑃 if and
only ifℋ2 has property 𝑃.

Based on the factorization theorem mentioned above, Terao conjectured that freeness is a
combinatorial property [22, Conjecture 4.138]. Terao’s conjecture remains open till now even in
dimension 3.
A natural approach to the conjecture is to find a significant class of arrangements whose

freeness is combinatorially determined. Motivated by the addition–deletion theorem for free
arrangements [22, Theorem 4.51], Terao first defined the class of inductively free arrangements
in which an arrangement can be built from the empty arrangement by adding a hyperplane one
at a time subject to the inductive freeness of both deleted and restricted arrangements, and a
divisibility condition on the characteristic polynomials (Definition 2.19). A notable feature of this
class due to Jambu and Terao [16] is that it contains supersolvable arrangements (Definition 2.18),
a prominent class of arrangements defined earlier by Stanley [26]. Later on, Abe [1] proved a
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refinement of the addition–deletion theorem, and introduced a proper superclass of inductively
free arrangements, the so-called divisionally free arrangements (Definition 2.20). Both inductively
and divisionally free arrangements are combinatorially determined, proper subclasses of free
arrangements (Remark 2.21). In particular, inductive or divisional freeness is a sufficient condition
for the arrangement’ factorability.
In recent years, there has been increasing attention toward extending the known properties of

hyperplane arrangements to toric arrangements, ormore generally, toabelianarrangements. Given
an abelian Lie group𝐺 = (𝕊1)𝑎 × ℝ𝑏 (𝑎, 𝑏 ⩾ 0) and a finite set of integral vectors in Γ = ℤ𝓁 , Liu,
Yoshinaga, and the third author [19] defined the abelian arrangement𝒜 = 𝒜(, 𝐺) by means of
group homomorphisms from Γ to 𝐺 (see Section 5 for details). In particular, when 𝐺 = ℝ (or ℂ)
we obtain a real (or complex) hyperplane arrangement, and when 𝐺 = 𝕊1 (or ℂ×) this is known
as a real (or complex) toric arrangement that describes a finite set of (translated) hypertori in a
finite-dimensional torus.
We recall some important results of abelian arrangements. In [19], a formula for the Poincaré

polynomial of the complement of𝒜 when 𝐺 is noncompact (i.e., 𝑏 > 0) is given; this generalizes
the formulae of Orlik and Solomon [21], and De Concini, Procesi, and Moci [10, 20] for complex
hyperplane and toric arrangements. (The cohomology ring structure is also known [8, 10, 21] in
the case of hyperplane or toric arrangements.) In [33], the intersection poset (or poset of layers)
𝐿(𝒜) of𝒜 is defined as the set of all connected components of intersections of elements in𝒜, and
its characteristic polynomial is computed.
It is well-known that the intersection poset of a central hyperplane arrangement is a geomet-

ric lattice (Definition 2.2). Bibby and Delucchi [5] recently introduced a more general notion of
(locally) geometric posets (Definitions 2.3 and 2.13) and showed that these posets describe the inter-
section data of abelian arrangements (Theorem 5.2). Furthermore, based on an extension of the
concept of lattice modularity, the authors defined the notion of strictly supersolvable posets (Def-
inition 2.9), which is of our particular interest here. It is proved that every strictly supersolvable
poset is factorable (Theorem 2.10), which extends the result by Stanley for supersolvable lattices
[26].
The first motivation for this work is a pursuit of a theory for “free abelian arrangements”. As of

this writing, we do not know how to pass from algebraic consideration of freeness of hyperplane
arrangements to abelian or just toric arrangements. However, at the purely combinatorial level
using only information from the posets, it is possible to define and study the combinatorial struc-
tures of abelian arrangements and geometric posets in the same way that inductive freeness and
divisional freeness do for hyperplane arrangements and geometric lattices.
In this paper, we give definitions of inductive and divisional posets as subclasses of locally geo-

metric posets (Definitions 3.6 and 3.7). The former is a proper subclass of the latter owing to a
deletion-restriction formula for characteristic polynomials (Theorem 3.5 and Proposition 3.8). On
the arrangement theoretic side, we define inductive and divisional arrangements in a similar way
(Definitions 5.9 and 5.10). We show that an abelian arrangement is inductive (resp., divisional)
if and only if its intersection poset is inductive (resp., divisional) (Theorem 5.11). As a conse-
quence, inductiveness and divisionality are combinatorial properties of abelian arrangements
(Corollary 5.12).
The second motivation is a contribution to factorability of an abelian arrangement, or more

generally, of a locally geometric poset (Definition 2.1). Beyond ranked lattices, there are some
reasons for an arbitrary poset to be factorable (e.g., [12]). Our first main result in the paper is that
a divisional (in particular, an inductive) poset has this factorability.
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Theorem 1.2. If a poset is divisional, then it is factorable.

Our second main result is a generalization of the classical result of Jambu and Terao [16]
mentioned earlier for supersolvable and inductively free arrangements.

Theorem 1.3. If a poset is strictly supersolvable, then it is inductive.

Using the notion of characteristic quasi-polynomial from [17], the third author [32] showed that
the toric arrangement defined by an arbitrary ideal of a root system of type 𝐴, 𝐵 or 𝐶 with respect
to the root lattice is factorable. Our third main result is a strengthening of this result.

Theorem 1.4. The toric arrangement defined by an arbitrary ideal of a root system of type 𝐴, 𝐵 or
𝐶 with respect to the root lattice is inductive.

Finally, we give a discussion on the localization at a layer of an abelian arrangement (Section 6).
It is shown that inductive freeness of a hyperplane arrangement is preserved under taking local-
ization [14]. We show that it is not the case for an arbitrary abelian arrangement by providing an
example of an inductive toric arrangement with a noninductive localization. Furthermore, this
example indicates a rather interesting phenomenon that changing the base group 𝐺 would turn
a noninductive arrangement into an inductive one, there exists a finite set  of integral vectors
whose corresponding hyperplane arrangement 𝒜(ℝ) is not inductive but the toric arrangement
𝒜(𝕊1) is.

2 PRELIMINARIES

2.1 Posets

We begin by recalling the definitions and basic facts of (locally) geometric posets and (strictly)
supersolvable posets following [5].
All posets ( , ⩽ )will be finite and have a uniqueminimal element 0̂. All will also be ranked

meaning that for every 𝑥 ∈  , all maximal chains among those with 𝑥 as greatest element have
the same length, denoted rk(𝑥). Define the rank of a poset  to be

rk() ∶= max{rk(𝑥) ∣ 𝑥 ∈ }.

TheMöbius function 𝜇 ∶= 𝜇 of a poset  is the map 𝜇 ∶  ×  ⟶ℤ defined by

𝜇 (𝑎, 𝑏) ∶=

⎧⎪⎨⎪⎩
1 if 𝑎 = 𝑏,

−
∑
𝑎⩽𝑐<𝑏 𝜇 (𝑎, 𝑐) if 𝑎 < 𝑏,

0 otherwise.

The characteristic polynomial 𝜒 (𝑡) ∈ ℤ[𝑡] of  is defined as

𝜒 (𝑡) ∶=
∑
𝑥∈

𝜇(0̂, 𝑥)𝑡rk()−rk(𝑥).
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INDUCTIVE AND DIVISIONAL POSETS 5 of 32

Definition 2.1. A poset  is factorable if the roots of its characteristic polynomial 𝜒 (𝑡) form a
subset of positive integer roots. In this case, we call the roots of𝜒 (𝑡) the (combinatorial) exponents
of  and write

exp() = {𝑑1, … , 𝑑rk()}

for the multiset of exponents. Denote by 𝐅𝐑 the class of factorable posets.

The trivial lattice {0̂} is factorable because 𝜒{0̂}(𝑡) = 1. In this case, exp({0̂}) = ∅.
Let  and  be posets. A poset morphism 𝜎 ∶  →  is an order-preserving map, that is, 𝑥 ⩽ 𝑦

implies 𝜎(𝑥) ⩽ 𝜎(𝑦) for all 𝑥, 𝑦 ∈  . We call 𝜎 a poset isomorphism if 𝜎 is bijective and its inverse
is a poset morphism. The posets  and  are said to be isomorphic, written  ≃  if there exists
a poset isomorphism 𝜎 ∶  → .
For a subset𝑇 ⊆  , the join

⋁
𝑇 (resp.,meet

⋀
𝑇) of𝑇 is the set ofminimal upper bounds (resp.,

maximal lower bounds) of elements in 𝑇. That is,⋁
𝑇 ∶= min{𝑏 ∈  ∣ 𝑏 ⩾ 𝑎, ∀𝑎 ∈ 𝑇} and

⋀
𝑇 ∶= max{𝑏 ∈  ∣ 𝑏 ⩽ 𝑎, ∀𝑎 ∈ 𝑇}.

In particular, when 𝑇 = {𝑥, 𝑦}, we write 𝑥 ∨ 𝑦 ∶=
⋁
𝑇 and 𝑥 ∧ 𝑦 ∶=

⋀
𝑇.

For 𝑥 ∈  , define

⩽𝑥 ∶= {𝑦 ∈  ∣ 𝑦 ⩽ 𝑥} and ⩾𝑥 ∶= {𝑦 ∈  ∣ 𝑦 ⩾ 𝑥}.

We call 𝑥 ∈  an atom if rk(𝑥) = 1. Denote the set of atoms of  by 𝐴(). For 𝑥, 𝑦 ∈  , by 𝑦
covers 𝑥, written 𝑥 ⋖ 𝑦, we mean 𝑥 < 𝑦 and 𝑥 ⩽ 𝑧 < 𝑦 implies 𝑥 = 𝑧.
The poset  is a lattice if |𝑥 ∨ 𝑦| = 1 and |𝑥 ∧ 𝑦| = 1 for any 𝑥, 𝑦 ∈  . In this case by abuse of

notation we write, for example, 𝑎 = 𝑥 ∨ 𝑦 for 𝑎 ∈ 𝑥 ∨ 𝑦.

Definition 2.2. A lattice 𝐿 is called geometric if for all 𝑥, 𝑦 ∈ 𝐿: 𝑥 ⋖ 𝑦 if and only if there is an
atom 𝑎 ∈ 𝐴(𝐿) with 𝑎  𝑥, 𝑦 = 𝑥 ∨ 𝑎.

Definition 2.3. A poset  is called locally geometric if ⩽𝑥 is a geometric lattice for every 𝑥 ∈  .

Remark 2.4. If  is a locally geometric poset, then so are ⩽𝑥 and ⩾𝑥 for any 𝑥 ∈  [5, Remark
2.2.6].

Definition 2.5. For any subset 𝐵 ⊆ 𝐴(), define (𝐵) to be the poset consisting of the minimal
element 0̂ and all possible joins of the elements in 𝐵. We call (𝐵) the subposet of  generated by
𝐵.

Remark 2.6. Note that(𝐴()) =  and every element of(𝐵) is an element of . If is a locally
geometric poset (or a lattice), then so is (𝐵).

Definition 2.7. An element 𝑥 in a geometric lattice 𝐿 ismodular if for all 𝑧 ⩽ 𝑥 and all 𝑦 ∈ 𝐿:

𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∧ 𝑦) ∨ 𝑧.

 14697750, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12829 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [07/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 of 32 PAGARIA et al.

Let  be a locally geometric poset. An order ideal in  is a downward-closed subset. The poset
 (or an order ideal of ) is called pure if all maximal elements have the same rank. An order
ideal  of  is join-closed if 𝑇 ⊆  implies

⋁
𝑇 ⊆ . We denote by max() the set of maximal

elements in  .

Definition 2.8 ([5, Definitions 2.4.1 and 5.1.1]). AnM-ideal of a locally geometric poset is a pure,
join-closed, order ideal  ⊆  satisfying the following two conditions.

(1) |𝑎 ∨ 𝑦| ⩾ 1 for any 𝑦 ∈  and 𝑎 ∈ 𝐴() ⧵ 𝐴().
(2) for every 𝑥 ∈ max(), there is some 𝑦 ∈ max() such that 𝑦 is a modular element in the

geometric lattice ⩽𝑥.

An M-ideal  ⊆  is called a TM-ideal if condition (1) above is replaced by a stronger condition
that such 𝑎 and 𝑦 have a unique minimal upper bound, that is,

(1*) |𝑎 ∨ 𝑦| = 1 for any 𝑦 ∈  and 𝑎 ∈ 𝐴() ⧵ 𝐴().

Note that the element 𝑦 in Definition 2.8 (2) is necessarily unique because is join-closed. The
following is a generalization of Stanley’s supersolvable lattices [26].

Definition 2.9 ([5, Definitions 2.5.1 and 5.1.4]). A locally geometric poset is supersolvable (resp.,
strictly supersolvable) if there is a chain, called anM-chain (resp., a TM-chain)

{0̂} = 0 ⊊ 1 ⊊ ⋯ ⊊ 𝑟 =  ,

where each 𝑖 is an M-ideal (resp., a TM-ideal) of 𝑖+1 with rk(𝑖) = 𝑖.

Theorem 2.10 ([5, Theorem 5.2.1]). Let be a TM-ideal of a locally geometric poset with rk() =
rk() − 1, and let 𝑑 = |𝐴() ⧵ 𝐴()|. Then

𝜒 (𝑡) = (𝑡 − 𝑑)𝜒(𝑡).

In particular, if is strictly supersolvable with a TM-chain {0̂} = 0 ⊊ 1 ⊊ ⋯ ⊊ 𝑟 =  , and 𝑑𝑖 =|𝐴(𝑖) ⧵ 𝐴(𝑖−1)| for each 𝑖, then  is factorable with exponents

exp() = {𝑑1, … , 𝑑𝑟}.

Definition 2.11. A locally geometric poset  is locally supersolvable if ⩽𝑥 is supersolvable for
every 𝑥 ∈  .

Remark 2.12. Denote by 𝐒𝐒𝐒, 𝐒𝐒 and 𝐋𝐒𝐒 the class of strictly supersolvable, supersolvable and
locally supersolvable posets, respectively. By [5, Remark 2.5.4 and Example 5.2.5],

𝐒𝐒𝐒 ⊊ 𝐒𝐒 ⊊ 𝐋𝐒𝐒.

Moreover, if 𝐿 is a geometric lattice, then 𝐿 ∈ 𝐒𝐒𝐒 if and only if 𝐿 ∈ 𝐒𝐒 [5, Proposition 5.1.9].
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INDUCTIVE AND DIVISIONAL POSETS 7 of 32

Definition 2.13 ([5, Definition 4.1.1]). A locally geometric poset  is geometric if for all 𝑥, 𝑦 ∈  :
if rk(𝑥) < rk(𝑦) and 𝐼 ⊆ 𝐴() is such that 𝑦 ∈

⋁
𝐼 and |𝐼| = rk(𝑦), then there is 𝑎 ∈ 𝐼 such that

𝑎  𝑥 and 𝑎 ∨ 𝑥 ≠ ∅.

When a poset is geometric, we have the following useful characterization of an M-ideal.

Lemma2.14 ([5, Theorem 4.1.2]). Let be a geometric poset, and let be a pure, join-closed, proper
order ideal of  . Then  is an M-ideal with rk() = rk() − 1 if and only if for any two distinct
𝑎1, 𝑎2 ∈ 𝐴() ⧵ 𝐴() and every 𝑥 ∈ 𝑎1 ∨ 𝑎2 there exists 𝑎3 ∈ 𝐴() such that 𝑥 > 𝑎3.

2.2 Free arrangements

Now we recall the definition of free arrangements and their related properties. Our stan-
dard reference is [22]. Throughout this subsection, an “arrangement” means a “central
hyperplane arrangement”.
Let 𝕂 be a field and let 𝑇 = 𝕂𝓁 . Let ℋ be an arrangement in 𝑇. Let 𝐿(ℋ) be the intersection

poset of ℋ. We agree that 𝑇 is a unique minimal element in 𝐿(ℋ). Thus, 𝐿(ℋ) is a geometric
lattice that can be equipped with the rank function rk(𝑋) ∶= codim(𝑋) for 𝑋 ∈ 𝐿(ℋ) (e.g., [22,
Lemma 2.3]). We also define the rank rk(ℋ) ofℋ as the rank of the maximal element of 𝐿(ℋ).
The characteristic polynomial 𝜒ℋ(𝑡) ofℋ is defined by

𝜒ℋ(𝑡) ∶= 𝑡𝓁−rk(ℋ) ⋅ 𝜒𝐿(ℋ)(𝑡),

where 𝜒𝐿(ℋ)(𝑡) is the characteristic polynomial of the lattice 𝐿(ℋ) defined in the preceding
subsection. Definition 2.1 motivates the following concept.

Definition 2.15. An arrangementℋ is called factorable if its intersection poset 𝐿(ℋ) is factorable
(Definition 2.1). In this case, we also call the roots of 𝜒ℋ(𝑡) the (combinatorial) exponents of ℋ
and use the notation exp(ℋ) to denote the multiset of exponents. Denote also by 𝐅𝐑 the class of
factorable arrangements.

Notation. If an element 𝑒 appears 𝑑 ⩾ 0 times in a multiset𝑀, we write 𝑒𝑑 ∈ 𝑀.
Ifℋ ∈ 𝐅𝐑, then

exp(ℋ) = {0𝓁−rk(ℋ)} ∪ exp(𝐿(ℋ)).

The empty arrangement∅𝓁 (or simply∅) is the arrangement in 𝑇 consisting of no elements. In
particular, ∅𝓁 ∈ 𝐅𝐑 with exp(∅𝓁) = {0𝓁}.
Let {𝑥1, … , 𝑥𝓁} be a basis for the dual space 𝑇∗ and let 𝑆 ∶= 𝕂[𝑥1, … , 𝑥𝓁]. For each 𝐻 ∈ℋ, fix

a defining polynomial 𝛼𝐻 = 𝑎1𝑥1 +⋯ + 𝑎𝓁𝑥𝓁 ∈ 𝑇∗ (𝑎𝑖 ∈ 𝕂) of𝐻, that is,𝐻 = ker 𝛼𝐻 .
A 𝕂-linear map 𝜃 ∶ 𝑆 → 𝑆 is called a derivation if 𝜃(𝑓g) = 𝜃(𝑓)g + 𝑓𝜃(g) for all 𝑓, g ∈ 𝑆. Let

Der(𝑆) be the set of all derivations of 𝑆. It is a free 𝑆-module with a basis {𝜕∕𝜕𝑥1, … , 𝜕∕𝜕𝑥𝓁}
consisting of the usual partial derivatives. We say that a nonzero derivation 𝜃 =

∑𝓁
𝑖=1 𝑓𝑖𝜕∕𝜕𝑥𝑖 is

homogeneous of degree 𝑝 if each nonzero coefficient 𝑓𝑖 is a homogeneous polynomial of degree 𝑝
[22, Definition 4.2].
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8 of 32 PAGARIA et al.

The concept of free arrangements was defined by Terao [22, 30].

Definition 2.16 ([22, Definitions 4.5 and 4.15]). The module 𝐷(ℋ) of logarithmic derivations is
defined by

𝐷(ℋ) ∶= {𝜃 ∈ Der(𝑆) ∣ 𝜃(𝛼𝐻) ∈ 𝛼𝐻𝑆 for all 𝐻 ∈ℋ}.

We say that ℋ is free if the module 𝐷(ℋ) is a free 𝑆-module. Denote by 𝐅 the class of
free arrangements.

Ifℋ ∈ 𝐅, we may choose a basis {𝜃1, … , 𝜃𝓁} consisting of homogeneous derivations for 𝐷(ℋ)

[22, Proposition 4.18]. Although a basis is not unique, the degrees of the derivations in a basis are
uniquely determined byℋ [22, Proposition A.24].
The following theorem of Terao connects algebraic and combinatorial properties of an

arrangement.

Theorem 2.17 ([31, Main Theorem]; [22, Theorem 4.137]). Ifℋ is free, thenℋ is factorable with
combinatorial exponents given by the degrees of the elements in any basis for 𝐷(ℋ).

Based on this, Terao conjectured that freeness is a combinatorial property [22, Conjecture 4.138].
Although Terao’s conjecture is still open, there are some subclasses of free arrangements that are
known to be combinatorially determined.

Definition 2.18. Anarrangementℋ is called supersolvable if its intersection lattice𝐿(ℋ) is super-
solvable (Definition 2.9). Denote also by 𝐒𝐒 the class of supersolvable (= strictly supersolvable)
central hyperplane arrangements.

Fix𝐻 ∈ℋ, define the deletionℋ′ ∶=ℋ ⧵ {𝐻} and restrictionℋ′′ ∶= {𝐻 ∩ 𝐾 ∣ 𝐾 ∈ℋ′}. Then
ℋ′ is an arrangement in 𝑉, andℋ′′ is an arrangement in 𝐻 ≃ 𝕂𝓁−1.

Definition 2.19 ([22, Definition 4.53]). The class 𝐈𝐅 of inductively free arrangements is the smallest
class of arrangements that satisfies

(1) ∅𝓁 ∈ 𝐈𝐅 for 𝓁 ⩾ 1,
(2) ℋ ∈ 𝐈𝐅 if there exists𝐻 ∈ℋ such thatℋ′′ ∈ 𝐈𝐅,ℋ′ ∈ 𝐈𝐅, and 𝜒ℋ′′ (𝑡) divides 𝜒ℋ′ (𝑡).

Definition 2.20 ([1, Theorem–Definition 4.3]). The class 𝐃𝐅 of divisionally free arrangements is
the smallest class of arrangements that satisfies

(1) ∅𝓁 ∈ 𝐃𝐅 for 𝓁 ⩾ 1,
(2) ℋ ∈ 𝐃𝐅 if there exists𝐻 ∈ℋ such thatℋ′′ ∈ 𝐃𝐅 and 𝜒ℋ′′ (𝑡) divides 𝜒ℋ(𝑡).

Remark 2.21. Supersolvability, inductive and divisional freeness of central hyperplane arrange-
ments all are combinatorial properties. We give below the relation between the concepts we have
defined so far:

SSS = SS ⊊ IF ⊊ DF ⊊ F ⊊ FR.
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INDUCTIVE AND DIVISIONAL POSETS 9 of 32

The first containment is proved by Jambu and Terao [16, Theorem 4.2]. The arrangement of a
root system of type 𝐷𝓁 for 𝓁 ⩾ 4 belongs to IF ⧵ SS (e.g., [15, Theorem 6.6]). The second contain-
ment follows from the deletion-restriction formula 𝜒ℋ(𝑡) = 𝜒ℋ′ (𝑡) − 𝜒ℋ′′ (𝑡) (e.g., [22, Theorem
2.56]). The arrangement defined by the exceptional complex reflection group of type𝐺31 is known
to be divisionally free [1, Theorem 1.6] but not inductively free [13, Theorem 1.1]. The third con-
tainment is proved by Abe [1, Theorem 1.1]. The intermediate arrangement0

𝓁(𝑟) for 𝓁 ⩾ 3, 𝑟 ⩾ 3

in [1, Theorem 5.6] is an example of an arrangement in F ⧵DF. The fourth containment is Theo-
rem 2.17 by Terao. There are many examples of factorable but not free arrangement, for example,
[11, 3.6].

3 INDUCTIVE AND DIVISIONAL POSETS

From now on unless otherwise stated, we will assume that  is a locally geometric poset, and set
𝐴 = 𝐴() and 𝑟 = rk().

Definition 3.1. Fix an atom 𝑎 ∈ 𝐴. Let  ′ ∶= (𝐴 ⧵ {𝑎}) be the subposet of  generated by 𝐴 ⧵

{𝑎} and define  ′′ ∶= ⩾𝑎. We call ( , ′, ′′) the triple of posets with distinguished atom 𝑎.

Remark 3.2. Note that for each 𝑎 ∈ 𝐴, we have rk() = rk( ′) + 𝜖(𝑎), where 𝜖(𝑎) is either 0 or
1. Indeed, let 𝑥 ∈ max() so that rk(𝑥) = 𝑟. If 𝑎  𝑥 then rk( ′) = 𝑟. Otherwise, set  ∶= ⩽𝑥

then 𝑎 ∈ 𝐴(). Let (,′,′′) the triple of posets with distinguished atom 𝑎. As is a geometric
lattice with rk() = 𝑟, it follows that rk(′) ⩽ 𝑟 ⩽ rk(′) + 1. Note that ′ is a subposet of  ′.
Then 𝑟 ⩾ rk( ′) ⩾ rk(′) ⩾ 𝑟 − 1, as desired.
We call 𝑎 ∈ 𝐴 a separator of  if 𝜖(𝑎) = 1.

For each 𝑥 ∈  , define

𝐴𝑥 ∶= {𝑎 ∈ 𝐴 ∣ 𝑎 ⩽ 𝑥}.

Lemma 3.3 ([22, Lemma 2.35]). Let  be a geometric lattice. For 𝑥, 𝑦 ∈  with 𝑥 ⩽ 𝑦, let 𝑆(𝑥, 𝑦) be
the set of all subsets 𝐵 ⊆ 𝐴 such that 𝐴𝑥 ⊆ 𝐵 andmax((𝐵)) = 𝑦. Then

𝜇(𝑥, 𝑦) =
∑

𝐵∈𝑆(𝑥,𝑦)

(−1)|𝐵⧵𝐴𝑥|.
Lemma 3.4. Let  be a locally geometric poset. Then the characteristic polynomial 𝜒 (𝑡) strictly
alternates in sign, that is, if

𝜒 (𝑡) = 𝑐𝑟𝑡
𝑟 + 𝑐𝑟−1𝑡

𝑟−1 +⋯ + 𝑐0,

then (−1)𝑟−𝑖𝑐𝑖 > 0 for 0 ⩽ 𝑖 ⩽ 𝑟.

Proof. By definition, for each 0 ⩽ 𝑖 ⩽ 𝑟 we have

(−1)𝑟−𝑖𝑐𝑖 =
∑

rk(𝑥)= 𝑟−𝑖

(−1)𝑟−𝑖𝜇(0̂, 𝑥).
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10 of 32 PAGARIA et al.

Note that the characteristic polynomial of a geometric lattice strictly alternates in sign (e.g., [27,
Corollary 3.5]). Thus, (−1)rk(𝑥)𝜇(0̂, 𝑥) > 0 because ⩽𝑥 is a geometric lattice for every 𝑥 ∈  .
Hence, (−1)𝑟−𝑖𝑐𝑖 > 0 for each 0 ⩽ 𝑖 ⩽ 𝑟. □

Weshowbelow that the characteristic polynomials of locally geometric posets satisfy a deletion-
restriction recurrence, which is crucial for our subsequent discussion. This formula is already
proved for geometric lattices, for example, see [7, Theorem 1.2.20]. The method therein can be
readily extended to locally geometric posets, we include here a proof for the sake of completeness.

Theorem 3.5. Let  be a locally geometric poset and fix 𝑎 ∈ 𝐴. Then

𝜒 (𝑡) = 𝑡𝜖(𝑎) ⋅ 𝜒 ′ (𝑡) − 𝜒 ′′ (𝑡).

Here 𝜖(𝑎) = rk() − rk( ′) is either 0 or 1 by Remark 3.2.

Proof. As ⩽𝑥 is a geometric lattice for every 𝑥 ∈  , by Lemma 3.3 we have

𝜒 (𝑡) =
∑
𝑥∈

∑
𝐵⊆𝐴𝑥

𝑥 =max((𝐵))

(−1)|𝐵|𝑡𝑟−rk(𝑥)

=
∑
𝑥∈

∑
𝑎∉𝐵⊆𝐴𝑥

𝑥 =max((𝐵))

(−1)|𝐵|𝑡𝑟−rk(𝑥) + ∑
𝑥∈

∑
𝑎∈𝐵⊆𝐴𝑥

𝑥 =max((𝐵))

(−1)|𝐵|𝑡𝑟−rk(𝑥)

=
∑
𝑥∈ ′

∑
𝐵⊆𝐴𝑥

𝑥 =max((𝐵))

(−1)|𝐵|𝑡rk( ′)+𝜖(𝑎)−rk(𝑥) −
∑

𝑥∈⩾𝑎

∑
𝐵∈𝑆(𝑎,𝑥)

(−1)|𝐵⧵𝐴𝑎|𝑡𝑟−rk(𝑥)

= 𝑡𝜖(𝑎) ⋅ 𝜒 ′ (𝑡) −
∑
𝑥∈ ′′

𝜇(𝑎, 𝑥)𝑡rk
′′( ′′)−rk′′(𝑥)

= 𝑡𝜖(𝑎) ⋅ 𝜒 ′ (𝑡) − 𝜒 ′′ (𝑡). □

Now we introduce the protagonists of the paper.

Definition 3.6. The class 𝐈𝐏 of inductive posets is the smallest class of locally geometric posets
that satisfies

(1) {0̂} ∈ 𝐈𝐏,
(2)  ∈ 𝐈𝐏 if there exists an atom 𝑎 ∈ 𝐴 such that  ′′ ∈ 𝐈𝐏,  ′ ∈ 𝐈𝐏, and 𝜒 ′′ (𝑡) divides 𝜒 ′ (𝑡).

Definition 3.7. The class 𝐃𝐏 of divisional posets is the smallest class of locally geometric posets
that satisfies

(1) {0̂} ∈ 𝐃𝐏,
(2)  ∈ 𝐃𝐏 if there exists an atom 𝑎 ∈ 𝐴 such that  ′′ ∈ 𝐃𝐏 and 𝜒 ′′ (𝑡) divides 𝜒 (𝑡).

Here are the first two important properties of the inductive and divisional posets.

Proposition 3.8. If  ∈ 𝐈𝐏 then  ∈ 𝐃𝐏.
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INDUCTIVE AND DIVISIONAL POSETS 11 of 32

Proof. We argue by induction on 𝑟 = rk() ⩾ 0. The assertion clearly holds true when 𝑟 = 0. Sup-
pose 𝑟 > 0. As  ∈ 𝐈𝐏, there exists an atom 𝑎 ∈ 𝐴 such that  ′′ ∈ 𝐈𝐏 and 𝜒 ′′ (𝑡) divides 𝜒 ′ (𝑡).
By the induction hypothesis, ′′ ∈ 𝐃𝐏. Furthermore, by Theorem 3.5,𝜒 ′′ (𝑡) divides𝜒 (𝑡). (Note
that 𝑡 ∤ 𝜒 ′′ (𝑡) by Lemma 3.4.) Thus,  ∈ 𝐃𝐏 as desired. □

Proposition 3.9. Let , be two isomorphic locally geometric posets. Then ∈ 𝐈𝐏 (resp., ∈ 𝐃𝐏)
if and only if  ∈ 𝐈𝐏 (resp.,  ∈ 𝐃𝐏).

Proof. We show the assertion for 𝐈𝐏 by double induction on the rank 𝑟 and number |𝐴| of atoms.
The assertion for𝐃𝐏 can be proved by induction on the rank 𝑟 by a similar (and easier) argument.
The assertion is clearly true when 𝑟 = 0 or |𝐴| = 0. Suppose 𝑟 ⩾ 1 and |𝐴| ⩾ 1. Let 𝑓 ∶

 →  be a poset isomorphism. Suppose  ∈ 𝐈𝐏. Then there exists an atom 𝑎 ∈ 𝐴 such that
 ′′ ∈ 𝐈𝐏,  ′ ∈ 𝐈𝐏, and 𝜒 ′′ (𝑡) divides 𝜒 ′ (𝑡). Define ′ ∶= (𝐴() ⧵ {𝑓(𝑎)}) and ′′ ∶= ⩾𝑓(𝑎).
Hence,  ′ ≃ ′ and  ′′ ≃ ′′. Note that |𝐴( ′)| < |𝐴()| and rk′′( ′′) < rk(). By the induc-
tion hypothesis, ′′ ∈ 𝐈𝐏 and ′ ∈ 𝐈𝐏. It is also clear that 𝜒′′ (𝑡) divides 𝜒′ (𝑡) because the
characteristic polynomial is preserved under isomorphism. □

Remark 3.10. We address here some remarks about the relation of our inductive and divisional
posets with some known concepts in literature.

(1) Brandt [7, Definition 1.2.21] defined the class 𝐈𝐋 of inductive lattices to be the smallest class of
geometric lattices that satisfies: (1) {0̂} ∈ 𝐈𝐋 and (2)  ∈ 𝐈𝐋 if there exists an atom 𝑎 ∈ 𝐴 such
that  ′′ ∈ 𝐈𝐋,  ′ ∈ 𝐈𝐋, and 𝜒 ′′ (𝑡) divides 𝜒 ′ (𝑡). Thus, for a geometric lattice  , we have
that  ∈ 𝐈𝐋 if and only if  ∈ 𝐈𝐏.

(2) A central hyperplane arrangement ℋ in 𝑉 = 𝕂𝓁 is inductively free (resp., divisionally free)
in Definition 2.19 (resp., 2.20) if and only if the (geometric) intersection lattice 𝐿(ℋ) ofℋ is
inductive (resp., divisional). In particular, IP ⊊ DP that follows from Remark 2.21.

Now we give a proof of the first main result of the paper.

Proof of Theorem 1.2. We need to show that if  ∈ 𝐃𝐏with 𝑟 = rk() ⩾ 1, then there are positive
integers 𝑑1, … , 𝑑𝑟 ∈ ℤ>0 such that

𝜒 (𝑡) =

𝑟∏
𝑖=1

(𝑡 − 𝑑𝑖).

We argue by induction on 𝑟. If 𝑟 = 1 then 𝜒 (𝑡) = 𝑡 − |𝐴|. The assertion clearly holds. Suppose
𝑟 > 1. As ∈ 𝐃𝐏, there exists an atom 𝑎 ∈ 𝐴 such that ′′ ∈ 𝐃𝐏 and𝜒 ′′ (𝑡) divides𝜒 (𝑡). By the
induction hypothesis, there exist positive integers 𝑑1, … , 𝑑𝑟−1 ∈ ℤ>0 and an integer 𝑑𝑟 ∈ ℤ such
that

𝜒 ′′ (𝑡) =

𝑟−1∏
𝑖=1

(𝑡 − 𝑑𝑖),

𝜒 (𝑡) = (𝑡 − 𝑑𝑟)𝜒 ′′ (𝑡).

Moreover, 𝑑1𝑑2⋯𝑑𝑟 > 0 by Lemma 3.4. Thus, 𝑑𝑟 > 0. □
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12 of 32 PAGARIA et al.

F IGURE 1 The weighted partition poset Π𝑤
3
.

Thus, the divisionality of a poset is a sufficient condition for its factorability. The following
necessary and sufficient condition for a poset to be divisional is immediate from Definition 3.7.
Note that the sum of all exponents of a divisional poset equals the number of atoms.

Theorem 3.11. A locally geometric poset  of rank 𝑟 is divisional if and only if there exists a chain,
called a divisional chain

0̂ = 𝑥0 < 𝑥1 <⋯ < 𝑥𝑟,

such that rk(𝑥𝑖) = 𝑖 and 𝜒𝑖
(𝑡) divides 𝜒𝑖−1

(𝑡) where 𝑖 ∶= ⩾𝑥𝑖
for each 1 ⩽ 𝑖 ⩽ 𝑟. In this case,

exp() = {𝑑1, … , 𝑑𝑟} where 𝑑𝑖 ∶= |𝐴(𝑖−1)| − |𝐴(𝑖)|.
Remark 3.12. The converse of Theorem 1.2 is not true in general. Namely, there exists a factorable
poset that is not divisional. An example from hyperplane arrangements is already mentioned in
Remark 2.21. We give here an example of a poset that is not a lattice. In [12, Example 4.6], the
weighted partition poset  ∶= Π𝑤

3
of rank 3 is given with the characteristic polynomial 𝜒 (𝑡) =

(𝑡 − 3)2 (see Figure 1). However,  is not divisional because 𝜒⩾𝑥
(𝑡) = 𝑡 − 2 does not divide 𝜒 (𝑡)

for any atom 𝑥.

By Proposition 3.8, the exponents of an inductive poset are defined naturally. The following
“addition” theorem for inductive posets follows readily from Definition 3.6 and Theorem 3.5.

Theorem 3.13. Let  be a locally geometric poset with 𝐴 ≠ ∅ and let 𝑎 ∈ 𝐴.

(a) Suppose that 𝑎 is not a separator of  . If  ′′ ∈ 𝐈𝐏 with exp( ′′) = {𝑑1, … , 𝑑𝓁−1} and  ′ ∈ 𝐈𝐏

with exp( ′) = {𝑑1, … , 𝑑𝓁−1, 𝑑𝓁}, then  ∈ 𝐈𝐏 with exp() = {𝑑1, … , 𝑑𝓁−1, 𝑑𝓁 + 1}.
(b) Suppose that 𝑎 is a separator of  . If  ′′ ∈ 𝐈𝐏,  ′ ∈ 𝐈𝐏 with exp( ′′) = exp( ′) =

{𝑑1, … , 𝑑𝓁−1}, then  ∈ 𝐈𝐏 with exp() = {1, 𝑑1, … , 𝑑𝓁−1}.

The process of constructing an inductive poset  from the trivial lattice (or more generally,
from an inductive subposet generated by some atoms) by adding an atom one at a time with
the aid of Theorem 3.13 is called an induction table. Each row of the table records the expo-
nents of  ′ and  ′′ and the atom 𝑎 added at each step. The last row displays the exponents
of  .
We will see in Section 7 many examples of posets that are both inductive and geometric aris-

ing from abelian arrangements. Figure 2 depicts an inductive poset that is not geometric. (In
particular, it is not the poset of layers of an abelian arrangement by Theorem 5.2.)
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INDUCTIVE AND DIVISIONAL POSETS 13 of 32

F IGURE 2 An inductive poset that is not geometric (left) and an induction table for its inductiveness
(right). The elements labeled by 𝑥 and 𝑦 do not satisfy the requirement of Definition 2.13.

4 STRICTLY SUPERSOLVABLE IMPLIES INDUCTIVE

In this section, we prove the second main result of the paper (Theorem 1.3). First we need some
basic facts of M-ideals. All posets in this section are locally geometric.

Lemma 4.1. If a poset  has an M-ideal  with rk() = rk() − 1, then  is necessarily pure.

Proof. First note that 𝐴() ⧵ 𝐴() ≠ ∅ because  is join-closed. Fix an arbitrary 𝑥 ∈ max(). If
𝑥 ∈ , then by Condition 2.8 (1) for any 𝑎 ∈ 𝐴() ⧵ 𝐴() there exists 𝑏 ∈ 𝑎 ∨ 𝑥 such that 𝑥 < 𝑏,
a contradiction. We may assume 𝑥 ∈  ⧵. Then by Condition 2.8 (2), there exists 𝑦 ∈ max()

such that 𝑦 < 𝑥. Thus, rk(𝑥) > rk() and hence rk(𝑥) = rk(). □

Lemma 4.2 ([5, Lemma 2.4.6]). Let  be an M-ideal of a poset  with rk() = rk() − 1 and let
𝑎 ∈  . Then 𝑎 ∈ 𝐴() ⧵ 𝐴() if and only if 𝑦 ∧ 𝑎 = 0̂ for all 𝑦 ∈ max().

Proposition 4.3 ([5, Proposition 2.4.7]). Let  be an M-ideal of a poset  with rk() = rk() − 1.
Fix 𝑥 ∈  ⧵ and let 𝑦 be an element in max() such that 𝑥 ⩽ 𝑦. Let 𝑦′ be the unique element in
max() such that (𝑦 covers 𝑦′ and) 𝑦′ is a modular element in the geometric lattice ⩽𝑦 (Defini-
tion 2.8). Then 𝑥′ ∶= 𝑦′ ∧ 𝑥 is the unique element in  such that 𝑥 covers 𝑥′ and 𝑥′ is modular in
⩽𝑥 .

Now we prove a new property of a TM-ideal, extending a well-known property [28, Lemma 1]
of a modular element in a finite geometric lattice.

Lemma 4.4. If is a TM-ideal of a poset with rk() = rk() − 1, then for any 𝑎 ∈ 𝐴() ⧵ 𝐴()

there is a poset isomorphism  ≃ ⩾𝑎 .

Proof. Fix 𝑎 ∈ 𝐴() ⧵ 𝐴() and denote  ∶= ⩾𝑎. Owing to Definition 2.8 (1*), for each 𝑥 ∈ 

the join 𝑥 ∨ 𝑎 is a singleton. We may define a poset map

𝜎 ∶ ⟶  via 𝑥 ↦ 𝑥 ∨ 𝑎.
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14 of 32 PAGARIA et al.

For each 𝑥 ∈ , let 𝑥′ ∈  be the element uniquely determined by 𝑥 from Proposition 4.3. We
may define a poset map

𝜏 ∶ ⟶  via 𝑥 ↦ 𝑥′.

We show that 𝜎 is a poset isomorphism whose inverse is exactly 𝜏. First we show that both
maps are order-preserving. The assertion for 𝜎 is easy. To show the assertion for 𝜏 note that for
𝑥1 ⩽ 𝑥2, if 𝑦 ∈ max() and𝑥2 ⩽ 𝑦, then by Proposition 4.3, 𝜏(𝑥1) = 𝑦′ ∧ 𝑥1 and 𝜏(𝑥2) = 𝑦′ ∧ 𝑥2
where 𝑦′ is the unique element in max() such that 𝑦′ is modular in ⩽𝑦 . Thus, 𝜏(𝑥1) ⩽ 𝜏(𝑥2)

follows easily.
Next we show 𝜎◦𝜏 = id. If 𝑥 ∈ , then (𝜎◦𝜏)(𝑥) = 𝜎(𝑥′) = 𝑥′ ∨ 𝑎 = 𝑥 where the last equality

follows from Definition 2.8 (1*) because 𝑥 ∈ 𝑥′ ∨ 𝑎.
Now we show 𝜏◦𝜎 = id. Let 𝑥 ∈ , then (𝜏◦𝜎)(𝑥) = 𝜏(𝑥 ∨ 𝑎) = (𝑥 ∨ 𝑎)′. It remains to show

(𝑥 ∨ 𝑎)′ = 𝑥. If 𝑥 and (𝑥 ∨ 𝑎)′ are incomparable, then 𝑥 ∨ 𝑎 ∈ (𝑥 ∨ 𝑎)′ ∨ 𝑥 that contradicts the
join-closedness of. Note that rk(𝑥 ∨ 𝑎) > rk(𝑥) hence it cannot happen that 𝑥 > (𝑥 ∨ 𝑎)′. Thus,
we may assume 𝑥 ⩽ (𝑥 ∨ 𝑎)′. Let 𝑦 ∈ max() so that 𝑥 ∨ 𝑎 ⩽ 𝑦. Let 𝑦′ be the unique element in
max() such that 𝑦′ is modular in ⩽𝑦 . Then

(𝑥 ∨ 𝑎)′ = 𝑦′ ∧ (𝑥 ∨ 𝑎) = 𝑥 ∨ (𝑦′ ∧ 𝑎) = 𝑥 ∨ 0̂ = 𝑥,

where the second equality follows from the modularity 2.7 of 𝑦′ in ⩽𝑦 with 𝑥 ⩽ 𝑦′, and the third
equality follows from Lemma 4.2. □

Using the lemma above, we show the following stronger version of Theorem 1.3.

Lemma 4.5. Let  be a TM-ideal of a poset  with rk() = rk() − 1. If  ∈ 𝐈𝐏 (resp.,  ∈ 𝐃𝐏),
then  ∈ 𝐈𝐏 (resp.,  ∈ 𝐃𝐏) with

exp() = exp() ∪ {|𝐴() ⧵ 𝐴()|}.
Proof. First we show the assertion for divisionality. Fix 𝑎 ∈ 𝐴() ⧵ 𝐴(). By Lemma 4.4,  ≃

 ′′ = ⩾𝑎. Suppose  ∈ 𝐃𝐏. Then  ′′ ∈ 𝐃𝐏 by Proposition 3.9. Moreover, by Theorem 2.10,

𝜒 (𝑡) = (𝑡 − 𝑚)𝜒(𝑡),

where 𝑚 ∶= |𝐴() ⧵ 𝐴()|. Therefore, 𝜒 ′′ (𝑡) divides 𝜒 (𝑡). Hence,  ∈ 𝐃𝐏 with exp() =

exp() ∪ {𝑚} as desired.
Nowwe show the assertion for inductiveness by adding the atoms from𝐴() ⧵ 𝐴() to𝐴() in

any order successively with the aid of Theorem 3.13. Write 𝐴() ⧵ 𝐴() = {𝑎1, … , 𝑎𝑚}. Let 𝐴𝑖 ∶=
𝐴() ∪ {𝑎1, … , 𝑎𝑖} and 𝑖 ∶= (𝐴𝑖) for each 1 ⩽ 𝑖 ⩽ 𝑚.
First note that by Lemma 4.1, the poset  is pure. We observe that rk(𝑖) = rk() = 𝑟 for every

1 ⩽ 𝑖 ⩽ 𝑚. It is because |𝑎𝑖 ∨ 𝑦| = 1 and rk(𝑎𝑖 ∨ 𝑦) = 𝑟 for any 𝑦 ∈ max() and 𝑎𝑖 ∈ 𝐴𝑖 ⧵ 𝐴() ⊆

𝐴 ⧵ 𝐴().
We claim that  is a TM-ideal of rank 𝑟 − 1 of 𝑖 for every 1 ⩽ 𝑖 ⩽ 𝑚. (The case 𝑖 = 𝑚 is

obviously true.) Condition 2.8 (1*) is clear. It suffices to show Condition 2.8 (2). First consider
𝑖 = 𝑚 − 1. Fix 𝑥 ∈ max(𝑚−1) ⊆ max(). Denote 𝐿 ∶= ⩽𝑥 and 𝐿𝑚−1 ∶= (𝑚−1)⩽𝑥. Therefore,
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INDUCTIVE AND DIVISIONAL POSETS 15 of 32

F IGURE 3 The toric arrangement of a type 𝐵2 root system with its poset  of layers (left) and an induction
table for inductiveness (right). The induction table is derived thanks to Theorem 3.13 which deduces that  is
inductive with exponents exp() = {2, 2}. In addition,  is supersolvable with the elements of a rank-1 M-ideal
colored in blue. However,  is not strictly supersolvable because it has no TM-ideal of rank 1.

𝐿 and 𝐿𝑚−1 are geometric lattices sharing top element 𝑥. We need to show that there is some
𝑦 ∈ max() such that 𝑦 is a modular element in 𝐿𝑚−1. As  is a TM-ideal of  , there exists
𝑦′ ∈ max() such that 𝑦′ is amodular element in 𝐿. If 𝑥 ≯ 𝑎𝑚 then 𝐿 = 𝐿𝑚−1.Wemay take 𝑦 = 𝑦′.
If 𝑥 > 𝑎𝑚 then 𝐿𝑚−1 = 𝐿(𝐴(𝐿) ⧵ {𝑎𝑚}). As 𝑦′ ≯ 𝑎𝑚, we must have that 𝑦′ ∈ 𝐿𝑚−1 and 𝑦′ is also a
modular element in 𝐿𝑚−1 by [16, Lemma 4.6]. Again take 𝑦 = 𝑦′. Use this argument repeatedly,
we may show the claim holds true for every 1 ⩽ 𝑖 ⩽ 𝑚 − 1.
Now we show that 𝑖 ∈ 𝐈𝐏 with exp(𝑖) = exp() ∪ {𝑖} for every 1 ⩽ 𝑖 ⩽ 𝑚. Note that by

Lemma 4.4,  ≃ ⩾𝑎 for any 𝑎 ∈ 𝐴() ⧵ 𝐴(). It is not hard to check that (1, ′
1
= , ′′

1
≃

) is the triple of posets with distinguished atom 𝑎1, and that 𝑎1 is a separator of 1.
Hence, 1 ∈ 𝐈𝐏 with exp(1) = exp() ∪ {1} by Theorem 3.13. Similarly, (2, ′

2
= 1,

′′
2
≃

) is the triple with distinguished atom 𝑎2, and that 𝑎2 is not a separator of 2. Hence,
2 ∈ 𝐈𝐏 with exp(2) = exp() ∪ {2}. Use this argument repeatedly, we may show the claim
holds true for every 1 ⩽ 𝑖 ⩽ 𝑚. The case 𝑖 = 𝑚 yields  ∈ 𝐈𝐏 with exp() = exp() ∪ {𝑚} as
desired. □

Proof of Theorem 1.3. Note that the trivial lattice is inductive. Apply Lemma 4.5 repeatedly to the
elements in any TM-chain of a strictly supersolvable poset  . □

Example 4.6. The Dowling posets are proved to be strictly supersolvable [5, Example 5.1.8]. The
poset of layers of the toric arrangement of an arbitrary ideal of a type 𝐶 root system with respect
to the integer lattice is also strictly supersolvable (Theorem 7.9). Hence, these posets are inductive
by Theorem 1.3.

Remark 4.7. The main result of [16] by Jambu and Terao mentioned in Remark 2.21 is a special
case of our Theorem 1.3 when the poset is a geometric lattice. An induction table for a strictly
supersolvable poset can easily be constructed using the argument in the proof of Lemma 4.5.
The converse of Theorem 1.3 is not true in general. There are many known examples of central

hyperplane arrangements whose intersection lattices are inductive but not (strictly) supersolvable
(see, e.g., Theorem 7.2). We will see in Corollary 7.15 and Theorem 7.17 new examples from toric
arrangements: The poset of layers of the toric arrangement of a type 𝐵𝓁 root system for 𝓁 ⩾ 3 is
inductive, but not supersolvable. That arises from type 𝐵2 depicted in Figure 3 is inductive and
supersolvable, but not strictly supersolvable.
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16 of 32 PAGARIA et al.

Thus, for locally geometric posets, we have proved the following:

SSS ⊊ IP ⊊ DP ⊊ FR.

Compared with the relation described in Remark 2.21, supersolvable posets do not form a
subclass of inductive posets. The poset of layers of the toric arrangement of a type 𝐷2 root sys-
tem (the subposet of the poset in Figure 3 generated by {𝑡1𝑡2 = 1, 𝑡1𝑡

−1
2

= 1}) is supersolvable but
not inductive.
The containment IP ⊊ DP is strict by an example from Remark 2.21. It remains unknown

to us whether or not there exists a divisional but not inductive poset among nonlattice, locally
geometric posets.

5 INDUCTIVE AND DIVISIONAL ABELIAN ARRANGEMENTS

We first recall preliminary concepts and results of abelian Lie group arrangements, or abelian
arrangements for short, following [4, 19, 33].
Let 𝐺 be a finite-dimensional connected abelian Lie group, that is, 𝐺 ≃ (𝕊1)𝑎 × ℝ𝑏 for some

nonnegative integers 𝑎, 𝑏 ⩾ 0. Denote g ∶= dimℝ(𝐺) = 𝑎 + 𝑏. Let Γ ≃ ℤ𝓁 be a finite-rank free
abelian group. We regard 𝑇 = Hom(Γ, 𝐺) ≃ 𝐺𝓁 with dimℝ(𝑇) = g𝓁 as our ambient group. For
𝛼 ∈ Γ ⧵ {0} and 𝑐 ∈ 𝐺, the abelian hyperplane𝐻𝛼,𝑐 ∶= 𝐻𝛼,𝑐,𝐺 associated to the pair (𝛼, 𝑐) is defined
by

𝐻𝛼,𝑐 ∶= {𝜑 ∈ 𝑇 ∣ 𝜑(𝛼) = 𝑐}.

Let ∶= {(𝛼1, 𝑐1), … , (𝛼𝑛, 𝑐𝑛)} ⊆ (Γ ⧵ {0}) × 𝐺 be a finite set.Wedefine the abelian arrangement
𝒜 ∶= 𝒜(, 𝐺) as the collection of connected components of the abelian hyperplanes defined
by

𝒜 ∶= {connected components of𝐻𝛼,𝑐 ∣ (𝛼, 𝑐) ∈ }.

We continue to use the notation ∅𝓁 to denote the empty abelian arrangement in 𝑇 ≃ 𝐺𝓁 . The
arrangement𝒜 is called central if 𝑐𝑖 = 0𝐺 for all 1 ⩽ 𝑖 ⩽ 𝑛.
When𝐺 = ℝ𝑏 and Γ = ℤ𝓁 , we obtain𝒜 as an arrangement of affine subspaces in 𝑇 ≃ ℝ𝑏𝓁 , and

in particular a real (or complex) affine hyperplane arrangement when 𝑏 = 1 (𝑏 = 2, resp.). We
sometimes call these hyperplane arrangements integral arrangements as the coefficients of the
defining equation of any hyperplane are integer. When𝐺 = 𝕊1 (or𝐺 = ℂ× ≃ 𝕊1 × ℝ) and Γ = ℤ𝓁 ,
we obtain an arrangement of real (complex, resp.) translated hypertori or toric arrangement.
For eachℬ ⊆ 𝒜, denote

𝐻ℬ ∶=
⋂
𝐻∈ℬ

𝐻.

We agree that𝐻∅ ∶= 𝑇.
The intersection poset 𝐿 ∶= 𝐿(𝒜) of𝒜 is defined by

𝐿 ∶= {connected components of nonempty𝐻ℬ ∣ℬ ⊆ 𝒜},
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INDUCTIVE AND DIVISIONAL POSETS 17 of 32

whose elements, called layers, are ordered by reverse inclusion (𝑋 ⩽𝐿 𝑌 if 𝑋 ⊇ 𝑌). Thus, 𝐿 is
a pure, ranked poset with a rank function rk(𝑋) = codim(𝑋)∕g for every 𝑋 ∈ 𝐿. The minimal
element of 𝐿 is 0̂ = 𝑇, and the atoms of 𝐿 are the elements of𝒜.

Definition 5.1. Similar to the case of a hyperplane arrangement in an arbitrary vector space, we
also refer to the poset 𝐿 of layers as the combinatorics of the abelian arrangement𝒜. Likewise, a
combinatorial property of abelian arrangements is defined analogously to Definition 1.1.

Define rk(𝒜) to be the rank of 𝐿, that is, the rank of a maximal element in 𝐿. The arrangement
𝒜 is called essential if rk(𝒜) = 𝓁.

Theorem 5.2 ([4, Corollary 13.11]; [5, Corollary 4.4.6]). Let 𝒜 be an abelian arrangement. Then
𝐿(𝒜) is a geometric poset.

The characteristic polynomial 𝜒𝒜(𝑡) of𝒜 is defined by

𝜒𝒜(𝑡) ∶=
∑
𝑋∈𝐿

𝜇(𝑇, 𝑋)𝑡dimℝ(𝑋).

Here 𝜇 ∶= 𝜇𝐿 is the Möbius function of 𝐿.

Remark 5.3. Note that 𝜒𝒜(𝑡) = 𝑡g(𝓁−rk(𝒜)) ⋅ 𝜒𝐿(𝑡
g ) that has degree g𝓁. In particular, if 𝒜 is

essential and g = 1, then 𝜒𝒜(𝑡) = 𝜒𝐿(𝑡).

Definition 5.4. Similar to Definition 2.18, we call an abelian arrangement 𝒜 supersolvable
(resp., strictly supersolvable) if its intersection poset 𝐿(𝒜) is supersolvable (resp., strictly supersolv-
able). Denote also by 𝐒𝐒 and 𝐒𝐒𝐒 the classes of supersolvable and strictly supersolvable abelian
arrangements, respectively.

Definition 5.5. Similar to Definition 2.15, we call an abelian arrangement 𝒜 factorable if its
intersection poset 𝐿(𝒜) is factorable. In this case, we call the roots of 𝜒𝒜(𝑡

1∕g ) the (combinatorial)
exponents of𝒜 and use the notation exp(𝒜) to denote the multiset of exponents. Denote also by
𝐅𝐑 the class of factorable abelian arrangements.

By Remark 5.3,𝒜 ∈ 𝐅𝐑 if and only if there are positive integers 𝑑1, … , 𝑑rk(𝒜) ∈ ℤ>0 such that

𝜒𝒜(𝑡) = 𝑡g(𝓁−rk(𝒜)) ⋅
rk(𝒜)∏
𝑖=1

(𝑡g − 𝑑𝑖).

In this case,

exp(𝒜) = {0𝓁−rk(𝒜)} ∪ exp(𝐿(𝒜)).

Definition 5.6 ([4, Definitions 13.5 and 13.7]). For each 𝑋 ∈ 𝐿, define

𝑋 ∶= {𝛼 ∈ Γ ∣ (𝛼, 𝑐) ∈  and𝐻𝛼,𝑐 ⊇ 𝑋 for some 𝑐 ∈ 𝐺}.

The localization𝒜𝑋 of𝒜 at 𝑋 is defined as the collection of linear subspaces 𝐻𝛼,0 ⊆ Hom(Γ, ℝg )

with 𝛼 ∈ 𝑋 .
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18 of 32 PAGARIA et al.

For𝐻 ∈ 𝒜, the restriction𝒜𝐻 of𝒜 to 𝐻 is defined by

𝒜𝐻 ∶= {connected components of nonempty 𝐾 ∩ 𝐻 ∣ 𝐾 ∈ 𝒜 ⧵ {𝐻}}.

Thus,𝒜𝐻 is an arrangement in 𝐻 ≃ 𝐺𝓁−1.

The following is well-known, for example, used in the proof of [4, Theorem 13.10].

Lemma 5.7. Let𝒜 be an abelian arrangement. Let 𝑋 ∈ 𝐿(𝒜) and𝐻 ∈ 𝒜. Then 𝐿(𝒜𝑋) ≃ 𝐿(𝒜)⩽𝑋
and 𝐿(𝒜𝐻) = 𝐿(𝒜)⩾𝐻 .

Fix𝐻 ∈ 𝒜, define the deletion𝒜′ ∶= 𝒜 ⧵ {𝐻} as an arrangement in 𝑇, and𝒜′′ ∶= 𝒜𝐻 . We call
(𝒜,𝒜′,𝒜′′) the triple of arrangements associated to 𝐻. From Definition 3.1 and Lemma 5.7, we
have that 𝐿(𝒜′) = 𝐿′ and 𝐿(𝒜′′) = 𝐿′′.

Theorem 5.8. Let 𝒜 be a nonempty abelian arrangement and 𝐻 ∈ 𝒜. The following deletion-
restriction formula holds

𝜒𝒜(𝑡) = 𝜒𝒜′ (𝑡) − 𝜒𝒜′′ (𝑡).

Proof. Apply Theorems 3.5, 5.2, and Remark 5.3. □

We are ready to introduce the concepts of inductive and divisional abelian arrangements.

Definition 5.9. The class 𝐈𝐀 of inductive (abelian) arrangements is the smallest class of abelian
arrangements that satisfies

(1) ∅𝓁 ∈ 𝐈𝐀 for 𝓁 ⩾ 1,
(2) 𝒜 ∈ 𝐈𝐀 if there exists𝐻 ∈ 𝒜 such that𝒜′′ ∈ 𝐈𝐀,𝒜′ ∈ 𝐈𝐀, and𝜒𝒜′ (𝑡) = (𝑡g − 𝑑) ⋅ 𝜒𝒜′′ (𝑡) for

some 𝑑 ∈ ℤ.

Definition 5.10. The class𝐃𝐀 of divisional (abelian) arrangements is the smallest class of abelian
arrangements that satisfies

(1) ∅𝓁 ∈ 𝐃𝐀 for 𝓁 ⩾ 1,
(2) 𝒜 ∈ 𝐃𝐀 if there exists 𝐻 ∈ 𝒜 such that 𝒜′′ ∈ 𝐃𝐀 and 𝜒𝒜(𝑡) = (𝑡g − 𝑑) ⋅ 𝜒𝒜′′ (𝑡) for some

𝑑 ∈ ℤ.

We now show that inductiveness and divisionality depend only on the combinatorics of
arrangements.

Theorem5.11. Let𝒜 be anabelian arrangement. Then𝒜 ∈ 𝐈𝐀 (resp.,𝐃𝐀) if and only if𝐿(𝒜) ∈ 𝐈𝐏

(resp.,𝐃𝐏).

Proof. We show the assertion for inductiveness by double induction on rk(𝒜) and |𝒜|. The
assertion for divisionality can be proved by induction on rk(𝒜) by a similar (and easier) argument.
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INDUCTIVE AND DIVISIONAL POSETS 19 of 32

The assertion is clearly true when rk(𝒜) = 0 or |𝒜| = 0 (i.e.,𝒜 = ∅). Suppose rk(𝒜) ⩾ 1 and|𝒜| ⩾ 1. Suppose 𝒜 ∈ 𝐈𝐀. Then there exists 𝐻 ∈ 𝒜 such that 𝒜′′ ∈ 𝐈𝐀, 𝒜′ ∈ 𝐈𝐀, and 𝜒𝒜′ (𝑡) =

(𝑡g − 𝑑) ⋅ 𝜒𝒜′′ (𝑡) for some 𝑑 ∈ ℤ. Note that |𝒜′| < |𝒜| and rk(𝒜′′) < rk(𝒜). By the induction
hypothesis, 𝐿′′ = 𝐿(𝒜′′) ∈ 𝐈𝐏 and 𝐿′ = 𝐿(𝒜′) ∈ 𝐈𝐏. Moreover, if rk(𝒜) = rk(𝒜′) + 1, then by
Remark 5.3,

𝑡g ⋅ 𝜒𝐿′(𝑡
g ) = (𝑡g − 𝑑) ⋅ 𝜒𝐿′′ (𝑡

g ).

Hence, 𝜒𝐿′(𝑡) = 𝜒𝐿′′ (𝑡) because 𝑡 ∤ 𝜒𝐿′′ (𝑡). Similarly, if rk(𝒜) = rk(𝒜′), then 𝜒𝐿′(𝑡) = (𝑡 −

𝑑)𝜒𝐿′′ (𝑡). In either case, 𝜒𝐿′′ (𝑡) divides 𝜒𝐿′(𝑡). Thus, 𝐿(𝒜) ∈ 𝐈𝐏. A similar argument shows that if
𝐿 ∈ 𝐈𝐏 then𝒜 ∈ 𝐈𝐀, which completes the proof. □

Corollary 5.12. The property of being inductive or divisional of an abelian arrangement is a
combinatorial property.

Proof. It follows from Proposition 3.9 and Theorem 5.11. □

Remark 5.13. By Remark 4.7 and Theorem 5.11, we have the following:

SSS ⊊ IA ⊆ DA ⊊ FR.

It is an open question to us whether or not the containment IA ⊆ DA is strict. This is related to
the question in the last paragraph in Remark 4.7. The example of a hyperplane arrangement that
is divisionally free but not inductively free in Remark 2.21 is not an integral arrangement.

An abelian arrangement is inductive if it can be constructed from the empty arrangement
by adding an element (= a connected component of a hyperplane) one at a time with the aid
of the following “addition” theorem at each addition step. It thus also makes sense to speak
of an induction table for an inductive arrangement in a similar way as of inductive posets in
Section 3.

Theorem 5.14. Let 𝒜 ≠ ∅ be an abelian arrangement in 𝑇 ≃ 𝐺𝓁 and let 𝐻 ∈ 𝒜. If 𝒜′′ ∈ 𝐈𝐀

with exp(𝒜′′) = {𝑑1, … , 𝑑𝓁−1} and 𝒜′ ∈ 𝐈𝐀 with exp(𝒜′) = {𝑑1, … , 𝑑𝓁−1, 𝑑𝓁}, then 𝒜 ∈ 𝐈𝐀 with
exp(𝒜) = {𝑑1, … , 𝑑𝓁−1, 𝑑𝓁 + 1}.

Proof. It follows directly from Definition 5.9 and Theorem 5.8. □

We complete this section by describing an arrangement theoretic characterization for (strict)
supersolvability.

Definition 5.15. Given a subarrangementℬ of an abelian arrangement 𝒜, we say ℬ is an M-
ideal of 𝒜 if 𝐿(ℬ) is a proper order ideal of 𝐿(𝒜), and for any two distinct 𝐻1,𝐻2 ∈ 𝒜 ⧵ℬ and
every connected component 𝐶 of the intersection𝐻1 ∩ 𝐻2 there exists𝐻3 ∈ℬ such that 𝐶 ⊆ 𝐻3.
More strongly, an M-idealℬ is called a TM-ideal of𝒜 if

(*) for any 𝑋 ∈ 𝐿(ℬ) and𝐻 ∈ 𝒜 ⧵ℬ the intersection 𝑋 ∩ 𝐻 is connected.
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20 of 32 PAGARIA et al.

Theorem5.16. Let𝒜 be an arrangement of rank 𝑟 in𝑇 ≃ 𝐺𝓁 . Then𝒜 is supersolvable (resp., strictly
supersolvable) (Definition 5.4) if and only if there is a chain, called anM-chain (resp., a TM-chain)

∅ = 𝒜0 ⊆ 𝒜1 ⊆⋯ ⊆ 𝒜𝑟 = 𝒜,

such that each𝒜𝑖 is an M-ideal (resp., a TM-ideal) of𝒜𝑖+1.

Proof. Observe that if ℬ ⊆ 𝒜, then 𝐿(ℬ) is a pure, join-closed ideal of 𝐿(𝒜). Note also that
the poset of layers of an abelian arrangement is a geometric poset by Theorem 5.2. Thus, by
Lemma 2.14, ifℬ is anM-ideal (resp., a TM-ideal) of𝒜, then𝐿(ℬ) is anM-ideal (resp., a TM-ideal)
of 𝐿(𝒜) with rk(ℬ) = rk(𝒜) − 1. Therefore, if there exists an M-chain (resp., a TM-chain)

∅ = 𝒜0 ⊆ 𝒜1 ⊆⋯ ⊆ 𝒜𝑟 = 𝒜,

then 𝐿(𝒜) is supersolvable (resp., strictly supersolvable) with an M-chain (resp., a TM-chain)

{0̂} = 𝐿(∅) ⊆ 𝐿(𝒜1) ⊆⋯ ⊆ 𝐿(𝒜𝑟) = 𝐿(𝒜),

Conversely, if  is an M-ideal (resp., a TM-ideal) of 𝐿(𝒜) with rk() = rk(𝒜) − 1, then again
by Lemma 2.14, the set 𝐴() of atoms is an M-ideal (resp., a TM-ideal) of 𝒜. Thus, if 𝐿(𝒜) is
supersolvable (resp., strictly supersolvable), then any M-chain (resp., TM-chain) of 𝐿(𝒜) induces
an M-chain (resp., a TM-chain) for𝒜. □

6 LOCALIZATION OF HYPERPLANE AND TORIC
ARRANGEMENTS

In this section, we discuss the operation of localizing at a layer of an abelian arrangement in the
sense of Definition 5.6. Note from Remark 2.12 that (strict) supersolvability is closed under taking
localization: If𝒜 ∈ 𝐒𝐒 (resp.,𝒜 ∈ 𝐒𝐒𝐒), then𝒜𝑋 ∈ 𝐒𝐒 (resp.,𝒜𝑋 ∈ 𝐒𝐒𝐒) for every 𝑋 ∈ 𝐿(𝒜). We
will see that in general it is not the case for inductiveness or divisionality. More explicitly, we give
an example of an inductive toric arrangement with a nonfactorable localization.
First let us recall from the previous section the definition of central (real) hyperplane and toric

arrangements as abelian arrangements when the Lie group 𝐺 is ℝ and 𝕊1, respectively. Let 
be a finite set of integral vectors in ℤ𝓁 . Given a vector 𝛼 = (𝑎1, … , 𝑎𝓁) ∈ , we may define the
hyperplane

𝐻𝛼,ℝ ∶= {𝑥 ∈ ℝ𝓁 ∣ 𝑎1𝑥1 +⋯ + 𝑎𝓁𝑥𝓁 = 0},

and the hypertorus

𝐻𝛼,𝕊1 ∶= {𝑡 ∈ (𝕊1)𝓁 ∣ 𝑡
𝑎1
1

⋯ 𝑡
𝑎𝓁
𝓁 = 1}.

The set ⊆ ℤ𝓁 defines the central hyperplane arrangement

ℋ ∶= {𝐻𝛼,ℝ ∣ 𝛼 ∈ }.
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INDUCTIVE AND DIVISIONAL POSETS 21 of 32

F IGURE 4 The poset of layers of the toric arrangement𝒜𝑆 defined by matrix 𝑆 in (6.1) and an induction
table for its inductiveness.

and the central toric arrangement

𝒜 ∶= {connected components of𝐻𝛼,𝕊1 ∣ 𝛼 ∈ }.

Alternatively, given an integral matrix 𝑆 ∈ Mat𝓁×𝑚(ℤ), we may view each column as a vector
in ℤ𝓁 so that we may define the central hyperplane and toric arrangements from 𝑆 as above.

Example 6.1. Let 𝑆 ∈ Mat3×6(ℤ) be an integral matrix defined as below:

𝑆 =
⎡⎢⎢⎣
1 0 1 0 1 0

0 1 1 0 0 1

0 0 0 1 −1 −1

⎤⎥⎥⎦ . (6.1)

Let ℋ𝑆 and 𝒜𝑆 be the central hyperplane and toric arrangements defined by 𝑆, respectively.
Note that by definition of localization (Definition 5.6) wemaywriteℋ𝑆 = (𝒜𝑆)𝑋 where𝑋 denotes
the layer (1, 1, 1) ∈ 𝐿(𝒜𝑆).
In fact,ℋ𝑆 is linearly isomorphic to the essentialization of the cone of the digraphic Shi arrange-

ment defined by the path 3 → 2 → 1 in [3, figure 3]. The characteristic polynomial ofℋ𝑆 is given
by

𝜒ℋ𝑆
(𝑡) = (𝑡 − 1)(𝑡2 − 5𝑡 + 7),

which implies thatℋ𝑆 is not divisional hence not inductive.
However, we may show that 𝒜𝑆 is inductive with exponents {2, 2, 2}. Let 𝐻𝑖 denote the (con-

nected) hypertorus defined by the 𝑖th column of the matrix 𝑆. The poset of layers of 𝒜𝑆 and an
induction table are given in Figure 4. (Observe also that 𝒜𝑆 is not locally supersolvable because
the localizationℋ𝑆 is not supersolvable by the preceding discussion.)

It happens quite often that the hyperplane arrangement defined by amatrix is inductive, but the
toric arrangement defined by the same matrix is not (see the next section). Example 6.1 deduces
that the converse is also possible. This is a rare, perhaps counterintuitive example that toric
arrangement could be inductive, while hyperplane arrangement cannot be.
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22 of 32 PAGARIA et al.

7 APPLICATION TO TORIC ARRANGEMENTS OF IDEALS OF
ROOT SYSTEMS

Our standard reference for root systems is [6]. Let Φ be an irreducible (crystallographic) root
system in 𝑉 = ℝ𝓁 . Fix a positive system Φ+ ⊆ Φ and the associated set of simple roots (base)
Δ ∶= {𝛼1, … , 𝛼𝓁} ⊆ Φ+.
Define the partial order ≥ on Φ+ such that 𝛽1 ⩾ 𝛽2 if and only if 𝛽1 − 𝛽2 =

∑𝓁
𝑖=1 𝑛𝑖𝛼𝑖 with all

𝑛𝑖 ∈ ℤ⩾0. A subset  ⊆ Φ+ is called an ideal if, for 𝛽1, 𝛽2 ∈ Φ+, 𝛽1 ⩾ 𝛽2, 𝛽1 ∈  then 𝛽2 ∈ .
For 𝛽 =

∑𝓁
𝑖=1 𝑛𝑖𝛼𝑖 ∈ Φ+, the height of 𝛽 is defined by ht(𝛽) ∶=

∑𝓁
𝑖=1 𝑛𝑖 . Let  be an ideal of Φ

+

and set 𝑀 ∶= max{ht(𝛽) ∣ 𝛽 ∈ }. Let 𝑡𝑘 ∶= |{𝛽 ∈  ∣ ht(𝛽) = 𝑘}| for 1 ⩽ 𝑘 ⩽ 𝑀. The sequence
(𝑡1, … , 𝑡𝑘, … , 𝑡𝑀) is called the height distribution of . The dual partition DP() of the height
distribution of  is defined as the multiset of nonnegative integers

DP() ∶= {0𝓁−𝑡1 , 1𝑡1−𝑡2 , … ,𝑀𝑡𝑀 },

For each Ψ ⊆ Φ+, let 𝑆Ψ denote the coefficient matrix of Ψ with respect to the base Δ, that is,
𝑆Ψ = [𝑠𝑖𝑗] is the 𝓁 × |Ψ| integral matrix that satisfies

Ψ =

{
𝓁∑
𝑖=1

𝑠𝑖𝑗𝛼𝑖

|||||| 1 ⩽ 𝑗 ⩽ |Ψ|}.

Note that the matrix 𝑆Ψ depends only upon Φ.

Definition 7.1. Following the previous section, we define 𝒜Ψ ∶= 𝒜𝑆Ψ
(Φ) and ℋΨ ∶=ℋ𝑆Ψ

(Φ)

as the central toric and hyperplane arrangements defined by 𝑆Ψ, respectively. We call these
arrangements the arrangements with respect to the root lattice.

Theorem 7.2 ([2, 9, 15, 24, 25]). If  is an ideal of an irreducible root systemΦ, thenℋ is inductive
with exponents DP(). Moreover,ℋ is supersolvable if Φ is 𝐴𝓁 , 𝐵𝓁 , 𝐶𝓁 , or 𝐺2.

In contrast to the hyperplane arrangement case, the toric arrangement 𝒜 is not factorable
for most cases even when  = Φ+. It is known that the characteristic polynomial of the cen-
tral toric arrangement defined by an arbitrary matrix 𝑆 coincides with the last constituent of the
characteristic quasi-polynomial 𝜒quasi

𝑆
(𝑞) defined by 𝑆 [19, Corollary 5.6]. Furthermore, an explicit

computation shows that the last constituent of 𝜒quasi
𝑆Φ+

(𝑞) factors with all integer roots if and only
if Φ is 𝐴𝓁 , 𝐵𝓁 or 𝐶𝓁 [18, 29]. Thus, 𝒜Φ+ is factorable if and only if Φ is of one of these three
types.
Even more is true: If  is an ideal of an irreducible root system of type 𝐴, 𝐵 or 𝐶, then 𝒜 is

factorable whose combinatorial exponents can be described by the signed graph associated to 

[32]. Our third main result Theorem 1.4 strengthens this result. Furthermore, we give an explicit
description of the exponents of𝒜 derived from an explicit induction table. This description turns
out to be equivalent to the ones in [32]. We also give a characterization for supersolvability of𝒜Φ+

when Φ is of type 𝐵 (Theorem 7.17).

Proof of Theorem 1.4. It follows from Corollary 7.3, Theorem 7.10, and Corollary 7.15. □
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INDUCTIVE AND DIVISIONAL POSETS 23 of 32

The proof for the type 𝐴 case in Theorem 1.4 is a simple consequence of Theorem 7.2, which
we give below.

Corollary 7.3. If  is an ideal of a root system of type𝐴, then the toric arrangement𝒜 with respect
to the root lattice is strictly supersolvable (equivalently, supersolvable) hence inductive with exponents
DP().

Proof. It is not hard to see that for any Ψ ⊆ Φ+(𝐴𝓁), each layer in 𝐿(𝒜Ψ(𝐴𝓁)) is connected. Thus,
𝐿(𝒜Ψ(𝐴𝓁)) ≃ 𝐿(ℋΨ(𝐴𝓁)) which is a geometric lattice. By Remark 2.12, its supersolvability and
strict supersolvability are equivalent.Moreover,𝒜 is indeed supersolvable with exponentsDP()
by Theorem 7.2. □

Hence, we are left with the computation on types 𝐵 and 𝐶. First we need a construction of root
systems of these types via a choice of basis for 𝑉 following [6, chapter VI, section 4].
Let  ∶= {𝜖1, … , 𝜖𝓁} be an orthonormal basis for 𝑉. For 𝓁 ⩾ 1,

Φ(𝐵𝓁) = {±𝜖𝑖 (1 ⩽ 𝑖 ⩽ 𝓁), ±(𝜖𝑖 ± 𝜖𝑗) (1 ⩽ 𝑖 < 𝑗 ⩽ 𝓁)}

is an irreducible root system of type 𝐵𝓁 . We may choose a positive system

Φ+(𝐵𝓁) = {𝜖𝑖 (1 ⩽ 𝑖 ⩽ 𝓁), 𝜖𝑖 ± 𝜖𝑗 (1 ⩽ 𝑖 < 𝑗 ⩽ 𝓁)}.

Define 𝛼𝑖 ∶= 𝜖𝑖 − 𝜖𝑖+1 for 1 ⩽ 𝑖 ⩽ 𝓁 − 1, and 𝛼𝓁 ∶= 𝜖𝓁 . Then Δ(𝐵𝓁) = {𝛼1, … , 𝛼𝓁} is the base
associated to Φ+(𝐵𝓁). We may express

Φ+(𝐵𝓁) =
{
𝜖𝑖 =

∑
𝑖⩽𝑘⩽𝓁

𝛼𝑘 (1 ⩽ 𝑖 ⩽ 𝓁), 𝜖𝑖 − 𝜖𝑗 =
∑
𝑖⩽𝑘<𝑗

𝛼𝑘 (1 ⩽ 𝑖 < 𝑗 ⩽ 𝓁),

𝜖𝑖 + 𝜖𝑗 =
∑
𝑖⩽𝑘<𝑗

𝛼𝑘 + 2
∑
𝑗⩽𝑘⩽𝓁

𝛼𝑘 (1 ⩽ 𝑖 < 𝑗 ⩽ 𝓁)
}
.

ForΨ ⊆ Φ+(𝐵𝓁), write 𝑇Ψ = [𝑡𝑖𝑗] for the coefficient matrix ofΨwith respect to the basis  . The
matrices 𝑇Ψ and 𝑆Ψ are related by 𝑇Ψ = 𝑃(𝐵𝓁) ⋅ 𝑆Ψ, where 𝑃(𝐵𝓁) is an unimodular matrix of size
𝓁 × 𝓁 given by

𝑃(𝐵𝓁) =

⎡⎢⎢⎢⎢⎢⎢⎣

1

−1 1

−1

⋱
1

−1 1

⎤⎥⎥⎥⎥⎥⎥⎦
.

Similarly, an irreducible root system of type 𝐶𝓁 for 𝓁 ⩾ 1 is given by

Φ(𝐶𝓁) = {±2𝜖𝑖 (1 ⩽ 𝑖 ⩽ 𝓁), ±(𝜖𝑖 ± 𝜖𝑗) (1 ⩽ 𝑖 < 𝑗 ⩽ 𝓁)},

Φ+(𝐶𝓁) = {2𝜖𝑖 (1 ⩽ 𝑖 ⩽ 𝓁), 𝜖𝑖 ± 𝜖𝑗 (1 ⩽ 𝑖 < 𝑗 ⩽ 𝓁)},

Δ(𝐶𝓁) = {𝛼𝑖 = 𝜖𝑖 − 𝜖𝑖+1 (1 ⩽ 𝑖 ⩽ 𝓁 − 1), 𝛼𝓁 = 2𝜖𝓁},
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24 of 32 PAGARIA et al.

Φ+(𝐶𝓁) = {2𝜖𝑖 = 2
∑
𝑖⩽𝑘<𝓁

𝛼𝑘 + 𝛼𝓁 (1 ⩽ 𝑖 ⩽ 𝓁), 𝜖𝑖 − 𝜖𝑗 =
∑
𝑖⩽𝑘<𝑗

𝛼𝑘 (1 ⩽ 𝑖 < 𝑗 ⩽ 𝓁),

𝜖𝑖 + 𝜖𝑗 =
∑
𝑖⩽𝑘<𝑗

𝛼𝑘 + 2
∑

𝑗⩽𝑘<𝓁

𝛼𝑘 + 𝛼𝓁 (1 ⩽ 𝑖 < 𝑗 ⩽ 𝓁)}.

𝑃(𝐶𝓁) =

⎡⎢⎢⎢⎢⎢⎢⎣

1

−1 1

−1

⋱
1

−1 2

⎤⎥⎥⎥⎥⎥⎥⎦
.

Example 7.4. Let Φ = 𝐵2 with Φ+ = {𝛼1 = 𝜖1 − 𝜖2, 𝛼2 = 𝜖2, 𝛼1 + 𝛼2 = 𝜖1, 𝛼1 + 2𝛼2 = 𝜖1 + 𝜖2}

where Δ = {𝛼1, 𝛼2} and  = {𝜖1, 𝜖2}. The coefficient matrices of Φ+ with respect to Δ and  are
given by

𝑆Φ+ =

(
1 0 1 1

0 1 1 2

)
, 𝑇Φ+ =

(
1 0 1 1

−1 1 0 1

)
.

Let Φ = 𝐶2. The coefficient matrix of Φ+ with respect to Δ is 𝑆Φ+ above with rows switched (this
is not the case when 𝓁 ⩾ 3). The coefficient matrix of Φ+ with respect to  = {𝜖1, 𝜖2} is given by

𝑇Φ+ =

(
1 0 1 2

−1 2 1 0

)
.

Definition 7.5. Let Φ = 𝐵𝓁 or 𝐶𝓁 . For Ψ ⊆ Φ+, denote by 𝒜𝑇Ψ
and ℋ𝑇Ψ

the central toric and
hyperplane arrangements defined by the matrix 𝑇Ψ, respectively. We call these arrangements the
arrangements with respect to the integer lattice.

Remark 7.6. As thematrix 𝑃(𝐵𝓁) is unimodular, for everyΨ ⊆ Φ+(𝐵𝓁)we have an isomorphism of
posets of layers: 𝐿(𝒜Ψ) ≃ 𝐿(𝒜𝑇Ψ

) (see, e.g., [23, §5]). However, det 𝑃(𝐶𝓁) = 2. In general, 𝐿(𝒜Ψ) ≄

𝐿(𝒜𝑇Ψ
) for Ψ ⊆ Φ+(𝐶𝓁) (although 𝐿(ℋΨ) ≃ 𝐿(ℋ𝑇Ψ

)).
A positive system Φ+(𝐴𝓁−1) of an irreducible root system Φ of type 𝐴𝓁−1 for 𝓁 ⩾ 2 can be

defined as the ideal of Φ+(𝐵𝓁) (or Φ+(𝐶𝓁)) generated by 𝜖1 − 𝜖𝓁 =
∑𝓁−1
𝑘=1 𝛼𝑘. Thus, 𝐿(𝒜Ψ) ≃

𝐿(𝒜𝑇Ψ
) for every Ψ ⊆ Φ+(𝐴𝓁−1).

To describe the exponents of 𝒜 when Φ is 𝐵𝓁 or 𝐶𝓁 , we need information from the signed
graph associated to .

Definition 7.7. Let Φ = 𝐵𝓁 or 𝐶𝓁 . For Ψ ⊆ Φ+ and 1 ⩽ 𝑖 ⩽ 𝓁, define the subset 𝐸𝑖 = 𝐸𝑖(Ψ) ⊆ Ψ

by

𝐸𝑖 ∶= 𝐸+
𝑖
⊔ 𝐸−𝑖 , where𝐸

±
𝑖
∶= {𝜖𝑖 ± 𝜖𝑗 ∈ Ψ ∣ 𝑖 < 𝑗} ⊆ Ψ.

For 𝛼 ∈ 𝐸𝑖 , let 𝐻𝛼 denote the hypertorus defined by 𝛼. For example, 𝛼 = 𝜖𝑖 + 𝜖𝑗 defines the
hypertorus𝐻𝛼 = {𝑡𝑖𝑡𝑗 = 1}. We then define the subarrangementℬ𝑖 =ℬ𝑖(Ψ) ⊆ 𝒜Ψ by

ℬ𝑖 ∶=ℬ+
𝑖
⊔ℬ−

𝑖 , whereℬ
±
𝑖
∶= {𝐻𝛼 ∣ 𝛼 ∈ 𝐸±

𝑖
} ⊆ 𝒜Ψ.

Finally, define 𝑏±
𝑖
∶= |ℬ±

𝑖
| and 𝑏𝑖 ∶= |ℬ𝑖| = 𝑏+

𝑖
+ 𝑏−

𝑖
.
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INDUCTIVE AND DIVISIONAL POSETS 25 of 32

In the language of signed graphs (e.g., following [34, section 5]), the elements in 𝐸+
𝑖
(Ψ) and

𝐸−
𝑖
(Ψ) correspond to the negative and positive edges of the signed graph defined byΨ, respectively.
It is not hard to see that for each ideal  ofΦ+(𝐵𝓁) orΦ+(𝐶𝓁), the elements of the dual partition

DP() can be expressed in terms of 𝑏𝑖()’s and vice versa. However, the numbers 𝑏𝑖 ’s are a bitmore
convenient for our subsequent discussion.

7.1 Type 𝑪

We first present the results on type 𝐶 as the proofs are simpler than those on type 𝐵. We begin by
proving a lemma that serves as a template for some arguments later.

Lemma 7.8. Let  ⊆ Φ+(𝐶𝓁) be an ideal such that 𝐸1() ≠ ∅. Define

 ∶=

{
 ⧵ (𝐸1() ∪ {2𝜖1}) if 2𝜖1 ∈ ,

 ⧵ 𝐸1() otherwise.

Then can be regarded as an ideal of Φ+(𝐶𝓁−1) and𝒜𝑇
is a TM-ideal of𝒜𝑇

.

Proof. The first assertion is clear via the transformation 𝑥𝑖 ↦ 𝑥𝑖−1 for 2 ⩽ 𝑖 ⩽ 𝓁. Denote𝒜 ∶= 𝒜𝑇
and𝒟 ∶= 𝒜𝑇

. There do not exist 𝑋 ∈ 𝐿(𝒟) and 𝑌 ∈ 𝐿(𝒜) ⧵ 𝐿(𝒟) such that 𝑋 ⊆ 𝑌 because the
defining equations of any 𝑋 ∈ 𝐿(𝒟) do not involve 𝑡1. Therefore, 𝐿(𝒟) is a proper order ideal of
𝐿(𝒜). Note also that the power of variable 𝑡1 in the defining equation of any 𝐻 ∈ 𝒜 ⧵𝒟 is equal
to 1. This shows Condition 5.15 (*).
It remains to show that for any two distinct𝐻1,𝐻2 ∈ 𝒜 ⧵𝒟 and every connected component𝐶

of the intersection𝐻1 ∩ 𝐻2, there exists𝐻3 ∈ 𝒟 such that 𝐶 ⊆ 𝐻3. We consider three main cases,
the remaining cases are similar to one of these.

(a) Assume 𝐻1 = {𝑡1𝑡𝑗 = 1} (i.e., 𝜖1 + 𝜖𝑗 ∈ ) and 𝐻2 = {𝑡1𝑡
−1
𝑘

= 1} for 𝑗 > 1, 𝑘 > 1, 𝑗 ≠ 𝑘. Then
by the definition of an ideal we must have 𝜖𝑗 + 𝜖𝑘 ∈  (as 𝜖1 + 𝜖𝑗 > 𝜖𝑗 + 𝜖𝑘). Hence, 𝐻3 ∶=

{𝑡𝑗𝑡𝑘 = 1} ∈ 𝒟. Moreover,𝐻1 ∩ 𝐻2 is connected and 𝐻1 ∩ 𝐻2 ⊆ 𝐻3.
(b) Assume𝐻1 = {𝑡1𝑡𝑗 = 1} and𝐻2 = {𝑡1𝑡

−1
𝑗

= 1} for 𝑗 > 1. Then𝐻3 ∶= {𝑡𝑗 = 1} ∈ 𝒟 and𝐻′
3
∶=

{𝑡𝑗 = −1} ∈ 𝒟 (as 𝜖1 + 𝜖𝑗 > 2𝜖𝑗). Moreover, 𝐻1 ∩ 𝐻2 has two connected components; one is
contained in 𝐻3, the other is contained in 𝐻′

3
.

(c) Assume𝐻1 = {𝑡1 = 1} (i.e., 2𝜖1 ∈ ) and𝐻2 = {𝑡1𝑡𝑗 = 1} for 𝑗 > 1. Then𝐻3 ∶= {𝑡𝑗 = 1} ∈ 𝒟
(as 2𝜖1 > 2𝜖𝑗). Moreover,𝐻1 ∩ 𝐻2 is connected and𝐻1 ∩ 𝐻2 ⊆ 𝐻3.

This concludes that𝒟 is a TM-ideal of𝒜 as desired. □

Theorem 7.9. Let  ⊆ Φ+(𝐶𝓁) be an ideal. Define

𝑛 ∶=

{
min{1 ⩽ 𝑖 ⩽ 𝓁 ∣ 𝐸𝑖() ≠ ∅} if  ≠ ∅,

𝓁 + 1 otherwise,

𝑠 ∶=

{
min{1 ⩽ 𝑖 ⩽ 𝓁 ∣ 2𝜖𝑖 ∈ } if there exists 2𝜖𝑖 ∈  for some 1 ⩽ 𝑖 ⩽ 𝓁,

𝓁 + 1 otherwise.
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26 of 32 PAGARIA et al.

Then the toric arrangement 𝒜𝑇
with respect to the integer lattice is strictly supersolvable with

exponents

exp(𝒜𝑇
) = {0𝑛−1} ∪ {𝑏𝑖}

𝑠−1
𝑖=𝑛

∪ {2(𝓁 − 𝑖 + 1)}𝓁
𝑖=𝑠
.

(See Definition 7.7 for the definition of 𝑏𝑖 ’s.)

Proof. Denote𝒜 ∶= 𝒜𝑇
. Note that 𝑛 ⩽ 𝑠 and 𝑏𝑖 = 0 for 1 ⩽ 𝑖 < 𝑛. If 2𝜖𝑖 ∉  for all 1 ⩽ 𝑖 ⩽ 𝓁, then

 can be regarded as an ideal ofΦ+(𝐴𝓁−1) by Remark 7.6. Thus, 𝐿(𝒜) ≃ 𝐿(𝒜𝑇
). By Corollary 7.3,

𝒜 ∈ 𝐒𝐒𝐒 with exponents DP() = {𝑏1, … , 𝑏𝓁}.
Now we may assume 1 ⩽ 𝑛 ⩽ 𝑠 ⩽ 𝓁. Then 2𝜖𝑖 ∈  and 𝐸𝑖() ≠ ∅ for all 𝑠 ⩽ 𝑖 ⩽ 𝓁. Define

𝒜𝑖 ∶=

⎧⎪⎨⎪⎩
⋃𝓁
𝑗=𝑖

(
ℬ𝑗 ∪ {𝑡

2
𝑗
= 1}

)
if 𝑠 ⩽ 𝑖 ⩽ 𝓁,⋃𝑠−1

𝑗=𝑖 ℬ𝑗 ∪𝒜𝑠 if 𝑛 ⩽ 𝑖 < 𝑠.

In particular, 𝒜𝑠 can be identified with 𝒜𝑇Φ+
(𝐶𝓁−𝑠+1) (via 𝑥𝑖 ↦ 𝑥𝑖−𝑠+1 for 𝑠 ⩽ 𝑖 ⩽ 𝓁). Then 𝑏𝑖 =

2(𝓁 − 𝑖) for 𝑠 ⩽ 𝑖 ⩽ 𝓁.
By Theorem 5.16, it suffices to show that the chain

∅ ⊊ 𝒜𝓁 ⊊ ⋯ ⊊ 𝒜𝑛 = 𝒜

is a TM-chain of𝒜. A similar argument as in the proof of Lemma 7.8 shows that𝒜𝑖+1 is a TM-ideal
of𝒜𝑖 for each 𝑛 ⩽ 𝑖 ⩽ 𝓁 − 1.
Thus,𝒜 ∈ 𝐒𝐒𝐒 with the desired exponents. □

Recall the definitions of the parameters 𝑛 ⩽ 𝑠 in Theorem 7.9.

Theorem 7.10. Let  ⊆ Φ+(𝐶𝓁) be an ideal. Then the toric arrangement𝒜 with respect to the root
lattice is inductive with exponents

exp(𝒜) = {0𝑛−1} ∪ {𝑏𝑖}
𝑠−1
𝑖=𝑛

∪ {2(𝓁 − 𝑖)}𝓁−1
𝑖=𝑠

∪ {𝓁 − 𝑠 + 1}.

Proof. Denote𝒜 ∶= 𝒜 .
Case 1. First we prove the assertion when 𝑠 = 1. In this case,  = Φ+. We show that 𝒜 ∈ 𝐈𝐀

with the desired exponents by induction on 𝓁. The case 𝓁 = 1 is clear.
Suppose 𝓁 ⩾ 2. Let 𝛿 ∶= 2𝜖1 = 2

∑
1⩽𝑘<𝓁 𝛼𝑘 + 𝛼𝓁 denote the highest root of Φ+. Define

 ∶= Φ+ ⧵ (𝐸1(Φ
+) ∪ {𝛿}), and𝒟 ∶= 𝒜.

Then = Φ+(𝐶𝓁−1) (via 𝑥𝑖 ↦ 𝑥𝑖−1). By the induction hypothesis,𝒟 ∈ 𝐈𝐀 with exponents

exp(𝒟) = {2(𝓁 − 𝑖)}𝓁−1
𝑖=2

∪ {𝓁 − 1}.

Denote 𝒜′ ∶= 𝒜 ⧵ {𝐻𝛿}. Note that 𝒜′ ⧵𝒟 consists of the hypertori defined by the roots in
𝐸1(Φ

+). These roots are given by

𝜖1 − 𝜖𝑗 =
∑
1⩽𝑘<𝑗

𝛼𝑘 (1 < 𝑗 ⩽ 𝓁),

𝜖1 + 𝜖𝑗 =
∑
1⩽𝑘<𝑗

𝛼𝑘 + 2
∑

𝑗⩽𝑘<𝓁

𝛼𝑘 + 𝛼𝓁 (1 < 𝑗 ⩽ 𝓁).
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INDUCTIVE AND DIVISIONAL POSETS 27 of 32

TABLE 1 An ideal  in Φ+(𝐶5).

Height
9 2𝜖1

8 𝜖1 + 𝜖2

7 𝜖1 + 𝜖3 2𝜖2

6 𝜖1 + 𝜖4 𝜖2 + 𝜖3

5 𝜖1 + 𝜖5 𝜖2 + 𝜖4 2𝜖3

4 𝜖1 − 𝜖5 𝜖2 + 𝜖5 𝜖3 + 𝜖4

3 𝜖1 − 𝜖4 𝜖2 − 𝜖5 𝜖3 + 𝜖5 2𝜖4

2 𝜖1 − 𝜖3 𝜖2 − 𝜖4 𝜖3 − 𝜖5 𝜖4 + 𝜖5

1 𝜖1 − 𝜖2 𝜖2 − 𝜖3 𝜖3 − 𝜖4 𝜖4 − 𝜖5 2𝜖5

𝐸1 𝐸2 𝐸3 𝐸4 𝐸5 = ∅

Using a similar argument as in the proof of Lemma 7.8, we may show that𝒟 is an M-ideal of
𝒜′. Moreover, it is indeed a TM-ideal because Condition 5.15 (*) is satisfied because the coefficient
at the simple 𝛼1 of all roots in 𝐸1(Φ+) is 1, while that of the roots in  is 0. Apply Lemma 4.5 for
𝐿(𝒟) and 𝐿(𝒜′) we have that𝒜′ ∈ 𝐈𝐀 with exponents

exp(𝒜′) = exp(𝒟) ∪ {2(𝓁 − 1)} = {2(𝓁 − 𝑖)}𝓁−1
𝑖=1

∪ {𝓁 − 1}.

Furthermore, one may check that the restriction 𝒜𝐻𝛿 can be identified with 𝒜𝑇Φ+
(𝐶𝓁−1).

(To see this just set 𝑡𝓁 = 𝑡−2
1

⋯ 𝑡−2𝓁−1 in the equations involving 𝑡𝓁 . For example, the equa-
tion 𝑡2

2
⋯ 𝑡2𝓁−1𝑡𝓁 = 1 becomes 𝑡2

1
= 1.) Thus, by Theorem 7.9,𝒜𝐻𝛿 ∈ 𝐈𝐀 with exponents

exp(𝒜𝐻𝛿) = {2(𝓁 − 𝑖)}𝓁−1
𝑖=1

.

Apply Theorem 5.14, we know that𝒜 ∈ 𝐈𝐀 with the desired exponents

exp(𝒜) = {2(𝓁 − 𝑖)}𝓁−1
𝑖=1

∪ {𝓁}.

Case 2. Now we prove the assertion when 𝑠 > 1. The set

 ∶=  ⧵

𝑠−1⋃
𝑖=𝑛

𝐸𝑖()

can be identified with Φ+(𝐶𝓁−𝑠+1). By Case 1 above,𝒫 ∶= 𝒜 ∈ 𝐈𝐀 with exponents

exp(𝒫) = {2(𝓁 − 𝑖)}𝓁−1
𝑖=𝑠

∪ {𝓁 − 𝑠 + 1}.

Using a similar argument as in Case 1, wemay show that the sets𝐸𝑖() for 𝑛 ⩽ 𝑖 ⩽ 𝑠 − 1 give rise
to a chain of TM-ideals for𝒜 starting from𝒫. Applying Lemma 4.5 repeatedly, we may conclude
that𝒜 ∈ 𝐈𝐀 with the desired exponents. □

Example 7.11. Table 1 shows an ideal  ⊊ Φ+(𝐶5) (in enclosed region) with 𝑛 = 1, 𝑠 = 3. By
Theorem 7.9,𝒜𝑇

∈ 𝐒𝐒𝐒 with exponents {4, 6, 6, 4, 2}. By Theorem 7.10,𝒜 ∈ 𝐈𝐀 with exponents
{4, 6, 4, 2, 3}.
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28 of 32 PAGARIA et al.

7.2 Type 𝑩

The restriction of an ideal toric arrangement of type 𝐵 is in general not an ideal toric arrange-
ment. We need an extension of the ideals so that the corresponding arrangements contain
sufficient deletions and restrictions in order to apply the addition theorem 5.14 to guarantee the
inductiveness.

Lemma 7.12. Let  ⊆ Φ+(𝐵𝓁) be an ideal such that 𝐸+1 () ≠ ∅. Let𝑚 = 𝑚() be the integer so that
𝜖1 + 𝜖𝑚 is the highest root in 𝐸+

1
(). (In particular, 2 ⩽ 𝑚 ⩽ 𝓁 and 2𝓁 −𝑚 = 𝑏1.) Let 1 ⩽ 𝑝 ⩽ 𝓁 + 1.

Define the extension (𝑝) of  with parameter 𝑝 as follows:

(𝑝) ∶= ( ⧵ {𝜖𝑖 ∣ 𝑝 ⩽ 𝑖 ⩽ 𝓁}) ∪ {2𝜖𝑖 ∣ 𝑝 ⩽ 𝑖 ⩽ 𝓁}.

If𝑚 < 𝑝, then𝒜𝑇(𝑝)
is inductive with exponents

exp(𝒜𝑇(𝑝)
) = {2𝓁 − 𝑝 + 1} ∪ {𝑏𝑖}

𝓁−1
𝑖=1

.

Proof. Denote𝒜 ∶= 𝒜𝑇(𝑝)
. We may write

𝒜 = 𝒜𝑇
∪ {𝑡𝑖 = −1 ∣ 𝑝 ⩽ 𝑖 ⩽ 𝓁}.

We show that𝒜 ∈ 𝐈𝐀with the desired exponents by induction on 𝓁. If 𝓁 ⩽ 2, then𝒜 is always
strictly supersolvable except when 𝑝 = 3 and  = (3) = Φ+(𝐵2). In which case, 𝒜 is indeed
inductive with exponents {2, 2} by Figure 3.
Now suppose 𝓁 ⩾ 3. As 𝜖1 + 𝜖𝑚 ∈ , we must have 𝜖2 + 𝜖𝑚 ∈ . Define

 ∶=  ⧵ (𝐸1() ∪ {𝜖1}).

Then  can be regarded as an ideal of Φ+(𝐵𝓁−1) (via 𝑥𝑖 ↦ 𝑥𝑖−1) with 𝑚( ) ⩽ 𝑚() − 1. Also,
𝐸±
𝑖
( ) = 𝐸±

𝑖+1
() hence 𝑏𝑖( ) = 𝑏𝑖+1() for all 1 ⩽ 𝑖 ⩽ 𝓁 − 1.

Moreover, (𝑝) ⧵ (𝐸1() ∪ {𝜖1}) can be identified with the extension  (𝑝 − 1) because 2 ⩽ 𝑚 <

𝑝. By the induction hypothesis,𝒫 ∶= 𝒜𝑇 (𝑝−1)
∈ 𝐈𝐀 with exponents

exp(𝒫) = {2𝓁 − 𝑝} ∪ {𝑏𝑖()}
𝓁−1
𝑖=2

. (7.1)

Define

 ∶= (𝑝) ⧵ {𝜖1 + 𝜖𝑖 ∣ 𝑚 ⩽ 𝑖 ⩽ 𝑝 − 1}, and𝒟 ∶= 𝒜𝑇
.

As 2𝜖𝑖 ∈  for all 𝑝 ⩽ 𝑖 ⩽ 𝓁, using a similar argument as in the proof of Lemma 7.8 we may show
that 𝒫 is a TM-ideal of 𝒟. Apply Lemma 4.5 for 𝐿(𝒟) and 𝐿(𝒫) we have that 𝒟 ∈ 𝐈𝐀 with
exponents

exp(𝒟) = exp(𝒫) ∪ {2𝓁 − 𝑝 + 1} = {2𝓁 − 𝑝 + 1, 2𝓁 − 𝑝} ∪ {𝑏𝑖()}
𝓁−1
𝑖=2

.

Now we show that adding the 𝑝 −𝑚 hypertori 𝑡1𝑡𝑝−1 = 1, 𝑡1𝑡𝑝 = 1,… , 𝑡1𝑡𝑚 = 1 to 𝒟 in any
order and applying Theorem 5.14 to each addition step, we are able to conclude that𝒜 ∈ 𝐈𝐀with
the desired exponents. As 2𝓁 −𝑚 = 𝑏1, it suffices to show that the restriction at each addition
step is inductive with exponents {2𝓁 − 𝑝 + 1} ∪ {𝑏𝑖()}

𝓁−1
𝑖=2

.
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INDUCTIVE AND DIVISIONAL POSETS 29 of 32

Indeed, the restriction at each step has the form𝒫 ∪ {𝐻𝑘}where𝐻𝑘 denotes the hypertorus 𝑡𝑘 =
−1 for some𝑚 ⩽ 𝑘 ⩽ 𝑝 − 1. Fix𝑚 ⩽ 𝑘 ⩽ 𝑝 − 1. Note that 𝜖𝑖 + 𝜖𝑘 ∈  ⊆  (𝑝 − 1) for all 1 < 𝑖 ≠ 𝑘

because 𝜖1 + 𝜖𝑘 ∈ . Thus, the restriction (𝒫 ∪ {𝐻𝑘})
𝐻𝑘 can be identified with the arrangement

𝒜𝑇(1)
, where (1) is the extension with parameter 𝑝 = 1 of an ideal  of Φ+(𝐵𝓁−2) (via 𝑥𝑖 ↦

𝑥𝑖−1 (2 ⩽ 𝑖 < 𝑘) and 𝑥𝑖 ↦ 𝑥𝑖−2 (𝑘 < 𝑖 ⩽ 𝓁)) with 𝑏±
𝑖
() = 𝑏±

𝑖+1
() − 1 for 1 ⩽ 𝑖 ⩽ 𝓁 − 2. (Note that

the equations 𝑏±
𝑖
() = 𝑏±

𝑖+1
() − 1 for 𝑘 − 1 ⩽ 𝑖 ⩽ 𝓁 − 2 follow from the fact that

⋃𝓁−2
𝑖=𝑘−1(𝐸𝑖() ∪

{2𝜖𝑖}) is a root system of type 𝐶.)
Now using a similar argument as in the proof of Theorem 7.9, we know that (𝒫 ∪ {𝐻𝑘})

𝐻𝑘 is
strictly supersolvable hence inductive with exponents

exp((𝒫 ∪ {𝐻𝑘})
𝐻𝑘 ) = {𝑏𝑖() + 2}𝓁−2

𝑖=1
= {𝑏𝑖()}

𝓁−1
𝑖=2

.

By Theorem 5.14 and Equation (7.1), we know that𝒫 ∪ {𝐻𝑘} ∈ 𝐈𝐀 for every𝑚 ⩽ 𝑘 ⩽ 𝑝 − 1with
the desired exponents

exp(𝒫 ∪ {𝐻𝑘}) = {2𝓁 − 𝑝 + 1} ∪ {𝑏𝑖()}
𝓁−1
𝑖=2

.

This completes the proof. □

Theorem 7.13. Let  ⊆ Φ+(𝐵𝓁) be an ideal such that 𝜖𝑘 ∈  for some 1 ⩽ 𝑘 ⩽ 𝓁. Define

𝑛 ∶= min{1 ⩽ 𝑖 ⩽ 𝓁 ∣ 𝐸𝑖() ≠ ∅},

𝑎 ∶= min{𝑛 ⩽ 𝑖 ⩽ 𝓁 ∣ 𝜖𝑖 ∈  and 𝐸+
𝑖
() = ∅},

𝑠 ∶= min{𝑎 ⩽ 𝑖 ⩽ 𝓁 ∣ 𝐸+
𝑖
() ≠ ∅}.

For each 𝑠 ⩽ 𝑖 ⩽ 𝓁, let 𝑚(𝑖) be the integer so that 𝜖𝑖 + 𝜖𝑚(𝑖) is the highest root in 𝐸𝑖(). (In partic-
ular, 𝑚(𝑗) ⩽ 𝑚(𝑖) if 𝑖 < 𝑗.) Let 𝑠 ⩽ 𝑝 ⩽ 𝓁 + 1, recall the definition of the extension (𝑝) of  with
parameter 𝑝 in Lemma 7.12. Define

𝑡 ∶= min{𝑠 ⩽ 𝑖 ⩽ 𝓁 ∣ 𝑚(𝑖) < 𝑝}.

Then𝒜𝑇(𝑝)
is inductive with exponents

exp(𝒜𝑇(𝑝)
) = {0𝑛−1, 2𝓁 − 𝑝 − 𝑡 + 2} ∪ {𝑏𝑖 + 1 ∣ 𝑖 ∈ [𝑎, 𝑡 − 1]} ∪ {𝑏𝑖 ∣ 𝑖 ∈ [𝑛,𝓁 − 1] ⧵ [𝑎, 𝑡 − 1] }.

Proof. Denote𝒜 ∶= 𝒜𝑇(𝑝)
. The set

((𝑝) ⧵

𝑎−1⋃
𝑖=𝑛

𝐸𝑖()) ⧵

𝑡−1⋃
𝑖=𝑎

(𝐸𝑖()) ∪ {𝜖𝑖})

can be identified with the extension  (𝑝 − 𝑡 + 1), where  is an ideal of Φ+(𝐵𝓁−𝑡+1)with𝑚(𝑖) <
𝑝 − 𝑡 + 1 for all 1 ⩽ 𝑖 ⩽ 𝓁 − 𝑡 + 1. By Lemma 7.12,𝒫 ∶= 𝒜𝑇 (𝑝−𝑡+1)

∈ 𝐈𝐀 with exponents

exp(𝒫) = {2𝓁 − 𝑝 − 𝑡 + 2} ∪ {𝑏𝑖()}
𝓁−1
𝑖=𝑡

.

Using a similar argument as in the proof of Lemma 7.8, we may show that the sets 𝐸𝑖() for
𝑛 ⩽ 𝑖 ⩽ 𝑎 − 1 and 𝐸𝑖() ∪ {𝜖𝑖} for 𝑎 ⩽ 𝑖 ⩽ 𝑡 − 1 give rise a chain of TM-ideals for 𝒜 starting from

 14697750, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12829 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [07/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



30 of 32 PAGARIA et al.

TABLE 2 Extension of an ideal  in Φ+(𝐵5) with parameter 𝑝 = 4.

Height
9 𝜖1 + 𝜖2

8 𝜖1 + 𝜖3

7 𝜖1 + 𝜖4 𝜖2 + 𝜖3

6 𝜖1 + 𝜖5 𝜖2 + 𝜖4

5 𝜖1 𝜖2 + 𝜖5 𝜖3 + 𝜖4

4 𝜖1 − 𝜖5 𝜖2 𝜖3 + 𝜖5

3 𝜖1 − 𝜖4 𝜖2 − 𝜖5 𝜖3 𝜖4 + 𝜖5

2 𝜖1 − 𝜖3 𝜖2 − 𝜖4 𝜖3 − 𝜖5 2𝜖4

1 𝜖1 − 𝜖2 𝜖2 − 𝜖3 𝜖3 − 𝜖4 𝜖4 − 𝜖5 2𝜖5

𝒫. (Note that by definition𝑚(𝑖) ⩾ 𝑝 for all 𝑠 ⩽ 𝑖 ⩽ 𝑡 − 1.) Applying Lemma 4.5 repeatedly, wemay
conclude that𝒜 ∈ 𝐈𝐀with the desired exponents. Indeed, the sets above contribute to exp(𝒜) the
exponents 𝑏𝑖 for 𝑛 ⩽ 𝑖 ⩽ 𝑎 − 1 and 𝑏𝑖 + 1 for 𝑎 ⩽ 𝑖 ⩽ 𝑡 − 1. □

Example 7.14. Table 2 shows the extension (4) of an ideal  ⊊ Φ+(𝐵5) with parameter 𝑝 =
4. In this case, 𝑛 = 𝑎 = 𝑠 = 1 and 𝑡 = 2 with 𝑚(𝑡) = 3 < 𝑝. By Theorem 7.13, 𝒜𝑇(4)

∈ 𝐈𝐀 with
exponents {6, 7, 6, 4, 2}.

Recall fromRemark 7.6 that𝒜Ψ and𝒜𝑇Ψ
have isomorphic poset of layers for everyΨ ⊆ Φ+(𝐵𝓁).

Corollary 7.15. If  ⊆ Φ+(𝐵𝓁), then the toric arrangement 𝒜 with respect to the root lattice
is inductive.

Proof. If 𝜖𝑖 ∉  for all 1 ⩽ 𝑖 ⩽ 𝓁, then  can be regarded as an ideal of Φ+(𝐴𝓁−1). Thus, 𝒜 is
indeed strictly supersolvable hence inductive by Corollary 7.3. Otherwise, we know that 𝒜𝑇

is
inductive which follows from Theorem 7.13 by letting 𝑝 = 𝓁 + 1. □

Example 7.16. From Theorems 7.10, 7.13, and Corollary 7.15, we deduce that both 𝒜Φ+(𝐵𝓁)

and 𝒜Φ+(𝐶𝓁) are inductive with the same multiset of exponents {𝓁, 2, 4, … , 2(𝓁 − 1)}. This fact
is similar to the hyperplane arrangement case.

In contrast to the inductiveness, the toric arrangement of a root system of type 𝐵𝓁 is not
supersolvable for most cases.

Theorem 7.17. Suppose Φ = 𝐵𝓁 for 𝓁 ⩾ 1. Then𝒜𝑇Φ+
is supersolvable if and only if 𝓁 ⩽ 2.

Proof. Let𝒜 ∶= 𝒜𝑇Φ+
. Denote 𝐿 = 𝐿(𝒜) and 𝑥 = (−1,−1,… ,−1) ∈ 𝐿. By Lemma 5.7, 𝐿⩽𝑥 is iso-

morphic to the intersection lattice 𝐿(ℋ𝑇Φ+
(𝐷𝓁)) of the hyperplane arrangement of a root system

of type 𝐷𝓁 .
If 𝓁 ⩾ 4, then 𝐿⩽𝑥 is not supersolvable by Remark 2.21. Therefore, 𝐿 is not locally supersolvable

hence not supersolvable.
When 𝓁 ⩽ 3, however, 𝐿⩽𝑥 is always supersolvable. We need a direct examination for the

supersolvability of 𝐿. The assertion is clear when 𝓁 = 1. The case 𝓁 = 2 is shown in Figure 3.
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Nowwe show that 𝐿 is not supersolvable (though locally supersolvable)when𝓁 = 3 by showing
that 𝐿 does not have an M-ideal of rank 2.
Suppose to the contrary that such an M-ideal exists and call it . Denote 𝐻+

𝑖𝑗
∶= {𝑡𝑖𝑡𝑗 = 1} and

𝐻−
𝑖𝑗
∶= {𝑡𝑖𝑡

−1
𝑗

= 1}. First, notice that a rank-2 element of the form 𝑡𝑖 = 𝑡𝑗 = −1 covers exactly two
atoms, namely 𝐻+

𝑖𝑗
and 𝐻−

𝑖𝑗
. If these atoms are not in , then Lemma 2.14 fails. Hence, at least

one of them belongs to  for every pair of indices 𝑖 ≠ 𝑗 ∈ {1, 2, 3}. Moreover, we may deduce that
exactly one of 𝐻+

𝑖𝑗
and 𝐻−

𝑖𝑗
belongs to . Otherwise, the join 𝐻+

𝑖𝑗
∨ 𝐻−

𝑖𝑗
∨ 𝐻 where 𝐻 is either 𝐻+

𝑗𝑘

or𝐻−
𝑗𝑘
for 𝑘 ∉ {𝑖, 𝑗} contains an element of rank 3, which contradicts the join-closedness of .

We consider two main cases, the remaining cases are similar to one of these.

(a) If𝐻+
12
,𝐻+

13
,𝐻+

23
all belong to , then their join consists of rank-3 elements, a contradiction.

(b) If𝐻+
12
,𝐻+

13
,𝐻−

23
all belong to, thenhas no atomof the form 𝑡𝑖 = 1, otherwise joining itwith

𝐻+
12
∨ 𝐻+

13
∨ 𝐻−

23
would give a rank-3 element inside . Hence, the only rank-2 element in 

would be 𝐻+
12
∨ 𝐻+

13
∨ 𝐻−

23
= {𝑡2 = 𝑡3 = 𝑡−1

1
}. However, this is not an element of 𝐿⩽(1,−1,−1),

which contradicts Condition 2.8 (2).

This completes the proof. □
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