
Gottfried Wilhelm Leibniz Universität Hannover
Fakultät für Elektrotechnik und Informatik

Efficient Symbolic Learning over
Knowledge Graphs

A thesis submitted in fulfillment of the requirements for the degree of
Bachelor of Science in Computer Science

BY

Sohan Deshar
Matriculation number: 10032417

E-mail: sohan.deshar@stud.uni-hannover.de

First evaluator: Prof. Dr. Maria-Esther Vidal
Second evaluator: Prof. Dr. Sören Auer

Supervisor: M.Sc. Disha Purohit

November 14, 2023

www.uni-hannover.de
www.et-inf.uni-hannover.de

Declaration of Authorship

I, Sohan Deshar; declare that this thesis titled, ’Efficient Symbolic Learning over
Knowledge Graphs’ and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree
at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

Sohan Deshar

Signature:

Date:

I

“It is a capital mistake to theorize before one has data. Insensibly one begins to twist
facts to suit theories, instead of theories to suit facts”

— Arthur Conan Doyle (Sherlock Holmes)

Acknowledgements

I would like to express my appreciation to my advisor Prof. Dr. Maria-Ester
Vidal and my supervisor Disha Purohit, M. Sc. for their guidance and feedback.

III

Abstract

Knowledge Graphs (KG) are repositories of structured information. Inductive
Logic Programming (ILP) can be used over these KGs to mine logical rules which
can then be used to deduce new information and learn new facts from these KGs.
Over the years, many algorithms have been developed for this purpose, almost all
requiring the complete KG to be present in the main memory at some point of their
execution. With increasing sizes of the KGs, owing to the improvement in the knowl-
edge extraction mechanisms, the application of these algorithms is being rendered
less and less feasible locally. Due to the sheer size of these KGs, many of them don’t
even fit in the memory of normal computing devices. These KGs can, however, also
be represented in RDF making them structured and queriable using the SPARQL
endpoints. And thanks to software like Openlink’s Virtuoso, these queriable KGs
can be hosted on a server as SPARQL endpoints. In light of this fact, an effort was
undertaken to develop an algorithm that overcomes the memory bottleneck of the
current logical rule mining procedures by using SPARQL endpoints. To that end,
one of the state-of-the-art algorithms AMIE [5] was taken as a reference to create a
new algorithm that mines logical rules over these KGs by querying the SPARQL end-
points on which they are hosted, effectively overcoming the aforementioned memory
bottleneck, allowing us to mine rules (and eventually deduce new information) locally.

Keywords: Rule Mining, SPARQL, Inductive Logical Programming, AMIE

IV

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 4

1.3 Structure of the Book . 4

2 Background 6

2.1 Knowledge Graph . 6

2.1.1 Atoms and Rules . 6

2.1.2 Relation and Functions . 7

2.1.3 Rule Mining and some useful evaluation metrics 8

2.2 Rule Mining as ILP, and OWA, and PCA 9

2.3 RDF and SPARQL . 10

3 Related Work 11

3.1 RUDIK . 11

3.2 Ontological Pathfinding . 12

3.3 AnyBURL . 12

3.4 AMIE, AMIE+ and AMIE3 . 13

4 AMIE SPARQL- Our Proposed Approach 14

4.1 Mining Operators . 14

4.2 Pruning . 16

4.3 Our Proposed Algorithm for AMIE SPARQL 18

5 Implementation 21

5.1 Parallel computing with Python . 21

5.2 SPARQL Query Generation . 22

5.3 Synchronized Rule Store . 24

V

6 Empirical Evaluation 27
6.1 Experimental Configuration . 27

6.1.1 Knowledge Graphs used in Experiments 28
6.2 Results . 28

6.2.1 Run-time Performance Results 28
6.2.2 Memory Performance Results 32
6.2.3 Discussion . 33

7 Conclusions and Future Work 35
7.1 Conclusions . 35
7.2 Limitations and Future Work . 35

Bibliography 37

VI

List of Figures

1.1 Motivating Example . 3

6.1 Algorithm Execution Times . 29
6.2 Answer traces over time, familyKG . 29
6.3 Answer traces over time, frenchRoyalty . 30
6.4 Continuous Efficiency comparison with diefk 30
6.5 Performance comparison with dieft . 31
6.6 Memory-trace Comparison, familyKG . 32
6.7 Memory-trace Comparision, frenchRoyalty 33

VII

List of Tables

1.1 Sizes of KGs used by popular Tech companies. Data source: [10] 3
1.2 Sizes of openly available large KGs. Data source: [3] 3

VIII

List of Algorithms

4.1 The Rule-mining Algorithm . 17
4.2 Refinement Algorithm . 18
4.3 Dangling Operator . 19
4.4 Algorithm to check if the rule should be outputted 19
4.5 Algorithm to check if the rule should be further expanded 20
5.1 Algorithm to store a rule . 25
5.2 Algorithm to check if a rule exists in the store 26

IX

Acronyms

CSV Comma-separated values

HTTP Hypertext Transfer Protocol

ILP Inductive Logic Programming

JSON JavaScript Object Notation

KG Knowledge Graph

OWA Open World Assumption

OWL Web Ontology Language

PCA Partical Completeness Assumption

RDF Resource Description Framework

RDFS Resource Description Framework Schema

SPARQL SPARQL Protocol And RDF Query Language

URI Uniform Resource Identifier

X

Chapter 1

Introduction

In today’s world, data is one of the most important intangible resources. Raw data,
on the other hand, has limited value by itself. It only becomes helpful and capable
of delivering insight and comprehension when it has been processed and contextual-
ized. This understanding and insight about a certain aspect or entity is commonly
known as knowledge. Although we, humans, are great at extracting knowledge from
information available to us, most of us are incapable of remembering the knowledge
for a long period of time without other means. Since some of the knowledge might
be relevant for years, or even decades, it becomes essential to record these somehow
for look-up later in future. In light of this fact and various other advantages that
a digital and physical system of archives entails, various forms of data storage have
been devised over the period of human history.
Knowledge Graphs (KG) are one such method of digital information storage, which
store not only information but can also capture the semantics behind the stored
information, making them both human- and machine-readable and even machine-
interpretable. Besides storing information, the ability to incorporate the semantics
behind the stored entities makes them a powerful tool for making inferences, for
gaining a better understanding of the huge knowledge structure, etc. Although the
phrase ‘knowledge graph’ itself has been used in literature since the early 1970s, the
true potential of the tool was realized much later, after the uptake by tech giants
like Google in the early 2010s. Ever since the announcement of the use of KGs in its
search engine by Google in 2012 to enhance the search results [14], they have been
gaining a lot of popularity in the industry, as indicated by the adoption of KGs by
Yahoo and Microsoft in their search engines. Not only search engines but also the
fields of machine learning, pharmacy, etc. (to name a few) have found applications
of KGs for various purposes. The increase in industry adoption of KGs has led to

1

Chapter 1. Introduction

increased research interest in the field in recent years as well. The use of KGs for
knowledge inference has been one of the areas of keen interest in academia.
The inference methods that have been devised in recent years can be divided into two
categories: numeric learning and symbolic learning [7]. In numeric learning, numeric
representation of entities and relationships present in KGs are created and used for
the inference process, whereas in symbolic learning, the symbols of the entities are
used as is for the inference. Rule mining is one such symbolic learning method, and
is the central topic of exploration of this thesis. Rule mining is a process of finding
patterns in the form of logical rules using the facts that are already available in the
KG. As KGs store facts as (subject, predicate, object) triple; from presence of triples
(A, isMotherOf, B), (C, isFatherOf, B), (A, isSpouseOf, C) and (C, isSpouseOf, A)
in a KG, we can infer following logical rules:

(?a, isMotherOf, ?b) ∧ (?c, isFatherOf, ?b) =⇒ (?a, isSpouseOf, ?c) (1)

(?a, isMotherOf, ?b) ∧ (?c, isFatherOf, ?b) =⇒ (?c, isSpouseOf, ?a) (2)

Using these rules, if the fact that X is the mother of Y and Z is the father of Y is
present in the KG, the fact that X and Z are spouses can be inferred with a certain
confidence.

1.1 Motivation

Figure 1.1 gives a brief idea about how the current state-of-the-art mining approach[8]
works and what the thesis proposes. As depicted in the figure, the current state-
of-the-art algorithm starts by uploading the KG as a list of subject predicate object
triples in the main memory. Using the uploaded KG, the algorithm starts the mining
procedure. The procedure calculates the rule metrics locally, which as described in
[5, 4, 8] is not a trivial task.

2

1.1. Motivation

Figure 1.1: Motivating Example: Comparison of state-of-the-art mining algorithm
with our approach

Maintained by Size of the graph

Microsoft 2̃ billion primary entities, 5̃5 billion facts
Google 1 billion entities, 70 billion assertions

Facebook 5̃0 million primary entities, 5̃00 million assertions
eBay >1 triples
IBM >100 million entities, >5 billion entities

Table 1.1: Sizes of KGs used by popular Tech companies. Data source: [10]

Knowledge Graph Size of the graph
DBpedia 411 million triples
Freebase 3 billion triples
OpenCyc 2 million triples
WikiData 748 million triples
YAGO 1 billion triples

Table 1.2: Sizes of openly available large KGs. Data source: [3]

As Table 1.1 and Table 1.2 show, both openly available and industrial-scale KGs
have triples in the hundreds of millions range. With time, these KGs tend to grow to
become even larger. This trend is not only seen in these particular KGs but all KGs
in general, as there is always something new to record, some new information that
needs to be stored. This makes mining rule over the KGs locally a challenging task,
especially because with time they might not even fit in storage capacities available

3

Chapter 1. Introduction

locally. Since the state-of-the-art rule mining algorithm rely on the presence of the
KGs locally, in terms of local rule mining we might soon hit the limits, as far as the
storage requirements are concerned. To circumvent this storage bottleneck which
will unquestionably arise in the future, it is reasonable to explore other possibilities.

Since, there are already software like opensw’s virtuoso1, which allow hosting
KG as SPARQL endpoint, in this work we present an algorithm that makes use of
these endpoints for mining purpose. We propose a mining algorithm that adapts the
current state-of-the-art algorithm to mine rules by only retrieving the required data
from these endpoints.

1.2 Contributions

This thesis proposes AMIE SPARQL, an extension of the AMIE [5] rule mining algo-
rithm to iteratively mine rules over KGs hosted as SPARQL endpoints and presents
results of an early proof-of-concept implementation of the algorithm in Python. The
thesis at the end provides suggestions on ways to improve the algorithm and imple-
mentation for better performance.

1.3 Structure of the Book

The thesis is structured as follows.

• Background: This chapter goes over the preliminaries required to understand
the thesis.

• Related Work: The chapter presents briefly works that have been done in
recent years in the field of symbolic learning.

• AMIE SPARQL- Our Proposed Approach: The chapter goes over the
mining model presented by AMIE and presents an adaptation of it tailored for
mining rules over KGs hosted as SPARQL endpoints.

• Implementation: This chapter goes over some of the details about the imple-
mentation of the algorithm in Python and discusses some of the caveats that
arose during the implementation.

1https://virtuoso.openlinksw.com/

4

1.3. Structure of the Book

• Empirical Evaluation: The chapter analyzes the results of the approach pre-
sented in AMIE SPARQL- Our Proposed Approach and presents comparison of
the results with the AMIE3[8], latest version of AMIE[5], in various scenarios.

• Conclusions and Future Work: The last chapter provides a brief look at
possible future work for performance improvement before concluding the thesis.

5

Chapter 2

Background

This chapter introduces the main topics needed to understand the development of
this thesis.

2.1 Knowledge Graph

Knowledge Graph is a graph-based structure K, composed of vertices V and edges
P . The vertices symbolize a set of real-world entities E like person, organization,
country, etc or literals L like date, string, number, etc. The edges P , which are
labeled and directed, represent a set of directed relationships between the vertices
like isCapitalOf, isFatherOf, isMotherOf, etc. In this structure, a directed edge
from vertex A to another vertex B represents a fact about vertex A. This is often
represented in literature as (s,p,o) triple or as the relation between subject and object
as p(s, o) with subject s ∈ E, predicate p ∈ P , and object o ∈ E ∪ L. Furthermore,
this structure allows for capturing formal specification of the meaning of these entities
and the relationship using RDF, RDFS, OWL etc. Since, the complete structure is
nothing but a collection of these triples, KGs, as presented here, can be considered
as a set of facts about entities.

2.1.1 Atoms and Rules

An Atom is, for the purpose of the thesis, (s,p,o) triple [also represented as p(s,o)].
The subject can be either an entity or variable, s ∈ E ∪ V , the object either entity,
variable or literal, o ∈ E ∪ V ∪ L. The predicate can be either a relationship or
variable, p ∈ P∪V . The variables can be thought of as placeholders for entities/re-
lations in the triple. The variables are represented as lowercase italicized letters with

6

2.1. Knowledge Graph

a question mark at the front, ?x . As an example: (”Berlin”, “isCapitalOf”, ?x) is
an atom, with variable ?x in object position, which when substituted by “Germany”
would represent a fact in a KG. Similarly, (”Berlin”, ?y, “Germany”) is an atom,
with variable ?y in predicate position. This represents all the facts in KG with
“Berlin” and “Germany” in subject and object positions respectively. Thus, based
on occurrences of variables, an atom can represent a single fact or a set of facts in the
KG. In the scope of the thesis, Rule refer to Horn Rules which are of the form,
Body =⇒ Head. Body is a conjugation of atoms and head is a single atom. So
a rule here is of the form:

B1 ∧B2 ∧ . . . ∧Bn =⇒ H,

also abbreviated as
−→
B =⇒ H

where, H is the head of the rule

and Bn are atoms of the body

Although a rule can be of any form, i.e., the body of the rule can be a permutation
of any sort of atoms, this work would be considering only connected and closed rules.
Two atoms are connected if they share at least one variable in their subject/object
positions. A rule is connected if all of the atoms of the rule are transitively connected.
And the rule is considered closed, if no variable appears in the rule by itself, i.e.,
the variables occur more than once. These considerations are mainly to restrict
the search space, as allowing any form of rules would most definitely increase the
run-time of the algorithm without improving the quality. Following are examples to
clarify these restrictions:

(?x , predicateA,?y) ∧ (?y , predicateB,?z) =⇒ (?x , predicateC,?z) (3)

(?x , predicateA, objV al) ∧ (?p, predicateB,?k) =⇒ (?x , predicateC,?z) (4)

The Rule 3 is closed as well as connected as all the variables of the rule appear in pairs
and the atoms of rule are transitively connected, whereas in Rule 4 the variables ?p,
?k and ?z appear by themselves and the two atoms of the body are not connected,
making the rule as a whole not connected and not closed.

2.1.2 Relation and Functions

In the KG, there can be many subject-object pairs connected by the same predicate,
as predicates are just things that express a directional relationship between entities.

7

Chapter 2. Background

So, in a way, the predicate can be considered a binary relation. And functions are
a kind of binary relations that connect at most one object to every subject, i.e.,
∀s : |o : p(s, o)| ≤ 1. Similarly, inverse functions are those relations that connect
at most one subject to every object. The KGs can include multiple object entries
for a subject-predicate pair, which in reality should strictly have only one entry, for
example: for ’Albus Dumbledore’-father pair, the KG could have two object entries
’Percival’ and ’Percival Dumbledore’. Even though these both entities refer to the
same object, the information that both ’Percival’ and ’Percival Dumbledore’ refer
to the same, might be missing in the knowledge graph because of the way the KGs
are often constructed. To get an idea about several objects that a predicate asso-
ciates a single subject to, AMIE [5] uses the notion of Functionality of predicates.
Functionality of a predicate is a value between 0 and 1. It is defined as:

func (p) =
|{s : ∃o : p(s, o) ∈ K}|
|{(s, o) : p(s, o) ∈ K}|

(5)

Functionality of 1 means that the predicate associates a single subject with ex-
actly one object. The inverse functionality of a predicate is defined as ifunc(p) :=
func(p−1) where func(p−1) is calculated using Equation 5 with subject and object
reversed.

2.1.3 Rule Mining and some useful evaluation metrics

As discussed in Introduction, Rule mining is a process of finding patterns in the
form of logical rules using the information that is already available in the KGs.
Using the mined rules, new information that is unknown to the KG can be deduced,
but therein lies one of the key problems. Just because a rule implies a new fact,
doesn’t necessarily mean that the new fact is true, owing to OWA (more on this
later) under which KGs operate. As a result, we need some way to prove that the
deduced fact is indeed true. Following are some of the statistical measures of the
quality of the rule, which gives a rough idea about the quality of prediction that the
rule makes.

Support

Support of a rule is a measure of the quality of the rule. As in AMIE[5], support
here is also defined as the number of distinct subject-object pairs in the head of all
instantiations of the variables of the rule that appear in the KG. Mathematically,
this means:

supp(
−→
B ⇒ p(s, o)) := |{(s, p) : ∃v1, v2, . . . , vn :

−→
B ∧ p(s, o) ∈ K}| (6)

8

2.2. Rule Mining as ILP, and OWA, and PCA

In Equation 6, vn are the instantiations of variables present in the rule. The sup-
port of a rule: (?a, father,?b) ⇒ (?b, child,?a), would thus be the number of
unique pairs of instantiations of ?a and ?b in the KG for which the condition
(?a, father,?b) ∧ (?b, child,?a) holds true.

Head Coverage

Head Coverage is another measure of the quality of the rule [5]. Since support is an
absolute number, it might not provide useful insight into the rule without knowing
the actual size of the KG. Head Coverage provides a meaningful alternative. It
normalizes the support by the number of unique instances of subject-object pairs
that satisfy the head atom. Mathematically, we define head coverage as follows:

hc(
−→
B ⇒ p(s, o)) :=

supp(
−→
B ⇒ p(s, o))

|{(s, o) : p(s, o) ∈ K}|
(7)

Head Coverage of a rule is a number in the range [0,1]. Head Coverage of 1 means
that all the new facts implied by the rule are present in the KG and thus, the implied
information is true. This signifies that the predictions made by the rule using some
new facts in the body will most likely be true as well.

2.2 Rule Mining as ILP, and OWA, and PCA

Inductive Logic Programming is a process of finding a hypothesis that covers all
positive examples and none of the negatives while taking into account a background
theory. This is typically realized by searching a space of possible hypotheses.”[13]
The rule mining, as it is discussed here, can thus be considered as an ILP algorithm,
as its aim aligns with that of ILP. As such, in order to evaluate the hypothesis (rule,
in our case) of an ILP algorithm, we need an evaluation metric that takes into account
the positive examples that are covered and the negative ones that aren’t covered by
the hypothesis. An evaluation metric to evaluate rules over KGs is, thus, not feasible
as the KGs operate under the Open World Assumption (OWA). According to OWA,
“the truth value of a statement may be true irrespective of whether or not it is known
to be true”[11]. This means that, any new fact implied by a rule, if it is not present
in the KG, cannot simply be considered as a negative example, as is the case in most
other Inductive Logic Programming (ILP) problems. This is because the fact implied
may actually be true but just unknown to the KG.

9

Chapter 2. Background

PCA and PCA Confidence

Under Partical Completeness Assumption (PCA), it is assumed that if for a certain
subject-predicate pair an object attribute is known, then all the objects for this
pair is known. This means that if a rule mining algorithm, outputs a rule which
predicts an another object entity for that subject-predicate pair, this observation
can be considered as a negative example. Using this assumption, AMIE [5] defined a
new metric called PCA Confidence for the evaluation of the rules, which is computed
as follows:

pcaconf(
−→
B ⇒ p(s, o)) :=

supp(
−→
B ⇒ p(s, o))

|{(s, o) : ∃v1, v2, . . . , vn, o′ :
−→
B ∧ p(s, o′)}|

(8)

In Equation 8, the support of the rule is normalized by the set of facts that are
known to be true in the KG, together with the facts that are assumed to be false
under PCA. The Equation 8 is for those predicates p whose func(p) ⩾ ifunc(p).
For predicates with ifunc(p) > func(p), the confidence is calculated as:

pcaconf(
−→
B ⇒ p(s, o)) :=

supp(
−→
B ⇒ p(s, o))

|{(s, o) : ∃v1, v2, . . . , vn, s′ :
−→
B ∧ p(s′ , o)}|

(9)

2.3 RDF and SPARQL

Resource Description Framework (RDF), is a standard framework for representing
information on the Web. RDF, along with its extensions Resource Description
Framework Schema (RDFS), Web Ontology Language (OWL), etc., define sets of
vocabularies to describe and structure resources, data, entities, and relationships on
the web. This enables the linking of structured data to produce a graph-based data
model using an abstract subject-predicate-object syntax called RDF Triple. This
model is often referred to as an RDF Knowledge Graph or simply a Knowledge
Graph, as RDF has established itself as the de-facto way to represent entities and
relationships in Knowledge Graphs nowadays. SPARQL Protocol And RDF Query
Language (SPARQL) is a standardized query language used to retrieve information
from databases or any data source that can be mapped to RDF. It can also be used
to query RDF-KGs (RDF Knowledge Graphs).

10

Chapter 3

Related Work

In this section, some of the works that have been done in recent years in the field of
symbolic learning are discussed. These are the approaches that have shown remark-
able performance in terms of run-time and output of the proposed algorithm.

3.1 RUDIK

RUDIK [12], Rule Discovery in Knowledge Bases, is a system that generates declar-
ative horn rules over Knowledge Graphs. It starts by fetching the triples that are
relevant to a given predicate from a SPARQL endpoint. Using these triples it re-
constructs a smaller graph adding additional edges between literals of similar types
to show the order relation between the literals. The refined graph is then used to
identify paths containing the variable in the rule’s head using A* algorithms to gen-
erate the rule’s body. The rules thus constructed are then filtered using the positive
examples and negative examples, which are generated using PCA (referred to as
Local Closed World Assumption in the paper), to produce a non-exhaustive list of
rules which can then be used to deduce new facts. Despite its innovative approach,
AMIE3 [8] is still able to outperform RUDIK in terms of run-time while still being
exhaustive. The approach outlined here in the thesis, as it is based on AMIE3, and
can circumvent the memory and the computing overhead of having to download the
tuples into the memory and reconstruct the graph, should allow it to compete quite
well against RUDIK even though a direct comparison hasn’t been made at the time
of writing.

11

Chapter 3. Related Work

3.2 Ontological Pathfinding

Ontological Pathfinding (OP) [2], is another scalable mining algorithm, that achieves
its scalability via a series of parallelization, utilizing a highly concurrent architec-
ture based on Spark, and optimization techniques based on Schema-Graph, which is
constructed with the help of semantic information about the entities and relations
available in the KG. The use of concurrent architecture and the schema graph allows
OP to produce semantically correct rules and calculate exact quality scores of the
rules making it another contender for the ”state-of-the-art”. However, the system
allows for the mining of rules containing only 3 atoms, requiring the user to imple-
ment the mining procedure if rules with more atoms are required. This makes OP
less flexible than the algorithm presented here. And since AMIE3 [8] reports itself
as being faster than OP and being able to produce more general rules, the algorithm
presented here, as it is based on AMIE, should fair quite well against OP as well,
although a direct comparison wasn’t made at the time of writing.

3.3 AnyBURL

Anytime Bottom-Up Rule Learning (AnyBURL) [9], is yet another rule mining and
KG completion technique. It starts by sampling paths from the KG which is up-
loaded to the main memory and generalizes these sampled path to produce rules,
calculates their score and if these score satisfy criterion set, accepts them for output.
This procedure of sampling, score calculation and output is repeated for a certain
period of time, mining session. The rules produced in these mining sessions is used
afterward for KG completion. As innovative as the approach is, it still makes a major
misassumption that the complete KG can be uploaded in the main memory. Further-
more, the algorithm relies on sampling paths. This means that for smaller mining
sessions, the output of the algorithm depends heavily on paths that were sampled.
This also means that there is certain chance that the rules produced by the algorithm
is not exhaustive. The paper itself mentions that in some KGs the results produced
after 20000 seconds were no different than the results produced after 10000 seconds
of mining sessions, making the approach less reliable. The approach presented here
corrects the misassumption of infinite memory by using KGs hosted as SPARQL
endpoints. Our approach mines rule in top-down fashion using the operators which
allow us to exhaustively search for rules over the complete KG and produce results
in deterministic manner, making it relatively more reliable.

12

3.4. AMIE, AMIE+ and AMIE3

3.4 AMIE, AMIE+ and AMIE3

AMIE[5], AMIE+ [4], and AMIE3[8], with AMIE3 being the current state-of-the-art
algorithm in symbolic learning over Knowledge Graphs, are a group of ILP algorithms
that mine rules over large KGs by loading the whole KG represented as (subject,
predicate, object) triples in an internal data structure stored in the local memory.
These works successively introduced several optimization techniques to make iter-
ative rule mining faster and more efficient, making the latest version, AMIE3, the
current “state-of-the-art” in the category. But as good as these algorithms are, they
make a single major misassumption that the user using these algorithms has infi-
nite local memory, and today’s large KG containing triples in the range of millions
can be uploaded into local memory. The approach presented here tries to correct
this misassumption by adapting these algorithms by making use of KG hosted as a
SPARQL endpoint for mining purposes. Even in smaller KG containing triples in
the range of thousands, the adapted algorithm (implemented in Python), is shown
to have better memory performance while producing almost the same rules at the
expense of some run-time performance, which can most definitely be improved (as
the current implementation is still in its early stages of development).

13

Chapter 4

AMIE SPARQL- Our Proposed
Approach

In any ILP algorithm, in order to produce a hypothesis, there needs to be some
systematic mechanism for exploring the hypothesis space. Here, in the context of
mining rules over a KG, the complete KG itself is the search space that needs to
be explored. For KGs with millions of triples, it thus becomes essential that the
exploration mechanism is systematic and very efficient in order to keep the run-time
as well as the memory requirement of the algorithm reasonable. As in AMIE [5],
Mining operators and pruning together are used as the exploration mechanism in
the approach, the details of which are discussed in sections below along with the
algorithm itself.

4.1 Mining Operators

A rule is implemented as a list of atoms, with the first element symbolizing the head
of the rule and the remaining elements representing the body. Mining rule thus
implicitly means iteratively adding atoms to this list and mining operators are the
means of exploring the search space to find possible candidate atoms to add to the
list. The operators are as follows:

Dangling Operator (OD)

The Dangling Operator adds a new atom Bd to the input rule
−→
B . The added atom,

with predicate pd ∈ P , shares either subject or object with the preceding atom Bn

of the rule, which can be either a variable or even an entity, V ∪ E. The other

14

4.1. Mining Operators

component is occupied by a fresh variable z ∈ Vfree, which are the variables that
haven’t occurred in any other atom of the input rule.

OD : (B0, B1, . . . , Bn) −→ (B0, B1, . . . , Bn, Bd)

where:

n ∈ N0, z ∈ Vfree, Bn : (x, p, y)

Bd ∈ {(x, pd, z), (y, pd, z), (z, pd, x), (z, pd, y)}1

x, y ∈ V ∪ E and p, pd ∈ P

Closing Operator (OC)

The Closing Operator adds a new atom Bc to the input rule
−→
B . Similar to the dan-

gling operator, the added atom shares either the subject or object with the preceding
atom of the rule. But unlike the dangling operator, the other component of Bc is
filled by a variable z ∈ Vbound, which are variables that have already occurred in other
atom(s) of the input rule.

OC : (B0, B1, . . . , Bn) −→ (B0, B1, . . . , Bn, Bc)

where:

n ∈ N0, z ∈ Vbound, Bn : (x, p, y)

Bc ∈ {(x, pd, z), (y, pd, z), (z, pd, x), (z, pd, y)}1

x, y ∈ V ∪ E and p, pd ∈ P

Instantiation Operator (OI)

The Instantiation Operator also works similarly to the dangling operator, in that it

adds a new atom Bi to the input rule
−→
B which shares either subject or object with

the preceding atom of the rule. Contrary to the dangling operator, however, the

1This set represents just the pattern of atoms that the operator may add to the rule. In reality,
the actual set may contain more than four atoms. But all the atoms that the operator adds follow
one of these four patterns.

15

Chapter 4. AMIE SPARQL- Our Proposed Approach

remaining component of Bi is filled by an entity z ∈ E.

OI : (B0, B1, . . . , Bn) −→ (B0, B1, . . . , Bn, Bi)

where:

n ∈ N0, z ∈ E,Bn : (x, p, y)

Bc ∈ {(x, pd, z), (y, pd, z), (z, pd, x), (z, pd, y)}1

x, y ∈ V ∪ E and p, pd ∈ P

On applying the above operators one after the other, the whole search space of the
rules can be explored. But doing so would be very inefficient, as it would produce
the entire search space of possible rules, which would include rules that might not be
that useful, or rules that are not closed and connected. Not only that, the exploration
would have very high run-time and memory requirements, which would defeat the
whole purpose. To prevent that the pruning comes into play.

4.2 Pruning

Pruning refers to the process of eliminating candidate rules from further extension
and/or being output. Following AMIE, the intermediate rules with head coverage
less than 0.01 are excluded from further expansion, the reason being the monotonicity
of the head coverage and the lower significance of such rules. Since head coverage
is a monotonic measure, monotonically decreasing with an increase in the length of
the rule, expansion of any rule with less than 0.01 head coverage results in rules with
even lower head coverage value in most cases. We consider such rules marginal and
thus exclude them from expansion.
Besides head coverage, the work also prunes the rules on PCA Confidence. For
PCA Confidence a lower bound of 0.1 is set for the rules in order to qualify them
for output. Any rule with PCA Confidence lower than that is excluded from being
output, as the fact deduced by such a rule is statistically less likely to be true. From
output are also excluded, rules with PCA confidence lower than that of the parent
rule. In addition to the above, the algorithm keeps a record of rules that have already
been explored for extension and the rules that have already been outputted. Every
rule before being expanded further and before being output is checked against these
records. This ensures that no resource is wasted in exploring the same rule multiple
times and prevents outputting the same rule twice.

16

4.2. Pruning

As in AMIE, the length of the rule is also used to prune potential candidates. AMIE
observed that the rules with atoms more than 3 tend to be convoluted and less
insightful and thus by default the algorithm is configured to mine rules of length
3. Similarly, our approach also mines rules with a maximum of 3 atoms by default.
Candidate rules that are of length 3 but aren’t closed and/or connected are thus
excluded from the output. Rules that are already of maximum length aren’t further
expanded. Furthermore, any candidate rules that are one atom short of maximum
length and that have more than 2 free variables are also pruned, as such rules cannot
be closed by any of the mining operators and thus will not end up in output.

Algorithm 4.1 The Rule-mining Algorithm

1: function MineRule(Rule, Endpoint,minPcaConf,minHC, atomsToAdd)
2: RetrieveFunctionalityInfo(Endpoint, Rule)
3: if atomsToAdd == 0 then
4: return
5: end if
6: if exploredRules.contains(Rule) then
7: return
8: end if
9: exploredRules.append(Rule)
10: possibleExtensions← Refine(Endpoint, Rule,minPcaConf,minHC)
11: while ¬possibleExtensions.isEmpty() do
12: a← possibleExtensions.pop()
13: rule.append(a)
14: if acceptedForOutput(rule) then
15: output(rule)
16: end if
17: if ¬shouldBeExpanded(rule, atomsToAdd− 1) then
18: continue ▷ Skip rest of the loop body
19: end if
20: MineRule(rule, Endpoint,minConf,minHC, atomsToAdd− 1)
21: end while
22: end function

17

Chapter 4. AMIE SPARQL- Our Proposed Approach

4.3 Our Proposed Algorithm for AMIE SPARQL

Algorithm 4.1 is the core algorithm in pseudo-code. The mining algorithm is im-
plemented as a recursive function, which takes ‘intermediate’ Rule, the SPARQL
Endpoint on which the KG is hosted, the threshold for PCA confidence minPca-
Conf, the threshold for head coverage minHC and atomsToAdd as inputs. Initially,
the Rule is just a list with a head atom, which is recursively extended on successive
calls. In line 2, the functionality score of the rule-head is retrieved from the given
Endpoint, which is later used for the calculation of the PCA confidence value in “RE-
FINE” function in line 10. The function returns if no more atoms are to be added to
the given rule. exploredRules (in line 6 and 9) is the data structure, we use to keep
track of rules that are explored in each recursion. The function returns also when
called with an input rule, that has already been explored (line 6 - 8). If the input
rule hasn’t been explored, it is added to the exploredRules and expanded afterwards
by “REFINE” function described in pseudo-code in Algorithm 4.2.

Algorithm 4.2 Refinement Algorithm

1: function refine(Endpoint, Rule,minPcaConf,minHC)
2: possibleExtensions← ⟨⟩
3: operators← [danglingOperator, closingOperator, instantionOperator]
4: for op ∈ operators do
5: a← op(Endpoint, Rule,minPcaConf,minHC)
6: possibleExtensions.update(a)
7: end for
8: return possibleExtensions
9: end function

The “REFINE” function as shown in Algorithm 4.2 applies each of the mining
operators to the input Rule one after the other and returns all possible candidate
atoms that can be added to the input rule in order to extend it. Algorithm 4.3
presents the workings of the dangling operator in pseudo-code for clarity. . The
Algorithm uses the input rule to generate a list of possible patterns of atom that
dangling operator OD can add. For each of these patterns, a SPARQL query is
generated incorporating the PCA confidence1 threshold (minPcaConf) and head
coverage threshold (minHC) as filters in the query itself. On executing these queries

1Since PCA confidence makes sense only for rules that are closed and connected, the PCA
confidence filters are conditionally added in the generated queries for closed and connected rules
only. Checking if an intermediate rule is connected and closed is trivial task of counting variables.

18

4.3. Our Proposed Algorithm for AMIE SPARQL

against the given Endpoint, all the possible candidate atoms are obtained which
satisfy both the PCA confidence threshold and the head coverage threshold without
the need of any local computations. The other operators function in similar manner.

Algorithm 4.3 Dangling Operator

1: function danglingOperator(Endpoint, Rule,minPcaConf,minHC)
2: danglers← Rule.getDanglerPatterns()
3: possibleExtensions← ⟨⟩
4: while ¬danglers.isEmpty() do
5: atomPattern← danglers.pop
6: q ← generateQuery(Rule, atomPattern,minPcaConf,minHC)
7: results← executeQuery(Endpoint, q)
8: possibleExtensions.update(results)
9: end while
10: return possibleExtensions
11: end function

Algorithm 4.4 and Algorithm 4.5 check if the rule should be excluded from output
and further expansion respectively as discussed in Section 4.2.

Algorithm 4.4 Algorithm to check if the rule should be outputted

1: function acceptedForOutput(Rule)
2: if ¬Rule.isClosed() ∧ Rule.pcaConf < Rule.parent.pcaConf then
3: return False
4: end if
5: if outputtedRules.contains(Rule) then
6: return False
7: end if
8: outputtedRules.append(Rule)
9: return True
10: end function

19

Chapter 4. AMIE SPARQL- Our Proposed Approach

Algorithm 4.5 Algorithm to check if the rule should be further expanded

1: function shouldBeExpanded(Rule, atomsToAdd)
2: if atomsToAdd == 1 ∧Rule.danglingV ariables.length > 2 then
3: return False
4: end if
5: if Rule.pcaConf == 1.0 then
6: return False
7: end if
8: return True
9: end function

20

Chapter 5

Implementation

This chapter discusses some of the non-trivial implementation details of our algorithm
presented in chapter 4. The implementation was done in Python for the simplicity
of language and to circumvent the memory and run-time overhead of Java Virtual
Machine (JVM), which AMIE3 has.

5.1 Parallel computing with Python

Parallel computing refers to a type of computation in which multiple processes are
run simultaneously. Specifically for our purpose, by using parallel computing, we
can mine rules faster by running the mining algorithm and/or parts of it in multiple
processes or threads. Like any other modern programming language, python also
allows two ways of parallel computing: Concurrency and Parallelism. Concurrency
via the use of multiple threads is an efficient way of parallel computing as it has lesser
overhead than using multiple processes (Parallelism). However, “In CPython, the
global interpreter lock, or GIL, is a mutex that protects access to Python objects,
preventing multiple threads from executing Python bytecodes at once.”[6] Since al-
most all the Python implementation that is in use today is CPython, what this
means is that, because of GIL every multi-threaded Python application is effectively
single-core, even though we may have a multi-core processor. For our use case, we
had to rely on a mix of multi-threading and multi-processing features that Python
offers, instead of just using multi-threading.
In our implementation, for every possible rule head, the mining algorithm, Algo-
rithm 4.1, is started in a new worker process using the ProcessPoolExecutor of the
multiprocessing package. To find possible extensions for the rule head, the mining
operators, the op function in line 5 of Algorithm 4.2, are started by these worker

21

Chapter 5. Implementation

process in separate worker threads using the ThreadPoolExecutor of the multithread-
ing package. These threads themselves start further threads to query the SPARQL
endpoints, the executeQuery function in line 7 of Algorithm 4.3. Since executing
query is an asynchronous operation with certain time delay between firing the query
and getting the results, executing 10 queries in 10 threads and collecting the results
ends up taking about the same amount of time as executing just 1 query in the main
thread and getting the results. After the possible candidates to add to the rule are
found, the mining algorithm is called again in a new worker thread, line 20 of Algo-
rithm 4.1 for each of the extended rules. In this way, the algorithm is implemented
in a highly parallelized fashion.

5.2 SPARQL Query Generation

Listing 5.1 shows the pattern of query that is generated, by generateQuery function
in line 6 Algorithm 4.1, and executed, by executeQuery in line 7 Algorithm 4.1, to
get the needed data from the SPARQL Endpoint. In following paragraphs, we break
down the query and go over the parts:

Part 1

grouping variables are the variables of interest. For example, in case of dan-
gling operator and closing operator, this would be a single variable which would
bind to the possible predicates for the new atom that would be added by the
operators. In case of instantiation operator, this would be two variables which
would bind to distinct combinations of possible predicate and entity in the new
atom. head triple pattern and body triple pattern indicate the head atom ex-
pressed in triple pattern and body atoms expressed in triple pattern. For a rule like
predecessor(a, b) ∧ father(a, b) ⇒ child(b, a), the head triple pattern would be (?b
child ?a) and the body triple pattern would be (?a father ?b).(?a predecessor ?b).
From this part, we obtain the predicate value or (predicate, entity) values that we
are searching for along with the associated support.

Part 2

From this part, the number of distinct pairs of entities that bind to the head variables
of the rule is obtained.

22

5.2. SPARQL Query Generation

Listing 5.1: The SPARQL Query generated by line 6 of Algorithm 4.3

1 SELECT

2 ?support

3 ?head

4 ((? support /?head) as ?head_coverage)

5 ?pca_body_size # conditional

6 ((? support /? pca_body_size) as ?pca_confidence) # conditional

7 grouping_variable

8 WHERE {

9 {

10 # Part 1

11 SELECT

12 grouping_variable

13 xsd:float(COUNT(DISTINCT *)) as ?support

14 WHERE {

15 SELECT

16 head_variables

17 grouping_variable

18 WHERE {

19 head_triple_pattern .

20 body_triple_pattern

21 }

22 }

23 GROUPBY grouping_variable

24 }

25 {

26 # Part 2

27 SELECT

28 xsd:float(COUNT(DISTINCT *)) as ?head

29 WHERE {

30 head_triple_pattern

31 }

32 }

33 {

34 # Part 3

35 SELECT

36 grouping_variable

37 xsd:float(COUNT(DISTINCT *)) as ?pca_body_size

38 WHERE {

39 SELECT

40 pca_head_variables

41 grouping_variable

42 WHERE {

43 pca_head_triple_pattern .

44 body_triple_pattern

45 }

46 }

47 GROUPBY grouping_variable

48 }

49 # Part 4

50 FILTER ((? support /? pca_body_size) > min_pca_conf) # conditional

51 FILTER ((? support /?head) > min_head_cov)

52 }

23

Chapter 5. Implementation

Part 3

This part, along with the lines marked with # conditional, are conditionally gen-
erated only for the rules that are connected and closed as explained in Section 4.3.
The part gets the PCA body size for values that bind to grouping variables of a
closed and connected rule. For a closed and connected rule like predecessor(a, b) ∧
father(a, b) ⇒ child(b, a), pca head triple pattern would be (?b child ?a’) and
the corresponding pca head variables would be ?b ?a’, assuming func(child) ≥
ifunc(child). In case of func(child) < ifunc(child), these would be (?b’ child ?a)
and ?b’ ?a respectively.

Part 4

min pca conf and min head cov are the PCA confidence and the head coverage
thresholds passed to the generateQuery function. The query generator function
takes these thresholds into account and generates and adds the SPARQL FILTERs
to the query. These are responsible for filtering out the values that bind to group-
ing variables that don’t fulfill the thresholds.

5.3 Synchronized Rule Store

The exploredRules in Algorithm 4.1 and the outputedRules in Algorithm 4.4 are the
data-structures that we use to store the rules and check if a rule is already present in
the data-structures. These structures are the instances of Synchronized Rule Store,
which is a hash-based data structure for storing rules in memory. The structure
allows for synchronized read and write access from multiple threads. This is needed
in our case, because the algorithm we have, is a highly concurrent one, with multiple
threads trying to store the rules that they have outputted or explored and to check
if a rule is already explored or outputted.

The structure is implemented as a key-value map containing further key-value maps.
The hash of the string representation of atoms in the rule is used as a key to ac-
cess the associated value, which is yet another key-value map. Algorithm 5.1 shows
in pseudo-code, how a rule is added to the store and Algorithm 5.2 shows how
the existence of a rule in the store is checked. The atoms in the body of the rule
are reordered according to the dictionary order of predicates in the atom before-
hand. This helps in making the store efficient by making sure that only a single
version of the same rules with different permutations of atoms in the rule body like
predecessor(a, b)∧ father(a, b)⇒ child(b, a) and father(a, b)∧ predecessor(a, b)⇒

24

5.3. Synchronized Rule Store

Algorithm 5.1 Algorithm to store a rule

1: function storeRule(Rule, keyV alueMap)
2: current← keyV alueMap
3: list← Rule.atomsList
4: while ¬empty(list) do
5: a← list.pop()
6: key ← hash(a)
7: if current.exists(key) then
8: current← current.getValue(key)
9: continue
10: end if
11: t← KeyV alueMap <> ▷ Setting t to an empty key-value map
12: current.add((key, t))
13: current← t
14: end while
15: headCovList← current.getValue(“headCovList′′)
16: headCovList.append(Rule.headCov)
17: end function

child(b, a) is stored. As seen in line 16 of Algorithm 5.1, in the last key-value map,
under the key “headCovList”, a list of head coverage values is kept for the rules that
have atoms with the same predicates. This allows for the storing of rules with the
same predicates in their atoms but different variables. The keyValueMaps in these
algorithms are implemented as Python dictionaries. As checking the existence of a
key in a Python dictionary has constant time complexity, and the rules in our case
have a fixed maximum length, both adding a rule and checking the existence of the
rule is done in constant time. In a KG with P predicates, the space complexity with
max rule length 3 is at most O(P4), reducing memory consumption.

25

Chapter 5. Implementation

Algorithm 5.2 Algorithm to check if a rule exists in the store

1: function storeRule(Rule, keyV alueMap)
2: current← keyV alueMap
3: list← Rule.atomsList
4: while ¬empty(list) do
5: a← list.pop()
6: key ← hash(a)
7: if current.exists(key) then
8: current← current.getValue(key)
9: continue

10: end if
11: return False
12: end while
13: headCovList← current.getValue(“headCovList′′)
14: if headCovList.exists(Rule.headCov) then
15: return True
16: end if
17: return False
18: end function

26

Chapter 6

Empirical Evaluation

The chapter discusses the experiments that were performed and the obtained re-
sults. As the algorithm presented in this work is based on AMIE, the experiments
were constructed with the main goal of checking how well the algorithm performs in
comparison to AMIE3.

6.1 Experimental Configuration

For the experiment, our algorithm was configured with the default configuration
of AMIE3, i.e, the head coverage threshold was set to 0.01, the PCA confidence
threshold was set to 0.1, the maximum length of the rule was set to 3 and only
the rules with variables were mined, i.e, like AMIE3 by default, the instantiation
operator was not used in mining procedure. All the experiments were conducted on
a machine running Ubuntu 22.04 with 32 gigabytes of RAM and an Intel i7 8th gen
processor with 4 cores and 8 threads.
Two set of experiments were performed, the first to check the memory and run-time
performance and the second to check the soundness and completeness of the output
of the presented algorithm. In the first groups of experiments, we decided to use
diefficiency metrics [1] to compare the run-time performance of the algorithms as
these metrics enable us to quantify and evaluate the efficiency of the algorithms over
a period of time. The python package diefpy2 was used to calculate and compare
the diefficiency metrics. For the diefficiency metrics calculation, the AMIE3 had
to be modified to include in the rule output, the exact time at which the algorithm
made the decision to output the rule, as this was not included in its output by

2https://pypi.org/project/diefpy

27

Chapter 6. Empirical Evaluation

default. In order to make the actual run-time performance comparison fair, the
time it took to download the KG as a (Tab-separated values) TSV file required by
AMIE3 to start the mining rule was also added up in run-time. This allowed us to
compare the run-time of algorithms without any presumptions, from the very start
till all possible rules were outputted and the mining procedure was finished. For the
memory performance comparison, the python package memory profiler 3 was used to
record the memory usage of the algorithms while they were mining rules. In the
case of AMIE, the memory usage while downloading the KG as TSV file was also
recorded, which is reasonable as the experiments were considering the rule mining
procedure from start to finish, i.e., from data preparation for AMIE3 till the output
of the last rule. In the second group of experiments, the output rules of AMIE3 were
taken as the ground truth. The hash-based data structure presented in Section 5.3
was used to check the completeness and soundness of our proposed algorithm.

6.1.1 Knowledge Graphs used in Experiments

The experiments were conducted over two small-sized Knowledge Graphs, named
familyKG and frenchRoyalty. The familyKG contains facts about members of a hy-
pothetical family and frenchRoyalty contains facts about the members of the French
Royal Family and relationships between them. The familyKG contains 10,741 triples
and frenchRoyalty contains 7,048 triples. For the experiments, these KGs were hosted
as SPARQL endpoints using virtuoso4 on servers. The machine on which the exper-
iments were conducted, was on the same LAN as these servers.

6.2 Results

6.2.1 Run-time Performance Results

Figure 6.1 shows a comparison between the execution time5 of AMIE3 and the algo-
rithm presented in chapter 4 (which is referred in following sections as AMIE SPARQL).
AMIE3 outperforms AMIE SPARQL in it’s current stage in terms of run-time. We
see that in familyKG, AMIE3 is able to produce all of the rules under default config-
uration in just over 2 seconds, whereas AMIE SPARQL takes around 7.5 seconds. In
case of frenchRoyalty, AMIE3 produces all of the rules just under 2 seconds, whereas
AMIE SPARQL takes around 7 seconds.

3https://pypi.org/project/memory-profiler
4https://virtuoso.openlinksw.com
5The execution time of both algorithms were calculated using GNU time to ensure fairness.

28

6.2. Results

Figure 6.1: Time taken by AMIE3 and our approach (in fig: AMIE SPARQL) to
mine rules over the KGs in default configuration

Figure 6.2: Trace of rules produced by AMIE3 and AMIE SPARQL over time over
familyKG

29

Chapter 6. Empirical Evaluation

Figure 6.3: Trace of rules produced by AMIE3 and AMIE SPARQL over time over
frenchRoyalty

(a) familyKG (b) frenchRoyalty

Figure 6.4: Continuous efficiencies of AMIE3 and AMIE SPARQL with diefk

Figure 6.4 compares the dief@k score for the algorithms when they produced
k=25%, k=50%, k=75%, and k=100% of the rules when mining over the two KGs.
dief@k score is a measure of area under the curve plotted using the number of

30

6.2. Results

answers produced by an approach over a period of time, the curves in Figure 6.2
and Figure 6.3 in our case. For a fixed k, an approach that has a lower dief@k
score is better, as a lower dief@k score means, k answers were produced in a shorter
period of time, which suggests that the approach is more efficient comparatively.
The Figure 6.4 suggests that the continuous efficiency of AMIE3 is better overall
compared to our approach.

(a) familyKG (b) frenchRoyalty

Figure 6.5: Performances of AMIE3 and AMIE SPARQL with dieft

Figure 6.5 allow for a more detailed comparison of run-time performance of the
AMIE3 and our approach. In the figure, TFFT, Time for the first tuple, is the
elapsed time when the first rule was mined. This means, that the higher the TFFT−1

the faster the approach is producing the first rule. Since, our algorithm doesn’t need
to spend time downloading the KG and uploading the KG in the memory, in this
category, we fair better than AMIE3 in both cases. ET is the total elapsed time for
the algorithms to finish mining, and thus higher ET−1 is better, as the algorithm
that finishes faster is better. In this regard, AMIE3 outperforms our algorithm in
the experiments that were conducted. Comp, completeness, is the percentage of
the total number of answers/rules produced by the algorithm. This is discussed in
detail in Subsection 6.2.3. T is the throughput which is calculated by dividing the
total answers produced by the execution time of the algorithms. As both AMIE3
and our approach are producing about same results, the throughput in both cases
are high for AMIE3 because of the lower ET. dief@t is the area under the curve of
answers produced over time t, where t is the minimum execution time of the tested

31

Chapter 6. Empirical Evaluation

approaches. Opposite to dief@k, the higher the dief@t, the better the score, as
higher score means that the approach was able to produce higher number of results
within time t. Seeing that AMIE3 is finishing faster in both of the cases, the dief@t
scores are calculated with t = ET of AMIE3. In familyKG experiment, AMIE3
is better than our approach. However, in frenchRoyalty, dief@t scores are almost
same, 1138 (AMIE3), and 1127 (AMIE SPARQL). This is most likely because of the
higher slope of AMIE3’s answer traces, as seen in Figure 6.3.

6.2.2 Memory Performance Results

(a) AMIE3 (b) AMIE SPARQL

Figure 6.6: Memory-traces of the algorithms while mining rule over familyKG

Figure 6.6a shows that while running AMIE3 over the familyKG, a maximum of
around 720 MiB was used, with the area under the trace curve of around 600.
AMIE SPARQL performed, as seen in Figure 6.6b, here in this situation a lot bet-
ter. The maximum memory used by AMIE SPARQL was less than half of what
AMIE3 used, however with the area under the curve of around 1700. The same kind
of result could be seen while running the experiments over frenchRoyalty KG. The
peak memory used by AMIE3 was around 600 MiB, Figure 6.7a, with area under the
trace of around 300, whereas AMIE SPARQL could work with just over 250 MiB,
Figure 6.7b, but with higher area under the trace of around 1700. While the area
under the trace value for AMIE SPARQL is higher in comparison to AMIE3, it has
to be noted that the implementation is still just in its early stage and no specific
optimization of any kind has been done. This goes to show the potential of our

32

6.2. Results

algorithm and hints at the possibility of further improvements, which could make it
even faster and more memory efficient.

(a) AMIE3 (b) AMIE SPARQL

Figure 6.7: Memory-traces of the algorithm while mining rule over frenchRoyalty

6.2.3 Discussion

AMIE3 produced on frenchRoyalty KG, a total of 190 rules, whereas AMIE SPARQL
produced a total of 206 rules. On closer inspection, it was found that AMIE SPARQL
was outputting some extra rules. This was due to the fact that when outputting
rules, only the direct parent of the rule was being checked for pruning. As ob-
served by AMIE+[4], the rule actedIn(x, y) ∧ directed(x, y) ⇒ created(x, y) can
be derived by either adding directed(x, y) to actedIn(x, y) ⇒ created(x, y) or by
adding actedIn(x, y) to directed(x, y) ⇒ created(x, y). Particularly in output rules
of frenchRoyalty, there were cases where one of the parent had higher PCA con-
fidence scores than other. As AMIE SPARQL checks only the direct parent of
the rule, the rule actedIn(x, y) ∧ directed(x, y) ⇒ created(x, y) is outputted even
though directed(x, y) ⇒ created(x, y) its indirect parent may have a higher PCA
confidence than it. Besides these scenarios, 2 of the rules produced by AMIE3 were
not being outputted by AMIE SPARQL. These were the rules where the head pred-
icate appeared in the rule body, as successor(b, f) ∧ child(a, f) ⇒ child(a, b). But
AMIE SPARQL produced only the rule, successor(b, f) ∧ child(a, b) ⇒ child(a, f)
which had both higher PCA confidence score and higher head coverage. On fam-
ilyKG, AMIE3 produced a total of 367 rules. AMIE SPARQL on the other hand

33

Chapter 6. Empirical Evaluation

produced 361 rules. So 6 rules were missing from AMIE SPARQL’s output. On
closer inspection, AMIE SPARQL found rules with the same predicates and head
coverage as these rules, but with different variables. So if AMIE3 mined, for example,
both successor(b, f) ∧ child(a, f) ⇒ child(a, b) and successor(b, f) ∧ child(a, b) ⇒
child(a, f) with same head coverage, AMIE SPARQL was producing only one of
these, leading to a conclusion, that the data-structure could be improved to tell
these rules apart.

34

Chapter 7

Conclusions and Future Work

This chapter summarizes the content of the thesis, addresses the limitations of the
work, and provides directions for future research in the area.

7.1 Conclusions

This thesis presents an adaptation of the algorithm proposed by AMIE, AMIE+, and
AMIE3. The adaptation is made to circumvent the memory bottleneck of AMIE al-
gorithms and to make the mining of rules over large KGs viable “locally”, by using
the SPARQL endpoints on which these KGs are hosted. A highly concurrent and
configurable implementation of the adaptation was created which was shown exper-
imentally in chapter 6 to improve memory usage over AMIE3, while still producing
almost the same rules as mined by AMIE3. A new synchronous hash-based data
structure was also implemented to allow for storing the rules and checking their
existence very efficiently.

7.2 Limitations and Future Work

Although our mining algorithm could improve the memory performance in compar-
ison drastically, the algorithm still has some issues and limitations as was observed
in chapter 6. These include:

• Use of semantic information: Currently the algorithm generates SPARQL
queries that donot consider the semantic information available in the KG. In-
corporating the semantic information, for example, reasoning performed over
the KGs considering T-Box with entailment regimes while generating the query

35

Chapter 7. Conclusions and Future Work

could improve the query execution time. This could be considered in the next
steps of the work.

• Run-time Performance: Although, under default configuration, the algo-
rithm was shown to mine rules in a reasonable time, the time taken was still
3 times worse, even in the small KGs on which we performed our experiments.
The run-time of the algorithm at its current state can blow up exponentially
when used over very large KGs. Further work has to be done to improve this,
one of the ways could involve the optimization of the queries that are executed
to find the extension candidates.

36

Bibliography

[1] Maribel Acosta, Maria-Esther Vidal, and York Sure-Vetter. “Diefficiency metrics: measuring
the continuous efficiency of query processing approaches”. In: The Semantic Web–ISWC
2017: 16th International Semantic Web Conference, Vienna, Austria, October 21-25, 2017,
Proceedings, Part II 16. Springer. 2017, pp. 3–19.

[2] Yang Chen et al. “Ontological Pathfinding: Mining First-Order Knowledge from Large Knowl-
edge Bases”. In: Proceedings of the 2016 ACM SIGMOD international conference on Man-
agement of data. ACM. 2016.

[3] Michael Färber and Achim Rettinger. “Which knowledge graph is best for me?” In: arXiv
preprint arXiv:1809.11099 (2018).

[4] Luis Galárraga et al. “Fast rule mining in ontological knowledge bases with AMIE+”. In:
The VLDB Journal 24.6 (2015), pp. 707–730.

[5] Luis Antonio Galárraga et al. “AMIE: association rule mining under incomplete evidence in
ontological knowledge bases”. In: Proceedings of the 22nd international conference on World
Wide Web. 2013, pp. 413–422.

[6] GlobalInterpreterLock - python-wiki. url: https://wiki.python.org/moin/GlobalInterpreterLock
(visited on 11/09/2023).

[7] Aidan Hogan et al. Knowledge Graphs. English. Synthesis Lectures on Data, Semantics, and
Knowledge 22. Springer, 2021. isbn: 9783031007903. doi: 10.2200/S01125ED1V01Y202109DSK022.
url: https://kgbook.org/.

[8] Jonathan Lajus, Luis Galárraga, and Fabian Suchanek. “Fast and exact rule mining with
AMIE 3”. In: The Semantic Web: 17th International Conference, ESWC 2020, Heraklion,
Crete, Greece, May 31–June 4, 2020, Proceedings 17. Springer. 2020, pp. 36–52.

[9] Christian Meilicke et al. “Anytime Bottom-Up Rule Learning for Knowledge Graph Comple-
tion.” In: IJCAI. 2019, pp. 3137–3143.

[10] Natasha Noy et al. “Industry-scale Knowledge Graphs: Lessons and Challenges: Five diverse
technology companies show how it’s done”. In: Queue 17.2 (2019), pp. 48–75.

[11] Open World Assumption. url: https://en.wikipedia.org/wiki/Open-world_assumption
(visited on 10/05/2023).

37

https://wiki.python.org/moin/GlobalInterpreterLock
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://kgbook.org/
https://en.wikipedia.org/wiki/Open-world_assumption

Bibliography

[12] Stefano Ortona, Vamsi Meduri, and Paolo Papotti. “Robust discovery of positive and negative
rules in knowledge-bases”. © EURECOM. Personal use of this material is permitted. The
definitive version of this paper was published in Technical Report RR-17-333, 15 September
2017 and is available at : MA thesis. 2017.

[13] Luc De Raedt. “Inductive Logic Programming”. In: Encyclopedia of Machine Learning. Ed.
by Claude Sammut and Geoffrey I. Webb. Boston, MA: Springer US, 2010, pp. 529–537. isbn:
978-0-387-30164-8. doi: 10.1007/978-0-387-30164-8_396. url: https://doi.org/10.
1007/978-0-387-30164-8_396.

[14] Amit Singlal. Introducing the Knowledge Graph: things, not strings. 2012. url: https://
blog.google/products/search/introducing-knowledge-graph-things-not/ (visited on
10/05/2023).

38

https://doi.org/10.1007/978-0-387-30164-8_396
https://doi.org/10.1007/978-0-387-30164-8_396
https://doi.org/10.1007/978-0-387-30164-8_396
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://blog.google/products/search/introducing-knowledge-graph-things-not/

	Introduction
	Motivation
	Contributions
	Structure of the Book

	Background
	Knowledge Graph
	Atoms and Rules
	Relation and Functions
	Rule Mining and some useful evaluation metrics

	Rule Mining as ILP, and OWA, and PCA
	RDF and SPARQL

	Related Work
	RUDIK
	Ontological Pathfinding
	AnyBURL
	AMIE, AMIE+ and AMIE3

	 AMIE SPARQL- Our Proposed Approach
	Mining Operators
	Pruning
	 Our Proposed Algorithm for AMIE SPARQL

	Implementation
	Parallel computing with Python
	SPARQL Query Generation
	Synchronized Rule Store

	Empirical Evaluation
	Experimental Configuration
	Knowledge Graphs used in Experiments

	Results
	Run-time Performance Results
	Memory Performance Results
	Discussion

	Conclusions and Future Work
	Conclusions
	Limitations and Future Work

	Bibliography

