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Abstract: Biocatalysis can be applied in aqueous media and in different non-aqueous solutions
(non-conventional media). Water is a safe solvent, yet many synthesis-wise interesting substrates
cannot be dissolved in aqueous solutions, and thus low concentrations are often applied. Conversely,
non-conventional media may enable higher substrate loadings but at the cost of using (fossil-based)
organic solvents. This paper determines the CO2 production—expressed as kg CO2·kg product−1—of
generic biotransformations in water and non-conventional media, assessing both the upstream and
the downstream. The key to reaching a diminished environmental footprint is the type of wastewater
treatment to be implemented. If the used chemicals enable a conventional (mild) wastewater treat-
ment, the production of CO2 is limited. If other (pre)treatments for the wastewater are needed to
eliminate hazardous chemicals and solvents, higher environmental impacts can be expected (based on
CO2 production). Water media for biocatalysis are more sustainable during the upstream unit—the
biocatalytic step—than non-conventional systems. However, processes with aqueous media often
need to incorporate extractive solvents during the downstream processing. Both strategies result
in comparable CO2 production if extractive solvents are recycled at least 1–2 times. Under these
conditions, a generic industrial biotransformation at 100 g L−1 loading would produce 15–25 kg
CO2·kg product−1 regardless of the applied media.

Keywords: green chemistry metrics; biocatalysis; wastewater; CO2 production

1. Introduction

Biocatalysis is considered one of the pillars on which the future of sustainable chem-
istry will be based, following the green chemistry principles [1,2]. The reasons for this
are that enzymes are natural (biodegradable) catalysts and can be synthesized from bio-
genic resources. The role of enzyme catalysis that contributes to fulfilling a broad num-
ber of the United Nations’ Sustainable Development goals has been recently addressed,
strengthening their potential for future sustainable chemical syntheses [3,4]. Traditional
considerations of green technology for biocatalysis, however, have often been based on
qualitative estimations—“biocatalysis is green per se”. In challenging these generic thoughts,
the need for quantitative environmental metrics to sustain these statements has been recently
emphasized [5–9]. To that end, different metrics (mass- and energy-based) to assess the actual
sustainability of a chemical process have been proposed by several research groups and
industries (e.g., process mass intensity, atom economy, carbon efficiency, etc.) [6,8,10–14].
Among them, in particular, the E-Factor, developed by Prof. Sheldon decades ago, repre-
sents a very intuitive and rapidly implemented metric to assess the waste formation in a
reaction (or in a part of it). Thus, the E-Factor, namely, kilograms of waste produced by
a kilogram of product, provides hints on the (un)sustainability of a given reaction and
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enables rapid incorporation of mitigation measurements to improve the environmental
burden of a process [5,6]. However, further in-depth analysis of the sustainability, in par-
ticular, related to the “quality” of the waste, is commonly needed to assess not only the
quantitative production of waste but also its ultimate potential impact on the environment.
Very recently, the option of converting all waste streams into CO2 equivalent production
has emerged, assuming that, sooner or later, wastes will be converted to CO2 and released
into the media. Thus, the introduced “Total Carbon Dioxide Release” (TCR) concept ad-
dresses the kilograms of CO2 produced by a kilogram of product [15]. The methodology
was introduced at Novartis about a decade ago to support the quest to assess sustainable
alternatives to classical chemistry conducted in fossil-derived solvents. The aim was to
take more interest in an informed decision when it came to assessing water-based alterna-
tives. The methodology represents a very straightforward and meaningful tool to compare
produced wastes and evaluate the real impact of a reaction by using the same currency
for all produced wastes. Thus, rather than waste effluent being benchmarked regardless
of its mass production, it is benchmarked based on its ultimate CO2 formation. TCR in
biocatalysis has been recently used to assess gate-to-gate processes [16] or to provide data
on the CO2 contribution generated using solvents, including the transportation burden [17].

Biocatalysis is a rather versatile field in which different reaction conditions can be
set. Enzymes can be used as isolated catalysts (once purified) and can be immobilized to
enable their reuse for several cycles, and also in a continuous fashion. Likewise, whole
cells containing overexpressing enzymes can be used as biocatalysts, too. The choice of
one or another option depends on many factors, as thoroughly discussed recently [18].
With respect to the reaction media, enzymatic processes can be conducted in aqueous
solutions—the traditional media for biocatalysis, inspired by natural reactions—but also in
non-aqueous systems, the so-called non-conventional media, where bulk water is absent.
The non-conventional options may include a broad range of systems, comprising solvent-
free processes where the media is the substrate, micro-aqueous solutions (containing
non-bulk quantities of water) or the use of supercritical fluids or neoteric solvents like ionic
liquids or deep eutectic solvents, to cite some relevant examples combining biocatalysis and
non-aqueous systems [18]. As a matter of fact, both strategies for biocatalysis—aqueous
and non-conventional—may present pros and cons for their implementation. On the one
hand, water is broadly recognized as a non-hazardous solvent and, moreover, it is the
natural environment for enzymes in life processes. On that basis, many researchers have
proposed its use as the paradigm for a green solvent. Furthermore, recent combinations of
enzymes with other chemo-catalysts in water have re-emphasized their use for industrial
purposes [19–23]. The downsides of water, however, such as the low solubility of many
relevant molecules—which force the use of organic cosolvents—and the generation of large
volumes of wastewater, have been systematically pinpointed [8,24]. On the other hand,
non-conventional media enable the dissolution of higher substrate loadings, leading to
intensified processes that can be closer to industrial interests (e.g., high substrate loadings,
ease of connecting reaction steps in an industrial environment by using organic solvents,
etc.) [8,24–27]. However, many enzymes deactivate in non-aqueous media and, further-
more, introducing fossil resources (e.g., solvents) may compromise the ecological footprint
of the biocatalytic reaction. Herein, the introduction of renewable-based solvents can
ameliorate that impact partially (based on the CO2 neutrality of them), provided that the
solvent synthesis is aligned with green chemistry principles as well [16]. Despite the broad
use of both strategies in biocatalysis—with outstanding examples also at an industrial
scale—studies providing quantitative metrics that may determine (and compare) the real
environmental impact of enzymatic reactions in aqueous or in non-conventional media
have not been reported hitherto. These assessments are needed to substantiate the green
claims with which biocatalysis is traditionally associated [7,8]. Therefore, to assess all
options in detail, herein a discussion based on different process scenarios for enzymatic
reactions both in aqueous and non-conventional media will be provided. The analysis will
cover both parts of the reaction, the upstream (enzymatic synthesis) and the downstream
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(product purification) and will focus on the ultimate CO2 production of each system as the
parameter to evaluate the quantitative sustainability of the processes.

2. Results and Discussion

To study the CO2 production of different reaction media employed in biocatalysis,
a gate-to-gate strategy will be followed. Thus, it is assumed that all reagents, solvents
and catalysts are already present in the chemical plant and that the purified product (after
downstream) ends up at the gate of the chemical plant for commercialization [16]. In that
way, the assessment calculates the environmental impact of the reaction: what is the actual
consideration for the media choice, aqueous or non-conventional? It must be noted, though,
that the location of the chemical plant, the previous synthesis and transportation of solvents
and reagents and other (broader) factors (e.g., land use) need to be considered in further
analyses if a complete, holistic assessment is required [17].

2.1. Using the Same Currency: Converting Waste Effluents into Carbon Dioxide Production

A given biocatalytic reaction involves generically two main steps, namely the up-
stream, where the actual enzymatic reaction takes place, and the downstream, where the
formed product is purified into a marketable form [16]. The upstream is composed of
a reaction media, either aqueous or organic, reagents and the (bio)catalysts, which can
be in the form of whole-cells or isolated enzymes (both forms can be immobilized). The
downstream part depends on the complexity of the product purification and the final
market need. In some cases, products at technical grade are accepted at certain markets
(e.g., bulk applications), which may simplify the downstream significantly. In some other
cases, however, extremely high product purities are mandatory, as in the pharmaceutical
industry. The downstream may then range from rather simple precipitation steps (with or
without a final washing procedure to remove impurities) to extractive strategies, distillation,
chromatography or crystallization, to cite some options. Overall, the biocatalytic process
generates two primary waste effluents: an organic fraction (collecting all solvents) and a
wastewater effluent (Figure 1).
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Figure 1. Overview of the waste effluents that a biocatalytic reaction may create (comprising both up
and downstream) and ways of treatment depending on the waste quality. Data for CO2 production
in the incineration and in the wastewater treatment units are taken from Krell et al. [28].

The usual fate of the organic fraction—ideally after several reuses to improve sustain-
ability and economics—is the incineration plant, where it will be converted into CO2 and
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released to the milieu. In the first-generation metrics developed at Novartis, based on a
conservative and pragmatic scenario [11,28], a prototypical organic fraction would generate
~2.3 kg CO2·kg product−1 as the equivalent of incinerating a mixture of tetrahydrofuran–
methanol–heptane (1:1:1 m/m/m). On the other hand, wastewater can be disposed in
different processing plants, depending on the waste recalcitrance present in the water
(Figure 1). The best scenario would be to submit the aqueous effluent to a traditional
wastewater treatment plant, which after some conventional steps would be released into
the environment as recycled water, with a minimal but still some CO2 associated production
(nothing is for free). In this best-case scenario, the environmental impact would be in the
range of ~0.073 kg CO2·kg product−1 (assuming effluents with a total organic carbon load-
ing of 20 g kg−1 wastewater) [28]. In the worst-case option for the water, however, when
recalcitrant wastewater is produced and mild treatments are not feasible, the incineration
unit is the fate of that effluent, leading to a production of ~0.63 kg CO2·kg product−1. For a
prototypical biocatalytic reaction, it may be expected that the wastewater treatment impact
will possibly be in between the two cases. Thus, a pre-extraction step may be needed to
remove cosolvents and chemicals below the required threshold. The produced organic
fraction would be sent to the incineration unit, while the obtained wastewater would be
then disposed in the mild treatment plant (Figure 1). In this case, the contribution of the
pre-extraction step must be considered in the analysis of the environmental impact as
well, incorporating two effluents, one organic for incineration and another aqueous for
mild wastewater treatment (Figure 1). Overall, these quantitative estimations may enable
practitioners and researchers to determine the actual CO2 production at an early stage
and allow redirection of the research to options that may be less impactful for the milieu.
This strategy to measure CO2 production can be further adapted to a case-by-case basis
when real masses of chemicals and solvents (and their potential recalcitrance) are available
for analysis.

2.2. The Water Hazard Class Concept (WGK)

As it can be observed, the key point to reaching a more or less sustainable option in
biocatalysis is how wastewater can be treated, what ultimately depends on its composition
and recalcitrance. Therefore, to have some preliminary assessments on how different
chemicals may affect the wastewater treatment route (Figure 1), chemicals can be classified
according to their Wassergefährdungsklasse (WGK or water hazard class), available at the
Rigoletto database [29]. Thus, chemicals are divided into the groups “non-hazardous
to water”, WGK 1 (“slightly hazardous to water”), WGK 2 (“obviously hazardous to
water”) or WGK 3 (“highly hazardous to water”). In Figure 2, a selection of compounds
commonly used in biocatalysis—as solvents, cosolvents or reagents—is presented within
their respective WGK.

As observed, many (co)solvents and reagents used in biocatalysis fall within the WGK
1, enabling a certain use of chemical reactions in aqueous media. It must be noted, though,
that chemicals must be kept below the threshold (to the bare minimum in fact, as a simple
common-sense rule) if mild wastewater treatment procedures are to be established to reach
lower CO2 production (Figure 1). Thus, it can be anticipated that possibly in most cases,
a pre-extraction step to reduce concentrations below such thresholds will be needed [28],
as discussed in the previous section (Figure 1), contributing to the final environmental
impact. Likewise, the generation of by-products during the reaction—which can change
its WGK level—cannot be underestimated and biodegradability assessments need to be
performed in each individual case, considering by-product formation before deciding
which wastewater treatment unit(s) are used [28].
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2.3. Metrics Based on CO2 for Different Scenarios

Having the tools to calculate the CO2 production of the biocatalytic processes in
hand, an in-depth discussion on the debate of aqueous vs. non-conventional media from an
environmental perspective can be now established. An important parameter is the substrate
solubility and its loading in the reactor, which depends on the media used. Since biocatalytic
reactions are often performed in water, low substrate concentrations are commonly applied,
because many organic molecules are sparingly soluble in aqueous media. The use of water-
miscible cosolvents may assist in enabling better dissolutions of substrates (potentially at the
cost of incorporating chemicals that will possibly need to be extracted before wastewater
treatment, Figure 1). In non-conventional media, however, higher substrate loadings
are shown from many examples reported in the literature. Therefore, the analysis for
biocatalytic reactions must consider a broad range of substrate concentrations, starting
from very diluted systems to more industrially sound concentrated reactors.

Following those premises, in the first step of the assessment, the commonly reported
biocatalytic conditions (low substrate loadings) were taken, i.e., 1–10 g substrate L−1 and
four systems were considered: (i) organic media (which goes completely into incineration);
(ii) recalcitrant water (which goes completely into incineration); (iii) effluent with a pre-
extraction step using 2 × 10% (v/v) organic solvent (the organic part goes into incineration
and the treated aqueous part into mild wastewater treatment); or (iv) a reaction with only
wastewater to be mildly treated. The data on CO2 production associated with each case are
depicted in Figure 3.

As it can be observed (Figure 3), the use of a non-conventional media—particularly
at the low substrate loadings of 1 g L−1—penalizes dramatically the reaction, reaching up
to more than 2 tons of CO2·kg product−1 if a single use of the solvent is considered. Even
if an aqueous biotransformation associated with a mild wastewater treatment could be
established, the CO2 production at such low substrate loadings (1 g L−1) would still result
in an unacceptable outcome from a sustainability perspective (73 kg CO2·kg product−1).
Assuming a more realistic scenario—with wastewater that would need some pre-extraction
step(s)—and considering now higher substrate loadings, a standard biotransformation in
water (10 g L−1) would generate 55–65 kg CO2·kg product−1 while the non-conventional
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media would render 230 kg CO2·kg product−1 (Figure 3). Overall, from the obtained
data it appears that performing biocatalysis in aqueous media would result in a more
environmentally friendly outcome than using non-conventional systems, where the use
of an organic solvent is clearly an environmental burden. Reuse of the solvent would
obviously improve this significantly.
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loadings (1–10 g L−1), and different media: non-conventional (organic media), with recalcitrant
water sent to incineration, with water with pre-extraction, or with water that can be mildly treated in
conventional wastewater treatment plant.

Subsequently, another range of substrate loadings (50–200 g L−1), closer to industrial
interests, was assessed. Therein, the total CO2 production decreases considerably, since
resources are more efficiently used (more substrate per solvent volume) [8,16]. As a
clear conclusion, the need for process intensification appears mandatory to reach truly
sustainable processes [25,30–32] (Figure 4).

As observed, an analogous trend is observed at higher substrate loadings (when
compared to diluted systems, Figure 3), and biotransformations in water result in more
environmentally friendly outcomes than processes in non-conventional media. Taking,
for example, 100 g L−1 (the classic estimation as a rule-of-thumb to determine whether
biotransformations can be potentially applied at an industrial scale), using an organic
solvent as the reaction media would lead to a production of 23 kg CO2·kg product−1

(solvent recycling may obviously decrease the figures significantly). Notably, applying
processes in aqueous media, with values in the range from 0.70 to 3 kg CO2·kg product−1,
would be reached depending on the number of pre-extraction steps that the process would
need (related to the use of hazardous chemicals based on the WGK, see Figures 1 and 2).
At higher substrate loadings (>100 g L−1), processes are clearly more sustainable, and less
CO2 is produced because resources are more properly used.
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water disposed to incineration, with water with pre-extraction of chemicals, or with water that can be
mildly treated in conventional wastewater treatment plants.

So far, the apparent conclusion would be that it is always better to conduct biotrans-
formations in aqueous media, since non-conventional media options are more pollutant
in terms of CO2 production, due to the burden associated with the ultimate solvent in-
cineration (Figure 1). However, the presented data are related to the upstream part only,
that is, the enzymatic synthesis of a certain molecule. To validate a complete biocatalytic
reaction, the impact of the downstream unit must be considered as well [16]. While for
biotransformations applied in organic media, the distillation of the solvent may work (with
some energy used that would lead to more CO2 production, though), the downstream
units applied to the biocatalytic aqueous reactions typically include an extractive step with
organic solvents, normally twice the reactor volume (2X). Herein, recycling of the extractive
solvents may be very relevant to reach improved values of CO2 production. The results are
depicted in Figure 5.

When the downstream unit is incorporated into the analysis, the aqueous biotrans-
formation shows a significantly higher environmental impact, due to the contribution
of the organic solvent used for the extraction. Under those conditions, the use of a
non-conventional media appears to be more sustainable than aqueous solutions (23 and
46.73 kg CO2·kg product−1, respectively, at 100 g L−1, Figure 5). Interestingly, the environ-
mental impact of both approaches becomes comparable when the extractive solvent can
be recycled at least one time (assuming a 10% solvent loss between each cycle). With one
recycling step, the CO2 production results are analogous in water and non-aqueous media
(23 vs. 23.46 kg CO2·kg product−1). If the extractive solvent can be recycled more than one
time, performing biotransformations in water may become a more sustainable approach
than processes conducted in non-conventional media (albeit solvent reuse, in this case, may
also improve figures again). Overall, the results clearly emphasize the need to establish
biotransformations with high substrate loadings and resource recycling to reach decent and
low values of CO2 production while achieving industrial requirements simultaneously [8].
It must be noted that the time necessary to reach an optimized performance in a biocat-
alytic transformation is commonly a time-consuming challenge that makes such a scenario
still relatively rare. Herein, performing biocatalysis in bulk water may usually become a
straightforward option with reduced environmental impact. The use of non-edible, “dirty”
fractions of water as reaction media may constitute an excellent option to set up more
sustainable reactions without compromising the depletion of precious resources [21].
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Finally, it must be noted that, in addition to what the environmental metrics dictate,
when it comes to industrial applications, financial considerations are critical for the decision
to go for one or other options, as sufficient margins are in fine necessary to ensure the
sustainability of the business itself. Ultimate decisions are specific to the nature of the
chemistry, the process and the actual composition of the waste streams. In general terms,
organic waste can potentially be recycled, yet regulatory constraints have put the bar very
high in terms of the required quality for the recycled solvents (on top of the investment
required for the recovery process). Alternatively, incineration can bring some value back
with energy recovered, but the inherent carbon release with the incineration process is costly
and subject to taxes (that may likely increase in the future). The introduction of bio-based
solvents may bring options in some cases. On the other hand, wastewater treatment costs
may depend on the actual strategy followed—or needed, depending on the recalcitrance of
the effluent—but in general terms, they may remain economically attractive and may be an
alternative to fossil-derived solvents [28,33], provided that decent substrate loadings are
set.

3. Materials and Methods
Calculation of the TCR

Based on the recent literature [28], the total carbon dioxide release, expressed as
kilograms of CO2 per kilogram of product, was calculated according to the
following formulae:

TCRorg fraction = Kilograms of organic fraction × 2.3 (incineration unit).

TCRaq. fraction = Kilograms of wastewater × 0.63 (incineration unit).

TCRaq. fraction = Kilograms of wastewater × 0.073 (mild wastewater treatment).

Total TCR: TCR1 + TRC2 + . . . + TRCn (several synthetic steps or units).
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4. Concluding Remarks

Biocatalysis results in a broadly versatile tool and processes that can be implemented
not only in aqueous solutions—the natural environment for enzymes—but also in the
so-called non-conventional media such as the absence of bulk water. This paper has made
use of the recently reported “Total Carbon Dioxide Release” (TCR) concept to quantitatively
evaluate whether there are biocatalytic systems that may be more sustainable than others.
When the upstream unit is evaluated separately, performing enzymatic reactions in aqueous
media clearly lead to largely improved ecologic impacts when compared to reactions in non-
aqueous media. The reason is the environmental burden that organic solvents may create
while incinerated. However, when the downstream unit is incorporated into the assessment,
the water media usually needs an extraction step (using an organic solvent) to purify the
product. Under those conditions, the production of CO2 appears comparable if extractive
solvents are recycled at least one time. In general and in estimative terms, industrial
biotransformation at 100 g L−1 will produce 15–25 kg CO2·kg product−1 regardless of the
applied media (aqueous or non-conventional). Herein, aspects related to the hazardousness
of the used chemicals (e.g., WGK) and the need for pre-steps to purify the effluents are
crucial because the incorporation of extra steps for wastewater treatment will enhance CO2
production as well. Overall, the final sustainability level will depend on the wastewater
treatment to be applied. Thus, if mild treatment processes can be established, reactions in
water will become a very attractive alternative for biocatalysis. Research in wastewater
treatment strategies—also combined with biocatalytic steps that may purify effluents
selectively—seems to be an important topic to be considered in future investigations.
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