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Abstract 

The process forces generated in machining are related to a deflection of the milling tool, which results in shape deviations.  In addition to process 
parameters like feed rate, width and depth of cut or cutting speed, the wear condition of the tool  has a significant influence on the shape deviation 
during flank milling. In process planning it  is important to take the tool condition and the ideal time for tool change into account when selecting 
the process parameters. An assistance system is being researched at the Institute of Production Engineering and Machine Tools (IFW) in 
cooperation with Kennametal Shared Services GmbH to support this task. The assistance system adjusts automatically the feed rate considering 
a predefined maximum shape deviation. Additionally, it  identifies an optimal moment for tool change. The advantages of the system are 
particularly evident in planning of individual milling processes. The assistance system is based on a combination of a material removal simulation 
and empirical models of the shape error. For this purpose, spindle currents as well as measured shape errors are stored in a database. These data 
are extended by the actual local cutting conditions calculated by a process-parallel material removal simulation. Afterwards, the data is transferred 
into process knowledge via a Support Vector Machine (SVM). Within a technological NC simulation before the start of manufacturing, the 
generated knowledge is applied to predict the shape error of the workpiece and to automatically adjust the feed rate. By adapting the feed rate, it  
is possible to control the tool life. The required tool change is defined by specifying a limit for the permitted width of flank wear land. The 
presented assistance system enables the prediction of the shape error parallel to the manufacturing process and the automatic  determination of 
the feed rate as well as the ideal time for tool change.  
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1. Introduction 

Due to process forces during the milling process, the tool is 
deflected and shape deviation on the machined workpiece 
occur. In addition to process parameters like feed rate, width 
and depth of cut and cutting speed, the wear condition of the 
tool has a significant influence on the resulting shape deviation 
in flank milling. The wear of the tools increases continuously 
during milling operations. Because of the wear, intolerable 
shape errors occur on the workpiece and scrap parts can be 
produced.  

In manufacturing practice, two ways to identify a suited 
moment for tool change exist. In large-scale production, tool 
change intervals are determined empirically. In production of 

small batches, the decision for tool change is delegated to an 
experienced machine operator. However, both strategies result 
often in sub-optimal decisions about the moment of tool 
change. If the tool is changed too late, the manufacturing 
tolerances are exceeded and the risk of producing scrap parts 
increases. In case of an early tool change, the remaining tool 
life is wasted. Exact methods to determine the ideal time to 
change tools do not exist for the practical use on shop floor. 

To improve the process planning quality, Denkena et al. [1] 
developed a method for condition-based tool management. The 
aim of this method is to provide all necessary information for 
process planning in order to forecast the remaining service life 
of each tool. By feeding the information back into the process 
planning, both tool use and tool procurement can be reliable 
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planned. Cutting edge coefficients are used to estimate tool 
wear. For an exemplary process, a linear dependence between 
width of flank wear land and process forces was proven.  

To control the condition of the tool during metal cutting, 
monitoring systems are used. These systems detect tool 
breakage, collisions between tool and machine structure as well 
as defined inadmissible process conditions using force signals 
or other recorded signals like acoustic emissions [2, 3]. 
Moreover, systems for adaptive feed control are already 
commercially available, e.g. [4].  Implemented in the 
programmable logic control (PLC) of the machine tool, the 
systems adapts the feed rate to avoid exceeding the maximum 
spindle power. The feed adaptation can reduce both, the load 
during processes as well as the tool deviation. If the calculated 
feed rate falls below a predefined limit, the PLC supposes a tool 
change. However, these systems do not take into account the 
resulting shape error of the workpiece. 

For the continuous improvement of tool monitoring systems 
supervised machine learning methods are used. Hsueh and 
Yang [5] implemented Support Vector Machines (SVM) to 
predict tool breakage by analysing force signals. Hassan et al. 
[6, 7] developed a method to detect tool wear using 
standardized force and current signals. Next, characteristics are 
extracted, which are sensitive towards tool condition, but 
robust to tool size and cutting conditions. Finally, different 
methods of machine learning for the investigation for real-time 
wear monitoring in terms of accuracy, computing time and 
false alarm rate were investigated. Recommended methods for 
tool management systems are linear discriminant analysis 
(LDA) and SVM. Both methods provide an accuracy of 90% 
with a small database and a low false alarm rate. Due to the 
lower computation time, Hassan et al. favour the LDA to the 
SVM.  

Another approach for monitoring tool wear in real time is 
presented by Nouri et al. [8]. Force model coefficients are 
identified, which are independent from cutting conditions, and 
correlate to the tool wear. For further analysis , these 
coefficients are tracked during milling. The presented method 
consists of three stages. First, the G-Code part program must 
be pre-processed to determine the cut geometry. The results are 
stored in a look-up file. During the following manufacturing of 
the workpieces, cutting forces are measured and stored in the 
same file. Finally, the force model coefficients are estimated 
and the state of tool wear derived. This method uses expensive 
sensors installed in the machine tool to gain the required 
information. Thus, it is unlikely to be implemented into the 
industry. Another approach to detect on-line tool wear based 
on acoustic emission is presented by Giriraj et al. [9]. If a 
defined threshold of the tool wear is extended, the work offset 
is adjusted.  

To compensate the shape error, Dittrich et al. [10] used 
engagement conditions provided by a process-parallel material 
removal simulation and merged them with the measured shape 
error. With the help of an SVM, the shape error is predicted and 
the tool path automatically adapted. With this method, the 
shape error was reduced by 50%. In further investigations, 
SVM were compared with other machine learning methods and 

evaluated with regard to the performance. However, the effects 
of tool wear were excluded from the investigation. For the 
evaluation and estimation of surface roughness of CNC turning 
Caydas and Ekici [11] compared the performance of SVM with 
that of artificial neural networks (ANN). With regard to 
prediction accuracy and computational time, SVM gave better 
results than ANN. More recent results also indicate a better 
performance of SVM compared to ANN in modelling [12]. An 
SVM to predict the shape error during milling processes with 
high accuracy was also implemented by Denkena et al. [13]. In 
this case, the prediction error was below 5% in most cases. 

This paper presents a novel approach for feed rate 
optimization. In contrast to existing methods, the approach 
detects tool wear in real time and optimizes the manufacturing 
quality of the workpieces by taking into account the measured 
shape error. Using sensors that are already integrated in most 
machine tools, the method can be transferred easily into the 
industry. 

2. Approach 

The developed approach consists of three components: (1) 
the machine tool, (2) a process-parallel simulation (IFW CutS) 
and (3) a database (see Fig. 1).  

The process-parallel simulation is driven by actual axis 
movements and translates the machine tool movements into 
technological measures in terms of spatial cutting conditions. 
For this purpose, the modular simulation platform IFW CutS 
[14] is used. The axis positions are transmitted to IFW CutS 
from the PLC of the milling tool. Using these positions, the 
material removal is simulated during the machining process 
and the local cutting conditions, such as chip removal volume, 
width and depth of cut, are determined. These engagement 
conditions are transmitted to a database and combined with 
measured spindle currents of the machine tool and shape 
deviations of the workpiece. The shape deviations are 
measured with a machine-integrated tactile probe. In order to 
predict the current tool condition, the current shape error of the 
workpiece is to be predicted spatially resolved during the 
process. To avoid a complex analytical parameterization of the 
prognosis model for each tool-material combination, an SVM 

Fig. 1. Approach for simulation-based feed rate adaptation. 
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is used, which is taught with recorded process data and quality 
information. A learning behaviour is achieved by regularly 
updating the model. By using the SVM, models are created that 
generate workpiece-independent technological knowledge 
from the data. This knowledge is applied to determine the shape 
deviations of the workpiece and the wear condition of the tool 
during machining. This information is also stored in a process 
data platform for use in work preparation and planning.  

With the presented approach, process parameters, e.g. the 
feed rate, can be adapted for the subsequent process taking into 
account the wear condition of the previously used tool. If the 
predicted flank wear land leads to exceedance of the shape 
tolerance for the following workpiece, the feed rate is adjusted. 
The minimum feed rate depends on both economic and 
technological aspects, such as the minimum chip thickness. If 
the feed rate falls below a predefined minimum, it is necessary 
to replace the tool and a recommendation for tool change is 
given to the operator. The system is designed to maximize tool 
life and reduce the waste of energy-intensive resources. In 
contrast to earlier approaches, the presented method is based 
on machine-internal signals only, which enables an easy 
transfer to the industry.   

3. Process-parallel simulation  

A central part of the approach is a process-parallel material 
removal simulation. Local cutting conditions are calculated to 
obtain the actual feed rate, the material removal rate and the 
depth of cut from real milling processes. However, the 
simulation requires a kinematic model of the machine tool 
including the structure and the exact position of the axes in 
relation to the rotary axis zero point. To avoid manual design 
of the kinematic model, a method for an automatic model 
generation is created. The method reads archive files 
automatically from the programmable logic control (PLC) and 
extracts relevant information for the model generation. 
Currently, the method has been only tested for 3- and 5-axis 
milling machines with a Siemens 840d sl PLC.  

The process-parallel simulation is connected to the PLC of 
the machine tool [10]. The data exchange between the process 
simulation and PLC and vice versa achieved through the 
communication library ACCON-AGLink by Deltalogic. By 
this, the process simulation is enabled to read continuously the 
axis positions as well as the information of the used tools from 
the PLC. 

To calculate the cutting conditions, the workpiece is 
discretized in the simulation with a dexel field. The dexels are 
spaced 0.156 mm apart for each perpendicular direction. The 
tool is represented as a cylinder. 

4. Experimental study 

In experimental investigations, the data required to generate 
the initial prediction models for the shape error were 
determined. For this purpose, flank milling processes were 
carried out at a constant cutting speed vc = 75 m/min in down 
milling. The tests were carried out on a CNC machine type 

DMG HSC 55 using solid carbide milling tools type WIDIA 
HANITA VariMill with a diameter D = 6.0 mm and a number 
of teeth z = 4. Tempered steel C45 was used as workpiece 
material. The length of one milling path was 80 mm. The 
engagement width and engagement depth were set constant at 
ae = 2 mm and ap = 7.5 mm. 

A machine-integrated tactile probe type Heidenhain TS649 
was used to determine the shape error at defined points. The 
width of flank wear land VB of the tool was measured optically 
with a digital microscope type VHX600 from Keyence. The 
resulting shape error as well as the wear condition of the tool 
were measured after five milling paths and a corresponding 
cooling time of the workpiece. The machine-integrated tactile 
probe measures 3D points at five defined positions of the 
manufactured workpiece. These points are merged with the 
ideal points generated by the material removal simulation IFW 
CutS. The distance between the equalization plane of the 
corresponding points presents the resulting shape error. To 
detect the feed influence on the wear progress the feed speed vf 
was varied between 55 and 1000 mm/min. The end of tool life 
was defined by a width of flank wear land VB ≥ 75 µm.  

Fig. 2 shows the results for the influence of vf on the wear 
development and the shape error. Higher feed rates lead to slow 
increase of flank wear and greater shape errors.  

Fig. 2. Experimental results of flank wear land and shape error. 
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High feed rates lead to larger shape errors due to the 
increasing tool deflection caused by increased process forces. 
Therefore, the shape error of tool 3 is bigger than of tool 2. At 
the same time, the width of flank wear land of tool 2 increased 
stronger than for tool 3, which was milled with the double feed 
rate. During milling different effects like friction because of 
slow feed rates or tool deflection caused by higher feed rates 
occur. Depending on the process parameters, the effects 
outweigh each other. When milling with the unworn tool 2 the 
friction caused higher tool wear while at the same time the 
shape error is small because of a slow feed rate. 

5. Feed rate adaptation 

In a further series of experiments, the feed rate adaptation 
was investigated. For this purpose, the initial feed rate 
vf = 1000 mm/min was reduced by 100 mm/min each time a 
shape error of ds = 0.035 mm was exceeded. The limit 
considered for the width of flank wear land VB was 75 µm and 
the lower limit for vf was 500 mm/min.  

As a result, Fig. 3 clearly shows how shape error and service 
life can be positively influenced by an adjustment of vf as the 
flank wear mark width increases. As shown, reducing the feed 
rate results in both, reduction of shape error as well as slower 
increase in width of flank wear land. There is a correlation 
between the flank wear and the shape error. Higher values of 
width of flank wear land lead to larger shape errors. As the feed 
rate as well influences the shape error, reducing the feed rate 

for worn tools leads to a longer service life. The end of service 
life of the tool is defined by a maximum shape error and a 
minimum feed rate. The result clearly shows how shape errors 
and tool life can be positively influenced by adjusting the feed 
rate as the width of flank wear land increases. After the 
adjustment of vf, a significant reduction of the previously 
increasing shape error could be observed. In consideration of 
the maximum shape error, the service life can be extended by 
70% by reducing the feed rate by 10%. If a reduction of the 
feed rate by 50% is tolerated, the service life extension is even 
440%.   

In order to be able to transfer the automatic feed rate 
adaptation onto the shop floor, an easy to use software 
application was developed. The application contains an 
automatic calculation method to determine the current cutter 
condition based on the quotient described in equation (1).  

𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

= 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                                                           (1) 

The spindle current I is transferred directly from the 
machine to the application. The user enters the maximum shape 
error as well as the minimum feed rate as input values. Based 
on the process model generated and the current tool status, a 
recommendation for vf is given as output of the SVM model. 
In case of varying local cutting conditions during complicated 
milling processes, these parameters are considered for the feed 
rate adaptation. This adaptation takes into account the 
permissible shape error and the requirements for an economical 
process. The goal is to provide a high productivity while at the 
same time maintaining the quality specifications based on the 
current tool condition. Fig. 4 shows the user interface of the 
application. 

In conjunction with the developed application, the 
assistance system can be used for condition-based optimization 
of the feed rate. By adapting the feed rate, it is possible to 
control the operating time of the respective tool. This results in 
an improved tool planning in the production of batch sizes. The 
required tool change is defined by specifying a limit for the 
permissible width of flank wear land. Furthermore, a tool 
change is necessary in case of a required uneconomical feed 

Fig. 4. Application for automatic feed rate adaptation. Fig. 3. Progress of tool wear and shape error during feed rate adaptation.  
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adjustment or if the value for the permissible shape error is 
exceeded.  

6. Conclusion and outlook 

By using the assistance system presented, it is possible to 
predict the shape error parallel to the production process as well 
as the end of tool life in real time. The approach allows an 
automatic adaptation of the feed rate to extend the service life 
of the tool. This results in the benefit of an application that 
enables optimized tool use planning. The possibility of 
influencing shape error and tool life by adjusting the feed rate 
with increasing width of flank wear land was demonstrated in 
an additional test series. The feed rate adaptation showed great 
potential. For example, reducing the feed rate by 10% lead to 
an extension of the tool service life by 70%. As the system only 
uses machine-internal signals, it can be easily transferred to 
shop floor. To implement the presented assistance system on 
shop floor, a simulation server for the process-parallel 
simulation is necessary as well as an experimental investigation 
as a training set for the SVM to build up suitable models for the 
setup.   
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