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Abstract: In this paper, we present a data-driven distributed model predictive control (MPC) scheme
to stabilise the origin of dynamically coupled discrete-time linear systems subject to decoupled input
constraints. The local optimisation problems solved by the subsystems rely on a distributed adaptation
of the Fundamental Lemma by Willems et al., allowing to parametrise system trajectories using only
measured input-output data without explicit model knowledge. For the local predictions, the subsystems
rely on communicated assumed trajectories of neighbours. Each subsystem guarantees a small deviation
from these trajectories via a consistency constraint. We provide a theoretical analysis of the resulting
non-iterative distributed MPC scheme, including proofs of recursive feasibility and (practical) stability.
Finally, the approach is successfully applied to a numerical example.
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1. INTRODUCTION

Model predictive control (MPC) is a modern control method
with a well-researched theoretical foundation, see e.g. (Rawlings
et al., 2020; Grüne and Pannek, 2017). Advantages of MPC are
the possibility to explicitly consider constraints on the controlled
system and the incorporation of a performance objective. If
the system to be controlled is large-scale or consists of many
interconnected but otherwise discernible subsystems, a central
controller might not be desirable or even computationally
infeasible. This is alleviated by distributed MPC (DMPC) where
a local MPC is designed for each subsystem and the respective
control input is computed based on locally available information.
Various different setups for DMPC exist which are suitable
for different classes of systems, interconnection structures, and
communication topologies using an iterative or non-iterative
scheme. See e.g. the surveys (Christofides et al., 2013; Müller
and Allgöwer, 2017) or the collection (Maestre and Negenborn,
2014) for a selection and classification of various schemes.

Typically, a model derived from first principles is used in MPC
to predict the behaviour of the controlled system. In practice,
however, it might be difficult to derive such a model in detail, but
obtaining input-output data is comparatively simple. Recently,
for this reason, there has been a push to use only input-output
data and no explicit model knowledge to design direct data-
driven controllers. Many results, including our approach, rely
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on Willems’ Fundamental Lemma (Willems et al., 2005), which
states that all trajectories of a linear time-varying (LTI) system
can be constructed from one persistently exciting trajectory.

Based on this, MPC schemes can be designed using only input-
output data and no explicit model knowledge (Yang and Li, 2015;
Coulson et al., 2019), even admitting closed-loop guarantees
on stability and robustness (Berberich et al., 2021a). Further
references may be found in the survey (Markovsky and Dörfler,
2021). Recently, extensions to data-driven distributed MPC for
dynamically coupled systems with stability guarantees (Allibhoy
and Cortés, 2021; Alonso et al., 2021) have been made, which
require state measurements and state coupling. Both employ
iterative distributed optimisation, requiring a multitude of com-
munication at each time step.

In this paper, we propose a non-iterative data-driven distributed
MPC (D3MPC) scheme for dynamically coupled LTI systems.
The local MPC optimisation problems are based on only local
input-output data and are solved in parallel assuming that
the neighbours follow a previously communicated trajectory.
Therefore, the scheme scales well with the total number of
subsystems. In comparison to the data-driven distributed MPC
schemes referenced above, communication is kept to a minimum
since in each time step only one trajectory needs to be shared,
and a non-iterative parallel implementation is possible, at the
price of conservativeness. We show that the proposed scheme
practically asymptotically stabilises the origin of the system
while meeting input constraints. The main tool is a consistency
constraint in the optimisation problems, ensuring that the
subsystems’ deviation from their communicated trajectories is
limited. The idea is based on (Dunbar, 2007) which uses a similar
consistency constraint in a model-based setting for continuous-
time systems in a stabilising dual-mode DMPC scheme.
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Matthias Köhler ∗ Julian Berberich ∗ Matthias A. Müller ∗∗

Frank Allgöwer ∗
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244600449. F. Allgöwer is thankful that this work was funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under grant -
468094890; and under Germany’s Excellence Strategy – EXC 2075 – 390740016.
M. A. Müller is thankful that this project has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 948679).

on Willems’ Fundamental Lemma (Willems et al., 2005), which
states that all trajectories of a linear time-varying (LTI) system
can be constructed from one persistently exciting trajectory.

Based on this, MPC schemes can be designed using only input-
output data and no explicit model knowledge (Yang and Li, 2015;
Coulson et al., 2019), even admitting closed-loop guarantees
on stability and robustness (Berberich et al., 2021a). Further
references may be found in the survey (Markovsky and Dörfler,
2021). Recently, extensions to data-driven distributed MPC for
dynamically coupled systems with stability guarantees (Allibhoy
and Cortés, 2021; Alonso et al., 2021) have been made, which
require state measurements and state coupling. Both employ
iterative distributed optimisation, requiring a multitude of com-
munication at each time step.

In this paper, we propose a non-iterative data-driven distributed
MPC (D3MPC) scheme for dynamically coupled LTI systems.
The local MPC optimisation problems are based on only local
input-output data and are solved in parallel assuming that
the neighbours follow a previously communicated trajectory.
Therefore, the scheme scales well with the total number of
subsystems. In comparison to the data-driven distributed MPC
schemes referenced above, communication is kept to a minimum
since in each time step only one trajectory needs to be shared,
and a non-iterative parallel implementation is possible, at the
price of conservativeness. We show that the proposed scheme
practically asymptotically stabilises the origin of the system
while meeting input constraints. The main tool is a consistency
constraint in the optimisation problems, ensuring that the
subsystems’ deviation from their communicated trajectories is
limited. The idea is based on (Dunbar, 2007) which uses a similar
consistency constraint in a model-based setting for continuous-
time systems in a stabilising dual-mode DMPC scheme.

Data-driven distributed MPC of dynamically
coupled linear systems
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244600449. F. Allgöwer is thankful that this work was funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under grant -
468094890; and under Germany’s Excellence Strategy – EXC 2075 – 390740016.
M. A. Müller is thankful that this project has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 948679).

on Willems’ Fundamental Lemma (Willems et al., 2005), which
states that all trajectories of a linear time-varying (LTI) system
can be constructed from one persistently exciting trajectory.

Based on this, MPC schemes can be designed using only input-
output data and no explicit model knowledge (Yang and Li, 2015;
Coulson et al., 2019), even admitting closed-loop guarantees
on stability and robustness (Berberich et al., 2021a). Further
references may be found in the survey (Markovsky and Dörfler,
2021). Recently, extensions to data-driven distributed MPC for
dynamically coupled systems with stability guarantees (Allibhoy
and Cortés, 2021; Alonso et al., 2021) have been made, which
require state measurements and state coupling. Both employ
iterative distributed optimisation, requiring a multitude of com-
munication at each time step.

In this paper, we propose a non-iterative data-driven distributed
MPC (D3MPC) scheme for dynamically coupled LTI systems.
The local MPC optimisation problems are based on only local
input-output data and are solved in parallel assuming that
the neighbours follow a previously communicated trajectory.
Therefore, the scheme scales well with the total number of
subsystems. In comparison to the data-driven distributed MPC
schemes referenced above, communication is kept to a minimum
since in each time step only one trajectory needs to be shared,
and a non-iterative parallel implementation is possible, at the
price of conservativeness. We show that the proposed scheme
practically asymptotically stabilises the origin of the system
while meeting input constraints. The main tool is a consistency
constraint in the optimisation problems, ensuring that the
subsystems’ deviation from their communicated trajectories is
limited. The idea is based on (Dunbar, 2007) which uses a similar
consistency constraint in a model-based setting for continuous-
time systems in a stabilising dual-mode DMPC scheme.

Data-driven distributed MPC of dynamically
coupled linear systems
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244600449. F. Allgöwer is thankful that this work was funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under grant -
468094890; and under Germany’s Excellence Strategy – EXC 2075 – 390740016.
M. A. Müller is thankful that this project has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 948679).

on Willems’ Fundamental Lemma (Willems et al., 2005), which
states that all trajectories of a linear time-varying (LTI) system
can be constructed from one persistently exciting trajectory.

Based on this, MPC schemes can be designed using only input-
output data and no explicit model knowledge (Yang and Li, 2015;
Coulson et al., 2019), even admitting closed-loop guarantees
on stability and robustness (Berberich et al., 2021a). Further
references may be found in the survey (Markovsky and Dörfler,
2021). Recently, extensions to data-driven distributed MPC for
dynamically coupled systems with stability guarantees (Allibhoy
and Cortés, 2021; Alonso et al., 2021) have been made, which
require state measurements and state coupling. Both employ
iterative distributed optimisation, requiring a multitude of com-
munication at each time step.

In this paper, we propose a non-iterative data-driven distributed
MPC (D3MPC) scheme for dynamically coupled LTI systems.
The local MPC optimisation problems are based on only local
input-output data and are solved in parallel assuming that
the neighbours follow a previously communicated trajectory.
Therefore, the scheme scales well with the total number of
subsystems. In comparison to the data-driven distributed MPC
schemes referenced above, communication is kept to a minimum
since in each time step only one trajectory needs to be shared,
and a non-iterative parallel implementation is possible, at the
price of conservativeness. We show that the proposed scheme
practically asymptotically stabilises the origin of the system
while meeting input constraints. The main tool is a consistency
constraint in the optimisation problems, ensuring that the
subsystems’ deviation from their communicated trajectories is
limited. The idea is based on (Dunbar, 2007) which uses a similar
consistency constraint in a model-based setting for continuous-
time systems in a stabilising dual-mode DMPC scheme.

Data-driven distributed MPC of dynamically
coupled linear systems
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Matthias Köhler ∗ Julian Berberich ∗ Matthias A. Müller ∗∗

Frank Allgöwer ∗
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1. INTRODUCTION

Model predictive control (MPC) is a modern control method
with a well-researched theoretical foundation, see e.g. (Rawlings
et al., 2020; Grüne and Pannek, 2017). Advantages of MPC are
the possibility to explicitly consider constraints on the controlled
system and the incorporation of a performance objective. If
the system to be controlled is large-scale or consists of many
interconnected but otherwise discernible subsystems, a central
controller might not be desirable or even computationally
infeasible. This is alleviated by distributed MPC (DMPC) where
a local MPC is designed for each subsystem and the respective
control input is computed based on locally available information.
Various different setups for DMPC exist which are suitable
for different classes of systems, interconnection structures, and
communication topologies using an iterative or non-iterative
scheme. See e.g. the surveys (Christofides et al., 2013; Müller
and Allgöwer, 2017) or the collection (Maestre and Negenborn,
2014) for a selection and classification of various schemes.

Typically, a model derived from first principles is used in MPC
to predict the behaviour of the controlled system. In practice,
however, it might be difficult to derive such a model in detail, but
obtaining input-output data is comparatively simple. Recently,
for this reason, there has been a push to use only input-output
data and no explicit model knowledge to design direct data-
driven controllers. Many results, including our approach, rely
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on Willems’ Fundamental Lemma (Willems et al., 2005), which
states that all trajectories of a linear time-varying (LTI) system
can be constructed from one persistently exciting trajectory.

Based on this, MPC schemes can be designed using only input-
output data and no explicit model knowledge (Yang and Li, 2015;
Coulson et al., 2019), even admitting closed-loop guarantees
on stability and robustness (Berberich et al., 2021a). Further
references may be found in the survey (Markovsky and Dörfler,
2021). Recently, extensions to data-driven distributed MPC for
dynamically coupled systems with stability guarantees (Allibhoy
and Cortés, 2021; Alonso et al., 2021) have been made, which
require state measurements and state coupling. Both employ
iterative distributed optimisation, requiring a multitude of com-
munication at each time step.

In this paper, we propose a non-iterative data-driven distributed
MPC (D3MPC) scheme for dynamically coupled LTI systems.
The local MPC optimisation problems are based on only local
input-output data and are solved in parallel assuming that
the neighbours follow a previously communicated trajectory.
Therefore, the scheme scales well with the total number of
subsystems. In comparison to the data-driven distributed MPC
schemes referenced above, communication is kept to a minimum
since in each time step only one trajectory needs to be shared,
and a non-iterative parallel implementation is possible, at the
price of conservativeness. We show that the proposed scheme
practically asymptotically stabilises the origin of the system
while meeting input constraints. The main tool is a consistency
constraint in the optimisation problems, ensuring that the
subsystems’ deviation from their communicated trajectories is
limited. The idea is based on (Dunbar, 2007) which uses a similar
consistency constraint in a model-based setting for continuous-
time systems in a stabilising dual-mode DMPC scheme.
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244600449. F. Allgöwer is thankful that this work was funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under grant -
468094890; and under Germany’s Excellence Strategy – EXC 2075 – 390740016.
M. A. Müller is thankful that this project has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 948679).

on Willems’ Fundamental Lemma (Willems et al., 2005), which
states that all trajectories of a linear time-varying (LTI) system
can be constructed from one persistently exciting trajectory.

Based on this, MPC schemes can be designed using only input-
output data and no explicit model knowledge (Yang and Li, 2015;
Coulson et al., 2019), even admitting closed-loop guarantees
on stability and robustness (Berberich et al., 2021a). Further
references may be found in the survey (Markovsky and Dörfler,
2021). Recently, extensions to data-driven distributed MPC for
dynamically coupled systems with stability guarantees (Allibhoy
and Cortés, 2021; Alonso et al., 2021) have been made, which
require state measurements and state coupling. Both employ
iterative distributed optimisation, requiring a multitude of com-
munication at each time step.

In this paper, we propose a non-iterative data-driven distributed
MPC (D3MPC) scheme for dynamically coupled LTI systems.
The local MPC optimisation problems are based on only local
input-output data and are solved in parallel assuming that
the neighbours follow a previously communicated trajectory.
Therefore, the scheme scales well with the total number of
subsystems. In comparison to the data-driven distributed MPC
schemes referenced above, communication is kept to a minimum
since in each time step only one trajectory needs to be shared,
and a non-iterative parallel implementation is possible, at the
price of conservativeness. We show that the proposed scheme
practically asymptotically stabilises the origin of the system
while meeting input constraints. The main tool is a consistency
constraint in the optimisation problems, ensuring that the
subsystems’ deviation from their communicated trajectories is
limited. The idea is based on (Dunbar, 2007) which uses a similar
consistency constraint in a model-based setting for continuous-
time systems in a stabilising dual-mode DMPC scheme.



366 Matthias Köhler  et al. / IFAC PapersOnLine 55-30 (2022) 365–370

2. PRELIMINARIES

We denote the natural numbers containing 0 with N0. We
write A ≻ 0 (A ≽ 0) if A = A⊤ is positive (semi-)definite.
The smallest eigenvalue of a matrix A = A⊤ is denoted
by λmin(A). Given another matrix B = B⊤, λmin(A,B) =
min{λmin(A), λmin(B)}. For a set of vectors v1, . . . , vn we
denote the stacked vector v =


v⊤1 . . . v⊤n

⊤
= colni=1(vi). For

a sequence {xk}N−1
k=0 , we define the Hankel matrix

HL(x) =




x0 x1 . . . xN−L

x1 x2 . . . xN−L+1...
. . . . . .

...
xL−1 xL . . . xN−1


 .

Moreover, we introduce the notation x[a,b] = colbk=a(xk). For a
(block-)diagonal matrix with n (block-)diagonal elements Ai we
write diagni=1(Ai). The set of integers in the interval [a, b] with
a ≤ b is denoted by I[a,b]. We make use of class-K, -K∞ and
-KL comparison functions and refer to (Kellett, 2014) for their
definition. The cardinality of a set S is denoted by |S|. With ⋆
we denote parts that can be inferred by symmetry.
Definition 1. We say that a sequence {xk}N−1

k=0 with xk ∈ Rn

is persistently exciting of order L if rank(HL(x)) = nL.

3. DATA-DRIVEN DISTRIBUTED MPC

3.1 Distributed system representation

Our objective is to stabilise a group of M ≥ 2 dynamically
coupled subsystems about the origin. The dynamic coupling
between the subsystems is given by a directed graph G = (V, E),
where V = {1, . . . ,M} is the set of nodes corresponding to
subsystems and E ⊆ V × V is the set of all directed edges
between nodes in the graph. If the output yj of a subsystem j
appears in the dynamic equation of subsystem i, and i ̸= j,
then subsystem j is neighbour of subsystem i and part of
the set of neighbours Ni = {j ∈ V | j is a neighbour of i}.
Then, E = {(j, i) ∈ V × V | j ∈ Ni}. It is assumed that
communication along the directed edges of G is possible.

We consider as input-output dynamics for subsystem i ∈ V:

xi
t+1 = Aiix

i
t +Biiu

i
t +


j∈Ni

Bijy
j
t (1a)

yit = Ciix
i
t +Diiu

i
t (1b)

for i = 1, . . . ,M , where xi
t ∈ Rn is the state, ui

t ∈ Rm is the
input, and yit ∈ Rp is the output of system i, all at time t ∈ N0.
The input is subject to constraints ui

t ∈ Ui ⊂ Rm with compact
Ui. We abbreviate y−i = colj∈Ni(y

j). The dimensions of every
subsystems’ input and output are assumed to be the same, for
notational simplicity and without loss of generality.

For each individual subsystem i, the matrices Aii, Bii, Bij

with j ∈ Ni, Cii, and Dii are unknown, but a data set
Di := {{ui,d

k }N−1
k=0 , {yi,dk }N−1

k=0 , {y−i,d
k }N−1

k=0 } that satisfies the
dynamics (1) is available.

Assumption 2. (1) For each i ∈ V , the sequence


ui,d
[0,N−1]

y−i,d
[0,N−1]



is persistently exciting of order L+ n.
(2) (A,C) is observable, where C = diagMi=1(Cii) and

A =


A11 . . . A1Ms

...
. . .

...
AM1 . . . AMM



with Aij = 0 if j /∈ Ni and Aij = BijCjj if j ∈ Ni.
(3) For each i ∈ V , the pair (Aii, Bi) is controllable, where

Bi =

Bii Bij1 . . . Bij|Ni|


.

The following lemma is a consequence of Willems’ Fundamental
Lemma (Willems et al., 2005) with the neighbours’ outputs
interpreted as additional inputs. It allows the characterisation of
any input-output trajectory of (1) based on suitable local data
Di and will be the basis of our D3MPC scheme.
Lemma 3. Suppose Assumption 2 holds. Then, for any i ∈ V ,
{ui

k, y
i
k}

L−1
k=0 , {y−i

k }L−2
k=0 is a trajectory of (1) if and only if there

exists αi ∈ RN−L+1 such that


HL(u
i,d
[0,N−1])

HL−1(y
−i,d
[0,N−2])

HL(y
i,d
[0,N−1])


αi =



ui
[0,L−1]

y−i
[0,L−2]

yi[0,L−1]


 . (2)

We only have access to input-output measurements, and not to
the minimal state. Hence, it is useful to define the extended state

ξit =



ui
[t−n,t−1]

y−i
[t−n,t−1]

yi[t−n,t−1]


 . (3)

With suitable matrices Ãii, B̃ii, B̃−i, C̃ii and D̃ii, the system

ξit+1 = Ãiiξ
i
t + B̃iiu

i
t + B̃−iy

−i
t , (4a)

yit = C̃iiξ
i
t + D̃iiu

i
t, (4b)

then has the same input-output behaviour as (1), and there
exists Txi such that xi

t = Txiξit , see, e.g. (Goodwin and
Sin, 2014), (Koch et al., 2021, Lemma 2). In particular, (4a)
looks like (6) with unknown Gi,n, . . . , Gi,1, Si,n, . . . , Si,1,
Fi,n, . . . , Fi,1 (cf. (Berberich et al., 2021b)). Note that (2)
contains only y−i

[0,L−2] since there is no feed-through from y−i

to yi in (1b), and thus y−i
L−1 has no effect on yiL−1. However,

we included y−i
t−1 in (3) since then B̃−i in (4a) is known. We

exploit this in the data-driven design of terminal ingredients in
Section 3.3. Define also Tyi = [0 . . . 0 I] with yit = Tyiξit+1.
Similarly, a global extended state system

ξt+1 = Ãξt + B̃ut (5a)

yt = C̃ξt + D̃ut, (5b)

can be defined with ξt = colMi=1(ξ
i
t), ut = colMi=1(u

i
t) and

yt = colMi=1(y
i
t) and suitable matrices Ã, B̃, C̃ and D̃.

3.2 Data-driven distributed MPC optimisation problem

Each subsystem locally solves at time step t the following opti-
misation problem given the measurements {uk, yk}t−1

k=t−n and
communicated trajectories y−i,∗

[−n+1,L](t− 1) of the neighbours.

min
αi(t)

L−1
k=0

∥yik(t)∥2Qi
+ ∥ui

k(t)∥2Ri
+ ∥ξiL(t)∥2Pi

(7a)

subject to


HL+n(u
i,d
[0,N−1])

HL+n−1(y
−i,d
[0,N−2])

HL+n(y
i,d
[0,N−1])


αi(t) =




ui
[−n,L−1](t)

y−i,∗
[−n+1,L−1](t− 1)

yi[−n,L−1](t)


 (7b)


ui
[−n,−1](t)

yi[−n,−1](t)


=


ui
[t−n,t−1]

yi[t−n,t−1]


(7c)

ui
k(t) ∈ Ui, k ∈ I0:L−1, (7d)

ξit+1 =




ui
t−n+1

...
ui
t

y−i
t−n+1

...
y−i
t

yit−n+1
...
yit




=




0 I . . . 0 0 . . . . . . 0 0 . . . . . . 0
...

. . . . . .
...

...
. . . . . .

...
...

. . . . . .
...

0 . . . . . . I 0 . . . . . . 0 0 . . . . . . 0
0 . . . . . . 0 0 . . . . . . 0 0 . . . . . . 0
0 . . . . . . 0 0 I . . . 0 0 . . . . . . 0
...

. . . . . .
...

...
. . . . . .

...
...

. . . . . .
...

0 . . . . . . 0 0 . . . . . . I 0 . . . . . . 0
0 . . . . . . 0 0 . . . . . . 0 0 . . . . . . 0
0 . . . . . . 0 0 . . . . . . 0 0 I . . . 0
...

. . . . . .
...

...
. . . . . .

...
...

. . . . . .
...

0 . . . . . . 0 0 . . . . . . 0 0 . . . . . . I
Gi

n . . . . . . Gi
1 Si

n . . . . . . Si
1 F i

n . . . . . . F i
1




ξit +




0
...
I
0
...
0
0
...

Dii




ui
t +




0
...
0
0
...
I
0
...
0




y−i
t (6)

ξiL(t) ∈ X f
i (θiϵi), (7e)

∥ui
k(t)− ui,∗

k+1(t− 1)∥2 ≤ ∥ûi
k(t)− ui,∗

k+1(t− 1)∥2 +Ωi,

k ∈ I[0,L−1], (7f)

∥yik(t)− yi,∗k+1(t− 1)∥2 ≤ ∥ŷik(t)− yi,∗k+1(t− 1)∥2 +Ωi,

k ∈ I[0,L−1], (7g)

ξiL(t) =




ui
[L−n,L−1](t)

y−i,∗
[L−n+1,L](t− 1)

yi[L−n,L−1](t)


 , (7h)

with a constant Ωi ≥ 0, and momentarily defined trajectories
ûi
[0,L−1](t) and ŷi[0,L−1](t) as well as a terminal cost matrix Pi

and set X f
i . The optimal solution of (7) is denoted by αi,∗(t)

with corresponding optimal input sequence ui,∗
[−n,L−1](t) and

predicted output sequence yi,∗[−n,L−1](t). Constraint (7b) is based
on Lemma 3 and used to predict the input-output behaviour of
the system over the prediction horizon L, whereas (7c) fixes the
initial condition. The predicted extended state (7h) is confined to
a terminal set through (7e) which is tightened using a factor θi >
0 to provide recursive feasibility. Each subsystem assumes that
the outputs of their neighbours follow a communicated trajectory
(cf. (7b)). The neighbours, however, will in general deviate
from this trajectory. To ensure recursive feasibility despite
this discrepancy, the consistency constraints (7f) and (7g) are
included. It forces the predicted input and output to stay as close
to what has been communicated as the in 3.4 defined feasible
trajectories ûi

[0,L−1](t) and ŷi[0,L−1](t) can. If Ui and X f
i (θiϵi)

are ellipsoidal or polytopic, (7) is a convex quadratically
constraint quadratic program, which can be solved efficiently.

3.3 Terminal ingredients

Assumption 4. For every subsystem i, there exist Pi ≻ 0,
µi, ηi, ϵi > 0, θi ∈ (0, 1) and a terminal controller Ki such
that
∥ξi,+∥2Pi

−∥ξi∥2Pi
≤ −ηi∥ξi∥2−∥yi∥2Qi

−∥κi(ξ
i)∥2Ri

+ µi (8)

κi(ξ
i) ∈ Ui (9)

∥ξi,+∥2Pi
≤ θiϵi (10)

if ξi ∈ X f
i (ϵi) = {ξi | ∥ξi∥2Pi

≤ ϵi} for all i ∈ V and where
ξi,+ = Ãiiξ

i +


j∈Ni
Ãijy

j + B̃iiκi(ξ
i).

This assumption implies that inside X f
i (ϵi) every subsystem can

be driven into an invariant set strictly inside X f
i (ϵi) despite the

influence of the neighbours’ outputs. Implicitly, the dynamic
coupling needs to be sufficiently weak. If µi is sufficiently small,
it can be shown that (8) implies (10) if ξi ∈ X f

i (ϵi) for all i ∈ V .

We comment on how the method in (Berberich et al., 2021b)
could be adapted to compute distributed terminal ingredients
as in Assumption 4 from input-output data, if the coupling is
sufficiently weak. A general data-driven method to compute
these terminal ingredients is left open for future research. We
rewrite (4) into

ξit+1

zit


=




Āi Bui By−i Bwi
I
0

 
0
I


0 0







ξit
ui
t

y−i
t

wi
t


 ,

where wi
t = ∆iz

i
t contains all unknown elements in (4),

i.e. ∆i = [Gi,n, . . . , Gi,1, Si,n, . . . , Si,1, Fi,n, . . . , Fi,1, Dii].
Define the matrices

Ξi =

ξd,in ξd,in+1 . . . ξd,iN−1


, Ξ+

i =

ξd,in+1 ξ

d,i
n+2 . . . ξd,iN



Ui =

ud,i
n ud,i

n+1 . . . ud,i
N−1


, Y−i =


yd,−i
n yd,−i

n+1 . . . yd,−i
N−1


,

and Zi =

Ξ⊤
i U⊤

i

⊤
with the extended state ξd,it based on

the available input-output data Di. Further, define Mi = Ξ+
i −

ĀiΞi −BuiUi −By−iY−i and the matrix

P̄wi

∆i
= [⋆]

⊤


−ZiZ
⊤
i ZiM

⊤
i Bwi

B⊤
wiMiZ

⊤
i −B⊤

wiMiM
⊤
i Bwi

 
0 I

B⊤
wi 0


.

Lemma 5. (cf. (Berberich et al., 2021b, Proposition 10)).
Factorise T⊤

yiQiTyi = Q⊤
i,rQi,r and Ri = R⊤

i,rRi,r. Suppose
there exist Xi ≻ 0, Γi ≻ 0, Mi, τi ≥ 0, γi > 0 such that

trace(Γi) < γ2
i ,


Γi I
I X


≻ 0, and




τP̄wi

∆i
−

Xi 0
0 0

 
Ā

iXi +BuiMi

Xi

Mi


 0

⋆ −Xi


Qi,rXi

Ri,rMi

⊤

⋆ ⋆ −I



≺ 0.

Define Pi = X−1
i − T⊤

yiQiTyi and Ki = MiX−i
i . Then, there

exists η̄i > 0 such that
∥ξ̄i,+∥2Pi

−∥ξi∥2Pi
≤ −η̄i∥ξi∥2Pi

−∥yi∥2Qi
−∥κi(ξ

i)∥2Ri
(12)

with ξ̄i,+ = (Ãii + B̃iiKi)ξ
i and κi(ξ

i) = Kiξ
i.

This result is a slight extension of (Berberich et al., 2021b,
Proposition 10) and we refer to (Berberich et al., 2021b) for the
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ξit+1 =




ui
t−n+1

...
ui
t

y−i
t−n+1

...
y−i
t
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...
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0
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I
0
...
0
0
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ui
t +




0
...
0
0
...
I
0
...
0




y−i
t (6)

ξiL(t) ∈ X f
i (θiϵi), (7e)

∥ui
k(t)− ui,∗

k+1(t− 1)∥2 ≤ ∥ûi
k(t)− ui,∗

k+1(t− 1)∥2 +Ωi,

k ∈ I[0,L−1], (7f)

∥yik(t)− yi,∗k+1(t− 1)∥2 ≤ ∥ŷik(t)− yi,∗k+1(t− 1)∥2 +Ωi,

k ∈ I[0,L−1], (7g)

ξiL(t) =




ui
[L−n,L−1](t)

y−i,∗
[L−n+1,L](t− 1)

yi[L−n,L−1](t)


 , (7h)

with a constant Ωi ≥ 0, and momentarily defined trajectories
ûi
[0,L−1](t) and ŷi[0,L−1](t) as well as a terminal cost matrix Pi

and set X f
i . The optimal solution of (7) is denoted by αi,∗(t)

with corresponding optimal input sequence ui,∗
[−n,L−1](t) and

predicted output sequence yi,∗[−n,L−1](t). Constraint (7b) is based
on Lemma 3 and used to predict the input-output behaviour of
the system over the prediction horizon L, whereas (7c) fixes the
initial condition. The predicted extended state (7h) is confined to
a terminal set through (7e) which is tightened using a factor θi >
0 to provide recursive feasibility. Each subsystem assumes that
the outputs of their neighbours follow a communicated trajectory
(cf. (7b)). The neighbours, however, will in general deviate
from this trajectory. To ensure recursive feasibility despite
this discrepancy, the consistency constraints (7f) and (7g) are
included. It forces the predicted input and output to stay as close
to what has been communicated as the in 3.4 defined feasible
trajectories ûi

[0,L−1](t) and ŷi[0,L−1](t) can. If Ui and X f
i (θiϵi)

are ellipsoidal or polytopic, (7) is a convex quadratically
constraint quadratic program, which can be solved efficiently.

3.3 Terminal ingredients

Assumption 4. For every subsystem i, there exist Pi ≻ 0,
µi, ηi, ϵi > 0, θi ∈ (0, 1) and a terminal controller Ki such
that
∥ξi,+∥2Pi

−∥ξi∥2Pi
≤ −ηi∥ξi∥2−∥yi∥2Qi

−∥κi(ξ
i)∥2Ri

+ µi (8)

κi(ξ
i) ∈ Ui (9)

∥ξi,+∥2Pi
≤ θiϵi (10)

if ξi ∈ X f
i (ϵi) = {ξi | ∥ξi∥2Pi

≤ ϵi} for all i ∈ V and where
ξi,+ = Ãiiξ

i +


j∈Ni
Ãijy

j + B̃iiκi(ξ
i).

This assumption implies that inside X f
i (ϵi) every subsystem can

be driven into an invariant set strictly inside X f
i (ϵi) despite the

influence of the neighbours’ outputs. Implicitly, the dynamic
coupling needs to be sufficiently weak. If µi is sufficiently small,
it can be shown that (8) implies (10) if ξi ∈ X f

i (ϵi) for all i ∈ V .

We comment on how the method in (Berberich et al., 2021b)
could be adapted to compute distributed terminal ingredients
as in Assumption 4 from input-output data, if the coupling is
sufficiently weak. A general data-driven method to compute
these terminal ingredients is left open for future research. We
rewrite (4) into

ξit+1

zit


=




Āi Bui By−i Bwi
I
0

 
0
I


0 0







ξit
ui
t

y−i
t

wi
t


 ,

where wi
t = ∆iz

i
t contains all unknown elements in (4),

i.e. ∆i = [Gi,n, . . . , Gi,1, Si,n, . . . , Si,1, Fi,n, . . . , Fi,1, Dii].
Define the matrices

Ξi =

ξd,in ξd,in+1 . . . ξd,iN−1


, Ξ+

i =

ξd,in+1 ξ

d,i
n+2 . . . ξd,iN



Ui =

ud,i
n ud,i

n+1 . . . ud,i
N−1


, Y−i =


yd,−i
n yd,−i

n+1 . . . yd,−i
N−1


,

and Zi =

Ξ⊤
i U⊤

i

⊤
with the extended state ξd,it based on

the available input-output data Di. Further, define Mi = Ξ+
i −

ĀiΞi −BuiUi −By−iY−i and the matrix

P̄wi

∆i
= [⋆]

⊤


−ZiZ
⊤
i ZiM

⊤
i Bwi

B⊤
wiMiZ

⊤
i −B⊤

wiMiM
⊤
i Bwi

 
0 I

B⊤
wi 0


.

Lemma 5. (cf. (Berberich et al., 2021b, Proposition 10)).
Factorise T⊤

yiQiTyi = Q⊤
i,rQi,r and Ri = R⊤

i,rRi,r. Suppose
there exist Xi ≻ 0, Γi ≻ 0, Mi, τi ≥ 0, γi > 0 such that

trace(Γi) < γ2
i ,


Γi I
I X


≻ 0, and




τP̄wi

∆i
−

Xi 0
0 0

 
Ā

iXi +BuiMi

Xi

Mi


 0

⋆ −Xi


Qi,rXi

Ri,rMi

⊤

⋆ ⋆ −I



≺ 0.

Define Pi = X−1
i − T⊤

yiQiTyi and Ki = MiX−i
i . Then, there

exists η̄i > 0 such that
∥ξ̄i,+∥2Pi

−∥ξi∥2Pi
≤ −η̄i∥ξi∥2Pi

−∥yi∥2Qi
−∥κi(ξ

i)∥2Ri
(12)

with ξ̄i,+ = (Ãii + B̃iiKi)ξ
i and κi(ξ

i) = Kiξ
i.

This result is a slight extension of (Berberich et al., 2021b,
Proposition 10) and we refer to (Berberich et al., 2021b) for the
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proof. The existence of the additional parameter η̄i is guaranteed
by strictness of the LMIs in (Berberich et al., 2021b, Proposition
10). Note that (12) is similar to (8), except that no coupling is
considered, cf. ξ̄i,+ in (12) to ξi,+ in (8). Thus, the neglected
dynamic coupling needs to be sufficiently weak for (12) to
imply (8). Furthermore, if a bound on the neighbours’ outputs
is known, they can be interpreted as bounded noise and it is
straightforward to adapt the method in (Berberich et al., 2021b)
to design a robust feedback law, which would alleviate this issue.
Feasibility of the conditions in Lemma 5 requires a potentially
restrictive condition on the dimensions of subsystem (1), as
further discussed in (Berberich et al., 2021b).

3.4 Distributed data-driven MPC scheme

The following assumption bypasses the difficult task of con-
structing an initially feasible candidate in (7).
Assumption 6. At time t = 0, for all subsystems i ∈ V , there
exists α̂i(0) with corresponding ŷi[−n,L−1](0) such that it is a

feasible candidate in (7) for y−i,∗
[−n+1,L](−1) = ŷ−i

[−n,L−1](0). In
addition, each subsystem knows α̂i(0).

Since the prediction relies on communicated trajectories of
the neighbours, the first communicated output trajectory is
ŷi[−n,L−1](0) from Assumption 6.

After solving (7) at t − 1, the predicted output trajectory of
subsystem i, yi,∗[0,L−1](t − 1), is available for communication
after a one-step extension as described momentarily. However,
in general, it does not correspond to a feasible candidate at
time t because of (7b), which now depends on the updated
y−i,∗
[−n+1,L](t− 1), whereas yi,∗[0,L−1](t− 1) was computed based

on y−i,∗
[−n+1,L](t− 2). Instead, a feasible candidate at time t ∈ N

can be constructed using

ûi
[−n,L−2](t) = ui,∗

[−n+1,L−1](t− 1), (13a)

ûi
L−1(t) = κi(ξ̂

i
L−1(t)), (13b)

ξ̂iL−1(t) =



ûi
[L−n−1,L−2](t)

y−i,∗
[L−n,L−1](t− 1)

ŷi[L−n−1,L−2](t)


 , (13c)

as will be shown below. The corresponding candidate α̂i(t) and
output trajectory ŷi[−n,L−1](t) are computed with Algorithm 1

based on the updated neighbours’ trajectories y−i,∗
[−n+1,L](t− 1)

and output measurement yi[t−n,t−1] = yi,∗[−n+1,0](t− 1).

The D3MPC scheme is stated in Algorithm 2. Note that each
subsystem can solve its MPC problem in parallel in Step 1) of
Algorithm 2. Hence, the complexity of the scheme increases
only with the number of neighbours each subsystem has, but
not with the total number of subsystems. In addition, since
communication is necessary only once in each time step, the
communication overhead is kept to a minimum. In Step 4) of
Algorithm 2, we compute an extension of the optimal output
trajectory by one step, which is denoted by yi,∗L (t) with a slight
abuse of notation.

4. CLOSED-LOOP GUARANTEES

In this section, we prove that the origin is practically asymptoti-
cally stabilised if Algorithm 2 is applied to the system (5). An

Algorithm 1. Data-driven simulation (subsystem i)
(cf. (Markovsky and Rapisarda, 2008))
Input:

• Data Di, where


ud
[0,N−1]

yd,−i
[0,N−2]


is persistently exciting of order

L+ 2n and (Aii, Bi) is controllable.
• Initial condition {ui

k, y
i
k, y

−i
k }−1

k=−n.
• New input and neighbours’ output data {ui

k}
L−1
k=0 ,

{y−i
k }L−2

k=0 .
Procedure:
(1) Compute αi satisfying


HL+n(u

d,i
[0,N−1])

HL+n−1(y
d,−i
[0,N−2])

Hn(y
d,i
[0,N−L−1])


αi =



ui
[−n,L−1]

y−i
[−n,L−2]

yi[−n,−1]


 (14)

(2) Compute yi[0,L−1] = HL(y
d,i
[n,N−1])α

i.

Output: Resulting simulated output trajectory {yk}L−1
k=0 .

Algorithm 2. Data-driven distributed MPC scheme
Input for all i ∈ V:

• Data Di, where


ud

yd,−i


is persistently exciting of order

L+ 2n and (Aii, Bi) is controllable.
• Initial measurement {ui

k, y
i
k}

−1
k=−n.

• Initially communicated trajectories y−i,∗
[−n+1,L](−1).

Procedure: For all i ∈ V:
(1) Solve the local MPC problem (7).
(2) Apply ut = ui,∗

0 (t) and measure yit.
(3) Compute ui,∗

L (t) = κi(ξ
i,∗
L (t)). Then, compute yi,∗L (t)

using Algorithm 1 with initial condition ui,∗
[−n,−1](t),

y−i,∗
[−n+1,0](t−1), yi,∗[−n,−1](t) and new input and neighbours’

output trajectories ui,∗
[0,L](t), y

−i,∗
[1,L](t− 1).

(4) Send yi,∗[−n+1,L](t); receive y−i,∗
[−n+1,L](t) from neighbours.

(5) Set t = t+ 1.
(6) Compute ûi

[−n,L−1](t) according to (13) as well as
ŷi[−n,L−1](t) using Algorithm 1 with initial condi-

tion ûi
[−n,−1](t), y

−i,∗
[−n+1,0](t − 1), yi,∗[−n,−1](t) and new

input and neighbours’ output trajectories ûi
[0,L−1](t),

y−i,∗
[1,L−1](t− 1).

important requirement to this end is that in each time step each
subsystem is able to solve the MPC optimisation problem (7),
i.e. (7) is recursively feasible, which in particular implies that
the input constraints are not violated.

4.1 Recursive feasibility

The following assumption is crucial to prove recursive feasibility
of (7) and captures the central idea of the scheme. If all
subsystems stay close to their communicated trajectory, the
unexpected influence on neighbours is sufficiently bounded.

Assumption 7. There exist σ′
i, σ̃i ∈ K such that ∥ξ̂iL−1(t +

1) − ξi,∗L (t)∥Pi
≤ σ̃i(Ωi) and ∥ŷik(t + 1) − yi,∗k+1(t)∥Qi

≤
σ′
i(Ωi) for all t ∈ N0 and k ∈ I[0,L−2] if Algorithm 2

is used, with ξ̂iL−1(t + 1) as in (13c) and where ξi,∗L (t) =[
ui,∗
[L−n,L−1](t)

⊤ y−i,∗
[L−n+1,L](t− 1)⊤ yi,∗[L−n,L−1](t)

⊤
]⊤

.

As stated in (Dunbar, 2007), it is to be expected that this requires
sufficiently weak dynamic coupling. Although we conjecture
that Assumption 7 can be shown to hold (cf. (Dunbar, 2007,
Lemma 3)), it is not straightforward to compute σ̃i and σ′

i only
based on the available input-output data. This is beyond the
scope of this paper, yet we want to highlight two possibilities.
It may be possible to extract this information from the Hankel
matrix of each subsystem in Lemma 3, since it contains the
dynamic coupling. Alternatively, one may be able to use bounds
on the norms of Aii and Bij , j ∈ Ni, in (1) to construct σ̃i and
σ′
i. Using a similar approach as in (Wildhagen et al., 2022), the

latter can be estimated using input-output data.

We now show that û[0,L−1](t) from (13) leads to a feasible
candidate in (7) and the MPC problem is recursively feasible.
Theorem 8. Let Assumptions 2–7 hold. In particular, from
Assumption 6, let the MPC problem (7) be feasible for all i ∈ V
at time t = 0. Then, (7) is also feasible for all i ∈ V and all
t ∈ N, if σ̃i(Ωi) ≤ (1−

√
θi)

√
ϵi and θi ≥ 1− ηiλmax(Pi)

−1

for all i ∈ V with ϵi, ηi, and Pi from Assumption 4.

Proof. Let i ∈ V . From Assumption 6, a solution αi,∗(0)

with corresponding ui,∗
[−n,L−1](0) and yi,∗[−n,L−1](0) to (7) exists.

Assume for induction that (7) is feasible at time t. Consider the
candidate input trajectory ûi

[−n,L−1](t+ 1) from (13) together

with the updated output data of the neighbours y−i,∗
[−n+1,L](t)

which, if applied in (1a), yields ŷi[−n,L−1](t+ 1). By Lemma 3,
there exists a corresponding α̂i(t+ 1) such that (7b) is satisfied.
By definition of ûi

[−n,L−1](t + 1) and ŷi[−n,L−1](t + 1) the

constraint (7c) holds. From feasibility of ui,∗
[−n,L−1](t) it follows

that ûi
[−n,L−2](t+1) ∈ Ui. Clearly (7f) and (7g) hold. It remains

to be shown that (7d) for k = L − 1 and (7e) are satisfied.
Feasibility of (7) at time t and Assumption 7 yield ∥ξ̂iL−1(t +

1)∥Pi
≤ ∥ξi,∗L (t)∥Pi

+ ∥ξ̂iL−1(t + 1) − ξi,∗L (t)∥Pi
≤

√
θiϵi +

σ̃i(Ωi) ≤
√
ϵi, since σ̃i(Ωi) ≤ (1−

√
θi)

√
ϵi with θi ∈ (0, 1).

Hence, ξ̂iL−1(t + 1) ∈ X f
i (ϵi) and by Assumption 4, (7d) is

satisfied for k = L− 1 and for all i ∈ V . In addition, from (10)
in Assumption 4, ξ̂iL(t+ 1) ∈ X f

i (θiϵi) for all i ∈ V . �

4.2 Practical stability

We define V ∗
t =

∑M
i=1

∑L−1
k=0 (∥y

i,∗
k (t)∥2Qi

+ ∥ui,∗
k (t)∥2Ri

+

∥ξi,∗L (t)∥2Pi
) and assume the following.

Assumption 9. There exists cub > 0 such that V ∗
t ≤ cub∥ξt∥2

holds for all t ∈ N0.

This assumption can be shown to hold if, e.g. Ui are compact
polytopes for all i ∈ V and the cost of the initially feasible
candidate from Assumption 6 admits a quadratic upper bound.

The following theorem establishes practical stability of the origin
of the global extended system (5). Hence, also of the closed-
loop state, since xi

t = Txiξit for all i ∈ V . It shows a trade-off
between giving each subsystem a larger margin of freedom (Ωi

larger), compared to tight stabilisation of the origin (Ωi smaller).
Theorem 10. Let Assumptions 2–7 hold. If the D3MPC scheme
in Algorithm 2 is applied, then the origin of the resulting closed-

loop system is practically stable. That is, there exist β ∈ KL,
δ1, δ2 ∈ K∞ and Ωmax such that for all Ω ≤ Ωmax

∥ξt∥ ≤ β(∥ξ0∥, t) + δ1(Ω) + δ2(µ)

holds for the closed-loop solution of (5), where Ω = maxi Ωi

and µ =
∑m

i=1 µi.

Proof. For brevity, we write ·̂ := ·̂(t+ 1), e.g. ξ̂iL := ξ̂iL(t+ 1),
and ·∗ := ·∗(t), e.g. yi,∗k+1 := yi,∗k+1(t). Since α̂i(t + 1) with
ûi
[−n,L−1](t+1) and ŷi[−n,L−1](t+1) is a feasible choice in (7)

at time t+ 1 (see Theorem 8) and ûi
k(t+ 1) = ui,∗

k+1(t) for k ∈
I[0,L−2], V ∗

t+1 ≤
∑M

i=1(
∑L−1

k=0 ∥ŷik∥2Qi
+ ∥ûi

k∥2Ri
+ ∥ξ̂iL∥2Pi

) =

V ∗
t +

∑M
i=1(

∑L−2
k=0 ∥ŷik∥2Qi

−∥yi,∗k+1∥2Qi
)+

∑M
i=0(∥ŷiL−1∥2Qi

+

∥ûi
L−1∥2Ri

+ ∥ξ̂iL∥2Pi
− ∥ξ̂iL−1∥2Pi

+ ∥ξ̂iL−1∥2Pi
− ∥ξi,∗L ∥2Pi

−
∥yit∥2Qi

− ∥ui
t∥2Ri

). Then, since ξ̂iL−1(t + 1) ∈ X f
i (ϵi) for all

i ∈ V as shown in the proof of Theorem 8, and by definition of
ûi
L−1(t+1) in (13b), from Assumption 4 it follows that V ∗

t+1 −
V ∗
t ≤ −∥yt∥2Q−∥ut∥2R+

∑M
i=1(

∑L−2
k=0 ∥ŷik∥2Qi

−∥yi,∗k+1∥2Qi
)+∑M

i=0(∥ξ̂iL−1∥2Pi
− ∥ξi,∗L ∥2Pi

+ µi), with Q = diagi∈V(Qi)

and R = diagi∈V(Ri). Note that for vectors a, b, ∥a∥2 −
∥b∥2 ≤ ∥a−b∥2+2∥b∥∥a−b∥. Hence, with ∥yi,∗k+1(t)∥2Qi

≤ V ∗
t

for all k ∈ I[0:L−2], and ∥ξi,∗L (t)∥2Pi
≤ V ∗

t for all i ∈ V ,
V ∗
t+1 − V ∗

t ≤ −∥yt∥2Q − ∥ut∥2R + µ +
∑M

i=1(
∑L−2

k=0 ∥ŷik −
yi,∗k+1∥2Qi

+2
√
V ∗
t ∥ŷik − yi,∗k+1∥Qi

) +
∑M

i=0(∥ξ̂iL−1 − ξi,∗L ∥2Pi
+

2
√
V ∗
t ∥ξ̂iL−1−ξi,∗L ∥Pi

). From Assumption 7, and with
√
V ∗
t ≤

V ∗
t + 1

V ∗
t+1 − V ∗

t ≤
M∑
i=1

((L−1)(σ̄(σ′
i(Ωi)) + 2V ∗

t

√
σ′
i(Ωi))) + µ

− ∥yt∥2Q − ∥ut∥2R +

M∑
i=1

σ̄(σ̃i(Ωi)) + 2V ∗
t

√
σ̃i(Ωi) (15)

with σ̄(r) = r+2
√
r. As in the proof of (Berberich et al., 2021b,

Theorem 8), since (A,C) is observable by Assumption 2, (Ã, C̃)
is detectable and (5) admits an input-output-to-state stability
Lyapunov function W (ξ) = ∥ξ∥2PW

satisfying

W (Ãξ + B̃u)−W (ξ) ≤ −1

2
∥ξ∥2 + c1∥y∥22 + c2∥u∥22, (16)

with c1, c2 > 0 and PW ≻ 0, for all u ∈ Rm, ξ ∈ Rnξ

and y = C̃ξ + D̃u (cf. (Cai and Teel, 2008)). Consider now
Wt = γW (ξt) + V ∗

t with γ = λmin(Q,R)
max(c1,c2)

. Clearly, γ∥ξt∥2PW
≤

Wt ≤ cub∥ξt∥2 + γ∥ξt∥2PW
, where the lower bound follows

from V ∗
t ≥ 0 and the upper bound from Assumption 9. Hence,

from Assumption 9 and combining (15) with (16), Wt+1 −
Wt ≤ −γ

2 ∥ξt∥
2 +

∑M
i=1((L − 1)σ̄(σ′

i(Ωi)) + σ̄(σ̃i(Ωi))) +

2cub∥ξt∥2
∑M

i=1((L−1)
√
σ′
i(Ωi)+

√
σ̃i(Ωi))+µ. Thus, there

exist Ωi sufficiently small such that Wt+1 −Wt≤− γ̃∥ξt∥2 +∑M
i=1(L−1)σ̄(σ′

i(Ωi))+σ̄(σ̃i(Ωi))+µ for some γ̃ > 0. Hence,
there also exists σ ∈ K∞ such that Wt+1 −Wt ≤ −γ̃∥ξt∥2 +
σ(Ω) + µ, and the claim follows (Grüne and Stieler, 2014,
Theorem 2.4). �

5. NUMERICAL EXAMPLE

We consider the same example as in (Alonso et al., 2021): a
system comprising a chain of 64 subsystems with dynamics
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is used, with ξ̂iL−1(t + 1) as in (13c) and where ξi,∗L (t) =[
ui,∗
[L−n,L−1](t)

⊤ y−i,∗
[L−n+1,L](t− 1)⊤ yi,∗[L−n,L−1](t)

⊤
]⊤

.

As stated in (Dunbar, 2007), it is to be expected that this requires
sufficiently weak dynamic coupling. Although we conjecture
that Assumption 7 can be shown to hold (cf. (Dunbar, 2007,
Lemma 3)), it is not straightforward to compute σ̃i and σ′

i only
based on the available input-output data. This is beyond the
scope of this paper, yet we want to highlight two possibilities.
It may be possible to extract this information from the Hankel
matrix of each subsystem in Lemma 3, since it contains the
dynamic coupling. Alternatively, one may be able to use bounds
on the norms of Aii and Bij , j ∈ Ni, in (1) to construct σ̃i and
σ′
i. Using a similar approach as in (Wildhagen et al., 2022), the

latter can be estimated using input-output data.

We now show that û[0,L−1](t) from (13) leads to a feasible
candidate in (7) and the MPC problem is recursively feasible.
Theorem 8. Let Assumptions 2–7 hold. In particular, from
Assumption 6, let the MPC problem (7) be feasible for all i ∈ V
at time t = 0. Then, (7) is also feasible for all i ∈ V and all
t ∈ N, if σ̃i(Ωi) ≤ (1−

√
θi)

√
ϵi and θi ≥ 1− ηiλmax(Pi)

−1

for all i ∈ V with ϵi, ηi, and Pi from Assumption 4.

Proof. Let i ∈ V . From Assumption 6, a solution αi,∗(0)

with corresponding ui,∗
[−n,L−1](0) and yi,∗[−n,L−1](0) to (7) exists.

Assume for induction that (7) is feasible at time t. Consider the
candidate input trajectory ûi

[−n,L−1](t+ 1) from (13) together

with the updated output data of the neighbours y−i,∗
[−n+1,L](t)

which, if applied in (1a), yields ŷi[−n,L−1](t+ 1). By Lemma 3,
there exists a corresponding α̂i(t+ 1) such that (7b) is satisfied.
By definition of ûi

[−n,L−1](t + 1) and ŷi[−n,L−1](t + 1) the

constraint (7c) holds. From feasibility of ui,∗
[−n,L−1](t) it follows

that ûi
[−n,L−2](t+1) ∈ Ui. Clearly (7f) and (7g) hold. It remains

to be shown that (7d) for k = L − 1 and (7e) are satisfied.
Feasibility of (7) at time t and Assumption 7 yield ∥ξ̂iL−1(t +

1)∥Pi
≤ ∥ξi,∗L (t)∥Pi

+ ∥ξ̂iL−1(t + 1) − ξi,∗L (t)∥Pi
≤

√
θiϵi +

σ̃i(Ωi) ≤
√
ϵi, since σ̃i(Ωi) ≤ (1−

√
θi)

√
ϵi with θi ∈ (0, 1).

Hence, ξ̂iL−1(t + 1) ∈ X f
i (ϵi) and by Assumption 4, (7d) is

satisfied for k = L− 1 and for all i ∈ V . In addition, from (10)
in Assumption 4, ξ̂iL(t+ 1) ∈ X f

i (θiϵi) for all i ∈ V . �

4.2 Practical stability

We define V ∗
t =

∑M
i=1

∑L−1
k=0 (∥y

i,∗
k (t)∥2Qi

+ ∥ui,∗
k (t)∥2Ri

+

∥ξi,∗L (t)∥2Pi
) and assume the following.

Assumption 9. There exists cub > 0 such that V ∗
t ≤ cub∥ξt∥2

holds for all t ∈ N0.

This assumption can be shown to hold if, e.g. Ui are compact
polytopes for all i ∈ V and the cost of the initially feasible
candidate from Assumption 6 admits a quadratic upper bound.

The following theorem establishes practical stability of the origin
of the global extended system (5). Hence, also of the closed-
loop state, since xi

t = Txiξit for all i ∈ V . It shows a trade-off
between giving each subsystem a larger margin of freedom (Ωi

larger), compared to tight stabilisation of the origin (Ωi smaller).
Theorem 10. Let Assumptions 2–7 hold. If the D3MPC scheme
in Algorithm 2 is applied, then the origin of the resulting closed-

loop system is practically stable. That is, there exist β ∈ KL,
δ1, δ2 ∈ K∞ and Ωmax such that for all Ω ≤ Ωmax

∥ξt∥ ≤ β(∥ξ0∥, t) + δ1(Ω) + δ2(µ)

holds for the closed-loop solution of (5), where Ω = maxi Ωi

and µ =
∑m

i=1 µi.

Proof. For brevity, we write ·̂ := ·̂(t+ 1), e.g. ξ̂iL := ξ̂iL(t+ 1),
and ·∗ := ·∗(t), e.g. yi,∗k+1 := yi,∗k+1(t). Since α̂i(t + 1) with
ûi
[−n,L−1](t+1) and ŷi[−n,L−1](t+1) is a feasible choice in (7)

at time t+ 1 (see Theorem 8) and ûi
k(t+ 1) = ui,∗

k+1(t) for k ∈
I[0,L−2], V ∗

t+1 ≤
∑M

i=1(
∑L−1

k=0 ∥ŷik∥2Qi
+ ∥ûi

k∥2Ri
+ ∥ξ̂iL∥2Pi

) =

V ∗
t +

∑M
i=1(

∑L−2
k=0 ∥ŷik∥2Qi

−∥yi,∗k+1∥2Qi
)+

∑M
i=0(∥ŷiL−1∥2Qi

+

∥ûi
L−1∥2Ri

+ ∥ξ̂iL∥2Pi
− ∥ξ̂iL−1∥2Pi

+ ∥ξ̂iL−1∥2Pi
− ∥ξi,∗L ∥2Pi

−
∥yit∥2Qi

− ∥ui
t∥2Ri

). Then, since ξ̂iL−1(t + 1) ∈ X f
i (ϵi) for all

i ∈ V as shown in the proof of Theorem 8, and by definition of
ûi
L−1(t+1) in (13b), from Assumption 4 it follows that V ∗

t+1 −
V ∗
t ≤ −∥yt∥2Q−∥ut∥2R+

∑M
i=1(

∑L−2
k=0 ∥ŷik∥2Qi

−∥yi,∗k+1∥2Qi
)+∑M

i=0(∥ξ̂iL−1∥2Pi
− ∥ξi,∗L ∥2Pi

+ µi), with Q = diagi∈V(Qi)

and R = diagi∈V(Ri). Note that for vectors a, b, ∥a∥2 −
∥b∥2 ≤ ∥a−b∥2+2∥b∥∥a−b∥. Hence, with ∥yi,∗k+1(t)∥2Qi

≤ V ∗
t

for all k ∈ I[0:L−2], and ∥ξi,∗L (t)∥2Pi
≤ V ∗

t for all i ∈ V ,
V ∗
t+1 − V ∗

t ≤ −∥yt∥2Q − ∥ut∥2R + µ +
∑M

i=1(
∑L−2

k=0 ∥ŷik −
yi,∗k+1∥2Qi

+2
√

V ∗
t ∥ŷik − yi,∗k+1∥Qi

) +
∑M

i=0(∥ξ̂iL−1 − ξi,∗L ∥2Pi
+

2
√
V ∗
t ∥ξ̂iL−1−ξi,∗L ∥Pi

). From Assumption 7, and with
√

V ∗
t ≤

V ∗
t + 1

V ∗
t+1 − V ∗

t ≤
M∑
i=1

((L−1)(σ̄(σ′
i(Ωi)) + 2V ∗

t

√
σ′
i(Ωi))) + µ

− ∥yt∥2Q − ∥ut∥2R +

M∑
i=1

σ̄(σ̃i(Ωi)) + 2V ∗
t

√
σ̃i(Ωi) (15)

with σ̄(r) = r+2
√
r. As in the proof of (Berberich et al., 2021b,

Theorem 8), since (A,C) is observable by Assumption 2, (Ã, C̃)
is detectable and (5) admits an input-output-to-state stability
Lyapunov function W (ξ) = ∥ξ∥2PW

satisfying

W (Ãξ + B̃u)−W (ξ) ≤ −1

2
∥ξ∥2 + c1∥y∥22 + c2∥u∥22, (16)

with c1, c2 > 0 and PW ≻ 0, for all u ∈ Rm, ξ ∈ Rnξ

and y = C̃ξ + D̃u (cf. (Cai and Teel, 2008)). Consider now
Wt = γW (ξt) + V ∗

t with γ = λmin(Q,R)
max(c1,c2)

. Clearly, γ∥ξt∥2PW
≤

Wt ≤ cub∥ξt∥2 + γ∥ξt∥2PW
, where the lower bound follows

from V ∗
t ≥ 0 and the upper bound from Assumption 9. Hence,

from Assumption 9 and combining (15) with (16), Wt+1 −
Wt ≤ −γ

2 ∥ξt∥
2 +

∑M
i=1((L − 1)σ̄(σ′

i(Ωi)) + σ̄(σ̃i(Ωi))) +

2cub∥ξt∥2
∑M

i=1((L−1)
√
σ′
i(Ωi)+

√
σ̃i(Ωi))+µ. Thus, there

exist Ωi sufficiently small such that Wt+1 −Wt≤− γ̃∥ξt∥2 +∑M
i=1(L−1)σ̄(σ′

i(Ωi))+σ̄(σ̃i(Ωi))+µ for some γ̃ > 0. Hence,
there also exists σ ∈ K∞ such that Wt+1 −Wt ≤ −γ̃∥ξt∥2 +
σ(Ω) + µ, and the claim follows (Grüne and Stieler, 2014,
Theorem 2.4). �

5. NUMERICAL EXAMPLE

We consider the same example as in (Alonso et al., 2021): a
system comprising a chain of 64 subsystems with dynamics



370 Matthias Köhler  et al. / IFAC PapersOnLine 55-30 (2022) 365–370

0 1 2 3 4 5 6 7 8 9 10

−0.5

0

0.5

1

1.5

time t

cl
os

ed
-l

oo
p

ou
tp

ut
s
y
i t
,i

∈
I [1

,7
]

Fig. 1. Evolution of the closed-loop outputs of (17) for i ∈ I[1,7].

xi
t+1 =

[
1 0.2

− ki

5mi
1− di

5mi

]
xi
t +

[
0
ui
t

]
+

∑
j∈Ni

[
0

kijy
j
t

]
, (17a)

yit =
[
0.2
mi

0
]
xi
t. (17b)

The parameters are set to mi = 1, di = 0.75, kij = 1.25
and ki =

∑
j∈Ni

kij for all i ∈ V and j ∈ Ni. We consider
input-output data of each subsystem of length N = 100. We
choose L = 5, Qi = Ri = I , Ui = [−2, 2] and design
terminal ingredients as discussed with ϵi = 10−5 for all i ∈ V .
For the consistency constraint, we choose Ωi = 0.01 for all
i ∈ V . We use a suboptimal feasible trajectory as the initially
feasible trajectory. The LMIs in Lemma 5 were solved using
YALMIP (Löfberg, 2004) and MOSEK (MOSEK ApS, 2020),
whereas MOSEK was used for (7). We plot the closed-loop
output evolution of subsystems i ∈ I[1,7] in Figure 1, displaying
(practical) convergence, as expected from Theorem 10.

6. CONCLUSION

We have proposed a direct data-driven distributed MPC scheme
for a group of dynamically coupled LTI systems. Each local
MPC optimisation problem uses only past measured input-output
data for the prediction, without any prior system identification
step. We showed that if the dynamic coupling is sufficiently
weak, the data-driven distributed MPC scheme is recursively
feasible and practically stabilises the origin of the global system.
The main mechanism are so-called consistency constraints, i.e.
keeping close to a previously communicated trajectory, based
on the model-based approach in (Dunbar, 2007). This enables
a non-iterative parallel distributed MPC scheme with minimal
communication. The complexity of the scheme does not increase
with the total number of subsystems, but only with the number of
neighbours of each subsystem. Future research will investigate
deriving suitable bounds for the consistency based on input-
output data, as well as data-driven design of terminal ingredients
that take the dynamic coupling into account.

REFERENCES

Allibhoy, A. and Cortés, J. (2021). Data-based receding horizon
control of linear network systems. IEEE Control Syst. Lett.,
5(4), 1207–1212.

Alonso, C.A., Yang, F., and Matni, N. (2021). Data-
driven distributed and localized model predictive control.
arXiv:2112.12229.
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