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Abstract

The time evolution of a closed quantum system was described quite early in the his-
tory of quantum physics. These dynamics are reversible, and the time evolution is
implemented by a continuous unitary group, which is in turn generated by a self-
adjoint Hamiltonian operator. So, we have a complete mathematical characteriza-
tion of all such evolutions. For open quantum systems the time evolution is given
by dynamical semigroups. In the case of uniform continuity the generator of the dy-
namical semigroup is a bounded operator in the famous GKLS-form that has been
found by V. Gorini, A. Kossakowski, G. Sudarshan and, independently, G. Lindblad.
But the problem of characterizing also the merely strongly continuous dynamical
semigroups or, equivalently, their unbounded generators, is open.

In the first part of this thesis we introduce a standard form for the generator of quan-
tum dynamical semigroups that is an unbounded version of the GKLS-form. The
basis of the standard form are so-called no-event semigroups, describing an evolu-
tion of a quantum system, that maps pure states to multiples of pure states, and
completely positive perturbations of their generator that correspond to jumps in this
evolution, like absorption by a measurement device. We will give examples of stan-
dard semigroups, which appear to be probability preserving to first order (i.e., when
looking only at the generator on the finite-rank part of its domain) but not for finite
times. Additionally, we construct examples of generators not of standard form by
modifying the previous examples.

In the second part we relate the notion of standardness to W. Arveson’s classification
of endomorphism semigroups. He divided them into three classes, Type I, Type II
and Type III. We show that a conservative dynamical semigroup is standard if and
only if the minimal dilation of its adjoint is of Type I. The key feature is the set of ket-
bras in the domain of the no-event generator and whether it is a core for the standard
generator. With this knowledge, we suggest to extend this classification to (not nec-
essarily conservative) semigroups that are standard or can be constructed as a series
of completely positive perturbations of a no-event semigroup. By construction these
are either of Type I or Type II.

Keywords: Open system dynamics, quantum dynamical semigroups, unbounded
standard generators
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Zusammenfassung

Die Zeitentwicklung eines geschlossenen Quantensystems wurde recht früh in der
Geschichte derQuantenphysik beschrieben. IhreDynamik ist reversibel und die Zeit-
entwicklung wird implementiert durch eine stetige unitäre Gruppe, die wiederum
von einem Hamilton-Operator erzeugt wird. Somit haben wir eine vollständige ma-
thematische Charakterisierung solcher Entwicklungen. Für offene Quantensysteme
wird die Zeitentwicklung durch dynamischeHalbgruppen beschrieben. Ist dieHalb-
gruppe gleichmäßig stetig, so ist ihr Erzeuger ein beschränkter Operator in der be-
kannten GKLS-Form, die von V. Gorini, A. Kossakowski, G. Sudarshan und, unab-
hängig davon, G. Lindblad entwickelt wurde. Aber die Charakterisierung von nur
stark-stetigen quantendynamischen Halbgruppen ist ein noch offenes Problem.

Im ersten Teil dieser Arbeit führen wir eine Standardform für die Erzeuger quan-
tendynamischer Halbgruppen ein, die eine unbeschränkte Version der bekannten
GKLS-Form ist. Grundlage dieser Standardform sind sogenannte No-Event Halb-
gruppen, die eine Evolution des Quantensystem beschreiben, bei der reine Zustän-
de auf Vielfache von reinen Zuständen abgebildet werden, und vollständig positive
Störungen ihres Erzeugers, die Sprünge in dieser Entwicklung beschreiben, wie Ab-
sorption durch Messapparate. Wir geben Beispiele von Standardhalbgruppen, die in
ersterOrdnung (also bei Betrachtungdes Erzeugers auf demzumendlichenRang ge-
hörenden Definitionsbereich) wahrscheinlichkeitserhaltend sind, aber nicht bei der
Betrachtung endlicher Zeiten. Zusätzlich konstruieren wir Beispiele von Erzeugern,
die nicht von Standardform sind, indem wir die vorherigen Beispiele modifizieren.

Im zweiten Teil setzen wir die Standardform-Eigenschaft mit der vonW. Arveson ge-
fundenen Klassifikation von Endomorphismus-Halbgruppen in Verbindung. Er un-
terteilte sie in drei Klassen, Typ I, Typ II und Typ III. Wir zeigen, dass eine konservati-
ve dynamische Halbgruppe genau dann standard ist, wenn die minimale Dilatation
ihrer Adjungierten Typ I ist. Wichtigster Bestandteil des Beweises ist die Menge an
Ketbras im Definitionsbereich des No-Event-Erzeugers und ob diese einen definie-
renden Bereich für den Standarderzeuger bilden. Mit dieser Kenntnis schlagen wir
eineAusweitungderKlassifikation auf (nicht notwendigerweise konservative)Halb-
gruppen vor, die entweder standard sind oder durch eine Reihe an vollständig posi-
tiven Störungen aus einer No-Event-Halbgruppe konstruiert werden können. Durch
diese Konstruktion sind sie immer vom Typ I oder vom Typ II.

Schlagworte: Dynamik offener Systeme, quantendynamische Halbgruppen, unbe-
schränkte Standard-Erzeuger
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Introduction

Dynamical semigroups are the key structure for describing open system dynamics,
yet our structural understanding of them is curiously limited. On the other hand, the
time evolution of a closed quantum system was described quite early in the history
of quantum physics. Erwin Schrödinger postulated his famous equation in 1925. It
gives the time evolution of a closed system in a pure quantum state. Its generaliza-
tion to mixed states is known as the von Neumann equation. These dynamics are
reversible, and the time evolution is implemented by a continuous unitary group,
which is in turn generated by a self-adjoint Hamiltonian operator. So, we have a
complete mathematical characterization of all such evolutions. In fact, the spectral
theorem for unbounded self-adjoint operators was one of the first elements of the
mathematical structure of quantum mechanics that von Neumann developed, and
he did it for just this purpose. The analogous open systems problem then would be
the following:

Problem. Consider a Hilbert space H. Characterize all one-parameter semigroups t 7→ Tt,
(t ≥ 0) such that each Tt is a completely positive map on the trace class T(H), and, for any
ρ ∈ T(H) and any bounded operator A ∈ B(H), we have limt→0 tr

(
Tt(ρ)A

)
= tr(ρA).

The solution to this problem is well known in the case of bounded generators, which
is equivalent to the uniform continuity condition limt→0 ∥Tt − I∥ = 0. It was found
by V. Gorini, A. Kossakowski and G. Sudarshan [GKS76], and independently by G.
Lindblad [Lin76] in 1976, and more information about this special case is given in
Section 3.5. But the problem as written above, i.e., of characterizing also the merely
strongly continuous dynamical semigroups or, equivalently, their unbounded gener-
ators, is open.

In spite of this, many applications use unbounded versions of the GKLS-form of the
generator, which we will call the standard form in the sequel. The basic idea for the
standard form goes back to E. B. Davies [Dav77], and has been somewhat further
developed since [Fag99; Hol96a; Che91]. The typical attitude towards this problem
is currently to use unbounded standard forms where it seems natural but to avoid
the general unbounded case. Indicative of this state of affairs is that the papers by A.
Holevo [Hol95; Hol96c] from 1995/96, which present an example of a non-standard
generator, have practically not been cited. Likewise underrated in the physics com-
munity is thework ofW. Arveson [Arv03], which also goeswell beyond the standard
form [Arv02a]. He gave a complete classification for semigroups of endomorphisms,
which can be extended to dynamical semigroups via his dilation theory [Arv89a;
Arv90a; Arv89b; Arv90b].



2 CONTENTS

In this thesis, we pursue two purposes. We give a generalization of the standard
form in the unbounded case and integrate this form into Arveson’s classification.
Chapter 1 and Chapter 2 give a rather elaborated introduction to the mathematical
basics. The reason for this level of detail is twofold. Firstly, we want to present the
reader with a self-contained work, giving all the information necessary for a gradu-
ated physicist - regardless of his line of research - to comprehend the main results.
Secondly, this settles the vocabulary and notation, as we often experienced differ-
ences and variations, especially between physicists and mathematicians. One of the
main difficulties in this thesis was bringing together the views and languages of dif-
ferent research communities. We hope to have found a compromise in expressing the
results that is easy to read, gives a clear understanding of the different structures, but
also enables the reader to recognize the concepts from the underlying literature.

In Chapter 3 we review quantummechanics, starting from quantum states and mea-
surements according towhat are sometimes called theHanover rules, up to quantum
dynamics and the GKLS-standard form in the case of uniform continuity. We will
then introduce a description of the standard form in the unbounded case (Chapter
4), emphasizing intuition and collecting and even proving the basic results around
it. We also give a cautionary example showing that the standard form must not be
read too naively. Further examples are given of semigroups [Dav77; Hol96c], which
appear to be probability preserving to first order (i.e., when looking only at the gener-
ator on the finite-rank part of its domain) but not for finite times. This phenomenon is
akin to classical processes allowing escape to infinity in finite time. We will also give
examples of generators not of standard form by modifying the previous examples.
Most but not all results of this chapter have already been published in [SHW17].

Chapter 5 collects all necessary information on endomorphism semigroups andArve-
son’s dilation thereof. He divided them into three classes, Type I, Type II and Type
III, where the first two types are also called spatial semigroups. We will closely exam-
ine the role of pure states in the domain of generators as described by R. T. Powers
[Pow91]. Even at first glance, the structure of spatial semigroups closely resembles
the construction of the standard form in the unbounded case. We will explore these
similarities and prove their relations in the final chapter (Chapter 6) before giving
our conclusions and ideas for further research.

At the end of each chapter, there is a section with notes and remarks where we as-
semble the literature used in this chapter or give further information that is not nec-
essarily needed in the course of this thesis.



Chapter 1

Operator algebras

In this chapter, wewill briefly introduce the basics of operator algebras. Thiswill give
the relevant mathematical background needed in the following chapters and set the
used notation. The obligatory mathematical starting point for Quantum mechanics
is the Hilbert space, used to describe a quantum system. The introduction follows
operators on Hilbert spaces, positive maps and their dilations, and the Fock space.
Proofs are mainly omitted in the chapters of mathematical preliminaries. However,
the sources with proofs are given for each result and the reader can find a detailed
description of the corresponding literature in the last section "Notes and Remarks".

1.1 Hilbert spaces

Let us consider a vector spaceH over the complex numbersC. A scalar or inner product
on H is a function ⟨·, ·⟩ : H×H → C such that the following conditions hold:

1. conjugate symmetry: ⟨ϕ, ψ⟩ = ⟨ψ, ϕ⟩

2. linearity in second variable: ⟨ϕ, λ(ψ + η)⟩ = λ⟨ϕ, ψ⟩+ λ⟨ϕ, η⟩

3. positive definiteness: ⟨ϕ, ϕ⟩ = 0 if and only if ϕ = 0

for all vectors ϕ, ψ and η ∈ H and λ ∈ C. A complex vector space with an inner
product is called inner or scalar product space.

Definition 1.1.1. Two inner product spacesH andH′ are isomorphic if there is a bijective
linear mapping U : H → H′ such that the inner products ofH and H′ satisfy

⟨Uϕ,Uψ⟩H′ = ⟨ϕ, ψ⟩H (1.1)

for all ϕ, ψ ∈ H. The mapping U is an isomorphism.

Let ϕ and ψ be vectors in the inner product spaceH. Then inner products satisfy the
Cauchy-Schwarz inequality

∥⟨ϕ, ψ⟩∥2 ≤ ⟨ϕ, ϕ⟩⟨ψ,ψ⟩. (1.2)

ϕ, ψ are called orthogonal if ⟨ϕ, ψ⟩ = 0 and we write ψ ⊥ ϕ.

A norm on a vector space H is a map ∥ · ∥ : H → R that satisfies



4 CHAPTER 1. OPERATOR ALGEBRAS

1. subadditivity: ∥ϕ+ ψ∥ ≤ ∥ϕ∥+ ∥ψ∥

2. absolute homogeneity: ∥λψ∥ = |λ| ∥ψ∥

3. positive definiteness: ∥ϕ∥ = 0 if and only if ϕ = 0

for all ϕ, ψ ∈ H and λ ∈ C. If the first two conditions are satisfied, we call the map a
seminorm. A seminorm is non-negative, i.e. ∥ϕ∥ ≥ 0 for all ϕ ∈ H, but not necessarily
positive definite.

For each inner product on H, we can define a norm on H by ∥ϕ∥2 = ⟨ϕ, ϕ⟩ for all
ϕ ∈ H. A normed space can be endowedwith ametric and, therefore, with a topology
so that we can talk about the convergence of sequences and continuity. In a metric
space, every convergent sequence must be a Cauchy sequence. A metric space is
called complete if the converse is also true. Normed vector spaces that are complete
with respect to this norm are called Banach spaces.

Definition 1.1.2. An inner product space over C that is also a Banach space, i.e. complete
with respect to the norm induced by the inner product, is called a Hilbert space.

Amaximal orthonormal set onH is a set of orthogonal vectors where each vector has
unit norm, and that is not contained in another orthonormal set as a proper subset.
Such amaximal orthonormal set is called an orthonormal basis forH. If for any positive
integer d there exists an orthonormal set of d vectors, then H is infinite dimensional.
Otherwise H is finite dimensional and its dimension d is the cardinality of a maximal
orthonormal set onH.

Proposition 1.1.3 ([Naa17, Prop. 2.1.8]). Two Hilbert spaces H1 and H2 are isomorphic
if and only if they have the same dimension.

As a topological space, a Hilbert space is called separable if it contains a countable
dense subset. This is the case if it has a countable orthonormal basis. In this thesis,
all Hilbert spaces are assumed to be separable.

We will next consider linear maps between two Hilbert spacesH1 andH2. These are
functions A : H1 → H2 such that A(λϕ) = λA(ϕ) and A(ϕ + ψ) = A(ϕ) + A(ψ). We
will usually omit the brackets.

Proposition 1.1.4 ([Naa17, Prop. 2.1.4]). Let A : H1 → H2 be a linear map between two
Hilbert spaces. Then the following are equivalent:

1. A is continuous with respect to the norm topology.

2. A is bounded, i.e. there exists a constant M > 0 such that ∥Aϕ∥ ≤ M∥ϕ∥ for all
ϕ ∈ H1.

The concept of boundedness is only relevant in the infinite-dimensional setting. If the
dimension of H is finite, then all linear maps are bounded and, hence, continuous.
However, the following statements for bounded maps are true for either finite or
infinite dimensional Hilbert spaces.

Definition 1.1.5. Let H1 and H2 be Hilbert spaces. We write B(H1,H2) for the set of
bounded linear maps from H1 to H2 or simply B(H) := B(H,H) for bounded linear maps
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on H. An element of B(H1,H2) will be called a (bounded) operator and maps in B(H)
are simply called operators on H.

If A is a bounded linear map A : H1 → H2 between Hilbert spaces, the adjoint or A∗

of A is the unique linear map A∗ : H2 → H1 such that

⟨ϕ,A∗ψ⟩H1 = ⟨Aϕ,ψ⟩H2 (1.3)

for all ϕ ∈ H1 and ψ ∈ H2. In physics, the adjoint is often called hermitian conjugate
andwrittenA†. We will instead useA∗ as is common inmathematics andmathemat-
ical physics.

It is possible to combine two Hilbert spacesH1 andH2 into a new, composed Hilbert
space. One way to do this is taking the direct sumH1 ⊕H2, that consists of all tuples
(ϕ1, ϕ2)with ϕ1 ∈ H1 and ϕ2 ∈ H2. This is a Hilbert space if we define the following
rules for addition and inner product:

λ(ϕ1, ϕ2) + µ(ψ1, ψ2) = (λϕ1 + µψ1, λϕ2 + µψ2) (1.4)
⟨(ϕ1, ϕ2), (ψ1, ψ2)⟩H1⊕H2 = ⟨ϕ1, ψ1⟩H1 + ⟨ϕ2, ψ2⟩H2 (1.5)

where λ and µ are scalars and ϕi, ψi ∈ Hi. If K1,K2 are Hilbert spaces and Li : Hi →
Ki linear maps, we can define a linear map L1 ⊕ L2 : H1 ⊕H2 → K1 ⊕K2 by

(L1 ⊕ L2)(ϕ1, ϕ2) = (L1ϕ1, L2ϕ2). (1.6)

For the direct sum of nHilbert spaces, we will write
⊕n

i=1Hi. If L1, L2 are bounded,
then so is L1 ⊕ L2 and we have (L1 ⊕ L2)

∗ = L∗
1 ⊕ L∗

2.

Another possibility is combining two Hilbert spaces to an inner product space. Con-
sider the vector space V consisting of formal (finite) linear combinations of elements
of the form ϕ ⊗ ψ for ϕ ∈ H1 and ψ ∈ H2, so that a vector in V is of the form∑n

i=1 ϕi ⊗ ψi with n ∈ N. We then impose the following identifications:

λ(ϕ⊗ ψ) = (λϕ)⊗ ψ = ϕ⊗ (λψ) (1.7)
(ϕ1 + ϕ2)⊗ ψ = ϕ1 ⊗ ψ + ϕ2 ⊗ ψ (1.8)
ϕ⊗ (ψ1 + ψ2) = ϕ⊗ ψ1 + ϕ⊗ ψ2 (1.9)

for λ ∈ C, ϕ, ϕi ∈ H1 andψ,ψi ∈ H2. We obtain a vector spaceH whose elementswill
be written as ϕ⊗ ψ again. On this space, we can define an inner product by setting

⟨ϕ1 ⊗ ψ1, ϕ2 ⊗ ψ2⟩H = ⟨ϕ1, ψ1⟩H1⟨ϕ2, ψ2⟩H2 (1.10)

and extending by linearity. In general, H is not a Hilbert space since it is not com-
plete with respect to the norm induced by this inner product, but by the following
construction we can complete H to obtain a Hilbert space H = H1 ⊗ H2 which is
called the tensor product of H1 andH2.

Let (ξn)∞n=1 and (ηn)
∞
n=1 be two Cauchy sequences inH′. Wewill call them equivalent

if for every ϵ > 0 there exists a number N > 0 such that ∥ξn − ηn∥ < ϵ for all n > N .
That means that two Cauchy sequences belong to the same equivalence class if their
difference is equivalent to the sequence (0)∞n=1 of all zeros. The sum of two Cauchy
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sequences (ξn + ηn)
∞
n=1 as well as the multiplication of a Cauchy sequence (λξn)∞n=1

with a scalar λ ∈ C are again Cauchy sequences in H′. Together with these two
operations, the set of Cauchy sequences in H′ forms a vector space over C that we
denote as V . The set of Cauchy sequences equivalent to (0)∞n=1 is also a vector space,
which we denote V0. Then the space H = V/V0 is a vector space over C and can be
formed into an inner product space with the inner product

⟨(ξn)∞n=1, (ηn)
∞
n=1⟩H = lim

n→∞
⟨ξn, ηn⟩H′ . (1.11)

H′ can be embedded intoH via ι(ϕ) = [(ϕn)
∞
n=1], the equivalence class of the constant

sequence with values ϕ.

Theorem 1.1.6 ([Naa17, Thm. 2.1.10]). LetH′ be a (not necessarily complete) inner prod-
uct space. Then there is a Hilbert spaceH and a linear embedding ι : H′ → H such that ι(H′)
is dense inH and ⟨ϕ, ψ⟩H′ = ⟨ι(ϕ), ι(ψ)⟩H.

If H1,H2 and K1,K2 are Hilbert spaces and Li : Hi → Ki are bounded linear maps,
we can define a map L1 ⊕ L2 : H → K1 ⊗K2 by

(L1 ⊗ L2)(ϕ⊗ ψ) = (L1ϕ⊗ L2ψ). (1.12)

WewriteH⊗n for then-fold tensor product ofH, and for theHilbert space completion
of the tensor product of n Hilbert spaces, we will write

⊗n
i=1Hi. This notation will

also be applied to vectors in these Hilbert spaces. If L1, L2 are bounded, then L1⊗L2

is bounded on H. With 1.1.4 and extension by continuity (see PN 2.1.4), we get that
L1 ⊗ L2 is well defined on all ofH = H1 ⊗H2 (and therefore bounded). For adjoint
tensor products we have (L1 ⊗ L2)

∗ = L∗
1 ⊗ L∗

2.

1.2 Operators on a Hilbert space

Let A be a Banach space over C. If A is an algebra over C, i.e. if it is equipped with
a bilinear multiplication, and if the multiplication satisfies the inequality ∥AB∥ ≤
∥A∥∥B∥ for A,B ∈ A, then A is called a Banach algebra. We say A is a Banach-∗-
algebra when there is a anti-linear involution ∗ : A 7→ A that satisfies the following
properties for all A,B ∈ A and λ ∈ C:

1. (A∗)∗ = A

2. (A+B)∗ = A∗ +B∗

3. (λA)∗ = λ̄A∗

4. (AB)∗ = B∗A∗

5. ∥A∗∥ = ∥A∥.

Definition 1.2.1. A ∗-algebra A is called a C∗-algebra if the involution satisfies ∥A∗A∥ =
∥A∥2. If A has an identity 1I, it is called unital.

In this thesis, we will assume all C∗-algebras to be unital. We will call a C∗-algebra
generated by a set of operators if it is the smallest C∗-algebra that contains all these
operators.
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Definition 1.2.2. Let A be an algebra, B a subspace of A and assume A ∈ A and B ∈ B.
The subspace B is called a left ideal if AB ∈ B, it is called a right ideal if BA ∈ B. If it is
both a left and a right ideal, it is called a two-sided ideal.

We look again at the space B(H) of bounded operators on a Hilbert space H. For a
bounded operator A on H we will use the following notation:

• kernel ker(A) := {ϕ ∈ H|Aϕ = 0}

• range ran(A) := {ϕ ∈ H|ϕ = Aψ for some ψ ∈ H}

• support supp(A) := {ϕ ∈ H|ϕ ⊥ ψ for all ψ ∈ ker(A)}

On B(H)we can define a norm by

∥A∥ := sup
ϕ∈H,ϕ ̸=0

∥Aϕ∥
∥ϕ∥

= sup
ϕ∈H,∥ϕ∥=1

∥Aϕ∥. (1.13)

Theorem 1.2.3 ([Naa17, Sect. 2.2.1]). B(H) is complete with respect to (1.13), and to-
gether with the composition of operators as multiplication and the adjoint as involution, B(H)
is a C∗-algebra.

An operator A ∈ B(H) is called self-adjoint if A = A∗, and normal if AA∗ = A∗A.
If A∗A = 1I, then it is called an isometry. We say A is a contraction if ∥A∥ ≤ 1. A
self-adjoint operator A is positive if ⟨ϕ,Aϕ⟩ ≥ 0 for all ϕ ∈ H. This is the case if and
only if it can be written as A = B∗B for some operator B ∈ B(H). For operators
A,B ∈ B(H) we write A ≥ B if the operator A − B is positive. Each operator A ∈
B(H) can be written as a linear combination of at most four positive operators. We
have A = H + iK, with bothH andK self-adjoint operators in B(H), and then write
both self-adjoint operators as the difference of two positive ones,H = H+ −H− and
K = K+ −K−.

A self-adjoint operator P ∈ B(H) that satisfies P 2 = P ∗ = P is called a projection.
The image ran(P ) is a closed subspace of H. For example, if V is an isometry, then
V V ∗ is a projection.

Proposition 1.2.4 ([HZ12, Prop. 1.42]). LetQ,P be projections. The following are equiv-
alent:

1. P ≥ Q

2. PQ = Q

3. QP = Q

4. QP = PQ = Q

5. P −Q is a projection

Abounded operatorU ∈ B(H) is unitary if it satisfiesUU∗ = U∗U = 1I. ForU ∈ B(H)
the following are equivalent:

1. U is an isomorphism

2. U is a surjective isometry
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3. U is unitary.

We will regard two important subspaces of B(H) in this thesis: The class of compact
operators on a Hilbert space and the class of trace class operators on a Hilbert space.

Definition 1.2.5. An operator A ∈ B(H) is called compact if A takes bounded sets into
relatively compact sets. We denote the set of compact operators by K(H).

The following theorem gives another possible andmore intuitive way to characterize
compact operators.

Theorem1.2.6 ([RS80, Thm. 6.13]). LetH be a separableHilbert space, then every compact
operator on H is the norm limit of a sequence of operators of finite rank, i.e. operators whose
range is finite-dimensional.

The set of compact operators K(H) is a closed two-sided ideal in B(H), and it is a
C∗-algebra in itself.

In finite dimensions, an important concept is the trace of a matrix. It is the sum of
its diagonal elements. It is possible to extend the definition of the trace to a subset
of B(H). Let {ϕi} be an orthonormal basis for H. For a positive operator A ∈ B(H)
we write tr(A) =

∑∞
j=1⟨ϕj , Aϕj⟩. The right-hand side is the sum of non-negative

numbers, so it might not converge. This leads to the following definition.

Definition 1.2.7. An operator A ∈ B(H) is called a trace class operator if tr(|A|) < ∞,
with |A| = (A∗A)

1
2 . We denote by T(H) the set of trace class operators.

For A ∈ T(H)we have
∑∞

j=1 |⟨ϕj , Aϕj⟩| <∞. In that case, the number

tr(A) :=
∞∑
j=1

⟨ϕj , Aϕj⟩ (1.14)

is called the trace of the operator A and is independent of the choice of orthonormal
basis. The map

A 7→ ∥A∥tr = tr(|A|) (1.15)

is a norm on the vector space of trace class operators, and T(H) is also an ideal in
B(H); it is, however, not closed.

1.2.1 Dual spaces and topologies on B(H)

A linear functional is a linear mapping from a complex vector space into the complex
numbers C. We are mainly interested in continuous linear functionals. The set of all
continuous linear functionals from a complex vector space V into C is called the dual
space of V , and we will denote it by V ∗. It can be made into a vector space by itself
by setting (ω1 + cω2)(v) = ω1(v) + cω2(v) with ωi ∈ V ∗ and for all v ∈ V and c ∈ C.
With the norm given by

∥ω∥ := sup
∥v∥=1

|ω(v)| (1.16)

V ∗ becomes a normed vector space. In this situation we call V the predual space of V ∗.
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On a Hilbert spaceH each vector ϕ ∈ H defines a linear functional ωϕ on H by

ωϕ(ψ) = ⟨ϕ, ψ⟩. (1.17)

As ωϕ is continuous, it is an element of the dual space H∗. In fact, every linear func-
tional fromH to C can be written in this form:

Theorem 1.2.8 (Fréchet-Riesz theorem, [HZ12, Thm. 1.67]). Let ω ∈ H∗ be a linear
functional ω : H → C. Then there exists a unique vector ϕ ∈ H such that ω = ωϕ as in
(1.17). Moreover we have ∥ωϕ∥ = ∥ϕ∥.

Taking this lemma into account, P. Dirac introduced a convenient notation. He sug-
gested writing a vector ψ ∈ H as |ψ⟩ and the linear functional ωϕ ∈ H∗ as ⟨ϕ|. The
inner product on a Hilbert space is written as ⟨ϕ|ψ⟩ and called bracket. He decom-
posed it as applying the functional ⟨ϕ| on a vector |ψ⟩, and he called ⟨ϕ| a bra vector
and |ϕ⟩ a ket vector. To view the bra vectors as the adjoints of ket vectors, we make a
slight difference between ψ and |ψ⟩. Instead of identifying |ψ⟩with the vector ψ ∈ H,
one can introduce |ψ⟩ as the linear map from C → H with |ψ⟩(c) = cψ. In practice,
however, ψ and |ψ⟩ are used equivalently.

With this notation, we can define a linear mapping onH by

|ψ⟩⟨ϕ| η = ⟨ϕ, η⟩ψ (1.18)

with ϕ, ψ ∈ H. The operator |ϕ⟩⟨ψ| is bounded, and if ϕ, ψ are both nonzero, then the
range of |ϕ⟩⟨ψ| is the one-dimensional subspaceCϕ. |ϕ⟩⟨ψ| is therefore called a rank-1
operator. The operator Pϕ = |ϕ⟩⟨ϕ| with ∥ϕ∥ = 1 is a the one-dimensional projection
onto the subspace Cϕ.

Every normal and, therefore, every selfadjoint trace class operator onH can be writ-
ten as a linear combination of rank-1 operators.

Theorem 1.2.9 (Spectral decomposition, [HZ12, Thm. 1.65]). Let A be a normal trace
class operator. Then there exists a sequence {λi} of complex numbers and an orthonormal
basis {ϕi} of H such that

A =
∑
i

λi|ϕi⟩⟨ϕi|. (1.19)

This is called the spectral decomposition of A.

As T(H) is a normed space with trace norm, we can also look at its dual space. For
each bounded operator A ∈ B(H) in B ∈ T(H), AB is again a trace class operator.
Therefore we can define a linear functional ωA on T(H) by

ωA(B) = tr(AB). (1.20)

The following theorem ensures that every linear functional on T(H) can be written
in this form.

Theorem 1.2.10 ([HZ12, Thm. 1.68]). The mapping A 7→ ωA given in (1.20) is a linear
bijection from B(H) to T(H)∗ and ∥A∥ = ∥ωA∥ for every A ∈ B(H). In other words, the
dual space of T(H) can be identified with B(H).
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We say a linear functional ω on T(H) is positive if ω(A) ≥ 0 whenever A ≥ 0.

In this thesis we encounter three different topologies on B(H), besides the norm
topology defined by (1.13).

Definition 1.2.11. We say a sequence Ai in B(H) converges

• in (operator-) norm topology if

lim
i
∥A−Ai∥ = 0 (1.21)

• in weak operator topology or weakly if for ϕ, ψ ∈ H

lim
i
|⟨ψ,Aϕ⟩ − ⟨ψ,Aiϕ⟩| = 0 (1.22)

• in strong operator topology or strongly if for ϕ ∈ H

lim
i
∥Aϕ−Aiϕ∥ = 0 (1.23)

• in weak* topology or ultra weakly if for every T ∈ T(H)

lim
i
| trAT − trAiT | = 0 (1.24)

Theweak* operator topology and the strong operator topology are both stronger than
the weak operator topology and weaker than the operator norm topology. When
speaking of continuity, in particular, but not only in the case of one-parameter semi-
groups, it is of utmost importance to specify to which continuity we refer, as they
lead to completely different properties.

The introduction of weak*-continuity leads to a different way to describe the predual
of B(H). It is the space of all weak*-continuous linear functionals on B(H) denoted
by B∗(H) which we identify with T(H).

1.2.2 The Gel’fand-Naimark-Segal construction

A state on a (unital) C∗-algebra A is a positive linear functional ω : A → C of norm
one, such that ω(1I) = 1. We will later (in Chapter 3) see that this is an abstraction of
the notion of a state in quantum mechanics. The set of all states, also called the state
space, is a convex set, i.e. if 0 ≤ λ ≤ 1 and ω1, ω2 are states, then

ω(A) = λω1(A) + (1− λ)ω2(A) (1.25)

is a state again. ω is called a pure state if ω = λω1+(1−λ)ω2 implies that ω = ω1 = ω2.
If ω is not pure, it is called mixed.

In Theorem 1.2.3 we saw that B(H) is a C∗-algebra. In fact, given a state ω on an
arbitrary C∗-algebra A, we can construct a Hilbert space Hω and a ∗-representation π
of A on this Hilbert space.
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A ∗-representation is a ∗-homomorphism π : A → B(Hω) that is non-degenerate, i.e.
the set π(A)H is dense inH and therefore (if A is unital) π(1I) = 1I. Such a represen-
tation identifies elements of an abstract C∗-algebra with bounded operators on the
Hilbert space and is automatically continuous with respect to the norm topology. It
is called cyclic if there is some vector Ω ∈ H such that π(A)Ω is a dense subset of H.
In this case, Ω is called a cyclic vector.

Theorem 1.2.12 (GNS construction, [Naa17, Thm. 2.5.3]). LetA be a unital C∗-algebra
and let ω be a state onA. Then there is a ∗-representation πω ofA on a Hilbert spaceHω with
a cyclic vector Ω such that

ω(A) = ⟨Ω, πω(A)Ω⟩ (1.26)

for A ∈ A. The triple (πω,Hω,Ω) is unique in the sense that if (π,H,Ψ) is another such
triple, there is a unitary U : Hω → H such that UΩ = Ψ and π(A) = Uπω(A)U

∗.

The GNS construction is the basis of the following important result.

Theorem 1.2.13 (Gel’fand-Naimark, PN 2.5.11). Every C∗-algebra is isometrically ∗-
isomorphic to a C∗-subalgebra of bounded operators on some Hibert spaceH.

1.2.3 Von Neumann algebras

Let M be a subset of B(H). Then we write M′ for its commutant, i.e. the set of
all bounded operators on H commuting with every operator in M. M′ is a Banach
algebra of operators containing 1I.

Definition 1.2.14. A von Neumann algebra on H is a *-subalgebra of B(H) such that

M = M′′. (1.27)

The centre c(M) of a von Neumann algebra is the set of elements inM that commute
with all elements inM, so it is defined by c(M) = M∩M′. We call a von Neumann
algebra a factor if it has a trivial center, i.e. c(M) = C1I.

An important result for von Neumann algebras is the following.

Theorem 1.2.15 (Bicommutant theorem, [BR87, Thm. 2.4.11]). A sub-∗-algebra A of
B(H) satisfies A′′ = A if and only if it is closed in one and therefore all of the following
topologies:

1. weak operator topology

2. strong operator topology

3. weak* topology

If A ⊂ B(H) is a ∗-algebra that contains the identity, then A is dense in A′′ in the
strong, weak, and weak* operator topologies. This is called the von Neumann density
theorem. Any von Neumann algebraM ⊂ B(H) has a predual. We can therefore find
states ω onM that are weak* continuous; or equivalently, there exists a positive trace
class operator T on H with tr(T ) = 1, that satisfies ω(A) = tr(TA). Such a state ω is
called normal.
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A von Neumann algebra M is said to be of Type I if every nonzero projection in the
centre ofM contains an abelian projection e, i.e. a projection, such that the subalgebra
eMe is abelian. There are two other types of vonNeumann algebras, but in this thesis
we only look at Type I factor von Neumann algebras. For more information, look for
example at [Tak79, Ch. 5], [Sak98] or [KR97].

1.2.4 Unbounded operators on Banach spaces

In Definition 1.1.5, we introduced bounded operators. We will now look at the basic
properties of unbounded operators.

Definition 1.2.16. A (densely defined) unbounded operator A on a Banach space A is a
linear map A : dom(A) → A, where dom(A) is a dense linear subspace of A.

The graph G(A) of an operator A is the set of pairs

{(ϕ,Aϕ)|ϕ ∈ dom(A)}. (1.28)

If A is a Hilbert space H than this set is a subset of H × H which is a Hilbert space
with inner product

⟨(ϕ1, ψ1), (ϕ2, ψ2)⟩ = ⟨ϕ1, ϕ2⟩+ ⟨ψ1, ψ2⟩. (1.29)

The norm defined by this inner product is

∥ϕ∥A = ∥ϕ∥+ ∥Aϕ∥ (1.30)

and called the graph norm.

If A and B on A are operators with G(A) ⊃ G(B), then A is said to be an extension
of B. An unbounded operator A is said to be closed if, whenever a sequence ϕn ∈
dom(A) converges in norm to ϕ and the sequence Aϕn converges in norm to ψ, we
have ϕ ∈ dom(A) and Aϕ = ψ. It is said to be closable if it has a closed extension, and
its closure is the smallest closed extension.

We can define an adjointA∗ of an unbounded operator; however, we need to consider
the domains in the definition. The domain dom(A∗) of A∗ is the set of all ψ ∈ A∗,
such that the linear functional ϕ 7→ ⟨Aϕ,ψ⟩ is norm bounded on the domain dom(A).
If ψ ∈ dom(A∗) then we can define A∗ψ by

⟨Aϕ,ψ⟩ = ⟨ϕ,A∗ψ⟩ (1.31)

for all ϕ ∈ dom(A). A∗ is densely defined if and only if A is closable. We call A
symmetric if

⟨Aϕ,ψ⟩ = ⟨ϕ,Aψ⟩ (1.32)

for all ϕ, ψ ∈ dom(A). We say A is self-adjoint if A = A∗ and A is called positive
(A ≥ 0) if ⟨Aϕ, ϕ⟩ ≥ 0 for all ϕ ∈ dom(A).

In Chapter 2, we will take a closer look at the properties of densely defined closable
operators as generators of dynamical semigroups.
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1.3 Positive maps and their Dilations

We will now look at maps between two C∗-algebras A and B that map operators in
A to operators in B. A linear map Φ : A → B is called positive, if for every A ≥ 0 ∈ A
we have that Φ(A) ≥ 0. We will write Φ ≥ 0. Since it maps self-adjoint operators to
self-adjoint operators, it preserves adjoints, i.e. we have

Φ(A∗) = Φ(A)∗. (1.33)

Every positive linearmap is bounded and, therefore, continuous. A ∗-homomorphism
is a homomorphism Φ : A → B that preserves adjoints, so in addition to Φ(AB) =
Φ(A)Φ(B) equation (1.33) is satisfied. We will call a ∗-homomorphism Φ : A → A
from A to itself ∗-endomorphism.

LetMn denote the set of n × n-matrices with entries in C and 1In the n × n identity
matrix.

Definition 1.3.1. Let Φ : A → B be a linear map and k ∈ N. We say Φ k-positive if
Φ⊗ 1Ik : A⊗Mk → B⊗Mk is positive. Φ is called completely positive if it is k-positive for
all k ∈ N.

We will take a look at a few conditions for complete positivity. Let Φ : A → B
be an adjoint preserving map between two C∗-algebras A ⊂ B(H) and B ⊂ B(K). If
Φ(A) = V ∗AV for allA ∈ Awith bounded operator V : H → K, thenΦ is completely
positive. Φ is also completely positive if it is a ∗-homomorphism. If Φ is k-positive,
then the concatenation with another k-positive linear map is again k-positive.

Theorem 1.3.2 ([Stø13, Thm. 1.2.4 and Thm. 1.2.5]). Let A and B be two C∗-algebras,
and let either A or B be abelian. Then every positive map Φ : A → B is completely positive.
In particular, every state on A as a map from A to C is completely positive.

The main result on completely positive maps is the Stinespring theorem. It can be
seen as an extension of the GNS construction for states to completely positive maps.
We will get a hint of its importance in Quantum mechanics in Section 3.4.

Theorem 1.3.3 (Stinespring theorem, [Stø13, Thm. 1.2.7]). LetA be a unitalC∗-algebra
and Φ : A → B(H). Φ is completely positive if and only if there exists a Hilbert space K, a
bounded linear operator V : H → K and a *-homomorphism π : A → B(K) such that

Φ(A) = V ∗π(A)V (1.34)

for all A ∈ A. Additionally we have ∥V ∥2 ≤ ∥Φ(1)∥.

The pair (V,K) is called a Stinespring representation, but this representation is not
unique. It is, however, possible to find a minimal Stinespring representation in the
sense that it is unique up to unitary equivalence. The condition for minimality is
given by

K = [π(A)VH] = span{π(A)V ξ|A ∈ A, ξ ∈ H}, (1.35)

so K is the closure of the linear span of the elements in the given set.

It is possible to define an adjoint of a positive linear map. First, let us assume that
H1 and H2 are finite-dimensional Hilbert spaces. In that case, the spaces B(H1) and
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B(H2) together with the Hilbert-Schmidt inner product ⟨A,B⟩ = tr(AB∗) are Hilbert
spaces by themselves, and we can view Φ : B(H1) → B(H2) as a bounded operator.
The adjoint is then given by

tr (Φ(A)B) = tr (AΦ∗(B)), A ∈ B(H1), B ∈ B(H2). (1.36)

If H1 and H2 are infinite dimensional, we need to consider the definition more care-
fully. The map Φmust be assumed to be normal, i.e. defined by a positive trace class
operator. Then there is an adjoint mapΦ∗ mapping operators in T(H2) to T(H1), that
is defined by (1.36).

The adjoint of a positivemap is also positive, andΦ(1I) = 1I if and only if trH1(Φ
∗(B)) =

trH2(B) for all operators B ∈ B(H2).

1.4 Fock space, CAR and CCR algebra

Let H be a Hilbert space and H⊗n the n-fold tensor product where we set H0 = C.
The Hilbert space completion of the direct sum

Γ(H) =

∞⊕
n=0

H⊗n (1.37)

is called the Fock space over H. A vector Φ ∈ Γ(H) is a sequence {ϕn} of vectors
ϕn ∈ H⊗n.

Let K be another Hilbert space. Then every contraction T : H → K gives rise to a
contraction

Γ(T ) =
∞⊕
n=0

T⊗n (1.38)

from Γ(H) to Γ(K).

Lemma 1.4.1 ([EL77, Lem. 6.1]). Γ is a functor on the category whose objects are Hilbert
spaces and whose morphisms are contractions, i.e. Γ(ST ) = Γ(S)Γ(T ) and Γ(1IH) = 1Γ(H).
In addition Γ is a ∗-map, so we have Γ(T ∗) = Γ(T )∗.

In quantum mechanics, we are usually not interested in Γ(H) itself but in two of its
subspaces, namely the symmetric or Boson Fock space Γ+(H) and the antisymmetric or
Fermion Fock space Γ−(H).

For the construction of those two subspaces, we look at the group Pn of all permu-
tation on n elements and on its unitary action on basis elements ϕ1, . . . ϕn ofH⊗n:

Uπ(ϕ1 ⊗ . . .⊗ ϕn) = ϕπ(1) ⊗ . . .⊗ ϕπ(n), (1.39)

for all π ∈ Pn. By linearity, this extends to a bounded operator on H⊗n and we can
define two operators

P+
n (ϕ1 ⊗ . . .⊗ ϕn) =

1

n!

∑
π∈Pn

ϕπ(1) ⊗ . . .⊗ ϕπ(n) (1.40)

P−
n (ϕ1 ⊗ . . .⊗ ϕn) =

1

n!

∑
π∈Pn

ϵ(π)ϕπ(1) ⊗ . . .⊗ ϕπ(n) (1.41)
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inH⊗n where ϵ(π) is the signature of the permutation π. We can now define the two
subspaces of Γ(H).

Definition 1.4.2. The symmetric (or Boson) Fock space Γ+(H) is defined by

Γ+(H) =

∞⊕
n=0

P+
n H⊗n (1.42)

and the antisymmetric (or Fermion) Fock space Γ−(H) is defined by

Γ−(H) =

∞⊕
n=0

P−
n H⊗n. (1.43)

We write P+ and P− for the projections from Γ(H) to Γ+(H) and Γ−(H), respectively.

If T : H → K is a contraction, then Tn maps P+
n H⊗n into P+

n K⊗n and P−
n H⊗n into

P−
n K⊗n. Γ(T ) then induces contractions Γ+(T ) : Γ+(H) → Γ+(K) and Γ−(T ) :

Γ−(H) → Γ−(K). Γ+ and Γ− inherit the properties of Lemma 1.4.1 from Γ.

The symmetric Fock space Γ+(H) is spanned by vectors of the form

exp(ϕ) =

∞⊕
n=0

1√
(n!)

ϕ⊗n (1.44)

with ϕ ∈ H and exp : H → Γ+(H) and we have

⟨exp(ϕ), exp(ψ)⟩ = e⟨ϕ,ψ⟩. (1.45)

For Hilbert spacesH1 andH2 this gives us a natural identification

Γ+(H1 ⊕H2) = Γ+(H1)⊗ Γ+(H2) (1.46)

such that for ϕ ∈ H1 and ψ ∈ H2

exp(ϕ⊕ ψ) = exp(ϕ)⊗ exp(ψ) (1.47)

and for contractions T : H1 → K1 and S : H1 → K2 with two Hilbert space K1 and
K2 we get

Γ+(T ⊕ S) = Γ+(T )⊗ Γ+(S). (1.48)

Two important operators on the Fock space in quantum mechanics are the creation
and annihilation operators, which describe the addition or removal of a particle from
a system. We focus here on their mathematical aspects, as they are important in the
construction of the CCR and the CAR algebra.

Definition 1.4.3. Let ϕ, ϕ1, . . . , ϕn ∈ H. Then the creation operator a∗(ϕ) and the anni-
hilation operator a(ϕ) are defined by linear extension of

a(ϕ)(ϕ1 ⊗ . . .⊗ ϕn) =
√
n ⟨ϕ, ϕ1⟩ (ϕ2 ⊗ . . .⊗ ϕn) (1.49)

a∗(ϕ)(ϕ1 ⊗ . . .⊗ ϕn) =
√
n+ 1 (ϕ⊗ ϕ1 ⊗ . . .⊗ ϕn). (1.50)
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These operators are adjoints but are not bounded and, therefore, only defined on a
dense domain. The annihilation and creation operators of the symmetric and the
antisymmetric Fock space are then given by

a±(ϕ) = P±a(ϕ)P± (1.51)
a∗±(ϕ) = P±a

∗(ϕ)P± (1.52)

If Ω = (1, 0, . . .) ∈ Γ±(H) is the zero-particle state, the vacuum, the vectors a∗±(ϕ)Ω
correspond to elements of the one-particle Hilbert space H and thus create particles
of the state ϕ.

Definition 1.4.4. The relations

[a+(ϕ), a+(ψ)] = [a∗+(ϕ), a
∗
+(ψ)] = 0 (1.53)

[a+(ϕ), a
∗
+(ψ)] = ⟨ϕ, ψ⟩1I (1.54)

are called the canonical commutation relations (CCR). Analogously, the relations

{a−(ϕ), a−(ψ)} = {a∗−(ϕ), a∗−(ψ)} = 0 (1.55)
{a−(ϕ), a∗−(ψ)} = ⟨ϕ, ψ⟩1I (1.56)

are called the canonical anti-commutation relations (CAR), where {·, ·} is the so-called
anti-commutator defined by {A,B} = AB +BA.

The CAR algebra The annihilation and creation operators on the antisymmetric
Fock space satisfy

∥a−(ϕ)∥ = ∥ϕ∥ = ∥a∗−(ϕ)∥, (1.57)

and therefore have bounded extensions. If Ω = (1, 0, . . .) is the vacuum vector and
{ϕi} is an orthonormal basis ofH, then

a∗−(ϕi1) · · · a∗−(ϕin) (1.58)

is an orthonormal basis of Γ−(H) when ϕi1 , . . . , ϕin runs over the finite subsets of
{ϕi}.

Let a1(ϕ) and a2(ϕ) with ϕ ∈ H be two sets of operators that satisfy the canonical
anti-commutation relations (1.55) and (1.56), each generating a C∗-algebra A1 and
A2, respectively, then there exists a unique ∗-isomorphism α : A1 → A2 such that

α(a1(ϕ)) = a2(ϕ) (1.59)

for all ϕ ∈ H. In an abstract formulation, we get the following result.

Theorem 1.4.5 ([BR81, Thm. 5.2.5]). There exists a unique C∗-algebra A = A(H), up
to ∗-isomorphism, generated by the antilinear elements a−(ϕ), a∗−(ϕ), satisfying (1.55) and
(1.56). We call A the CAR algebra.
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TheCCR algebra Contrary to the antisymmetric case, the annihilation and creation
operators a+(ϕ) and a∗+(ϕ) of the symmetric Fock space do not have a bounded ex-
tension. To avoid some of the difficulties that come with this unboundedness, we
introduce the operators

R(ϕ) =
a+(ϕ) + a∗+(ϕ)√

2
(1.60)

with the property that

R(iϕ) =
a+(ϕ)− a∗+(ϕ)√

2i
. (1.61)

More specifically, we look at their self-adjoint closure, in this context also denoted by
R(ϕ). These operators are often called field operators. Formally (on an appropriately
chosen domain), they satisfy the commutation relation

[R(ϕ), R(ψ)] = iℑm⟨ϕ, ψ⟩. (1.62)

Definition 1.4.6. For each ϕ ∈ H, we can define a Weyl operator as the unitary operator
given by

W (ϕ) = eiR(ϕ), (1.63)

where R(ϕ) is a field operator, the selfadjoint closure of (1.60).
For each ϕ, ψ ∈ H one can formulate the canonical commutation relations inWeyl form:

W (ϕ)W (ψ) = e−
i
2
ℑm⟨ϕ,ψ⟩W (ϕ+ ψ) = e−iℑm⟨ϕ,ψ⟩W (ψ)W (ϕ). (1.64)

The action of a Weyl operator on a vector eψ is given by

W (ϕ)eψ = e−
1
2
∥ϕ∥2−⟨ϕ,ψ⟩ eϕ+ψ. (1.65)

Theorem 1.4.7 ([BR81, Thm. 5.2.8]). LetH be a Hilbert space and letW (Φ) with ϕ ∈ H
denote the Weyl operators satisfying

W (−ϕ) =W (ϕ)∗ (1.66)

W (ϕ)W (ψ) = e−
i
2
ℑm⟨ϕ,ψ⟩W (ϕ+ ψ) (1.67)

for all ϕ, ψ ∈ H. Then there exists a unique (up to ∗-isomorphism) C∗-algebra A(H) gener-
ated by the Weyl operators which we call the CCR algebra. In addition, the Weyl operators
satisfy

1. W (0) = 1I,

2. W (ϕ) is unitary for all ϕ ∈ H.

1.5 Notes and Remarks

While the main results of this chapter can be found - with varying level of detail - in
every textbook on operator algebras, their phrasing differs and we tried to find the
best version for later use. Section 1.1 follows [Naa17] and [HZ12]. Both are rather
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mathematically rigorous in their approach to Hilbert spaces as a basic starting point
for quantum mechanics.

They are also the basis for Section 1.2. The topologies and the subsection on von
Neumann algebras can be found in [BR87]. The subsection on unbounded operators
is taken from [Dav76, Sect. 1.8]. Further sources for this section are [Tak79], [Sak98]
and [Wer16].

Section 1.3 is gathered from [Stø13] and [Pau02]. For Section 1.4 we combined vari-
ous sources to find themost suitable version. Basiswas [EL77], however, the notation
is rather oldfashioned. Much more approachable are [Naa17], [Arv03], [RS80] and
in particular [BR81]. The latter was the main source for the construction of the CCR
algebra.



Chapter 2

Operator semigroups

Let X be a Banach space and T : X → X a bounded linear map. Just as bounded
linear maps on Hilbert spaces, we will call T a bounded linear operator onX . A family
of bounded linear operators Tt with t ≥ 0 is strongly continuous if

lim
t→0

Ttx = x (2.1)

for all x ∈ X .

Definition 2.0.1. A family Tt with t ≥ 0 is called a strongly continuous (one-parameter)
semigroup if

1. T0 = 1I

2. TtTs = Tt+s

3. Tt is strongly continuous.

The property 2 is called the semigroup property of Tt.

Such semigroups describe the dynamics of quantum systems, as wewill see in Chap-
ter 3. Here we will introduce the most important definitions, theorems and concepts
needed throughout this thesis.

2.1 Strongly continuous semigroups and their generators

For every strongly continuous semigroup Tt one can findw ∈ R andM ≥ 1 such that

∥Tt∥ ≤Mewt (2.2)

for all t ≥ 0. The infimum

w0 := inf
{
w ∈ R | ∃M ≥ 1 with ∥Tt∥ ≤Mewt ∀t ≥ 0

}
(2.3)

is called the growth bound of Tt. A strongly continuous semigroup is bounded if w = 0
satisfies equation (2.2) and if we even have

∥Tt∥ ≤ 1 (2.4)
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for all t ≥ 0, then Tt is called contractive.

It is possible to introduce an adjoint of the semigroup Tt. For this purpose, let X∗

denote the dual space of the Banach space X . For the pairing of two element x ∈ X
and ω ∈ X∗ we write ω(x) = [x, ω] ∈ C.

Lemma 2.1.1 ([EN06, Thm. 1.1.6]). A semigroup Tt on X is strongly continuous if and
only if it is weakly continuous, i.e. if

t 7→ [Ttx, ω] (2.5)

is continuous for each x ∈ X and ω ∈ X∗.

The adjoint semigroup of Tt on X∗ is denoted by T ∗
t and given by

[x, T ∗
t ω] = [Ttx, ω]. (2.6)

In general, for a strongly continuous semigroup Tt, its adjoint T ∗
t is not strongly con-

tinuous, but by Lemma 2.1.1, it is always weak*-continuous. In fact, we have a one-
to-one correspondence between strongly continuous semigroups on X and weak*-
continuous semigroups on X∗.

Infinitesimally, a semigroup Tt can be described by its generator L : domL ⊂ X → X
given by

Lx := lim
t↘0

1

t
(Ttx− x) . (2.7)

It is defined for all x in the domain

domL :=

{
x ∈ X | lim

t↘0

1

t
(Ttx− x) exists

}
. (2.8)

Lemma 2.1.2 ([EN06, Lem. 2.1.3]). Let L be the generator of the strongly continuous
semigroup Tt on X . Then the following hold

1. L : domL ⊂ X → X is a linear operator

2. if x ∈ domL then Ttx ∈ domL and for all t ≥ 0

d

dx
Ttx = TtLx = LTtx (2.9)

3. for every t ≥ 0 and x ∈ X ∫ t

0
Tsx ds ∈ domL (2.10)

4. for every t ≥ 0 and x ∈ X

Ttx− x = L
∫ t

0
Tsx ds if x ∈ X (2.11)

=

∫ t

0
TsLx ds if x ∈ domL. (2.12)
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This lemma leads to the following theorem.

Theorem 2.1.3 ([EN06, Thm. 2.1.4]). The generator of a strongly continuous semigroup
is a closed and densely defined linear operator that determines the semigroup uniquely.

As a consequence, the properties of a generator translate to corresponding properties
of the strongly continuous semigroup and vice versa.

A subspace D of the domain domL of the linear operator L : domL ⊂ X → X is
is called a core for L if it is dense in domL for the graph norm. The action of L on a
core determines the generator completely. The following proposition will be helpful
to determine whether a subspace of domL is a core.

Proposition 2.1.4 ([EN06, Prop. 2.1.7]). Let L be the generator of a strongly continuous
semigroup Tt on a Banach space X . A subspace D ⊂ domL that is ∥ · ∥-dense in X and
invariant under the semigroup Tt is always a core for L.

A special subgroup of strongly continuous semigroups is that of uniformly or norm-
continuous semigroups, i.e. of those that satisfy

lim
t→0

∥Tt − 1I∥ = 0. (2.13)

Corollary 2.1.5 ([EN06, Cor. 2.1.5]). Let Tt be a strongly continuous semigroup on a
Banach space X with generator L. Then the following statements are equivalent:

1. L is bounded, i.e. there is anM > 0 such that ∥Lx∥ ≤M∥x∥ for all x ∈ domL,

2. domL is all of X ,

3. domL is closed in X ,

4. Tt is norm-continuous.

In fact, every norm-continuous semigroup is given by

Tt = etL :=
∞∑
0

tnLn

n!
. (2.14)

2.2 Resolvents and generation theorems

For every closed linear operator L on a Banach spaceX with domain domL ⊂ X we
can introduce the spectrum of L

σ(L) := {λ ∈ C|λ1I− L is not bijective} (2.15)

and define its resolvent set as
ρ(L) := C\σ(L). (2.16)

The resolvent of L is then given by

Rλ(L) := (λ1I− L)−1 (2.17)

for all λ ∈ ρ(L). We often omit the operator in brackets if there is no ambiguity in
the given context, and we usually write λ− L = λ1I− L.
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Theorem 2.2.1 ([EN06, Thm. 2.1.10]). Let Tt be a strongly continuous semigroup on a
Banach space X and let w ∈ R andM ≥ 1 s.t.

∥Tt∥ ≤Mewt (2.18)

for t ≥ 0. Then for the corresponding generator L and its resolventRλ the following hold:

1. If λ ∈ C and the integral
∫∞
0 e−λsTsx ds exists for all x ∈ X , then λ ∈ ρ(L) and

Rλ =

∫ ∞

0
e−λsTs ds. (2.19)

2. If ℜeλ > w, then λ ∈ ρ(L), and Rλ is given by the above integral expression.

3. If ℜeλ > w, then

∥Rλ∥ ≤ M

ℜeλ− w
. (2.20)

Remark 2.2.2. Equation (2.19) is called the integral representation ofRλ and the integral
is understood as an improper Riemann integral

Rλx = lim
t→∞

∫ t

0
e−λsTsx ds. (2.21)

From Theorem 2.19, it is clear thatRλ is completely positive and it satisfies the resol-
vent identity

Rλ −Rµ = (µ− λ)RλRµ. (2.22)

Conversely, the dynamical semigroup can be recovered by the formula

Tt = lim
n→∞

(n
t
Rn/t

)n
. (2.23)

Since LRλx = λRλx − x, the resolvent also gives us access to the domain of the
generator, and for every λ > 0, we have

domL = Rλ(X). (2.24)

After establishing the relationships between a strongly continuous semigroup, its
generator and its resolvent, we can now look at the generation theorems.

Theorem 2.2.3 (Hille-Yosida generation theorem, [EN06, Thm. 2.3.5]). Let L be a lin-
ear operator on a Banach space X . Then the following statements are equivalent:

1. L generates strongly continuous contraction semigroup.

2. L is closed, densely defined, and for every λ > 0 we have λ ∈ ρ(L) and

∥λRλ∥ ≤ 1. (2.25)

3. L is closed, densely defined, and for every λ ∈ C with ℜeλ > 0 we have λ ∈ ρ(L) and

∥Rλ(L)∥ ≤ 1

ℜeλ
. (2.26)
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A linear operator L is called dissipative if it satisfies

∥(λ− L)x∥ ≥ λ∥x∥ (2.27)

for all λ > 0 and x ∈ domL.

Theorem 2.2.4 (Lumer-Phillips generation theorem, [EN06, Thm. 2.3.15]). Let L be a
densely defined, dissipative operator on a Banach spaceX . Then the following are equivalent:

1. The closure of L generates a contraction semigroup.

2. The range ran(λ− L) is dense in X for some (and hence all) λ > 0.

The next proposition will give us an other way to determine, whether a subspace is
a core for the generator of a semigroup.

Proposition 2.2.5 ([Dav80, Sect. 2.1]). Let L be a closed linear operator on a Banach space
X , and let λ ∈ ρ(L). Then a subspace D ⊂ domL is a core for L if and only if (λ− L)D is
dense in X .

2.3 Perturbations of generators

In the last section, we saw under which conditions an operatorL generates a strongly
continuous semigroup. We will now consider under which conditions a generator
perturbed by another operator is again the generator of a semigroup.

Theorem 2.3.1 ([Dav80, Thm. 3.1]). Let L be the generator of a strongly continuous semi-
group Tt on a Banach space X with

∥Tt∥ ≤Mewt (2.28)

for all t ≥ 0. If A is a bounded operator on X , then L + A is the generator of a strongly
continuous semigroup St on X , s.t.

∥St∥ ≤Me(w+M∥A∥)t (2.29)

for all t ≥ 0.

This theorem leads to the identities

Stx = Ttx+

∫ t

0
St−sATsxds (2.30)

= Ttx+

∫ t

0
Tt−sASsxds (2.31)

If the operatorA onX is unbounded, Theorem 2.3.1 is not necessarily true. However,
if we require A to be relatively bounded with respect to L, i.e.

domL ⊂ domA (2.32)

and there are a, b > 0 such that

∥Ax∥ ≤ a∥Lx∥+ b∥x∥, (2.33)

then the following theorem shows that the perturbed generator generates a semi-
group again. The constant a is called the relative bound of Awith respect to L.
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Theorem 2.3.2 ([Dav80, Thm. 3.7 and Cor. 3.8]). Let L be the generator of a strongly
continuous contraction semigroup Tt on a Banach space X . If A is a perturbation of L with
a relative bound less than 1, such that L+ A is dissipative, then L+ A is the generator of a
strongly continuous contraction semigroup.

As the following lemma shows, it is sufficient for A to be defined on a core of L.

Lemma 2.3.3 ([Dav80, Lem. 3.9]). Let D be a core for the generator L of a strongly con-
tinuous contraction semigroup Tt on a Banach space X . If A has domain D and satisfies
equation (2.33) for all x ∈ D, then A can be uniquely extended to domL such that 2.33 is
satisfied for all x ∈ domL.

2.4 Notes and Remarks

The first to section are taken from the textbook [EN06] that we highly recommend
as a starting point for the topic of one parameter semigroups. Section 2.3 follows
[Dav80, Ch. 3]. Another good source for one parameter semigroups that we used for
our research but not cited explicitly in this section is [Paz83].



Chapter 3

Quantum mechanics

The objective of quantum mechanics is to describe quantum experiments and pre-
dict their outputs. The results it gives us are stochastical; instead of deterministic
numbers, we get probability distributions and expectation values. Every physical
(quantum) experiment is essentially composed of two parts: preparation and mea-
surement.

The preparation is characterised by a state, given by a positive operator ρ on a Hilbert
spaceHwith tr ρ = 1. Asmany physical preparationsmay lead to the same statistical
outcomes, a state is the description of the ensemble of all these similar preparation
procedures. An effect is the most basic measurement apparatus that produces ei-
ther ’yes’ or ’no’ as an outcome. It is given by a selfadjoint operator F on H with
0 ≤ F ≤ 1I.

The basic concept of this statistical framework was introduced by Ludwig [Lud83],
and it is depicted in the following figure.

Figure 3.1: Concept of a quantum experiment.

3.1 States and effects

The positive operators of trace 1 describing a quantum state are called density opera-
tors. The set of all states of the quantum system is denoted by

S(H) := {ρ ∈ T(H)|ρ ≥ 0, tr(ρ) = 1}. (3.1)
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The dimension of the underlying Hilbert space is a property of the quantum system.
IfH is finite-dimensional, then ρ is a desity matrix. Sometimes, a unit vector ϕ ∈ H is
also called a state. In this case, we are actually referring to the rank-1 operator |ϕ⟩⟨ϕ|
that is an element of S(H), and call ϕ a vector state.

S(H) is a convex set and by Theorem 1.2.9, every state has a canonical convex decom-
position of the form

ρ =
∑
i

λiPi (3.2)

where {λi} is a finite or infinite sequence of positive numbers adding to 1 and {Pi} is
a sequence of orthogonal one-dimensional projections, i.e. PiPj = δijPi. An element
ρ of a convex set is extremal if it cannot be written as a proper convex combination of
other elements, i.e. if ρ = λρ1 + (1− λ)ρ2 then ρ = ρ1 = ρ2. An extremal element of
the convex set S(H) is called a pure state. Any other element is called a mixed state.

It is important to distinguish the notion of mixed states from that of a superposition of
states. If ϕ, ψ ∈ H are two linearly independent unit vectors we write

ω =
1

∥aϕ+ bψ∥
(aϕ+ bψ) (3.3)

with 0 ̸= a, b ∈ C. Then the pure state |ω⟩⟨ω| is called a superposition of ϕ and ψ.

The probability of getting the outcome ’yes’ for an effect F on a system in state ρ is
given by tr ρF . This is an affine mapping from S(H) to [0, 1]. In analogy to the set of
states, one can introduce the set of all effects

F(H) = {F ∈ B(H)|F = F ∗ and 0 ≤ F ≤ 1I }. (3.4)

This set is also convex, and its extremal elements are the projections.

3.2 Composite Systems

Let A and B be quantum systems with corresponding Hilbert spaces HA and HB .
We assume that A and B are subsystems of the compound system A+B. The Hilbert
space of the composite system is given byHAB = HA⊗HB . Suppose we have effects
FA on HA and FB on HB corresponding to measurements on A and B, respectively.
Then on the compound system A+B, we have an effect FA⊗FB that describes both
these separate measurements.

For separate preparations of subsystems, the preparation of the compound system is
given by ρA ⊗ ρB . We then have

tr[(ρA ⊗ ρB)(FA ⊗ FB)] = tr[ρAFA] tr[ρBFB] (3.5)

and the system is statistically independent if measurements and preparations are
made separately. However, states of the compound system A + B need not be in
product form.

The state of a subsystem can be determined from the state of the compound system
via the partial trace. The partial trace over the system A is the linear mapping

trA : T(HA ⊗HB) → T(HB) (3.6)
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satisfying
tr[trA[T ]F ] = tr[T (1I⊗ F )] (3.7)

for all T ∈ T(HA ⊗HB) and F ∈ F(HB). Since

tr[T ] = tr[trA[T ]] = tr[trB[T ]] (3.8)

togetherwith T ≥ 0 implies that trA[T ] ≥ 0 and trB[T ] ≥ 0, the partial trace preserves
all relevant properties of the operator such that the partial trace of a state is again a
state. So, if ρ ∈ S(HA ⊗ HB) is a state of the composite system A + B, then the
operators trB[ρ] and trA[ρ]describe the states of the subsystemsA andB, respectively
and are called reduced states. The state ρ of the composite system is called a joint state
and often denoted ρAB = ρ. If the reduced states ρA = trB[ρAB] and ρB = trA[ρAB]
are pure states then ρAB is of the product form ρAB = ρA ⊗ ρB .

Any mixed state can be seen as a reduced pure state of a composite system. For
this case, one introduces an ancillary system in the form of an additional Hilbert space
Hanc. Let ρ be a state onH, thenwe call a pure state ρ̂ on a composite systemH⊗Hanc

a purification of ρ if tranc[ρ̂] = ρ.

3.3 Observables

In the first sections of this chapter, we used effects to describe the measurement pro-
cess and thereby restricted the outcome set Ω to ’yes’ and ’no’. More complex mea-
surement results are generally reducible to whether an output lies in a specific subset
X of all possible measurement outcomesΩ. This is again a ’yes’ or ’no’ measurement
that we can associate with an effect F (X). We call the set of operators F (X) for all
subsets X an observable.

More formally, let P(Ω) denote the σ-algebra on Ω, such that the pair (Ω,P(Ω)) is a
measurable space. The setX ∈ P(Ω) is called an event. An observable is then a positive
operator valued measure (POVM), i.e. a mapping A : P(Ω) → F(H) such that

1. A(∅) = 0

2. A(Ω) = 1I

3. A(
⋃
iXi) =

∑
iA(Xi) (in theweak sense) for any sequence {Xi} of disjoint sets

in P(Ω).

For an observableA defined on a measurable space (Ω,F)we say thatΩ is the sample
space of A and (Ω,F) is the outcome space of A.

The mapping ΦA from S(H) to the set of all probability measures on an outcome
space (Ω,F) given by

ΦA(ρ) := tr[ρA(·)] (3.9)
is called the statistical map corresponding to the observable A. It is often described
as an input-output device, which takes states as inputs and gives probability dis-
tributions as outputs. We will call an observable discrete if there is a countable set
Ω0 ∈ P(Ω) such that A(Ω0) = 1I, and say it is real if its outcome set is either R or a
subset of R. In this case, the σ-algebra is the corresponding Borel σ-algebra, i.e. the
smallest σ-algebra containing all open sets in R.
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3.4 Quantum channels and operations

So far, we described a physical experiment as essentially composed of two parts,
preparation and measurement. The preparation device produces a quantum out-
put; a measurement accepts quantum inputs and produces a classical output in the
form of an outcome distribution. We can extend this description by introducing a
third device that accepts quantum states as input and produces a quantum state as
an output. Such devices are called quantum channels.

Figure 3.2: Concept of a quantum experiment with channel.

A slightly more general transformation on quantum states is called an operation. We
will allow the possibility that an operation destroys some fraction of the system so
that some probability is lost. It is, therefore, convenient to introduce the set of sub-
normalized states S̃(H) that consists of positive trace class operators ρ with tr[ρ] ≤ 1.
However, since any trace class operator ρ ∈ T(H) can be written as a linear combina-
tion of positive operators in T(H), we can extend most statements to the whole class
of trace class operators. We will call a linear mapping T on T(H) trace nonincreasing
if trTρ ≤ tr ρ for all positive ρ ∈ T(H). If trTρ = tr ρwe say T is trace preserving.

Definition 3.4.1. A mapping T on T(H) is an operation if it is

1. linear

2. completely positive

3. trace nonincreasing

If it is trace preserving, it is called a channel.

The definition above ensures that an operation maps states to subnormalized states
and channels map states to states. We need complete positivity to ensure that in
a composite system A + B, we can extend any operation TA on subsystem A to a
mapping TA ⊗ 1IB , that is then an operation acting on the composite system A+B.

States and effects are dual objects. Each linear mapping T on T(H) induces a linear
mapping T ∗ on the dual B(H). The connection between T and T ∗ is given by

tr[T (ρ)F ] = tr[ρT ∗(F )] (3.10)

for all ρ ∈ T(H) and all F ∈ F(H). The complete positivity of T is equivalent to the
complete positivity of T ∗ on B(H), T is trace nonincreasing if and only if T ∗(1I) ≤ 1I,
and T is trace-preserving if and only if T ∗ is unital, i.e. if T ∗(1I) = 1I. The mapping T ∗
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describes the same system transformation asT , but instead of transforming the states,
it transforms the effects. We call T an operation in the Schrödinger picture and T ∗ the
corresponding operation in the Heisenberg picture. To define an operation directly in
the Heisenberg picture, we additionally need to require that T ∗ is normal to ensure
that a corresponding operation in the Schrödinger picture exists. In this thesis, we
use both pictures since each has advantages.

Now we consider two operations T1 and T2 acting consecutively on a fixed space
in T(H). This is described by a composition of the two operations T1 ◦ T2 called
the concatenation of T1 and T2. Concatenation is an associative operation but not
commutative, so T1 ◦ T2 ̸= T2 ◦ T1. A channel T1 is called the inverse of another
channel T2 if T1 ◦ T2 = T2 ◦ T1 = 1I and the inverse channel for a channel T1 exists if
and only if T1 is a unitary channel.

Quantum operations also describe the dynamics of a quantum system. A system is
called isolated or closed if all its changes are reversible, i.e. if all system transformations
are unitary or antiunitary. Otherwise, a system is called open. It is common to view
an open system as part of a larger closed system, and the additional part is called an
environment.

Proposition 3.4.2 ([HZ12, Prop. 4.13]). Let H be the Hilbert space of a quantum system
and let HE be the Hilbert space describing the environment. If U is a unitary operator on
H⊗HE and ξ a fixed state of the environment, then the induced mapping

T : S(H) → S(H), T (ρ) = trE [Uρ⊗ ξU∗] (3.11)

is a channel.

The counterpart of this theorem is the theorem of Stinespring (Thm 1.3.3). Applied
to channels, it states that every channel in the Heisenberg picture can be written as a
unitary channel acting on the system and its environment

T ∗(A) = V ∗(π(A))V (3.12)

with bounded operators V : H → K and a ∗-homomorphism π : B(H) → B(K) for a
Hilbert space K. We can set K = H⊗HE and get the form

T ∗(A) = V ∗(A⊗ 1IE)V. (3.13)

As T ∗ is unital, the operators V : H → H⊗HE satisfy V V ∗ = 1I. In the Schrödinger
picture, the counterpart property of the Stinespring theorem is more obvious.

Corollary 3.4.3 ([HZ12, Cor. 4.19]). If T : T(H) → T(H) is a channel then there exists a
Hilbert space HE , a pure state ξ ∈ S(HE) and a unitary operator U onH⊗HE such that

T (ρ) = trE [Uρ⊗ ξU∗] (3.14)

for all ρ ∈ S(H).

As a consequence of Stinespring’s theorem, a linear mapping T : T(H) → T(H) is a
channel if and only if there exists a (finite or infinite) sequence of bounded operators
K1,K2, . . .with

∑
iK

∗
iKi = 1I such that

T (ρ) =
∑
i

KiρK
∗
i . (3.15)
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This form is called the Kraus form or operator-sum form of the channel T , and the oper-
ators Ki are called Kraus operators. The choice of operators is not unique. Two finite
sets {K1, . . . ,Kn} and {K̂1, . . . , K̂m} of bounded operators define the same operation
via Kraus form if and only if

Ki =

m∑
j=1

uijK̂j (3.16)

with uij ∈ C and
∑

j ujkūjl = δkl. If dimH <∞ then it is possible to choose (dimH)2

or fewer operators Ki. The relation between the Kraus operators Ki and the Stine-
spring operator V : H → H⊗HE is given by

V ϕ =
∑
i

Kiϕ⊗ ei, (3.17)

where ei is a basis ofHE , and the relation for the adjoints is

V ∗(ϕ⊗ ei) = K∗
i ϕ. (3.18)

Therefore, the change from {K1, . . . ,Kn} to {K̂1, . . . , K̂m} simply corresponds to a
change of basis inHE .

The Stinespring theorem gives rise to another theorem that, in analogy to a result in
classical measure theory, is called the Radon-Nikodym theorem.

Theorem 3.4.4 (Radon-Nikodym theorem, [BL07, Thm. 5.8]). Let T ∗
x : B(H) → B(H)

be a family of completely positive maps and let (V,K) be a Stinespring representation of T ∗ =∑
x T

∗
x . Then there exist positive operators Fx in B(K) with

∑
x Fx = 1I and

T ∗
x (A) = V ∗(A⊗ Fx)V. (3.19)

If (V,K) is the minimal Stinspring representation, then the operators Fx are uniquely deter-
mined.

3.5 Quantum dynamics

So far, our picture of an experiment does not consider the notion of time evolution.
Such a description is important if the state of a system changes over time or if we
want to perform any continuous measurement.

In 1926 Erwin Schrödinger developed the first quantum evolution equation. It de-
scribes the dynamics of a closed quantum system that is in a pure state ψt ∈ H at a
time t:

d

dt
|ψt⟩ = −iH|ψt⟩. (3.20)

The operatorH is the self-adjoint Hamiltonian operator of the system, and the solu-
tion to this equation is given by

|ψt⟩ = Ut|ψ0⟩, (3.21)

where Ut is a unitary operator given by Ut = e−itH . If the system is in a mixed state
ρt, the Schrödinger equation induces the evolution equation

d

dt
ρt = −i[H, ρt] = Lρt, (3.22)
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sometimes called the vonNeumann or Liouville-vonNeumann equation and the operator
L is accordingly called the Liouvillian. The solution is given by

ρt = Utρ0U
∗
t . (3.23)

Still, the time evolution is governed by a unitary operator Ut, and no information is
interchanged with the environment.

As soon as wewant to interact with the quantum system, for example, by performing
a measurement, the system is perturbed and no longer isolated. Thus, its evolution
can not be described by the above equations. However, for each time ti the map
T i : S(H) → S(H) thatmaps an initial state ρ0 of the open system to a state ρti = T iρ0
is a quantum channel (or operation if we allow for probability loss). So, following
Corollary 3.4.3, for each time ti, we can describe the open system as embedded in an
environment, and the evolution of the extended system is again unitary. The channel
T i can then be written in Kraus form (3.15) for each ti as

T iρ0 =
∑
j

Ki
jρ0K

i
j
∗
. (3.24)

Although this formally looks quite similar to equation (3.23), there is a fundamen-
tal difference. The equation (3.24) is not the solution of a differential equation but
merely describes the quantum state at a particular time ti depending on the initial
state ρ0. This problem becomes apparent if we look at the evolution of an open sys-
tem in initial state ρ0 from t0 to t1 described by a channel T 01 and then from t1 to
t2 described by T 12. The evolution between t0 and t2 can be described by a channel
T 02. We implicitly assumed that the joint initial state of the composite system is of
product form ρ̂0 = ρ0⊗ρE0 . The evolution of the composite system is given by unitary
operators Ut1 from t0 to t1 and Ut2−t1 between t1 and t2 such that Ut2 = Ut2−t1Ut1 . At
t = t1 the open system is in a state

ρt1 = T 01ρ0 = trE
[
Ut1ρ0 ⊗ ρE0 U

∗
t1

]
=
∑
j

K1
j ρ0K

1∗
j (3.25)

and at t = t2

ρt2 = T 02ρ0 = trE
[
Ut2ρ0 ⊗ ρE0 U

∗
t2

]
=
∑
j

K12
j ρ0K

12∗
j . (3.26)

However, it is not possible to find such a simple Krausform for the channel T 12. We
can write

T 12ρ0 = trE
[
Ut2−t1 ρ̂t1U

∗
t2−t1

]
(3.27)

with ρ̂t1 = Ut1ρ0⊗ρE0 U∗
t1 , but since this is in general not a product state, the evolution

from t1 to t2 depends on the initial states of the system and the environment at t = t0.

To avoid this problem, we will choose the Markov approximation, i.e., we can assume
that to determine the evolution of an open system between t = t1 and t = t2 we only
need to know the state ρt1 of the system at t = t1. This approximation is justified
if any correlation between the system and the environment is very short-lived and
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there are no long-time memory effects. With this assumption, the family of channels
Tt obtains the semigroup property

Tt1+t2 = Tt1Tt2 . (3.28)

This leaves us with the question of continuity in the time parameter. We want to
be able to describe a continuous measurement, i.e. a time evolution with continuous
expectation values

lim
t→0

tr(Tt(ρ)A) = tr(ρA). (3.29)

Therefore, we conclude that the time evolution of an open quantum (Markov) system
is given by a so-called quantum dynamical semigroup Tt, i.e. it is a strongly continuous
(one-parameter) semigroup as characterised in Definition 2.0.1. It is the solution of
the differential master equation

ρt = Ttρ0. (3.30)
It remains to determine what kind of semigroups are solutions to equation (3.30)
or, equivalently, what kind of generators L lead to corresponding quantum dynam-
ical semigroups that solve this equation. In 1976, two papers were independently
published that gave an answer for certain subclasses of dynamical semigroups.

V. Gorini, A. Kossakowski and G. Sudarshan (GKS) considered systems with finite-
dimensional Hilbert spaces [GKS76]. Let Mn denote the algebra of n × n-matrices
with entries in C. They found that a linear operator L : Mn → Mn generates a
quantum dynamical semigroup Tt onMn if it is given by

Lρ = −i[H, ρ] + 1

2

n2−1∑
k,l=1

Ckl ([Fk, ρF
∗
l ] + [Fkρ, F

∗
l ]) , (3.31)

where H is the self-adjoint Hamiltonian operator of the system, Fk is a basis ofMn

with trFk = 0 and tr(FkF
∗
l ) = δkl, and Ckl is a complex positive matrix, called the

Kossakowski matrix.

G. Lindblad (L) looked at systems with infinite-dimensional Hilbert spaces but re-
placed strong continuity with norm continuity, thus restricting his solutions to
bounded generators [Lin76]. He states that in the Heisenberg picture, a linear oper-
ator L : B(H) → B(H) is the generator of a norm continuous quantum dynamical
semigroup T ∗

t if and only if

L∗X = i[H,X] +
∑
i

(
L∗
iXLi −

1

2
{L∗

iLi, X}
)
, (3.32)

where H is a self-adjoint operator in B(H) and Li ∈ B(H) such that
∑

i L
∗
iLi is

bounded. In the Schrödinger picture, this corresponds to the form

Lρ = −i[H, ρ] + 1

2

∑
i

([Li, ρL
∗
i ] + [Liρ, L

∗
i ]) . (3.33)

In this thesis, we will choose a slightly different notation that underlines the intuitive
approach in Chapter 4. Furthermore, we will allow the system to lose probability, so
we demand tr Ttρ ≤ tr ρ for all ρ ∈ T(H). If equality holds for all ρ ∈ T(H), we call
Tt conservative.
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Definition 3.5.1. By a bounded standard (GKLS-)form of a generator in the Schrödinger
picture, we understand

Lρ = Kρ+ ρK∗ +
∑
i

LiρL
∗
i (3.34)

for all ρ ∈ S̃(H), and with bounded operatorsK,Li ∈ B(H) that satisfy

0 ≤ K +K∗ +
∑
i

L∗
iLi. (3.35)

The set of labels i may be infinite, in which case the sum in (3.34) is taken in the weak limit.

Equivalently, by a bounded standard (GKLS-)form of a generator in the Heisenberg pic-
ture, we understand

L∗X = K∗X +XK +
∑
i

L∗
iXLi (3.36)

for all X ∈ B(H) and with bounded operatorsK,Li ∈ B(H) satisfying equation (3.35).

Wewill regain equation (3.33) and for finite dimensions (3.31) if we require equality
in (3.35) so that the generated semigroup is trace-preserving and set

K = −iH − 1

2

∑
i

L∗
iLi. (3.37)

3.6 Notes and Remarks

This whole chapter is strongly influenced by [Wer16], [Wer17] and [Osb17]. A good
textbook source for the first sections is [HZ12]: Section 3.1 and 3.2 are based onChap-
ter 2, and Section 3.3 follows Chapter 3. Section 3.4 is also in part taken from [HZ12]
(Chapter 4) with additional input from [BL07, Ch. 5], written by Michael Keyl and
Reinhard F. Werner.

For Section 3.5 we used multiple sources. [RH12] is a neat summery of the develop-
ment of the time evolution of open systems and [CP17] gives an interesting insight
into the history of the GKLS-form. The results can be found in most textbooks on
quantum dynamics, like [BR81] and [AL07]. We also used the two original papers
for the GKLS-form, [GKS76] and [Lin76].
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Chapter 4

Standard semigroups

In the last chapter, we solved the Markovian master equation for norm continuous
quantum dynamical semigroups. Now, we turn to the problem of characterizing all
solutions of the Markovian master equation if we assume strong continuity, i.e. all
one-parameter semigroups t 7→ Tt, (t ≥ 0) such that each Tt is a completely positive
map on the set of trace class operators T(H), and, for any ρ ∈ T(H) and any bounded
operator A ∈ B(H), we have limt→0 tr

(
Tt(ρ)A

)
= tr(ρA).

Firstly, wewill expand the definition of a standard form (3.34) to strongly continuous
semigroups, thereby emphasizing the intuition behind the equation. We start our
survey by looking at the pure states in the domain of the generator L of Tt. At the
same time, this will give us a useful definition of the standard form and point to the
possibility of non-standard generators.

4.1 Standard generators

The bounded standard (GKLS-) form of the generator established in Definition 3.5.1
can quite conspicuously be separated into a part associated with K, and another
which is associated with the operators Li which we will call jump operators. An in-
tuitive way to understand this is the observation that exp(tL) must be a completely
positive map norm close to the identity. This means [KSW07] that it must also have a
Stinespring dilation close to that of the identity. Now the only Kraus operator in the
decomposition of the identity is the unit operator 1I, so one of the Kraus operators of
exp(tL) can be chosen to be close to 1I, say ≈ 1I + tK. The others will then have to
scale like ≈

√
tLi, which gives Ttρ = ρ+ tL(ρ) +O(t2) with the generator in (3.34).

The dominant Kraus operator (1I+ tK) belongs to a pure operation, i.e., an operation
taking pure states into pure states [Dav76, Sect. 2.3]. The only difference to the uni-
tary case is that this part now typically loses normalization, so the evolution takes
pure states to multiples of pure states.

To summarize, the generator splits into one part, which by itself generates an evolu-
tion taking pure states to pure states, and a second part, which is completely positive.
The work of Davies and the stochastic calculus suggest the following terminology:
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Definition 4.1.1. A no-event semigroup on a Hilbert space H is a dynamical semigroup
T 0
t , t > 0 such that every pure state ρ = |ψ⟩⟨ψ| is mapped to a multiple of a pure state. It is

necessarily of the form T 0
t ρ = CtρC

∗
t with Ct = exp(tK) a strongly continuous contraction

semigroup of Hilbert space operators.

Note that this definition no longer requiresK to be bounded. Moreover, it alsomakes
sense in the discrete classical case. Let ℓ1(X) be the Banach space of absolutely con-
vergent sequences for some countable set X . Pure states δx are then of the form
concentrated on a single point x ∈ X , corresponding to the probability distribution
δx(y) = δx,y. It is easy to see that a no-event semigroup cannot change x, i.e., it must
be of the form (

T 0
t

)
(δx) = e−tµx δx, (4.1)

where µ : X → R+ describes the loss rate from state x. The function µ need not
be bounded. Just as in the quantum case, the whole generator will differ from the
no-event part by a positive term, which describes the rates of transitions from x to
other states y, resulting in the usual rate matrix.

The basic idea of constructing the generator (classical or quantum) is that the positive
term in the generator will make the semigroup more nearly conservative, i.e., it will
compensate some of the normalization loss in T 0

t . However, due to the overall (sub-
)normalization condition tr Tt(ρ) ≤ tr ρ, there cannot be more transitions than there
is loss. This means the positive part must be bounded with respect to the normalization
loss of the no-event part. Thus, all unboundedness is tamed once it is under control
for the no-event part.

Definition 4.1.2. A dynamical semigroup is called standard if it is the minimal solution
arising from a completely positive perturbation of the generator of a no-event semigroup.

We have not yet defined "the minimal solution” in this sentence, and this will be
the task of Section 4.3. Standard generators look just like (3.34), with the following
changes: K is the generator of an arbitrary contraction semigroup onH, and the jump
operators need to be operators

Li : domK → H with
∑
i

∥Liϕ∥2 ≤ −2ℜe⟨ϕ,Kϕ⟩. (4.2)

The generator is thus naturally split into L = L0 + P , i.e., no-event part and com-
pletely positive perturbation, namely

L0(|ϕ⟩⟨ψ|) = |Kϕ⟩⟨ψ|+ |ϕ⟩⟨Kψ| and P(|ϕ⟩⟨ψ|) =
∑
i

|Liϕ⟩⟨Liψ|. (4.3)

The natural domain for all these operators is

(domK)⟩⟨ = span{|ϕ⟩⟨ψ||ϕ, ψ ∈ domK}, (4.4)

the set of finite linear combinations of rank 1 operators |ϕ⟩⟨ψ| with ϕ, ψ ∈ domK.
Since domK is dense in H, (domK)⟩⟨ is dense in T(H), and as Lemma 2.1.2 part 2.
shows that domK is invariant under Ct, we know that (domK)⟩⟨ is invariant under
T 0
t . Therefore, (domK)⟩⟨ is a core for L0 (see Proposition 2.1.4). The expression for
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P on (domK)⟩⟨ does explicitly not require the adjoint L∗
i to be even defined, which is

important because it might not exist (see Section 4.5.1 below).

So on (domK)⟩⟨ the standard generator L takes on the form

L|ϕ⟩⟨ψ| = |Kϕ⟩⟨ψ|+ |ϕ⟩⟨Kψ|+
∑
i

|Liϕ⟩⟨Liψ| (4.5)

The effect of the minimal solution construction is then to extend the domain of L
beyond (domK)⟩⟨, so that in the end, we may well get some ρ ∈ domL, for which the
individual terms L0ρ and Pρ are no longer well defined.

We need to take into consideration that the choice of the operatorsK and Li in equa-
tion (4.3) is not unique since the Kraus decomposition of a completely positive map
is not, as it depends on the choice of a basis in the dilation space. Thus, we may
transform the jump operators linearly among each other by a unitary matrix with-
out changing the generator. In addition, there is a change of Kraus operators of Tt
for small t, which mixes the

√
tLi and 1I + tK. This is well-known in the bounded

case and is sometimes called a change of gauge. We will verify here that it survives
mutatis mutandis in the unbounded case.

Lemma 4.1.3. LetK and L determine a standard generator as in (4.2), and let λi ∈ C with∑
i |λi|2 <∞, and β ∈ R. Then for ϕ ∈ domK set

L′
iϕ = Liϕ+ λiϕ (4.6)

K ′ϕ = Kϕ+
∑
i

λi Liϕ+
1

2

(
iβ +

∑
i

|λi|2
)
ϕ (4.7)

Then the sum in the second term in (4.7) converges in norm. Moreover, K ′ is a contraction
generator with domK ′ = domK. The standard generators for (K,L) and (K ′, L′) coincide
on (domK)⟩⟨ so that they determine the same minimal solution.

Proof. First we show that ∥
∑

i λiLiϕ∥ is K-bounded. Using the Cauchy-Schwarz in-
equality we have, for arbitrary ψ ∈ H, ϕ ∈ domK, and ϵ > 0∣∣∣∑

i

λi⟨ψ,Liϕ⟩
∣∣∣2 ≤

∑
i

|λi|2
∑
i

|⟨ψ,Liϕ⟩|2 ≤ A ∥ψ∥2
∑
i

∥Liϕ∥2

≤ A ∥ψ∥2 |2ℜe⟨ϕ,Kϕ⟩| ≤ ∥ψ∥2 4
(A
2ϵ

∥ϕ∥
)
(ϵ∥Kϕ∥)

≤ ∥ψ∥2
(
ϵ∥Kϕ∥+ A

2ϵ
∥ϕ∥

)2
where we have introduced the abbreviation A =

∑
i |λi|2, used (4.2) at the second

line, and the estimate 4xy ≤ (x + y)2 at the last. Taking the square root and using
that ψ is arbitrary, we get ∥

∑
i λiLiϕ∥ ≤ ϵ∥Kϕ∥ + (A/(2ϵ))∥ϕ∥, and, including the

last term in (4.7), ∥(K ′ −K)ϕ∥ ≤ ϵ∥Kϕ∥ + C∥ϕ∥, for some constant C. That is, the
perturbation is infinitesimally K-bounded. According to [Kat95, Theorem IV.1.1],
ϵ < 1 is enough to conclude thatK ′ generates a semigroup with the same domain as
K. It remains to show that K ′ is the generator of a contraction semigroup, i.e. that
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it is dissipative, which for a Hilbert space operator just means 2ℜe⟨ϕ,K ′ϕ⟩ ≤ 0. For
this, we get

2ℜe⟨ϕ,K ′ϕ⟩ = 2ℜe⟨ϕ,Kϕ⟩ − 2ℜe
∑
i

⟨λiϕ,Liϕ⟩ −
∑
i

⟨λiϕ, λiϕ⟩

= 2ℜe⟨ϕ,Kϕ⟩+
∑
i

∥Liϕ∥2 −
∑
i

∥Liϕ+ αiϕ∥2.

Then the first two terms together are ≤ 0 because of (4.2), and the third is obviously
≤ 0. The equality of the generator then follows by the same elementary algebra as in
the bounded case.

This gauging is all the freedom we have on (domK)⟩⟨ in writing the generator.

4.2 Exit spaces and reinsertions

This section will give a dynamical interpretation of the standard form, which forms
the background for the term “no-event” semigroup. This interpretation is consistent
also with the unbounded standard form. It provides the basis for the more techni-
cal statement that, for a standard generator, all the unboundedness is already deter-
mined by the no-event part, relative to which the positive perturbationP is bounded.

Let us consider a simplified description of a measurement, a quantum system in an
environment that contains one or more measurement apparatuses like counters and
other absorbing objects like walls. The idea behind the term "no-event semigroup" is
that T 0

t describes the evolution for as long the system has not yet been captured, i.e.,
up until a detection or "arrival" event [Wer87; Hol95]. Wewill interpret 0 ≤ tr T 0

t ρ ≤
1 as the probability that the system survives at least until time t. A standard way to
describe a detection process is to modify a Hamiltonian by absorbing terms −iHabs

withHabs ≥ 0. By choosingHabs to be spatially localized in a region, we get a model
of a detector in that region. K = −iHabs is then the generator of a strongly continuous
contraction semigroup Ct on the Hilbert space, and the time evolution is of the form
described in Definition 4.1.1.

The probability for detection in the time interval [t, s] starting from an initially nor-
malized state ρ is, by definition, tr T 0

t ρ− tr T 0
s ρ, and it allows for the possibility that

the particle never arrives. This defines a POVM Ĝ on the positive time axis R+ for
the arrival time distribution by

tr T 0
t ρ− tr T 0

s ρ = tr ρ Ĝ(t, s). (4.8)

Ĝ is given by Ĝ(0, t) = 1 − C∗
t Ct and it is a covariant observable with respect to Ct,

since for any s > t > 0 and r > 0 we have C∗
r Ĝ(t, s)Cr = Ĝ(t+ r, s+ r).

We would also like to describe certain events at the arrival time; for example, when
there are several detectors, we need to know which of them fired. Thus, we need
to find the observables jointly measurable with the arrival time observable. This is
naturally captured by the notion of the exit space of a contraction semigroup [Wer87].
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For a semigroup Ct = etK we consider the normalization loss as a quadratic form on
domK,

ϕ 7→ − d

dt
∥Ctϕ∥2|t=0. (4.9)

It is the probability density for arrival at time t = 0 for a system prepared in a pure
state ϕ. We then define an exit space for K as a pair (E , j) of a Hilbert space E and a
linear map j : domK → E such that, for ψ, ϕ ∈ domK,

⟨jψ, jϕ⟩ = − d

dt

〈
etKψ

∣∣∣ etKϕ〉 = −
(
⟨Kψ, ϕ⟩+ ⟨ψ,Kϕ⟩

)
. (4.10)

There is always a unique minimal exit space: The separated completion of domK
with respect to the above scalar product. In this case, j is the canonical embed-
ding. However, for reasons that will be apparent later, we also allow non-minimal
exit spaces, possibly even with an inequality ≤ instead of equality in (4.10).

Now, if F ∈ B(E) is an effect operator describing some yes-no-question asked at
exit time, we set the probability density for obtaining that result at time t, on an
initial preparation |ϕ⟩⟨ϕ| with ϕ ∈ domK, to be ⟨jetKϕ|F |jetKϕ⟩. More formally,
we consider a map J : H → L2(R+, dt; E). The range of J is the space of E-valued
functions on R+, which is canonically isomorphic to L2(R+, dt)⊗E , but the function
notation is more helpful for our purpose. We set

(Jϕ)(t) = j
(
Ctϕ

)
∈ E (4.11)

for ϕ ∈ domK. Then J extends toH by continuity, because

∥Jϕ∥2 =

∫ ∞

0
dt ∥jCtϕ∥2E = −

∫ ∞

0
dt

d

dt
∥Ctϕ∥2

= ∥ϕ∥2 − lim
t→∞

∥Ctϕ∥2 ≤ ∥ϕ∥2. (4.12)

The natural time observable on the space L2(R+, dt) is given by multiplication with
the characteristic function χ[t,s]. Therefore, we can write the arrival time observable
Ĝ as

Ĝ(t, s) = J∗(χ[t,s] ⊗ 1I)J. (4.13)

The joint probability for an F -detection in the time interval [t, s] on the initial state
ρ = |ϕ⟩⟨ϕ| is then

tr
(
ρ J∗(χ[t,s] ⊗ F )J

)
=

∫ s

t
dτ ⟨jeτKϕ|F |jeτKϕ⟩. (4.14)

Here the right-hand side uses the densitymentioned forϕ ∈ domK, but the left-hand
side also makes sense for arbitrary ρ by continuous extension.

We can turn the arrival time detection into a dynamical, repeatable process on H
by introducing a reinsertion map, which transforms the "state upon exit" into a new
state of the system. This is done by a completely positive, trace non-increasing map
S : T(E) → T(H). Then the effect F in (4.14) may arise from a measurement on
the original system, including an arrival time measurement of just the same kind.
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Since S is completely positive, we can use the Stinespring dilation and introduce a
contraction V : E → N⊗H, so that

S(σ) = trN V σV
∗. (4.15)

Observables onN then describe the information that can be extracted at the moment
of a jump, so we call N the transit space. Composing V with j we get a map

ȷ̃ = V j : domK → N⊗H, (4.16)

which, apart from the special form of the image space, satisfies exactly the require-
ments (4.10) for an exit space (possibly with an inequality, if S can reduce the trace).
In this sense, a process of exit and reinsertion is completely specified by an exit space
of the special form (N⊗H, ȷ̃).

From now on, we will take J to be defined by ȷ̃. We can iterate this operator to a
sequence of maps

J (n) : H →
(
L2(R+, dt;N)

)⊗n ⊗H, (4.17)

with J (0) = 1IH, J (1) = J , and J (n+1) = (1I⊗n ⊗ J)J (n). This has the same interpreta-
tion as J , only thatwe are now looking at n consecutive events. The n time arguments
of wave functions in this space, the elements of the factors L2(R+, dt;N), are the time
increments between successive events. In order to get a dynamical semigroup out of
this iteration, we need to fix a time interval [0, τ ] and look only at events happening
during this interval. We also need to evolve the system up to time τ after the last
event with a further application of the no-event semigroup. Thus we set J (n)

τ to be a
map between the same spaces as J (n), but modified as

(J (n)
τ ϕ)(t1, . . . , tn) = (1I⊗n ⊗ Cτ−

∑
i ti

)(J (n)ϕ)(t1, . . . , tn), (4.18)

whenever
∑

i ti ≤ τ , and zero otherwise. So J (n)
τ is a dilation of the evolution condi-

tional on exactly n events happening in that interval. The conditional evolution up
to the end of this interval is

T (n)
τ ρ = trevents J

(n)
τ ρJ (n) ∗

τ , (4.19)

where the trace is the partial trace over the tensor factor
(
L2(R+, dt; E)

)⊗n. Then
Tτρ =

∞∑
n=0

T (n)
τ (4.20)

is a dynamical semigroup. In fact, it is the same minimal semigroup as constructed
in the next section. We will not go through the proof of this assertion, which is best
done via the Laplace transforms of the T (n)

τ , which turn out to be exactly the terms
in the sequence (4.25) below.

Experts in stochastic calculus will easily recognize the dilation construction here. In
fact, when we write the time arguments in the space

(
L2(R+, dt; E)

)⊗n not as incre-
ments but as the absolute event times τi =

∑i
k=1 ti, we get wave functions defined
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on ordered time arguments, which have unique symmetric and antisymmetric exten-
sions to arbitrary n tuples of times, yielding the Fermionic and the Bosonic stochastic
integrals. However, our focus here was just the dynamical semigroup, specifically to
trace the implications of unboundedness through the construction. Indeed, the key
point is (4.12): Once J has been extended from domK to a bounded operator on all
of H, the entire further construction is in terms of bounded operators, and no more
domain questions need to be addressed.

The exit & reinsertion picture suggests other standard ways to look at the gener-
ator, which are brought together with the form (3.34) and (4.2) in the following
proposition. It also lists (in (d)) the form we prefer for the next section. For the
action of the exit space injection j on mixed states we introduce the linear operator
j⟩⟨ : (domK)⟩⟨ → T(E) given by

j⟩⟨(|ϕ⟩⟨ψ|) = |jϕ⟩⟨jψ|. (4.21)

Then we have:

Proposition 4.2.1. Let t 7→ exp(tK) be a contraction semigroup on H with generator K
and minimal exit space (E , j). Then standard generators with no-event semigroup T 0

t ρ =
etKρetK

∗ are equivalently characterized by any of the following sets:

(a) Completely positive “reinsertion” maps S : T(E) → T(H) with
trS(σ) ≤ trσ.

(b) Non-minimal exit spaces of product form, i.e., maps ȷ̃ : domK → N ⊗ H such that
∥ȷ̃ϕ∥2 ≤ 2ℜe⟨ϕ,Kϕ⟩.

(c) Maps P : (domK)⟩⟨ → T(H), which can be written in the form (4.3) with jump
operators Li satisfying (4.2).

(d) Completely positive maps P : domL0 → T(H), with trPρ ≤ − trL0ρ
for all positive ρ ∈ domL0.

The correspondence is given by restriction from (d) to (c) and by unique L0-graph-norm
continuous extension in the other direction. Between (a),(b),(c) it is given on (domK)⟩⟨ by
P = Sj⟩⟨ = (I ⊗ trN)ȷ̃

⟩⟨. Possible choices of jump operators correspond precisely to choices
of Kraus operators for S or a basis ei ∈ N, with S(σ) =

∑
iMiσM

∗
i , via Li = Mij and

ȷ̃ϕ =
∑

i ei ⊗ Liϕ.

Proof. The equivalences are largely trivial to verify on (domK)⟩⟨ or have already been
described in the text above. The only statement not of this kind is the continuous
extension (c)→(d). (domK)⟩⟨ ⊂ domL0 is a core, so continuity will guarantee an
extension to domL0. Since S is clearly trace norm continuous, the identity P = Sj⟩⟨
shows that we only need to prove the continuity of j⟩⟨, i.e., the statement that j⟩⟨ρn →
0, whenever ρn → 0 and L0ρn → 0 (each limit in trace norm). We will do this by
establishing the estimate ∥j⟩⟨ρ∥ ≤ ∥L0ρ∥. By definition of (domK)⟩⟨, we can write
ρ =

∑N
ℓ rℓ|ϕℓ⟩⟨ψℓ| with rℓ ∈ C and ϕℓ, ψℓ ∈ domK. Now on the finite-dimensional

span of the ϕℓ, ψℓ we can perform a singular value decomposition and get a more
canonical form of ρ, where rℓ > 0, and each of the families {ϕℓ}, {ψℓ} is orthonormal.
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Then we have

∥j⟩⟨ρ∥ =
∥∥∥∑

ℓ

rℓ|jϕℓ⟩⟨jψℓ|
∥∥∥ ≤

∑
ℓ

rℓ∥jϕℓ∥∥jψℓ∥

≤
∑
ℓ

rℓ
2

(
∥jϕℓ∥2 + ∥jψℓ∥2

)
= −ℜe

∑
ℓ

rℓ
(
⟨ϕℓ,Kϕℓ⟩+ ⟨Kψℓ, ψℓ⟩

)
= −ℜe

∑
ℓ,m

rℓ
(
⟨ϕm,Kϕℓ⟩⟨ψℓ, ψm⟩+ ⟨ϕm, ϕℓ⟩⟨Kψℓ, ψm⟩

)
= −ℜe trWL0ρ, (4.22)

whereW =
∑

m |ψm⟩⟨ϕm|. This is a partial isometry, so ∥W∥ = 1, and hence ∥j⟩⟨ρ∥ ≤
∥L0ρ∥.

4.3 The minimal solution

Adding a further term ("a perturbation”) to a well-known "simple” generator is, of
course, commonplace throughout quantum mechanics and more general evolution
equations. Very often, one considers perturbations relatively bounded with respect
to the given generator. In this case [RS80], the domain of the perturbed generator
remains the same. The perturbations considered here will usually not be of this kind.
There are two equivalent versions of the construction. One is based on the resolvent
series [Dav77], and one on the iteration of integral equations [Hol95]. Since the re-
solvent version can be stated slightly more compactly, and we will need to consider
resolvents anyhow, we will choose this version. Now consider a generator L0, typ-
ically (but not necessarily) of a no-event semigroup, from which we would like to
construct a new generator L = L0 +P with P completely positive. For the construc-
tion of standard generators, the forms of L0 and P are given in (4.3). The domain of
L should be at least domL0, and we want the normalization of the new semigroup to
be non-increasing. This fixes the normalization condition (4.2). Moreover, for ρ ≥ 0,

0 ≥ tr(L0 + P)R0
λρ = tr

(
λR0

λρ− ρ+ PR0
λρ
)
≥ trPR0

λρ− tr ρ. (4.23)

Hence, PR0
λ is everywhere defined, completely positive, and trace non-increasing.

Therefore, ∥PR0
λ∥ ≤ 1. Formally, we get the resolventRλ of the perturbed semigroup

from
Rλ −R0

λ = Rλ

(
(λ− L0)− (λ− L)

)
R0
λ = RλPR0

λ. (4.24)

Still proceeding formally, we can use this to determine Rλ by iteration, or equiva-
lently to solve the Neumann series for (I − PR0

λ)
−1 to find:

Rλ =
∞∑
n=0

R0
λ

(
PR0

λ

)n
. (4.25)

The basic algebra here is quite standard and is also used for the relatively bounded
perturbation theory of generators. In that case, ∥PR0

λ∥ < 1, so the series obviously
converges in norm. Moreover, one can then write the factor R0

λ outside the sum so
that domL = Rλ(T(H)) ⊂ R0

λ(T(H)) = domL0, and the domain will not increase.
This will be different now. We state the basic construction result without assuming
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Figure 4.1: Generators and their domains in the construction of a standard generator L.

that L0 is a no-event semigroup. This generalization will be needed in Section 4.6.
For use in that section, we also provide Lemma 4.3.2, showing that sometimes the
domain does not increase.

Proposition 4.3.1. LetL0 be the generator of a dynamical semigroup, and letP : domL0 →
T(H) be a completely positive map such that, for 0 ≤ ρ ∈ domL0,

trP(ρ) ≤ − trL0(ρ). (4.26)

ThenPR0
λ is a completely positive operator onT(H), and the series (4.25) converges strongly

to the resolvent Rλ of a dynamical semigroup. X = Rλ is the smallest completely positive
solution of the equation X = R0

λ + XPR0
λ in completely positive ordering, and is hence

called the minimal resolvent solution associated with the perturbation P .

Proof. We only sketch the key idea, which makes clear why the series indeed con-
verges, even without assuming ∥PR0

λ∥ < 1. The the partial sum truncated at n is just
the nth iterate R(n)

λ defined byR(0)
λ = R0

λ and

R(n+1)
λ = R0

λ +R(n)
λ PR0

λ. (4.27)

We will prove by induction that for positive ρ, we have trλR(n)
λ ρ ≤ tr ρ. Indeed,

this is true for n = 0, like for the resolvent of any dynamical semigroup and, by the
induction hypothesis,

trλR(n+1)
λ ρ ≤ trλR0

λρ+ trPR0
λρ

≤ trλR0
λρ− trLR0

λρ = trλR0
λρ− tr

(
λR0

λρ− ρ
)
= tr ρ.

Hence, the sequence λR(n)
λ ρ is increasing and uniformly bounded in trace norm, and

therefore convergent in norm. By linearity, this extends to the trace class, and ap-
plying it to a matrix of trace class operators, we conclude that the limit Rλ is a com-
pletely positive operator. If S is any completely positive solution of the equation in
the proposition, we have that (S − R(0)

λ ) = (S − R0
λ) is completely positive, and

because
(S −R(n+1)

λ ) = (S −R(n)
λ )PRλ (4.28)

this persists through iteration, and the result follows by taking the limit.
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The semigroup that corresponds to this minimal solution is larger than the no-event
semigroup in completely positive ordering, i.e.,

Tt − T 0
t ≥ 0, (4.29)

as was shown by Holevo in [Hol95, Prop. 3].

Lemma 4.3.2. If, in the setting Proposition 4.3.1, the perturbationP has finite rank, we have
domL = domL0.

Proof. Wewill show that, for some n, ∥(PR0
λ)
n∥ < 1. Then the resolvent series (4.25)

converges in norm, even without the factor R0
λ in each term, so as argued after that

equation, the domain will not increase. By definition, a finite rank operator and its
adjoint can be written as

PR0
λρ =

∑
i

σi tr(Siρ) and (PR0
λ)

∗X =
∑
i

Si tr(σiX), (4.30)

where the sum is finite and the σi ∈ T(H) and the Si ∈ B(H) are chosen linearly in-
dependent. The action on the linear span of the σi is given by the finite-dimensional
matrix Pij = trSiσj in the sense that PR0

λ

∑
j xjσj =

∑
i(
∑

j Pijxj)σi. Because
∥PR0

λ∥ ≤ 1, all the eigenvalues of the matrix P must be in the unit circle. If there are
no eigenvalues ofmodulus one, the powers of P and hence ofPR0

λ contract exponen-
tially to zero, and we are done. Now, suppose P has an eigenvalue of modulus one.
Then so does its transpose, and we hence have an operator X with (PR0

λ)
∗X = ωX

with |ω| = 1. Then 2-positivity implies

(PR0
λ)

∗(X∗X) ≥ (PR0
λ)

∗(X)∗(PR0
λ)

∗(X) = X∗X. (4.31)

Hence, iterating (PR0
λ)

∗ on X∗X gives an increasing sequence, which is, however,
bounded by ∥X∗X∥1I, because ∥(PR0

λ)
∗∥ ≤ 1. Hence, this sequence must have a

weak limit, and because (PR0
λ)

∗ is normal, this limit is a fixed point. Therefore, P and
its transpose, and consequently (PR0

λ) must have a nonzero fixed point σ. But then
the resolvent series forRλσ has all equal terms and hence diverges, contradicting the
trace estimate in the proof of Proposition 4.3.1.

4.4 Strictly and strongly standard generators

In Proposition 4.3.1, we explicitly allowed non-equality in equation (4.26). In most
literature, the minimal solution construction demands trLρ = 0 for all 0 ≤ ρ ∈
domL0 (see for example [Dav77]). For the following examples and results, we will
often require this additional condition for standard semigroups so that we will in-
troduce the following definition.

Definition 4.4.1. A dynamical semigroup is called strictly standard if it is the minimal
solution arising from a completely positive perturbation P of the generator L0 of a no-event
semigroup and if it additionally satisfies

trP(ρ) = − trL0(ρ) (4.32)

for all 0 ≤ ρ ∈ domL0.
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A question that naturally arises is whether (domK)⟩⟨ is a core for the generator L
of the minimal solution. The answer is quite simple if we look at strictly standard
semigroups.

Proposition 4.4.2. A strictly standard semigroup Tt is conservative if and only if (domK)⟩⟨

is a core for its generator L.

Proof. First, let Tt be conservative. From the integral (2.19), we see that this is equiv-
alent to

tr Ttρ = trλRλρ = tr ρ (4.33)

for all ρ ∈ T(H) and

tr(L0 + P)R0
λρ = tr

(
λR0

λρ− ρ+ PR0
λρ
)
= 0. (4.34)

By induction, this equation can be generalized for all ρ ∈ T(H) to

tr

(
λ

n∑
k=0

R0
λ(PR0

λ)
kρ+ (PR0

λ)
n+1ρ− ρ

)
= 0. (4.35)

For k = 0, this is true by equation (4.34). If it is satisfied for n, then we can choose
ρ = (PR0

λ)µ and get

tr

(
λ

n+1∑
k=1

R0
λ(PR0

λ)
kµ+ (PR0

λ)
n+2µ− (PR0

λ)µ

)
= 0, (4.36)

thus proving equation (4.35) for n+ 1.

By Proposition 2.2.5, (domK)⟩⟨ is a core for L, if the orthogonal complement of (λ−
L)((domK)⟩⟨) in B(H) is trivial, i.e. there is no nonzero X ∈ B(H) that satisfies

tr(λ− L)ρX = 0 (4.37)

for all ρ ∈ (domK)⟩⟨. So, let us assume (domK)⟩⟨ is not a core, and there exists a
nonzero X ∈ B(H) in the orthogonal complement. Since (domK)⟩⟨ is a core for L0,
we can set ρ = R0

λµ and get

tr(L0 + P)R0
λµX = tr

(
λR0

λµX − µX + PR0
λµX

)
= trλR0

λµX. (4.38)

Thus, equation (4.37) simplifies to trµX = tr(PR0
λ)µX and in the Heisenberg pic-

ture this reads
(PR0

λ)
∗X = X. (4.39)

If X is a fixpoint of (PR0
λ)

∗, this is also the case for X∗. We apply (PR0
λ)

∗n to the
inequalities −2∥X∥1I ≤ X +X∗ ≤ 2∥X∥1I and −2∥X∥1I ≤ i(X −X∗) ≤ 2∥X∥1I and
have

−2∥X∥(PR0
λ)

∗n(1I) ≤ X +X∗ ≤ 2∥X∥(PR0
λ)

∗n(1I) (4.40)
−2∥X∥(PR0

λ)
∗n(1I) ≤ i(X −X∗) ≤ 2∥X∥(PR0

λ)
∗n(1I). (4.41)
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The sequence of postive operators (PR0
λ)

∗n(1I) is positive and decreasing, since equa-
tion (4.35) gives

tr ρ
(
(PR0

λ)
∗n(1I)− (PR0

λ)
∗n+1(1I)

)
= tr

(
λR0

λ(PR0
λ)
nρ
)
. (4.42)

Thus, it converges strongly to a positive operator Y . Taking the limit n → ∞ in
equation (4.35), we get

tr (λRλρ+ ρY ) = tr ρ. (4.43)

Comparing with (4.33), we conclude Y = 0, contradictory to equations (4.40). We
conclude that (domK)⟩⟨ is a core for L.

On the other hand, Tt is strictly standard, so trLρ = 0 for ρ ∈ (domK)⟩⟨, and if this
is a core for gen, then trLρ = 0 for all ρ ∈ domL. This implies

d

dt
tr Ttρ = trLTtρ = 0 (4.44)

for all t ≥ 0 and tr Ttρ = tr ρ. domL in dense in T(H), so this holds for all ρ ∈ T(H)
and Tt is conservative.

We emphasize that Proposition 4.4.2 also states that there are strictly standard and,
therefore, standard semigroups in general, for which (domK)⟩⟨ is not a core forL (for
example, those that are strictly standard but lose normalization), and in Section 4.6
we will see that this is a key feature in our construction of non-standard generators.

Following [Hol19], we introduce another subclass of standard semigroups.

Definition 4.4.3. A dynamical semigroup is called strongly standard if it is the minimal
solution arising from a completely positive perturbation P of the generator L0 of a no-event
semigroup and if additionally, eachLi is closable with domK∗ ⊂ domL∗

i and
∑

i ∥L∗
i f∥2 <

∞ for f ∈ domK∗.

This condition on standard semigroups, first introduced in [Hol96b], is related to
whether the semigroup on the trace class is the dual of a semigroup on the compact
operators. We show in Section 4.5.1 that it may be violated. On the other hand, it is
quite easy to verify in the two main examples of this chapter.

Proposition 4.4.4. Let Tt be a strongly standard semigroup with L and L0 as in (4.3) and
(4.5). Then Tt is the dual of a semigroup on the compact operators.

Proof. The formal generator on (domK∗)⟩⟨ is given by

L∗(|f⟩⟨g|) = |K∗f⟩⟨g|+ |f⟩⟨K∗g|+
∑
i

|L∗
i f⟩⟨L∗

i g|, (4.45)

and it maps |f⟩⟨g| ∈ (domK∗)⟩⟨ to a compact operator since the last term converges
in norm

∥
∑
j

|L∗
jf⟩⟨L∗

jg|∥ ≤
∑
j

∥L∗
jf∥ · ∥L∗

jg∥ ≤

∑
j

∥L∗
jf∥2

 1
2

·

∑
j

∥L∗
jg∥2

 1
2

. (4.46)
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So we have tr ρL∗(X) = trL(ρ)X for ρ ∈ (domK)⟩⟨ andX ∈ (domK∗)⟩⟨. Now, letXn

be a sequence in (domK∗)⟩⟨ that converges in norm to X such that L∗(Xn) → Y in
norm. Then Y is a compact operator. Henceforth, we will denote this closure of the
formal generator with L∗.

It remains to show that L∗ generates a semigroup T ∗
t that maps compact operators

to compact operators. The graph of the resolventR∗λ of L∗ is given by

G = {(X,R∗λ(X))|X ∈ K(H)} = {(λY − L∗Y, Y )|Y ∈ domL∗}. (4.47)

We can introduce its "dual graph", given by elements {ρ1, ρ2} ∈ T (H)2, such that
tr ρ2X = tr ρ1R∗λ(X) and we get

G⊥ = {(ρ1, ρ2) ∈ T (H)2| tr ρ1X2 = tr ρ2X1 for (X1, X2) ∈ G} (4.48)
= {(ρ1, ρ2) ∈ T (H)2|ρ1 = (λ− L)ρ2}. (4.49)

This is the graph of the resolvent of Tt onT(H). Analogously, we can compute G⊥⊥ ⊂
B(H)2. It is easy to see that G⊥ ⊂ G⊥⊥, so the semigroup T ∗

t on B(H)maps compact
operators to compact operators. Thus, T is the dual of a semigroup on the compact
operators, namely of the restriction of T ∗

t to K(H).

With Definition 4.4.3, we can reach another key result for constructing non-standard
generators.

Proposition 4.4.5. Let Tt be a strongly standard dynamical semigroup. Then |ϕ⟩⟨ψ| ∈
domL for some ϕ, ψ ∈ H implies that ϕ, ψ ∈ domK.

Proof. Following Theorem A.2 in [Hol96b] (see also Section 4.7), the semigroup sat-
isfies the so called “forward master equation” with the generator

⟨f, (Lω)g⟩ = ⟨K∗f, ωg⟩+ ⟨f, ωK∗g⟩+
∑
i

⟨L∗
i f, ωL

∗
i g⟩ (4.50)

for ω ∈ domL. Now let ω = |ϕ⟩⟨ψ| with ϕ, ψ not necessarily in domK, and pick a
vector g ∈ domK∗ such that ⟨ψ, g⟩ = 1. This is possible because domK∗ is dense.
Applying Lemma 4.1.3 with λi = −⟨ψ,L∗

i g⟩ leads to an equivalent form of the gen-
erator, for which, however, ⟨ψ,L∗

i g⟩ = 0. Therefore, (4.50) simplifies to

⟨f, (Lω)g⟩ = ⟨K∗f, ϕ⟩ ⟨ψ, g⟩+ ⟨f, ϕ⟩⟨ψ,K∗g⟩. (4.51)

Solving for the first term on the right, using ⟨ψ, g⟩ = 1, we find

⟨K∗f, ϕ⟩ =
〈
f
∣∣∣ L(ω)g − ϕ⟨ψ,K∗g⟩

〉
. (4.52)

Therefore ϕ ∈ domK∗∗ = domK, and Kϕ = L(ω)g − ϕ⟨ψ,K∗g⟩. By the same argu-
ment applied to the hermitian conjugates, we get ψ ∈ domK.

The conditions of strict and strong standardness are not even necessarily satisfied
if the semigroup is norm continuous. In this case, however, a semigroup is strictly
standard simply if it is conservative, as no domain issues arise.
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4.5 Examples of standard generators

4.5.1 Non-closable jump operators

A fundamental example of a contraction semigroup with an unbounded generator is
the half-sided shift onH = L2(R+, dx), given by(

Stψ
)
(x) = ψ(x+ t). (4.53)

Its generator K is differentiation, so domK consists of functions that have an L2-
derivative. In particular, they are continuous; hence, for ψ ∈ domK, the boundary
value ψ(0) is well-defined. This directly determines the exit space E = C with jψ =
ψ(0). Indeed,

− d

dt
⟨Stψ, Stϕ⟩|t=0 = − d

dt

∫ ∞

t
dx ψ(x)ϕ(x) = ψ(0)ϕ(0) = ⟨jψ, jϕ⟩. (4.54)

Hence, the standard generators with no-event semigroup implemented by S are pa-
rameterized by the cp map taking a one-dimensional system on exit E to the system
Hilbert space, i.e., by a state Ω ∈ T(H). The intuitive picture is that whenever the
system hits the boundary, it is reset to the “rebound” state Ω. The number of jump
operators needed here depends on the mixedness of the rebound state Ω. When
Ω =

∑
i |ϕi⟩⟨ϕi| is the spectral resolution (ϕi orthogonal but not normalized), we

can set Li : E → H to be Liz = zϕi. As operators on Hilbert space, these jump op-
erators are very ill-behaved. Formally, they would come out as Li = |ϕi⟩⟨δ|, where δ
is the Dirac-δ at the origin. This Li is not a closable operator, intuitively, because the
value of a general L2-function at a point is an ill-defined notion. More formally, we
can find a sequence ψn ∈ domK = domLi such that ∥ψn∥ → 0, but ψn(0) = 42. Then
Liψn = 42ϕi ̸= 0, independently of n. Hence, the closure of Li would have to map 0
into 42ϕi, which is impossible for a linear operator. Since the usual definition of ad-
joint works well only for closable operators, the jump operators in the standard form
(4.2), and evenmore so their adjoints, have to be interpretedwith care. One can build
a special notion of adjoint for this purpose [AB15], but it is better to take the view of
Proposition 4.2.1 and take Li = Mij, i.e., as completely determined by the bounded
operators Mi. In this way, all the difficulties with singular Li are controlled by the
normalization loss of the no-event semigroup. This is analogous to a well-known
example of a generator perturbation for which the added term by itself makes lit-
tle sense, namely point potentials (δ-function potentials) for Schrödinger operators.
Again, multiplication by a δ-function, which is formally the potential “added” to the
Laplacian, is a crazy operator by itself. However, as a perturbation of the Laplacian,
it makes sense and leads to a well-defined self-adjoint operator, which has an alter-
native description as the Laplacianwith amodified boundary condition at the origin.
Thewhole construction is quite stable, andwe can also obtain the perturbed operator
as the strong resolvent limit of Schrödinger operators with suitably scaled potentials
with small support around the origin. The example of this section is also discussed in
[Hol18], where it is shown that Arveson’s "domain algebra" [Arv02b] can be trivial.

4.5.2 CCR-flow

A basic example of a quantum dynamical semigroup, whose adjoint is a semigroup
of endomorphisms (see Chapter 5), is the so-called CCR flow. It was first constructed
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by Powers and Robinson in [PR89] and was used by William Arveson as a main
example in his classification of endomorphism semigroup (see for example [Arv03]).
We start with the one-particle Hilbert spaceH = L2(R+, dt;K), the K-valued square
integrable functions on R+, where K is some Hilbert space of dimension d. On Kwe
consider the group St of co-isometries as in Example 4.5.1. For every t the map St
gives us an isometric identification of L2([t,∞), dt;K) with H, and Pt = 1I − S∗

t St is
the projection onto the functions supported on the interval [0, t]. The system Hilbert
space is then the symmetric Fock space Γ+(H) introduced in Definition 1.4.2.

If we fix some t > 0, every vector ϕ can be split as ϕ = Ptϕ + (1I − Pt)ϕ ≡ ϕ′ + ϕ′′.
Then 〈

eψ
∣∣∣ eϕ〉 = e⟨ϕ

′,ψ′⟩+⟨ϕ′′,ψ′′⟩ =
〈
eψ

′ ⊗ eψ
′′
∣∣∣ eϕ′ ⊗ eϕ

′′
〉
. (4.55)

This defines an isomorphism eH ∼= eH
′⊗eH′′ under which eψ ∼= eψ

′⊗eψ′′ . Now using
St to identify H′′ with H, we can write a channel in which the system part in eH′ is
traced out, and eH′′ is identified with eH:

σt

(∣∣eψ〉〈eϕ∣∣) = e⟨ϕ,Ptψ⟩
∣∣eStψ

〉〈
eStϕ

∣∣ (4.56)

The part |eStϕ⟩⟨eStψ| in 4.56 is the no-event semigroup σ0t . Since the exit space of
the Shift semigroup St is given by E1 = C with (j1ψ)(x) = ψ(0) we can deduce the
exit-space of the CCR flow as E = E1 ⊗ eH with jeϕ = (j1ϕ)⊗ eϕ, because

− d

dt
⟨eStϕ, eStψ⟩|t=0 = − d

dt
e⟨Stϕ,Stψ⟩|t=0 = ⟨j1ϕ, j1ψ⟩e⟨ϕ,ψ⟩. (4.57)

So this is a semigroup of standard form. Its generator is given by
L
∣∣eψ〉〈eϕ∣∣ = ∣∣Deψ〉〈eϕ∣∣+ ∣∣eψ〉〈Deϕ∣∣+ ψ(0)ϕ(0)

∣∣eψ〉〈eϕ∣∣ (4.58)
where D denotes differentiation.

Clearly, this defines a conservative dynamical semigroup, whose adjoint is a semi-
group of endomorphisms. The adjoint is best characterized in terms of its action on
the Weyl operators, and one easily verifies that

σ∗t (W (ψ)) =W (S∗
t ψ). (4.59)

Since the linear hull of the Weyl operators is weakly dense in B(H), this also char-
acterizes the semigroup completely. Moreover, because S∗

t is an isometry, the Weyl
relations are preserved. Thus, we arrive at Arveson’s definition of the CCR flow.

Definition 4.5.1. The CCR flow of rank d is the semigroup on B(Γ+(H)) where H =
L2(R+, dt;K) associated with the shift S∗

t defined by its action on the Weyl operators given
in (4.59), where d is the dimension of K.

TheCCRflow, however, does notmap compact operators to compact operators; there-
fore, σt is not strongly standard. To see this, we take a look at the action of σ∗t on a
ketbra

⟨eξ|σ∗t (|eϕ⟩⟨eψ|)eη⟩ = e⟨ξ,Ptη⟩⟨eξ|eS∗
t ϕ⟩⟨eS∗

t ψ|eη⟩ (4.60)
Thus, it can be decomposed into the tensor product of the identity operator for t ≤ 1
and shifted part for t > 0

σ∗t (|eϕ⟩⟨eψ|) = 1I≤t ⊗ Γ(S∗
t )|eϕ⟩⟨eψ|Γ(S∗

t )
∗. (4.61)

and so we have σ∗t (K(H)) ∩ K(H) = {0}.
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4.5.3 Quantum birth process

The process

A standard example of the classical theory is the so-called pure birth process. The
state of the system at any time is given by an integer n, from where it can jump to
n+ 1 with rate µn > 0. The generator thus acts on ρ ∈ ℓ1(N) as

(Lρ)(n) =

{
µn−1ρ(n− 1)− µnρ(n) for n > 0

− µ0ρ(0) for n = 0.
(4.62)

The case distinction can be avoided by the convention ρ(−1) = 0. By telescoping
sum, one verifies

∑
n(Lρ)(n) = 0, so the process appears to be conservative. On the

other hand, noting that the expected time for the transition from n to n + 1 is µ−1
n ,

it seems possible that the process reaches infinity in finite time when µn increases
sufficiently rapidly, i.e., ∑

n

1

µn
= τ <∞. (4.63)

Indeed, this is part of the well-established lore on this process (see [Fel57, Section
XVII.4] and below). Our interest here is in a closely related quantum process, which
is a standard semigroup onH = ℓ2(N)withK and a single jump operator L given by

K|n⟩ = −1

2
µn|n⟩, domK =

{
ψ ∈ ℓ2(N) :

∞∑
n=0

µ2n|⟨ψ|n⟩|2 <∞
}
,

L|n⟩ =
√
µn|n+ 1⟩, domL ⊂ domK,

where {|n⟩} is the canonical basis of the Hilbert space. As usual, we denote by
L0ρ = Kρ + ρK∗ the no-event generator, which corresponds to the first term in the
expression for the standard generator

⟨n|Lρ|m⟩ = −1

2
(µn + µm)⟨n|ρ|m⟩+√

µn−1µm−1 ⟨n− 1|ρ|m− 1⟩. (4.64)

This is the quantum analogue of (4.62), a simplified and generalized version of a
process first studied in [Dav77, Example 3.3]. It reduces precisely to the classical
case for purely diagonal density operators. We, therefore, call the process generated
by K and L the quantum birth process. Like its classical counterpart, it is formally
conservative, but it may fail to be conservative due to the possibility of escape to
infinity. It will then be interesting to look at the details of the escape: Is there any
quantum information “coherently” pushed to infinity? For this simple example, the
resolvent series (4.25) can be summed explicitly. We get, for any ρ ∈ T(H),

⟨n|Rλρ|m⟩ =
1

λ+ 1
2(µn + µm)

min(n,m)∑
k=0

pknm ⟨n− k|ρ|m− k⟩ (4.65)

pknm =
k∏
j=1

√
µn−jµm−j

λ+ 1
2(µn−j + µm−j)

. (4.66)

Thus, the domain of the generator of the minimal solution is domL = {Rλρ
′|ρ′ ∈

T(H)}, and Lρ = LRλρ
′ = λRλρ

′ − ρ′. In general, it is not easy to determine domL
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from the expression (4.5), here (4.64), which merely expresses the generator on the
domain (domK)⟩⟨. On the other hand, the matrix elements on the right-hand side of
(4.64) make sense for any bounded operator ρ. It turns out that this reading of (4.64)
correctly expresses the extension by minimal solution:

Lemma 4.5.2. For ρ ∈ domL, and all n,m ∈ N, Eq. (4.64) holds. Conversely, if, for some
trace class operator ρ, the right-hand side of Eq. (4.64) gives the matrix elements of a trace
class operator, then ρ ∈ domL.

Proof. Both (4.64) and (4.65) involve finite sums only for fixed n,m. Therefore, we
can consider them to define extensionsL♯ andR♯

λ ofL andRλ to arbitrarymatrices ρ.
It is straightforward to verify that L♯R♯

λ = λR♯
λ − I♯ = R♯

λL
♯. Take the first equation

and apply it to some ρ′ ∈ T(H). This shows that L♯Rλρ
′ = L♯R♯

λρ
′ = λR♯

λρ
′ − ρ′ =

λRλρ
′ − ρ′ = LRλρ

′, i.e., L♯ and L coincide on domL. Now suppose that ρ and L♯ρ
are both trace class. Then by the second equation ρ = R♯

λ(λρ − L♯ρ) ∈ R♯
λT(H) =

RλT(H) = domL.

Conservativity

From the integral (2.19), one sees that Tt is conservative if and only if trλRλρ = tr ρ
for all ρ. The trace of (4.65) depends only on the sums with n = m; hence, the
conservativity is exactly the same as for the classical problem. The resolvent actu-
ally contains more information. Letm(t) = −d/(dt) tr Ttρ be the “arrival probability
density” at infinity. Then its Laplace transform is

m̂(λ) =

∫ ∞

0
dt e−λt m(t) = 1− trλRλρ. (4.67)

Starting from ρ = |n⟩⟨n|, and introducing the abbreviation ci = µn+j/(λ+ µn+j) we
get from (4.65)

m̂(λ) = 1− trλRλ|n⟩⟨n| = 1−
∞∑
k=0

λ

λ+ µn+k

k−1∏
j=0

µn+j
λ+ µn+j

= 1−
∞∑
k=0

(1− ck)

k−1∏
j=0

ci = lim
N→∞

N∏
j=0

ci

=
∞∏
j=n

1

1 + λµ−1
i

. (4.68)

This has a straightforward probabilistic interpretation: The probability density of a
sum of independent random variables is the convolution of the individual densities
corresponding to the product of the Laplace transforms. Hence, the "arrival time at
infinity” is the sum of infinitelymany independent contributions, each exponentially
distributed with density µie−µit. When τ =

∑
i µ

−1
i = ∞, this sum is actually infinite

with probability 1, and m̂(λ) = 0.
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Domain increase

Next, we consider whether the inclusion domL ⊃ domL0 is strict. For this, it is
helpful to note that for any ρ ∈ domL and q ∈ Z the limit

Φq(ρ) = lim
n→∞

1

2
(µn + µn+q)⟨n|ρ|n+ q⟩ (4.69)

exists. Indeed, setting ρ = Rλρ
′ this is clear from (4.65), using pknm ≤ 1 and ρ′ ∈

T(H). Moreover, if ρ ∈ domL0 the matrix elements in the above limit belong to
the trace class operator L0ρ, and therefore are summable and have to go to zero, so
Φq(domL0) = {0}. We note that Φ0 plays a special role since, for ρ ∈ domL,

Φ0(ρ) = lim
n→∞

n∑
m=0

(
µm⟨m|ρ|m⟩ − µm−1⟨m−1|ρ|m−1⟩

)
= − trLρ (4.70)

is exactly the infinitesimal normalization loss. When the semigroup is not conserva-
tive (the only case we consider now), we can directly find an element on which this
does not vanish:

σ =
∑
n

1

µn
|n⟩⟨n|, with Φ0(σ) = 1. (4.71)

For the other values of q, the existence of such elements depends, in fact, on how fast
the µn grow.

Proposition 4.5.3. Let the rates µn grow moderately in the sense that, for all q, n,∣∣∣∣1− µn+q
µn

∣∣∣∣ ≤ c

n
(4.72)

for some constant c independent of n. Then, for any q ∈ Z, let

σq =
∑
n

2

µn + µn+q
|n⟩⟨n+ q|. (4.73)

Then σq ∈ domL, and Φq(σq
′
) = δqq′ .

Moderate growth covers rational functions, stretched exponentials likeµn ∼ exp(anα)
with α < 1, but exponentials µn = ean clearly do not satisfy this condition.

Proof. The matrix (4.73) is clearly positive definite, and trσq = τ < ∞. The critical
question iswhetherLσq, as defined by (4.64), is trace class. Like σq itself,Lσq is of the
form

∑
n an|n⟩⟨n+ q|, and such an operator is trace class if and only if

∑
n |an| < ∞

(Think of this as a diagonal operator multiplied with a shift from one side). Thus,
we have to show that the sum∑

n

|⟨n|Lσq|n+ q⟩| =
∑
n

∣∣∣−1 +
2
√
µn−1µn+q−1

µn−1 + µn+q−1

∣∣∣ (4.74)

is finite. Introducing the function

g(a, b) = 1− 2
√
ab

a+ b
=

(
√
a−

√
b)2

a+ b
≤
(
1− b

a

)2

(4.75)

we find that for moderately growing µn the terms in the sum (4.74) are bounded by
(c/n)2, so the sum converges.
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Example: Exponentially growing µn
Let us put µn = an for some a > 1. Then, for q ̸= 0, the sum (4.74) has all equal
terms and hence diverges. While the limit (4.69) still exists for ρ = σq and is equal to
1, this does not help to establish domain increase because σq /∈ domL. Nor is there
any other choice of ρ of which we can prove in this way that ρ ∈ domL\ domL0: For
any ρ ∈ domL we get Φq(ρ) = 0.

Proof. Consider the resolvent sum (4.65). Each factor in pkn,m withm = n+ q is

√
µn−jµm−j

λ+ 1
2(µn−j + µm−j)

≤
2
√
µn−jµm−j

µn−j + µm−j
≤ 2aq/2

1 + aq
=: γ. (4.76)

Hence pkn,n+q ≤ γk, which is summable with respect to k. Assuming q ≥ 1 without
loss,

|Φq(Rλρ)| = lim
n

1
2(µn + µn+q)

λ+ 1
2(µn + µn+q)

∣∣∣∣∣∑
k

pkn,n+q⟨n|ρ|n+ q⟩

∣∣∣∣∣
≤ lim

n

n∑
k=0

γkrn−k, (4.77)

where we abbreviated rn = |⟨n|ρ|n + q⟩|. This is a summable sequence because ρ
is trace class. The sum is consequently summable as the convolution of two such
sequences and therefore goes to zero as n→ ∞.

No new pure states

We have seen that domL is properly larger than domL0. But are there also addi-
tional pure states in this larger domain? We could use Prop. 4.4.5 to answer this in
the negative. Instead, we give a simple alternative argument based on the range of
resolvents.

Proposition 4.5.4. Let L and L0 be as above and |ϕ⟩⟨ψ| ∈ domL. Then |ϕ⟩⟨ψ| ∈ domL0,
i.e., ϕ, ψ ∈ domK.

Proof. Since |ϕ⟩⟨ψ| ∈ domLwemay write |ϕ⟩⟨ψ| = Rλρ for some ρ ∈ T(H). Letm be
the smallest index for which ρ|m⟩ ≠ 0. Then, in the formula (4.65) for the resolvent,
only the term k = 0 gives a nonzero contribution. Noting that p0nm = 1we get

⟨n|Rλρ|m⟩ =
1

λ+ 1
2(µn + µm)

⟨n|ρ|m⟩ for all n

Rλρ|m⟩ = (λ+ µm/2−K)−1ρ|m⟩.
ϕ ⟨ψ,m⟩ ∈ (λ+ µm/2−K)−1H = domK.

Now ⟨ψ|m⟩ cannot vanish because ρ|m⟩ ≠ 0. Hence ϕ ∈ domK, and the same argu-
ment applied to ρ∗ gives also ψ ∈ domK.
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4.5.4 Diffusion on diagonals

This is the basis for the example of a non-standard generator given in [Hol96c]. The
basic idea is very similar to the quantumbirth process, and themain conclusion is the
same. However, the presentation in [Hol96c] was rather sketchy and incomplete and
did notmention an argument along the lines of Proposition 4.4.5. These clarifications
were the focus of our collaboration and have been independently summarized in
[Hol18]. The system Hilbert space in this case is H = L2(R+, dx). In order to stress
the analogies, we use the same notations as above for the generators. They are

K =
d2

dx2
domK =

{
ψ ∈ H

∣∣ ψ(0) = 0, ψ′′ ∈ H
}

(4.78)

L =
√
2
d

dx
domL = domK. (4.79)

K generates a diffusion with absorption at the boundary point 0. Similarly, when
seen as acting on integral kernels ρ(x, y), L generates a diffusion with a degenerate
diffusion operator ( ddx +

d
dy )

2, corresponding to diffusion along the diagonals x−y =
const with absorption at the boundary of the positive quadrant. Both semigroups
can be solved explicitly by the reflection trick: The semigroup without the absorbing
boundary condition is translation invariant and acts by convolution with a Gaussian
kernel. The solution with absorption is then obtained by first extending the initial
function to an antisymmetric one on the whole line, applying the Gaussian kernel,
and restricting to the half line afterwards. In this way, we get the time evolution
(see [Hol18], correcting [Hol96c]), written in terms of its action on integral kernels
ω : R+ × R+ → C representing trace class operators:

(Ttω)(x, y) =
1

2
√
πt

∫ ∞

0
dξ

∑
n=0,1

(−1)n exp

{
− 1

4t

∣∣min(x, y)− (−1)nξ
∣∣2}

× ω(ξ + [x− y]+, ξ + [y − x]+) (4.80)

Here we wrote x+ = max{0, x} for the positive part of a number. By integration
(2.19), we get the resolvent

(Rλω)(x, y) =

∫ ∞

0
dξ fx,yλ (ξ) ω

(
ξ + [x− y]+, ξ + [y − x]+

)
(4.81)

fx,yλ (ξ) =
1

2
√
λ

∑
n=0,1

(−1)n exp
{
−
√
λ
∣∣min(x, y)− (−1)nξ

∣∣} . (4.82)

Since f0,yλ = fx,0λ = 0 we must have Rλω(0, y) = Rλω(x, 0) = 0 for all ω. Hence, for
all ω ∈ domL, ω(0, y) = ω(x, 0) = 0. Similarly, one sees that the kernel ω(x, y) has to
be continuous for ω ∈ domL. To find the normalization loss, we can integrate (4.80)
to get

tr Ttω = trω −
∫ ∞

0
dξ erfc

(
ξ

2
√
t

)
ω(ξ, ξ), (4.83)

where erfc denotes the complementary error function. We substitute ξ 7→ 2
√
tη and

take from [Hol18] the information that, for ω ∈ domL, we have ω(x, x) = Λx+ o(x)
as x→ 0. Then by dominated convergence, and using

∫∞
0 dx x erfc(x) = 1/4, we find

tr Ttω = trω − 2
√
t

∫ ∞

0
dη erfc(η)ω(2

√
t η, 2

√
t η) = trω − tΛ + o(t) (4.84)



4.6. EXAMPLES OF NON-STANDARD GENERATORS 55

The diagonal derivative Λ = −d/(dx)ω(x, x)|x=0 plays the same role as Φ0(ρ) in
the previous section (compare (4.70)). The crucial observation is, once again, that
|ϕ⟩⟨ψ| ∈ domL implies |ϕ⟩⟨ψ| ∈ domL0. Two techniques are available for show-
ing this: In analogy to Prop. 4.5.4, one can directly show that (Rλω)χ ∈ domK for
suitable χ. But in this case, it is preferable to invoke Prop. 4.4.5.

4.6 Examples of non-standard generators

We focus here on the examples that come immediately from the two examples stud-
ied in the previous section: The quantum birth and the diagonal diffusion semi-
groups. In both cases, we considered a standard generator L, arising from positive
perturbation of a no-event generator L0. Since both semigroups are strictly standard
but not conservative, we go one step further and add to L another positive term,
leading to the generator dom L̂ of a conservative semigroup. This perturbation again
follows the minimal solution pattern (Section 4.3) with a rank one perturbation for
simplicity. That is, we set

L̂ρ = Lρ− tr(Lρ)ρ̂, dom L̂ = domL. (4.85)

The added term is completely positive on domL because normalization loss is neg-
ative. The equality of domains follows from Lemma 4.3.2. In dynamical terms, the
process will reset to ρ̂ whenever there is an "arrival event", which under L would
mean a loss of normalization: in the quantum birth case, this will be an arrival at
infinity, and in the diagonal diffusion case an arrival at the origin.

We have here two construction steps in which a completely positive term is added
to the generator. Why can they not be fused into a single step, adding both terms
simultaneously? Indeed, if this were possible, L̂ would be, by definition, a standard
generator. The key observation is that L is strictly standard and therefore infinites-
imally trace-preserving on domL0, so P = L − L0 is already as large as it can be.
However, since the semigroup exp(tL) is not conservative, domL must be properly
larger than domL0 because a generator that is infinitesimally conservative on its full
domain would generate a conservative semigroup. The term added when passing
from L to L̂ vanishes on domL0, so it is only associated with the "new" part of the
domain.

The various generators and domains are graphically summarized in Figure 4.2. The
same relations may hold in the discrete classical case, namely whenever L is a stan-
dard generator that appears conservative on the pure states in its domain but actually
allows some escape to infinity and hence generates a non-conservative semigroup.
Indeed, any standard generator is completely determined by its action on the pure
states (even though its full domain might not be spanned just by these). If L̂ were
standard, since it coincides with L on the pure states, we would have L̂ = L. On the
other hand, these generators are clearly different since one generates a conservative
semigroup and the other does not.

In the quantum case, this argument is too simple since not all pure states are in the
domain, but only those |ψ⟩⟨ψ|with ψ ∈ domK. So the possibility we have to discuss
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Figure 4.2: Generators and their domains in the construction of a non-standard generator L̂.

is that there might be another contraction generator K̃ and associated no-event semi-
group generator L̃0, fromwhich L̂ arises in a one-stepminimal solution construction.
It is here that we can use the fact from Proposition 4.4.5 that for strongly standard
semigroups, we actually have ϕ, ψ ∈ domK for all |ϕ⟩⟨ψ| ∈ dom L̂. So even if we had
started from some other K̃, we could still reconstruct domK from dom L̂ = domL.
Since L̂ and L coincide on (domK)⟩⟨, they would arise as minimal solutions from the
same equation on (domK)⟩⟨. Therefore, in both examples, L̂ is non-standard.

In fact, this construction gives us a whole class of non-standard generators, namely
those arising as theminimal solution fromafinite-rankperturbation of non-conservative
but strictly and strongly standard semigroups.

4.7 Notes and Remarks

A large part of this chapter has already been published in [SHW17]. Starting point of
our considerations was the example of a non-standard generator given in [Hol96c].
We felt the need to clarify what exactly we mean by an unbounded version of a
GKLS-form, and to get a structural understanding of the example’s construction. The
quantum birth process (3.4) gave us an insight into the behaviour of domains under
the minimal solution construction; thus, we were able to get a whole class of non-
standard generators.

Additional content is the notion of strictly and strongly standard generators and the
corresponding results. Proposition 4.4.2 is a combination of [Dav77, Thm. 3.2], and
[Fag99, Thm. 3.32]. Proposition 4.4.5 can already be found in [SHW17], but with
slightly different phrasing. The idea of strongly standard semigroups can be found
in [Hol96b], where A. Holevo introduced the forward and backward Markovian Master
Equation (MME), and can be found more explicitly in [Hol18]. The backward MME
for a strongly standard semigroup Tt is given by

d

dt
⟨ϕ|T ∗

t [X]|ψ⟩ =
∑
j

⟨Ljϕ|T ∗
t [X]|Ljψ⟩ − ⟨Kϕ|T ∗

t [X]|ψ⟩ − ⟨ϕ|T ∗
t [X]|Kψ⟩ (4.86)

with ϕ, ψ ∈ D and X ∈ B(H). Then T ∗
t is also the solution to the Master equation

d

dt
⟨ϕ|T ∗

t [X]|ψ⟩ = tr
(
L[|ψ⟩⟨ϕ|T ∗

t [X]]
)

(4.87)
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where L is the Lindblad generator

L[|ψ⟩⟨ϕ|] =
∑
j

|Ljψ⟩⟨Ljϕ| − |Kψ⟩⟨ϕ| − |ψ⟩⟨Kϕ|. (4.88)

Then a dynamical semigroup is standard if T ∗
t can be obtained from the minimal

solution of the backward MME (4.86) or (4.87). The Forward MME on the other
hand is formulated with a generator defined in the Heisenberg picture, so we have

d

dt
⟨ϕ|Tt[ω]|ψ⟩ =

∑
i

⟨L∗
iϕ|Tt[ω]|L∗

iψ⟩ − ⟨K∗ϕ|Tt[ω]|ψ⟩ − ⟨ϕ|Tt[ω]|K∗ψ⟩ (4.89)

with ϕ, ψ ∈ D∗ and ω ∈ T(H) and

L∗[|ψ⟩⟨ϕ|] =
∑
i

|L∗
iψ⟩⟨L∗

iϕ| − |K∗ψ⟩⟨ϕ| − |ψ⟩⟨K∗ϕ|. (4.90)

Although this looks quite similar to (4.87) and (4.88), we need a slightly different
definition for the jump operators Li. In (4.88) and our definition of standardness
the Li were defined on domK, for (4.90) one assumes that all L∗

i are defined on
domK∗. This is the case if

∑
i ∥L∗

i f∥2 < ∞ for f ∈ domK∗. In this sense, we can
rephrase Definition 4.4.3, and call standard dynamical semigroup strongly standard
if Tt can be obtained from the minimal solution of the forward MME (4.89) and the
representation (4.90) holds.

We also looked at another example, the CCR-flow (4.5.2). It is possible to replace
the shift semigroup here with a more general coisometry. However, in this thesis we
chose the simpler version, as it is the main example used by W. Arveson [Arv03] for
semigroups of endomorphism and serves as a link between this chapter and Chapter
5.
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Chapter 5

Endomorphism semigroups

A quantum operation T ∗ (in the Heisenberg picture) with the property that
T ∗(AB) = T ∗(A)T ∗(B) is called an endomorphism. A particular case is that of uni-
tary channels, but the loss of a complete subsystem is also allowed. Semigroups of
endomorphisms arise naturally in the dilation theory of dynamical semigroups. De-
viating from the literature on endomorphism semigroups, we will continue to label
channels and semigroups in theHeisenberg picturewith a ∗. Wewill, however, adopt
the custom of denoting endomorphism semigroups with letters from the beginning
of the Greek alphabet, thus distinguishing them from dynamical semigroups in gen-
eral.

5.1 Endomorphism semigroups and product systems

The study and classification of endomorphism semigroups on B(H)was initiated by
Powers [Pow88; Pow87] and was later reduced by Arveson in his series of papers
[Arv89a; Arv90a; Arv89b; Arv90b] to the classification of corresponding product
systems.

Definition 5.1.1. A one-parameter semigroup α∗
t is called an E0-semigroup on B(H) if the

following conditions are satisfied:

1. α∗
t is the adjoint of a strongly continuous one-parameter group αt on T(H) as defined

in Definition 2.0.1,

2. α∗
t is a ∗-endomorphism of B(H) for each t ≥ 0,

3. α∗
t (1I) = 1I for each t ≥ 0.

If a semigroup satisfies the first two conditions but is not necessarily unital, it is called an
e0-semigroup.

If α∗
t is an e0-semigroup, then it is of one of the following two forms.

1. There is a strongly continuous semigroup St of isometries in B(H) such that

α∗
t (A) = StAS

∗
t , t ≥ 0, A ∈ B(H). (5.1)
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If St is a unitary operator, then α∗
t is a semigroup of automorphisms; otherwise,

α∗
t (1I) is a proper projection.

2. For every t > 0, there is an infinite sequence of isometries V1(t), V2(t), . . . having
mutually orthogonal ranges, that satisfy

α∗
t (A) =

∑
n

Vn(t)AV
∗
n (t), A ∈ B(H). (5.2)

Moreover, α∗
t (A)Vn(t) = Vn(t)A, for every A ∈ B(H) and every n = 1, 2, . . ..

A strongly continuous family of unitary operatorsWt on H is called a cocycle for α∗
t

if it satisfies the cocycle equation

Ws+t =Wsα
∗
s(Wt), s, t ≥ 0. (5.3)

Such cocycles for α∗
t lead to other endomorphism semigroups of the form

α∗
t
W (A) =Wtα

∗
t (A)W

∗
t (5.4)

that are closely related to α∗
t . These semigroups are called cocycle perturbations of α∗

t .

Definition 5.1.2. Let H and K be Hilbert spaces and let α∗
t and β∗t be E0-semigroups on

B(H) andB(K), respectively. Thenα∗
t and β∗t are called cocycle conjugate if β∗t is conjugate

to a cocycle perturbation of α∗
t , i.e. there is a ∗-isomorphismΦ : B(H) → B(H) and a cocycle

Wt of α∗
t such that for all t ≥ 0

Φ ◦ α∗
t
W = β∗t ◦ ϕ. (5.5)

Endomorphism semigroups that are cocycle conjugate share many properties. In
fact, Arveson’s classification of endomorhism semigroups is up to cocycle conjugacy.
Let α∗

t be an e0-semigroup. For each t > 0we can consider the intertwining space of
α∗
t

Eα∗(t) = {R ∈ B(H)|α∗
t (A)R = RA} (5.6)

for A ∈ B(H). This leads to a family of vector spaces over the interval (0,∞)

Eα∗ = {(t, R)|t > 0, R ∈ Eα∗(t)} (5.7)

with a projection p : Eα∗ → (0,∞) given by p(t, R) = t and fibers p−1(t) = Eα∗(t).
Due to the intertwining property, the term R∗S with R,S ∈ Eα∗(t) commutes with
each A ∈ B(H), so it is a scalar multiple of the identity, and its value defines an inner
product on Eα via

R∗S = ⟨R,S⟩1I. (5.8)

As ∥R∥2 = ∥R∗R∥ = ∥⟨R,R⟩1I∥ = ⟨R,R⟩, the norm defined by this inner product co-
incides with the operator norm on Eα∗(t) and the vector space thus becomes aHilbert
space.

If α∗
t is of the form (5.1), then all fiber spaces Eα∗(t) are simply one-dimensional. If α∗

t

is of the form (5.2), then for a fixed t > 0we find that the isometries {V1(t), V2(t), . . .}
are an orthonormal basis for the Hilbert space Eα∗(t).

It is possible to establish a semigroup structure on this family of Hilbert spaces asso-
ciated with an e0-semigroup Eα∗ . For every s, t > 0 we have:
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1. Eα∗(s)Eα∗(t) ⊆ Eα∗(s+ t)

2. For S, S′ ∈ Eα∗(s) and R,R′ ∈ Eα∗(t)we have

⟨SR, S′R′⟩s+t = ⟨S, S′⟩s⟨R,R′⟩t. (5.9)

3. The set of products {SR|S ∈ Eα∗(s), T ∈ Eα∗(t)} has Eα∗(s + t) as its closed
linear span.

Moreover, for every t > 0, α∗
t (1I) is the projection onto the subspace [Eα∗(t)H] of H

spanned by the ranges of the operators in Eα∗(t).

As the σ-algebra of subsets ofB(H) generated by theweak operator topology onB(H)
makes B(H) into a standard Borel space, it gives us a context for the structure of Eα∗ .

Definition 5.1.3. A concrete product system is a Borel subset E of the cartesian product of
Borel spaces (0,∞)×B(H) with the following properties. Let p : E → (0,∞) be the natural
projection p(t, R) = t. We require that p should be surjective, and in addition:

1. For every t > 0, the set of operators E(t) = p−1(t) is a norm-closed linear subspace of
B(H) with the property that B∗A is a scalar for every A,B ∈ E(t).

2. For every s, t > 0, E(s+t) is the norm-closed linear span of the set of products E(s)E(t).

3. There is a sequence of Borel-measurable operator functions Vn : (0,∞) → B(H),
n = 1, 2, . . ., such that {V1(t), V2(t), . . .} is an orthonormal basis for E(t) for every
t > 0.

Two concrete product systems E ⊆ (0,∞)×B(H) and F ⊆ (0,∞)×B(K) are said to
be isomorphic if there is an isomorphism of Borel structures θ : E → F that satisfies
θ(xy) = θ(x)θ(y) for x, y ∈ E , and restricts to a unitary operator from E(t) to F(t) for
every t > 0.

We summarize these thoughts in the following theorem.

Theorem 5.1.4 ([Arv03, Thm. 2.4.7]). Let α∗
t be an e0-semigroup acting on B(H). Then

the structure Eα∗ is a concrete product system whose fibers are either all one-dimensional or
all infinite-dimensional.

In this way, every e0-semigroup gives rise to a unique concrete product system. On
the other hand, every concrete product system uniquely determines an e0-semigroup
associated with it.

Theorem 5.1.5 ([Arv03, Prop. 2.4.9]). Let E ⊆ (0,∞)×B(H) be a concrete product sys-
tem. Then there is a unique e0-semigroup α∗

t acting on B(H) whose endomorphisms satisfy
the following two conditions for every t > 0:

1. α∗
t (A)R = RA, for every R ∈ E(t) and A ∈ B(H).

2. α∗
t (1I) is the projection on [E(t)H].

Moreover, E = Eα∗ is the concrete product system associated with α∗
t

The following theoremfinally shows the importance of product systems in classifying
E0-semigroups.
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Theorem 5.1.6 ([Arv03, Thm. 2.4.10]). Two E0-semigroups α∗
t and β∗t acting, respec-

tively, on B(H) and B(K) are cocycle conjugate if and only if their product systems are iso-
morphic.

Product systems are thus a complete invariant for cocycle conjugacy. This theorem
is, however, explicitly formulated forE0-semigroups, so α∗

t and β∗t are assumed to be
unital.

5.2 The classification of endomorphism semigroups

A key part in the classification of E0-semigroups or, equivalently their product sys-
tems are units.

Definition 5.2.1. A unit of an E0-semigroup α∗
t is a semigroup of bounded operators Ut on

H that satisfies

1. Ut is strongly continuous

2. U0 = 1I

3. α∗
t (A)Ut = UtA, t ≥ 0, A ∈ B(H).

Thus, a unit is a section of the product system p : Eα∗ → (0,∞) that is strongly
continuous and converges to 1I for t → 0. We will write Uα∗ for the set of all units of
α∗
t . It is possible to construct a Hilbert space associated with Uα∗ . There is a unique

function c : Uα∗ × Uα∗ → C such that for two units Ut and St of α∗

S∗
t Ut = ec(U,S)t1I. (5.10)

c is called the covariance function of α∗
t .

Occasionally, units are assumed to be semigroups of isometries ([PP90; Pow91]).
However, equation (5.10) implies that U∗

t Ut is a multiple of the identity, so the dif-
ference lies only in normalization and can be neglected for most purposes.

The amount of units associated with an E0-semigroup is a characteristic of the semi-
group itself. One can observe that some semigroups do not have any units while
others are even completely determined by them.

Definition 5.2.2. An E0-semigroup α∗
t on a von Neumann algebra B(H) is called spatial

if it has at least one unit Ut, i.e. if Uα∗ ̸= ∅.

If α∗
t is spatial, we can define a family of subspaces ofH

Ht = span{U1
t1U

2
t2 · · ·U

n
tnψ|ψ ∈ H, U i ∈ Uα∗ , ti > 0,

n∑
i=1

ti = t}. (5.11)

Definition 5.2.3. If Ht = H for all t > 0, then α∗
t is called completely spatial.

This is equivalent to requiring that for every t > 0, the Hilbert space Eα∗(t) is the
closed linear span of the set of products U1

t1 · · ·U
n
tn , where U iti ∈ Uα∗ and

∑n
i=1 ti = t

with ti > 0. In fact, it suffices to find a t0 > 0 that satisfies one and, therefore, both
of these conditions.



5.2. THE CLASSIFICATION OF ENDOMORPHISM SEMIGROUPS 63

The properties of being spatial and of being completely spatial are cocycle conjugacy
invariants since there is a bijection between the sets of units of cocycle conjugate E0-
semigroups ([Pow99, Def. 2.3]). We can, therefore, formulate a classification of E0-
semigroups up to cocycle conjugacy.

Definition 5.2.4. An E0-semigroup is said to be of Type I if it is completely spatial. It is of
Type II if it is spatial but not completely spatial, and it is Type III if its set of units is empty.

In this thesis, we are concerned with spatial E0-semigroups on B(H) and their con-
nection to standard semigroups on T(H) as described in Chapter 4. The construction
of Type III E0-semigroups, on the other hand, is rather involved, and we refer to
[Pow87; Arv03; Sch18] for more information.

For every E0-semigroup α∗
t on B(H) there is naturally defined Type I semigroup α̂∗

t

subordinate to it. If α∗
t is of Type III, then α̂∗

t is trivial and can be seen as simply acting
on the von Neumann algebra M = {0}, so from here on, we assume α∗

t to be spatial
and Uα∗ ̸= ∅. On the other hand, if α∗

t is Type I, α̂∗
t coincides with α∗

t . α̂∗
t acts on a

subalgebra of B(H) if α∗
t is Type II.

To construct α̂∗
t we look at the subspace of the product system Eα∗

t
spanned by its

units

D(t) = span{U1
t1U

2
t2 · · ·U

n
tn |U

i ∈ Uα∗ , ti > 0,

n∑
i=1

ti = t, n ≥ 1}. (5.12)

This subsystem determines a family of ∗-endomorphisms β∗t via

β∗t (A) =
∑
k

Vk(t)AVk(t)
∗ (5.13)

where {V1(t), V2(t), . . .} is an orthonormal basis forD(t). By definitionwehaveβ∗s+t =
β∗sβ

∗
t . We can set β∗0(A) = A, and β∗t is an e0-semigroup. However, β∗t is not neces-

sarily unit preserving, but we have β∗t ≤ α∗
t for t ≥ 0. The following conditions are

equivalent for every t > 0 (see [Arv89a, Ch. 7] and [Arv03, Sect. 8.8]):

1. H is spanned by {Rξ|R ∈ D(t), ξ ∈ H}

2. β∗t (1I) = 1I

3. Eα∗(t) = D(t)

4. β∗t = α∗
t

If one of these conditions is satisfied for some t then it satisfied for all t and α∗
t is

completely spatial (i.e. of Type I).

Now we look at the projections β∗t (1I). They form a sequence decreasing in t and

β∗t (1I)H = span{Rξ|R ∈ D(t), ξ ∈ H} (5.14)

for t > 0. Let q denote the limit for

q = lim
t→∞

β∗t (1I). (5.15)
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Then for all s > 0 we have β∗s (q) = q. Thus we can restrict β∗t to the qB(H)q ∼=
B(qH) and get a semigroup of endomorphism on B(qH) with β∗t (1IqH) = 1IqH that is
completely spatial. Additionally, there is a bijection θ : Uα∗ → Uβ∗ , defined by

θ(Ut) = Ut|qH (5.16)

for all Ut ∈ Uα∗ . By construction, we know that α∗
t (q) ≥ q, and one can find

qα∗
t (A)q = βt(A), (5.17)

for all X ∈ qB(H)q and t ≥ 0 [Arv03, Sect. 8.8].

Definition 5.2.5. The semigroup α̂∗
t defined by restricting β∗t to B(qH) is called the Type I

part of α∗
t .

Note that if α∗
t is a Type II semigroup, we might get q = 0, and the Type I part of α∗

t

is trivial even though Uα ̸= ∅.

5.3 Generators of spatial semigroups and their domain

Let α∗
t be a spatial E0-semigroup of B(H) and let Ut be a unit of α∗

t . In this section,
we assume all units to be semigroups of isometries (by normalizing Ut if necessary,
see Section 5.1). Let −d be the generator of Ut so

dϕ = lim
t→0

1

t
(ϕ− Utϕ) (5.18)

and dom d is the set of all ϕ so that the limit exists in the strong operator topology. At
this point, we will follow convention in literature and explicitly use the minus sign
for the generator of the unit, i.e. we have Ut = e−td. Let δ be the generator of α∗

t so

δ(A) = lim
t→0

1

t
(α∗

t (A)−A) (5.19)

and the domain is given by allA so that the limit exists in weak* convergence. Then δ
is a ∗-derivation of dom(δ) intoB(H). SinceUtA = α∗

t (A)Utwehave by differentiation
that if A ∈ dom δ, then Adom d ⊂ dom d and

dAϕ = Adϕ− δ(A)ϕ (5.20)

for all ϕ ∈ dom d. Let d∗ be the hermitian adjoint of d. Since the Ut are isometries, d
is skew-hermitian and therefore d∗ ⊃ −d (i.e. dom d∗ ⊃ dom d and d∗ϕ = −dϕ for all
ϕ in dom d). Replacing A ∈ dom δ in (5.20) by A∗ ∈ dom δ and taking adjoints one
finds that Adom d∗ ⊂ dom d∗ and

d∗Aϕ = Ad∗ϕ+ δ(A)ϕ (5.21)

for all ϕ ∈ dom d∗. Each vector ϕ ∈ dom d∗ can be uniquely decomposed as ϕ =
ϕ0 + ϕ+ with ϕ0 ∈ dom d and d∗ϕ+ = ϕ+. This is basically the von Neumann decom-
position (see [v N32]). On dom d∗ one can define a non-negative inner product [·, ·]
via

[ϕ, ψ] =
1

2
⟨d∗ϕ, ψ⟩+ 1

2
⟨ϕ, d∗ψ⟩ (5.22)
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for ϕ, ψ ∈ dom d∗. For ϕ = ϕ0 + ϕ+ and ψ = ψ0 + ψ+ in dom d∗ we get

[ϕ, ψ] = ⟨ϕ+, ψ+⟩, (5.23)

so ϕ ∈ dom d if and only if [ϕ, ϕ] = 0. Thus, one can construct the space

K = dom d∗
/
dom d, (5.24)

that is a Hilbert space with inner product ⟨[ϕ], [ψ]⟩K = [ϕ, ψ], where [ϕ] denotes the
equivalence class of ϕ ∈ dom d∗ in K.

Let St denote another unit of α∗
t with generator−D. By rescaling if necessary, we can

simplify equation (5.10) to
S∗
t Ut = e−µt1I (5.25)

with 0 ≤ µ <∞.

Lemma 5.3.1 ([PP90, Lem. 2.1 and Lem. 2.2]). Let Ut and St be units of α∗
t that satisfy

(5.25)with generators−d and−D, respectively. Then domD ⊂ dom d∗ and forϕ ∈ domD
we have

Dϕ = −d∗ϕ+ µϕ. (5.26)

Additionally, domD ∩ dom d = {0}.

The first part is straightforward computation. For the statement about the domains,
we write ∥f∥2 = ⟨Stf, Stf⟩, since we assumed St to be an isometry, and take the
derivative at t = 0. Thus, −µ∥f∥2 = 2ℜe⟨f, df⟩, and as d is skew-hermitian, f = 0
follows.

Let V0 : domD → K be the one-to-one linear mapping given by V0ϕ = [ϕ]. By
differentiating ⟨ϕ, ψ⟩ = ⟨Stϕ, Stψ⟩ we derive

0 = ⟨Dϕ,ψ⟩+ ⟨ϕ,Dψ⟩ = 2µ⟨ϕ, ψ⟩ − 2⟨[ϕ], [ψ]⟩K, (5.27)

so 1√
µV0 is an isometry on domD and we denote by V its isometric extension to H.

The domain of D then consist of precisely those ϕ ∈ dom d∗ that satisfy
√
µV ϕ = [ϕ] (5.28)

for all ψ ∈ dom d∗.

Lemma 5.3.2 ([PP90, Lem. 2.4]). Let Ut and St be units of α∗
t that satisfy (5.25) with

generators −d and −D, respectively. Then the domains of d∗ and D∗ coincide and for ϕ ∈
dom d∗ we have

D∗ϕ = d∗ϕ+ µϕ−√
µV ∗(ϕ+). (5.29)

The isometry V : H → K can be written as V =
∑n

i=1 siVi with complex numbers si
that satisfy

∑n
i=1 |si|2 = 1, where the Vi are a family of isometries from H → K with

orthogonal ranges, i.e. ViVj = 0 for i ̸= j. The number n of isometries is a positive
integer or n = ∞. If V ′

i is another family of isometries with orthogonal ranges that
satisfy V =

∑m
i=1 s

′
iV

′
i , then m = n. This number n is called the Arveson index of α∗

t ,
and it is a numerical invariant for cocycle conjugacy.
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The map *-representation Φ of B(H) on K given by

Φ(A) =
n∑
i=1

ViAV
∗
i (5.30)

is called the normal boundary representation associated with α∗
t and Ut. It does not

depend on the specific choice of the Vi.

If δ is the generator of the E0-semigroup α∗
t on B(H), then we denote by δ∗ the gen-

erator of the semigroup αt on B(H)∗ = T(H). The property of an E0-semigroup of
being spatial or being completely spatial is closely connected to the number of pure
states in the domain of δ∗.

Theorem 5.3.3 ([Pow91, Thm. 3.1]). An E0-semigroup α∗
t on B(H) is spatial if and only

if the domain of δ∗ contains a pure state of B(H).

Let∆ be the linear map on T(H) given by

tr∆(|ϕ⟩⟨ψ|)A = −⟨d∗ϕ,Aψ⟩ − ⟨ϕ,Ad∗ψ⟩+ ⟨[ϕ],Φ(A)[ψ]⟩ (5.31)

for ϕ, ψ ∈ dom d∗. It is dissipative, closable, and its closure is the generator of a
dynamical semigroup if the range of λ−∆ is dense in T(H). In that case, the set

(dom d∗)⟩⟨ = span{|ϕ⟩⟨ψ||ϕ, ψ ∈ domd∗} (5.32)

is a core for∆.

Theorem 5.3.4 ([Pow91, Thm. 4.7]). Let α∗
t be a spatial E0-semigroup on B(H) with

generator δ, let Ut be a unit of α∗
t with generator −d and let Φ denote the normal boundary

representation concerning α∗
t and Ut. Then the following assertions are equivalent.

1. α∗
t is completely spatial.

2. Φ is unital and the action of α∗
t on its predual is given by the generator δ∗ = ∆ as

defined in (5.31).

3. The linear span of pure states in dom δ∗ is a core for δ∗.

5.4 E0-semigroups with standard preadjoint

Endomorphism semigroups are, of course, the adjoints of particular quantum dy-
namical semigroups in the Schrödinger picture. The question arises, what character-
istics E0-semigroups have if we assume these particular semigroups to be standard.
The results of the last section bear a close resemblance with the ideas in Chapter 4.

Remark 5.4.1. The inner product given by (5.22) directly defines a minimal exit space (E , j)
for the preadjoint semigroup, as in (4.10)

⟨jϕ, jψ⟩ = −2[ϕ, ψ] = −
(
⟨d∗ϕ, ψ⟩+ ⟨ϕ, d∗ψ⟩

)
. (5.33)

E is given as the completion of dom d∗ with respect to this inner product; thus, we have

E = K (5.34)
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where K is given by (5.24). The normal boundary representation Φ : B(H) → K (see
(5.30)) corresponds in the Schrödinger picture to completely positive reinsertion maps S :
T(K) → T(H), as defined in Proposition 4.2.1.

In this sense, the construction of standard semigroups can be viewed as a generalization of the
underlying ideas concerning spatial semigroups to semigroups of completely positive maps.

Let us take a closer look at two special cases of standard semigroups, whose adjoints
are E0-semigroups.

Proposition 5.4.2. Let Tt be a dynamical semigroup with a bounded generator, and assume
that T ∗

t is an E0-semigroup. Then Tt is unitarily implemented.

Proof. We can use the form (4.5) of the generator and its adjointL∗. The infinitesimal
version of the endomorphism property is the derivation property

0 = L∗(AB)− L∗(A)B −AL∗(B)

= −A(K +K∗)B +
∑
j

(
L∗
jABLj − L∗

jALjB −AL∗
jBLj

)
=

∑
j

[A∗, Lj ]
∗[B,Lj ]−A

(
K +K∗ +

∑
j

L∗
jLj
)
B (5.35)

Now, the parenthesis is L∗(1I) = 0, and for A = B∗ the sum has positive terms,
which consequently all have to vanish. Thus the jump operators must be multiples
of the identity, and can be included in K. This yields an evolution generated by the
Hamiltonian iK.

Proposition 5.4.3. Let Tt be a strongly standard semigroup such that T ∗
t is anE0-semigroup.

Then Tt is unitarily implemented.

Proof. An E0-semigroups that maps compact operators to compact operators is nec-
essarily of the form given in 5.1 with isometries St. Additionally, we have

α∗
t (1I) = StS

∗
t = 1I, (5.36)

so the implication follows.

These propositions show that in some cases the differences between E0-semigroups
andCP0-semigroups in general are surprisingly large andweneed to be carefulwhen
transferring ideas from endomorphism semigroups to quantum dynamical maps.

One example of an E0-semigroup with standard preadjoint, the CCR-flow, was al-
ready given in Section 4.5.2. Its product system is given by its fibers

Eσ∗(t) =
{
R ∈ B(eL2((0,∞),K))|σ∗t (A)R = RA

}
(5.37)

for t > 0 and all A ∈ B(Γ+(H)). The elements of Eσ∗(t) are of the form

Rξ|eϕ⟩ = |ξ⟩ ⊗ |eS∗
t ϕ⟩, (5.38)
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where ξ ∈ Γ+(L2((0, t), dt;K)) and ϕ ∈ H. For an element ψ ∈ H we write ψ(s,t) for
the function in L2(R+, dt;K) that is identically ψ in (s, t) and zero everywhere else.
Then the units of the CCR flow are given by

U
(a,ψ)
t |eϕ⟩ = eat|eψ(0,t)+S

∗
t ϕ⟩. (5.39)

with a ∈ C, and for t > 0 the ranges of all finite products

U
(a1,ψ1)
t1

U
(a2,ψ2)
t2

· · ·U (an,ψn)
tn (5.40)

span the Hilbert space Γ+(H). Therefore, the CCR flow is completely spatial. In fact,
every completely spatialE0-semigroup is cocycle conjugate to a CCRflow of a certain
rank.

5.5 Dilations of cp0-semigroups

A cp0-semigroup T ∗
t on B(H0) is the adjoint of a quantum dynamical semigroup T on

T(H0). We say T ∗
t is a CP0-semigroup if T ∗

t is unital. In this section we describe how
to dilate cp0-semigroups to corresponding e0-semigroups, thus integrating them in
the classification given in Section 5.2.

Let α∗
t be an e0-semigroup acting on B(H). A corner of B(H) is a von Neumann sub-

algebra pB(H)p = B(H0), where p is a projection in B(H) and H0 = pH. We will
assume p to be a coinvariant projection under α∗

t , i.e.

α∗
t (1− p) ≤ 1− p (5.41)

for t ≥ 0. If α∗
t is an E0-semigroup, p is covariant if and only if p is increasing, i.e. if

α∗
t (p) ≥ p (5.42)

for t ≥ 0.

Proposition 5.5.1 ([Arv03, Prop. 8.1.2]). Let p be a coinvariant projection for an e0-
semigroup α∗

t on B(H), and let T ∗
t on pB(H)p = B(H0) be defined by

T ∗
t (A) = pα∗

t (A)p (5.43)

for A ∈ B(H0) and t ≥ 0. Then T ∗
t is a cp0-semigroup. If α∗

t is unital, then T ∗
t is unital in

the sense that T ∗
t (p) = p.

In this setting, one calls (B(H), α∗
t , p) the dilation of (B(H0), T ∗

t ), and (B(H0), T ∗
t ) is

called the compression of (B(H), α∗
t , p).

Given (B(H0), T ∗
t ) with ∥T ∗

t ∥ ≤ 1, there is a family D(B(H0), T ∗
t ) of all dilations of

(B(H0), T ∗
t ) and there exists a natural hierarchy. Given two dilations (B(H), α∗

t , p),
(B(H̃), α̃∗

t , p̃), we write
(B(H), α∗

t , p) ≥ (B(H̃), α̃∗
t , p̃) (5.44)

if there is ∗-homomorphism θ : B(H) → B(H̃) with θ(A) = A for A ∈ B(H0) and

θ ◦ α∗
t = α̃∗

t ◦ θ. (5.45)

The two dilations are called equivalent if θ is an isomorphism, i.e., if each dilation
dominates the other. If a dilation (B(H), α∗

t , p) is dominated by every other dilation
in (B(H0), T ∗

t ), it can be characterized, up to isomorphism, in the following way.
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Definition 5.5.2. A dilation (B(H), α∗
t , p) of (B(H0), T ∗

t ) is called minimal if B(H) is a
von Neumann algebra generated by

⋃
t≥0 α

∗
t (B(H0)).

We will also use the terminology α∗
t is minimal over T ∗

t if (B(H), α∗
t , p) is a minimal

dilation of (B(H0), T ∗
t ).

Let α∗
t be an E0-semigroup acting on B(H). A multiplicative projection for α∗

t is an
increasing projection q ∈ B(H)with the property that theCP0-semigroup β∗t defined
on qB(H)q by

β∗t (A) = qα∗
t (A)q (5.46)

for A ∈ qB(H)q is an E0-semigroup, i.e. for A,B ∈ qB(H)q

β∗t (AB) = β∗t (A)β
∗
t (B). (5.47)

So, given a dilation (B(H), α∗
t , p) of (B(H0), T ∗

t ) and amultiplicative projection q ≥ p,
the semigroup β∗t (A) = qα∗

t (A)q gives rise to another dilation (qB(H)q, β∗t , p). An
example of this is the construction of the Type I part of an E0-semigroup, given in
Section 5.2. If q is an increasing projection in B(H), then it is multiplicative if and
only if it commutes with α∗

t (qB(H)q) for every t ≥ 0.

Lemma 5.5.3 ([Arv03, Cor. 8.9.6]). AnE0-semigroupα∗
t is minimal over aCP0-semigroup

T ∗
t on B(H0) = pB(H)p if and only if the only multiplicative projection q ∈ B(H) satisfying
q ≥ p is the trivial projection q = 1I.

For the remainder of this section, we will assume T ∗
t to be a CP0-semigroup, so its

minimal dilation is given by (B(H), α∗
t , p), where α∗

t is an E0-semigroup and p is a
nonzero increasing projection. The Hilbert spaceH is spanned by the set of vectors

{α∗
t1(A1)α

∗
t2(A2) · · ·α∗

tn(An)ξ|Ai ∈ pB(H)p, ti ≥ 0, ξ ∈ pH}. (5.48)

Definition 5.5.4. A unit for T ∗
t is a strongly continuous semigroup of bounded operators

Ut on H0 with the following property: there is a real constant k such that for every t ≥ 0 the
operator mapping Λt : B(H0) → B(H0) given by

Λt(A) = ektT ∗
t (A)− UtAU

∗
t (5.49)

is completely positive.

We write UT ∗ for the set of units of T ∗
t . Let α∗

t on B(H) be an E0-semigroup, then
every unit of α∗

t in the sense of Definition 5.2.1 is also a unit in the more general
sense of Definition 5.5.4.

Proposition 5.5.5 ([Arv03, Prop. 8.10.2]). Let α∗
t on B(H) be a dilation over T ∗

t on
B(H0), (not necessarily minimal), and let Eα∗ be its product system. For every t ≥ 0, the
subspaceH0 = pH ofH is invariant under the set of operators in (Eα∗)∗. Moreover, for every
unit St of α∗, the semigroup of operators Ut in B(H0) defined by

U∗
t = S∗

t |H0 (5.50)

for t ≥ 0 is a unit of T ∗
t .

This means, there is a natural map θ : Uα∗ → UT ∗ given by θ(St)∗ = S(t)∗|H0 . If α∗
t is

minimal over T ∗
t , then θ is a bijection.
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Lemma 5.5.6 ([Arv03, Lem. 8.10.5] and [Mar03, Lem. 1.2]). Let Ut be a unit of T ∗
t and

for every t ≥ 0 let qt be the projection onto

span{Aξ|A ∈ α∗
t (B(H)), ξ ∈ H0 = pH} (5.51)

Then for every t > 0 there is a unique operator Vt ∈ Eα∗(t) satisfying qtVt = Vt and
V ∗
t |H0 = U∗

t . Additionally, there is a real constant k such that ∥Vt∥ = ekt.

This family Vt is a section of the product system of α, but it does not satisfy the semi-
group property. It is, however, possible to construct a unit of α∗

t from these operators.
For a fixed t > 0 and a finite partitionP = {0 = t0 < t1 < · · · < tn = t} of the interval
[0, t] consider the operator

VP,t = Vt1−t0Vt2−t1 · · ·Vtn−tn−1 . (5.52)

VP,t belongs to Eα∗(t) and since ∥VP,t∥ = ekt, themapP 7→ VP,t defines a bounded net
of operators belonging to the weak*-closed operator space Eα∗(t). This net converges
in weak operator topology and for its limit

St = lim
P
VP,t (5.53)

we haveSs+t = SsSt. St is strongly continuous in t and, thus, a unit ofα∗
t that satisfies

equation (5.50).

5.6 The product system of a CP0-semigroup

Let E be a linear subset of B(H0), not necessarily norm close or stable under the ad-
joint operation. Let ⟨·, ·⟩E denote an inner product on E . Then a familyXi of operators
in E is called an orthonormal basis of E , if it satisfies ⟨Xi, Xj⟩ = δij and there is no
nonzero element A ∈ E such that ⟨Xi, A⟩ = 0 for all i. One can define an inner
product on the tensor productH0 ⊗ E via

⟨ϕ⊗X,ψ ⊗ Y ⟩ = ⟨ϕ, ψ⟩⟨X,Y ⟩E , (5.54)

so that its completion becomes a Hilbert space. Let M : H0 ⊗ E → H0 denote the
linear multiplication map

M(ϕ⊗X) = Xϕ. (5.55)

Definition 5.6.1. The operator space E ⊂ B(H0) together with an inner product ⟨·, ·⟩E
is called a metric operator space if the inner product satisfies one and therefore all of the
following conditions.

1. The multiplicationM : H0 ⊗ E → H0 is a bounded linear operator.

2. For every orthonormal basis Xi of E and ϕ ∈ H0, we have∑
i

∥X∗
i ϕ∥2 <∞. (5.56)

3. There is an orthonormal basis Xi of E , such that for all ϕ ∈ H0∑
i

∥X∗
i ϕ∥2 <∞. (5.57)
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In this case, the adjoint ofM is given byM∗ : H0 → H0 ⊗ E with

M∗(ϕ) =
∑
i

X∗
i ϕ⊗Xi, (5.58)

where Xi is an orthonormal basis of E .

Every metric operator space gives rise to a completely positive map on B(H0) via

T ∗
E (A) =

∑
i

XiAX
∗
i . (5.59)

On the other hand, every completely positive map on B(H0) determines a metric
operator space

ET ∗ = {X ∈ B(H0)|∃k > 0 s.t. XAX∗ ≤ kT ∗} (5.60)

The connection is given by the minimal Stinespring dilation of T ∗,

T ∗(A) = V ∗(A⊗ 1I)V, (5.61)

where V : H0 → H0 ⊗HE can be written in terms of Kraus operatorsKi ∈ B(H0)

V ϕ =
∑
i

Kiϕ⊗ ei, (5.62)

(as described in Section 3.4). One can identifyHE with the Hilbert space completion
of ET ∗ , denoted by ĒT ∗ , i.e. there is a unitary operatorW : HE → ĒT ∗ with

Wξ =
(
(1I⊗ ⟨ξ|)V

)∗
. (5.63)

W maps the basis elements ei to the adjoints of the corresponding Kraus operators
that are a basis for ĒT ∗ . With this identification, V coincides with the adjoint of mul-
tiplicationM∗, and we have

T ∗(A) =M(A⊗ 1I)M∗. (5.64)

Therefore, the association between completely positive maps and metric operator
spaces is a bijection.

We now take a look at the concatenation T ∗ = T ∗
1 T

∗
2 of two completely positive maps

T ∗
1 and T ∗

2 in terms of their metric operators spaces Ei = ĒT ∗
i
and ET ∗ . With the

Stinespring isometries Vi : H0 → H0 ⊗ Ei one can write T ∗ as

T ∗(A) = V ∗
1 (V

∗
2 (A⊗ 1I2)V2 ⊗ 1I1)V1 (5.65)

where 1Ii denotes the identity operator in B(Ei). This defines an operator V : H0 →
H0 ⊗ E2 ⊗ E1 with

V ϕ =
∑
i,j

S∗
iX

∗
j ϕ⊗ Si ⊗Xj (5.66)

where Xi and Si are a basis of E1 and E2, respectively. The Stinespring dilation de-
termined by V is not necessarily minimal. However, the set ET ∗ contains the set
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of all products {SX|X ∈ E1, S ∈ E2}, and there is a unique bounded linear map
M : E2 ⊗ E1 → ET ∗ given by

M(S ⊗X) = SX (5.67)

for X ∈ E1 and S ∈ E2, such that V : H0 → ET ∗ is the minimal Stinespring dilation
for T ∗ with

H0 ⊗ ET ∗ = span{(A⊗ 1I)V ϕ|A ∈ B(H0), ϕ ∈ H0}, (5.68)

The adjoint ofM is aHilbert space isometryM∗ : ET ∗ → E2⊗E1 called comultiplication,
so the range ofM is all of ET ∗ , and ET ∗ is the span of products {SX|X ∈ E1, S ∈ E2}.

In the case inwhich T ∗ is a normal endomorphism, themetric operator space reduces
to the intertwining space

ET ∗ = {R ∈ B(H0)|T ∗(A)R = RA}. (5.69)

With these preparations, it is possible to construct a product system for a CP0-
semigroup T ∗

t . Given a partition P = {0 = t0 < t1 < . . . < tn = t} of the inter-
val [0, t], we can define a Hilbert space by

EP
T ∗ = ET ∗(t1 − t0)⊗ . . .⊗ ET ∗(tn − tn−1) (5.70)

where ET ∗(s) denotes themetric operator space corresponding to the completely pos-
itive map T ∗

s . Then for two partitions P ⊂ Q of [0, t] there is an isometric comultipli-
cation map

M∗
QP : EP

T ∗ → EQ
T ∗ (5.71)

such that for P ⊂ Q ⊂ R we have

M∗
RP =M∗

RQM
∗
QP . (5.72)

This allowsus to take the inductive limit of theHilbert spaces EP
T ∗ to obtain theHilbert

space
ET ∗(t) = lim EP

T ∗ . (5.73)

In his paper [Mar03], D. Markiewicz showed that if α∗
t is a minimal E0-semigroup

over T ∗
t , then there exists an admissible Hilbert bundle structure on ET ∗(t) with re-

spect towhich there is an isomorphismofmeasurableHilbert bundles between ET ∗(t)
and the product system Eα∗ .

5.7 Notes and Remarks

Themain reference forE0-semigroups is certainly [Arv03]. It is also a compilation of
his results in various papers, most importantly [Arv89a; Arv90a; Arv89b; Arv90b],
and offers a high level of detail. Section 5.1 is basically a selection of [Arv03, Ch. 2],
as is Section 5.2. Most of the definitions and concepts can also be found (in a rather
compressed version) in [Pow99]. Note, that W. Arveson uses a slightly different ter-
minology in his early papers. Most importantly, when writing about spatial endo-
morphism semigroups in [Arv89a], he actually refers to endomorphism semigroups
that are completely spatial.
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The main objective of R. T. Powers, W. Arveson and their coauthors was defining
a numerical invariant for the classification of E0-semigroups. The idea for an index
was introduced by R. T. Powers [Pow88], still containing some ambiguity, and he
and D. W. Robinson proposed a different approach in [PR89]. The final definition
taking into account cocycle conjugacy was offered by W. Arveson in [Arv89a]: The
covariance function defined in (5.10) defines a positive semidefinite inner product
on C0(Uα∗), the space of complex functions f : Uα∗ → C that vanish off some finite
subset of Uα∗ and satisfy

∑
Ut∈Uα∗ f(Ut) = 0. Thus C0(Uα∗) can be completed to a

Hilbert spaceH(Uα∗). The Arveson index is then the dimension of this Hilbert space
if Uα∗ ̸= ∅.

Section 5.3 is composed of the work of R. T. Powers and G. Price [PP90; Pow91].
The proofs for Theorems 5.3.3 and 5.3.4 are elaborate, and we highly encourage the
interested reader to work through Chapter 3 and 4 of [Pow91] to ge a better under-
standing of the structure of pure states in the domain of the preadjoint generator of
endomorphism semigroups.

TheChapters 8 and 9 of [Arv03] (stated there inmore general terms) are themain ref-
erences for Section 5.5 and 5.6, respectively. As a side note, the construction of a prod-
uct system for CP0-semigroups bears a close resemblance to the ideas in [Neu16] in
the construction of a GKLS-generator decribing a measurement process. In this con-
text, we would also like to recommend the works of B. V. R. Bhat. The dilation of
CP0-semigroups on B(H) to semigroups of endomorphism was already developed
in [Bha96; Bha99]. More details on dilations and product systems gives [BS00], and a
study of product system in the language of Hilbert modules can be found in [Bha05].

In the context of this chapter, Section 5.4 is a bit out of line, since it does not build on
the sources mentioned, but rather connects Section 5.3 with our results of Chapter 4.
We thought it would be helpful to have such a link and answer the obvious questions
arising from the similarities at this point.
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Chapter 6

The type of standard semigroups

This chapter will examine how the standard semigroups defined in Chapter 4 fit into
the characterization given in Section 5.1. Standard semigroups are defined in the
Schrödinger picture and the classification of endomorphism semigroups is in the
Heisenberg picture. As we see those pictures as equivalent, we feel the need to sim-
plify the terminology.

Definition 6.0.1. We call a quantum dynamical semigroup in the Heisenberg picture Type
I, II or III if its minimal dilation is Type I, II or III, respectively. In the same way, we say a
quantum dynamical semigroup in the Schrödinger picture is of Type I, II or III if its adjoint
in the Heisenberg picture is.

On the other hand, we will speak of standard semigroups in the Heisenberg picture
if the preadjoint is a standard semigroup as defined in Chapter 4. Note, that we
must require standard semigroups to be conservative, since the classification of E0-
semigroups specifically demands unitality.

6.1 The type of a conservative standard semigroup

In his paper [Arv99], W. Arveson determined the type of norm continuous CP0-
semigroups. This section will follow the general idea of his proof and apply it to
conservative standard semigroups, whose generators have the set (domK)⟩⟨ as a core
(see Section 4.4). We begin with a simple observation.

Lemma 6.1.1. Let T ∗
t be a CP0-semigroup on B(H0) = B(pH) and let its minimal dilation

α∗
t on B(H) be spatial. Then the domains of the generators of S∗

t coincide for all units St ∈
UT ∗ .

Proof. This is a direct consequence of Lemma 5.3.2. Every unit St of T ∗
t is determined

by a unit Ut of α∗
t via

S∗
t = U∗

t |H0 . (6.1)

Since the domains of allU∗
t withUt ∈ Uα∗ coincide andU∗

t (H0) ⊂ H0 (see Proposition
5.5.5), the domains of S∗

t with St ∈ UT ∗ are simply given by applying p and the
statement follows.
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Let Tt be a standard semigroup on T(H0) with generator

Lρ = Kρ+ ρK∗ +
∑
i

LiρL
∗
i (6.2)

for ρ ∈ (domK)⟩⟨ that has (domK)⟩⟨ as a core. As the semigroup is larger than the no-
event semigroup T 0

t in completely positive ordering (see Chapter 4, equation (4.29)),
the same is true in the Heisenberg picture, and

Λt(A) = ektT ∗
t (A)− C∗

t ACt (6.3)

is completely positive for contraction semigroups Ct = etK on H0, even for k = 0.
Therefore, C∗

t is a unit for T ∗
t . The same holds for the contraction semigroups we get

by gauging (see Lemma 4.1.3), so the (multiples of)

Ut = etK
′∗
, (6.4)

whereK ′ is of the form

K ′ϕ = Kϕ+
∑
i

λi Liϕ+
1

2

(
iβ +

∑
i

|λi|2
)
ϕ, (6.5)

certainly are units of T ∗
t . In fact, every unit of T ∗

t is of this form.

Lemma 6.1.2. Let T ∗
t be a CP0-semigroup and let St be a unit of T ∗

t with generator D.
Assume that (domD∗)⟩⟨ is a core for the generator of Tt. Then Tt is the minimal solution over
the no-event semigroup T 0

t ρ = S∗
t ρSt.

Proof. By replacing St with e−t k2St if necessary, we get that

T ∗
t (A)− StAS

∗
t (6.6)

is completely positive. In the Schrödinger picture, (domD∗)⟩⟨ is a core for both terms,
and the map

Tt(ρ)− S∗
t ρSt = (Tt(ρ)− ρ)− (S∗

t ρSt − ρ) (6.7)

is completely positive for all ρ ∈ (domD∗)⟩⟨. Thus, we can divide by t and take the
limit t→ ∞ to see that on (domD∗)⟩⟨ the generator L is given by

Lρ = D∗ρ+ ρD + P(ρ), (6.8)

where P(ρ) is a completely positive perturbation of the no-event semigroup with
generator D∗ρ+ ρD. In this case, D∗ is of the form (6.5).

Lemma 6.1.3. Let T ∗
t andQ∗

t be two adjoints of conservative standard semigroups with the
same set of units, obtained by gauging the adjoints Ct = etK . Then Tt = Qt.

Proof. Assume we have Tt ̸= Qt. Since (domK)⟩⟨ is a core for both generators (see
Proposition 4.4.2), their standard generators need to differ on this set. However, since
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they have the same sets of units, there are operatorsK andK ′ that generate contrac-
tion semigroups onH0 and satisfy

K ′ϕ = Kϕ+
∑
i

λi Liϕ+
1

2

(
iβ +

∑
i

|λi|2
)
ϕ (6.9)

and
K ′ϕ = Kϕ+

∑
j

µj L̃jϕ+
1

2

(
iγ +

∑
j

|µj |2
)
ϕ (6.10)

with jump operators Li and L̃i that determine completely positive perturbations

P(|ϕ⟩⟨ψ|) =
∑
i

|Liϕ⟩⟨Liψ| and P̃(|ϕ⟩⟨ψ|) =
∑
i

|L̃iϕ⟩⟨L̃iψ|. (6.11)

We can assume, that Li and L̃i are not multiples of the identity, so they satisfy∑
i

λi Liϕ =
∑
j

µj L̃jϕ (6.12)

Thus, the two sets of jump operators are linear combinations of each other, and we
have

P(|ϕ⟩⟨ψ|) = c · P̃(|ϕ⟩⟨ψ|). (6.13)
Since these are completely positive and we assumed both semigroups to be conser-
vative, the generators of both semigroups coincide on a core, and the statement fol-
lows.

Lemma 6.1.4. Let α∗
t on B(H) be a minimal dilation over T ∗

t on B(H0) = B(pH). Let
Ut ∈ Uα∗ be a unit of α with generator −d and let St ∈ UT ∗ be given by S∗

t = U∗
t |H0 with

generator K. If (dom d∗)⟩⟨ is a core for the generator δ∗ of αt on T(H), then (domK)⟩⟨ is a
core for the generator L of Tt on T(H0).

Proof. With Proposition 5.5.5 we know that the contraction semigroup U∗
t leaves the

subspace pH invariant, so U∗
t (H0) ⊂ H0. Thus, we have

lim
t→0

1

t
∥S∗

t ϕ− ϕ∥ = lim
t→0

1

t
∥U∗

t ϕ− ϕ∥ (6.14)

for all ϕ ∈ H0. Therefore, domK = p dom d∗. As (dom d∗)⟩⟨ is a core for δ∗, it is dense
in B(H) and invariant under the action of αt. Thus,

p(dom d∗)⟩⟨p = span
{
|µ⟩⟨ν| |µ, ν ∈ domK

}
(6.15)

is dense in pB(H)p = B(pH). It remains to show that (domK)⟩⟨ is invariant under Tt.
For ϕ, ψ ∈ dom d∗, the action of Tt is given by

Tt(|pϕ⟩⟨pψ|) = pαt(|pϕ⟩⟨pψ|)p. (6.16)

As (dom d∗)⟩⟨ is invariant under the action of αt, αt(|pϕ⟩⟨pψ|) is again an element in
(dom d∗)⟩⟨, so

Tt
(
(domK)⟩⟨

)
⊂ (domK)⟩⟨ (6.17)

and (domK)⟩⟨ is a core for L.
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Theorem 6.1.5. A conservative semigroup Tt is standard if and only if it is of Type I.

Proof. Let Tt be a conservative standard semigroup. Then Proposition 4.4.2 says that
(domK)⟩⟨ is a core for the generator of Tt. Let α∗

t on B(H) be minimal over T ∗
t such

that T ∗
t (A) = pα∗

t (A)p. Assume α∗
t is not of Type I. Then we can construct a semi-

group β∗t as in Section 5.1 from the units of α∗
t , and β∗t (1IH) converges to a projection

q as t→ ∞. The restriction of β∗t to qB(H)q is the Type I part of α∗
t , which we can also

obtain by compressing α∗
t . Since p is coinvariant under β∗t , the compression

Q∗
t (A) = pβ∗t (A)p (6.18)

of β∗t to B(H0) is a cp0-semigroup, such that

T ∗
t −Q∗

t (6.19)

is completely positive. Obviously, every unit ofQ∗
t is also a unit of T ∗

t . So, letSt ∈ UT ∗

be a unit of T ∗
t . Then there exists a unit Ut ∈ Uα∗ such that

S∗
t = U∗

t |H0 (6.20)

By definition, Ut is also a unit of β, so

etkβ∗t (A)− UtAU
∗
t (6.21)

is completely positive for a k ≥ 0. Multiplying from both sides with p, we see that St
is also a unit of Q∗

t . So U∗
T = U∗

Q and with Lemma 6.1.3 it follows that T ∗
t = Q∗

t . We
can now see that

pβ∗t (p)p = Q∗
t (p) = T ∗

t (p) = p, (6.22)

so β∗t (p) ≥ p and taking the limit t → ∞ we get q ≥ p. Since α∗
t is minimal over T ∗

t ,
Lemma 5.5.3 gives q = 1IH and α∗

t is of Type I.
Now assume, that T ∗

t is aCP0-semigroup on B(H0) of Type I. Let α∗
t on B(H) bemin-

imal over T ∗
t on B(H0) = B(pH) and let δ∗ denote the generator of αt. Let St ∈ UT ∗ be

a unit of T ∗
t and letK be the generator of S∗

t . Since α∗
t is of Type I, the set (dom δ∗)

⟩⟨ is
a core (see Theorem 5.3.4), and with Lemma 6.1.4 we know that (domK)⟩⟨ is a core
for Tt. By Lemma 6.1.2, Tt is standard.

6.2 A type classification for standard semigroups

It remains the question for a classification of non-conservative standard semigroups
and of the examples given in 4.6. The common factor of all the semigroups in Chap-
ter 4 is that they are constructed as a series of one or more perturbations with corre-
sponding minimal solutions of a no-event semigroup. If such semigroups are con-
servative, then by construction, they are either of Type I or of Type II. They are of
Type I if its generator has (domK)⟩⟨ as a core. The proof of this is quite simple. If a
semigroup is constructed as one or more perturbations of a no-event semigroup and
has (domK)⟩⟨ as a core, then it can be constructed with just one perturbation, and it
is standard. Therefore, if it is conservative, it is of Type I. Even if (domK)⟩⟨ is not a
core, it is contained in the domain of its generator, as are all pure states in (domK)⟩⟨.
Theorem 5.3.3 ensures that Tt is spatial, and therefore of Type II. With this reasoning,
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it is easy to see that all conservative non-standard examples in Chapter 4 are of Type
II.

Arveson’s classification of endomorphism semigroups, and therefore of completely
positive on parameter semigroups, is restricted to unital semigroups. The main rea-
son is that he based his classification on the classification of isomorphic product sys-
tems, and Theorem 5.1.6 is explicitly only valid for conservative semigroups.

The key feature in our proof of Theorem 6.1.5 is whether the ketbra content in the
domain of the generator is a core. So, with this in mind, we suggest the following
classification:

Definition 6.2.1. We call a standard semigroup of Type I if the ketbra domain is a core for
its generator. Otherwise it is of Type II.

In other words, a standard semigroup is of Type I if the generator of its minimal
solution is the closure of the perturbed no-event generator. This definition keeps
the intuition that Type I semigroups are completely determined by their set of units.
For Type II standard semigroups, however, we see a perturbation part with support
outside the ketbra domain. The broadening of this classification to all semigroups
that are constructed as a series of positive perturbations of a no-event semigroup is
then straightforward, as by construction, they also are always of Type I or Type II.
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Conclusions and outlook

We have explicitly defined a notion of unbounded GKLS-generators, which we feel
summarizes an agreement in the literature [Dav77; Dav79; Fag99; Hol95; Hol96b].
While in the conclusion of [SHW17] we wrote that it was unclear how our notion
of standardness and Arveson’s Type I are exactly related, this question has been an-
swered in Chapter 6 of this thesis. The main result is certainly Theorem 6.1.5, stating
that conservative semigroups are standard if and only if they are of Type I. The class
of non-standard semigroups given in Section 4.6 is of Type II. The key feature in our
answer was the mutual domain of all generators of preadjoints of units and whether
the corresponding ketbra domain was a core for the generator of the standard semi-
group.

Therefore, we suggested to extend this classification to non-conservative standard
semigroups and even to all semigroups that are constructed as a series of positive
perturbations of a no-event semigroup. Within this classification, not only the non-
standard semigroups in Section 4.6 are of Type II. Those examples were constructed
based on standard semigroups, for which the minimal solution led to a domain in-
crease, such that the ketbra domainwas no longer a core. These standard semigroups
are then also of Type II in the broader meaning.

In many ways, this gives us a much better understanding of non-standard semi-
groups, especially of those that are spatial. The question remains, howdoes Type I lie
within Type II. Can all spatial semigroups be constructed as a series of perturbations
of no-event semigroups? Or can we always write a Type II semigroup as a direct sum
of a Type I and a Type III semigroup? The answer may lie in the lines of a Type I part
of such semigroups, analogue to the Type I part of an endomorphism semigroup de-
fined in Section 5.2. A big issue here lies with the differences between the domains
involved. It could be helpful to understand, how to construct a unit of an endomor-
phism semigroup from a pure state in the domain of its preadjoint generator. Remark
5.4.1 already hints to a relation between spatialness and standardness.

Another starting point for further research is the set of ketbras in the domains. Propo-
sition 4.4.5 is explicitly formulated for strongly standard semigroups. It is not known,
whether strong standardness is necessary here. Is it possible to prove a generalization
to all standard semigroups? Or is there a counter example, where the minimal solu-
tion leads to additional ketbras? To phrase it in a diferent way: Can we reconstruct
domK from the standard generator L?

Finally there is the question about the interpretation of Type III semigroups, that is



of semigroups with no units at all [Arv03; Pow87]. As we have seen in Section 5.3,
these have no pure states in the domain of their generator. As standard semigroup
are always either Type I or Type II, there is no part of the semigroup, that maps pure
states to multiples of pure states. The implications for physical interpretation here
remain vague, and this certainly leaves room for further research.
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