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Abstract. In this short contribution we introduce a new procedure to recover the

stress and strain fields for particle systems by mechanical models. Numerical tests

for simple loading conditions have shown an excellent match between the estimated

values and the reference values. The estimated stress field is also consistent with the

so called Quasicontinuum stress field, which suggests its potential application for scale

bridging techniques. The estimated stress fields for complicated loading conditions

such as defect and indentation are also demonstrated.
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1. Introduction

Multiscale methods have been attracting more and more attention for the last two

decades. One of the main applications of the multiscale methods is to study material

with defects [20, 22, 11, 1]. The region containing defects cannot be accurately described

by the traditional continuum mechanics and atomic models have been used as a powerful

tool to study the defects at small scale. However the high computational cost makes it

difficult, if not impossible, to use a fully atomic model for problems of sizes large enough

to be of any practical applications, and therefore multiscale methods which can couple

the molecular dynamics and the continuum mechanics are called for. Good review

papers on such methods can be found at [9, 19, 18, 28, 3]. Among the existing results,

we consider the Quasicontinuum method [26, 27, 17] as one of the most systematically

developed multiscale framework. It introduces a physically consistent coupling between

the continuum mechanics and the molecular dynamics. Though showing promising

results in the material defect analysis at nanoscale [26, 25, 16, 7, 5], there are still some

problems to fix and many extensions to make, and one of them is to develop a method

to interpolate the stress and strain fields for the microscale region of Quasicontinuum

models. Stress and strain are only defined in continuum mechanics, therefore, without

extra interpolation techniques, one cannot obtain the stress and strain fields for the

microscale region which is modeled by molecular dynamics. On the other hand, the

microscale stress fields are also found useful for studying the material behaviors at the

microscale [8, 13, 21]. Moreover, the microscale stress itself has recently been exploited

as part of the coupling variables [10] for obtaining smoother transition at the macro-

micro boundary. Therefore, it is desirable to develop techniques that can interpolate

the stress and strain fields for the particle methods which are consistent with their

counterparts in continuum mechanics.

Various methods for obtaining the microscale stress tensor have already been

available in literature. Among them, the so called Virial stress [14] provides simple

expressions for the atomics stress and is still widely used in the literature, despite

the controversial debate over its validity [30, 24, 6]. An appropriate version was put

forward by Lutsko [15] and later improved by Cormier [4], who derived it in a more

general form. However, the derivation process is found to be quite complicated. Fourier

transformations and inverse transformations have been applied to solve the differential

equations [15, 4, 30], without proving their applicability. A non-invertible tensor

expansion which is mathematically true but physically weak must be applied during

the derivation [4, 30]. The oscillating effect of the interpolated stress [15, 4] could also

be merely a mathematical artifact rather than a reflection of the reality. Despite those

problems, it offers many helpful insights to capture some essentials of the microscale

stress field. First, it uses the local balances of linear momentum as the starting point,

consistent with continuum mechanics, suggesting its potential compatibility with the

stress determined by continuum mechanics. Regardless of the complicated derivation,

the result is a summation of interactions between each interacting pairs, together with
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characteristic tensors in terms of distance vectors. This suggests a reverse approach:

if we assume that along the line of interaction of an interacting pair the stress, when

simply considered as force per unit area, over a certain characteristic area is dominated

by their interatomic force, then we will be able to relate the stress directly to the

atomic interactions by the Cauchy’s relation, skipping the complications brought by

the differential equations. On the other hand, for the majority of atoms there are

many interacting neighbors, which suggests that we can use the Cauchy’s relation to

determine the resultant traction in many directions. Since the distance vectors can

be obtained directly from the atomic positions, this then becomes an over-determined

problem which can be solved by the least-square method. Of course, the results obtained

would in general not be a very accurate one at every position, as the stress is varying

from point to point. However, it must be kept in mind that we are not seeking for

an accurate analytical expression of the microscale stress at any spatial position, but

instead seeking for an approximation for a small region surrounding each individual

atoms, i.e. the stress field in a small region around an individual atom is assumed to

be constant. The entire stress field can then be interpolated from those point values by

shape functions.

Comparing to the attention to the microscale stress, discussions on the microscale

strain are rare in literature. The strain is usually considered as a given variable and used

together with the microscale stress to obtain local elastic constants [15, 4]. However, in

continuum mechanics, strain itself can be used as an indicator of plastic deformation [23]

which, when translated into the microscale language, is the onset of dislocations. On the

other hand, to estimate the microscale strain is equivalent to estimating the deformation

gradient, since all kinds of strain tensors can be obtained from the deformation gradient

[29]. In the early date, Born [2] related the deformation gradient to the atomic positions

in the lattice by the so called Cauchy-Born rule, under the assumption that the entire

lattice is under uniform deformation. This has been later used as the foundation for

the well known multiscale method named as the Quasicontinuum method [26, 17]. If

we imagine some virtual bonds exist between interacting pairs, then the assumption of

homogeneous deformation means all the bonds are under the same deformation. For the

microscale model where the particle methods must be applied, this assumption does not

hold, i.e. the bond can be under different deformations. However, this does not mean

that we have to abandon the Cauchy-Born rule completely. We can still apply it, but

only to each bond. If, instead of seeking analytical expressions for the microscale strain,

we want to obtain a reasonable engineering approximation for the microscale strain at

individual atoms similar to what we hope for the stress tensor, then we can assume an

averaged deformation gradient for each individual atom, and then apply the Cauchy-

Born rule inversely, i.e. obtaining the deformation gradient from the undeformed and

deformed distance vectors of each bond. As shown in the later section, as long as there

are more than two linearly independent interacting bonds, such averaged deformation

gradient can be estimated by the least-square method, just as the stress tensor. And

the obtained deformation gradient can be further used to calculate the strain tensors at
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Figure 1: Deformed Bonds: distance vectors between atom i and its neighbors, j, before

and after deformation, related by the local deformation gradient Fij

the positions of individual atoms.

In this short contribution, we will first derive the microscale strain tensor estimated

by the least-square method, followed by the stress tensor. Then we show the results

from the numerical verifications, where we compare the estimated microscale stress and

strain tensors with the reference values. The numerical test is conducted on lattice

model under simple loading conditions: uniform deformation and tensile test. Excellent

matches between the least-square estimations and the reference values are obtained

for the simple loading cases. After that, we present the results for more complicated

loading conditions, including the stress field around a microscale crack, the stress field

around an unit edge dislocation and the stress field under an indentation surface. In this

contribution, we focus on the discussion of the method itself and the material parameters

are of no interest, therefore the results of estimated stress field cannot be numerically

compared to existing data. Nevertheless, the distribution pattern of the estimated

stress shows good resemblance to the existing results in the literature. Limitations of

our method are also discussed at the end.

2. Least-Square Estimation of the Miroscale Strain Tensor

For atomic systems with only pair potentials, the interaction between any two atoms is

independent from the others and it can be treated as virtual bond between these two

atoms. Local deformation gradient can then be assigned to each bond, as shown in

Fig. 1 and the deformed distance vector rij from arbitrary atom i to its neighbor, atom

j, can be related to their undeformed distance vector Rij by applying the Cauchy-Born

rule [26, 2],

rij = Fij ·Rij. (1)

To avoid confusion in their directions, we define the distance vectors here explicitly as

rij = xj − xi (2)

Rij = Xj −Xi, (3)
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where xi is the deformed position of atom i and Xi its original position. All interaction

neighbors of atom i are indexed by j. We consider the interpolated deformation gradient

at atom i as an averaged value, from where we obtain the approximated distance vector

after deformation. Since i is arbitrary, without loss of generality we can drop the index

i from the notations for simplicity.

r̃j = F ·Rj (4)

One can rewrite the right hand side of equation (4) as a mapping of the components of

the deformation gradient as





RjT 0 0

0 RjT 0

0 0 RjT






︸ ︷︷ ︸

Dj

F̂ = r̃j . (5)

where F̂ is the Voigt notation of F, defined as

F̂ = [F11, F12, F13, F21, F22, F23, F31, F32, F33]
T
. (6)

The error of estimation of rj is then

∆rj = r̃j − rj (7)

= DjF̂− rj . (8)

The best estimation of F should minimize the error norm summed over Np interaction

neighbors of atom i.

ΠF =

Np∑

j=1

(
∆rj

)T
∆rj (9)

=

Np∑

j=1

(

DjF̂− rj
)T (

DjF̂− rj
)

(10)

Here we apply the standard linear least-square method, i.e. taking derivatives of

equation (10) and equaling it to zero. It yields a linear system,

Np∑

j=1

(

DjTDj
)

F̂−

Np∑

j=1

(

DjT rj
)

= 0. (11)

By performing some matrix manipulation, the best estimation of F̂ can be obtained by

F̂ =
(
DTD

)

︸ ︷︷ ︸

MF

−1

DTbF , (12)

where

D =
[

DT
1
,DT

2
, . . . ,DT

Np

]T

(13)

bF =
[

rT
1
, rT

2
, . . . , rTNp

]T

. (14)
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Figure 2: Equivalent traction along the direction of interaction

Once F is recovered, the strain tensor can then be easily computed from

E =
1

2

(
FTF− I

)
, (15)

where I is the 3-by-3 identity matrix. Notice that the matrix MF in equation (12)

depends only on the original lattice structure and has to be constructed only once, as

far as no moving dislocation appears. On the other hand, to ensure that it is invertible,

atom imust have at least three interacting neighbors, whose distance vectors are linearly

independent.

3. Least-Square Estimation of the Miroscale Stress Tensor

The stress estimation is a combination of the linear least-square method and the

Cauchy’s relation [12],

t = σ · n, (16)

where t is the traction vector associated to the Cauchy stress tensor in a cutting plane

with unit normal vector n. In static case, the atoms are always in equilibrium. For each

atom i, we have

Np∑

j=1

f j = 0, (17)

where f j is the force obtained from the interatomic potential between atom i and j.

Therefore, if we consider a special volume surrounding atom i with its surface cutting

through the bond rj , then the total external force at the intersection point can be

equivalent to the interatomic force between atoms i and j, as shown in Fig. 2, where

the traction near by can be approximated by

tj =
f j

Aj(x)
. (18)
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We define here A(x) as some characteristic area, evaluated at position x, for which

equation (18) holds. Together with equation (17), one obtains

σ(x) ·
rj

|rj |
=

f j

Aj(x)
, (19)

where |rj| is the length of rj . For each atom i, we only estimate an averaged stress tensor

within its surrounding space and therefore the unknown area Aj(x) can be replaced

by a constant value Aj
c for each bond rj . The estimated stress tensor results in an

approximated traction t̃j for each bond with an error of

∆tj = t̃j − tj (20)

= dj
σ̂ −

f j

A
j
c

, (21)

where

σ̂ = [σ11, σ12, σ13, σ21, σ22, σ23, σ31, σ32, σ33]
T (22)

dj =






rj
T

0 0

0 rj
T

0

0 0 rj
T




 . (23)

Then we define the total error norm for the traction as

Π0

σ =

Np∑

j=1

(
∆tj

)T
∆tj (24)

=

Np∑

j=1

(

dj
σ̂ −

|rj|

A
j
c

f j
)T (

dj
σ̂ −

|rj |

A
j
c

f j
)

, (25)

whose compact form can be written as

Π0

σ = (dσ̂ − bσ)
T (dσ̂ − bσ) , (26)

with

d =
[

dT
1
,dT

2
, . . . ,dT

Np

]T

(27)

bσ =

[

|r1|

A1
c

f1
T
,
|r2|

A2
c

f2
T
, . . . ,

∣
∣rNp

∣
∣

A
Np

c

fNp
T

]T

. (28)

The interatomic potential for pair-interactions can written be in terms of the distance

between the two atoms, i.e. Φj = Φj(|rj|), and therefore the force can be derived as

f j =
Φj ′

|rj|
rj. (29)

By substituting equation (29) into equation (28), bσ can be simplified as

bσ =

[

Φ1′

A1
c

r1
T
,
Φ2′

A2
c

r2
T
, . . . ,

ΦNp
′

A
Np

c

rNp
T

]T

. (30)
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Meanwhile, the conservation of angular momentum for non-polar continua requires σ

to be symmetric, i. e.

σ = σ
T . (31)

When written in terms of elements it yields

σ12 = σ21, σ13 = σ31, σ23 = σ32, (32)

which can be converted to matrix form,





0 1 0 −1 0 0 0 0 0

0 0 1 0 0 0 −1 0 0

0 0 0 0 0 1 0 −1 0






︸ ︷︷ ︸

A

σ̂ = 0 (33)

The symmetric constraint defined by equation (33) can be imposed on the estimation

by adding a penalty term to equation (26), as

Πσ = (dσ̂ − bσ)
T (dσ̂ − bσ) + λ (Aσ̂)T (Aσ̂) , (34)

where λ is the penalty factor. By minimizing equation (34) one can obtain the best

estimation of the stress tensor σ̂ for atom i.

σ̂ =
(
dTd+ λATA

)

︸ ︷︷ ︸

Mσ

−1

dTbσ. (35)

The matrix form of σ̂ can be recovered by equation (23). To guarantee Mσ is invertible,

at minimum 3 neighbors with linearly independent distance vectors are required for each

atom, the same as the condition for the strain estimation.

So far we have not been able to derive an analytical form for the characteristic area

Aj
c used in equation (26). By computational studies we found that the formula

Aj
c =

4π
(
1

2
|Rj|

)2

Np

(36)

provides the estimated σ with averaged values that are closest to the macroscale values.

|Rj| is length of the undeformed distance vector between atom i and j. It can be

interpolated as a fraction of area of a spherical surface which is centered at atom i and

crosses the middle of the undeformed bond Rj. And the fraction is determined by the

number of interaction neighbors of atom i.

4. Numerical Verification

An atomic lattice model is constructed for conducting the numerical verifications. The

interpolated microscale strain and stress fields are then compared with reference values.

The lattice is a face-centered Bravais lattice with a lattice constant of 4, as

illustrated in Fig. 3. Lennard-Jones potential is applied, as

Φij =
B

|rij|12
−

A

|rij|6
, (37)
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Figure 3: Lattice model used for numerical tests and boundary surfaces defined for

equation (39)

Figure 4: Reference lattice for calculating QC stress field: each atom has 12 neighbors

when at the cutoff radius of 3, for a FCC lattice structure with lattice constant a = 4.

where A is chosen to be 1.0239×108 and B to be 2.6211×1010. The equilibrium distance

is 2.8284 and the cutoff radius is 3 so that only immediate neighbors are interacting

with each other. Since here the material properties are of no interest in the test, all

parameters are therefore dimensionless.

In our numerical tests, uniform deformation is applied to the boundary atoms by

ubc = (F− I)
︸ ︷︷ ︸

H

Xbc. (38)

When the static equilibrium is reached the entire lattice will be under the same

deformation gradient [2], and the reference strain field can then be obtained by equation

(15). On the other hand, the reference stress field is obtained by

σ
ref
ij =

1

Ai

∑

k

f i,kj , (39)

where Ai is the area of the boundary surface i defined in Fig. 3, and f i,kj is the jth

component of constraint force applied on atom k on the boundary surface i. The surface

change due to the deformation is ignored here, due to the small deformation applied.

On the other hand, in order to investigate the possibility of applying our

interpolation to multiscale method, we also compared our stress interpolation with the

Quasicontinuum stress (QC) field [26]. To obtain the QC stress field, a simple reference
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(a) Recovered strain, E33 (b) Recovered stress, σ33

Figure 5: Recovered stress and strain fields: (a) Recovered strain field, E33, where the

reference value is 0.0200. (b) Recovered stress field (without averaging), σ33, where the

reference value is 12164. Notice that the recovered stress and strain are also uniform as

the reference values.

lattice can be constructed as shown in Fig. 4 whose radius is the same as the cutoff

radius. The atoms at the center will be considered as the representative atom. Under

uniform deformation, the 1st Piola-Kirchhoff stress tensor can be derived as [26]

P =
1

2V

Np∑

j=1

Φj ′ 1

|rj|
rj ⊗Rj, (40)

where j is the index of the interaction neighbors of the representative atom and V is the

volume of the sphere surrounding the representative atom, at half of the cutoff radius.

And the Cauchy stress tensor [29] can then be obtained by

σ = J−1PF, (41)

where J is the determinant of the deformation gradient F. The QC stress field represents

the stress field for a crystal lattice of infinite size under uniform deformation.

For the first test, combined uniform strain field is applied to the lattice,

E =






0.010 0.010 −0.008

0.010 0.010 0.010

−0.008 0.010 0.020




 . (42)

The interpolation results for selected lattice planes are plotted in Fig. 5a and Fig. 5b,

for the strain field and stress field accordingly, and the corresponding statistics are

listed in Table. 1. Surface atoms are excluded from the final results. The recovered

microscale stress and strain fields are uniform, same as the reference values. The strain

estimation shows almost perfect match with the reference values. The stress estimation

on the other hand shows about 20% error compared to the reference values, as listed

in Table. 1. This shift is caused by the surface atoms which are under unsymmetric
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Table 1: Statistics of recovered strain and stress field (without averaging)

ǫ11 ǫ22 ǫ33 ǫ12 ǫ13 ǫ23

ǫref 0.0100 0.0100 0.0200 0.0100 -0.0080 0.0100

ǫmean 0.0100 0.0100 0.0200 0.0100 -0.0080 0.0100

Std(ǫ)(10−14) 0.14 0.18 0.17 0.10 0.10 0.11

σ11 σ22 σ33 σ12 σ13 σ23

σref 10143 9997 12164 4035 -2860 3610

σQC 9057 8939 10954 3643 -2592 3286

σmean 12401 12206 14790 4928 -3438 4342

Err(σmean)(%) 22.26 22.09 21.59 22.13 20.19 20.27

Std(σ)(10−9) 0.69 0.64 0.72 0.45 0.56 0.42

Table 2: Statistics of recovered stress field (averaged by equation (43))

σ11 σ22 σ33 σ12 σ13 σ23

σref 10143 9997 12164 4035 -2860 3610

σQC 9057 8939 10954 3643 -2592 3286

σint 10335 10173 12326 4069 -2839 3586

Err(σint)(%) 1.86 1.76 1.33 0.85 -0.76 -0.68

Std(σ)(10−9) 0.35 0.32 0.36 0.22 0.28 0.21

interactions. We figured out that by combining the stress at each atom i with its

interacting neighbors j by weighted summation, as

σ̄i =
1

2
σi +

1

2Np

Np∑

j=1

σj, (43)

the estimation for the internal stress can be significantly improved. The recovered stress

values after applying the averaging technique equation (43) are given in Table. 2. One

can observe that the internal stress field remains to be uniform while its accuracy is

significantly improved, with the error reduced to the level of 2%. Moreover, on can

observe that the stress field becomes much more closer to the QC stress field, which

implies a promising application of the technique to the multiscale methods based on the

QC framework.

Moreover, to investigate the performance of our interpolation changing with the

severity of the deformation a numerical tensile test is conducted on the lattice model.

An uniform strain in the z-direction is applied,

E =






0 0 0

0 0 0

0 0 E33




 (44)

where E33 varies from −0.1 to 0.1 for 20 loading steps. The recovered values of the

normal stress in the loading direction are plotted in Fig. 6, together with reference
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values. The averaging technique defined by equation (43) is applied during the recovery.

From Fig. 6 one can observe that the recovered stress values matches very well with the

reference value and the QC stress field during the entire test. It can be also noticed that

the QC stress field shows better consistency with the reference values than the previous

test where a complicated strain field was applied. The unsymmetric response between

tension and compression comes from the strong repulsion of the interatomic potentials

when atoms are pressed together.

Figure 6: Stress vs. Strain for the tensile test: Stress-Strain Curves (Right)

5. Examples of Complicated Loading Conditions

After the verification for simple loading cases, we then applied the interpolation method

to study some more practical problems. In this contribution we show the interpolated

stress fields around a micro crack, around an unit edge dislocation in the FCC lattice

and below an indentation surface. Figure. 7a shows the Von Mises stress around a

micro crack, generated by removing a single layer of atoms in the middle of lattice. The

lattice is modeled in the shape of a thin plate with a thickness of 10, and is uniformly

pulled in the [001] direction. The figure shows that the highest stresses interpolated by

our method occur at the corners of the crack and stretches in the diagonal directions,

whereas the atoms right above and below the crack surface experience almost no stress.

The places with high stress concentrations can be considered as potential positions for

dislocations.
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In Figure. 7b, an unit edge dislocation with a burger vector of 1

2
[110] is created

in the middle and the resultant stress field σzz after relaxation is illustrated. Due to

the limitation of computational power, only immediate neighbors are interacting with

each other. The interpolated result indicates a symmetric distribution below and above

the core, resembling the pattern predicted by the continuum theories [13]. However,

this symmetry is distorted by the boundary effects. On the other hand, the dislocation

introduces a pair of symmetric concentrations far away from the dislocation, indicating

a tendency of splitting during the relaxation. This could be an intrinsic behavior of the

dislocation or could merely be an influence of the boundary effects.

(a) Micro crack (Von Mises) (b) Unit edge dislocation (σzz)

(c) Indentation (Von Mises) (d) Indentation with defects (Von Mises)

Figure 7: Microscale stress fields for complicated loading conditions
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At the end, examples of stress distribution under an indentation surface are shown

in Figure. 7c and Figure. 7d, where a square indentor is pressed into the center of the

surface. The figure shows the distribution of the Von Mises stress. In Figure. 7c one

can observe that when there is no defect, stress is concentrated at the corners and

the bottom of the indentor. When there are defects (point vacancies) closely beneath

the indentation surface, the stress distribution is notably changed. Stress is severely

concentrated around the defects and the maximum value is significantly increased. On

the other hand, under the combined effects of the indentation and the lattice defects,

the stress in certain region is observed to be lowered.

6. Conclusions and Discussion

In this contribution we introduced a straightforward approach to interpolate the

microscale strain and stress for particle systems. The numerical test shows very good

consistency between the recovered strain field and the applied strain field for simple

loading conditions. The stress estimation shows relatively large errors compared to the

reference values, which can be effectively reduced by applying averaging techniques.

On the other hand, we observe good consistency between the interpolated microscale

stress field and the stress field obtained by the Quasicontinuum method, which indicates

potential applications of the method in multiscale methods. The tensile test shows that

the error between the interpolated stress field and the reference stress field stays at low

level during the entire loading process, further justifying the applicability of our method.

For complicated loading conditions, such as dislocations and indentations, we observed

that the patterns of the estimated stress resembles the results from the literature. There

are also some foreseen limitations associated with our method. First, there is no dynamic

effects considered for the stress estimation, or in other words the influence of mass flow,

if any, to the stress is not considered. Second, it is possible that the results given in

this contribution only valid for particles systems under pair potentials, nevertheless, we

believe similar procedures can be applied to systems with many-body interactions.
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