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a b s t r a c t 

In order to meet the demands for flexible feeding technology, a self-learning aerodynamic part feeding 

system has been developed. The actuated system uses a genetic algorithm to find the optimal parameter 

set for a high rate of correctly oriented parts. This orientation rate can change due to changes in the am- 

bient conditions (e.g. ambient pressure, coefficient of friction). When the orientation rate in pre-defined 

interval of parts drops below a determined value, a correction algorithm is triggered. The objective of this 

work is to develop a mathematical model to define the optimal control interval and limit of the orienta- 

tion rate for triggering the corrective algorithm depending on the total amount of parts still to be fed at 

any point in time. To evaluate the mathematical approach, a macroscopic simulation model of the aero- 

dynamic feeding system was developed. It was shown, that the feeding time of a batch of 10,0 0 0 parts 

can be reduced by up to 7% and the number of activations of the corrective algorithm can be reduced by 

up to 50%. Finally, the mathematical model was implemented in the system control. 

© 2020 Published by Elsevier B.V. 
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Thi
. Introduction 

Due to the constantly increasing requirements of the buyer 

arket with regard to customer-specific products, high quality 

nd low cost, more efficient production systems are required 

 Chryssolouris et al., 2008 ). Automation allows process times and 

eviations to be reduced and mitigated and thus to achieve more 

fficiency ( Burggräf et al., 2019 ). Focusing on assembly systems, the 

rimary work process often cannot be automated because of prod- 

cts diversity ( Spengler et al., 2005 ; Feldmann and Junker, 2003 ; 

aller, 1999 ). Studies show, that in a typical automated assembly 

ystem up to 75% of the cost are allotted to transport- and feed- 

ng systems and just 20% to the essential primary assembly sys- 

em ( Krüger et al., 2009 ). The efficient material supply for work 

ystems with a high product diversity is thus an important as- 

ect of cost reduction in modern production systems. The provi- 

ion of workstations with changing parts, depending on the pro- 

uction plan and the customers demand, requires flexible but still 

eliable and efficient feeding systems ( Tay et al., 2005 ). Several 

esearchers enhanced traditional vibratory bowl feeder to achieve 
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 more flexible system. This research mostly focused on the im- 

rovement of the separation and then the detection of the parts 

rientation by camera and sensor systems to enable individual 

wist of parts ( Tay et al., 2005 ; Suzuki and Kohno, 1981 ; Maul and

oodrich, 1985 ; Maul and Ou-Yang, 1987 ; Cronshaw et al., 1980 ; 

arnecke et al., 1991 ). The self-learning aerodynamic feeding sys- 

em developed at the IFA 

b and enhanced at the match 

a allows a 

igh and constant feeding rate for workstations in modern assem- 

ly systems ( Busch et al., 2015 ). During an initial or reconfigura- 

ion of the system using a genetic algorithm, the optimal param- 

ter set for a high feeding rate is found. The initial configuration 

ust be performed when a new product is supplied and thus a 

ew part needs to be fed to the workstation. Changing ambient 

onditions and process uncertainties can cause fluctuations in the 

eeding rate. At each point of the feeding process, based on the ac- 

ual feeding rate and the remaining batch size, a decision has to 

e made, if a reconfiguration is reasonable. Consequently, a math- 

matical model is required to make the optimal decision about 

he timing of the reconfiguration in order to minimize the batch 

ime. 

In the following sections the aerodynamic feeding system is in- 

roduced, the research gap is highlighted, the mathematical model 
BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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a) Part arrives in the wrong orientation

b) Part arrives in the correct orientation

Fig. 1. Illustration of the aerodynamic orientation procedure with pneumatic blind 

plugs and the parameters to be selected ( Busch et al., 2016 ; Kolditz et al., 2020 ). 
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Fig. 2. Exemplary course of the orientation rate during the simulated feeding pro- 

cedure of 10,0 0 0 parts. 
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Thi
or finding the timing of reconfiguration is explained and the eval- 

ation of this mathematical approach is shown. 

. The aerodynamic feeding system 

The aerodynamic feeding system consists of three different 

odules each with specific tasks. In the first module, a cen- 

rifuge separates the parts and feeds them individually to the next 

odule. In the second module, the parts are oriented with only 

ne homogenous air stream, which is different to other systems 

here multiple air nozzles are used for the orientation process 

 Lorenz, 1999 ; Rybarczyk, 2004 ). The third module consists of an 

ptical check where misoriented parts are detected ( Busch et al., 

015 ). 

The second module is the main component of the system. The 

otationally symmetric parts arrive at the air nozzle individually 

nd are oriented due to their varying projected inflow area along 

he longitudinal axis. Therefore, only two states of orientation are 

istinguished (cf. Fig. 1 a and b). The orientation procedure is con- 

rolled by a set of only five parameters ( Fig. 1 ). 

These parameters are the gradient α, the lateral inclination β , 

he speed of the parts v, the nozzle pressure p and its position 

 ( Fig. 1 ). They need to be selected so that misoriented parts are

urned by 180 °, while correctly oriented parts retain their orienta- 

ion ( Busch et al., 2015 ). The ratio of correctly oriented parts to the

otal amount of parts defines the orientation rate, the high value of 

hich represents the objective of a good feeding system because 

f the direct effect on the feeding rate. The changes of the param- 

ters and parameter-combinations have different intensive effects 

n the orientation procedure ( Busch, 2016 ). Various experiments 

how that the pressure p has the highest impact, followed by the 

ombination of p and the parts speed v on the orientation rate 

 Busch, 2016 ). In addition, the parameterization of the system for 

ew parts needs a lot of time and expertise with the equipment, 

ven though the effects of parameters are known ( Tay et al., 2005 ;

uzuki and Kohno, 1981 ). 

Therefore, a genetic algorithm was designed to solve the non- 

inear optimization problem of selecting a parameter set ensuring 

 high orientation rate ( > 95%) within the shortest necessary time 

 Busch et al., 2016 ; Busch, 2016 ; Busch and Knüppel, 2013 ). In this

enetic algorithm, in every iteration the fittest individual presented 

y its actual orientation rate is chosen besides one other taken by 

oulette as parents for the next generation (combination of elite se- 
279 

s is a resupply of March 2023 as the template used in the publication of the origin
ection and fitness-proportional roulette wheel selection). The ori- 

ntation rate is determined by measuring the orientation of 100 

arts for each individual. For an efficient and target-oriented solu- 

ion finding, the mutation rate is set to 55% and there is a uniform 

rossover chosen for the recombination ( Busch and Knüppel, 2013 ). 

Previous research has shown that the genetic algorithm is an 

fficient optimizer to find a sufficient parameter set in the shortest 

ecessary time. In modern assembly systems, feeding systems are 

ocated in changing ambient conditions such as ambient pressure 

r temperature and thus coefficient of friction and also changing 

roperties of parts in given quality limits. These changes lead to 

uctuations and changes of the orientation rate as the observation 

ntervals in Fig. 2 show. If the orientation rate falls below the nec- 

ssary demand rate of the workstation the production stops. To en- 

ure the feeding process and reduce the necessary batch time for 

he feeding process, it is essential to find the earliest possible tim- 

ng for the reparametrizing of the system. Yet, it is important not 

o reparametrize too frequently, because of the unsteady feeding 

ate during reconfiguration ( Fig. 2 ). 

As shown in the exemplary course of the simulated orientation 

ate illustrated in Fig. 2 , the initial and re-configuration take a long 

ime to complete. In addition, the execution duration of the genetic 

lgorithm to ensure a high orientation rate often shows a wide dis- 

ersion and is hardly predictable. 

Consequently, an optimization model is designed to find the op- 

imal timing for the reconfiguration of aerodynamic feeding sys- 

ems and thus to optimize the batch time for the feeding process 

nder changing ambient conditions and statistic uncertainties. This 

odel is explained in the following section. 

. Dynamic threshold model 

During the feeding process, the average orientation rate can 

hange due to ambient conditions ( Fig. 3 ). When the orientation 

ate drops under a defined limit value, the corrective algorithm is 

xecuted. One objective is to minimize the amount of reconfigu- 

ations, as the duration of the reconfiguration is hardly predictable 

nd thus the resulting completion date of the feeding process. Still, 

f the orientation rate drops under a limited dynamic value the re- 

onfiguration should be executed. The following figure illustrates 

his dynamic decision ( Fig. 3 ). The first reconfiguration is worth- 

hile because without it, the feeding process would take a dis- 

roportionately long time, whereas the second reconfiguration (the 

uration of which is the same as the first) is useless. There is a 

enefit in time without this second reconfiguration. 
al article contained errors. The content of the article has remained unaffected.
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Thi
The threshold of the orientation rate, at which a reconfigura- 

ion is still worthwhile, changes depending on the current orienta- 

ion rate and the number of correctly oriented parts yet to be fed. 

ince these parameters change very dynamically - with each part - 

he decision model will be called dynamic threshold model in the 

ollowing. 

In order to evaluate if the execution of the corrective algorithm 

s reasonable at any point in time of the feeding process, it is cal- 

ulated how long the feeding of the batch would take with and 

ithout the activation of the corrective algorithm. The input pa- 

ameters for this calculation are the actual orientation rate, the 

umber of correctly oriented parts yet to be fed and the expected 

uration of the corrective algorithm. To simplify the calculation, 

he total amount of processed parts (correctly and misoriented 

arts) that have to be fed in order to complete the batch is se- 

ected as evaluation criteria, since it is proportional to the feeding 

ime. 

Eq. (1) determines the total amount of parts under the assump- 

ion that no corrective algorithm is executed. C total,1 represents the 

otal number of parts needed to finish the feeding process, when 

he corrective algorithm is not triggered. C correct represents the cur- 

ent number of correctly oriented parts that still have to be fed in 

he batch and OR current stands for the current orientation rate. 

 total , 1 = 

C correct 

OR current 
(1) 

Eq. (2) determines the total amount of parts to be fed, assuming 

hat the corrective algorithm is executed once and the orientation 

ate will be 95% after that. The average orientation rate during the 

orrective algorithm was identified empirically as 57%. On average, 

he corrective algorithm takes 24 individuals of 100 parts each to 

each an orientation rate of 95% or higher with a standard devia- 

ion of 18 individuals. Therefore, the total amount of parts statisti- 

ally needed for the corrective algorithm is 2400, of which 57% are 
280 

s is a resupply of March 2023 as the template used in the publication of the origin
orrectly oriented parts: 

 total , 2 = 2 , 400 + 

C correct − 2 , 400 · 0 . 57 

0 . 95 

(2) 

Eq. (3) determines the amount of parts needed to finish the 

atch in case, the remaining number of correctly oriented parts is 

ot sufficient to finish the corrective algorithm. Statistically, this is 

he case when there are less than 1368 correctly oriented parts left 

o feed: 

 total , 3 = 

C correct 

0 . 57 

(3) 

To decide if the corrective algorithm is triggered or not, the 

umber of total parts to feed depending on the decision C total,1 , 

 total,2 and C total,3 are calculated and compared. If Eq. (1) delivers 

he lowest result, the corrective algorithm is not triggered and the 

eeding process proceeds. Should C total,2 or C total,3 be lower than 

 total,1 , the corrective algorithm is triggered. 

The course of Eqs. (1) –(3) as function of the current orienta- 

ion rate and the number of remaining correctly oriented parts is 

hown in Fig. 4 . Fig. 5 illustrates the lines of intersections between 

he different functions. Looking at Figs. 4 and 5 , it becomes clear, 

hat the threshold at which a reconfiguration is still worthwhile 

ecreases with the progression of the feeding process. It is there- 

ore necessary to investigate the effect of the usage of a dynamic 

hreshold on the batch time. 

. Macroscopic simulation model 

The evaluation of the effectiveness of the dynamic threshold 

odel presented in Section 3 on the real aerodynamic feeding 

ystem with statistical validity would entail an unfeasible effort. 

herefore, a macroscopic simulation model is developed. The term 

acroscopic is used to make clear that, in contrast to the exist- 

ng simulation model developed by Busch (2016 ), the actual aero- 

ynamic orientation process is not simulated, because it would 

resent an unfeasible computing effort. Instead, each parameter 

et, representing one individual of the genetic algorithm, is as- 

igned a probability of success for the orientation process. Based 

n this, the orientation success is determined for each part. It is 

ot necessary to calculate the movement of each part, because the 

bjective of the evaluation is to show that the dynamic threshold 

odel can cope with changing ambient conditions better than the 

xisting system control. The macroscopic model allows consider- 

ble savings in computing time compared to the model mentioned 

bove ( Busch, 2016 ). In order to achieve a realistic representation 

f the feeding process in the evaluation, the distribution of the 

robability of success is derived from empirical data from test runs 

ith the part seen in Fig. 1 . The model can essentially be divided

nto four parts, which are presented in the following. 

.1. Initial configuration 

Analogous to the real aerodynamic feeding system, the first step 

s the initial configuration of the system parameters. In the real 

pplication, the genetic algorithm would create a random set of 

arameters, evaluate them and then select, recombine and mutate 

hem. In the macroscopic simulation model, the creation of param- 

ter sets is not necessary. Instead, each set of 100 parts represent- 

ng one individual of the genetic algorithm is assigned an orien- 

ation probability OP set between zero and one, representing the 

rientation rate. Because the appearance of the orientation rates 

s not linear divided between zero and one with the real system, 

P set is determined using roulette wheel selection. The roulette 

heel has 101 sections representing orientation rates between zero 

nd one. The size of the sections represents the distribution of ori- 

ntation rates of 340 parameter combinations acquired in real test 
al article contained errors. The content of the article has remained unaffected.
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Fig. 4. Three-dimensional representation of the dynamic threshold functions. 

Fig. 5. Intersecting lines of dynamic threshold functions - optimal solution for given situation. 
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Thi
uns with the part seen in Fig. 1 . Then, each part of one set re-

eives an individual random value OP ind between zero and one, 

hich is compared to the orientation probability of the set. If OP ind 

s smaller than OP set the part will be considered a correctly ori- 

nted part. Otherwise, the part is considered to be leaving the sys- 

em in false orientation. The objective of this method, which will 

e used through the entire simulation model, is to bring statisti- 

al deviations into the model to achieve a more realistic represen- 

ation of the real feeding system. The initial configuration is fin- 

shed when one set of 100 parts reaches an orientation rate OR set 

0.95. The model then switches into observation mode, which is 

escribed in the next section. 

.2. Observation mode 

The objective of the observation mode is to determine the ori- 

ntation rate during operation of the virtual feeding system. The 

ecision to trigger the corrective algorithm ( Section 4.3 ) is based 

n the orientation rate. In reality, reasons for changing of the ori- 

ntation rate are changes of ambient conditions like ambient air 

ressure and friction due to pollution of the system. Since the 

hysical orientation process is not represented in the macroscopic 

imulation model, a representation of the aforementioned ambient 

onditions is not possible. Instead, the change of orientation rate 

s induced by events that can occur at any given time during the 

peration of the system. The frequency and impact of the events 

an be set as parameters in the model configuration. 
281 

s is a resupply of March 2023 as the template used in the publication of the origin
The decision whether the corrective algorithm is triggered de- 

ends on the model used. In the static threshold model, the correc- 

ive algorithm is triggered when the orientation rate falls below a 

reviously defined limit. With the dynamic limit, it is decided in- 

ividually whether reconfiguration is statistically still worthwhile 

r whether it is more effective to continue feeding with a reduced 

rientation rate. The orientation rate is determined using a moving 

verage of 100 parts. 

.3. Corrective algorithm 

The corrective algorithm works analogous to the initial config- 

ration, also using a genetic algorithm ( Busch, 2016 ). For the sim- 

lation model the difference between the initial configuration al- 

orithm and the corrective algorithm is that the orientation prob- 

bilities for each set OP set are determined with a different roulette 

heel. The size of the roulette wheel sections for the corrective 

lgorithm is derived from the distribution of orientation rates of 

47 parameter combinations recorded at the real feeding system, 

nalogous to the roulette wheel for the initial configuration. On 

verage, the corrective algorithm converges faster than the initial 

onfiguration. 

.4. End of simulation 

The simulation ends immediately as soon as the number of cor- 

ectly oriented parts specified by the user was fed. The outputs of 

he simulation model for further analysis in this work are the time 
al article contained errors. The content of the article has remained unaffected.
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Fig. 6. Average batch time for 10,0 0 0 parts in dependence to impact and frequency 

of events with dynamic and static threshold. 
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Fig. 7. Average batch time for 10 0,0 0 0 parts in dependence to impact and fre- 

quency of events with dynamic and static threshold. 

Fig. 8. Average number of activations of corrective algorithm during batch of 

10,0 0 0 parts with dynamic and static threshold. 

Fig. 9. Average number of activations of corrective algorithm during batch of 

10 0,0 0 0 parts with dynamic and static threshold. 
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Thi
eeded to complete feeding process (in minutes), the number of 

vents and activations of corrective algorithm and the timings of 

vents and activations of corrective algorithm. The outputs will be 

sed in the following section to evaluate the optimization model 

resented in this paper. 

. Evaluation of the dynamic threshold model 

The main objective of the optimization model is to minimize 

he feeding time and therefore the number of misoriented parts. 

nother objective is the reduction of the number of activations of 

he corrective algorithm because it reduces the impact of the sta- 

istical uncertainty regarding the setting time of the genetic algo- 

ithm. This is because the setting time of the corrective algorithm 

annot be predicted but only be estimated. Therefore, fewer acti- 

ations lead to higher predictability of the feeding process. 

To evaluate the effect of the optimized, dynamic threshold 

odel, it is implemented in the macroscopic simulation model. 

he benefit of the dynamic threshold model over the static thresh- 

ld model will be assessed by the average batch time required to 

eed all parts of 10 0 0 simulated runs each and the number of ac-

ivations of the corrective algorithm. 

.1. Feeding time 

To evaluate the effect of the dynamic threshold model on the 

eeding time a test plan needs to be set up, which maps the influ- 

nce of different parameters like batch size, as well as frequency 

nd impact of the events. The batch size describes the number of 

orrectly oriented parts to be fed. The frequency determines how 

ften an event occurs statistically during the observation mode. 

 frequency of 1 ‰ means that, statistically, every 10 0 0 parts an

vent occurs. The impact of an event determines how much the 

rientation probability can maximally drop due to an event. The 

ctual drop is defined by multiplying the impact with an evenly 

istributed random number between zero and one. Figs. 6 and 7 

how the average batch time of different parameter combinations 

nd a batch size of 10,0 0 0 and 10 0,0 0 0 parts, respectively. Each dot

epresents the average batch time of 10 0 0 simulation runs with 

andomly generated events according to the frequency and impact 

hown in the legend and the x-axis. 

The results in Figs. 6 and 7 show that the use of the dynamic

hreshold model reduces the average batch time regardless of the 

elected parameter combination. Nevertheless, the effect of the dy- 

amic threshold model is bigger with the batch size of 10,0 0 0 

arts compared to 10 0,0 0 0 parts. The reason for this is that the

dvantages of the dynamic threshold model only start to pay out 
282 

s is a resupply of March 2023 as the template used in the publication of the origin
owards the end of the feeding process (cf. Fig. 5 ). If the batch size

s very large, for most of the feeding time the dynamic thresh- 

ld model triggers the same actions as the static threshold model. 

herefore, the relative time saving decreases. 

It can also be seen that an increasing frequency and impact of 

he events have a negative influence on the batch time. This makes 

ense since both the frequency and the impact substantially influ- 

nce the decrease of the orientation rate and therefore the number 

f corrections needed during one batch. 
al article contained errors. The content of the article has remained unaffected.
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.2. Number of activations of corrective algorithm 

Another objective of this work is the reduction of the num- 

er of activations of the corrective algorithm in order to increase 

eeding stability. Apart from the reduction of the statistical uncer- 

ainty going along with the corrective algorithm already mentioned 

bove, the setting of the system with the genetic algorithm leads 

o a very unstable output of correctly oriented parts due to the 

reat variations of the orientation rate. For a stable automated pro- 

ess, it is therefore also an advantage to have as few corrections as 

ossible. Figs. 8 and 9 show the number of corrections from the 

imulations already presented in Figs. 6 and 7 , respectively. 

It becomes clear that using the dynamic threshold model re- 

uces the number of corrections. The reason for the lower number 

f corrections is that especially towards the end of the feeding pro- 

ess the static threshold model will always trigger the corrective 

lgorithm when the orientation rate decreases below the tolerance 

hile the dynamic threshold model will only trigger a correction 

hen it is expected to reduce the total batch time. 

. Conclusion and outlook 

The objective of this paper was to describe the developed 

odel which reduces the batch time of an aerodynamic feeding 

ystem in varying ambient conditions. A dynamic threshold model 

as created, which determines whether reconfiguration is advis- 

ble at any given moment during the feeding process. This method 

tands in contradiction to the prior method with a rigid thresh- 

ld to trigger the reconfiguration. Also, the developed model is not 

pecifically limited to the application on the aerodynamic feeding 

ystem, since only the output of the system is evaluated. The ori- 

ntation process and the geometry of the parts do not have to be 

onsidered in the decision making. 

The effectiveness of the dynamic adaptation was evaluated with 

he use of a macroscopic simulation model of the feeding system. 

he macroscopic simulation model was developed to reduce the 

omputing time in comparison to the existing simulation model 

y Busch (2016 ) for the 20,0 0 0 simulated test runs. The model

s also not specifically limited to the aerodynamic feeding system 

ince it is provided with empirical data. Evaluation showed that 

he new method can reduce the average batch time of a batch of 

0,0 0 0 correctly oriented parts by up to 7%. Furthermore, simula- 

ions show that the dynamic threshold model reduces the number 

f activations of the corrective algorithm by up to 50%, especially 

or smaller batches, which makes the feeding process more pre- 

ictable. 

Future work will aim to develop methods to distinguish be- 

ween outliers (e.g. caused by opening and closing of doors and 

ates) and permanent changes (e.g. caused by weather conditions) 

n the orientation rate. This way, the number of unnecessary pa- 

ameter reconfigurations can be further reduced. Another objec- 

ive of future work will be the implementation of a dynamic limit 

or the target orientation rate of the corrective algorithm, which is 

urrently static at 95%. Experiments show, that the corrective al- 

orithm often reaches orientation rates over 90% much faster than 

5%. Therefore, by implementing a dynamic limit, the setting time 

f the corrective algorithm and the batch time can be reduced. 
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