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Variations in sub-daily precipitation at centennial scale
Kristian Förster 1✉ and Luisa-Bianca Thiele 1

Due to data availability long-term variations in precipitation rates are mostly studied based on daily precipitation recordings. Recent
research suggests, however, that variations in sub-daily precipitation are subject to higher dynamics compared to daily
precipitation and a more rapid intensification is likely. Here we show that both observational data with at least 58 years of sub-daily
precipitation records and a dynamical downscaling approach with low spatial resolution based on atmospheric re-analysis data
confirm these expectations with consistent results. High percentiles of precipitation are subject to multi-decadal oscillations and
increased during the last 150 years. We found an increase of 4% K−1 (daily), 12% K−1 (hourly), and 13% K−1 (10 min), which is
consistent with Clausius–Clapeyron- (CC) and super CC-scaling, respectively. These findings highlight that dynamical downscaling
can help to reliably shed light on sub-daily precipitation variations if small timescales are considered in the experiments.
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INTRODUCTION
Short-term precipitation events with high intensities govern the
dynamics of numerous fast hydrological processes like flash
floods1 in urban areas and soil erosion2 in agriculture. It is
expected that precipitation events will intensify as a consequence
of climate change. Recent studies focused on unravelling the
relationship between temperature and precipitation following the
Clausius–Clapeyron (CC) equation. This equation suggests that
precipitation extremes—more specifically the saturation vapour
pressure—increase by 7% per degree of warming3,4 or even
exceed this rate at lower temporal scales (super CC-scaling)3,5–7.
Since temperature–precipitation-scaling also shows decreasing
rates above a certain temperature or dewpoint level, it is argued
that these scaling approaches are not valid under all possible
conditions and thus they are not suitable for projecting changes in
precipitation extremes8. Moreover, trend analyses involving long-
term records of precipitation extremes are mostly in agreement
with these findings as two-thirds of stations worldwide showed
increasing trends9. Other studies found more stations with
negative than positive trends in summer precipitation extremes
in Europe10.
Global circulation models (GCMs) and regional climate models

(RCMs) are capable of representing changes in precipitation
characteristics at longer time scales (e.g., seasonal)6. Their
applicability to reconstruct changes in sub-daily precipitation is
viewed uncertain due to (i) validation data at sub-daily time scales
with sufficient record length is hardly available and the (ii) errors
introduced by applications of parameterization models outside
their expected use. Parameterizations include e.g. convection
processes6,11, which need to be considered for model grid
spacings of more than ~5 km. Recent convection-resolving RCMs
with higher spatial resolution below ~5 km do not need such
convection parameterizations and thus are viewed promising for
simulating sub-daily rainfall6,11,12 even though they are still
subjected to uncertainties6,8. However, coarser scale GCM and
RCM simulations are still capable to represent relevant character-
istics of sub-daily precipitation (e.g., temperature–precipitation
scaling, high-precipitation percentiles)3,13,14. They also reproduce
temporal changes and trends on decadal scales15. For climate
projections on the global scale convection parameterizations are

still relevant since convection-permitting models are demanding
in terms of computational resources6,8.
Even though the availability of long-term records of sub-daily

precipitation is very limited, uncertainties involved in modelling
sub-daily rainfall extremes16 highlight the relevance of validating
RCMs and GCMs in terms of their ability to predict sub-daily
precipitation and its sensitivity to climate variability and more
specifically climate change. Climate variability including both
natural climate variability and anthropogenic forcing affect
changes in precipitation extremes over time17, whereby natural
climate variability can mask the anthropogenic signal caused by
greenhouse gas emissions18. While long-term records of daily
precipitation are in general more readily available1,19 and reflect
higher evidence4,9,10,20, only a few studies focus on sub-daily
precipitation11,17,21. Transferring results from analyses involving
daily precipitation to smaller temporal scales is not reliable due to
the higher relevance of super CC-scaling especially at time scales
below one day6.
In this study, we address the impediment to validate sub-daily

precipitation simulations under non-stationary conditions imposed
by climate variability and climate change through compiling long-
term records of sub-hourly precipitation to provide a comprehen-
sive dataset for model validation. We analyse a set of sub-daily
precipitation recordings in Austria, Belgium, Germany and the
Netherlands with a temporal coverage of at least 58 years and a
temporal resolution not coarser than one hour. Our analyses focus
on the temporal variability of sub-daily precipitation at multi-
decadal to centennial time scales extending earlier work17,21. Based
on that, we test the hypothesis that the variability found in
observed records can be reconstructed using reanalysis data
downscaled with a model with convective parameterization. This
approach complements ongoing research on temperature scaling
and validating models regarding their capability to reproduce sub-
daily precipitation by focusing on downscaling reanalysis data.
Therefore, we utilize the Weather Research and Forecasting
Model22 (WRF) to downscale the Twentieth Century Reanalysis
Project dataset23 to a spatial and temporal resolution of 30 km and
10min, respectively. The spatial domain covers Central Europe and
the temporal coverage is 1850–2014, which allows one to analyse
variations from the end of the Little Ice Age (LIA) to near present.
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Since we apply a coarse regional model which needs a convection
parameterization to compute grid cell averages of convective
precipitation that are not directly comparable to station observa-
tions, we compare the observed and modelled variability in sub-
daily precipitation in terms of anomalies computed as mean of the
95th, 99th, and 99.5th percentiles (“Methods”).

RESULTS
Observed and downscaled anomalies of heavy rainfall in Central
Europe
Anomalies are computed for each station in Fig. 1 with overlapping
sub-periods of 15 years. Similarly, the same procedure is applied to
the downscaled time series derived from the nearest grid point of
the model. Figure 2 shows a comparison of these anomalies
computed for observed and modelled time series at the Uccle
station. Different aggregation levels have been considered in order
to highlight variations across process-relevant time scales. In general,
the downscaled data reflects major features of the observed time
series. In case of observational data (Fig. 2a), the comparison among
these temporal resolutions show that the variability of each
aggregation level shows a similar course with three maxima, the
first in the early 20th century, a second one in the late 1960s and
another maximum in the near present. Similarly, minima occur in the
1940s and the 1980s. The minima and maxima are slightly shifted in
the modelled time series (Fig. 2b), suggesting maxima in the 1920s
and early 1960s, and minima in the 1930s and 1970s. From the
variations achieved for both datasets a slight tendency towards
higher variability with decreasing aggregation level is obvious.
Considering the modelled time series, the differences among
aggregation levels are smaller and the overall variability reflects
smaller amplitudes. It is worth noting that different methodologies
in evaluating long-term variations in precipitation, e.g. the derivation
of erosivity factors, show similar cycles for the Uccle station24.
In the next step, we systematically analysed all stations in a

similar way (Supplementary Fig. 1) and summarized the compar-
ison for each station and aggregation level in a Taylor diagram25

(Fig. 3). Here, for reasons of readability, only 7 out of 11 stations
with at least 60 years of data are shown and the full record length
is considered for each (the other stations are shown in
Supplementary Fig. 2). In terms of correlation, the results suggest
on average a reasonable match of the phase (sequence of minima
and maxima in the oscillating temporal course). Pearson correla-
tions r range from 0.2 to 0.95 with values representing the spatial
mean (“Methods”) above r= 0.8 (see plus symbol in Fig. 3), which
suggests an acceptable model performance26. Except for

Oberhausen, sub-daily anomalies show better correlations than
daily anomalies. Regarding the variability, the results suggest an
underestimation of amplitudes, since the majority of points has a
normalized standard deviation smaller than 1. The RMSE ranges
from around 0.5 to 1.25, whereby the majority of runs is
characterized by RMSE values smaller than the normalized
standard deviation of 1. For Uccle, we see correlations around
0.7 for 10 min and 1 h, while the correlation drops to 0.6 in case of
daily data. Similarly, RMSE increases from around 0.7 to 0.8, also
suggesting a drop in model performance. The variability is
underestimated for sub-daily data (<1), while daily data matches
the variability well (around 1). This observation is in line with the
results found in Fig. 2. Acceptable results (r > 0.8) are also found
for both stations in Duisburg at sub-daily time steps. The model
performance achieved for Andelsbuch near the Alps also suggests
correlation values close to 0.8, at least for sub-daily data. In
contrast, the coincidence is generally lower in case of De Bilt and
Oberhausen. Hence, apart from deficiencies related to single sites,
our dynamical downscaling approach is capable of representing
the variability of high precipitation percentiles across Central
Europe, reflected by the correlation values of 0.84 (daily), 094
(hourly), and 0.91 (10 min), respectively.
In order to visualize spatial patterns of variations in high

precipitation percentiles computed for 10 min aggregation level,
Fig. 4 compiles a series of maps ranging from the end of the LIA to
near present. The maps show that anomalies are heterogeneous in
terms of their spatial distribution for each period considered in the
maps. Some regions show higher temporal variability (e.g.,
Northern Germany and Northern Italy), while other regions are
subject to smaller temporal variation (e.g., the regions around the
Alps). For instance, the absolute values computed for Andelsbuch
are smaller than those computed for the Northern European Plain
(including the Netherlands and Northern Germany). Figure 5
shows time series of the spatial mean including each map and
intermediate steps. Figure 5a includes the time series of averaged
observed time series, while the lower panel (Fig. 5b) presents the
spatial mean time series computed considering all grid points. The
temporal evolution of high precipitation anomalies is in line with
those achieved for observed data. From Fig. 5 it is obvious that
multi-decadal variations found in the observational data (Fig. 5a)
seems to be valid at larger scales as well (Fig. 5b). Moreover,
differences in the amplitudes among different aggregation levels
are also visible for large spatial averages, suggesting that sub-daily
anomalies in high precipitation percentiles are subject to higher
variability in the past 150 years. For the last decade (i.e., the 2000s)
we found positive anomalies in modelled high precipitation
percentiles relative to the reference period 1971–2000. Figure 6
shows the scaling rates (s) achieved by comparing anomalies of
high precipitation percentiles of the dynamical downscaling
experiment (Fig. 5b) with temperature anomalies. The tempera-
ture anomalies are computed for the mean annual temperature of
the dynamical downscaling experiment (Fig. 5c) for the reference
period 1971–2000. The scaling rates of 4% K−1 (daily), 12% K−1

(hourly) and 13% K−1 (10 min), derived by linear regression,
suggest that the aforementioned positive anomalies are in line
with CC-scaling (daily aggregation level) and super-CC-scaling
(sub-daily aggregation levels).

DISCUSSION
The results achieved in the framework of this study highlight that
high precipitation percentiles are subjected to multi-decadal
oscillations at the centennial scale and that these variations are
captured by the downscaling experiment. Similar variations in
observational datasets were reported by several authors who
conclude that these oscillations are related to natural climate
variability and climate change, at least as a possible explanation
for the increase in the past decades17,21,27. Besides that, we were

Fig. 1 Map of stations investigated in this study. Source: The
station layer is based on metadata from precipitation datasets.
Administrative borders are taken from Natural Earth. Satellite image
is taken from NASA Worldview https://worldview.earthdata.nasa.
gov/ which is free to use under public domain.
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able to demonstrate that different aggregation levels of the
precipitation time series reflect different magnitudes of variations,
whereby sub-daily variations are characterized by higher magni-
tudes than those achieved for daily time series. This outcome is in
line with recent findings6,17. In contrast to earlier work we utilized
a larger set of long-term station datasets with sub-daily resolution

which allows us to more comprehensively validate our down-
scaling approach based on reanalysis data, which was found to
perform reasonably well, albeit its simplicity. Although the
validation data is clustered around the Netherlands and Western
Germany, the results achieved for Andelsbuch display that the
lower variability found for the Alpine region is also captured by
the model.
Nevertheless, this study is based on a range of assumptions: (i)

First, due to the limitation in terms of data availability, different
length of time series is relevant. A direct comparison among all
sites is only possible when starting the analyses in 1957. (ii) From a
historical overview of measuring sub-daily rainfall28,29, it becomes
evident that the homogeneity of time series is a source of
uncertainty due to changes in instrumentation within long
records. Little is known about changes in instrumentations for
most sites. For some sites, changes in instrumentation have been
reported (e.g., De Bilt30). We applied the time series ‘as is’ which
means that the analyses might be subjected to uncertainties
arising from inhomogeneities relevant for specific characteristics
of the time series. (iii) The combination of 30 km spatial resolution
with a small domain and 10min temporal resolution is not a
common approach, even though the spatial resolution of 30 km
requires an internal model time step of 2.5 min for numerical
reasons. Still, other studies involve similar settings, e.g., Sunyer
et al.14 presents studies on rainfall extremes achieved by a 50 km
model at hourly time scale. They found that a sub-daily model
with 25 km aggregated to 24 h best matches the observational
dataset. However, our setup is viewed as a compromise
considering computational costs and data storage requirements
on the one hand and the focus on variations in rainfall
characteristics rather than event-based considerations on the
other. The results achieved for the more common 24 h aggrega-
tion level might be viewed as a reference to evaluate the sub-daily
aggregation levels likewise. Even though WRF is a proven model
that has been tested for various spatial resolutions31,32, improved
simulations are expected if the model is employed with
convection-resolving resolution11,12. While Knist et al. 32 found
that the super CC-scaling is not captured well by a non-convection
permitting resolution in WRF, our results indicate CC scaling (daily
aggregation level) and super-CC-scaling (sub-daily aggregation
levels), although slightly underestimated. The feasibility of coarse
spatial resolutions is also justified by the fact that spatial
resolutions around 8–12 km are in the range of the ‘grey zone’,
which might be subjected to a doubled accounting of convection,
suggesting a combined effect of partly resolved and parameter-
ized convection33.
Besides the limitations of the approach demonstrated here, the

results are promising to better validate GCMs and RCMs in terms
of their capability to simulate long-term variations in sub-daily
precipitation. This is especially relevant, since Westra et al. 6

identified temporal scaling across different aggregation levels as
one key element relevant for validating RCMs and GCMs in terms

Fig. 2 Anomalies computed for observed and modelled time series for the Uccle station. The input resolution of 10min is also aggregated
to 1 and 24h, respectively. a Observed time series and b modelled time series computed utilizing the dynamical downscaling approach.

Fig. 3 Taylor diagram25 including all stations with at least 60
years of data, mostly representing stations with sub-hourly
resolution. For each station the full length of the time series is
considered. Each comparison is represented by one single point.
The spatial mean compares the average values considering all
stations for the observed data with the average over all grid points
shown in the maps of Fig. 4 for the downscaled data. Aggregation
levels are represented by different colours (10min: green, 1h: blue,
24h: orange). Ordinate and abscissa refer to the standard deviation
of the time series. The radial distance between each point and the
origin represents the normalized standard deviation of the model
run (corresponding observation is 1). The angle between the
abscissa and the lines representing the shortest distance of each
point to the origin is related to the correlation between observation
and model run. The geometric relationship in the Taylor diagram
also incorporates the central pattern root mean square error (RMSE)
computed for the observation and the model run. The RMSE
corresponds to the concentric isolines which are centred around the
observation point. The latter has the following characteristics by
definition: its standard deviation is 1, the correlation is 1 and the
RMSE is 025.
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of precipitation extremes. This study demonstrates that even a
dynamical downscaling approach with low spatial resolution is
capable of reconstructing temporal variation in high precipitation
percentiles at the centennial scale. The latter also emphasizes that
trend analyses—as usually done for the past three decades only in
case of sub-daily rainfall—are critical, since both increasing and
decreasing trends have been detected similarly throughout the
last decades9,10 for different spatial and temporal scales. Our
results reveal that for some stations a decline in high precipitation
percentiles in recent years is found and that this decline is also
computed by the downscaling approach. This suggests that
temporal scaling as key criterion to validate models should also
involve the role of climate variability, which might obliterate
temperature–precipitation scaling18, at least at the decadal scale
as it is evident from the time series of anomalies.
A better validation of downscaling approaches regarding their

accuracy in sub-daily precipitation modelling is highly relevant for
the simulation of future climates with different modelling
approaches including GCMs (which still require convection
parameterizations) and RCMs with improved spatial resolution
with grid spacings smaller than ~5 km. This increase in spatial
resolution is also in line with an expected increase in the
representation of precipitation processes, especially since it
suggests that models resolve convection. The successful

reconstruction of anomalies in high precipitation percentiles by
a dynamical downscaling approach with coarse spatial resolution
is a first step towards understanding the causes that hold
responsible for the variability in high precipitation percentiles.
Hence, the variability is inherent in the dynamical downscaling
approach forced by re-analysis data, suggesting that modes of
variability can be attributed to individual causes (e.g., increase in
CO2 concentration) in future model experiments. This has also
major implications on attribution studies to analyse to what extent
anthropogenic forcing contributes to an increase in precipitation
extremes.

METHODS
Table 1 provides a summary of the stations involved in our study, while Fig.
1 shows a map including the location of each rainfall station. Except for the
most relevant meta data (e.g., coordinates, elevation) little is known about
other information relevant for this study like changes in instrumentation or
corrections applied to the data. For the Uccle station, a historic overview34

and detailed analyses exist17,35. The data observed at De Bilt was also
subject to numerous analyses relevant to this study3,21. The De Bilt dataset
available to the authors was corrected by the data provider in order to
account for a correction of the gage height and changes in surface area of
the funnel30. According to the providers, the data has been checked
carefully which is why we utilize the data in our study ‘as is’. The minimum
temporal resolution of all time series is at least one hour (Table 1).

Fig. 4 Series of maps showing the spatial distribution of the anomalies in 10min high percentiles precipitation for every 10 years from
the end of the LIA to near present. Precipitation anomalies as percentage are derived through the mean of the 95th, 99th, and 99.5th
percentiles computed for moving windows of 15 years, while the reference period is 1971–2000.
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Andelsbuch, Duisburg H. (Hülsermanngraben), Duisburg S. (Schmidthorst),
Oberhausen, Soest, and Uccle are stations with sub-hourly time series.
Precipitation intensities with a temporal resolution of 10 min are

computed from the end of the LIA to near present utilizing the WRF22

forced by the Twentieth Century Reanalysis Project dataset version 2c
(TCRP)23 which provides meteorological fields at arbitrary levels every 6 h.
The re-analysis dataset acknowledges the fact that radiosonde and
remote sensing data were not available in the 19th century, which is why
surface and sea level pressure were used as input to the data assimilation.
This dataset has been applied in many studies that focus on the climate in

past periods especially those considering the end of the LIA or the early
20th century36–40. The following is a list of parameterizations that have
been chosen for the downscaling experiment: Morrison two-moment bulk
microphysics41; Kain–Fritsch convection scheme42, Yonsei University
boundary layer scheme43; Noah land surface model (LSM)44; Dudhia
shortwave numerical scheme45; and the Rapid Radiative Transfer Model
for longwave radiation46. This setup showed good results for precipitation
characteristics in the framework of an earlier study performed by the
authors47. WRF was set-up for a domain covering Central Europe, the Alps
(to avoid coincidence of the boundary with mountain ranges) and
Northern Italy with a single domain covering 64 rows, 44 columns, and 40
vertical levels. This step has been performed using the WRF pre-
processing system (WPS) in order to generate the 6-hourly input files
for the period 1851–2014 based on the TCRP dataset. The corresponding
internal time step is 150 s. The output is 600 s corresponding to the target
temporal resolution of 10 min, which is an integral multiple of the internal
time step.
In this study, we focus on high precipitation percentiles of 95th, 99th,

and 99.5th for which we explore centennial scale variations. These
percentiles were also proposed by Lenderink et al. 21. Since the
downscaling experiment has a spatial resolution of 30 km, convective
events are only considered through a convection parameterization and the
precipitation total per time step is an average representative for a grid cell.
Thus, a direct comparison of rainfall extremes (e.g., partial or annual series
as described by Willems17) derived for both the observed data and the
model is not feasible48. However, the focus on high percentiles instead of
extreme value distributions derived utilizing partial or annual series is
beneficial, since rolling averages over extremes along the time axis might
introduce oscillations caused by single extreme events49, if not considered
with special care50. Combining the average over percentiles21 with the
moving window approach avoids such limitations, since the consideration
of more than one percentile is more robust compared to the consideration
of single extreme events that might amplify the anomalies.
For overlapping periods of 15 years17 the average of the 95th, 99th, and

99.5th percentiles P̂ ¼ P95; P99; P99:5 is computed for both the station data
and the corresponding grid point in the model. The choice of percentiles is
a compromise that acknowledges sample size on one hand and window
size on the other. Utilizing one single percentile might result in too noisy
signals due to smaller sample size per 15 years period, suggesting a
possible overestimation due to the amplification of single extreme
values21,49. Based on this consideration, we compute anomalies for each
period of 15 years nsub period by involving the corresponding average

Fig. 5 Anomalies of high precipitation percentiles computed for both observed and modelled data as spatial mean over all grid points. a
In case of observations, the number stations involved in the spatial mean is also indicated. b For the modelled data, the spatial mean is the
average over all grid points. In both panels, different aggregation levels (10min, 1h, and 24h) are displayed. Coloured bands denote ±one
standard deviation. The rolling mean of the temperature c is derived for the mean annual temperature corresponding to the dynamical
downscaling experiment.

Fig. 6 Scaling factors are computed from all pairs of anomalies of
high precipitation percentiles of the dynamical downscaling
experiment (Fig. 5b) and the temperature anomalies (Fig. 5c)
for each aggregation level (10min, 1 h, and 24 h) using linear
regression. Grey circles indicate pairs from 1971 to 2007, including
the reference period and most recent years. s denotes the slope of
the lines achieved by linear regression (i.e., the temperature scaling),
computed for each aggregation level. Pearson correlation r is also
provided.
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achieved for the reference period 1971–2000 as follows:

nsub period ¼ P̂subperiod � P̂1971�2000

P̂1971�2000
� 100% (1)

This approach yields an annual series of anomalies in which each year
represents an average information of 15 years from 7 years before and 7
years after the considered year. These anomalies are computed for
different aggregation levels ranging from 10 min, to 1 and 24 h
representing time scales relevant in different applications in hydrology.
For instance, 10 min rainfall is relevant for urban hydrology, torrential
flow and flash floods, while hourly values are suitable for studying floods
in small catchments. The daily resolution makes the results comparable
to many more studies that involve daily rainfall totals only. This temporal
scale is also relevant for a lot of applications in hydrology ranging from
floods in large river basins to water balance studies. Anomalies
computed for observed and modelled time series can be compared
using different measures including Pearson correlation. Here, we
combine correlation with a comparison of the standard deviation of
both time series and the root mean square error (RMSE) in a Taylor
diagram25.
The article was previously published as a preprint:
Förster, K. & Thiele, L. -B. Variations in sub-daily precipitation at

centennial scale. Preprint at EarthArXiv. https://doi.org/10.31223/osf.io/
2f54a (2019).

DATA AVAILABILITY
Data used for forcing the model was provided by the NOAA/CIRES Twentieth Century
Global Reanalysis Version 2c which is available online https://doi.org/10.5065/
D6N877TW. The spatial results shown in Fig. 4 are published: https://doi.org/10.5281/
zenodo.3693560. Time series of the rainfall stations were kindly provided by the
institutions listed in Table 1. Most of the station data from the Netherlands is publicly
available via KNMI’s website https://www.knmi.nl/nederland-nu/klimatologie/
uurgegevens.

CODE AVAILABILITY
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