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The electronic and motional degrees of freedom of trapped ions can be controlled and coherently
coupled on the level of individual quanta. Assembling complex quantum systems ion by ion while keeping
this unique level of control remains a challenging task. For many applications, linear chains of ions in
conventional traps are ideally suited to address this problem. However, driven motion due to the magnetic
or radio-frequency electric trapping fields sometimes limits the performance in one dimension and severely
affects the extension to higher-dimensional systems. Here, we report on the trapping of multiple barium
ions in a single-beam optical dipole trap without radio-frequency or additional magnetic fields. We study
the persistence of order in ensembles of up to six ions within the optical trap, measure their temperature,
and conclude that the ions form a linear chain, commonly called a one-dimensional Coulomb crystal. As a
proof-of-concept demonstration, we access the collective motion and perform spectrometry of the normal
modes in the optical trap. Our system provides a platform that is free of driven motion and combines
advantages of optical trapping, such as state-dependent confinement and nanoscale potentials, with the
desirable properties of crystals of trapped ions, such as long-range interactions featuring collective motion.
Starting with small numbers of ions, it has been proposed that these properties would allow the
experimental study of many-body physics and the onset of structural quantum phase transitions between
one- and two-dimensional crystals.
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I. INTRODUCTION

Coulomb crystals are an intriguing form of matter.
On the one hand, it is believed that they make up the core
of white dwarves and the surface of neutron stars [1]. On
the other hand, they provide a versatile solid-state-like
platform for applications that require a magnified lattice
structure. While a solid-state system with nanometer-
spaced particles can hardly be observed and controlled
with single-site resolution, distances of ions in Coulomb
crystals are on the order of a ≈ 10 μm. The corresponding
1012 times lower densities allow physicists to manipulate
each constituent individually.
The ions are typically trapped in Paul [2] and Penning

traps [3], which combine electrostatic with radio-frequency
(rf) fields or magnetic fields, respectively. These traps
provide stiff confinement to counteract the repulsive
interaction of the positively charged ions. Ensembles with
temperatures of thousands of Kelvin can be trapped and

form one-component plasmas (OCP). Cooling the OCP
leads to a phase transition to a crystal when the ratio of
the Coulomb energy for mean ion distances and the average
kinetic energy, ΓPlasma ¼ ECoul=Ekin, exceeds a critical
value. Depending on the dimensionality of the system,
molecular dynamics (MD) simulations predict that this
phase transition occurs at different ΓPlasma, e.g., Γ1D

Plasma ¼
ðq2=kB · T · aÞ > 1 (Γ2D

Plasma > 128 and Γ3D
Plasma > 174)

[4,5], where q is the charge of the particles, T their
temperature, and kB the Boltzmann constant. For typical
experimental parameters in 1D, temperatures below a
critical value Tc on the order of 50 mK are required to
reach the phase transition.
A handful of ion species available for direct laser cooling

can be prepared at Doppler temperatures TD ≪ Tc and
sufficiently well isolated from the environment by levitat-
ing them in ultrahigh vacuum. Other elements and molecu-
lar ions can also be embedded into the crystalline structure
thanks to sympathetic cooling via Coulomb interaction [1].
Extensive work has allowed researchers to extend the

coherent control and coupling of external (motional) and
internal (electronic) degrees of freedom from single ions to
(short) linear chains of ions [6–11].
However, ions perform rf-driven motion in Paul traps

and driven cyclotron motion in Penning traps, which often
is undesirable. Various methods can minimize driven
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motion close to zero [12], but, even when assuming perfect
compensation of stray electric fields, driven motion remains
inevitable if ions are intrinsically displaced from the trap
center, e.g., in a 2D or 3D crystal [1,13], or during the
interaction with neutral atoms [14,15]. In these cases,
the kinetic energy of the driven motion easily exceeds the
residual thermal energy by orders of magnitude. This makes
it challenging to extend the unique level of control and
isolation available for single ions and linear chains of ions
to Coulomb crystals of larger size and dimensionality.
A generic approach to entirely mitigate driven motion is
the use of optical dipole traps without rf and without
magnetic fields. Optical dipole traps have been established
in experiments for neutral particles for decades [16].
Recently, trapping and isolation of a single ion in a

dipole trap was demonstrated for seconds [17,18], compa-
rable to the lifetime of neutral atoms for similar trapping
conditions [19] and in agreement with theoretical predic-
tions [20]. Several groups have also superimposed optical
lattices with Coulomb crystals trapped in rf traps [21–23],
which, e.g., allowed them to study fundamental questions
in the context of friction [24]. These experiments were
realized by providing rf confinement for the radial degrees
of freedom, while axial confinement was implemented
using optical and electrostatic fields.
In this paper, we show trapping of up to six ions in a

single-beam optical dipole trap without confinement by rf
fields. We demonstrate that the ensemble remains a one-
dimensional Coulomb crystal in the optical trap and reveal
access to the axial motional modes.

II. APPARATUS FOR OPTICAL TRAPPING
OF ION COULOMB CRYSTALS

Our experimental setup combines focused dipole laser
beams with a segmented linear rf trap; see Fig. 1(a). We
follow a three-step protocol for optical trapping of multiple
ions in the absence of rf fields, during which we maintain
control over the axial confinement by electrostatic fields.
In step 1, we load 1 ≤ Nini ≤ 6 ions by photoionization of
barium atoms [25] and prepare them in the rf trap [drive
frequency Ωrf=ð2πÞ ¼ 1.4 MHz]. The Doppler cooling
laser, which is also responsible for detection, cools the
gaseous ensemble below the transition to the crystalline
phase (cooling rate of approximately 103 s−1, Doppler limit
TD ≈ 0.3 mK). For temperatures T with TD < T ≪ Tc,
the chosen trapping frequencies ωrf

rad ¼ 2π × 140 kHz and
ωdc
ax ¼ 2π × 25 kHz, and Nini < 10, the Coulomb crystals

extend as one-dimensional chains along the z-axis of the rf
trap with an inter-ion distance of about 35 μm. This step
includes the compensation of stray electric fields to the level
of jE⃗strayj≲ 10−2 V=m for a single ion [17,26] and detection
by fluorescence imaging at 493 nm on the S1=2-P1=2

transition (natural linewidth Γ ¼ 2π × 15.5 MHz), with a
CCD exposure time of 300 ms. While fluorescence imaging
can directly resolve 138Baþ, admixed 136;137Baþ ions remain
dark due to their isotopic shifts being large compared to Γ.
However, as a consequence of sympathetic cooling and
Coulomb repulsion, dark ions can be embedded at random
sites of the lattice, formed together with the bright 138Baþ
ions. From the dark gaps on the fluorescence images

(a) (b) (c)

(d)

FIG. 1. Schematic of the apparatus and contributions to the total trapping potential. (a) We load chains of up to six Doppler-cooled
barium ions, with lengths of up to 135 μm (the 5-ion crystal in (d) has a length of 115 μm), into a linear rf trap. dc electrodes are used to
adjust the external electrostatic potential. The ions are then transferred from the rf trap into either a visible (VIS) or near-infrared (NIR)
optical dipole trap by ramping up the optical potential and simultaneously turning off the rf fields. Axial dc confinement in the external
electrostatic potential [grey surfaces in (b) and (d)], as well as the ions’ mutual Coulomb interaction (c), lead to additional defocusing
forces in the radial directions. In our experiment, defocusing is chosen to predominantly lie in the x direction [red arrows in (b)] while
defocusing in the y direction is negligible (thin gray arrows). With Rayleigh lengths zVISR ¼ 40 μm and zNIRR ¼ 74 μm for the respective
dipole laser beams, the radial optical potential depicted by the blue surfaces in (d) also depends on the ion position along the z-axis.
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[Fig. 2(a)],we deduce the number and configuration of bright
(Nb) and dark (Nd) ions with a fidelity close to 1.
In step 2, the ions are transferred into the optical trap by

turning on either the visible (VIS) or near-infrared (NIR)
dipole trap while ramping the rf field to zero [17,26,27].

The laser and optical dipole trap parameters are shown in
Table I. The axial confinement is controlled by dc voltages
applied to the end cap electrodes [yellow electrodes in
Fig. 1(a)], which remain unchanged for the remaining
protocol. Both dipole traps are generated by focusing
circular Gaussian beams (see Fig. 1) with their wave vector
aligned with the linear ion chain centered at the minimal
beam waist. After a duration Δtopt, we turn on the rf trap
while turning off the dipole trap.
In step 3, we detect the number Nopt and analyze the

configuration of the remaining ions. The optical trapping
probability popt is defined as the number of successful
trapping attempts divided by total trapping attempts. We
call an attempt successful if the number of ions before and
after optical trapping is equal, Nopt ¼ Nini, and unsuccess-
ful if one or more ions have been lost, Nopt < Nini. In such
cases, we find that typically only one or two ions are
missing after Δtopt. The statistical uncertainty of popt is
determined by the Wilson score interval [28].

III. KEEPING COULOMB ORDER

For our trapping parameters, theory predicts the existence
of one-dimensional ion crystals for temperatures T <
Tc ≈ 50 mK, which is on the same order as the available
optical trap depth for a single ion, UVIS

opt ≤ kB × 110 mK.
However, this criterion is only valid under certain assump-
tions, such as homogeneous radial confinement and similar
temperatures and heating rates in all spatial degrees of
freedom. These approximations are not fully justified in
our experiment. Therefore,more detailed studies are required
to confirm the survival of the crystal during Δtopt.
We first investigate the feasibility of confining more than

one ion in the VIS dipole trap, which provides the deeper
potential UVIS

opt . However, the VIS trap only creates an
attractive potential for Baþ in its electronic ground state
S1=2. In the metastable D states, which can be populated by
off-resonant scattering, the potential is repulsive and the ion
is lost. At PVIS

opt ¼ 9.5 W, scattering would limit the 1=e
lifetime of a single ion in the center of the VIS trap to about
1.3 ms. In order to minimize this effect, we set Δtopt ≈
500 μs and turn on additional repumping lasers [17]. As
shown in Fig. 2(a), we demonstrate reliable optical trapping
forNini ≤ 5 ions, here permitting popt ≈ 1. For Nini ¼ 6, we
find popt ≤ 0.2. In the shallower potential provided by the
NIR laser, we observe that popt ≈ 1 for Nini≤2 and popt≪1

already for Nini ¼ 3. We find that the maximum number of
ions that can be trapped optically in our current setup,
NVIS

opt;max ¼ 6 and NNIR
opt;max ¼ 3, is confirmed by calcula-

tions; see Sec. IV. Note that, for Popt ¼ 0 W, no trapping is
observed for VIS and NIR. Currently, the setup does not
allow for direct imaging during Δtopt, since the Stark
shift inside the VIS laser ΔVIS

Stark exceeds Γ by orders of
magnitude. The images of the crystals are therefore taken

(a)

(b)

FIG. 2. Demonstrating the persistence of Coulomb order for an
increasing number of optically trapped ions. (a) Fluorescence
images of Coulomb crystals with Nini ¼ 1…6 Baþ ions are
recorded before and after optical trapping of Nopt. For Nini ≥ 4,
the gaps marked by orange circles reveal the presence of dark
ions, which appear at initial random lattice sites after Doppler and
sympathetic cooling. (b) The experimental protocol (not to scale)
consists of three steps: (1) we detect the initial configuration and
ion number Nini while Doppler cooling the ions; (2) the ions are
transferred into the dipole trap by turning off the rf field and
cooling lasers for the optical trapping duration Δtopt, keeping
the electrostatic potential; and (3) we again detect the number
and final configuration of all remaining ions in the rf trap.
An intermittent gaseous phase followed by recrystallization or
enhanced diffusion should be observable with high fidelity via
changes of the positions of the dark ions within the crystal.

TABLE I. Laser and trap parameters for visible (VIS) and near-
infrared (NIR) optical dipole traps. The symbols denote wave-
length (λ), 1=e2 beam waist (w), Rayleigh length (zR), laser power
(P), optical trap depth (Uopt), radial trap frequency (ωrad;opt), and
Stark shift in the electronic ground state S1=2 [ΔStark=ð2πÞ].
ωrad;opt denotes the radial optical trap frequency (neglecting
electrostatic fields) at the minimum beam waist and for
a single ion.

Laser VIS NIR

λ 532 nm 1064 nm
w ð2.6� 0.2Þ μm ð5.0� 0.2Þ μm
zR ð40� 2Þ μm ð74� 1Þ μm
Popt ≤9.5 W ≤20 W
Uopt=kB ≤ð110� 18Þ mK ≤ð16� 1Þ mK
ωrad;opt=ð2πÞ ≤ð315� 25Þ kHz ≤ð62� 2Þ kHz
ΔStark=ð2πÞ ≤ð2.4� 0.4Þ GHz ≤ð330� 30Þ MHz
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during steps 1 and 3 of the protocol [see Fig. 2(a)]. Note
that there is no direct evidence that the crystal survived the
transfers between the traps. The ensemble might melt and
turn into a gas-phase OCP during optical trapping. Then, at
the beginning of step 3, it could recrystallize under the
effect of the detection laser and the associated Doppler
cooling. To gain deeper insight into the dynamics during
transfers and Δtopt, we study the ion ensemble indirectly by
embedding 136;137Baþ as markers to witness changes of the
crystalline configuration; see Fig. 2(a). For Nini ¼ Nopt ≤ 5

and Nd ≤ 2, we observe that close to 100% of the image
pairs show identical configurations of bright and dark ions.
After random reorganization, a given configuration only
occurs with a probability of prand ¼ Nd!Nb!=Nini!. We
typically observe that the configurations of four-ion crystals
(Nini ¼ 4, Nd ¼ 1) remain unchanged over the course of 15
consecutive experiments, yielding ðprandÞ15 ¼ 9 × 10−10.
We attribute events with a changed configuration (<1% of
all image pairs) to collisions of the ions with residual
background gas particles during step 1 or 3, leading to
melting and recrystallization of the entire ensemble within
the deep rf trap. When a background gas collision occurs
during step 2, we expect loss of the ion(s) from the optical
trap (Nopt < Nini). The persistence of Coulomb order is
evidence that the thermal excitation of the ensemble
remains below Tc. Additionally, the method demonstrates
that even isotopes that are not Doppler cooled (e.g.,
136;137Baþ) can be optically trapped when embedded into
the ensemble, despite the intrinsically reduced cooling rate.

IV. TEMPERATURE OF MULTIPLE IONS
IN AN OPTICAL TRAP

To access the mean kinetic energy within the ensemble
during Δtopt and to study the dominant loss mechanisms,
we further investigate the dependence of popt on our
experimental parameters and measure popt for different
PVIS
opt .
The dependence of popt on the optical trap depth UVIS

opt
has previously been exploited to determine the temperature
of a single ion [17,26,27]. UVIS

opt defines the cutoff energy
for a 3D Boltzmann distribution of indeterminate temper-
ature T. By integrating the distribution up to UVIS

opt , one
obtains the approximate analytic expression poptðξÞ ¼
1 − e−2ξ − 2ξe−ξ, where ξ ¼ UVIS

opt =kBT, which can be used
to derive T.
Since we have to consider additional effects contributing

to the total trapping potential shown in Fig. 1, it is evident
that this approach is not suitable for Nini > 1; see Fig. 3(a).
Taking into account the Gaussian laser beam geometry, the
mutual Coulomb interaction, and the influence of electro-
static fields [see Figs. 1(b)–1(d)], makes the radial confine-
ment strongly dependent on Nini and the axial equilibrium
position z0i of ion i. These effects are of importance for the

optical trapping of charged particles and have to be
considered when deriving the local total trap depth
ΔUtot for ion i, since the forces stemming from electric
fields will have to be overcome by the optical confinement.
First, the ensemble of ions will extend at least up to the
length of the Coulomb crystal in the rf trap for the chosen
trapping parameters and T < Tc. Because the axial
extensions are comparable to the Rayleigh length, e.g.,
jz01 − z06j ≈ 135 μm > 2 × zVISR for Nini ¼ 6 [see Fig. 1(d)
and Table I], the trap depth depends on the axial position(s)
of the ion(s). Even when only considering the optical
potential, the increasing laser beam size wVISðz0i Þ results in
a reduced trap depth UVIS

opt ðz0i Þ; see Fig. 1(d).
Additionally, the electrostatic potential set by dc electro-

des and the mutual Coulomb interaction lead to a potential
energy Uel(r⃗i ¼ ðxi; yi; ziÞ) ¼ Udcðr⃗iÞ þ Ucoulðr⃗iÞ. This
results in effective radial defocusing, which can be seen
by expanding Uelðr⃗iÞ to second order, yielding potential
curvatures mω̃2

x;elðz0i Þ and mω̃2
y;elðz0i Þ for ion i with mass m
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FIG. 3. Measuring the temperature of multiple ions in the
single-beam VIS dipole trap. (a) We measure the trapping
probability popt for Nini ¼ 1…5 ions as a function of PVIS

opt
(red, blue, green, yellow, and black squares). The solid lines
indicate fits with the radial-cutoff model [29], which relates the
trapping probability and finite trap depth for atoms or a single ion
to their temperature. We observe that trapping Nini > 1 ions
requires increased laser power. Still applying the single-particle
model yields a ten times larger temperature or decreased trap
depth. In (b), we reanalyze the data shown in (a), taking into
account the axial extent of the ensemble, electrostatic fields, and
mutual Coulomb interaction to calculate the local radial trap
depth at the axial positions of the outermost ions ΔUtotðz01;Nini

Þ.
Solid lines depict fits assuming the altered radial-cutoff model
for ΔUtotðz0i Þ (see text). We obtain temperatures of TNini

¼
ð0.7� 0.1Þ mK for Nini ≤ 3, as well as T4 ¼ ð1.3� 0.5Þ mK
and T5 ¼ ð1.8� 0.5Þ mK (inset).
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near r⃗0i ¼ ð0; 0; z0i Þ. The contribution by the electrostatic
potential energy Udcðr⃗iÞ expanded to second order defines
characteristic potential curvatures mω̃2

ðx;y;zÞ;dc, related via

the Laplace equation, ω̃2
x;dc þ ω̃2

y;dc þ ω̃2
z;dc ¼ 0. Positive

terms can be interpreted as trapping frequencies and imply
confinement, e.g., in the axial direction ω̃2

z;dc > 0, whereas
negative terms correspond to defocusing, which is inevi-
table in at least one radial direction. In our setup, we find
that the defocusing almost exclusively occurs along the x
direction (see Fig. 1), such that ω̃2

x;dc ≈ −ω̃2
z;dc. We therefore

neglect the residual defocusing along the y direction,
making the x direction the preferred escape path for the
ions. We then approximate the Coulomb interaction
Ucoulðr⃗iÞjzi¼z0i

of ion i with all other ions, assuming that
the ions remain at their equilibrium positions. This results
in an additional defocusing in the x and y directions
ω̃2
x;coulðz0i Þ ¼ ω̃2

y;coulðz0i Þ < 0. Finally, we approximate the
curvature of Uelðr⃗iÞ via ω̃2

x;elðz0i Þ ¼ ω̃2
x;dc þ ω̃2

x;coulðz0i Þ for
ion i in the weakest confined direction x. The total radial
potential energy for ion i at the axial position z0i is then
written as Utotðxi;yi;z0i Þ¼UVIS

opt ðxi;yi;z0i ÞþUelðxi;yi;z0i Þ.
In the following, the difference between the local maximum
and minimum of Utotðxi; 0; z0i Þ along the x direction will be
referred to as the local radial trap depth ΔUtotðz0i Þ (see
Supplemental Material [30] for details).
The measured optical trapping probability for Nini ions

and laser power PVIS
opt is modeled as the product of the

individual trapping probabilities of the ions, poptðNiniÞ ¼Q
i≤Nini

popt;indðξiÞ, where ξi ¼ ΔUtotðz0i Þ=kBT. This allows
fitting poptðNiniÞ for each Nini ≤ 5. In Fig. 3(b), we show
poptðNiniÞ in dependence on the smallest trap depth,
ΔUtotðz01Þ ¼ ΔUtotðz0Nini

Þ at the edges of the ensemble.
We derive temperatures near TNini

¼ ð0.7� 0.1Þ mK for
Nini ≤ 3, T4¼ð1.3�0.5ÞmK, and T5 ¼ ð1.8� 0.5Þ mK.
The ions at the edges of the ensemble, which feature the
lowest total trap depth, primarily cause the reduced popt.
In addition, the origin of the apparent increase in temper-
ature for larger Nini may be due to systematic effects
increasing the kinetic energy of the ions, leading to an
overestimated temperature of the edge ions. For example, a
residual angle between the rf and optical axes of the traps
will, during the transfer duration of 100 μs, shift the ions to
the new potential minimum. The increase of kinetic energy
due to this shift will grow with the number of ions and the
length of the chain. The trap depth, and therefore poptðNiniÞ,
is also affected by stray fields (which are currently
compensated at the position of the center ion only) and
deviations from the assumed Gaussian beam profile. These
effects also increase with the distance jzij. Thus, the derived
temperature provides only an upper bound for the temper-
ature of the entire crystal. Nonetheless, including the spatial
dependence of the total radial confinement improves the

description of the system and yields T < 2 mK ≪ Tc
during Δtopt. For these temperatures and our experimental
parameters, MD simulations show that the amplitudes of
the ions’ axial motion are small (<10%) compared to the
distance of neighboring ions. Thus, applying the Lindemann
criterion for a small number of lattice sites, we conclude that
ensembles of up to five ions form crystals duringΔtopt [1,31].
We conclude that the number of ions forming a crystal in

the VIS trap is currently limited due to the defocusing
forces stemming from electric fields. The contributions
from Coulomb interaction exceed those from external
electrostatic fields already for N ¼ 3. Since the effect
has to be compensated by optical confinement, the number
of ions which can be trapped is limited by the gradient of
the laser intensity. This could be increased, for example,
by means of increasing the power of the laser or by placing
the ions inside an optical cavity. Further improvement
could be achieved by adapting the laser beam geometry,
replacing axial electrostatic confinement with optical con-
finement, or by using different ion species featuring either a
smaller decay rate into repulsive D states or no such states
at all. In the next section, we will use the further detuned
NIR optical trap to reduce off-resonant scattering, at the
expense of the confinement; see Table I.

V. DETECTING MOTIONAL MODES
OF OPTICALLY TRAPPED IONS

To gain further insight into the dynamics of the ensemble
during Δtopt, we investigate the vibrational spectrum of
the ions. Here, we choose to explore the axial degree of
freedom. Coupling to the charge allows exciting the motion
of trapped ions by applying oscillating voltages to specific
electrodes. Since the position of the ions in the rf trap can
be observed directly on the CCD camera, we observe
motional excitation as an effectively increased ion image
size caused by the integration of the fluorescence of the ion
along its trajectory [see Fig. 4(a)]. The blurring and its
dependenceon the frequency of excitation,ωmod, allowsus to
calibrate the parameters of the trapping potential. Themotion
of more than one ion forming a Coulomb crystal is typically
described in terms of normal modes [32]. In Fig. 4(a), the
collective motion in the rf trap is presented exemplarily for
two axial modes of up to three ions. The mode of lowest
axial frequency, the center-of-mass (COM) mode, describes
the in-phase oscillation of all ions at ωCOM

ax . The next higher
frequency at ωstr

ax ¼
ffiffiffi
3

p
ωCOM
ax corresponds to the stretch

mode, for which two ions oscillate opposite in phase. For
this mode and odd ion numbers, the center ion has to remain
at rest.
To perform motional spectrometry of ions in the optical

trap, we repeat the protocol shown in Fig. 2(b) for Nini ¼ 1,
2 and apply an oscillating voltage of constant amplitude
to the end cap electrodes [see Fig. 1(a)] during Δtopt only.
We chooseΔtopt ¼ 10 mswithin theNIR trap to improve the
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frequency resolution, while further mitigating off-resonant
scattering to≤ 10 s−1. At specificωmod, we observe reduced
optical trapping probabilities. We identify these frequencies
as resonanceswithin the oscillation spectrumof the ensemble
during Δtopt. For Nini ¼ 1, we observe a single resonance,
centered atωCOM

ax ¼2π×ð25.04�0.02ÞkHz. ForNini ¼ 2, in
addition to the resonance atωCOM

ax ¼2π×ð24.96�0.02ÞkHz,
we find another pronounced drop of popt centered at

ωstr
ax ¼ 2π × ð43.3� 0.15Þ kHz≈ ffiffiffi

3
p

ωCOM
ax . The experimen-

tal uncertainty of ωstr
ax is estimated via the spacing between

adjacent data points, which is consistent with the frequency
resolution of the excitation. We interpret the additional
resonance as the spectrometric fingerprint of the stretch
mode. Based on the agreement with the theoretical predic-
tion, we confirm the survival of the crystal in the absence of
any rf, while demonstrating the possibility to address and
exploit its normal modes.
To study the dynamics of the motional excitation and

related loss mechanisms, we compare our experimental
results with numerical simulations for Nini ¼ 1, 2 (for
details, see the Supplemental Material [30]). The results are
in agreement with our experimental findings and reveal that
the motional amplitudes along the z-axis lead to a loss of
ion(s) in the radial direction. In the case of the COM mode,
loss is dominated by the reduction of the optical radial
confinement for larger axial displacement [Fig. 1(d)], while
in the case of the stretch mode, it is caused by the enhanced
mutual Coulomb repulsion during the phase of approxi-
mation and the forced evasion of the ions in the radial
direction [Fig. 1(c)]. The nonlinearity induced by the latter
explains the directly observable anharmonicity of the
resonance for the case of the stretch mode.

VI. CONCLUSIONS AND OUTLOOK

In summary, we demonstrate trapping of Coulomb
crystals in a single-beam optical trap. We reveal the
importance of Coulomb interaction and the electrostatic
field along the axis of the dipole trap, and we demonstrate
access to the collective motion. For neutral particles, these
effects can usually be neglected. On the one hand, Coulomb
interaction establishes the axial and radial motional modes
in ion crystals. Control of these modes on the single-
phonon level in optical traps would permit us to couple
electronic degrees of freedom of the ions. As in rf traps,
phonons could mediate spin-spin interaction between the
ions and act as a data bus [32]. In addition, they can feature
as quasiparticles that span the bosonic degree of freedom
in open quantum systems [33] and extend experimental
quantum simulations, e.g., by tunneling between the lattice
sites defined by the ions [34,35]. On the other hand, ion
interaction and electrostatic forces currently limit the size
of optically trappable Coulomb crystals. These contribu-
tions modify the trapping potential itself and reduce its
depth. From our results, we expect that higher-dimensional
ion crystals, e.g., with N ¼ 10 ions, could be studied in
our setup in the future. Using the NIR trap, this could
realistically be achieved using a beam waist of 7 μm and
power of 150 W in a retroreflected, noninterfering laser
beam. Further improvements could be achieved by using
the range of readily available dipole trap geometries,
e.g., Bessel beams, one-dimensional or higher-dimensional
optical lattices, or additional (crossed) laser beams.

(b)

(a)

FIG. 4. Spectrometry of normal modes, demonstrating access to
the axial phonons of the crystal during optical trapping. In (a), we
show typical fluorescence images of ions in the rf trap with dc
axial confinement, resonantly modulated with oscillating electric
fields (the two-ion distance is 43 μm, with other images to scale).
For Nini ¼ 1, we observe a single resonance for the axial motion
at ωCOM

ax . For Nini ¼ 2, 3, an additional resonance at ωstr
ax ¼ffiffiffi

3
p

ωCOM
ax , corresponding to out-of-phase motion, appears. (b) Op-

tical trapping probability for Nini ¼ 1 (blue squares) and Nini ¼ 2
(red circles) ion(s) in the NIR trap, as a function of the frequency
ωmod=2π of the oscillating electric field. We observe a drop in
popt at ωCOM

ax for both Nini ¼ 1 and Nini ¼ 2, in agreement with
the expected axial confinement. For the COM mode, the solid
lines show fits to the data. The resonance at ωstr

ax ¼ 2π × ð43.3�
0.15Þ kHz ≈ ffiffiffi

3
p

ωCOM
ax (binned data points weighted with their

statistical significance; for details on uncertainty, see text) only
emerges in the case Nini ¼ 2 and shows access to the motional
degrees of freedom of the Coulomb crystal during Δtopt. In the
case of the stretch mode, we modulate the harmonic confinement
to excite differential motion between the ions. The electric field
amplitude at the equilibrium positions of the ions amounts to
jEj ¼ ð1.8� 0.1Þ mV=m, for which we numerically simulate the
out-of-phase motion (no free parameters). We depict the ampli-
tude of the stretch mode by max½zstrðtÞ� −min½zstrðtÞ� by the solid
red line (axis on the right-hand side). The nonlinearity of the
Coulomb interaction leads to an asymmetric frequency response
(see Supplemental Material [30]). We emphasize that the
dependence of popt on max½zstrðtÞ� −min½zstrðtÞ� is nontrivial
and not taken into account here.
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We also embed sympathetically cooled ions, here barium
isotopes, without substantially affecting the temperature of
the crystal. Given suitable electronic transitions and suffi-
cient coupling strengths, it is possible to optically trap ions
of different electronic states and exploit the state-dependent
potential [17]. Cotrapping other ionic species and molecu-
lar ions [1] should also be considered.
We argue that systems in which rf micromotion exists

because of intrinsic displacement from the center of the
trap, as in higher-dimensional Coulomb crystals or during
the interaction with (cold) neutral atoms, could substan-
tially benefit from optical trapping of ions. While still in its
infancy, the technique presented here could provide a clean
platform to experimentally investigate systems with pre-
dicted quantum phase transitions and featuring quantum
many-body effects, briefly described in the following.
The number of ions and the ratio of radial and axial

confinement determinewhether a crystal exists in a 1D chain
or 2D zigzag structure. The two symmetric configurations of
zigzag and “zagzig” are trapped within an effective double-
well potential with well-controllable barrier height and are
predicted to allow for experimental studies of awide range of
physical effects, starting withN ≥ 3. Adiabatically reducing
the radial confinement to cross the structural quantum phase
transition from 1D to 2D has been proposed to create a
superposition of zigzag and zagzig [36]. The impact of
quantum fluctuations at criticality is predicted to dominate
the structure adopted by ions cooled close to the motional
ground state, that is, even at finite temperatures [37]. It has
also been proposed to create an entangled state, incorporating
both structural phases, linear and zigzag, simultaneously
[38–40]. Preparing one ion of a linear chain in a coherent
superposition of two electronic states and exploiting the state
dependence of the optical trap [17] could directly implement
this proposal.
Additionally, embedding a single ion in a Bose-Einstein

condensate has been proposed as a controlled quantum
many-body system driven by the nucleation of tens or
hundreds of atoms polarized in the ion’s electric field
[41,42]. In hybrid traps, which combine a rf trap for the ion
with an optical trap for the atoms, micromotion limits
sympathetic cooling of the ion to a regime above the
ultracold temperatures required for the formation of the
clusters [14,15,43]. Optical trapping of ions may be a
generic solution to overcome this limitation [43], even for
N > 1 and higher-dimensional structures. Additional ions
located outside the cloud could act as a remote sensor of the
ion-atom interaction. It has also been proposed to immerse
a linear ion chain into a degenerate Fermi gas to, e.g.,
emulate solid-state physics, with atoms acting as electrons
and ions as nuclei, or to study a Peierls-like phase transition
[44,45]. Recently, envisioning a setup similar to our current
experimental realization, researchers have proposed to
couple an array of particles (N ≥ 2) by coherent scattering
inside a light field without an optical cavity [46].
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