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Abstract

Multivariate information of soil parameters is quite important for the design and risk assessment of geotechnical engineering prob-
lems. It is necessary to have an accurate and realistic statistical multivariate model for representing the soil properties and thus evaluating
the soil conditions. Thus, advanced multivariate modeling of soil parameters could help to improve the geotechnical engineering practice.
In this paper, the asymmetric copulas are introduced to model the geotechnical soil data. Compared to extensive previous research on the
use of symmetric copulas on the modeling of engineering data, this study is focusing on capturing asymmetric dependencies among the
natural soil parameters, which are critical for engineering design. A copula-based multivariate probabilistic model is built based on a set
of collected samples from a granite residual soil from Portugal. Several asymmetric copula functions, capable of capturing nonlinear
asymmetric dependence structures, are tested and analyzed. The fundamental information on tail dependencies and measures of asym-
metric dependencies are also exploited. To demonstrate the advantages of asymmetric copulas, its concept is compared with the tradi-
tional copula approaches for modeling site soil data. The performance of these asymmetric copulas is discussed and compared based on
data fitting and extreme value characterizations.
� 2019 Production and hosting by Elsevier B.V. on behalf of The Japanese Geotechnical Society.

Keywords: Geotechnical analysis; Asymmetric copula; Soil properties; Joint distribution; Multivariate analysis
1. Introduction

Geotechnical engineering problems involve frequently
multivariate data analysis. To consider multiple variables
in a geotechnical design, a multivariate probabilistic model
is usually required. This enables an application of
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well-developed joint statistical models to represent and,
eventually, to evaluate uncertain results of the problem
due to geotechnical random parameters. In this context,
the dependencies among various soil parameters play an
important role. Deficiencies in modeling their joint rela-
tionship may largely contribute to wrongly estimate the
failure probability of geotechnical structures, hence may
lead to expensive engineering loss (Angeli et al. 2000;
Harris et al. 2008).

In real practice, the soil parameters are often observed to
be dependent. For instance, the test results for the soil such
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as standard penetration test (SPT) and piezocone test
(CPTU) tend to be physically related. However, the question
is about how to define this relationship between the soil data.
The definition of ‘‘dependencies” in this context can have
various meanings. When addressing different dependencies
for the soil parameters, the typical concept of correlation
is commonly used to construct the joint distribution models.
The applicability of this concept may be problematic when
the dependencies are not perfectly linear. Many former
works have addressed this issue (Vanapalli et al., 1996;
Robertson, 2009; L’Heureux & Long, 2017). Still, many
multivariate models have been developed adopting this con-
cept (Yan et al., 2009; Sideri et al., 2014; Zhu et al., 2017).

It should be noted that in most cases, in geotechnical
engineering practice, the joint cumulative distribution func-
tion (CDF) or joint probability density function (PDF) is
often unknown due to limited data from field tests, labora-
tory tests or other resources (Beer et al, 2013; Li et al.,
2012). Nevertheless, in recent years several works were pub-
lished with presentation of multivariate information
(Santoso et al., 2013; Zhang et al., 2018; Tang and Phoon,
2018). The most popular studies are related to clay parame-
ters (Phoon and Kulhawy, 1999) or regarding the Mohr
Coulomb failure envelope, and the negative correlation
between cohesion, c’, and the friction angle, /’ (Phoon
and Kulhavy, 1999; Duncan, 2000; Forrest and Orr, 2010;
Tang et al., 2013; Zhang et al., 2018). Although Tang et al.
(2013) and Li et al. (2015) investigated the influence of differ-
ent copulas on the probability of failure of some simple
geotechnical structures, examples applied to real data con-
tinue to be relatively scarce. From a geotechnical point of
view, the topic attracts more attention is to achieve consis-
tency between geotechnical and structural-based design
(Phoon et al., 2016).

In contrast to the traditional joint model, the copula
model has shown its advantage and attracted significant
attention from many geotechnical engineering researchers
(Wu, 2013; Tang et al., 2015). The key feature of a copula
approach is its flexibility in modeling the dependence struc-
ture, which can be separated from the modeling of individ-
ual behavior. Such prominent characteristic is highly
desirable in geotechnical engineering as most soil data exhi-
bit non-obvious dependencies. Moreover, it was also found
by utilizing the copula model, that the accuracy of reliability
analysis of a geotechnical engineering problem can be lar-
gely improved (Li et al., 2015). In general, from the recent
advances in geotechnical engineering, it is now widely rec-
ognized that the copula model is a very accurate and effi-
cient tool in modeling multivariate soil data. However,
there are various types of complicated dependencies and
potential biases that could affect the quality of a multivari-
ate model. Specifically, the uncertainties related to asym-
metric dependencies are one of the most influencing
factors. It was realized that an accurate modeling of the
asymmetric dependences for soil data is still one of the most
difficult tasks, and the statistical modeling of the
multivariate soil data remains quite challenging. Fortu-
nately, asymmetric copulas which were developed only
recently provide a feasible solution to this problem
(Kazianka and Pilz, 2010). The use of asymmetric copulas
can significantly improve the functionality of traditional
copula approaches in fitting the asymmetrically dependent
variables. Nevertheless, the modeling of soil data using
the asymmetric copula has never been studied in detail.
The theoretical concepts and procedures of how to con-
struct a reliable asymmetric copula for soil data have not
yet been investigated. Therefore, this work aims to close this
gap providing a real case study for demonstrating and high-
lighting the merits, as well as limitations, regarding the use
of asymmetric copulas.

This paper is divided into seven sections. A general liter-
ature review of the existing techniques and former works
on the modeling of multivariate soil data is presented in
Section 2. Section 3 then reviews the fundamental copula
theory and highlights the issues of basic dependence mea-
sures. Section 4 explains the detailed information of asym-
metry measures as well as the procedures of constructing
asymmetric copula models. A set of soil data is then ana-
lyzed through the use of asymmetric copulas. Section 5
provides the detailed information of the collected soil data.
A comparative study between symmetric and asymmetric
copula approaches for modeling the collected soil data is
presented in Section 6. This includes the discussion on
the quality of model fitting, tail dependence characteriza-
tion and extreme value prediction. The final concluding
remarks are summarized in Section 7.

2. Literature review of multivariate distributions for soil

parameters

The variability of soil parameters is admittedly higher
than for the remaining construction materials. Addition-
ally, it presents local characteristics, creating obstacles to
the generalization of results. In any case, since the 90 s,
efforts have been done to estimate the variability of design
soil parameters, in order to develop a sound Reliability-
Based Design (Duncan, 2000; Baecher and Christian,
2003; Forrest & Orr, 2010). Initially, the characterization
of the variability of the parameters was completed through
their coefficient of variation and the determination of the
correlation between parameters was mainly a process to
transform the test measurements in design parameters.

Ching and Phoon (2014) presented an example of multi-
variate distribution, applied to some clay parameters, that,
as the correlation coefficient, may be applicable to site-
specific data and used as a prior model that may be
updated via, for example, Bayesian updating. As an exam-
ple of this, the work of Zhang et al., 2018 is a worthy illus-
tration. With the use of the multivariate distribution, the
entire probability distribution of a design parameter may
be updated covering all data, which represents an obvious
advantage compared with the popular pairwise regression,
where updates of the design parameter result from a single
value of another parameter.
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The copula theory (Nelsen, 2006) has found widespread
applications in the last years and there are also recent exam-
ples of its application to geotechnical problems, as is the
case of the pioneering works of Li et al. (2012) and Tang
et al. (2013). Tang et al. (2013) studied the application of
several types of copulas to the cohesion and friction angle
data from four different sites. Zhang et al. (2014) clearly sta-
ted that previous probability models used in geotechnical
engineering, such as multivariate normal distribution, is
indeed based on the Gaussian copula, which can only con-
sider the linear dependence relationship between random
variables and may not always be optimal. Therefore, it is
important to consider other copula functions for construct-
ing probability models in geotechnical reliability analysis.
The copula theory provides thus an advanced tool to model
geotechnical problems more realistically (Tang et al., 2013;
Li et al., 2015; Zhang and Lam, 2016). Particularly when
using the Mohr-Coulomb failure criteria for soils, described
by the two parameters, cohesion, c’, and friction angle, /’.
It is widely accepted that there exists a negative correlation
between them, which results from the linearization of the
failure envelope. Tang et al. (2013) presented a list of corre-
lation coefficients between these two parameters found by
several authors, but also stated that the Gaussian copula
is commonly adopted without rigorous validation. There
are also recent tentative to adjust non Gaussian depen-
dence, though not abundant (Wang & Li, 2017).

Residual soils are cemented materials but have low
cohesion values. Having in mind that the cohesion is
always positive, this can create an asymmetry in the distri-
bution, and thus asymmetric copulas might arise as an
interesting solution to cope with real data. Additionally,
the fact real data is used to test several copula constitutes
an enormous advantage to evaluate the advantages of
using asymmetric copula.

3. Copula theory and dependence measures

As mentioned in the previous section, copula models
provide an alternative way to model the multivariate soil
data. The concept of copula theory has already been used
for modeling a wide range of engineering data, for exam-
ple, in reliability studies (see, Noh et al., 2009; Wang
et al., 2017), as well as offshore engineering (Zhang et al.,
2015, 2018). Several former works have provided a thor-
ough survey: for the theoretical background see Nelsen
(2006), and Joe (2014); for the practical applications see
Genest and Favre (2007), Salvadori and De Michele
(2007), and Hong et al. (2015).

3.1. Definition and basic properties

The theoretical definition of a copula can be specified by
the marginal distributions as introduced in Sklar’s theorem
(Sklar, 1959):

Sklar’s Theorem: Let F be an n-dimensional distribution
function with marginal distributions F1, . . ., Fn. A copula C
is therefore defined as an n-dimensional distribution func-
tion such that for allx 2 Rn

F x1; . . . ; xnð Þ ¼ C F 1 x1ð Þ; . . . ; F n xnð Þð Þ ð1Þ
If F1, . . .,Fn are all continuous, then C should be unique.

Conversely, if C is a copula and F1, . . ., Fn are all continu-
ous marginal distribution functions, then the distribution
function F must be a multivariate distribution function
with marginal distributions F1, . . ., Fn.

Compared to the other joint distributionmodels, the cop-
ula approach has the freedom of selecting any marginal dis-
tributions for the variables whichmakes this approachmuch
more flexible in characterizing individual variable’s behav-
iors. Many existing copula functions have been formulated
in the literature, see e.g. (Hutchinson and Lai 1990; Trivedi
& Zimmer, 2007). Each specific copula could characterize
a certain kind of dependence in the multivariate data.

3.2. Dependence measures

In order to emphasize the significance of the copula
approach in modeling geotechnical data, the dependence
concepts are interpreted with details herein. It is said the
key characteristic of a copula model is its dependence
structure. Traditionally, the Pearson’s correlation coeffi-
cient q is used as the most common and convenient way
for measuring the data dependence. Because of its ease of
handling, it is widely adopted in many statistical
approaches. However, the weakness of q is also obvious
and many researchers tend to criticize it. For instance, it
is realized the linear correlation coefficient is invariant with
respect to linear transformations of the variables. But it is
not invariant to strictly increasing nonlinear transforma-
tions. The property of linear dependency may not be pre-
served through such transformations. Therefore, based
on these concerns, other concepts of dependencies have
been developed in the literature such as Kendall’s sk and
Spearman’s qs. Kendall’s sk is a measure of the possible
excess of concordance/discordance in the sample, and
Spearman’s qs measures the ‘‘distance” between the chosen
copula and the one modeling independent variables (see
Salvadori et al., 2007). These two measures are also known
as the most well-established concordant measures of rank-
ings among the variables. The concepts of Kendall’s sk and
Spearman’s qs are well integrated in a copula model. For
example, for any bivariate copula, these two coefficients
can be directly linked to the copula function as

sk u1; u2ð Þ ¼ 4

Z 1

0

Z 1

0

C u1; u2ð ÞdC ð2Þ

qs u1; u2ð Þ ¼ 12

Z 1

0

Z 1

0

C u1; u2ð ÞdC � 3 ð3Þ

where ui = Fi(Xi). This linkage provides a feature in copula
model that can describe various kinds of dependencies,
including association concepts such as concordance, linear
correlation and other related measures.
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However, the traditional copulas have many weaknesses
(e.g. Archimedean copulas) when they are applied to model
soil parameters. A key drawback is that most well estab-
lished copulas can only model symmetric dependent vari-
ables whereas the soil data usually display non-symmetric
dependencies. For example, the feasible domain of soil
parameters restricted by the physical phenomenon is a
major reason for asymmetric dependencies. For instance,
a large value of soil cohesion strength is unlikely to be
accompanied by a large value of friction angle because of
the physical limit. Negative values for cohesion are not
physically possible. In other words, the realization of some
variable combinations should not exist in the real nature.
This effect can be illustrated by means of an example scat-
ter plot as shown in Fig. 1. As demonstrated in the figure, it
is impossible to have observations in the right-lower region
(marked with a cross), while observations can be available
in the left-upper region (marked with a tick). In other
words, implicit physical phenomena could exert limit of
occurrence for some data combinations. Thus, the feasible
domain reduces and becomes asymmetric. More typical
examples can be illustrated by Fig. 2 which show the scatter
plot of soil data from the database provided by TC304
webpage. The dependences among the chosen soil parame-
ters undrained shear strength su, preconsolidation stress r’p
and vertical effective stress r’v are not perfect linear. In fact,
they are inherently dependent on the liquid limit and over-
consolidation ratio which makes their dependences quite
complex. From these scatter plots, it can be observed that
no data is distributed in the upper-lower domain (as
marked by the red star symbol). This generally means the
considered bivariate dataset has a restricted domain which
can only allow data to be distributed asymmetrically.
Therefore, considering this physical feature in the multi-
variate soil data modeling, especially copula approach, is
not straightforward and still needs further development.

However, these effects can be frequently observed in
most collected soil datasets. The ignorance of such asym-
metric dependencies in the multivariate modeling might
create some unreliable estimates for the design. More
advanced statistical techniques are therefore required on
the improvement of traditional copula model to further
enhance this approach.
Fig. 1. Asymmetric domain of soil data caused by physical phenomenon.
4. Asymmetric copulas

In order to have a more accurate modeling of asymmet-
rically dependent variables, several groups of asymmetric
copulas as well as the basic concepts in measuring the
asymmetry of a copula model are introduced herein.
4.1. Measure of asymmetry and tail dependency

The fundamental definition of symmetry in a copula
model can be defined as following. For a given copula
C u1; � � � ; unð Þ, if
C u1; :::; ui; :::; uj; :::; un
� � ¼ Cðu1; :::; uj; :::; ui; :::; unÞ
is true for any pair ui; uj 2 I;

then we can say ui and uj are exchangeable within the
copula C u1; � � � ; unð Þ and this copula is said to be symmetric
(Genest and Nešlehová, 2013). Therefore, if this copula
function cannot satisfy the above condition, it is believed
to be asymmetric. Following this idea, a measure of asym-
metry in a copula model can be formulated by the follow-
ing equation (Klement and Mesiar, 2006)

gp Cð Þ ¼
Z 1

0

Z 1

0

C u1; u2ð Þ � C u2; u1ð Þj jpdu1du2
� �1=p

ð4Þ

where p is a factor which can be set at any value greater
than or equal to 1, p � 1. In other words, the function cal-
culates the distance between C and its transpose CT, like
the norm. Usually, it is more convenient to set the value
of p to infinity for calculating the measure of asymmetry.
This gives a simplified formula as

g1 Cð Þ ¼ sup
u1;u2ð Þ2 0;1½ �2

C u1; u2ð Þ � C u2; u1ð Þj j ð5Þ

Therefore, if the value of this measure is too large, the
copula is considered to be asymmetric. Meanwhile, when
it is applied to bivariate data, the measure of asymmetry
as calculated by Eq. (5) has the same meaning of a measure
of exchangeability for the data.

Another indicator that can be used to detect the asym-
metric characteristics is the tail dependencies. Based on
the concept of tail dependence, four coefficients are defined
to describe the tail dependences, namely, lower-lower,
lower-upper, upper-lower, upper-upper tail dependence coef-
ficients. For example, for a bivariate copula C u1; u2ð Þ, the
tail dependence coefficients can be calculated by (Nelsen
2006)

kl;l1j2 Cð Þ ¼ lim
u!0þ

P x1 6 F �1
1 uð Þjx2 6 F �1

2 uð Þ� �

¼ lim
u!0þ

C u; uð Þ
u

ð6Þ

kl;u1j2 Cð Þ ¼ lim
u!0þ

P x1 P F �1
1 1� uð Þjx2 6 F �1

2 uð Þ� �

¼ 1� lim
u!0þ

C u; 1� uð Þ
u

ð7Þ



Fig. 2. Examples of soil data having asymmetric domain (data retrieved from Ching and Phoon, (2012), Ching et al. (2014), D’Ignazio et al. (2016) and
Zhang et al. (2019)).
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ku;l1j2 Cð Þ ¼ lim
u!0þ

P x1 6 F �1
1 uð Þjx2 P F �1

2 1� uð Þ� �

¼ 1� lim
u!0þ

C 1� u; uð Þ
u

ð8Þ
ku;u1j2 Cð Þ ¼ lim
u!0þ

P x1 P F �1
1 1� uð Þjx2 P F �1

2 1� uð Þ� �

¼ 2� lim
u!0þ

1� C 1� u; 1� uð Þ
u

ð9Þ
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where F �1
1 :ð Þ and F �1

2 :ð Þ are the inverse marginal distribu-
tion functions for x1 and x2. Therefore, these equations
provide measures of the tail dependence for the two vari-
ables in four different extremes. The tail coefficients have
a value range between 0 and 1, where a value of 0 indicates
asymptotical independence.

Tail dependencies can provide useful information about
the dependences of extreme values from the intrinsic infor-
mation. It gives a measure for relating one margin exceeding
a certain quantile threshold while the other has already
exceeded that quantile threshold. The lower-upper and
upper-lower tail coefficients are especially useful for assessing
the asymmetry of a copula. If these coefficients are observed
to be different, the copula is generally an asymmetric one.

4.2. Asymmetric copulas constructed by products

There are various ways of constructing asymmetric cop-
ulas. Many recent works have been done in this direction
(Grimaldi and Serinaldi, 2006; Mesiar and Najjari, 2014;
Mazo et al., 2015). Plenty of techniques able to capture
the asymmetric dependencies in the multivariate data are
utilized in the copula function establishment (Patton,
2006). Nevertheless, not all the asymmetric copulas are
really useful in practice. Some asymmetric copulas may
need very sophisticated extra functions to characterize the
asymmetric dependencies which are quite cumbersome
for the calculation. A typical example could be the Archi-
max copula which requires complex statistical derivations
for obtaining the Pickhands dependence function for its
construction (Charpentier et al. 2014). Therefore, from
the engineering point of view, we choose to review the most
popular and practical alternatives among these asymmetric
copulas in this study. Meanwhile, this work tends to focus
on the asymmetric copula families that can be built based
on the traditional symmetric copulas, e.g. Archimedean
copulas. Therefore, the asymmetric copulas with a very
complicated mathematical formulation would not be dis-
cussed in the present study.

One of the most popular ways of constructing asymmet-
ric copulas is by means of a product of copulas (Liebscher,
2008). The general form for constructing this type of asym-
metric copula is given as following

Cproduct u1; :::; unð Þ ¼
Ym
i¼1

Ci f i1 u1ð Þ; :::; f in unð Þð Þ ð10Þ

where C1; � � � ;Cm are all copulas for the n-dimensional vari-
ables, f ij: 0; 1½ � ! 0; 1½ � for i = 1,. . .,m, j = 1,. . .,n are the

individual functions for describing the individual variable’s
behavior which should be strictly increasing or identically
equal to 1. To guarantee Eq. (10) is also a copula, the indi-
vidual functions f ij must satisfy the following additional

properties:

1. f ij 1ð Þ ¼ 1 and f ij 0ð Þ ¼ 0,

2. f ij is continuous on �0; 1�,
3. If there are at least two functions f i1j ; f i2j with

1 � i1; i2 � m which are not identical and equal to 1,
then f ij xð Þ > x holds for x 2 0; 1ð Þ, i = 1,. . .,m.

From the above formulation, it is easy to see the con-
structed copula could be asymmetric if the individual func-
tions are different for the variables. Each individual
functions f ij characterizes a specific property of the vari-

ables in the asymmetric dependence modeling. The idea
of this construction is also known as an extension of
Khoudraji’s device (1995). For instance, by adopting type
I individual function in constructing the asymmetric copula
(see Table 1) and setting m, n = 2, Eq. (10) becomes exactly
the Khoudraji copula. On the other hand, various groups
of parametric copulas can be selected for the n-
dimensional copulas C1; � � � ;Cm, e.g. Archimedean copulas.
As for the individual functions f ij, many candidate func-

tions which are suitable for the copula construction have
been proposed by Liebscher (2008) - see Table 1. More-
over, it is also possible to choose the number and type of
individual copulas.
4.3. Asymmetric copulas constructed by linear convex

combinations

Another way of constructing an asymmetric copula
could be done through the linear convex combinations of
copulas. However, it should be noted the direct linear con-
vex combination of copulas is not able to create asymmet-
ric copulas. The main reason is most fundamental copulas
are symmetric. Such linear convex combination of these
copulas could not change their dependence characteristics
and would also only produce symmetric copulas. One
way to change the symmetric dependence characteristics
is to modify the fundamental copulas to account for asym-
metric properties (Wu, 2014). A change on the new kind of
copula is proposed as:

C
^

h u1; :::; unð Þ ¼ C u1; :::; uh�1; 1; uhþ1; :::; unð Þ
� C u1; :::; uh�1; 1� uh; uhþ1; :::; unð Þ ð11Þ

where C(.) is the original n-dimensional base copula. It is
easy to see that any variable uh in the copula model is
not exchangeable with other variables. Such developed
model is also called flipped copula as mentioned in the lit-
erature (Nelsen 2003). Therefore, the flipped copula can be
used to fit data exhibiting unequal tail dependencies. By
combining all the possible flipped copulas, one may use
the following copula to model asymmetric properties in
multiple variables:

Caddition u1; :::; unð Þ ¼
Xn

h¼0
ph C
^

h u1; :::; unð Þ ð12Þ

where ph is a weighting factor which needs to satisfy the
conditions 0 � ph � 1 and

Pn
h¼0ph ¼ 1. And when h = 0,

the flipped copula downgraded to the original one, e.g.



Table 1
Examples of individual functions.

Individual function Parameters Value range

I. f ij uð Þ ¼ uhij
Pm

i¼1hij ¼ 1 hij 2 0; 1½ �
II. f ij uð Þ ¼ uhij e u�1ð Þaij Pm

i¼1hij ¼ 1,
Pm

i¼1aij ¼ 0 hij 2 0; 1ð Þ, aij 2 �1; 1ð Þ,hij þ aij P 0
III. *f 1j uð Þ ¼ exp hj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnuj j þ h2j

q� �
, f 2j uð Þ ¼ uexpð�hj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnuj j þ h2j

q
Þ hj for j 2 1; :::; nf g hj P 1

2

* Note: type III individual functions can only be used for the asymmetric copula having two individual copulas (e.g. m = 2).
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C
^

0 u1; . . . ; unð Þ ¼ C u1; . . . ; unð Þ. Same as the copula in Sec-
tion 4.2, various types of copula families can be utilized
as the base copula C u1; � � � ; unð Þ. When it is applied for
the bivariate data, Eq. (12) can be expressed as following

C
^

1 u1; u2ð Þ ¼ u2 � C 1� u1; u2ð Þ ð13Þ

C
^

2 u1; u2ð Þ ¼ u1 � C u1; 1� u2ð Þ ð14Þ
where we can also call Eq. (13) and Eq. (14) the horizontal-
flipped and vertical-flipped copulas (Salvadori et al. 2007).
A typical bivariate asymmetric copula in this case can be
given as

Caddition u1; u2ð Þ ¼ p0C u1; u2ð Þ þ p1C
^

1 u1; u2ð Þ þ p2C
^

2 u1; u2ð Þ
ð15Þ

where p0; p1; p2 � 0 and p0 þ p1 þ p2 ¼ 1. The asymmetric
properties of the bivariate data can be simply modeled by
adjusting the values of weight factors assigned to each base
copula in this formula. That is, the flipped copula

C
^

1 u1; u2ð Þ or C
^

2 u1; u2ð Þ are used to model the asymmetry
in each of the variables. This is also the main difference
between the current construction method and Liebscher’s
method. The current method constructs asymmetric copu-
las by modeling the asymmetric property for variables each
at a time. However, on the other hand, Liebscher’s method
constructs the asymmetric copulas for variables all at a
time.

4.4. Skewed copula

Despite the algebraic construction methods, another
convenient way of constructing asymmetric copulas is by
means of the skewed copula. The idea of this approach is
from the skewed multivariate Guassian distribution which
allows non-zero skewness. The general concept is to trans-
form a multivariate Gaussian distribution to an asymmet-
ric one by introducing a parameter (Kollo et al., 2013). The
most famous and commonly adopted one is the skewed

Gaussian copula.
The skewed Gaussian copula originates from the the

Gaussian copula. By definition, an n-dimensional Gaussian
copula is expressed by

CGaussian u1; :::; unð Þ ¼ Un U�1 u1ð Þ; :::;U�1 unð Þ;R� � ð16Þ
where Un(.) represents the n-dimensional normal distribu-
tion function, U�1(.) denotes the inverse of the standard
normal distribution function, and
P

stands for the covari-
ance matrix. In the skewed Gaussian copula, the basic for-
mula is modified to account for asymmetries by adding the
shape parameter. A general n-dimensional skewed Gaus-
sian copula can be written as

Cskew�Gaussian u1; :::;un;l;R;bð Þ
¼ F n;skew F �1

1;skew u1;l1;1;b1ð Þ; :::;F �1
1;skew un;ln;1;bnð Þ;l;R;b

� �

ð17Þ
where F n;skew :ð Þ is the n-dimensional skew normal distribu-

tion with mean parameter l, F �1
1;skew :ð Þ is the inverse of the

univariare skew normal distribution SN(li, 1, bi), b are
the shape parameters and

P
is the covariance matrix.

Therefore, the density function of a multivariate skewed
Gaussian copula for n-dimensional random variables can
be given by

f n u1; :::;un;l;R;bð Þ¼ 2/n u1; :::;un;l;Rð ÞUn bT u1; :::;un;l;R
� �

ð18Þ
where /n :ð Þ and Un :ð Þ are the probability density function
and cumulative distribution function for n-dimensional
Gaussian distribution (Azzalini and Valle, 1996). In this
constructed asymmetric copula, the asymmetric property
results from the shape parameters. For example, when
b = 0, the skewed Gaussian copula downgrades to the stan-
dard Gaussian copula with no skewness. If b increases, the
skewness of the skewed Gaussian copula increases.

Moreover, it should be pointed out the skewed Gaussian
copula is in fact a special case of the constructed copulas as
given in Section 4.2. Compared to the copula constructed
by Eq. (10), the skewed Gaussian copula is a special one
with only one individual copula (m = 1). This base copula
(Ci) are all skewed Gaussian distributions. Nevertheless, it
is still worth to see the performance of skewed copulas
compared to the other approaches. There are no previous
works done on its application in the modeling of real col-
lected soil data. The following will provide a case study
to demonstrate the key advantages of using the asymmetric
copulas in modeling soil data.
5. Case study – site soil data

The soil data used in this paper results from tests per-
formed in a residual soil from Porto granite. Pinheiro
Branco (2011) and Pinheiro Branco et al. (2014) conducted
an extensive characterization of a localized area of residual
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soil, collecting more than 40 samples in an area of approx-
imately 1 m2. Detail of the area where the samples were col-
lected is shown in Fig. 3.

All the samples were carefully collected in situ, by cut-
ting the residual soil around the sampler
(0.1 � 0.1 � 0.03 m3), isolated and transported to the
geotechnical laboratory. For all the specimen, the dry unit
weight (cd), the water content (w), the void ratio (e) and
subsequently the saturated unit weight (csat) were all
Fig. 3. Detail of the area where the samples were collected.

Fig. 4. Scatter plot of (c0p, tan(/0
p)), (ta
measured (Pinheiro Branco et al., 2014). The unit weight
of the soil particles (cs), were also determined.

All the samples were subjected to direct shear tests, with
different normal stresses: 25 kPa, 50 kPa, 75 kPa, and
100 kPa. The normal stresses were intentionally low, in
order to avoid particle breaking or sample disturbance dur-
ing the installation of the initial stress. The in situ vertical
stress where the samples were located was approximately
120 kPa. In such conditions all the tests were performed
with normal stresses lower than the in situ vertical stress.
The consolidation time was established as 1 h. After sev-
eral minutes there were no additional vertical settlements
which allowed to conclude that there was no further con-
solidation. The shear rate of the tests was 0.03 mm/min.
This reduced shearing rate guarantees no excess water pres-
sures appear during shear, corresponding to drained
conditions.

The 40 samples were divided into 10 samples for each
stress level. During each shear test, the peak shear stress
sp, the residual shear stress sr, and the dilation angle w were
measured. The residual strength was simply defined by the
constant volume friction angle, /’cv. The peak strength was
defined by a unique friction angle, /’s, although its value is
dependent on the normal stress of the test. Table 2 presents
the complete list of variables measured or calculated for the
40 samples, during the direct shear tests.

The parameters presented in Table 2 correspond to each
individual sample. In geotechnical practice, the peak
n(/0
s), tan(/0

cv)), (e, w) and (c, cd).
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strength is usually defined as the Mohr-Coulomb failure
criteria, namely the cohesion, c’p, and the peak friction
angle, /’p. To determine these parameters, soil data sam-
ples have to be grouped and utilized to estimate them from
Mohr-Coulomb circle. With this purpose, the 40 samples
were combined in groups of 3, resulting the 40 values of
the Mohr-Coulomb parameters presented in Table 3.
6. Data analysis

The total sample size of 40 soil data is selected for the
analysis in this study. All of these data are obtained from
the same site and therefore are believed to have the same
statistical characteristics. To understand the statistical
properties of the collected data, a general statistical sum-
mary of c0p, tan(/0

p), tan(/0
s), tan(/0

cv), e, c, cd and w is pro-
vided in Table 4. It can be seen the variations in c0p is much
higher compared to other soil parameters. The mean and
Table 2
Collected soil property data from the site.

r’(kPa) /’cv(
0) /’s(

0) e c (kN/m3) cd (kN/m3) w(0)

25.0 39.35 53.45 0.578 19.19 16.37 13.55
25.0 41.96 49.00 0.574 19.41 16.41 8.72
25.0 36.42 50.46 0.573 19.44 16.42 14.68
25.0 34.78 47.53 0.558 19.52 16.58 16.20
25.0 41.19 41.80 0.640 18.29 15.75 3.03
25.0 41.11 47.18 0.568 19.03 16.47 13.85
25.0 35.87 50.15 0.453 20.27 17.78 14.28
25.0 39.83 47.32 0.551 19.10 16.66 14.93
25.0 40.46 40.46 0.694 17.23 15.25 7.88
25.0 38.70 53.61 0.525 19.19 16.94 19.20
50.0 39.30 46.61 0.717 17.72 15.05 6.80
50.0 38.36 47.83 0.574 19.29 16.42 10.95
50.0 38.10 50.98 0.577 19.27 16.39 11.01
50.0 39.14 52.34 0.530 19.20 16.88 14.15
50.0 40.37 50.67 0.589 18.87 16.26 8.82
50.0 38.61 47.24 0.543 19.23 16.74 7.77
50.0 37.78 48.51 0.489 19.87 17.35 13.12
50.0 37.43 44.88 0.530 19.07 16.88 12.33
50.0 35.96 41.02 0.649 17.78 15.66 4.43
50.0 38.20 41.96 0.589 18.35 16.26 8.13
75.0 37.20 45.51 0.571 19.40 16.45 9.32
75.0 42.57 51.28 0.575 19.40 16.41 10.66
75.0 37.33 47.89 0.557 19.57 16.59 14.54
75.0 38.49 45.89 0.567 19.43 16.48 10.22
75.0 38.74 38.74 0.581 19.06 16.34 0.53
75.0 38.40 40.77 0.609 18.50 16.05 3.76
75.0 38.12 47.08 0.499 19.58 17.23 6.76
75.0 37.86 45.22 0.625 18.02 15.90 7.23
75.0 40.03 48.67 0.517 19.30 17.02 11.24
75.0 37.45 39.74 0.663 17.46 15.53 2.79
100.0 36.33 44.57 0.611 18.96 16.03 8.23
100.0 37.59 40.42 0.576 19.20 16.40 4.41
100.0 33.22 40.16 0.581 19.02 16.33 8.74
100.0 38.30 43.45 0.599 19.11 16.15 3.14
100.0 35.44 39.97 0.588 18.78 16.27 4.57
100.0 37.95 46.16 0.549 19.22 16.68 8.89
100.0 33.46 40.02 0.563 18.86 16.53 6.32
100.0 39.00 46.03 0.562 18.70 16.54 5.25
100.0 36.67 38.73 0.599 18.14 16.16 2.86
100.0 36.53 45.70 0.479 19.81 17.46 6.34
variations of the friction angle are generally small, particu-
larly for tan(/0

cv). However, the differences between tan
(/0

p), tan(/0
s) and tan(/0

cv) are very obvious. The statistical
values of the unit weight and dry unit weight are quite
close. Individual characteristics of the soil parameters c0p,
tan(/0

p), tan(/0
s), tan(/0

cv), e, c, cd and w have to be inves-
tigated separately.

As an initial step in the copula statistical analysis, the
marginal distribution functions are determined for all the
soil parameters. For example, in order to make a fair com-
parison, we choose a group of parametric statistical models
to fit the collected data. For this list, we include Weibull,
Normal, Lognormal, Logistic, Extreme value, Exponential
and Gamma models. To compare all the candidate models,
the standard Akaike Information Criterion (AIC) is uti-
lized herein as a reference. The calculation of AIC is gener-
ally given by

AIC ¼ �2l pð Þ þ 2p ð19Þ

where p is the number of parameters used in each statistical
model, and l(p) is the maximized log-likelihood for that
model. Generally speaking, the concept of AIC takes into
account both the simplicity of the model and the
goodness-of-fit. A smaller AIC value implies a better model.

Table 5 summarizes the calculated AIC values for each
of the parametric models. From the results, the best models
are Gamma for c0p, Extreme Value for tan(/0

p), Lognormal
for tan(/0

s), Normal for tan(/0
cv), Lognormal for e,
Table 3
Estimated friction angle and cohesion.

c’p
(kPa)

tan
(/p’)

c’p
(kPa)

tan
(/p’)

c’p
(kPa)

tan
(/p’)

c’p
(kPa)

tan
(/p’)

11.68 0.85 14.61 0.76 10.89 0.75 1.22 1.01
10.91 0.87 55.00 0.32 1.96 1.02 30.38 0.68
12.04 0.86 6.44 1.00 0.00 1.19 0.00 1.19
36.69 0.58 12.34 0.85 34.14 0.60 2.98 0.77
0.00 1.19 5.56 0.91 5.00 1.01 5.23 0.85
13.79 0.73 53.75 0.37 16.23 0.69 33.74 0.53
13.84 0.82 10.03 0.75 14.04 0.76 18.65 0.56
47.85 0.45 10.95 0.76 48.22 0.38 5.16 0.94
5.62 1.05 1.40 0.81 2.36 0.96 8.60 0.86
18.93 0.68 51.12 0.25 0.17 1.02 22.79 0.70

Table 4
Statistical summary of the collected soil data.

Number
of data

Mean Standard
deviation

Minimum Maximum

c0p(kPa) 40 16.35 16.38 0 54.99
tan(/0

p) 40 0.78 0.23 0.25 1.19
tan(/0

s) 40 1.03 0.15 0.80 1.35
tan(/0

cv) 40 0.78 0.05 0.65 0.91
e 40 0.57 0.05 0.45 0.71
c (kN/m3) 40 18.97 0.66 17.23 20.27
cd (kN/m3) 40 16.42 0.54 15.04 17.78
w (o) 40 8.99 4.38 0.53 19.2
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Weibull for c, Normal for cd and Weibull for w. Based on
the selected models, the statistical model parameters are
estimated by the maximum likelihood method. The results
of these parameter estimates, including the statistical errors
are presented in Table 6. As indicated by the model param-
eters, e, cd and w are quite symmetric in the distribution
density function, c and c0p have quite high skewness. The
good thing is, in the copula model, all these parameters will
be converted to their CDF values based on marginal distri-
butions. Therefore, after the transformation, the individual
parameters will all be uniformly distributed variables
between 0 and 1. Thus, the individual behavior could be
removed at this initial step before the copula modeling.
The following would be mainly focusing on the dependence
characterizations.

In order to have a full understanding of the relationships
among all the soil parameters, the dependence measure
concepts including Kendall’s tau, Spearman’s rho and cor-
relation coefficient are calculated for each of the dataset
and recorded in Table 7. As can be seen from the table,
the dependences between several pairs of data are quite
strong, namely, (c0p, tan(/0

p)), (tan(/0
s), tan(/0

cv)), (e, w)
and (c, cd). For the other pairs of data, the dependence is
not very strong. From a statistical point of view, if the
dependence is very weak, a multivariate modeling is not
very meaningful. Thus, the following study will be limited
Table 5
Calculated AIC statistics for the marginal distribution model fitting (Chi squa

Weibull Normal Lognormal

c0p(kPa) 299.8
(0.172)

340.2
(0.009)

329.2
(0.127)

tan(/0
p) �0.8646

(0.679)
0.0341
(0.556)

10.21
(0.060)

tan(/0
s) �30.04

(0.3199)
�32.51
(0.298)

�33.18*
(0.264)

tan(/0
cv) �135.4

(0.103)
�140.3*
(0.371)

�139.7
(0.349)

e �151.2
(0.003)

�151.9
(0.036)

�152.5*
(0.173)

c(kN/m3) 51.36*
(0.090)

52.12
(0.089)

55.62
(0.056)

cd (kN/m3) 49.48
(0.003)

36.38*
(0.082)

38.86
(0.080)

w (o) 188.7*
(0.822)

189.9
(0.825)

201.5
(0.001)

* The lowest AIC indicates the best model.

Table 6
Estimated model parameters for the best marginal distribution model for each

c0p(kPa) tan(/0
p) tan(/0

s) tan(

Parameter
Estimates

a = 0.5477 (0.0094)
b = 29.8625 (8.4622)

k = -0.4184
(0.181)
r = 0.2442
(0.0031)
l = 0.7228
(0.0425)

l = 0.0256
(0.0007)
r = 0.1500
(0.0004)

l =
(0.0
r =
(0.0
to the datasets (c0p, tan(/0
p)), (tan(/0

s), tan(/0
cv)), (e, w)

and (c, cd) for the asymmetric copula modeling.
A general feeling of the data scatterness can be seen in

Fig. 4. The figure indicates the datasets (tan(/0
s), tan

(/0
cv)) and (c, cd) are having positive dependence while

(c0p, tan(/0
p)) and (e, w) are having negative dependence.

This agrees well with the results in Table 7. From the plot
we can see that the dependences of these four paired data-
sets are not perfectly linear. Especially, the paired dataset
(c, cd) has some particular concentrations in its domain
(around the mean). The dependence of dataset (c0p, tan
(/0

p)) is also observed to be quite high when c0p is close
to zero which was resulting from the physical limitation
imposing positive values for the cohesion. To better under-
stand the dependences among the soil parameters, the data-
sets are transformed into the copula domain for the
analysis. Fig. 5 presents the scatter plot of these trans-
formed soil data in the copula domain. As expected, the
transformed paired soil data in the copula domain are
not perfectly symmetric. From the density plot it can be
observed that the probability density of (tan(/0

s), tan
(/0

cv)) centralizes at several parts in the copula domain
which is quite asymmetric. The probability density of (c0p,
tan(/0

p)) also shows a much higher concentration at the
minimums compared to the maximums. This also causes
asymmetric dependences in the copula domain.
re test p-value with significance level of 5% are provided in the bracket).

Logistic Extreme value Exponential Gamma

339.1
(0.133)

356.3
(0.141)

303.5
(0.130)

295.2*
(0.199)

0.6868
(0.759)

�0.8672*
(0.277)

63.01
(0.005)

5.404
(0.244)

�30.02
(0.301)

�28
(0.341)

86.92
(0.007)

�33.18
(0.276)

�139.4
(0.513)

�133.1
(0.076)

63.08
(0.001)

�139.9
(0.371)

�150.1
(0.155)

�149.8
(0.001)

39.64
(0.001)

�151.1
(0.043)

54.92
(0.029)

53.74
(0.062)

319.4
(0.001)

54.4
(0.074)

38.76
(0.278)

50.84
(0.001)

307.92
(0.001)

37.02
(0.091)

190.5
(0.793)

189.1
(0.297)

259.6
(0.001)

196.2
(0.294)

soil parameter (standard errors are provided in the bracket).

/0
cv) e c

(kN/m3)
cd (kN/m3) w (o)

0.7854
006)
0.0576
046)

l = -0.5563
(0.0083)
r = 0.0619
(0.0061)

A = 19.1829
(0.0666)
B = 48.1434
(5.7492)

l = 16.4277
(0.0581)
r = 0.3673
(0.0419)

A = 9.8905
(0.3834)
B = 4.2735
(0.5455)



Table 7
Summary of the dependences among collected soil data.

Pearson Correlation

c0p(kPa) tan(/0
p) tan(/0

s) tan(/0
cv) e c (kN/m3) cd (kN/m3) w (o)

c0p(kPa) – �0.91353 – – – – – –
tan(/0

p) �0.91353 – – – – – – –
tan(/0

s) – – – 0.36488 �0.44835 0.54173 0.44988 0.78078
tan(/0

cv) – – 0.36488 – 0.15556 �0.09402 �0.15627 0.05931
e – – �0.44835 0.15556 – �0.87407 �0.99857 �0.58744
c(kN/m3) – – 0.54173 �0.09402 �0.87407 – 0.8677 0.61339
cd (kN/m3) – – 0.44988 �0.15627 �0.99857 0.8677 – 0.57945
w (o) – – 0.78078 0.05931 �0.58744 0.61339 0.57945 –

Spearman’s qs

c0p(kPa) tan(/0
p) tan(/0

s) tan(/0
cv) e c (kN/m3) cd (kN/m3) w (o)

c0p(kPa) – �0.9116 – – – – – –
tan(/0

p) �0.9116 – – – – – – –
tan(/0

s) – – – 0.37317 �0.50544 0.59981 0.50544 0.78837
tan(/0

cv) – – 0.37317 – 0.08818 �0.11445 �0.08818 0.06323
e – – �0.50544 0.08818 – �0.86224 �0.99872 �0.58819
c(kN/m3) – – 0.59981 �0.11445 �0.86224 – 0.85366 0.6081
cd (kN/m3) – – 0.50544 �0.08818 �0.99872 0.85366 – 0.58037
w (o) – – 0.78837 0.06323 �0.58819 0.6081 0.58037 –

Kendall’s s

c0p(kPa) tan(/0
p) tan(/0

s) tan(/0
cv) e c (kN/m3) cd (kN/m3) w (o)

c0p(kPa) – �0.77864 – – – – – –
tan(/0

p) �0.77864 – – – – – – –
tan(/0

s) – – – 0.26667 �0.31282 0.39744 0.31282 0.57692
tan(/0

cv) – – 0.26667 – 0.05641 �0.08974 �0.05641 0.03333
e – – �0.31282 0.05641 – �0.67318 �0.97378 �0.41115
c (kN/m3) – – 0.39744 �0.08974 �0.67318 – 0.66382 0.42598
cd (kN/m3) – – 0.31282 �0.05641 �0.97378 0.66382 – 0.40519
w (o) – – 0.57692 0.03333 �0.41115 0.42598 0.40519 –
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To further investigate the asymmetric dependence, the
measure of the asymmetry as introduced in Section 4.1, is
computed for the paired data and presented in Table 8.
Here, the value of p is set to be infinity in the calculation
of the measure of asymmetry as given by Eq. (5). The
results show that the dataset (tan(/0

s), tan(/0
cv)) has a lar-

ger asymmetric dependence compared to the others. This
may be explained by the fact the secant friction angle /0

s

is dependent of the normal stress, as previously referred,
while /0

cv does have this dependency.
Another way of depicting this asymmetric dependence

can be done by checking the tail dependence coefficients.
By utilizing the concepts of tail dependence, the upper-

lower and lower–upper tail dependence coefficients are cal-
culated for the paired data based on Eqs. (7) and (8).
The results are plotted in Fig. 6. It is seen that the upper-

lower (ku,l) and the lower-upper tail (kl,u) dependence coeffi-
cients have some differences for all the considered datasets
when the quantile values are close to zero (e.g. u ? 0).
Generally, if any differences between the upper-lower (ku,l)
and the lower-upper (kl,u) tail dependence coefficients are
observed, the bivariate data is believed to be asymmetri-
cally dependent. Therefore, it is necessary to utilize asym-
metric copulas to model the data in this case.

Several asymmetric copulas, as introduced in Section 4,
are utilized here to model the soil data. To compare with
the symmetric copula, the commonly adopted symmetric
Archimedean copulas are also considered. Moreover, the
combination rule allows much more possible expansions
for the asymmetric copula. Thus, in order to make the
problem simpler, this study will only utilize the Archime-
dean copulas as the base copulas for the construction of
asymmetric copulas. We choose the most commonly
applied Archimedean copulas that can characterize differ-
ent tail dependences in this study, namely, Gumbel, Clay-
ton and Frank copulas. Following the construction rules,
the asymmetric copulas are established based on these
selected copulas. More specifically, the following categories
of copulas are been investigated:

1. Symmetric copulas: The original symmetric Archime-
dean copulas are considered herein. They are one
parameter copulas, Gumbel, Clayton and Frank
copulas.

2. Asymmetric copulas constructed by products: We adopt
the Khoudraji’s device for the construction of asymmet-
ric copulas. Following Eq. (10), we combine two base
copulas from the selected Archimedean copulas. This
gives three combinations namely, Gumbel-Clayton,
Gumbel-Frank and Clayton-Frank. For the individual
functions, the Type I function in Table 1 is selected
for the asymmetric copula construction.



Fig. 5. Empirical probability density of (c0p, tan(/0
p)), (tan(/0

s), tan(/0
cv)), (e, w) and (c, cd) in the copula domain.
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3. Asymmetric copulas constructed by linear convex combi-

nations: This group of asymmetric copulas is constructed
by the rules introduced in Section 4.3. The selected base
copulas for constructing this asymmetric copula are
Gumbel, Clayton and Frank copulas.

4. Skewed Gaussian copula: The last asymmetric copula has
its exact formulation as given in Section 4.4. No base
copulas are needed in this category.

Meanwhile, it is noted the Gumbel, Clayton and Frank
copulas are usually used to feature positive dependences.
For bivariate data having negative dependences, the use
of these copulas will have problems in the parameter esti-
mation. Therefore, for the ease of modeling, a slight change
is made to the negative dependent paired datasets (c0p, tan
(/0

p)) and (e, w) in the copula modeling. Instead of directly
modeling the original data, the copula models are utilized
to model the (�c0p, tan(/0

p)) and (�e, w). As copula model
is established based on variables’ cumulative distribution
function values, such change of magnitude will not affect
the quality of a copula model. However, the marginal dis-
tribution models for the individual variables will remain
unchanged.

The results for the AIC statistics for all the considered
models fitting to (�c0p, tan(/0

p)), (tan(/0
s), tan(/0

cv)), (�e,
w) and (c, cd) are reported in Table 9. The model parame-
ters are estimated by the method of minimization of
Cramer-von Mises statistic, which is explained in Appendix
A. The best models among all the candidate models are
marked in the tables. The results show that the best copula
models for (�c0p, tan(/0

p)), (tan(/0
s), tan(/0

cv)), (�e, w) and
(c, cd) are Gumbel-Clayton Type I, Gumbel-Frank Type I,
Frank and Gumbel-Clayton Type I copulas. Generally, the
asymmetric copulas show an AIC value lower than the one
parameter Archimedean copulas except for the dataset (�e,
w). For example, the dataset (�e, w) is very symmetric in
the copula domain as indicated previously in Table 8.
Thus, the use of asymmetric copulas does not show clear
advantages in this case. For the other three datasets, the
asymmetric copulas all showed a lower AIC value. The
quality of asymmetric copulas highly relies on the utilized
base copulas. For instance, in modeling the data (tan
(/0

s), tan(/0
cv)), the Gumbel and Frank copulas show better

performance compared to Clayton copula when they are
used as base copulas (e.g. the AIC value in either
Clayton-Gumbel Type I or Clayton-Frank Type I is larger
than Frank-Gumbel Type I). This indicates the dependence
characteristic in Clayton copula may not be very suitable
for the data (tan(/0

s), tan(/0
cv)). Despite the selection of

base copulas, the construction rules are also a dominant
factor for the quality of asymmetric copulas. The AIC val-
ues show that the overall performance of asymmetric cop-
ulas constructed by Khoudraji’s device is quite prominent.
However, the asymmetric copulas constructed by linear



Fig. 6. Estimated empirical tail dependences for (�c0p, tan(/0
p)), (tan(/0

s), tan(/0
cv)), (�e, w) and (c, cd).

Table 8
Measure of asymmetry in the bivariate data (�c0p, tan(/0

p)), (tan(/0
s), tan

(/0
cv)), (�e, w) and (c, cd).

(�c0p,
tan(/0

p))
(tan(/0

s),
tan(/0

cv))
(�e, w) (c, cd)

Measure of asymmetry g1 0.011 0.033 0.009 0.012
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convex combinations are not very desirable as AIC values
are quite large. This indicates the way of constructing the
asymmetric copulas by linear convex combinations is not
adequate for modeling the soil data dependences in this
case. Compared to these combined asymmetric copulas,
skewed Gaussian copula gives moderate performance.
However, the key feature of using skewed Gaussian copula
is that no base copulas are needed. It does not need to con-
sider the selections of base copulas which might not be
appropriate for the data.
To further check the quality of fitted asymmetric copu-
las, a comparison is made between the empirical data and
the simulated data from the established models. Based on
the best copula models in Tables 9-12, the simulated data
for (c0p, tan(/0

p)), (tan(/0
s), tan(/0

cv)), (e, w) and (c, cd)
are plotted in Fig. 7. The simulations are performed based
on the method introduced in Appendix A. It can be seen
the simulated data and the original data can fit each other
very well in the scatter plot. The concentrations of the sim-
ulated data generally overlap the concentrations of original
data in all the plots. Even the nonlinear dependences
between the variables are also well handled by the asym-
metric copula, see (tan(/0

s), tan(/0
cv)). A more clearer view

of the fitting quality can be seen from the contour plots of
the probability densities of the empirical data and the sim-
ulated data. Generally, the contour line could be used as an
indicator of the quality in predicting extreme values in the
bivariate data. The selection of the most accurate multi-



Fig. 7. Comparison of scatterplots between original data and simulated data for (c0p, tan(/0
p)), (tan(/0

s), tan(/0
cv)), (e, w) and (c, cd).

Table 9
Comparison of copula parameter estimates and AIC statistics to the data of (�/0

p, tan(/0
p)), (tan(/0

s), tan(/0
cv)), (�e, w) and (c, cd).

Copula type AIC

(�c0p, tan(/0
p)) (tan(/0

s), tan
(/0

cv))
(�e, w) (c, cd)

1. One parameter copula Gumbel �63.62 6.574 1.56 �28.9
Clayton �57.62 9.05 0.442 �33.28
Frank �56.34 5.848 �2.504* �23.5

2. Asymmetric copulas constructed by products Gumbel-Clayton Type I �64.9* 6.502 �1.946 �35.5*
Gumbel-Frank Type I �64.4 5.764* �0.392 �24.92
Frank-Clayton Type I �62.96 10.312 0.358 �31.04

3. Asymmetric copulas constructed by linear convex
combinations

Gumbel-LCC �26.8 13.198 11.336 �4.626
Clayton-LCC �27.08 14.796 22.182 0.256
Frank-LCC �22.94 11.428 1.822 �8.506

4. Skewed copula Skewed Gaussian �44.02 11.936 8.61 �19.542

* Minimum AIC value indicates the best model in each type.

Table 10
Comparison of the failure probability using different copulas (B = 2 m).

Gaussian Gumbel Clayton Frank Gumbel-Clayton Type I

Failure probability 9.05 ∙ 10�4 2.59 ∙ 10�3 3.05 ∙ 10�5 2.49 ∙ 10�3 1.44 ∙ 10�4

Y. Zhang et al. / Soils and Foundations 59 (2019) 1960–1979 1973



Fig. 8. Comparison of contour plot between original data and best fitted copula models for (c0p, tan(/0
p)), (tan(/0

s), tan(/0
cv)), (e, w) and (c, cd) (black line

indicates the empirical data; dash line indicates the fitted model).
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variate model has to be made based on the tail fitting capa-
bilities. Fig. 8 shows four levels of the probability density
function values for both the original data and the simulated
data. As expected, the quality of the model fitting to the
empirical data is decreasing with the drop of contour level
values. Nevertheless, the similarities of the contour lines
are still quite high in all the cases. For example, as for (e,
w), the contour lines from both original data and the sim-
ulated data can be very well fitted even for level value
equals to 0.01. The rest adopted asymmetric copulas also
show prominent performance in the contour fitting. These
have further validated that the asymmetric copulas are very
applicable to soil data modeling, and also demonstrating
advantages for geotechnical reliability analysis.

In order to demonstrate the significance of using the
asymmetric copulas, a reliability analysis is performed for
a typical geotechnical problem by using the constructed
copulas. In this example, a common strip foundation on
the granite residual soil is been analyzed, see Fig. 9. The
foundation is located 1 m below the ground surface,
D = 1 m and the width of the foundation is 2 m,
B = 2 m. The filled soil has a unit weight of 17.5 kN/m3

whereas the soil cohesion c0p and friction angle tan(/0
p)

are assumed to be characterized by the copulas constructed
in Table 9. In this example, the load exerted on the founda-
tion is set at Q = 500 kN/m. The design formula for calcu-
lating the bearing capacity of the foundation is defined as

qult ¼ c0p � Nc þ q0 � Nq þ 1

2
� c � B � N c ð20Þ
where the capacity factors Nc,Nq and N c are depending on
the friction angle of the ground soil and estimated by

Nq ¼ ep�tan/
0
p � tan2 45

� þ /0
p

2

	 

ð21Þ



Fig. 9. Strip foundation reliability analysis.
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Nc ¼ Nq � 1
� � � cotg/0

p ð22Þ
N c ¼ e

1
6	 pþ3p2tan/0

pð Þ � tan/0
p

� �2p=5 ð23Þ
The effective stress at the base of the foundation q0 , in

the present case, is calculated by

q
0 ¼ D� c ð24Þ
where D is the depth of the footing and c is the unit weight
of the residual soil. Thus, the ultimate vertical load
strength of the foundation is determined by

Qult ¼ qult � B ð25Þ
Therefore, the overall performance function can be for-

mulated by the following equation.

G ¼ Qult � Q ð26Þ
In reliability calculations, Monte Carlo simulations with

106 samples are performed to calculate the failure probabil-
ity of Eq. (26). The associated copulas as listed in Table 9 are
utilized in the reliability analysis separately. In order to show
the significance of using the asymmetric copulas, a compar-
ison is made on the failure probability between using the
symmetric copulas and asymmetric copula. The computed
results is shown in Table 10. It can be seen the failure prob-
abilities differs quite a lot among the constructed copulas.
The highest failure probability is 2.59 ∙ 10�3 in Gumbel cop-
ula and the lowest failure probability is 3.05 ∙ 10�5 in Clay-
ton copula. The asymmetric copula produces a failure
probability of 1.44 ∙ 10�4 which is a moderate value among
all the copulas. However, it is noted the asymmetric copula
could produce a failure probability that is very different from
the symmetric copulas. The results of failure probability is
very sensitive to the adopted copula. Therefore, even the
goodness-of-fit statistics (e.g. AIC) is very close, it could
not simply imply a similar value in the failure probability.
Either symmetric or asymmetric dependences could have
great influences in the safety assessment.

In the final part of this study, a short reference is made
to discuss the possibility of extending the current bivariate
asymmetric copulas to multivariate ones. This extension
can be achieved with the aid of ‘‘pair copula construction
(PCC)” techniques. There is an extensive literature on
PCC techniques and their properties, for example, see Joe
(2014), Bedford and Cooke (2001) and Aas et al. (2009).
The key idea is to derive a general principle for decompos-
ing a multivariate distribution into bivariate copulas and
the distribution margins. The most common way is to uti-
lize the conditional distributions in relating the multivari-
ate distribution to bivariate distributions. However, the
accuracy of a multivariate model highly relies on the
choices of copulas in each step. A ‘‘clever choice” would
make the multivariate model much more adequate. For
more advanced techniques in PCC, one can refer to some
technical books in discussing the construction of vine cop-
ulas, for example, see (Matthias and Mai, 2017).

It should be pointed out the results obtained from the
present study can only be interpreted for the collected soil
data. The soil parameter may exhibit different dependences
in other situations when geological/geotechnical conditions
change. Moreover, it also should be realized the sample size
in this study is quite small. Such small sample size dataset
sometimes may not be enough to represent the soil param-
eters. Thus, the conclusions may be distorted in other situ-
ations. For more references discussing the influence of data
scarceness uncertainties to the multivariate modeling, one
can read Ching et al. (2010), Beer et al. (2013), Ching
and Phoon (2014a,b) and (Ching and Phoon 2015). In fact,
in this study, the asymmetric copulas are only proved to be
more accurate in depicting the data when they are asym-
metrically dependent. In this context, if the geotechnical
data is not expected to be asymmetrically dependent, then
the application of asymmetric copulas is not very neces-
sary. Although this analysis is only valid for the selected
dataset, the results can be used to explain significant fea-
tures of using asymmetric copulas for modeling soil data
in general. Meanwhile, we should also note the asymmetric
copulas are more flexible compared to the traditional cop-
ula models. Various types of base copulas and individual
functions can be chosen and implemented for the construc-
tion of asymmetric copulas. This flexibility provides the
asymmetric copula a great feature in its application to
the data analysis. The findings of this study can help
geotechnical engineers or researchers to have a better
understanding of the soil data. The guidelines presented
in this paper can support the design and analysis of
geotechnical problems when considering soil dependences.

7. Conclusions

In this paper, the soil data have been analyzed by means
of the asymmetric copulas in a multivariate setting. The
fundamental formulation and theoretical basics of asym-
metric copulas have been reviewed in details regarding
the modeling of soil parameters. These include the concepts
of measuring the asymmetric dependences and tail depen-
dences. Several ways of constructing an asymmetric copula
were introduced. These introduced asymmetric copulas
were then compared with several Archimedean copulas
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on the modeling of soil parameters collected from a site
located in Portugal. The soil parameters are divided into
four groups of bivariate dataset. The copula models were
constructed for each of the data group and compared
based on the goodness-of-fit statistics. The results showed
that the asymmetric copula can provide more appropriate
characterizations of the asymmetric dependences and tail
dependences in the soil data. It was found that the asym-
metric copula can also provide accurate predictions of
extreme values from the empirical data. However, if the soil
data does not possess an obvious asymmetric dependence,
the use of asymmetric copula would not be very necessary.
The study also demonstrated that the asymmetric copulas
can be quite powerful in capturing the extreme contours.
Therefore, it is expected that asymmetric copula can con-
tribute to improve the reliability analysis or risk assessment
of geotechnical problems due to soil data modeling. Future
work seems necessary to investigate the ways of selecting
base copulas and individual functions in the construction
of asymmetric copulas. Also, applications of the obtained
asymmetric copula to real geotechnical problems, as well
as different site data, may prove to have relevant interest
regarding Geotechnical Reliability Based Design.
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Appendix A. Parameter estimation and simulation of

asymmetric copulas

In this section, a brief introduction of the fundamentals
of parameter estimation and simulation of asymmetric cop-
ulas is provided. For more detailed fundamental basics and
theoretical proofs, one can read from Nelsen (2006). This
section will provide some discussions only on a simplified
bivariate problem. The same concept can be easily
expanded to high dimensional models.

Many parameter estimation methods have been devel-
oped by the former researchers. The most well known
method is the maximum likelihood method. The concept
of maximum likelihood method is to maximize the likeli-
hood value of a distribution function when it is fitted to
the empirical data. The idea of this method is quite straight
forward and it has been widely used to estimate the param-
eters for copulas having only one parameter. However,
when multiple parameters exist in the copula, the maxi-
mum likelihood method becomes quite difficult as the max-
imization tend to be quite tedious. The computation can
become quite cumbersome for most computers.

An easy way to estimate the parameters of copulas hav-
ing multiple parameters can be done through the distance
based estimation method. For this concern, the Cramer-
von Mises statistic S can be employed here to seek the most
appropriate model parameters H ¼ h1; � � � ; hnf g of the cop-
ula. In Cramer-von Mises statistics, S generally calculates
the distances between the empirical copula distribution
function and the theoretical copula distribution function.
The minimization of this statistic will produce the most
desirable estimates for the copula parameters. For instance,
in estimating the parameters for a bivariate copula, the
Cramer-von Mises statistic based estimation method can
be formulated as

H ¼ arg
h1;:::;hn

minS

¼ arg
h1;:::;hn

min
XN
i¼1

Cempirical ui1; u
i
2

� �� CH ui1; u
i
2

� �� �2 ðA:1Þ

where N is the number of data, Cempirical is the empirical
copula function, CH represents the fitted parametric copula
and H stands for the set of copula parameters that need to
be estimated. Thus, the concept is to minimize the distances
of cumulative distribution functions by evaluating the
statistic for each of the observed data point (ui1, u

i
2).

The simulation method for asymmetric copulas can fol-
low the traditional algorithm used for symmetric copulas.
For instance, the most commonly applied simulation
approach is the conditional distribution approach which
is developed based on the Rosenblatt transform (Devroye
1986). Similar concepts for simulating random vectors
from asymmetric copulas are also developed by other
researchers (Matthias and Mai, 2017). The key weakness
of the conditional distribution based simulation approach
is that it requires a root finding procedure. If the condi-
tional distribution can be easily derived from the copula
function, this simulation technique can be well applied.
Unfortunately, due to the complex formulation of an
asymmetric copula, the derived conditional distribution is
quite complicated. As such, the conditional distribution
based simulation is too cumbersome. There are many other
ways of simulating an asymmetric copula. Here we will
introduce a simple way to simulate data from an asymmet-
ric copula constructed by products. For example, suppose
that we need to generate a set of n-dimensional multivariate
data from an asymmetric copula constructed by products
by two base copulas (e.g. m = 2) and type I individual func-
tion (see Section 4.2):

Cproduct u1; :::; unð Þ ¼ C1 uh11 ; :::; u
hn
n

� �
C2 u1�h1

1 ; :::; u1�hn
n

� �
ðA:2Þ
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Simulating these uniform variates from this copula can
be accomplished through the following steps:

1. Generate n uniform variates v1; � � � ; vi; � � � ; vkð Þ from the
first base copula C1(.);

2. Generate n uniform variates t1; � � � ; ti; � � � ; tkð Þ from the
second base copula C2(.);

3. Then the random data u1; � � � ; unð Þ from the asymmetric
copula can be obtained by the following

ui ¼ max v1=hii ; t1= 1�hið Þ
i

n o
for i ¼ 1; . . . n: ðA:3Þ
Fig
(0.5
One can easily see that the other copulas having dif-
ferent number and types of base copulas can also be
included in this simulation technique. With the same
concept, it is straightforward to formulate the simula-
tion algorithm for other asymmetric copulas con-
structed by products with different types of individual
functions.
. A.1. Scatter plot of 5000 samples from bivariate asymmetric Gumbel-F
,0.5) (middle) and (h1, h2) = (0.4,0.7) (right).
Lastly, in order to facilitate the practical use of asym-
metric copula for geotechnical engineers, it is worth to
mention some statistical software which already contains
certain simulation techniques for the asymmetric copula
modeling. For example, the package named ‘‘copula” in
R (Yan 2007; Hofert et al., 2014) can easily perform the
simulation of Khoudraji copula. For instance, for simulat-
ing a bivariate asymmetric Gumbel-Frank Type I copula
(e.g. like the one in Table 9), the following code can be
directly used in R:
A general view of the simulated data can be seen in scat-
ter plot given in Fig. A.1.

The fitting of asymmetric copulas by using the Khou-
draji’s device can also be done by using the ‘‘copula” pack-
age. The following code can be used to estimate the
parameters for a bivariate asymmetric Gumbel-Frank
Type I copula:
rank Type I copula with parameters (h1, h2) = (0.7,0.4) (left), (h1, h2) =



Fig. A.2. Contour plot of 5000 samples from bivariate asymmetric Gumbel-Frank Type I copula with parameters (h1, h2) = (0.7,0.4) (left), (h1, h2) =
(0.5,0.5) (middle) and (h1, h2) = (0.4,0.7) (right).
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The associated likelihood values can be simply deter-
mined by typing the following code in R:

However, the speed of the parameter estimation calcula-
tion highly relies on the starting values. An appropriate
starting value could reduce the calculation time tremen-
dously. Meanwhile, as mentioned in Section 6, it should
be emphasized the selection of the base copulas is very
important in constructing the asymmetric copula. Wrong
use of the base copulas may lead to undesirable results in
the modeling (see Fig. A.2).
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