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Abstract

Offshore wind energy is of special importance in order to meet the ambitious goals
to produce climate-neutral energy. Therefore, an accelerated installation of offshore
wind turbines is required. The design is to be achieved with respect to standards and
guidelines. Especially probabilistic design methods allow an accurate and economic
structural design.

Not only the environmental conditions vary during the lifetime, but the short-term
loads are also subject of random scattering. For the design of offshore wind turbines,
the required load simulations are usually carried out in time domain. In comparison, it is
less time-consuming to obtain loads by means of frequency-domain analysis. This is very
beneficial for the probabilistic design which requires significantly more load simulations
in time domain. However, non-linearities and time-variant behaviour of offshore wind
turbines cannot be represented well during the load simulation in frequency domain.

Extreme loads and fatigue loads can be calculated by means of frequency-domain ana-
lysis. The determination of the distribution functions of extreme values is well estab-
lished on a theoretical background. As for the fatigue design, different empirical models
exist which describe the distribution function of fatigue loads on the basis of frequency-
domain analysis. In this thesis, a new model is introduced which leads to more accurate
results.

Since frequency-domain analysis is not always suitable, the transformation of signals
given in frequency domain is required to generate respective random time series. As for
the design of offshore wind turbines, only limited recommendations are stated in stand-
ards on how to carry out this transformation. Detailed analysis shows that accurate
results with respect to wave-induced loads are also obtained for coarser discretisation
of spectra. The resulting loads and their statistical properties are still accurate, while
the numerical effort can be reduced in comparison to the stated recommendations.

On the basis of theoretical findings, time series from load simulations of offshore wind
turbines are analysed regarding their spectral properties. Investigations are carried out
to evaluate the agreement between the extreme load and fatigue loads which are either
simulated or calculated on the basis of the spectral properties. It is also shown that
currents within sea states lead to increased fatigue loads.

Key words: Offshore wind energy, load simulation, frequency-domain analysis, fatigue,
probabilistic design
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Kurzfassung

Offshore-Windenergie ist von besonderer Bedeutung, um die ehrgeizigen Ziele der kli-
maneutralen Energieerzeugung zu erreichen. Diese machen den beschleunigten Ausbau
von Offshore-Windenergieanlagen erforderlich. Die Strukturauslegung erfolgt unter der
Berücksichtigung von Normen und Richtlinien. Hier ermöglichen probabilistische Be-
messungsmethoden eine detaillierte und wirtschaftliche Strukturauslegung.

Nicht nur die Umweltbedingungen streuen während der Lebensdauer, sondern auch die
Belastungen bei konstanten Umweltbedingungen unterliegen zufälligen Streuungen. Für
den Entwurf von Offshore-Windenergieanlagen werden die erforderlichen Lastsimulatio-
nen meist im Zeitbereich durchgeführt. Im Vergleich dazu ist die Ermittlung der Lasten
im Frequenzbereich weniger zeitaufwändig. Dies ist sehr vorteilhaft für den probabilisti-
schen Entwurf, der deutlich mehr Lastsimulationen im Zeitbereich erfordert. Allerdings
können Nichtlinearitäten und das sich im Kurzzeitbereich ändernde Strukturverhalten
von Offshore-Windenergieanlagen bei der Lastsimulation im Frequenzbereich nicht gut
dargestellt werden.

Extremlasten und Ermüdungslasten können mit Hilfe der Frequenzbereichsanalyse be-
rechnet werden. Die Bestimmung der Verteilungsfunktionen von Extremwerten basiert
auf theoretischen Grundlagen und ist schon bekannt. Für die Ermüdungsauslegung gibt
es verschiedene empirische Modelle, die die Verteilungsfunktion von Ermüdungslasten
auf der Grundlage der Frequenzbereichsanalyse beschreiben. Es wird ein neues Modell
vorgestellt, das zu genaueren Ergebnissen führt.

Für den Fall, dass Lastsimulationen im Frequenzbereich nicht möglich sind, ist eine
Übertragung der im Frequenzbereich gegebenen Signale erforderlich, um zufällige Zeitrei-
hen zu erzeugen. Für die Auslegung von Offshore-Windenergieanlagen gibt es in den
Normen nahezu keine Empfehlungen, wie diese Übertragung durchgeführt werden soll.
Eine detaillierte Analyse zeigt, dass auch bei gröberer Diskretisierung der Spektren
genaue Ergebnisse von Wellenlasten erzielt werden. Die resultierenden Lasten und ihre
statistischen Eigenschaften haben eine hinreichende Genauigkeit, während der numeri-
sche Aufwand im Vergleich zu den angegebenen Empfehlungen reduziert ist.

Auf der Grundlage der theoretischen Erkenntnisse werden Zeitreihen aus Lastsimu-
lationen von Offshore-Windenergieanlagen hinsichtlich ihrer spektralen Eigenschaften
analysiert. Es werden Untersuchungen durchgeführt, um die Übereinstimmung zwischen
den Extremlasten und den Ermüdungslasten zu ermitteln, die entweder aus Zeitreihen
bestimmt oder auf Basis der spektralen Eigenschaften berechnet sind. Es wird zudem
gezeigt, dass Strömungen im Seegang zu erhöhten Ermüdungsbelastungen führen.

Schlagwörter: Offshore-Windenergie, Lastsimulation, Frequenzbereichanalyse, Ermü-
dung, probabilistische Strukturauslegung
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1 Introduction

1.1 Motivation

The environmental awareness of the climate change led to international and national
agreements, aiming to reduce the emission of greenhouse gases. In order to achieve
this aim, the further development of and expansion of renewable-energy supply devices
for the electrical power production is substantial. For instance, the current version of
the German Renewable Energy Sources Act (EEG, 2023) contains statutory targets of
a share of renewable energy in gross final electricity consumption of at least 80% in
2030. Besides the further installation of renewable-energy supply devices onshore, the
nominal power capacity of offshore wind turbines shall be raised to 30GW in 2030 and
to 40GW in 2045 (WindSeeG, 2023). Since the erection of the first German offshore
wind park alpha ventus in 2010 and until the end of 2022, offshore wind turbines with a
cumulative electrical power of almost 8.1GW were installed in the German North Sea
and Baltic Sea (Deutsche WindGuard GmbH, 2023). In order to meet the targets stated
by EEG (2023), both the technical development and the economical competitiveness of
offshore wind turbines are essential.

Due to economical and technical reasons, bottom-fixed offshore wind turbines are pre-
ferred for water depth of up to 50m. Monopiles and jackets are the preferred sub-
structures for offshore wind turbines (Seidel, 2014a), which are shown in Fig. 1.1. The
stated definitions of the components are in accordance with those of BSH (2015). Other
types of substructures are tripods and gravity-based foundations. Nowadays these types
are seldomly used as substructure for offshore wind turbines. Floating offshore wind
turbines are considered as more economic for water depths greater than 50m.

Monopile substructures, as shown in Fig. 1.1 (left) are steel tubes with diameters greater
than approximately 5m, which are driven into the seabed. The transition piece is
connected to the monopile either by a grouted connection or by a ring-flange connection.
Jacket substructures, shown in Fig. 1.1 (right) are lattice-type structures consisting
of steel pipes which are connected via welded tubular joints. They are connected to
foundation piles driven into the seabed via grouted joints. The transition piece is usually
part of the jacket substructure. Instead of driven piles, so-called suction buckets can
also be used for the connection of the substructures to the soil. Appurtenances such as
boat landings for accessibility of the offshore wind turbine and J-tubes, containing and
protecting power cables, are attached to the substructure.

The tower, consisting of tower segments with a height of about 30m, is mounted on
top of the transition piece. On top of the tower, the rotor-nacelle assembly consisting of
the nacelle and the rotor with usually three rotor blades is installed. The connections
between the transition piece, the tower segments, and the nacelle are usually connected

1



2 Chapter 1. Introduction

Figure 1.1: Offshore wind turbines with monopile substructure (left) and jacket sub-
structure (right)

via ring-flange connections. The assembly of foundation piles, substructure, and tower
is referred to as support structure.

Compared to onshore sites, steadier and less-turbulent wind conditions are found off-
shore, which is more favourable for the production of energy. However, the logistic,
transport, installation, and maintenance of offshore wind turbines are more challenging
and therefore require greater expenses. The harsh offshore conditions are also decisive
for the structural design as the offshore wind turbines have to withstand the severe con-
ditions of the sea states. Exemplarily, offshore wind turbines of the offshore wind park
alpha ventus at various dates are shown in Fig. 1.2 to illustrate the different weather
conditions which offshore wind turbines have to face.

Figure 1.2: Offshore wind turbines of the offshore wind park alpha ventus ©FuE-
Zentrum FH Kiel GmbH
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Offshore wind turbines are designed for a planned lifetime of at least 25 years. Due
to the loads resulting from wind, wave, and operation of the offshore wind turbine,
the support structures of offshore wind turbines are subjected to up to several hun-
dreds of millions of load cycles. For the structural design, the structural members of
offshore wind turbines are to be designed such that neither extreme loads or extreme
deformations nor fatigue loads exceed the respective resistance. In order to determine
the extreme loads and fatigue loads, load simulations in time domain are to be carried
out. The load simulations are based on design load cases which are defined in respect-
ive standards (IEC 61400-3-1, 2019; DNV-ST-0437, 2016). Especially the design load
cases covering the fatigue design require several tens of thousands of load simulations
to cover the various combinations of different wind velocities, wind directions, sea-state
conditions, and wave directions which potentially are to occur during the considered
lifetime. This high number of simulations requires a very high computational effort.

Usually, the semi-probabilistic approach is applied for the structural design of off-
shore wind turbines. Here, inaccuracies of loads, material properties, and modelling are
covered by design values which include partial safety factors. The probabilistic design
allows a more accurate design and thus a more economic design (Hübler, 2019). There-
fore, probabilistic models are to be defined which describe the random properties. In
general, the probabilistic models to be considered can be divided into the following
three classes:

1 Structural and structural-dynamic properties The structural properties cover the
structure itself, here the offshore wind turbine, as well as its structural-dynamic
interaction with the environment, e.g. the soil-structure interaction. Changes of the
structural-dynamic properties of the offshore wind turbine during its lifetime include
added masses, e.g. marine growth, and variable stiffness of the structural model. For
example, stiffness changes occur due to scour development at the foundation piles.
Examples of structural properties to be modelled are materials as well as soil and
soil-structure interaction (Schmoor, 2017).

2 Weather conditions The describing parameters of wind fields and sea states are con-
sidered as constant for certain time spans. They change over the course of time. The
occurrence frequencies of the different parameters to describe the weather conditions
are usually summarised in scatter tables which show the long-term statistics as well
as the combination occurrence frequencies of the different parameters.

3 Random loads The time series of wind fields and sea states for certain values of the
describing parameters are not constant, but they are random processes, while the
general parameters such as mean wind velocity or the severity of the sea state are
constant within a specific weather window. The resulting load time series acting on
an offshore wind turbine are also random processes, from which the extreme loads
and fatigue loads are to be determined for the structural design.

The different probabilistic models within classes are to be simulated for the probabilistic
design. As for the class 3, statistics of loads only can be derived from simulation results
with the same structural properties and the same weather conditions. Therefore, the
time series must be of sufficient length such that the decisive distribution functions
of extreme loads and fatigue loads can be derived accurately from the signals. For
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simulation in time domain, the number of required load simulations is enormous and
leads to a strongly increased computational effort.

In comparison to time-domain simulations, load simulations in frequency domain re-
quire significantly less computational effort. Frequency-domain analysis is especially
suitable for the calculation of the structural-dynamic response due to random Gaus-
sian loads. So-called spectra of the structural-dynamic response are determined which
describe the signal as superposition of sinusoidal wavelets with different wave energy
and wave frequency. The distribution functions of extreme loads and of fatigue loads
can be obtained on the basis of these resulting spectra. While several time series or one
long time series is required for one set of certain structural properties and weather con-
ditions, only one load simulation in frequency domain is required in order to determine
the probabilistic models.

Frequency-domain analysis of offshore structures is well established in the offshore
industry for oil- and gas applications (Barltrop and Adams, 1991). Linearised systems
of equations are to be solved in frequency domain. Structural non-linearities, such as
soil-structure interaction, cannot be modelled accurately. As for offshore wind turbines,
the behaviour of the controller and the resulting wind-induced loads acting on the rotor
are non-linear, too. The load assumptions are simplified. Up to now, load simulation in
frequency domain is only applied for the very early design stages for a rough estimation
of fatigue loads (Seidel et al., 2016).

1.2 Objective

The work carried out within this thesis aims to develop and improve methods to
estimate the distribution functions of extreme loads and fatigue loads on the basis
of frequency-domain analyses. Existing methods are only suitable for random signals
which follow a Gaussian distribution. It is shortly analysed how the respective probab-
ilistic models of extreme loads and of fatigue loads can be adjusted to random signals
which are not Gaussian-distributed. Within the context of probabilistic design, vari-
ations of structural-dynamic behaviour over the lifetime of offshore wind turbines as
well as the long-term weather conditions which offshore wind turbines have to face are
also described.

It is not possible to carry out the load simulation of offshore wind turbines in frequency
domain. Hence, simulations in time domain are required, while the random loading
acting on the structural model is usually obtained via inverse Fourier transformation of
signals provided in frequency domain. Only limited practical recommendation for the
transformation of signals in frequency domain to time domain are provided in standards
and guidelines. Hence, an extensive study is carried out to obtain suggestions on an
accurate yet time-effective transformation. Due to the importance of extreme loads and
fatigue loads for the structure design of offshore wind turbines, the transformation shall
not effect the distribution function of these loads.
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1.3 Structure of the thesis

Following this introduction, the basics of the analyses of signals in time- and frequency
domain are presented in Chapter 2. Methods of stochastic analysis are described. A
special emphasis is put on the statistical description of very high, rarely occurring
values within signals.

Loads acting on offshore wind turbines are described in Chapter 3. Besides the meteor-
ological and oceanographic conditions as well as their long-term statistics, the impact
of structural alterations occurring during the lifetime of offshore wind turbines are
shortly discussed. As continuation, Chapter 4 presents the methodologies of structural
design and the load simulation of offshore wind turbines. Simulations in time domain
and frequency domain are described for the load simulations.

The approaches to determine the extreme loads and fatigue loads on basis of load sim-
ulation in frequency domain are shown in the following chapters. Chapter 5 shortly
presents the stochastic description of extreme loads in frequency domain. Fatigue loads
in frequency domain are discussed in Chapter 6. A new approach to determine the distri-
bution function of fatigue loads on the basis of frequency-domain analysis is introduced.
It is compared to existing approaches. Both chapters also cover how non-Gaussian sig-
nals are to be handled.

Existing approaches to transfer signals presented in frequency domain into time domain
are discussed in Chapter 7. Recommendations are stated for an efficient and appropriate
transformation.

Studies of the load simulation of offshore wind turbines are carried out in Chapter 8.
Different methods to extract spectral properties from time series and their effect on
extreme and fatigue loads are discussed. Additionally, the impact of currents on fatigue
loads is analysed.

The analyses performed within this thesis and the derived results are summarised in
Chapter 9. Additionally, an outlook on possible future investigations is given.





2 Analysis of signals

Loads acting on offshore wind turbines and their structural responses vary in time. It is
sufficient to model the behaviour of the respective time series as random or stochastic.
General statistical information such as mean value, distribution type as well as min-
imum value, maximum value, and peak values can be extracted from given time series.
Such information allows the structural design as well as further detailed analysis of the
obtained data. An exact estimation of these statistical properties mentioned is almost
impossible due to the stochastic nature of the time series. Especially the stochastic eval-
uation of the very high values and of the extreme values which are of special importance
for the structural design requires special attention, but it is prone to uncertainties due
to the commonly limited data set.

Random signals are presented as time series in time domain and as spectra in frequency
domain, respectively. Considering the time series as superposition of sinusoidal wavelets,
the spectra contain the information of these wavelets. Random time series which possess
the same constant characteristics can be represented by one spectrum. Randomness of
the time series is neglected in spectral representation of the signal.

In the following, basics of the description of time series in frequency domain as well as
the basics of statistical analysis are introduced to the reader. The analysis of extreme
values and the analysis of peak values for the determination of fatigue loads in frequency
domain are described in detail in Chapter 5 and Chapter 6, respectively.

The signals mentioned in the following are described as time-depending. The following
relationships are also valid for spatial descriptions.

2.1 Analysis of random signals in time- and frequency
domain

A random process is considered as stationary when its statistical parameters remain
constant for every realisation and for a certain duration. For example, sea states are
assumed to be stationary for a duration of three hours up to six hours (DNV-ST-0437,
2016). The characteristics of stationary processes and their analyses are described in
the following. Here, it is distinguished between random processes in time domain and
random processes in frequency domain.

2.1.1 Fourier analysis

Signals can be represented in time domain as well as in frequency domain. It is possible
to transform a signal from time domain in frequency domain, and vice versa. This is
referred to as Fourier transformation. Basics of the Fourier analysis are described in the

7
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following. Detailed information on Fourier analysis is to be found in general textbooks
such as Butz (2011) and Puente León et al. (2011).

Fourier series represent a signal as the superposition of single sinusoidal wavelets. They
describe both periodically repeating signals as well as random signals, which are non-
periodic. The Fourier series of a signal g (t) can be stated in two ways, while each of
these wavelets is defined by its wave frequency and amplitude,

g (t) = a0 +
N∑
n=1

an · cos (ωn · t+ ϕn) (2.1)

g (t) = a0 +
N∑
n=1

ac,n · cos (ωn · t) + as,n · sin (ωn · t) , (2.2)

with amplitudes ac,n and as,n, magnitude an, wave frequency ωn, and phase angle ϕn
associated to the sinusoidal wavelet n. The wave energy of a wavelet is calculated as
1
2 · a

2
n. The wave frequencies are positive. a0 denotes the mean value of the signal. The

magnitudes an =
√
a2
c,n + a2

s,n and the phase angles ϕn = arctan (as,n/ac,n) according
to Eq. (2.1) are obtained by combining the trigonometric terms with equal wave fre-
quencies as given in Eq. (2.2). The coefficients ac,n and as,n for each frequency ωn with
ωn > 0 are determined on the basis of the signal g (t),

a0 = 1
T
·
∫ T

0
g (t) · dt

ac,n = 2
T
·
∫ T

0
g (t) · cos (ωn · t) · dt

as,n = 2
T
·
∫ T

0
g (t) · sin (ωn · t) · dt ,

(2.3)

where T is the considered length. It is set as the period for periodic signals. For ran-
dom non-periodic signals, the value is to be set sufficiently high. Eq. (2.3) is valid
for non-negative wave frequencies in Eqs. (2.1) and (2.2). Otherwise, the Fourier coef-
ficients for wave frequencies not equal zero are half the value as given in Eq. (2.3).
The decomposition of a signal into the associated frequencies is referred to as Fourier
transformation.

Power spectral densities

The amplitudes and magnitudes of the Fourier series are usually presented in so-called
amplitude spectra. Here, the amplitudes are plotted against the associated wave fre-
quencies. Similar to amplitude spectra, the wave energy of each wavelet can be plotted
against the associated wave frequencies.

The presentation of the wave energy as power spectral density is especially convenient
for random signals which consist of wavelets with frequencies over a continuous range.
Power spectral densities represent the density of wave energy with respect to wave
frequency, with the unit of wave energy per wave frequency. The density of wave energy
is calculated as the ratio of the wave energy within a specific range of wave frequencies
and this particular range.
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Usually, the wavelets are considered as independent of the other wavelets. Hence, only
the wave energies or the magnitudes of the wavelets are presented in spectra, but the
information on phase angles is neglected. Information on potentially existing dependen-
cies between specific wavelets is lost due to the presentation of signals as power spectral
densities. However, it follows implicitly from this assumption that the signal follows a
Gaussian distribution, as it can be derived from e.g. Rice (1944). The non-Gaussianity
of signals is lost by the presentation as power spectral densities.

Fourier series for complex numbers

For completeness, the Fourier series is stated below for complex numbers,

g (t) = c0 +
N∑
n=1

cn · exp (i · ωn · t) , (2.4)

cn = 1
T
·
∫ T

0
g (t) · exp (−i · ωn · t) · dt , (2.5)

with the imaginary unit i. Here, the Fourier series and the Fourier coefficients are
defined for wave frequencies with both positive and negative values, ωn with ωn ∈ R.
The wave energy of one wavelet is half the squared norm of the complex Fourier coef-
ficient, 1

2 · ||cn||
2.

Discrete Fourier analysis

In engineering, time series are often obtained from experimental measurements or nu-
merical simulations. They usually do not exist as a continuous function in time but
as a discrete signal with values associated to time steps. The time-step width, which
is the difference between two consecutive time steps, may vary, but it usually is kept
constant. Additionally, measured time series have a finite length.

Fourier analysis and the determination of Fourier coefficients are obtained by means of
numerical integration of Eq. (2.3) or Eq. (2.5), respectively. The facts that measured
time series are of limited length and they are discrete signals may lead to corruption
of the Fourier analysis and thus to inaccurate Fourier coefficients. These effects on the
Fourier analysis of discrete, finite time series are known as aliasing effect and spectral
leakage, which are shortly explained in the following.

Aliasing describes the effect that the magnitude of a wavelet with a period less than
twice the time-step width is also erroneously associated to other wavelets when carrying
out a Fourier analysis. The value of half of the reciprocal of the time-step width is called
Nyquist frequency. The aliasing effect occurs when the time series contains wavelets
with frequencies greater than the Nyquist frequency. It also occurs when the Nyquist-
Shannon sampling theorem is violated. The Nyquist-Shannon sampling theorem states
that the sampling frequency shall be not less than the Nyquist frequency. Considering
a sinusoidal wave with a frequency f which is sampled with a frequency fs smaller then
the Nyquist frequency, aliases with frequencies of f + z · fs, z ∈ Z are found, each with
the same magnitude as the original wave. Examplarily, the aliasing effect is visualised in
Fig. 2.1. Two aliases (grey lines) of the original sinusoidal wave (black line) are shown,
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with all sinusoidal waves matching the values of the sampling rate (circles). Here, a
sinusoidal wave with a frequency of 0.8Hz is sampled with a sampling rate of 1Hz.
Two aliases with frequencies of 0.2Hz and 1.8Hz are shown.

Figure 2.1: Aliasing effect of a sinusoidal wave

Prominent examples for the aliasing effect are fast rotating objects such as tires of
moving vehicles or rotors of helicopters in motion pictures. These rotating objects seem
to rotate with a lower speed, stand still, or even rotate backwards in case that the
real rotational speed of the object is greater than half of the rate of recorded pictures
per seconds. Anti-aliasing techniques exist which allow to minimize the aliasing effect.
Further information on the aliasing effect is found in e.g. Kirchner (2005) and the
aforementioned textbooks (Butz, 2011; Puente León et al., 2011).

Spectral leakage is also an effect which results in magnitudes of wavelets getting in-
correctly associated to other wavelets. Spectral leakage occurs when the length of the
time series is not a whole multiple of all periods of all sinusoidal wavelets which the
time series consists of. Consequently, spectral leakage does not exist for time series
of infinite length. The magnitude of the effect of the spectral leakage decreases with
increased length of the time series.

In order to minimise the effect of spectral leakage for finite time series, so-called win-
dowing is applied on the time series. Here, Fourier analysis is carried out on the time
series which is multiplied with a specific window function instead of the original time
series. Different window functions exist which all minimise spectral leakage to different
extents. Information on spectral leakage and the application of window functions is
given in e.g. van der Tempel (2006) and Puente León et al. (2011).

Inverse Fourier transformation

Signals in time domain are obtained by applying the inverse Fourier transformation,
which reverses the Fourier transformation. Different techniques exist for the inverse
Fourier transformation of a given power spectral density. Random time series based
on the same power spectral density can also be computed by means of the inverse
Fourier transformation. These techniques as well as their impact on the statistics of the
resulting random time series are discussed in Chapter 7.
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2.1.2 Characteristics of random signals in time- and frequency
domain

Each random signal possesses certain characteristics and properties. These are usually
statistical properties which allow the description of the randomness. Different prop-
erties can be extracted from a signal, depending on whether it is time domain or in
frequency domain. Mostly statistical properties are extracted from signals in time do-
main. Different realisations of time series can be obtained from power spectral densities
or amplitude spectra via inverse Fourier transformation. These time series may seem
to be different, but their statistical properties are approximately equal. In frequency
domain, spectral properties can be extracted from the respective power spectral density
or amplitude spectrum. Certain relationships exist between the parameters in time do-
main and frequency domain. Hence, properties derived in time domain can be applied
for the analysis of the signal in frequency domain, and vice versa.

Temporal averaging and spectral moments

Statistical properties in time domain are obtained from time series mostly by their gen-
eral temporal behaviour. Here, the temporal average of any function f , which depends
on the signal g (t) in time domain, is analysed,

〈f (g (t))〉 = 1
T
·
∫ T

0
f (g (t)) · dt . (2.6)

Special values of the temporal average are the mean value as well as the variance or the
standard deviation, respectively. The mean value is obtained for f = g (t) in Eq. (2.6),
and the variance of the time series is calculated with f = g (t)2 − 〈g (t)〉2 in Eq. (2.6).

In frequency domain, general properties can be derived from the power spectral densities
or amplitude spectra. Here, the spectral moments are of special importance. The j-th-
order spectral moment weights the power spectral density S by the wave frequency to
the power of a number j,

mj =
∫
S (ω) · ωj · dω . (2.7)

Similarly, the spectral moments are obtained for a discrete amplitude spectrum,

mj = 1
2 ·
∑

a2
n · ωj . (2.8)

As shown below, certain characteristic values of the time series can be expressed by
means of spectral moments in frequency domain. The spectral moment of order 2 · j
can be calculated as the variance of the j-th derivative of the function g (t),

m2·j =
〈(

djg (t)
dtj

)2〉
−
〈
djg (t)
dtj

〉2

. (2.9)

For example, the zeroth-order spectral moment m0 in frequency domain is equal to the
variance of the signal in time domain. Several characteristic periods are determined on
the basis of spectral moments. The reciprocal of the weighted arithmetic mean of the
wave frequencies is referred to as mean period Tm, the average time between consecutive
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zero-up-crossings is referred to as zero-up-crossing period Tz, and the average time
between consecutive local maxima or consecutive local minima is usually referred to as
peak period Tc,

Tm = T0,1 = 2π · m0
m1

, (2.10)

Tz = T0,2 = 2π ·
√
m0
m2

, (2.11)

Tc = T2,4 = 2π ·
√
m2
m4

, (2.12)

T−1,0 = 2π · m−1
m0

. (2.13)

For completeness, T−1,0 denotes the weighted arithmetic mean of the wave periods. The
reciprocal of the average peak-to-peak period is the number of local extrema per second
and thus the range count per second, which is an important value for the evaluation
of extreme loads and fatigue loads, as shown in detail in Chapter 5 and Chapter 6,
respectively.

Spectral moments can also be stated as dimensionless values, which are referred to as
spectral parameters in the following,

αj = mj√
m0 ·m2·j

. (2.14)

The spectral parameters α1 and α2 are decisive for the estimation of fatigue loads, as
shown in Chapter 6. The spectral parameter α1 is the ratio of the zero-up-crossing
period Tz and the mean period Tm, α1 = Tz

Tm
. The spectral parameter α2 is equal to

the ratio of the peak-to-peak period Tc and the zero-up-crossing period Tz, α2 = Tc
Tz
.

An important dimensionless value to describe spectral properties is the spectral width
parameter ε, which was introduced by Cartwright and Longuet-Higgins (1956),

ε =
√

1− m2
2

m0 ·m4
=
√

1− α2
2 . (2.15)

The spectral width parameter can also be calculated as ε =
√

1−
(
Tc
Tz

)2
on the basis

of the zero-up-crossing period Tz and the peak-to-peak period Tc.

Cross-correlation and autocorrelation

Cross-correlation describes the correlation of a signal with another signal which is
delayed by a certain time lag. The cross-correlation function measures the influence
which a signal has on another signal delayed by a time lag τ ,

C (τ) =

〈(
g1 (t)− µg1(t)

)
·
(
g2 (t+ τ)− µg2(t+τ)

)〉
σg1(t) · σg2(t+τ)

, (2.16)

with mean value µ and standard deviation σ of the signals of g1 and g2, respectively.
The codomain of the autocorrelation function is the interval [−1, 1]. Values close to
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1 and −1 indicate correlation and anti-correlation, respectively. Values close to zero
indicate no correlation.

As a special case of the cross-correlation, autocorrelation describes the correlation of a
signal with the same signal delayed by a time lag. It is derived from signals in either time
domain or frequency domain. Periodic behaviour of signals can be identified by means
of the autocorrelation function. The autocorrelation function measures the influence
which a signal at any time has on the same signal delayed by a time lag τ ,

C (τ) =

〈(
g (t)− µg(t)

)
·
(
g (t+ τ)− µg(t+τ)

)〉
σg(t) · σg(t+τ)

, (2.17)

with mean value µ and standard deviation σ of the signals of g. For signals in frequency
domain given by a power spectral density S, the autocorrelation function reads as
follows,

C (τ) = 1
m0
·
∫
S (ω) · cos (ωn · τ) · dω , (2.18)

with the zeroth-order spectral moment m0 according to Eq. (2.7). The deviation of
Eq. (2.18) is given in e.g. Halfpenny (1998). For signals defined by an amplitude spec-
trum, the autocorrelation function solely depends on the given amplitudes an,

C (τ) = 1
2 ·m0

·
N∑
n=1

a2
n · cos (ωn · τ) , (2.19)

with the zeroth-order spectral moment m0 according to Eq. (2.8). Eq. (2.19) is found
by the general definition of the autocorrelation function according to Eq. (2.17) with a
Fourier series according to Eq. (2.1) or Eq. (2.2).

Determination of spectral moments from random time series

As shown in Chapter 5 and Chapter 6, the spectral moments are of importance for the
calculation of the distribution functions of fatigue loads and extreme loads which are
observed within a Gaussian signal.

There are different possibilities to determine these spectral moments of a time series
which is considered as zero-mean Gaussian signal. The Fourier transformation of a time
series results in a power spectral density or an amplitude spectrum which is applied for
the calculation of spectral moments according to Eq. (2.7) or Eq. (2.8), respectively. It
is also possible to estimate the spectral moments solely on the basis of the time series
itself. This is shortly explained in the following. The described method to determine
the spectral moments from time series is only exact for a continuous time series of
infinite length. For discrete time series or time series of finite length, numerical errors
may occur during the calculation of spectral moments.

It is assumed that the time series is a Fourier series according to Eq. (2.1). The same
findings are obtained for Eq. (2.2). The j-th derivative of the time series, denoted as
g(j) (t) reads as follows,

g(j) (t) =: d
jg (t)
dtj

=
N∑
n=1

an · ωjn · cos
(
ωn · t+ ϕn + j · π2

)
. (2.20)
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The temporal average, referring to Eq. (2.6), of the product of two derivatives of ar-
bitrary order of the same time series, with an arbitrary time lag, is analysed. This
temporal average reads as follows for a time series of infinite length,

〈
g(j) (t) · g(k) (t+ τ)

〉
= 1

2 ·
N∑
n=1

a2
n · ωj+kn · cos

(
(k − j) · π2 + ωn · τ

)
. (2.21)

In comparison to the definition of the spectral moment, each summand of Eq. (2.8)
is multiplied by a cosine term cos

(
(k − j) · π2 + ωn · τ

)
. Hence, the absolute value of

Eq. (2.21) is equal to the spectral moment of order j + k only when either all cosine
terms are 1 or −1. Therefore, either the arguments of all cosine terms must be even
multiples of π, or they must be odd multiples of π. It easily follows that the spectral
moments of even order are given for a time lag of zero. As a special case, the variance
of the j-th derivative of the time series is equal to the spectral moment of order 2 · j.
The variance of the time series itself is the zeroth-order spectral moment.

For spectral moments of odd order, the temporal average in Eq. (2.21) is zero for a
time lag of zero. The time lag has to be chosen appropriately such that the absolute
value of the temporal average is maximum. This time lag has to be found empirically,
since no information on its value can be found analytically.

As another possibility to determine certain spectral moments, the second- and fourth-
order spectral moment of a time series can be determined on the basis of the zero-
up-crossing period, the peak-to-peak period, and the zeroth-order spectral moment,
referring to Eq. (2.11) and Eq. (2.12). The values of the zero-up-crossing period and
the peak-to-peak period can be extracted from the time series as average time between
consecutive zero-up-crossings and the average time between consecutive local maxima
or consecutive local minima, respectively.

Multiplication in frequency domain

The product of two time series is given by multiplication of those time series, f (t) · g (t).
Multiplication of the respective signals in frequency domain is carried out by evaluation
of the convolution integral of the respective spectra Sgg and Sff ,

〈Sff ∗ Sgg〉 =
∫
Sff (ω) · Sgg

(
ω′ − ω

)
· dω′ . (2.22)

For a signal to the power of n with n ∈ N, the resulting spectrum is denoted as 〈S〉∗n.
This term is equal to 〈S ∗ 〈S〉∗n−1〉, with 〈S〉∗1 = S. These formulae are valid for power
spectral densities and amplitude spectra likewise.

2.2 Stochastic analysis of random variables and random
signals

The analysis of the stochastic properties are of special interest for random processes and
signals. The stochastic properties are e.g. the distribution function of the data as well as
certain values such as the mean value or standard deviation. These properties allow to
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evaluate the occurrence probability of certain events which may occur within a random
process. Unless defined, they are determined on the basis of data sets. Since these data
sets are usually of limited size, the determined values are subject of scattering and may
be inaccurate. Especially for a safe structural design, it is of importance to estimate
the error which is made due to the limited data set.

A short overview on important stochastic properties as well as on goodness-of-fit tests to
evaluate the goodness-of-fit of assumed distribution functions are given in the following.
More detailed information may be found in textbooks such as Bohm and Zech (2010).

2.2.1 General definitions

In order to evaluate the stochastic properties of variables, these variables have to be
independent and identically distributed and random. Independent and identically dis-
tributed random variables follow the same probability distribution without being de-
pendent on each other. Let X be a sample of independent and identically distributed
random variables. Usually, the cumulative distribution function and probability density
function are used to describe the occurrence probability of values from the data set stat-
istically. The cumulative distribution function is the non-exceedance probability which
denotes the probability that a random variable of X is less than or equal to a value
x. The cumulative distribution function is a non-decreasing function with a codomain
of [0, 1]. The probability density function is defined as the derivative of a continuous
cumulative distribution function, p (x) = dP (x)

dx . By definition, the sum of all occurrence
probabilities is unity, which is equivalent to the statement that the integration of the
probability density function with respect to the domain of values is unity. Hence, the
cumulative distribution function is expressed as follows,

P (x) = Prob [X ≤ x] =
∫ x

−∞
p
(
x′
)
· dx′ , (2.23)

with the probability Prob [(•)] that a certain event (•) occurs. The expected value
E [g (X)] for any function g of independent and identically distributed random variables
X is calculated as follows,

E [g (X)] =
∫
g (x) · p (x) · dx . (2.24)

Typical and important values to describe a set of independent and identically distrib-
uted random variables X are the mean value µX , the variance V arX , the standard
deviation σX =

√
V arX , the skewness γ3, and the kurtosis γ4,

µX = E [X] ,

V arX = E
[
(X − µX)2

]
,

γ3 = E
[
(X − µX)3

]
/σ3

X ,

γ4 = E
[
(X − µX)4

]
/σ4

X .

(2.25)

The skewness measures whether a probability density function is symmetrical. Its value
is zero for symmetric probability density functions, negative if the left tail is stronger,
and positive if the right tail is stronger. The kurtosis is a measurement whether the
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probability density function is heavy- or light-tailed. As reference, the normal distri-
bution has a kurtosis of 3. A heavy-tailed or platykurtic distribution function has a
kurtosis with a value less than 3, and the kurtosis of a light-tailed or leptokurtic dis-
tribution function is greater than 3.

Values which are deceeded with a certain probability are also of interest in order to
evaluate the statistical characteristics of a data set. These so-called quantiles are the
inverse function of the cumulative distribution function, referring to Eq. (2.23). Besides
the median, which is the 50%-quantile, quantiles associated to very low and very high
probabilities are useful to describe the statistical behaviour of rarely occurring values.
In structural engineering, quantiles are of importance for the semi-probabilistic safety
concept, which is described in Section 4.1.

2.2.2 Statistical methods for parameter estimation and statistical
testing

Different methods exist to determine the type of distribution functions and their defin-
ing parameters. A general overview on these methods is found in e.g. Embrechts et al.
(1997) and Bohm and Zech (2010). Histograms, which are most commonly applied,
and the methods applied within this thesis are shortly introduced in the following. The
methods applied within this thesis are shortly introduced in the following. The applica-
tions of some of these methods are sketched in Fig. 2.2. Exemplarily, ten random values,
which are normal-distributed, are compared to the underlying normal distribution with
mean of zero and standard deviation of unity.

Figure 2.2: Graphical methods for estimation of distribution functions, here for normal-
distributed values with mean of zero and standard deviation of unity: a) his-
togram, b) Q-Q plot, c) P-P plot, d) Kolmogorov-Smirnov test

Histograms

Histograms provide a graphical method which is often used to roughly estimate the
underlying distribution. Here, the range of values is divided in non-overlapping intervals,
usually referred to as bins, to which the data points are appointed. The counts within
the bins are qualitatively compared to the assumed distribution function, referring to
Fig. 2.2 (a).
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Q-Q plots and P-P plots

Q-Q plots are a method to compare two probability distributions graphically. Within Q-
Q plots, the quantiles of both distributions, each sorted in ascending order, are plotted
against each other. Usually, Q-Q plots are applied to determine whether a given set
of data follows an assumed distribution function with a certain accuracy. In case that
the data pairs in the Q-Q plot lie close to the bisecting line within a certain confidence
interval, the two distributions may be considered as similar.

In order to determine whether a given set of data follows an assumed distribution func-
tion, the data points sorted in ascending order are compared to the quantiles of the
assumed distribution function with increasing probability. The quantiles of the assumed
distribution function are calculated by the inverse of the respective cumulative distri-
bution function. Different approaches exist for setting the values of the non-exceedance
probability associated to the quantiles (Embrechts et al., 1997). Unless stated other-
wise, the values of probability are set as (n− 0.5) /N , n = 1 . . . N , with the number of
data N , for Q-Q plots within this thesis. Then, the set of data is plotted against the
theoretical quantiles, both sorted in ascending order.

Instead of Q-Q plots, P-P plots can be applied. Here, the probabilities of two dis-
tributions are plotted against each other. The method to determine whether a given
set of data follows an assumed distribution function is similar to the Q-Q plot. The
non-exceeding probability of each value within the set of data is calculated by the as-
sumed cumulative distribution function. These values are plotted against the values of
probability, both sorted in ascending order.

Q-Q plots and P-P plot are shown in Fig. 2.2 (b) and (c).

Maximum-likelihood estimation

The maximum-likelihood estimation aims to find the values of the defining parameters
of the underlying distribution function such that the likelihood function is maximised.
Here, the likelihood function is given as the product of the probability density function
evaluated for each data point of a given sample. Depending on the assumptions, it
is more convenient to use the natural logarithm of the likelihood function, called the
log-likelihood function,

L ((a1, . . .) ;X) =
N∑
n=1

log (p (xn)) , (2.26)

with the probability density function p depending on the parameters a1, . . ..

Kolmogorov-Smirnov test and p-value

The Kolmogorov-Smirnov test is a statistical test for the hypothesis that two probability
distributions are equal. It is used to compare a sample with a probability distribution,
or to compare two samples. Comparing a sample with a probability distribution, the
maximum difference between the empirical distribution function of the sample and
the reference cumulative distribution function is quantified. The empirical distribu-



18 Chapter 2. Analysis of signals

tion function is generated by assigning the non-exceeding probability, usually set as
(n− 0.5) /N , n = 1 . . . N , to the N data points which are sorted in ascending order.
The principal of the Kolmogorov-Smirnov test is shown in Fig. 2.2 (d).

The reference cumulative distribution function is calculated by means of the null hypo-
thesis. The null hypothesis is to reject if the determined difference between the prob-
ability functions exceeds a certain value. This value depends on the number of the data
points as well as on the chosen level of significance.

Moreover, the p-value can be determined in order to evaluate the hypothesis that the
given data set fits the probability distribution with the determined parameters. The p-
value is the probability, calculated with the studied hypothesis that the test statistic is
equal to or more significant than its observed value (Wasserstein and Lazar, 2016). Small
values cast doubt on the validity of the hypothesis. The hypothesis is to reject if the
p-value is less than a chosen level of significance, which is typically set as 0.05. p-values
greater than the level of significance do not prove that the studied hypothesis is true.
They do not measure the probability that the studied hypothesis is true (Wasserstein
and Lazar, 2016).

Kullback-Leibler divergence

The Kullback-Leibler divergence, introduced by Kullback and Leibler (1951), is a di-
mensionless parameter to assess how a probability distribution differs from another
probability distribution. For discrete probability distributions of the variable x, here
denoted as P1 (x) and P2 (x), the Kullback-Leibler divergence DKL is calculated as
follows,

DKL =
∑
n

P1 (xn) · log P1 (xn)
P2 (xn) . (2.27)

In case that continuous probability density functions p1 and p2 of the variable exist, the
Kullback-Leibler divergence is stated in integral form, DKL =

∫
p1 (x) · log p1(x)

p2(x) · dx.
The value of the Kullback-Leibler divergence can be understood as how much inform-
ation of the original probability distribution is lost due to the assumption of the other
probability distribution. Its values are non-negative. A value of zero indicates that the
investigated distribution functions are identical.

2.2.3 Extreme value theory

The extreme value theory is a branch of statistics, which is concerned with the sample
minimum and maximum of probability functions. Therefore, it deals with the asymp-
totic limit behaviour of the extreme values of independent and identically distributed
random variables. The extreme value theory originally was developed by Gumbel (1958).
Detailed information on the extreme value theory is given in e.g. Embrechts et al. (1997),
Coles (2001), and de Haan and Ferreira (2006).

According to the extreme value theory (Gumbel, 1958), the stochastic behaviour of ex-
treme values is described by the generalized extreme value distribution. Three different
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types of the generalized extreme value distribution (index GEV ) exist, with the type
depending on the shape parameter ξ,

PGEV (x) =


exp

(
− exp

(
−x−µ

σ

))
, ξ = 0 , x ∈ R

exp
(
−
(
1 + ξ · x−µσ

)− 1
ξ

)
, ξ > 0 , x ∈

[
µ− σ

ξ ,∞
)

exp
(
−
(
1 + ξ · x−µσ

)− 1
ξ

)
, ξ < 0 , x ∈

(
−∞, µ− σ

ξ

] , (2.28)

with the scale parameter σ > 0 and the location parameter µ. The respective cumulat-
ive distribution functions are given by Eq. (2.28). The three types of the generalized
extreme value distribution are usually called Gumbel distribution, Fréchet distribution,
and reverse-Weibull distribution, respectively (Eq. (2.28), from top to bottom).

Usually, only a small data set of independent and identically distributed extreme val-
ues is available due to the seldom occurence of extreme values. Hence, its respective
parameters of the generalized extreme value distribution are to be estimated carefully
while also considering uncertainties due to the small sample sizes. Several methods to
determine the generalized extreme value distribution and its parameters exist, as they
are described in e.g. Embrechts et al. (1997), Coles (2001), and de Haan and Ferreira
(2006).

A very common method to determine the distribution function of extreme values is the
block-maxima method (Gumbel, 1958; de Haan and Ferreira, 2006). Here, independent
and identically distributed data points are divided in several blocks of same size. The
data points in all blocks shall be independent and identically distributed. The extreme
values of each block are used for derivation of the generalized extreme value distribution.
The respective parameters depend on the block size. Selecting a very small block size is
not recommended because the selected extreme values of each set might not follow the
generalized extreme value distribution. A great block size also results in a very limited
data set of extreme values such that the generalized extreme value distribution and its
parameters usually cannot be determined accurately. However, the generalized extreme
value distributions for long periods are of special interest, i.e. the distribution function
of annual extremes.

In case that the generalized extreme value distribution for a certain period Tref is
already known, the generalized extreme value distribution for any period T can be
calculated on the basis of this period Tref . The cumulative distribution function for the
period T is given as PGEVT =

(
PGEVTref

)τ
, with τ = T

Tref
. The generalized extreme value

distribution for the period T is given by Eq. (2.28) with adapted parameters (index ′),

σ′ = σ , µ′ = µ+ ln τ · σ , ξ = 0
σ′ = σ · τ ξ , µ′ = µ+ 1

ξ ·
(
τ ξ − 1

)
· σ , ξ 6= 0 , (2.29)

with the parameters ξ, σ, and µ of the generalized extreme value distribution for the
period Tref . The shape parameter is independent of the period, ξ′ = ξ.

Referring to generalized extreme value distributions for great block sizes and therefore
small data sets of extreme values, the distribution function of the annual extremes
can also be calculated on the basis of the distribution function of monthly extremes.
The respective parameters are adapted according to Eq. (2.29). In order to carry out
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this adaption, it has to be ensured that the values for all months are independent and
identically distributed and that the monthly extremes can be described by a generalized
extreme value distribution.

2.2.4 Peak-over-threshold method

As a method within the extreme-value analysis, the peak-over-threshold method is
usually applied for the tail estimation of a probability distribution. Here, independent
and identically distributed random variables which exceed a certain threshold are ana-
lysed. This method is well established in other disciplines such as hydrology or finance
mathematics. Further information on the peak-over-threshold method is given in e.g.
Embrechts et al. (1997) and Coles (2001). The method is described for values exceeding
a certain threshold, but it is also valid for values falling below a certain threshold.

Assuming that a set of independent and identically distributed random variables X
is described by a cumulative distribution function P (x), the probability function of
exceeding a certain threshold u is defined,

Pu (x) = Prob [X ≥ x |X > u ] = P (x)− P (u)
1− P (u) . (2.30)

According to the mathematical description of the peak-over-threshold method, the dis-
tribution of independent and identically distributed random variables exceeding a cer-
tain threshold according to Eq. (2.30) is given by the generalised Pareto distribution.
The respective distribution functions (index GPD) depend on the shape parameter ξ,
the scale parameter β > 0, and the threshold u,

pGPD (x) =


1
β ·
(
1 + ξ · x−uβ

)− ξ+1
ξ , ξ 6= 0

1
β · exp

(
−x−u

β

)
, ξ = 0

, x ∈ D (ξ, β, u) , (2.31)

with the domain of definition D = [u,∞) for ξ ≥ 0, and D = [u, u− β/ξ] for ξ < 0.
Here, the probability density functions are shown.

The value of the threshold u is to be chosen carefully in order to determine the underly-
ing generalised Pareto distribution for a given set of data [X1 . . . XN ]. On the one hand,
the number of data points may be small by setting a high value of the threshold. This
eventually results in uncertainties with respect to the underlying generalised Pareto
distribution. On the other hand, a small value of the threshold provides a greater set
of data to evaluate. However, the application of the generalised Pareto distribution is
doubtful by setting the value of the threshold too small. Hence, the quality and the
uncertainties of the results are to be determined properly.

The parameters of the generalised Pareto distribution can be estimated by applying
the maximum-likelihood estimation, as described above in Section 2.2.2. Then, the log-
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likelihood function according to Eq. (2.26) reads as follows for the generalised Pareto
distribution according to Eq. (2.31),

L ((ξ, β) ;X) =


−N · ln β − ξ+1

ξ ·
N∑
n=1

(
1 + ξ · xn−uβ

)
, ξ 6= 0

−N · ln β −
N∑
n=1

xn−u
β , ξ = 0

. (2.32)

The log-likelihood function is usually to be calculated numerically. The maximum-
likelihood estimation is suitable for the generalised Pareto distribution with the shape
parameter ξ > −0.5 (Embrechts et al., 1997).

It is also possible to estimate the parameters of the generalised Pareto distribution
by means of the mean-excess function, me (u) = E [X − u |X > u ]. The mean-excess
function is calculated for increasing values of the threshold u. Within the plot of the
mean-excess function, a section of the graph is to be detected visually which is ap-
proximately linear. Then, the parameters of the generalised Pareto distribution can
be determined on the basis of this linear section. Reference is made to e.g. Embrechts
et al. (1997) and Coles (2001) for further details. However, it is often not possible to
define a linear section with the mean-excess function with certainty. The analysis of the
mean-excess function and the respective estimation of the parameters of the generalised
Pareto distribution are to be carried out cautiously because they often are prone to
misinterpretation (Embrechts et al., 1997).

2.2.5 Relationship between generalized extreme value distribution
and generalised Pareto distribution

Assuming that the excesses over a high threshold can be modelled as a generalised
Pareto distribution, the maximum of these excesses can be described as a generalized
extreme value distribution (Embrechts et al., 1997, pp. 166). With a generalised Pareto
distribution according to Eq. (2.31) with shape parameter ξ and scale parameter β,
the distribution function of extreme values is a generalized extreme value distribution
according to Eq. (2.28) with location parameter µ = β

λ ·
(
λξ − 1

)
and scale parameter

σ = β · λξ for ξ 6= 0 and with location parameter µ = β · lnλ and scale parameter σ = β

for ξ = 0. λ denotes the ratio of total number of values to the number of values to be
considered as maxima. The shape parameters of the generalised Pareto distribution
and of the deviated generalized extreme value distribution are equal.





3 Load acting on offshore wind turbines

Offshore wind turbines are subjected to the harsh environment offshore. Meteorological
and oceanographic parameters, referred to as metocean parameters, include parameters
such as densities and temperatures of wind and water as well as severities and direc-
tions of wind fields, sea states, and currents. Metocean conditions describe the temporal
variations and the occurrence frequencies of metocean parameters. Besides metocean
conditions, further environmental conditions describe the interaction between the off-
shore structure itself and the offshore environment. Examples for these interactions
typically occurring offshore are the settlement of marine fauna at the structure, scour
development at embedded piles, and corrosion of structural components. The moving
rotor and machinery as well as their wind-field- and loads-depending control also induce
loads to the support structure of the offshore wind turbines.

3.1 Wind-induced loads

3.1.1 Wind field

Wind fields are described by the wind velocity which varies in space and time. A
typical wind field to be observed is shown in Fig. 3.1. It consists of a wind-velocity
profile, which varies over height, and of spatial and temporal fluctuations around the
mean wind velocity at a certain height. Wind fields are usually considered as stationary
for a duration of ten minutes.

Wind-velocity profile

Mean wind velocities are usually given for a certain height. Usually, the mean wind
velocity increases with increasing height. The wind-velocity profile over height is usu-
ally described as a power-law profile in dependence of a reference height zref and the
associated mean wind velocity,

vwind (z) = vwind (zref ) ·
(

z

zref

)α
. (3.1)

The wind-shear coefficient α depends on the surface roughness of the nearby landscape.
Wind velocities near the surface are strongly decreased for an increased surface rough-
ness. Hence, higher values of the wind-shear coefficient are observed for an increased
surface roughness. Constant wind velocity over height is given for a wind-shear coeffi-
cient of zero. In general, smaller values are expected offshore in comparison to onshore
sites, which are usually not plain, e.g. due to trees or hilly areas.

23
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Figure 3.1: Wind field consisting of a vertical wind-shear profile and turbulence (adap-
ted from Hau (2013))

The wind-shear coefficient at offshore sites also depends on the wind velocity, as shown
by e.g. Türk et al. (2008) and Ernst and Seume (2012) on the basis of wind-velocity
measurements at the research platform FINO1. Above wind velocities of 3m/s, the
wind-shear coefficient lies in the range of 0.12 up to 0.15 or in the range of 0.13 up
to 0.19, depending on the evaluation method. Almost constant wind velocities over
height are observed for wind velocities less than 3m/s (Ernst and Seume, 2012). A de-
tailed analysis regarding deviations from the power-law profile measured at the research
platform FINO1 is carried out by Kettle (2014).

Unless site-specific wind-shear data are available, wind-shear coefficients of 0.20 for
onshore sites (IEC 61400-1, 2005) and of 0.14 for offshore sites (IEC 61400-3-1, 2019)
shall be applied for the load simulation of wind turbines, respectively.

Turbulence

Wind fields do not have a constant wind profile, but the wind velocity fluctuates spa-
tially and temporarily in all dimensions. These fluctuatios are usually referred to as
turbulence. It is quantified with the turbulence intensity which is the coefficient of vari-
ance of the mean wind velocity in mean wind direction. The reference duration is ten
minutes.

The turbulence intensity depends on the wind velocity. This is regulated in relevant
standards, such as IEC 61400-1 (2005) and IEC 61400-3-1 (2019), where reference
turbulence intensities are stated. The turbulence intensity decreases significantly with
increasing wind velocity until average wind velocity. For greater wind velocities, the
turbulence intensities increase slightly. Based on turbulence intensities measured at the
research platform FINO1, Emeis and Türk (2008) and Ernst and Seume (2012) confirm
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this characteristic for an offshore site. They also show that the turbulence intensities
scatter significantly for all wind velocities.

For the wind-field simulation, the Kaimal spectrum or the von Kármán wind turbulence
model is typically applied to model the turbulent wind field. The formulations of both
models are stated in e.g. Gasch and Twele (2012).

Long-term behaviour of wind velocities

The long-term distribution function of the mean wind velocities can be described as a
Weibull distribution function,

Pwind (vwind) = 1− exp
(
−
(
vwind
A

)k)
. (3.2)

with site-specific scale parameter A and shape parameter k. In case that no site-specific
long-term data exist, the long-term behaviour of the mean wind velocities is modelled
as Rayleigh distribution function, which is a special case of the Weibull distribution
function, referring to Eq. (3.2), with shape parameter k = 2 and scale parameter of
A = 4

π · vannual, with annual mean wind velocity vannual.

3.1.2 Wind-induced loads on rotor blades

The blade-element-momentum theory is usually applied for the calculation of the wind-
induced loads acting on the rotor blades.

Forces at each section of each rotor blade are calculated. Therefore, the lift- and drag
coefficient of each blade section are to be known for the calculation of the respective
forces. The wind velocity and wind direction attacking the profiles of the rotor blades
are determined for each time step during the wind-load simulation. Here, the actual
wind field, the rotational speed of the rotor as well as the positioning and flexibility
of the rotor blades are taken into account. Positioning of the rotor blades includes the
pitch angle of the rotor blades which is regulated by the controller of the wind turbine.
The loads at each blade section of each rotor blade are summed in order to calculate
the wind-induced loads acting on the rotor-nacelle assembly.

Further explanation on the blade-element-momentum theory is provided in relevant
textbooks such as Burton et al. (2001), Gasch and Twele (2012), and Hau (2013).

3.2 Wave-induced loads

The flow conditions of the water particles around a structure result in loading of this
structure. In order to determine these wave-induced loads, the flow conditions of the
water particles, also referred to as water kinematics, are to be known. They are com-
monly described by the velocity potential Φ. The velocities of the water particles in
space are given as the derivatives of the velocity potential with respect to the spatial
directions,

dΦ
dx

= u ,
dΦ
dy

= v ,
dΦ
dz

= w . (3.3)
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Differentiation of the velocities with respect to time yields the accelerations of water
particles. For two-dimensional flow conditions, the water kinematics can also be de-
scribed by the stream function Ψ, which define the stream lines of the moving water
particles. The stream function also relates to the velocities of water particles,

dΨ
dz

= u ,
dΨ
dx

= −w . (3.4)

The definition of the coordinate system and the respective velocities are shown in
Fig. 3.2. The origin of the Cartesian coordinate system lies at the mean sea level, with
the z-axis pointing upwards. When describing the water kinematics, the x-axis usually
points towards the mean propagation direction of the wave or sea state. The axes are
perpendicular to each other.

Figure 3.2: Definition of wave properties

The undisturbed flow conditions are described as a set of differential equations, Laplace’s
equation and Bernoulli’s equation,

d2Φ
dx2 + d2Φ

dy2 + d2Φ
dz2 = 0 , (3.5)

dΦ
dt

+ 1
2 ·
(
u2 + v2 + w2

)
+ g · z + p

ρw
= 0 , (3.6)

with Earth’s acceleration g, static pressure p and density of water ρw. Additionally the
following boundary conditions have to be satisfied,

w = 0 , z = −d , (3.7)
dΦ
dt

+ 1
2 ·
(
u2 + v2 + w2

)
+ g · z = Q , z = η , (3.8)

dη

dt
+ u · dη

dx
+ v · dη

dy
= w , z = η , (3.9)

with the water depth d and the water-surface elevation η. Assuming a constant at-
mospheric pressure at the water surface, the variable Q is constant. Eq. (3.8) and
Eq. (3.9) are referred to as “dynamic free-surface boundary condition” and “kinematic
free-surface boundary condition”, respectively. General description of the boundary
conditions are found in e.g. Hapel (1990). The term u2 + v2 + w2 in Eqs. (3.6) and
(3.8) and the terms u · dηdx and v · dηdy in Eq. (3.9) are non-linear. Therefore, no analyt-
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ical solution of the set of differential equations can be found. Different approaches exist
to solve the non-linear differential equations numerically.

3.2.1 Regular waves

A regular wave is a periodically repeating wave, defined by its wave period T , wave
length L, and wave height H. Different methods exist to determine the shape of a
periodic wave as well as the respective wave kinematics. The adequate selection of a
suitable wave theory depends on the wave parameters as well as on the water depth, as
recommended by e.g. DNV-RP-C205 (2019) and IEC 61400-3-1 (2019) and shown in
Fig. 3.3. An overview on these wave theories is given in e.g. Dean and Dalrymple (1984).
The approaches most commonly used are shortly given in the following. Without loss
of generality, they are shown for a two-dimensional spatial field, with the y-direction
being neglected.

Figure 3.3: Selection of the applicable wave theory for regular waves, depending on wave
height H, wave period T , and water depth d (adapted from DNV-RP-C205
(2019))

Airy waves

In case that the water-surface elevation is negligibly small in comparison to the water
depth, and that the wave steepness, given as ratio of wave height and wave length, is
small, the governing equations and boundary conditions can be simplified. Then, the
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non-linear term u2 + v2 + w2 in Eqs. (3.6) and (3.8) and the non-linear terms u · dηdx
and v · dηdy in Eq. (3.9) are neglected, and the boundary conditions are evaluated at still
water level instead of at water-surface elevation. An analytical solution for the water-
surface elevation η and the velocity potential Φ is found for the set of the linearised
equations,

η (t, x) = a · cos (k · x− ω · t) , (3.10)

Φ (t, x, z) = c · x+ a · g
ω
· cosh (k · (d+ z))

cosh (k · d) · sin (k · x− ω · t) , (3.11)

with amplitude a = H
2 , wave frequency ω = 2π

T , current velocity c, and water depth
d. The wave number k and the wave length L = 2π

k , respectively, are given by the
dispersion equation,

(ω − k · c)2 = g · k · tanh (k · d) . (3.12)

The linear wave theory is also called Airy wave theory, named after the British math-
ematician and astronomer Sir George Biddell Airy.

Since the Airy wave theory is defined from the seabed up to the still water level,
the profile of the water-particle kinematics are stretched to the instantaneous water-
surface elevation. Several stretching methods exist, as summarised in e.g. Couch and
Conte (1997). The commonly-used stretching method is the so-called Wheeler stretching
(Wheeler, 1969). The technique of Wheeler stretching is visualised in Fig. 3.4. Here, the
kinematics at the instantaneous water-surface elevation are set as the kinematics at the
still water level as given by the Airy wave theory. The vertical profile of the kinematics
given by the Airy wave theory from seabed to still water level (grey) is stretched linearly
from seabed to water-surface elevation (black). Wheeler stretching is to be applied for
the design of offshore wind turbines (DNV-RP-C205, 2019; IEC 61400-3-1, 2019).

Figure 3.4: Wheeler stretching of water-particle kinematics (Wheeler, 1969): stretching
of water-particle kinematics defined up to still water level according to linear
wave theory (grey profile) up to water-surface elevation (black profile)

Non-linear waves

In case that the non-linear terms in Eqs. (3.6) and (3.8) are comparably great such
that they cannot be neglected, higher-order wave theories are to be applied in order to
describe the shape and kinematics of regular waves appropriately. The wave is described
by superposition of sinusoidal terms, whose arguments are natural multiples of the base
argument. They can be considered as Fourier series. Both analytical as well as numerical
approaches to determine the shape and the kinematics of non-linear regular waves exist.
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A commonly used approach is the so-called “stream function wave theory” (Dean,
1965), which is shortly described in the following. The stream function wave theory
solves the non-linear equations by numerical approximation. Here, the stream function
Ψ is modelled as a Fourier series,

Ψ (x, z) =
(
L

T
− c
)
· z +

N∑
n=1

Xn · sinh (n · k · (z + d)) · cos (n · k · x) , (3.13)

where c denotes a constant current velocity. The unknown coefficientsXn, n = 1, . . . , N
as well as the wave length are to be determined via iteration. The wave is considered as
steady by selecting a coordinate system travelling with the speed of the wave. Therefore,
the shape of the wave does not change within this coordinate system. First, the dynamic
free-surface boundary condition (Eq. (3.8)) is evaluated for a certain number of chosen
points along the water surface. Then, the mean square error of the dynamic free-surface
boundary condition shall be minimized, with the constraints that both the given wave
height and the mean sea level are maintained. The method of Lagrange multipliers, a
strategy for finding the local maxima and minima of a function subject to constraints, is
usually applied here. Each of the equations is linearised with respect to the initial values.
Finally, the system of linear equations is solved, and the set of values to determine is
updated. The iteration is stopped when the errors regarding the dynamic free-surface
boundary condition, the wave height, and the mean sea level are sufficiently small. No
stretching of the kinematics, as it is necessary for the Airy wave theory, is to be applied
for non-linear waves.

3.2.2 Irregular waves

The water-surface elevation of a sea usually cannot be described by regular waves.
Rather waves with different wave heights and distances between consecutive wave crest
are observed. The sequence of these waves is described as random. Therefore, sea states
are described as stochastic processes. They are assumed to be stationary over a time
span of three hours up to six hours (DNV-ST-0437, 2016).

Sea states are usually represented by the significant wave height Hs and the mean
zero-up-crossing period Tz. The significant wave height is defined as the mean value
of the one-third greatest wave heights observed during a stationary sea state, and its
value is almost exactly four times the standard deviation of the observed water-surface
elevation. The mean zero-up-crossing period denotes the mean period of successive
temporal up-crossings of the mean sea level by the water-surface elevation.
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First-order sea state

For the simulation in time domain, the water-surface elevation and the wave kinematics
are modelled as Fourier series by superposing an arbitrary number of linear waves
(Eqs. (3.10) and (3.11)),

η (t, x) =
N∑
n=1

an · cos (kn · x− ωn · t+ ϕn) , (3.14)

Φ (t, x, z) = c · x+
N∑
n=1

an · g
ωn

· cosh (kn · (d+ z))
cosh (kn · d) · sin (kn · x− ωn · t+ ϕn) , (3.15)

with the water depth d. The respective properties of each superposed wavelet are de-
rived from a power spectral density of the water-surface elevation, called wave-energy
spectrum in the following. The determination of these properties as well as of the phase
angles ϕn is discussed in Chapter 7. As for the Airy wave, the non-linear terms in the
Eqs. (3.6), (3.8), and Eq. (3.9) are neglected. Stretching as described for regular Airy
waves in Section 3.2.1 is also to be applied for irregular sea states.

Unless observed wave-energy spectra are available, theoretical models may be applied
for the description of sea states. Different types of wave-energy spectra exist. An over-
view of different wave-energy spectra is given e.g. by Goda (2000). Most commonly ap-
plied wave-energy spectra are the Pierson-Moskowitz spectrum (Pierson and Moskowitz,
1964) and the JONSWAP spectrum (Hasselmann et al., 1973), here shown as one-sided
spectra,

SPM (ω) = 5
16 ·H

2
s · ω4

p · ω−5 · exp

−5
4 ·
(
ω

ωp

)−4
 ω ≥ 0 , (3.16)

SJS (ω) = nf (γ) · SPM (ω) · γ
exp
(
− 1

2·σ2 ·
(
ω−ωp
ωp

)2
)
, ω ≥ 0 , (3.17)

with peak-enhancement factor γ, normalising factor nf (γ) = 1− 0.287 · ln γ, and band-
width parameter σ. The peak frequency ωp denotes the wave frequency associated with
the maximum value of the wave-energy spectrum. The peak frequency and the peak
period Tp = 2π

ωp
, respectively, depend on the mean zero-up-crossing period Tz, as stated

e.g. in DNV-ST-0437 (2016). The Pierson-Moskowitz spectrum is especially applied for
fully-developed sea states with unlimited fetch and unlimited duration of wind expos-
ure. The JONSWAP spectrum was originally developed to consider limited fetch and
duration, e.g. as required for the North Sea. Here, values of γ = 3.3 as well as σ = 0.07
for ω ≤ ωp and σ = 0.09 for ω > ωp are usually set. DNV-ST-0437 (2016) recommends
to apply the JONSWAP spectrum for the design of offshore wind turbines, unless data
indicate otherwise.

The Pierson-Moskowitz spectrum and the JONSWAP spectrum, with a peak-enhancement
factor of 3.3, are shown in Fig. 3.5 with Hs = 2m and Tp = 5 s.

Higher-order sea state

The linear sea state is often used in engineering practice due to its simplicity and
adequate accuracy for most applications. Besides the linear sea state as superposition
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Figure 3.5: Pierson-Moskowitz spectrum and JONSWAP spectrum with Hs = 2m and
Tp = 5 s

of multiple Airy waves, sea-state models exist which consider the non-linear terms in
the governing equations, referring to Eqs. (3.6), (3.8), and (3.9).

Sharma and Dean (1981) proposed a sea-state model which solves the governing equa-
tions correctly for the second order. Second-order terms are added to the linear sea
state. The properties of the second-order terms depend on the properties of the wave-
lets of the linear sea state. More information is given in the corresponding research
report (Sharma and Dean, 1979). The guideline DNV-RP-C205 (2019) also refers to
the second-order sea-state model according to Sharma and Dean (1981). Higher-order
sea states can be modelled by means of the so-called “higher-order spectral method”.
Even though the numerical effort is increased in comparison to the linear sea state and
the second-order sea state, the sea state is modelled more accurately with respect to the
governing equations. Sea states can be modelled up to fifth order. Detailed information
on these higher-order sea states is given in e.g. Bonnefoy et al. (2010) and Desmars
(2020).

Within the context of the thesis, only linear sea states are considered.

3.2.3 Currents

Different types of currents exist. The most common types of currents to be accounted
for offshore structures are tidal currents and wind-generated currents. Rise and fall of
sea levels as well as resulting tidal currents occur due to gravitational forces exerted by
the Moon and the Sun. Wind-generated currents are caused by shear forces due to the
interaction between wind and water surface.

Within the load simulation of offshore structures according to DNV-RP-C205 (2019),
the vertical profile of tidal currents are to be modelled with a power-law profile,

ctidal (z) = ctidal (0) ·
(
d+ z

d

)α
, (3.18)

with the power-law exponent α. The vertical profile of wind-generated currents can be
modelled as constant or linear.
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Current velocities are considered in the determination of water-particle velocities, either
by adding to the velocity term of linear waves or by including in the numerical approx-
imation of non-linear waves.

3.2.4 Calculation of wave-induced loads

In offshore engineering, Morison’s equation (Morison et al., 1950) is usually applied for
the calculation of wave-induced loads acting on slender structural members,

f = fd + fm = 0.5 · Cd · ρw ·D · u⊥ · |u⊥|+ Cm · ρw ·A · u̇⊥ , (3.19)

with the diameter D and cross-section area A of the structural member. The index
⊥ denotes the wave kinematics perpendicular to the respective beam axis, referring
to Fig. 3.2. Morison’s equation consists of the drag term fd and of the inertia term
fm. The values of the hydrodynamic coefficients, which include the drag coefficient
Cd and the inertia coefficient Cm, are functions of the general flow regime around
the structural member and of the surface roughness of the structural member. The
flow regime around structural members is characterised mainly by the dimensionless
quantity of the Keulegan-Carpenter number. The Keulegan-Carpenter number is the
ratio of drag forces to inertia forces. Low Keulegan-Carpenter numbers mostly occur
at fixed offshore structures, especially at those with increased diameters.

The flow regime around the primary structural member is alternated by potentially
installed appurtenances. Their dimension, position, and orientation relative to the main
member and the flow direction impact the additional loads due to the appurtenances.
Detailed formulae to determine the local hydrodynamic coefficients for the primary
structural member including the effects of appurtenances are given in e.g. IEC 61400-
3-1 (2019, Annex C.6).

Morison’s equation is only valid for slender structures with a maximum ratio of struc-
tural diameter to wave length of 0.2 (IEC 61400-3-1, 2019). Wave diffraction, which is
the noticeable modification of the wave pattern due to the structure, is to be considered
for greater ratios of structural diameter to wave length. Wave diffraction is usually ac-
counted for by correcting the inertia term of Morison’s equation in accordance with
MacCamy and Fuchs (1954).

For the design of offshore wind turbines, the values for the hydrodynamic coefficients
are to be set in accordance to the corresponding standards, e.g. DNV-RP-C205 (2019)
and IEC 61400-3-1 (2019). Unless stated otherwise, values of Cd = 0.7 and Cm = 2.0
are used within this thesis. The selection of these values may be arguable, but it does
not impair the findings of the thesis.

3.2.5 Wave-induced loads in frequency domain

Wave-induced loads in time domain are calculated with Morison’s equation, referring
to Eq. (3.19), and with local and temporal water-particle velocities and water-particle
accelerations. For the calculation of wave-induced loads in frequency domain, the water-
particle kinematics and the water-surface elevation are to be represented in frequency
domain as well.
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The drag term of Morison’s equation is discussed in greater detail in the following due
to the non-linearity of the term u⊥ · |u⊥|, referring to Eq. (3.19). The power spectral
density of the linear inertia term is easily found on the basis of the linear power spectral
density of the water-surface elevation.

Sea states and their water-particle kinematics are simulated up to the still water level in
frequency domain. Therefore, alternating loading within the splash zone is not modelled.
Stretching is not to be considered for the simulation of wave-induced loads in frequency
domain. Stretching as described in Section 3.2.1 eventually results in additional non-
linearities which are to be handled during the simulation in frequency domain.

Periodic Airy wave

For a periodic Airy wave, both the water-particle velocity and the water-particle accel-
eration are sinusoidal waves, referring to Eq. (3.11). Hence, the inertia term of Morison’s
equation is a sinusoidal wave as well. Due to its non-linear term u · |u|, the drag term of
Morison’s equation is not a sinusoidal wave, but it can be modelled as superposition of
several sinusoidal waves with natural multiples of the base wave frequency via Fourier
analysis, referring to Eq. (2.2). Derivation of the Fourier series for the term u · |u| for
periodic Airy waves without consideration of current is found in e.g. Clauss et al. (1992)
and Naess and Moan (2012). Barltrop and Adams (1991) shortly discusses the impact
of currents on the Fourier series of the non-linear drag term. Considering water-particle
velocities including current velocity, u = c+ au · cos (−ω · t), with the amplitude of the
sinusoidal wave au, the Fourier series of the term u · |u| reads as summarised in Ap-
pendix A3. The Fourier coefficients are shown in Fig. 3.6 for different ratios of current
velocity c and amplitude of sinusoidal wave au. They are normalised by the value for
the base wave frequency. Since the Fourier coefficients are presented in logarithmic
scale, their respective signs are added, and Fourier coefficients with a value of zero are
marked.

Figure 3.6: Periodic function u · |u| with u = c+ au · cos (−ω · t) (left) and correspond-
ing Fourier coefficients normalised by the respective value for the base wave
frequency ω (right) for different ratios of constant current c to amplitude
of sinusoidal wave au

As visualised in Fig. 3.6 and stated in Eq. (A3.6), the non-linear drag term of Morison’s
equation for regular Airy waves consists of sinusoidal waves with odd multiples of the
base frequency for no current existing. In case that the current velocity is equal to
the amplitude of the sinusoidal wave, the drag term consists of a constant and two
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sinusoidal wavelets with the base wave frequency and twice the base wave frequency,
respectively. This is also true for current velocities greater than the amplitude of the
sinusoidal wave, referring to Eq. (A3.5). For current velocities between these two limit
states described, the drag term is described as the superposition of sinusoidal wavelets
with all multiples of the base frequency. The one-sided Fourier coefficients of the term
u · |u| with u = c+ au · cos (−ω · t) are dependent on the ratio of current velocity c

to amplitude of sinusoidal wave au, as shown in Fig. 3.7. Here, the amplitude of the
sinusoidal wave is set as unity.

Figure 3.7: Fourier coefficients of the function u · |u| with u = c+ au · cos (−ω · t) in
dependence of the ratio of constant current c to amplitude of sinusoidal
wave au, here with au = 1, referring to Eq. (A3.5)

As already described for Fig. 3.6, Fourier coefficients for even multiplies of the base
frequency are zero for no existing current. The mean value a0 increases with increasing
ratio of current velocity to amplitude of sinusoidal wave. Most importantly, it can be
noticed from Fig. 3.7 that the Fourier coefficients a1 for the base frequency and a2 for
twice the base frequency increase with increasing ratio of current velocity to amplitude
of sinusoidal wave for constant amplitude of sinusoidal wave. The Fourier coefficient for
thrice the base frequency decreases. All the other Fourier coefficients for odd multiples
of the base frequency have a non-zero value for no existing current and have a value
of zero for a current velocity equal to the amplitude of the sinusoidal wave, and the
Fourier coefficients for even multiples of the base frequency greater than two have a
value of zero for no existing current and for a current velocity equal to the amplitude
of the sinusoidal wave. In between these two limit cases, the behaviour of the Fourier
coefficients over increasing ratio of current velocity to amplitude of sinusoidal wave may
be described qualitatively as a decaying oscillation, and the number of zero-crossings
increases with increasing multiple of the base frequency. The absolute maximum values
of the Fourier coefficients decrease with increasing multiple of the base frequency.

The Fourier series is usually modelled with a limited number of Fourier coefficients. For
example, root-mean-square errors of 0.1214, 0.0184, and 0.0065 are calculated for the
Fourier series according to Eq. (A3.6) with n ≤ 1, n ≤ 3, and n ≤ 5, respectively. The
respective approximated maxima underestimate the theoretical maximum by 0.1512,
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0.0184, 0.0057. Here, the amplitude of the sinusoidal wave au is unity, and the current
c is zero.

Irregular sea states

The water-particle velocity and the water-particle acceleration of a linear sea state are
random Gaussian signals. The water-surface elevation can be described by a power
spectral density, e.g. by the Pierson-Moskowitz spectrum or the JONSWAP spectrum,
referring to Eq. (3.16) and Eq. (3.17), respectively. The water-particle kinematics are
also modelled as power spectral densities in frequency domain as well. Similar to the
periodic Airy wave, as described above, the inertia term of Morison’s equation in fre-
quency domain is easily obtained. Again, the non-linear term u · |u| does not allow an
analytical description of the drag term of Morison’s equation, but the drag term is to
be approximated.

Differentiation of the velocity potential of a linear sea state according to Eq. (3.15) with
respect to horizontal direction yields the horizontal water-particle velocity, referring to
Eq. (3.3). The vertical water-particle velocity as well as the corresponding water-particle
accelerations are Gaussian signals as well. The power spectral density of the horizontal
water-particle velocity reads as follows,

Suu (ω, z) =
(
g · k (ω)

ω
· cosh (k (ω) · (d+ z))

cosh (k (ω) · d)

)2
· Sηη (ω) , (3.20)

with the power spectral density of the water-surface elevation Sηη. Based on the power
spectral density of the horizontal water-particle velocity, the drag term of Morison’s
equation can be approximated as described by Borgman (1965). Gudmestad and Connor
(1983) state an approximation of fourth order,
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with Φ = 2 · erf
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)
and φ = 1√
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2 ·
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)2
)
. c is the current velocity, and σu

is the standard deviation of the horizontal water-particle velocity. 〈Suu (ω)〉∗n denotes
the n-fold convolution with itself, referring to Section 2.1.2.

Exemplarily, the normalised power spectral density of the horizontal water-particle velo-
city as well as the normalised n-fold convolutions with itself are shown in Fig. 3.8 (left).
The horizontal water-particle velocity is calculated at still water level for a JONSWAP
spectrum according to Eq. (3.17) with Hs = 2.0m, Tp = 5.0m, and γ = 3.3 for a deep-
water location. The corresponding normalised power spectral density of the drag force
according to Eq. (3.21) is shown in Fig. 3.8 (right) for current velocities of zero (black
line) and of half the standard deviation of the horizontal water-particle velocity (grey
line). The standard deviation of the horizontal water-particle velocity has a value of
∼ 0.81m/s for the analysed sea state.
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Figure 3.8: Normalised power spectral density of the horizontal water-particle velocity
as well as its n-fold convolutions (left) and the normalised power spectral
density of the drag force according to Eq. (3.21) for different current velo-
cities (right)

Depending on the current velocity as well as on the standard deviation of the horizontal
water-particle velocity, the terms of the n-fold convolutions contribute to the power
spectral density of the drag force.

The power spectral density of the horizontal water-particle velocity Suu has its max-
imum value close to the peak wave frequency of the respective wave-energy spectrum.
For the n-fold convolutions of higher order, more than one peak within the power spec-
tral densities are found. The 2-fold convolution and the 4-fold convolution have peaks
at zero and close to twice the peak wave frequency, and the 3-fold convolution has
peaks in vicinity of the peak wave frequency and of the trice the peak wave frequency.
In general, it is observed that peaks of the n-fold convolutions of even order are close
to even wave frequencies up to n-times the peak wave frequency, and that peaks of the
n-fold convolutions of odd order are close to odd wave frequencies up to n-times the
peak wave frequency.

The impact of currents on the power spectral density of the drag force can be observed in
Fig. 3.8 (right). The power spectral density of the drag force including current contains
an increased amount of energy. Additionally, an additional peak at twice the peak wave
frequency is noticeable in comparison to the drag force without current.

The coefficients to be applied on the n-fold convolutions of the horizontal water-particle
velocity Suu depend on the ratio of current velocity c to the standard deviation of the
horizontal water-particle velocity σu. The coefficients an, referring to Eq. (3.21), are
shown in Fig. 3.9 in dependence of this ratio.

Figure 3.9: Coefficients of n-fold convolutions of the horizontal water-particle velocity
for the power spectral density of the drag force according to Eq. (3.21)
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For increasing current velocity, the term φ tends to zero, and Φ tends to 2, referring to
Eq. (3.21). Similar to the results presented for the periodic Airy wave above, the terms
for n-fold convolution with orders up to 2 of Eq. (3.21) increase with increasing current
velocity, and the terms for higher order decrease.

The coefficient for the power spectral density of the horizontal water-particle velocity
increases with increasing current velocity. Its value is always greater than the coeffi-
cients for n-fold convolutions of higher order. The coefficient for the 2-fold convolution
increases with increasing current velocity as well. Its value is zero in case of no current,
and its limit value is 8. For no current, the term of the 3-fold convolution is of secondary
relevance, with a value of 4

3·π ≈ 0.4244. It decreases and tends to zero with increasing
current velocity. The coefficient for the 4-fold convolution is zero for no current, in-
creases for up to c

σu
≈ 1.0, and tends to zero for greater values. The maximum value of

this coefficient is approximately a tenth of the maximum value of the coefficient of the
3-fold convolution.

In comparison to the normalised n-fold convolutions, the normalised power spectral
density of the horizontal water-particle velocity contains the most energy and has the
most decisive maximum value. It is also dominant as product with the corresponding
coefficient. For the normalised power spectral density of the drag term of Morison’s
equation, only the peak close to the peak wave frequency is observed in case of no
current. The power spectral density also possesses increased energy near twice the
peak wave frequency and at zero for increased current velocities. No other peaks are
noticeable at other multiples of the peak wave frequency.

In conclusion, not only the main wave frequencies of the water-particle velocity are
to be considered for the load simulation but also the wave frequencies of the n-fold
convolutions which are minor in the signal of the non-linear drag term of Morison’s
equation. This is of importance for the structural-dynamic analysis, since other Eigen
modes may be excited, especially in case of currents. An study on the impact of currents
is carried out in Section 8.2.

3.2.6 Load regimes of wave-induced drag and inertia loads

Mostly depending on the wave conditions and the dimension of the structure, either
the drag term or the inertia term of Morison’s equation predominates. These predom-
inances are shown in e.g. Chakrabarti (1981) and Clauss et al. (1992) for periodic Airy
waves. The main findings are concluded below. These researchers did not consider cur-
rents in their respective discussions. As presented in Section 3.2.5, currents may be
significant for the structural-dynamic load simulation. Hence, the existence of currents
is additionally included in the analysis.

The load regimes of horizontal load at water-surface elevation of regular Airy waves
in deep water are shown in Fig. 3.10 for different current velocities. The ratio of max-
imum drag load and maximum inertia load is analysed on the left, and the ratio of
maximum total load and maximum inertia load is analysed on the right. The load re-
gimes are shown in dependence of the dimensionless parameters π ·D/L and π ·H/D,
with pile diameter D, wave length L, and wave height H. The latter parameter is
the Keulegan-Carpenter number for a linear wave in deep water. Values of the hydro-
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dynamic coefficients are Cd = 1.0 and Cm = 2.0. These values are typically applied
for the presentation of the predominances, referring to e.g. Chakrabarti (1981) and
Clauss et al. (1992). The breaking-wave limit for deep water, with wave breaking to be
considered for H/L > 1/7, and the application limit of Morison’s equation, D/L = 0.2
(IEC 61400-3-1, 2019), are also shown. The current velocities are given as dimension-
less multiples of the term

√
g ·D. For diameters of 1m and 10m, the term equals

∼ 3.13m/s and ∼ 9.90m/s, respectively. The load regimes are shown for multiples of
this term of 0 (dotted line), 0.10 (dashed line), and 0.32 (solid line). No current exist
for a multiple of 0. Current velocities of ∼ 1.0m/s are considered for a pile diameter of
1m and a multiple of 0.32 as well as for a pile diameter of 10m and a multiple of 0.10.

Figure 3.10: Load regimes of horizontal load at water-surface elevation of regular Airy
waves in deep water for different current velocities with hydrodynamic
coefficients Cd = 1.0 and Cm = 2.0: (left) ratio of maximum drag load and
maximum inertia load, (right) ratio of maximum total load and maximum
inertia load

In general, one can note in Fig. 3.10 (left) that the significance of the drag load in-
creases with the wave height. As described in Chakrabarti (1981) and Clauss et al.
(1992) for no current (dotted line), the amplitude of drag load and inertia load are
equal for π ·H/D ≈ 20. The drag load for π ·H/D < 2 may be neglected in wave-load
calculation. Otherwise, it shall be considered as the predominance of the drag load
increases with increasing wave height (Chakrabarti, 1981). Considering currents, the
significance of the drag term increases with increasing current velocity. As the load
regime for no currents only depends on the wave height, it depends on wave height as
well as on wave period and wave length of the Airy wave for existing currents.

The load regimes of horizontal load at water-surface elevation of linear sea states in
deep water are shown in Fig. 3.11 for diameters of 1m (left) and of 10m (right). These
dimensions are representative for jacket legs and monopile substructures, respectively.
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The load regimes are analysed for current velocities of 0.0m/s, 0.5m/s, and 1.0m/s.
The load regimes are shown in dependence of the dimensionless parameters π ·D/Lp
and π ·Hs/D, where the wave length Lp is calculated according to Eq. (3.12) with
the peak period Tp. Here, the load regimes are defined as ratio of damage-equivalent
horizontal drag loads and damage-equivalent horizontal total loads. On the basis of load
simulations carried out for sea states with a peak-enhancement factor of 3.3, damage-
equivalent loads are calculated according to Eq. (6.1) with the slope of the SN curve
of m = 4. Again, values of the hydrodynamic coefficients are Cd = 1.0 and Cm = 2.0.
The plotted breaking-wave limit is Hs/Lp = 0.04 for sea states according to Paulsen
et al. (2019). In addition to different levels of load regimes, the occurrence frequencies
of significant wave height and peak period at FINO1 for the period from 2003 to 2017
are shown. The occurrence frequencies are normalised by their maximum value. The
respective wave lengths are calculated with Eq. (3.12) without current.

Figure 3.11: Load regimes of linear sea states in deep water for different current velo-
cities with hydrodynamic coefficients Cd = 1.0 and Cm = 2.0 and peak-
enhancement factor γ = 3.3: ratio of damage-equivalent horizontal drag
load and damage-equivalent horizontal total load at water-surface elev-
ation and the respective occurrence frequencies (blueish scale) (left) for
jacket legs and (right) for monopile substructures

Similar to regular Airy waves shown in Fig. 3.10 (left), the significance of the drag
load increases for greater significant wave heights. The levels of load regimes also shift
to greater values of π ·D/Lp and thus to greater peak periods for increasing current
velocities. Comparison of the current-depending load levels for diameters of 1m and
of 10m shows that the load levels shift to smaller values of π ·D/Lp for increasing
diameters. Visual interpretation indicates that the current-depending load levels may
be inversely proportional to the diameter.

Significant differences regarding load levels and the shown occurrence frequency can be
seen for the different diameters of 1m and of 10m. For smaller diameters, the same sea-
state conditions occur in Fig. 3.11 at smaller values of π ·D/Lp and greater values of
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π ·Hs/D and thus in regions where the drag term contributes more significantly to the
wave load. For a diameter of 1m, the ratio of damage-equivalent horizontal drag load
and damage-equivalent horizontal total load at water-surface elevation of 0.1 is exceeded
by ∼ 75% of the considered sea states for no currents and by all considered sea states for
a current velocity of 1.0m/s. In comparison, the ratio of damage-equivalent horizontal
drag load and damage-equivalent horizontal total load at water-surface elevation of 0.1
for a diameter of 10m is exceeded by less than 0.03% of the considered sea states for no
currents and by ∼ 0.05% of the considered sea states for a current velocity of 1.0m/s.

The load regimes of Morison’s equation as well as the impact of currents are shown in
Fig. 3.10 and Fig. 3.11 for simplified assumptions regarding water depth, wave mod-
elling and load calculation. Deviations from these assumptions lead to different load
regimes and different occurrence probabilities of load regimes. Wave lengths increase
for shallower waters, and greater current velocities also lead to increased wave lengths,
referring to Eq. (3.12). Hence, the term π ·D/L for regular waves and the term π ·D/Lp
for sea states decrease, which result in greater load levels of load regimes for currents.
In case non-linear wave theories are applied instead of the Airy wave theory, the drag
load contributes more significantly to the total wave load (Clauss et al., 1992). Hy-
drodynamic coefficients, which depend on surface roughness and flow conditions as
described above, are also subject of change.

3.3 Long-term distribution of environmental data

For the load analysis of structures with a planned design lifetime of several decades,
detailed environmental conditions, their long-term behaviour and long-term evolution
as well as the correlations between different parameters are of importance. Long-term
statistics of environmental conditions shall represent the annual statistics in appropriate
manner. Long-term statistics are obtained either by means of weather simulations or
from long-term measurements. Distribution functions of single parameters and joint
distribution functions describing the combined occurrence of several parameters can be
derived on the basis of these data sets.

Data series based on either measurements or simulations have advantages and dis-
advantages. Inaccuracies of the simulated data may occur due to modelling of the
simulation process, whereas correctly-applied measurement data register the in-situ
environmental conditions. However, potential failures of the measurement equipment
result in missing data or erroneous data. Once validated against measurement data,
simulations may model environmental conditions in a satisfactory manner.

In the following, metocean data measured at the research platform FINO1 are analysed
and further discussed regarding the derivation of the respective statistical properties
and subsequent definition of a design basis1. Here, the chronological sequences of wind
velocity at 90m above mean sea level, of significant wave height, and of peak period are
investigated. Measurement data for wind velocity at 90 m above mean sea level exist
between 1 January 2004 and 30 September 2017, and measurement data for significant
1The metocean data measured at the research platform FINO1 are kindly provided by the Bundes-
amt für Seeschifffahrt und Hydrographie (BSH, Federal Maritime and Hydrographic Agency). The
research project FINO is funded by the German Federal Ministry for the Environment, Nature
Conservation and Nuclear Safety (BMU) and the Project Management Jülich (PtJ).
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wave height and peak period exist between 30 July 2003 and 31 October 2017. The
wind velocity is measured with a cup anemometer, and the sea-state parameters are
measured with a radar-based wave monitoring system (Herklotz, 2007; Leiding et al.,
2016).

3.3.1 Seasonal dependence of metocean data

Environmental conditions mostly have a seasonal dependence. This dependency is
shown in Fig. 3.12 for the wind velocity at 90m above mean sea level (top) and for the
significant wave height (bottom), showing non-exceedance probabilities for the months
March, July, and November (left) and mean values and 95%-quantiles (right) as well
as the respective annual properties. The monthly and annual statistic properties are
derived from the measurement data of the research platform FINO1 for the years 2004
to 2016.

Figure 3.12: Monthly statistical properties at the research platform FINO1 for wind
velocity at 90m above mean sea level and significant wave height summar-
ised for the years 2004 to 2016: (left) non-exceedance probabilities as well
as (right) mean values and 95%-quantiles

One can see that the shown monthly distribution are not equal to the other monthly
distributions. Annual distribution functions and monthly distribution functions also
differ in general. Greater values for wind velocity at 90 m above mean sea level and
significant wave height and therefore more severe metocean conditions are observed for
autumn- and winter seasons. Mild metocean conditions and their statistical estimation
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are important for the installation of offshore wind turbines, as mentioned by Lohaus
et al. (2015) for grout-installation processes.

3.3.2 Data availability

In order to assess the data availability, wind velocity at 90 m above mean sea level,
significant wave height, and peak period measured at the research platform FINO1 are
exemplarily analysed. The derived annual data availabilities are presented in Tbl. 3.1
for the years 2003 to 2017. Monthly data availabilities for the years 2003 to 2017 are
shown in Fig. 3.13.

Table 3.1: Yearly data availability at the research platform FINO1 for wind velocity at
90m above mean sea level, significant wave height, and peak period for the
years 2003 to 2017 (values in percentage)

Year

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

vwind – 97.6 95.0 99.4 90.6 94.2 99.7 99.9 95.8 95.6 89.5 87.4 88.0 98.1 73.7

Hs 14.9 52.6 88.5 72.6 74.5 88.8 62.7 71.9 92.1 90.8 97.3 69.1 90.3 67.2 83.3

Tp 15.5 53.0 88.8 72.9 74.5 88.8 62.7 71.9 92.1 90.8 97.3 69.1 90.3 67.2 83.2

vwind & Hs – 52.3 83.7 72.5 66.3 83.6 62.4 71.8 88.0 86.4 88.4 61.2 79.4 65.7 73.7

Hs & Tp 14.9 52.6 88.5 72.6 74.5 88.8 62.7 71.9 92.1 90.8 97.3 69.1 90.3 67.2 83.2

Figure 3.13: Monthly data availability at the research platform FINO1 for wind velocity
at 90m above mean sea level, significant wave height, and peak period for
the years 2003 to 2017

Data for wind velocity at 90m above mean sea level are available with a percentage of
greater than 85% for each year. The years 2013 to 2015 are noticeable regarding the
monthly data availability. Here, the monthly data availability is less than 80% in nine
months and less than 60% in one month. At most two months with a data availability
less than 80% are observed for all other years presented in Fig. 3.13. The annual and
monthly data availabilities of significant wave height and of peak period are almost
identical for the years 2003 to 2017. Excluding the year 2003, the annual availabilities
are less than 75% within seven of the 14 years of measurements considered, with a
minimum of 52.6% and 53.0% for the year 2004, respectively. Only for the years 2011 to
2013, at most two months with a data availability less than 80% are observed. Especially
in the previous years, many months with reduced data availabilities are observed. The
data availability of significant wave height is greater than 80% in 51 of the 84 months
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in the years 2004 to 2010, while 21 and ten months have a data availability of less than
50% and less than 20%, respectively.

Daily data availabilities for wind velocity at 90m above mean sea level, significant wave
height and peak period, summarised for the years 2004 to 2016, are shown in Fig. 3.14.
Here, the availability associated to a certain day is the summarised availability at all
these particular days of each year considered. For example, the value associated to 5
October represents the data availability of each 5 October of the years 2004 to 2016.

Figure 3.14: Daily data availabilities at the research platform FINO1 for wind velocity
at 90 m above mean sea level, significant wave height, and peak period
summarised for the years 2004 to 2016

The daily availability for wind velocity at 90m above mean sea level is above 90% for
almost every month. It is below 90% only from beginning of October to beginning of
November and from middle of December to middle of January. As for significant wave
height and peak period, the daily availabilities strongly scatter between 55% and 100%.
Daily availabilities of less than 65% are observed especially for the periods of time from
middle of February to end of March, from beginning of April to end of April, and from
middle of September to middle of November.

3.3.3 Long-term statistics

At best, complete measurement data of several decades without any gaps are the basis of
long-term statistics. At least all months and seasons as well as their respective statistical
properties shall be represented in almost equal shares for the accurate deviation of
the annual distribution. In case that certain months or seasons are over-represented or
under-represented, the resulting annual distribution and the long-term statistics may be
biased. Hence, long-term statistics for significant wave height and peak period derived
from the presented measurements are to be critically assessed due to the scattering of
availability over the course of a year, referring to Fig. 3.14. Due to the almost constant
daily availability for wind velocity at 90 m above mean sea level, long-term statistics
can be derived for this parameter.

Metocean parameters can be considered as invariant for certain periods of time. The
long-term distribution of the environmental data are usually stated in so-called scatter
diagrams. They provide the occurrence frequency of environmental parameters which
are classified by bins. Usually, scatter tables show the joint distribution of two para-
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meters. Exemplarily, the scatter tables of significant wave height and wind velocity at
90 m above mean sea level as well as of significant wave height and peak period are
visualised in Fig. 3.15. They are based on the measurements at the research platform
FINO1. Instead of evaluating all available years, only the year 2013 is analysed due
to the high annual and monthly data availability, referring to Tbl. 3.1 and Fig. 3.13.
Detailed scatter tables are given in Appendix A1.

Figure 3.15: Scatter tables of (left) significant wave height and wind velocity at 90 m
above mean sea level and of (right) significant wave height and peak period

3.3.4 Extreme metocean values

In order to deduce the distribution function of annual extremes on the basis of measure-
ment data, referring to the block-maxima method as described in Section 2.2.3, com-
plete data sets for several years shall exist such that each annual extreme is included.
Otherwise, the parameters of the derived distribution function may be inaccurate or
underestimated in case that actual annual extreme values were not recorded. The ex-
trapolation of extreme values with return periods of several years or decades may also
be strongly affected by ignoring missing seasonal data. Due to the seasonal depend-
ence of monthly statistics, only annual extremes can be analysed. Analysing maxima of
blocks which are smaller than a year does not satisfy the requirement that the analysed
values must be independent and identically distributed. Exemplarily, greater values of
the significant wave height are measured during autumn and winter in comparison to
summer at the research platform FINO1 in the German North Sea (Lohaus et al., 2015).
Neglecting these values of autumn- or winter months leads to an underestimation of
annual extremes.

Extreme values with certain return periods may be estimated on the basis of the dis-
tribution function of high values above a certain threshold via the peak-over-threshold
method. Here, the distribution function has the type of the generalised Pareto distribu-
tion, referring to Section 2.2.4. Once the generalised Pareto distribution to describe the
values above a certain threshold is found, the generalized extreme value distribution
can be determined as described in Section 2.2.5. Contrarily to the distribution function
of annual extreme, the distribution function of high values above a certain threshold
and the respective generalised Pareto distribution depend on the annual distribution
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of values. As described above for the long-term statistics, the monthly and seasonal
availability of the data shall be approximately constant in order to obtain an unbiased
distribution function.

In general, the deviation of the distribution functions for extreme values is very sens-
itive, i.a. due to often small data sets. Hence, it shall be carried out with care. Further
information on extreme metocean conditions is given by e.g. Haselsteiner et al. (2021)
and Haselsteiner (2022).

3.4 Environmental-related structural alterations of
offshore wind turbines

Structural dynamics and loading on the structure may change during course of time
due to the progressive effects of the marine environment. Exemplarily, the submerged
structures change the flow regime of the sea water, and they form an artificial habitat
for marine life. The impact of marine growth, scour development, and corrosion, which
result from the marine environment, on offshore wind turbines are described in the
following. The findings for marine growth and scour development were already pub-
lished by the author in Rolfes et al. (2018, Section 5.5). Structural alterations due to
structural damage probably occurring at support structures and at typical structural
connections are briefly discussed.

Only a qualitative description of structural alterations is given. No detailed calculations
are provided within the thesis. Due to their impact on the structural-dynamic properties
of offshore wind turbines, the scattering of the structural alteration over lifetime shall be
considered within the probabilistic design. Therefore, the joint occurrence frequencies of
different scattering parameters shall also be considered in order to achieve an optimised
design.

3.4.1 Marine growth

Offshore structures can be considered as artificial reefs, which are settled by marine
fauna and flora. Marine growth, or biofouling, is already observed shortly after install-
ation of offshore structures. The species and the thickness of marine growth depend
i.a. on the local position in relation to the mean sea level as well as on the salinity,
pH value, temperature, and oxygen content of the seawater. Marine growth varies over
the course over a year due to seasonal effects. The volume of marine growth usually
stagnates after a few years.

Marine growth results in additional mass, and changes the geometry and surface of
structural components. This influences the hydrodynamic loads and the dynamic re-
sponse of offshore structures. Hence, it is to be considered during the design process
of offshore wind turbines and is to be documented in each periodic inspection (BSH,
2015). The thickness of marine growth, which is to be modelled for simulations, is reg-
ulated by the standard DNV-ST-0437 (2016). Unless measurement data are available,
profiles for marine growth as stated in DNV-ST-0437 (2016) are to be applied. For
instance, thicknesses of 150mm up to a depth of 10m below lowest astronomical tide
and of 100mm between depths of 10m below lowest astronomical tide to 40m below
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lowest astronomical tide are to be applied the Southern North Sea (south of latitude
of 56°N). In absence of more accurate data, the density of marine growth is set equal
to 1,325 kg ·m−3.

Several investigations cover the marine growth for the region of the German offshore
wind park alpha ventus. For the research platform FINO1, erected in July 2003 and
located 400m west of alpha ventus, records of marine growth exist for spring, summer
and autumn from 2005 to 2007 (Krone et al., 2013). Marine growth was documented
for four substructures within the German offshore wind park alpha ventus, erected
in the summer 2009, during the period from 2009 to 2012 (Kazmierczak et al., 2010,
2011; Preuß et al., 2012, 2013). It is measured for various depth below the mean sea
level. The research studies show that blue mussels (mytilus edulis) mostly populate the
support structures up to a depth of 5m below sea level. Studies at the Dutch offshore
wind park Egmond aan Zee show a qualitatively similar population of the respective
substructures (i.a. Bruijs, 2010; Bouma and Lengkeek, 2012). The thicknesses of marine
growth are shown in Fig. 3.16 for both the research platform FINO1 as well as for the
substructures of the offshore wind turbines R1, R6, M7, and M12 within the offshore
wind park alpha ventus. Depths of 1m, 5m, and 10m below the mean sea level are
considered. The thicknesses of marine growth are derived on the basis of the biomass
as documented in the aforementioned studies and a density of 1,325 kg ·m−3.

Figure 3.16: Thicknesses of marine growth at the research platform FINO1 and at off-
shore wind turbines R1, R6, M7, and M12 of the offshore wind park alpha
ventus for different depths below mean sea level (MSL) as well as respect-
ive photographs of marine growth, observed at alpha ventus, adapted from
Preuß et al. (2012, Fig. 100)

Seasonal fluctuations of the biomass is especially notable for a depth of 1m below
mean sea level at FINO1. The thicknesses of marine growth observed during spring and
autumn is reduced in comparison to summer. The reasons for seasonal fluctuations are
not investigated sufficiently: parts of marine growth may be torn off the substructures
during storms, which usually occur during autumn and winter, and new populations of
marine fauna and flora are settling during spring. Documenting marine growth since
shortly after erection, the initial settling of marine fauna and flora is observed at each
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substructure within alpha ventus. It is notable that the thicknesses of marine growth
vary at each substructure within alpha ventus. In comparison to the data of marine
growth at FINO1, no clear regularities regarding seasonal fluctuations can be derived
for alpha ventus during the first three years after erection of the offshore wind turbines.

The Eigen frequencies of the offshore wind turbine are lowered due to marine growth
which is mostly an additional mass with almost no additional stiffness. Due to the
increased diameter and increased surface roughness, the hydrodynamic loads acting on
structural components covered by marine growth are increased.

3.4.2 Soil and scour development

Geotechnical soil investigations at offshore sites are carried out in order to determine the
soil layers, their composition, and their physical properties. Load-bearing behaviour of
soil and soil-structure interaction are described with reference to corresponding stand-
ards (API RP 2A-WSD, 2014; API RP 2GEO, 2014) on the basis of these results.
Therefore, non-linear springs along the pile embedded in the soil are usually modelled.
Depending on the types of soil layers, different models are stated in API RP 2GEO
(2014). Load-deflection curves (p-y curves) describe the soil reaction of laterally-loaded
piles, and the soil-structure interaction of axially-loaded piles is modelled by means of
axial-load transfer curves (t-z curves) and tip-load-displacement curves (Q-z curves).
As an important parameter, the vertical effective stress is used to calculate the shaft
friction of piles in cohesionless soils and the end bearing (API RP 2GEO, 2014, Sec-
tion 8.1.4). Details on soil modelling are found in e.g. Thieken (2015) and Schmoor
(2017). Schmoor also proposes an approach to model the soil by means of a probabil-
istic model. Load-bearing behaviour of soil and soil-structure interaction are impaired
due to the development of scour.

Unless appropriate measures are taken, scour develops at offshore structures which are
placed at the seabed. The erosion of the seabed sediment results from the interaction
of the flow field, the soil, and the structure itself. The flow of water particles due by
waves and currents is affected by the structure, which causes increased vortex shedding
or wave reflection. Subsequently, enhanced movement of the sediment and hence scour
development occur in vicinity of the structure. Global scour and local scour may occur
(DNV-ST-0437, 2016). Global scour covers the overall seabed erosion as well as the
scour due to pile groups, covering a greater field around the structure. Local scour
occurs at single piles. Both types are shown in Fig. 3.17 (left). Scour may result in
reduced stability of the respective structures. Therefore, it is to be considered in the
design. Protection against scour development is especially required for piles with great
diameters placed into the seabed. Monopiles and gravity-based foundations require
appropriate measures against scour development. Usually, no scour protection is applied
for jacket substructures, whose foundation piles typically have comparatively small
diameters.

Requirements for consideration of local scour at offshore wind turbines located at sites
with cohesiveless sediment, such as sand, are given in DNV-ST-0126 (2021). For single
piles, relative scour depth, which is the ratio of scour depth to pile diameter, of up
to 1.3 is observed. Full-scale- oder model-scale test are to be carried out for other
structures, such as jackets, or structures installed at sites with cohesive soils in order to
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determine the scour development (DNV-ST-0126, 2021). According to API RP 2GEO
(2014), scour is not considered as a problem for cohesive soils. Model tests of a tripod
substructure, as i.a. installed at the offshore wind park alpha ventus, suggest relative
scour depths of 1.1 up to 1.6 (Stahlmann and Schlurmann, 2012; Stahlmann, 2014).
Relative scour depths of 0.3 up to 2.0 are observed for experiments with a model
of a jacket substructure in different conditions of the sea state (Yang et al., 2010).
The temporal scour development at monopiles due to combined loading of waves and
currents is studied by Schendel (2018) and Welzel (2021).

There is no general accepted method to model the soil properties of laterally-loaded
piles due to scour development. API RP 2GEO (2014) suggests the reduction of the
vertical effective stress for laterally-loaded piles as shown in Fig. 3.17, but the standard
also allows other methods derived from practice and experience. The vertical effective
stress is reduced linearly with depth below the local scour. A slightly different approach
is proposed by Zaaijer et al. (2002). Here, the vertical effective stress is reduced linearly
by global scour, and it is linearly reduced by local scour until the overburden reduction
depth. The effect of local scour is not considered below the overburden reduction depth.
The value of the overburden reduction depth is usually taken as six times the respective
pile diameter. In comparison, the approach stated in API RP 2GEO (2014) yields a
greater reduction of the vertical effective stress due to scour development. In general,
scour development yields reduced load-bearing capacities and stiffnesses of cohesiveless
soils with respect to the soil modelling according to API RP 2GEO (2014).

Figure 3.17: Scour at jacket and monopile substructures (van der Tempel et al., 2004)
(left) and overburden reduction depth determination for global and local
scour according to API RP 2GEO (2014) (right)

Scour development directly impacts the structural response of offshore structures. In-
creased scour depth leads to reduced Eigen frequencies. Exemplarily, the first bending
Eigen frequency of an offshore wind turbine with monopile substructure is reduced by
approximately 6% for a relative scour depth of 1.3 (Prendergast et al., 2015). First and
second bending Eigen frequencies reduced by 1.4% and 2.1% for a relative scour depth
of 1.3 are calculated for an offshore wind turbine with tripod substructure (Ma et al.,
2018). Numerical investigations by the author (Rolfes et al., 2018) for an offshore wind
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turbine with jacket substructure show that the first bending Eigen frequency is almost
constant for relative scour depth up to 2.0.

Concerning fatigue life, investigations on an offshore wind turbine with monopile sub-
structure show a significantly decreased fatigue lifetime in case of scour (van der Tempel
et al., 2004; van der Tempel, 2006). Numerical simulations of an offshore wind turbine
with tripod substructure and a relative scour depth of 1.3 are evaluated with respect
to limit states (Ma et al., 2018). Increased maximum loads and lateral deflection of
foundation piles are observed. Additionally, the structure is exposed to increased fa-
tigue loads, resulting in significantly reduced fatigue lifes. Increased fatigue loads are
also calculated by the author (Rolfes et al., 2018) for the foundation piles of an offshore
wind turbine with jacket substructure.

3.4.3 Corrosion

Corrosion is a natural process. It is the chemical or electrochemical reaction of materials
with their environment, which results in alternated properties and deterioration of the
materials. Especially metals are prone to corrosion. General information on corrosion
of metals is given in e.g. Bergmann (2013).

The severity of corrosion depends on the environmental conditions. Comparing offshore
to onshore sites, corrosion of steel components is more severe due to greater humidity
and salinity. Corrosion is also supported by high oxygen concentration in water. Marine
growth may influence the corrosion rate. Especially microbiologically-influenced corro-
sion results in a rapid corrosion of steel components (Videla and Characklis, 1992; Black-
wood, 2018). Considering offshore wind turbines, the values of corrosion rates depend
on the vertical location. High corrosion rates are observed in the splash zone, defined
as the part of a support structure which is frequently exposed to seawater due to tide
and waves (IEC 61400-3-1, 2019). For monopiles, microbiologically-influenced corrosion
was observed at internal steel surfaces of monopiles (Hilbert et al., 2012). Depending
on the vertical location and the corrosion to be expected, different techniques for pro-
tection against corrosion are to be applied in accordance with the respective standards
(BSH, 2015; DNV-RP-0416, 2016). Corrosion control includes coatings, cathodic pro-
tection, corrosion allowance, and selection of corrosion-resistant materials. However,
complete protection against corrosion cannot be ensured due to various reasons as
stated in Momber and Marquardt (2018). Marine growth usually modifies the corrosive
environment locally. No clear findings regarding the interaction of marine growth and
protection against corrosion still are not found yet (Momber and Marquardt, 2018).
Hence, corrosion is to be considered during the design of offshore wind turbines. A
more detailed overview of corrosion and of protection systems against corrosion for
offshore wind turbines is given in e.g. Momber (2011).

Considering steel structures exposed to external loads, the loss of material due to cor-
rosion results in reduced cross-section properties. This leads to increased internal loads
and to changed structural dynamics of the structures. Here, the Eigen frequencies are
reduced. In general, different models exist to describe the surface topology of corroded
steel components. The surface topologies due to uniform corrosion, irregular corrosion,
and pitting corrosion are shown in Fig. 3.18. The grey lines indicate the original cross
section before corrosion.
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Figure 3.18: Uniform corrosion, irregular corrosion, and pitting corrosion (from left to
right)

The impact of corroded, irregular steel surfaces on the load-bearing behaviour of steel
components and their modelling as well as experimental fatigue investigation of cor-
roded steel components are still topic of research (Teixeira et al., 2013; Momber et al.,
2019; Shojai et al., 2022a,b). Significantly increased stress concentration exists at pits
in structural components, which is equivalent to a reduction of load-bearing capacities
and of the respective fatigue life. Several experimental investigations on steel specimens
exposed to corrosion show a reduced fatigue strength in comparison to uncorroded spe-
cimens (Adedipe et al., 2015; Ummenhofer et al., 2017; Collmann and Wefer, 2017;
Gkatzogiannis et al., 2019). Especially the acquisition of respective corroded specimens
is of importance. Methods to generate corroded steel specimens in laboratory in consid-
erably less time, which shall possess similar properties as specimens exposed to natural
corrosion, are discussed in Gkatzogiannis et al. (2019).

For the structural design of offshore wind turbines, SN curves and partial safety factors
are to be selected depending on location as well as accessibility for inspection and
maintenance (DNV-ST-0126, 2021). The SN curves for steel components are specified
in DNV-RP-C203 (2019) in dependence of the risk of corrosion. Here, distinction is
made between steel components in air, in seawater with cathodic protection, as well as
for free corrosion. The fatigue strength descends for the stated order of classifications.
The SN curves stated for the fatigue design according to DIN EN 1993-1-9 (2010)
explicitly are only valid for steel components which are not exposed to corrosion.

Exemplarily, a steel specimen2 with the dimensions of 150 mm × 20 mm × 10 mm is
analysed. It was placed below mean sea level at a harbour at the German North Sea for
two years. Its surface was covered mainly by barnacles (Balanidae). The steel specimen
was placed in acetic acid, which has a concentration of 10%, for twelve hours in order to
remove the calcareous remains of the barnacles. No chemical reaction between the steel
surface and the acetic acid is noted. Afterwards, electrolysis of the steel specimen was
performed in order to remove the remaining corrosion products. Detailed information
on the methods applied to remove the corrosion products is given in Appendix A2.

The steel specimen before removal of the calcareous remains of the barnacles and of
the corrosion products and its measured surface profile after removal are shown in
Fig. 3.19. The red-coloured contour plots in the photography of the steel specimen
covered by barnacles indicate the depths of 0.25mm, 0.50mm, and 0.75mm to mark
the locations of corrosion pits. The profile of the steel surface was optically measured
with a profilometer “VR-3200” of KEYENCE.

Notable corrosion pits are detected between neighbouring barnacles as well as at loc-
ations which are not covered by barnacles. These areas were exposed directly to the
seawater, which eventually led to corrosion. Based on this steel specimen, no reliable
statement cannot be made that corrosion occurred at locations covered by barnacles.
Nevertheless, the steel surface below the barnacles is notably smooth.

2The steel specimen as shown in Fig. 3.19 (top) was kindly provided by Fraunhofer IWES.
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Figure 3.19: Corroded steel specimen2 covered by calcareous remains of the barnacles
(top) and the measured profile of its surface after removal of the calcareous
remains of the barnacles and of the corrosion products (bottom)

3.4.4 Deterioration of structural components

Local damages of structural components may lead to changed structural behaviour
of structures. Especially components exposed to increased local stresses are prone to
damage. Components and structural details, which are typically found at offshore wind
turbines, include welding seams, tubular joints, and structural connections, such as
ring-flange connections and grouted connections. Additionally, increased local stresses
occur at irregular steel surfaces, i.a. due to corrosion.

Initial fatigue cracks at steel structures and at their details, such as welding seams and
tubular joints, have a depth of less than a millimetre and a length of a few millimetres.
This is equivalent to a rupture of a laboratory test specimen (Radaj and Vormwald,
2007). Both values are considerably small in comparison to the thicknesses of and
overall dimensions of steel components used for support structures of wind turbines.
Since fatigue design of structures according to standards at most permit cracks of this
dimension, no cracks are to occur which may change the general structural properties
significantly and notably. Further crack propagation may lead to an accelerated failure
of the respective component.

Preloaded high-strength bolt assemblies are applied in ring-flange connections between
tower segments and for the connection between tower and transition piece. About hun-
dred bolts or more are used for ring-flange connections as used for wind turbines.
Damages of a few single bolts within ring-flange connections, leading to a significant
reduction of the preload, hardly affect the general structural properties of ring-flange
connections. Damaged bolts are subsequently exchanged during periodic inspections in
order to ensure a safe and stiff connection furthermore.

Grouted joints are applied to realise the form closure between substructures and the
foundation piles. The connection between transition piece and monopile is realised
either by grouted connections or newly by ring-flange connections. Slipping of grouted
connections was observed at cylindrical monopiles and transition pieces of offshore wind
turbines within several offshore wind parks in Europe. Here, no shear keys have been
attached to monopiles and transition pieces, which caused the slipping (Schaumann
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et al., 2010). No degradation of the stiffness of grouted connections with shear keys is
observed (Raba, 2018).

In conclusion, no structural deterioration by means of a significantly reduced stiffness
of the respective component can be observed, unless severe local damage or failure of
a component has already occurred.

3.5 Findings

Within this chapter, the reader is introduced to the simulation of wind fields and sea
states which are applied for the load simulation of offshore wind turbines. A special
emphasis is put on the characteristics of waves and sea states as well as on the wave-
induced loads.

The wave-induced loads, usually calculated with Morison’s equation, consist of a drag-
and inertia term, whereas bottom-fixed offshore structures are preliminary loaded by in-
ertia forces. However, the drag term becomes more relevant in case that currents occur.
Due to the quadratic term of the water-particle velocity within the drag term of Mor-
ison’s equation, the local maxima within the load time series are increased for increased
current velocities. The ranges from a local minimum to the consecutive local maximum
are also greater. For certain peak periods of the sea state, dynamic amplification of
the drag term including current may become even more significant. A corresponding
analysis on the impact of currents is carried out in Section 8.2.

Besides the introduction to modelling of sea states and wind fields, the long-term stat-
istics of the decisive parameters to describe sea states and wind fields as well as their
combined occurrence frequencies are shortly discussed. The respective scatter tables
are derived from the measurement data from the research platform FINO1.

Additionally, variations of the structure as well as of the structural-dynamic properties
are described. Mostly the variations occur due to the special environment offshore.
Substructures can be considered as artificial reefs, as they are settled by marine fauna,
such as mussels or barnacles. The soil-structure interaction may be subject of change
due to the scour development around the foundation piles. Even though corrosion is
about to occur within the harsh environment, the loss of material is almost not notable,
mostly due to the corrosion protection systems attached to offshore wind turbines. The
effects on the structural-dynamic behaviour is almost not notable. Deterioration of
structural components also does not result in significant changes of the structural-
dynamic behaviour.



4 Load simulation of offshore wind
turbines

The design of offshore wind turbines is usually based on the semi-probabilistic design
approach. The probabilistic design approach may result in a more economic structural
design. As for the probabilistic design, three classes of probabilistic models are to be
considered. They cover variations of the structure and structural-dynamic properties,
long-term weather conditions, as well as the randomness of signals, as introduced in
Section 1.1. The variations of the structure and structural-dynamic properties as well
as the long-term weather conditions are described in Chapter 3. The estimation of
distribution functions for extreme loads and fatigue loads is given in Chapter 5 and
Chapter 6, respectively.

For the structural design of offshore wind turbines, certain load cases as specified in the
relevant standards are to be simulated. These load cases shall represent the operational
states which offshore wind turbines face during their considered lifetime. The regular
operation of the offshore wind turbines, which produces power, covers most of the
lifetime. Additionally, parked offshore wind turbines as well as offshore wind turbines
with fault conditions during different environmental conditions are to be considered
because these conditions of the rotor-nacelle assembly result in different structural
responses of the offshore wind turbine.

For the load simulations, a system of equations, consisting of characteristic matrices, is
set up which represents the structural behaviour of the offshore wind turbine as well as
the acting loads. The load simulations are usually carried out in time domain in order
to model non-linearities appropriately. These non-linearities result in time-depending
matrices of the system of equations to be solved for each time step. Frequency-domain
simulations require significantly less computational effort, but it is not possible to model
non-linearities. Only linearised models can be used.

4.1 Design of offshore wind turbines

The Federal Maritime and Hydrographic Agency of Germany (in German: Bundesamt
für Seeschifffahrt und Hydrographie, BSH) is responsible for the approval of offshore
wind turbines within the exclusive economic zone of Germany. The structural design
of offshore wind turbines is regulated by the standard BSH (2015), which refers to
national and international standards and guidelines.

53
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4.1.1 Safety concepts

The effects of actions E shall not exceed the respective resistance R of any structural
component. This is equivalent to state that the limit-state function g is greater than
zero,

g (E,R) = R− E
!
> 0 . (4.1)

Due to the stochastic scattering of the effects of actions and of the structural resistance,
the probability of failure Pf is defined as the probability that the limit-state function
is not fulfilled,

Pf =
∫

g(E,R)<0

p (E,R) · dE · dR , (4.2)

with the joint probability density function p (E,R) of effects of actions and resist-
ance. Complementary, the survival probability is the probability that the limit-state
function is fulfilled, Ps = 1− Pf . The target values for probability of failure are set
in dependence of the so-called reliability classes according to DIN EN 1990 (2010).
The reliability classes may be associated to the so-called consequences classes. The
consequences classes and the associated target probabilities of failure are concluded in
Tbl. 4.1. Here, the target values for an one-year reference period are listed. Instead of
the maximum probability of failure, the minimum values for the reliability index are
stated in DIN EN 1990 (2010). The probability of failure is the value of the cumulative
distribution function of the normalised Gaussian distribution for the negative value of
the reliability index.

Table 4.1: Definition of consequences classes and their associated probabilities of fail-
ures according to DIN EN 1990 (2010)

Consequences
class Definition Probability

of failure

CC3
High consequence for loss of human life,
or economic, social or environmental con-
sequences very great

10−7

CC2
Medium consequence for loss of human
life, economic, social or environmental
consequences considerable

10−6

CC1
Low consequence for loss of human life,
and economic, social or environmental
consequences small or negligible

10−5

Contrarily to DIN EN 1990 (2010), an annual probability of failure of 10−4 is stated for
offshore wind turbines in DNV-ST-0126 (2021). The survival probability for a period of
n years depends an the annual survival probability, Ps,n = Pns . Hence, the probability
of failure for a period of n years is Pf,n = 1− Ps,n.

The design standards regarding the design of offshore wind turbines follow the semi-
probabilistic safety concept. Here, design values of the effects of actions as well as of the
resistances are defined. The values of the effects of actions must not exceed the respect-
ive design values of resistance, Ed < Rd. The target probability of failure is already
included in the design values via partial factors and combination factors to consider
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simultaneously occurring effects of actions. These factors are usually obtained by ap-
plying the first-order reliability method. Further information on the semi-probabilistic
safety concept is given in e.g. DIN EN 1990 (2010).

No design values are required for the probabilistic design, but the distribution functions
of the effects of actions as well as of the resistances are to be known. For a reliability-
based design or probabilistic design, the probability of failure according to Eq. (4.1) is
to be calculated and evaluated. The integral in Eq. (4.2) may be solved by applying
Monte Carlo simulations. Further information on the reliability-based design is given
in e.g. DIN EN 1990 (2010). Additionally, a detailed description of the safety concepts
is found in e.g. Al Shamaa (2015).

4.1.2 Limit states

Especially the verifications of the ultimate limit state and the fatigue limit state are of
importance for the structural design of offshore wind turbines. For the design against
ultimate limit state, the extreme load effects are compared to the correspondent ulti-
mate resistance of the structural component. The verification of the fatigue limit state
is carried out by calculating the fatigue damage caused by the cycling effects of ac-
tions. Additionally, verification of the accidental limit state and of the serviceability
limit state are to be carried out. An example for the accidental limit state is the veri-
fication of the structural behaviour in case of a collision of a ship with an offshore wind
turbine. The verification of the serviceability limit state is required to evaluate that
the operation of offshore wind turbines is not disturbed by events not covered by the
previously stated limit states. Further requirements and required verifications for the
design of offshore wind turbines are listed in BSH (2015).

Details on the verifications of the ultimate limit state and fatigue limit state are stated
in Chapter 5 and Chapter 6, respectively.

4.2 Load characterisation and load cases for offshore wind
turbines

In general, load types can be classified as constant, periodic, random, and transient,
referring to Böker (2010). Additionally, the random transient load type is introduced.
These different load types are sketched in Fig. 4.1. Loads of different types may occur
simultaneously.

Constant loads mostly occur due to the self weight of the components of a structure
and due to constant mean wind or constant sea currents.

Periodic loads are caused by i.a. the rotation of the rotor whose rotational speed is
usually constant during operation. Reasons are the imbalances of the rotor plane, such
as different mass or stiffness of the blades, as well as loads along the blades, which
pass through a temporally changing wind field. Periodic loads also occur due to regular
waves.
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Figure 4.1: Classification of load types: constant, periodic, random, transient, and ran-
dom transient (from left to right)

Irregular waves and turbulent wind fields result in random loads. Only characterist-
ics such as statistical properties, distribution functions, spectral moments, and power
spectral densities may be obtained for describing this load type.

Transient loads are impact loads with sudden changes in magnitude or direction. Ex-
amples are wind gusts, operational loads due to start of or shutdown of a wind tur-
bine, and breaking-wave impact at the substructure. Start describes the process from
standstill- or idling situation to power production, and vice versa, shutdown is the
process from power production to standstill- or idling situation. Breaking waves are
modelled as impact forces, referring to Paulsen et al. (2019). Their impact duration is
in the range of tenths of seconds.

Random transient loads are identified as a special form of the transient loads. In com-
parison to transient loads, they occur frequently, but their magnitudes and the time
gap between consecutive transient loads are considered as random. An example for
offshore structures is the wave-induced loading due to sea states in the splash zone.
The wave-induced loading is only acting below the temporally changing water-surface
elevation. Hence, the substructure is either loaded in this area by waves with random
height and random magnitude, or it is not loaded at all when the wave though passes.

4.2.1 Effect of the rotor

The rotor itself has a significant impact on the loads acting on the support structure
of the offshore wind turbine. The wind acting on the single blades of the rotor causes
a rotation. The generated torque is transferred to electrical power. All loads acting on
the blades and thus on the rotor are transferred by the support structure into the soil.

Usually, the rotor speed is approximately constant. The loads acting on a single blade
are not constant, but they vary periodically due to the mean wind field. The mean
wind field, here considered without turbulence for reasons of simplification, is affected
by wind shear and the tower-shadow effect. Due to the wind shear, referring to Sec-
tion 3.1.1, the absolute wind velocity and the angle of attack at the blade section varies
along a whole rotation. The tower-shadow effect describes that the wind velocity is
reduced in front of the tower due to the presence of the tower. Passing of the blades
through this local field of reduced wind velocity alters the loads acting on the blades.
The resulting loads acting on a blade are periodical with a base frequency equal to the
rotor speed.
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The load acting on the rotor hub is the superposition of all periodic loads acting on all
blades. Assuming that the periodic loads acting on the blades are equal with a time
lag due to their installed angular positions, this load is a periodic signal whose base
frequency is the rotor speed multiplied by the number of blades. The rotor speed itself
is not a component of the superposed signal. These load effects due to the rotating
blades are referred to as nP for a rotor with n blades.

Additionally, imbalances of the rotor as a whole, which may exist because the blades
attached to the rotor hub may have different masses or different geometries due to man-
ufacture and installation, cause periodic loads. These periodic loads may also consist of
natural multiples of the base frequency which is equal to the rotor speed. Effects due
to rotor imbalances are referred to as 1P.

Natural multiples of the 1P- and nP-frequencies are to be considered as well for the
design of offshore wind turbines. Such a periodic signal is usually not a sinus wave, but it
consists of several wavelets with wave periods being natural multiples of the base wave
frequency. The absolute values of the amplitudes of the components associated to the
natural multiples usually are less than this of the base frequency, without consideration
of the dynamic amplification. However, dynamic amplification may increase certain
amplitudes within the resulting dynamic load effect. General description on the the
1P- and nP-frequencies is also found in textbooks such as Gasch and Twele (2012) and
Hau (2013).

This effect is exemplarily shown in the Campbell diagram in Fig. 4.2. The Campbell
diagram plots the rotor speed against the Eigen frequencies. It is used to identify
potential resonance effects which occur when the rotor speed as an excitation frequency
is close to the Eigen frequencies of the offshore wind turbine. Here, it is shown for a
rotor with three blades. It is state of the art that offshore wind turbines operate in
between the 1P- and 3P frequencies. This configuration is called “soft-stiff design”.
The offshore wind turbine is to be designed such that the Eigen frequencies do not
match the 1P- and 3P frequencies including some safety margins for any operational
rotor speed. Here, a safety margin of ±10% is considered, shown as grey area. In case
that a periodic load with a base wave frequency of the 1P frequency due to the rotation
of the rotor also consists of a wavelet with a wave frequency equal to two time the base
wave frequency, this frequency lies within the allowable area of Eigen frequencies. This
frequency is denoted as 2*1P frequency and shown as dashed line. Therefore, dynamic
excitation of the wavelet with a wave frequency of 2*1P frequency is possible.

This effect is exemplarily described for the 2*1P frequency. Greater multiples of the 1P
frequency as well as multiples of the 3P frequency may also interfere with other Eigen
frequencies of the offshore wind turbine.

4.2.2 Load events for offshore wind turbines

The loads acting on offshore wind turbines depend on the severity of environmental
conditions as well as on soil-structure interaction, the selected support structure and
control mechanisms of the rotor-nacelle assembly.

Most of the lifetime of an offshore wind turbine, power production is possible for oper-
ational wind turbines and for wind velocities which lie within the range of cut-in wind
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Figure 4.2: Campbell diagram for a three-bladed wind turbine, with an exemplary range
of first bending Eigen frequencies for offshore wind turbines and of rotor
speeds

velocity and cut-out wind velocity. Outside of this range, the rotor-nacelle assembly
is in parked or idling condition such that no power production is possible. For wind
velocities less than the cut-in wind velocity, the resulting loads acting on the rotor
blades are too small to cause a rotation of the rotor. For wind velocities greater than
the cut-out wind velocity, the resulting loads acting on the offshore wind turbines are
too great such that a safe and reliable operation of the offshore wind turbine is not pos-
sible. The values for the cut-in wind velocity and the cut-out wind velocity depend on
the technical demands for the machinery of the offshore wind turbine. The cut-in wind
velocity usually has a value of 2m/s up to 5m/s, and the cut-out wind velocity usually
has a value of 25m/s up to 30m/s. The percentage of power-production status depends
on the site-specific wind distribution as well as on the technical specification and tech-
nical availability of the offshore wind turbine. Technical availability of the rotor-nacelle
assembly is not given during the whole lifetime of an offshore wind turbine. Due to vari-
ous reasons such as technical malfunctions or maintenance, the inoperable rotor-nacelle
assembly is consequently driven in idling or parked position. No safe operation can be
guaranteed otherwise. The technical availability of an offshore wind turbine is assumed
to have a value of approximately 90%. These load events are relevant for the design
against fatigue. Due to the reduced aerodynamic damping for load events with idling or
parked rotor-nacelle assembly and thus greater dynamic excitation, the fatigue damage
is increased in comparison to a similar load event of an operating offshore wind turbine
with same duration. Even though the technical availability is very high, the load events
due to technical non-availability may contribute noticeably to the total fatigue damage.

Besides the operational stages of offshore wind turbines described above, high loads
acting on support structures of offshore wind turbines may be caused by environmental
events which either rarely occur or are considered as abnormal. Operation of the offshore
wind turbine itself and faults during the operation may result in high loads as well.
These load events are to be additionally analysed for the design against ultimate limit
states.

During storms with wind velocities less than the cut-out wind velocity, power produc-
tion is still possible. Both great wind-induced loads as well as great wave-induced loads
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act on the rotor and the substructure, respectively. During storms with wind velocities
greater than the cut-out wind velocity, the offshore wind turbines are in idling or parked
conditions. Even though the wind-induced loads action on the rotor are reduced in com-
parison to the operational stages, no aerodynamic damping exists. This may cause an
increased dynamic excitation, especially when the exciting frequency is close to the
Eigen frequencies of the offshore wind turbine. Very high waves and slamming waves
may occur during storms which act for a few seconds or few tenth of seconds, respect-
ively, with a high magnitude on the substructure. They cause sudden extreme transient
loading.

Other rare events include environmental conditions or faults of the rotor-nacelle as-
sembly which cause transient loading at the offshore wind turbine. Examples are sudden
change in mean wind directions or wind gusts. Sudden wind-direction change results in
a reduced wind-induced force acting on the rotor-nacelle assembly perpendicularly to
the rotor, but the side-to-side force, acting parallel to the rotor plane, is increased due to
the inclined flow direction. Almost no aerodynamic damping exists for the side-to-side
excitation.

Start processes of offshore wind turbines occur when the offshore wind turbine starts
to operate from parked or idling stage. This is the case the mean wind velocity exceeds
the cut-in wind velocity or it falls below the cut-out wind velocity. Vice versa, stop
processes occur when the mean wind velocity falls below the cut-in wind velocity or
it exceeds the cut-out wind velocity. Emergency stops may occur during sudden faults
which require a sudden stop of the rotor. Therefore, the blades are pitched such that the
wind-induced loads suddenly vanish. This causes a transient excitation of the offshore
wind turbine. The rotational speed also passes the nP-frequency of a n-bladed wind
turbine and multiples of the 1P- and nP-frequency during these processes. This passing
causes a dynamic excitation of the offshore wind turbine.

4.2.3 Standardisation of load simulation for offshore wind turbines

The standards IEC 61400-3-1 (2019) and DNV-ST-0437 (2016) define the load simula-
tions which are to be carried out for the design of offshore wind turbines. These so-called
design load cases (DLCs) are classified into several groups, as can be seen in Tbl. 4.2.
They cover the different operational and environmental stages which the offshore wind
turbine has to withstand during its lifetime. The load types which are to be expected
to occur for the design load cases, referring to Section 4.2, are associated to the design
load cases. The design load cases covering sea-ice simulation are excluded from this
overview. Further details on these design load cases are found in IEC 61400-3-1 (2019),
DNV-ST-0437 (2016), as well as in e.g. Popko (2020).

Periodic loads are observed for all design load cases which simulate the offshore wind
turbine during operation. As described above, periodic loads occur due to the passing
of the blades with almost constant rotational speed through wind fields, which include
wind shear and tower-shadow effect. These design load cases are summarised in the
groups of design load cases 1 and 2. Periodic load effects are also observed for start-
up- and shutdown processes, which are listed within the groups of design load cases 3
and 4. Here, periodic excitation is caused when the changing rotational speed of the
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Table 4.2: Design load cases (DLCs) for the design of support structures of offshore
wind turbines according to IEC 61400-3-1 (2019) and associated load types

DLC Description Load type
P T RT R

1) Power production
1.1 Normal conditions (for rotor-nacelle assembly

only)
x (x) x

1.2 Normal conditions x (x) x
1.3 Extreme wind turbulence x (x) x
1.4 Extreme wind-direction change x (x) x
1.5 Extreme wind shear x (x) x
1.6 Severe sea state x x x
1.7 Ice at rotor blades x (x) x
2) Power production plus occurrence of various faults
2.1 Normal conditions x (x) x
2.2 Normal conditions x (x) x
2.3 Extreme operating gust x x (x) x
2.4 Normal conditions x (x) x
2.5 Normal wind profile, no turbulence x (x) (x)
3) Start up
3.1 Normal wind profile, no turbulence x (x) (x)
3.2 Extreme operating gust x x (x) x
3.3 Extreme wind-direction change x x (x) x
4) Normal shutdown
4.1 Normal wind profile, no turbulence x x (x)
4.2 Extreme operating gust x x x
5) Emergency stop
5.1 Normal conditions x x
6) Parked (standing still or idling)
6.1 50-years storm x x
6.2 50-years storm plus yaw misalignment due to

electrical fault
x x

6.3 One-year storm x x

6.4 Normal conditions, wind velocities below cut-in
vel.

x

Normal conditions, wind velocities above cut-
out vel.

(x) x

7) Parked and fault conditions
7.1 One-year storm x x
7.2 Normal conditions (x) x
8) Transport, installation, maintenance and repair
8.x . . . x (x) x

Load type: periodic (P), transient (T), randomly transient (RT), random (R)
x: notable load type, (x): minor or randomly observed load type

rotor meets an Eigen frequency or its multiples. The sudden excitation of certain Eigen
modes can also be considered as transient load.
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As explained above, transient load effects are caused by sudden changes within the
wind field, sea state or due to faults during the operation. For examples, wind gusts
are to be simulated for various design load cases DLC 2.3, DLC 3.2, and DLC 4.2, and
extreme wind-direction changes are considered with the design load cases DLC 1.4 and
DLC 3.3.

Random transient loads occur for all design load cases due to sea states. Hence, altern-
ating loads occur within the splash zone. Their contribution to the total loads depends
on the severity of the respective sea states. Strong sea states especially occur for great
wind velocities. Hence, high random transient loads are to be expected for the simula-
tion of severe sea states, referring to DLC 1.6, as well as of extreme sea states during
an one-year storm and 50-years storms, referring to DLC 6.3 as well as DLC 6.1 and
DLC 6.2, respectively.

Random loads occurs for all design load cases, since either random sea states, random
wind fields or both are to be simulated for those.

Design load cases for fatigue design

The design load cases DLC 1.2, DLC 6.4, and DLC 7.2 are most governing for the fatigue
design. They cover the operational lifetime of the offshore wind turbine during operation
under normal conditions for wind velocities between cut-in- and cut-out wind velocity,
during parked conditions due to wind velocities less than the cut-in wind velocity and
wind velocities greater than the cut-out wind velocity, and during parked conditions
due to faults, respectively.

As recommended by the respective standards, all wind velocities and wind directions as
well as the associated sea states are to be considered with their respective occurrence
frequency. The sea states are defined by their spectral density, significant wave height,
peak period, and wave direction. Currents are not to be considered for the design load
cases DLC 1.2, DLC 6.4, and DLC 7.2 (IEC 61400-3-1, 2019; DNV-ST-0437, 2016).

Usually, the design load cases DLC 3.1 and DLC 4.1, which cover the start-up- and nor-
mal shutdown processes of the offshore wind turbine, are included for the calculations
of the fatigue loads. The count of start- and shutdown processes during the lifetime
can be estimated on the basis of the metocean data. These design load cases do not
contribute as much to the fatigue damage as the design load cases DLC 1.2, DLC 6.4,
and DLC 7.2 do.

Lumping of sea states

Generally, the full scatter tables of wind velocity, wind direction, significant wave height,
peak period, and wave direction are to be considered for the simulation of the design
load cases DLC 1.2, DLC 6.4, and DLC 7.2. The maximum number of required sim-
ulations is the product of considered wind velocities, wind directions, significant wave
heights, peak periods, and wave directions as given in the scatter tables. Even with ex-
cluding those combinations with an occurrence frequency of zero, several ten-thousands
of different combinations are to be simulated and analysed. The required computational
effort is enormous.
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Therefore, it is beneficial to reduce the number of combinations of environmental vari-
ables. Different lumping approaches exist which allow to reduce the number of com-
binations. An overview of these approaches is provided by Katsikogiannis et al. (2021).
Following these lumping approaches, only one sea state to be simulated is derived for
the combination of wind velocity, wind direction, and wave direction. Then, the number
of required simulations is reduced to several thousands in comparison to the full-scatter
approach. No lumping approach and no corresponding note are not referenced in design
standards until now.

Different approaches to reduce the number of load cases for fatigue-load evaluation
exist. The approaches aim to condense a scatter table of significant wave height and
peak period for each wind velocity, wind direction, and wave direction to a single sea
state. With the exception of using averaged values of significant wave height and peak
period, as mentioned by Passon (2015), the approaches aim to find a sea state which
eventually causes the same fatigue damage as the scatter table itself. They are usually
referred to as damage-equivalent wave lumping approaches. In general, there is not one
but several sea states which may cause the same fatigue damage as the scatter table.
For each combination in the scatter table of significant wave height and peak period,
the fatigue damage caused by each combination of significant wave height and peak
period is calculated. The total fatigue damage due to this scatter table is obtained
by weighting the fatigue damages with the respective occurrence probability of each
combination of significant wave height and peak period. The line on which these sea
states with the same fatigue damage as the complete scatter table lie is referred to as
“damage contour line” by Passon (2015).

Kühn (2001) describes an iterative lumping approach which is based on quasi-static
simulations of the sea states given in the scatter table. These load simulations are
carried out in time domain. A lumped sea state is found with an iteration process
which is applied to find a lumped sea state with respect to the fatigue damage at a
reference height. Structural-dynamic effects are not included.

Seidel (2014b) introduced a damage-equivalent wave lumping method which considers
the structural-dynamic response. The fatigue damage is calculated in frequency do-
main. The value of the equivalent significant wave height is determined such that the
quasi-static fatigue damage is maintained. The value of the equivalent peak period de-
pends on the first-bending Eigen frequency and lies on the damage contour line. The
formulae stated by Seidel (2014b) and Seidel (2014a) only consider one damping value
for the first-bending Eigen frequency and simplified fatigue-damage calculation. These
formulae could be extended for more than one damping value and for higher sophist-
icated fatigue-damage calculation methods in frequency domain, as they are described
in Section 6.2.1.

The lumping approach introduced by Passon (2015) is based on structural-dynamic
wave-load simulations in time domain. The author notes that the lengths of the simu-
lated time series shall be of sufficient length such that the fatigue damage is calculated
appropriately without being prone to scatter. Damage contour lines are determined for
several locations along the monopile substructure. The intersection point of all damage
contour lines defines the values of the lumped sea state.
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Katsikogiannis et al. (2021) state that the shortcomings of the previously described
lumping approaches are the lack of wind-wave interaction as well as of appropriate
damping assumptions which take the current operation status of the offshore wind
turbine into account. The authors extended the proposed approach of Passon (2015)
by including advanced damping assumptions. In order to analyse the impact of wind-
wave interaction on the lumped sea states, damage-equivalent sea states are derived by
means of fully-integrated simulations in time domain, considering wind- and wave in-
duced loads. Additionally, wave-induced load simulations were carried out in frequency
domain. Almost the same parameters for the lumped sea states are derived by both
time-domain- as well as frequency-domain simulations. Katsikogiannis et al. (2021) also
analysed the impact of different soil-structure interactions for an offshore wind turbine
with a power capacity of 10MW . For each soil-structure interaction considered, a dis-
tinct lumped sea state is found. As a continuance of their previous work, Katsikogiannis
et al. (2022) analysed different turbine classes, namely offshore wind turbines with a
power capacity of 5MW , 10MW , and 15MW . The authors observed that the lump-
ing approach yields different lumped sea states for the different power capacities of the
offshore wind turbines. They also noted that different lumped sea states are found for
different elevations along the monopile.

In general, all lumping approaches described above are developed for monopile sub-
structures. The application of the lumping methods on more complex substructures
such as jackets are yet to be analysed and discussed. In comparison to monopiles, more
structural details such as the welding seams at the tubular joints are to be considered.
Due to the increased complexity and thus increased number of relevant design positions,
the risk that no distinct lumped sea state is found is eventually higher.

Design load cases for design against extreme loads

For the design against ultimate limit state, rarely occurring events are to simulated.
The design load cases for the design against ultimate limit state cover severe conditions
of wind fields and sea states as well as fault conditions of the machinery. Rarely and
suddenly occurring events within wind fields and sea states are also considered, which
cause transient load effects. These load events are already described in Section 4.2.2.
These extreme situations may implicitly exist in the design load cases used for the fa-
tigue design, which are already described above. For example, extreme direction changes
or extreme wind gust may already be included in the random wind fields.

It is not predictable which design load case is governing for the design of the different
components of the support structure. The most important ones are shortly described.
The design load case DLC 6.1 models an idling or parked offshore wind turbine during
a storm with a reoccurrence period of 50 years, and the design load case DLC 6.3
models an offshore wind turbine during a storm with a reoccurrence period of one year.
The design load case DLC 1.6 describes an operating offshore wind turbine during a
storm with wind velocities less than the cut-out wind velocity. Extreme wind fields and
extreme events within the wind fields are covered by the design load case DLC 1.3,
DLC 1.4, and DLC 1.5. Start-up and shutdown of offshore wind turbines are simulated
within the groups of design load cases 3, 4, and 5.
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4.3 Load simulation of offshore wind turbines

Load simulations of offshore wind turbines are usually carried out with finite-element
software. A linear system of equations is set up which represents the structure, the
structural behaviour, and the acting loading. For structural-dynamic simulations, the
equations of motion are to be solved,

M · ÿ + C · ẏ +K · y = f (t) , (4.3)

with the mass matrix M , damping matrix C, stiffness matrix K, vector of deformation
y, and vector of loads f . The matrices describe the finite-element model of the structure.
The matrices may depend on time and on the structural response y and its derivatives.
This is in particular the case for wind turbines. Especially the rotation of the rotor as
well as the positioning of the blades, which is regulated by the control mechanisms of
the rotor-nacelle assembly, cause a non-linear, time-variant structural behaviour of the
rotor blades and thus non-linear loading acting on the blades.

Damping describes the energy dissipation due to the movement of the structure. Oscilla-
tions are either reduced or prevented by damping. For offshore structures, soil damping
due to soil-structure interaction, hydrodynamic damping due to the movement within
the water, as well as material damping are to be considered.

A special form of damping for wind turbines is the aerodynamic damping. It occurs
during the operational stages of the wind turbine. High loads on the rotor blades cause
a bending deformation of the rotor blades and support structure in wind direction.
Due to the moving in wind direction, the angles of attacks along the rotor blades
are decreasing such that the wind-induced loads are reduced which decelerates the
movement. Vice versa, the wind-induced loads increase for a movement against the
wind direction which again damps the movement. Aerodynamic damping only occurs for
loads acting perpendicular to the rotor plane. Side-to-side movements of wind turbines
do not experience aerodynamic damping. General information on aerodynamic damping
is given by Kühn (2001).

Aerodynamic damping is implicitly covered in the load simulation which also simulate
the flexibility of the structure explicitly. Values for aerodynamic damping are usually
stated in dependence of wind velocities for structural systems which are considered
rigid and do not simulate the flexible structure (Kühn, 2001).

Damping within the equations of motion can be modelled as Rayleigh damping. It
describes a damping matrix which is linearly composed of the mass matrix and the
stiffness matrix. Damping is defined for two arbitrary wave frequencies, and its course
depends on the wave frequency. Wave frequencies less than the lower selected wave
frequency and greater than the upper selected wave frequency are heavily damped.

4.3.1 Modal condensation

It is possible to reduce the computational effort to solve by transforming the equations
of motion to modal coordinates such that the response is described by the Eigen vectors
of the system.
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The Eigen frequencies ωn or the Eigen values ω2
n are found for satisfying the equa-

tion det
(
−ω2 ·M +K

)
= 0. The Eigen vectors are given as non-trivial solution of(

−ω2
n ·M +K

)
· un = 0, with un 6= 0. Usually, Eigen vectors are presented as norm-

alised vectors ûn = αn · un, αn ∈ R such that the terms ûT
n ·M · ûn are equal to unity

for all Eigen vectors. The normalised Eigen vectors are summarised as modal matrix
Û = [û1, . . . , ûN ]. Hence, the equations of motion can be transformed to the following
formulation,

M̂ · ü+ Ĉ · u̇+ K̂ · u = Û
T · f , (4.4)

with the modal mass matrix M̂ , the modal damping matrix Ĉ, the modal stiffness
matrix K̂, and the vector of modal deformation u. The modal mass matrix is equal to
the identity matrix, and the modal stiffness matrix has entries of k̂ij = 0 for i 6= j and
of the Eigen values at the main diagonal otherwise, k̂ii = ω2

n,i. Hence, each equation of
Eq. (4.4) can be considered as a single-degree-of-freedom system.

As stated by Böker (2010), it is sufficient to reduce the modal equations of motion
by eliminating modes which possess a small amount of energy. Modal condensation
is applied by most software packages for the simulation of wind turbines due to its
numerical efficiency.

4.3.2 Load simulation in time domain

Load simulations of offshore wind turbines in time domain are well established. General
overviews over finite-element software for the simulation of offshore wind turbines are
found in e.g. Böker (2010), Popko (2020), or Leimeister (2020).

The time-variant matrices of the equations of motion are updated for each time step
of the structural-dynamic simulation. Hence, a solution of the equations of motion,
referring to Eq. (4.3) and Eq. (4.4), is obtained for each time step which includes
the non-linear and time-variant behaviour of the structure. Various time-integration
schemes of different accuracy and computational efficiency can be applied for the load
simulations (Böker, 2010).

Different approaches exist to carry out the simulation of offshore wind turbines in
time domain to determine the loads and internal loads of the support structure. A
general overview and respective principle schemes are provided by Böker (2010). These
approaches are shortly summarised in the following. The numerical effort for the load
simulation increases for the given order, as does the accuracy of the load simulation
and of the resulting loads.

Superposition approach

The superposition approach is a very simple approach to determine the loads at an off-
shore wind turbine. It is very commonly applied within the early design stages during an
offshore-wind project (Seidel et al., 2016). The structural-dynamic interaction between
support structure and rotor-nacelle assembly is not considered by the superposition
approach.



66 Chapter 4. Load simulation of offshore wind turbines

Here, the simulation of the wave-induced loads with a software package for offshore
applications and the simulation of the wind turbine with an aerodynamic-aeroelastic
software package are carried out independently. It is convenient to model the structures
within the software packages such that the structural-dynamic properties such as Eigen
frequencies and Eigen modes approximately match those of the offshore wind turbine.
The loads from the aerodynamic-aeroelastic simulation are transferred to the support
structure at the interface node in order to determine the structural response of the
support structure. Aerodynamic damping of the support structure which is decisive
of the load simulation can be modelled by means of specified damping values (Kühn,
2001).

Afterwards, the loads from the offshore software package and from the aerodynamic-
aeroelastic software package are superposed. For the determination of the extreme loads,
Böker (2010) suggests to add the extreme loads from each simulation. Combination
rules, such as Turkstra’s rule, are also convenient for the extreme-load determination
(Seidel and Kelma, 2012; Schmidt, 2017). For the calculation of the combined fatigue
loads, Kühn (2001) proposes the following superposition of the damage-equivalent loads,

sDEL,total =
√
s2
DEL,wind + s2

DEL,wave , (4.5)

with the damage-equivalent loads sDEL,wind and sDEL,wave from the aerodynamic-
aeroelastic software package and from the offshore software package, respectively, and
the combined damage-equivalent load sDEL,total.

Semi-integrated approach

The semi-integrated approach is described by Seidel et al. (2004). This approach in-
cludes the structural-dynamic interaction between support structure and rotor-nacelle
assembly. Again, different software packages are applied for the simulation of the struc-
tural response of the offshore wind turbine due to wind- and wave-induced loads.

For the semi-integrated approach, the support structure is modelled within the aerody-
namic-aeroelastic software package as an equivalent monopile which possesses structural-
dynamic properties similar to the actual support structure. Equivalent wave-induced
loads are applied during the aerodynamic-aeroelastic simulation. Either the resulting
loads or the resulting deformations are applied on the interface node for the following
simulation with the offshore software package. In case that loads are applied, the load
simulation is to be carried out as static. Hence, Eigen modes of the support structure
may be neglected. This especially leads to inaccurate results for complex structures,
such as jackets. In case that deformations are applied, dynamic load simulation can be
carried out. However, since the support structure is modelled as equivalent monopile
within the aerodynamic-aeroelastic software package, not all Eigen modes of the ori-
ginal support structure may be represented appropriately. For example, the torsional
stiffness of a jacket and this of the equivalent monopile vary significantly.
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Sequential approach

Instead of modelling the substructure as equivalent monopile, as it is done for the semi-
integrated approach, it is represented by reduced mass-, damping, and stiffness matrices
within the aerodynamic-aeroelastic software package for the sequential approach. Oth-
erwise, the procedure is similar to this of the semi-integrated approach. These matrices
include the main structural-dynamic properties of the support structure.

Here, the main structural-dynamic properties are modelled with a higher degree of ac-
curacy. Hence, the aerodynamic-aeroelastic load simulation leads to more accurate loads
which are applied at the interface node for the simulation with the offshore software
package. However, a detailed analysis by Böker (2010) has shown that the responses of
local Eigen modes are overestimated in comparison to those obtained with the fully-
coupling approach and that the Eigen frequencies may differ. Again, complex structures
such as jackets are subject of these inaccuracies, while they are minor for tripods and
negligibly small for monopiles. Overall, it cannot be concluded whether the sequential
approach leads to conservative loads (Böker, 2010).

Fully-coupling approach

Böker (2010) presented an improved approach to couple the different software packages
required for an accurate load simulation of offshore wind turbines. Here, one of the
software packages solves the whole system of equations. As described by Böker (2010),
it is more practical to represent the rotor-nacelle assembly as superelement and the
acting loads within the offshore simulation package.

First, the offshore wind turbine is set up within the offshore simulation package as
well as within the aerodynamic-aeroelastic software package. The model of the rotor-
nacelle assembly is transferred to the general system matrices to be solved. Based
on the kinematics of the previous time step, the system matrices, representing the
current stage of the rotor-nacelle assembly, and the currently acting loads on the rotor-
nacelle assembly are updated for each time step of the time-domain simulation. The
hydrodynamic loads are calculated within the offshore simulation package. Finally, the
response of the system is calculated within the offshore simulation package.

Fully-integrated approach

The simulation approaches previously described make use of several of several software
packages for the load simulation of an offshore wind turbine. Instead, the whole load
simulation can be carried out within one simulation package. Here, all non-linearities
and interaction effects between offshore wind turbine and environmental conditions can
be modelled appropriately and accurately.

4.3.3 Load simulation in frequency domain

Load simulations for offshore structures in frequency domain are well established in
the offshore industry for oil- and gas applications (Barltrop and Adams, 1991). This is
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mostly applicable, since these kind of substructures are located in very deep waters such
that the water-surface elevation hardly is to be accounted for in the load simulation.

As for load simulation of offshore wind turbines in frequency domain, the non-linear
behaviour of the controller is hardly to handle. It causes time-variant structural vari-
ations. Additionally, it is almost not possible to describe the wind-induced loads acting
on the rotor blades in frequency domain. Load simulation of offshore wind turbines
in frequency domain are only possible by considering simplifications and linearisation
of the structural model and acting loads. Halfpenny (1998) carries out a linearisation
of the wind-induced loads and of the controller’s response such that load simulation
in frequency domain is possible. No time-variant structural properties are considered.
Within the work carried out by van der Tempel (2006), the power spectral densities
of wind-induced loads are determined via Fourier transformation from time-domain
simulations, and the wave-induced loads are calculated in frequency domain. Lupton
(2014) analyses the response of a floating offshore wind turbine. A linear model is used
to describe the behaviour of the controller. Errors of up to 10% for the thrust forces
are reported for wind velocities not being close to the rated wind velocity. However,
the error increases to up to 40% for wind velocities close to the rated wind velocity.

Equations of motion in frequency domain

A rough sketch on the equations of motion in frequency domain is given here. Further
details on the equations of motion in frequency domain as well as load simulation of
structures in frequency domain is provided in general textbooks, e.g. Crandall and
Mark (1967), Preumont (1994), and Roberts and Spanos (2003). A short overview is
provided by Kleineidam (2005).

Fourier transformation of Eq. (4.3) yields the equations of motion in frequency domain.
Loads and deformations are represented as matrices of power spectral densities. The
spectrum of deformations S

yy
is calculated on the basis of the spectrum of external

loads S
ff

and the transfer function H,

S
yy

(ω) = H̄ (ω) · S
ff

(ω) ·HT (ω) . (4.6)

The transfer function H consists of the structural properties of each element of the
finite-element model, H =

[
−ω2 ·M + i · ω · C +K

]−1
. H̄ is the complex conjugate of

H. The spectrum of deformations S
yy

is determined via matrix multiplication of the
matrices given on the right side of Eq. (4.6).

Eq. (4.6) reads as follows for a single-degree-of-freedom system,

Syy (ω) = |H (ω)|2 · Sff (ω) . (4.7)
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Dynamic amplification factor

Following Eq. (4.7), the amplification of the static structural response is calculated as
follows for a single-degree motion of equation,

V (ω) = 1√(
1−

(
ω
ωn

)2
)2

+ 4 ·D2 ·
(
ω
ωn

)2
, (4.8)

with excitation frequency ω, Eigen frequency ωn, and damping ratio D. The function
V is referred to dynamic amplification factor. The value of the dynamic amplification
factor at the Eigen frequency is 1

2·D . Exemplarily, the dynamic amplification factor has
a value of 50 for a damping value of 1%, which is a typical value for offshore wind
turbine excluding aerodynamic damping. The dynamic amplification factor is shown in
Fig. 4.3 for different values of the damping ratio.

Figure 4.3: Dynamic amplification factor for different damping ratios

4.4 Findings

It is state-of-the-art to carry out the design of offshore wind turbines by means of the
semi-probabilistic design approach. The probabilistic design approach may result in
a more economic structural design. Yet, it is more time-consuming to the increased
number of load simulations to be carried out in order to meet the required probability
of failure for the structural verification.

As for the design of offshore wind turbines, design load cases are defined which are
to be simulated in order to determine the extreme loads and fatigue loads which the
offshore wind turbines have to resist. Mostly the signals consist of random load type
due to the sea states and wind fields acting on the offshore wind turbine. Periodic loads
are observed for the simulation during operation. Transient loads occur due to sudden
changes within the otherwise random time series.

Load simulations are usually carried out in time domain, even though the simulations
are very time-consuming. The computational effort for load simulations in frequency
domain is reduced significantly. However, the time-variant structural model as well
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as the non-linearities, which are mostly caused by the controller of the rotor-nacelle
assembly, cannot be covered appropriately such that simulations in frequency domain
cannot be applied for a detailed and accurate design of offshore wind turbines. Up to
now, load simulations in frequency domain are used to estimate preliminary loads for
the early design stages of an offshore-wind project (Seidel et al., 2016).



5 Estimation of extreme loads in
frequency domain

Structural components are to be designed such that no load exceeds their load-bearing
capacity.

Loads acting on structures may exceed the load-bearing capacity of structural compon-
ents such that a sudden damage may occur. Extreme loads may also cause deformations
which cause an unsafe operational stage. Therefore, it is of importance to determine
the very high loads which may occur during the lifetime of the structure and which may
cause damage. The design against extreme loads is usually referred to as ultimate limit
state design. These extreme loads usually subject of scatter. The statistical properties
of the extreme loads can be determined on the basis of multiple time series as well as
on the basis of power spectral densities. The derivation of extreme loads for offshore
wind turbines, both as characteristic value and as respective distribution function, is
challenging and still topic of ongoing research activities (Haselsteiner, 2022).

Besides scattering of the extreme loads, the load-bearing behaviour of structural com-
ponents and of materials is also subject of scattering, which is mostly due to the man-
ufacturing process.

5.1 Structural design against extreme loads

For the structural design, it has to be evaluated whether the maximum occurring load
or deformation exceeds the respective values which the structure can withstand. The
load-bearing behaviour depends very much on the selected material. The following
description concentrates on steel structures. Other materials, which are applied for
offshore wind turbines, such as concrete or cast iron, show different material behaviour
when loaded.

Exceeding of the load-bearing capacity of structural components causes irreversible
deformation of the structure and eventually damage. Loads may also cause deflections
or rotations of structural components which exceed predefined limits while the load-
bearing capacity is not exceeded yet. For example, only a certain value of deflection is
allowed for a rotor-blade tip. Otherwise, it touches the tower of a wind turbine, which
causes damage to blade and tower or eventually results in the total loss of the wind
turbine.

The load-bearing capacity is determined based on experimental testing. Of importance
are stress-strain curves, which show the relation between stress and strain rate within
the test specimen. Here, the steel probe is axially loaded until rupture. Usually, the
strain rate is constantly increased until rupture of the probe. The shape of the stress-
strain curve depends on the tested material. General information on stress-strain tests
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of steel probes and on its normative regulations is found in e.g. Bergmann (2013). The
stress-strain curve includes several parameters which are characteristic for the tested
material. The yield strength is the point on a stress-strain curve which indicates the end
of the elastic behaviour. If the stress acting on the steel component exceeds the yield
strength, plastic deformation of the steel probe is observed. The modulus of elasticity
or Young’s modulus is the constant slope of the stress-strain relationship until plastic
deformation of the steel probe occurs. The maximum stress which the steel probe can
withstand without rupture is referred to as ultimate stress. An idealised stress-strain
curve for a steel probe as it is retrieved from tensile testing is shown in Fig. 5.1, with
the relevant parameters stated.

Figure 5.1: Idealised stress-strain curve for a steel probe

The resulting stress-strain curves of several experimental tests usually do not match,
but they scatter mostly due to the manufacturing process of the steel specimens and of
steel itself. As for the latter one, the micro-structure of steel is usually inhomogeneous
which results in scattering material properties. Extensive investigations on the statist-
ical properties of the stress-strain curves of structural steel are found in Melcher et al.
(2004) and Sadowski et al. (2015). The distribution functions of the yield strength and
of the ultimate strength is to be modelled as log-normal, as suggested by several re-
search groups and scientific consortia, i.a. JCSS (2001), Melcher et al. (2004), Sørensen
and Toft (2010), and Sadowski et al. (2015). However, these research groups propose
different characteristic values for the underlying log-normal distribution functions of
the yield strength and the ultimate stress. Melcher et al. (2004) and Sadowski et al.
(2015) investigated steel probes from different regions and from different decades, which
are the reasons for the stated differences.

Young’s modulus is found to be subject to scattering as well. Its distribution type is a
log-normal distribution (JCSS, 2001; Sørensen and Toft, 2010; Sadowski et al., 2015).
Again, the values of the parameters describing the distribution function of Young’s
modulus differ slightly.

The yield strength, the ultimate strength, and Young’s modulus correlate to each other.
Inter alia JCSS (2001) states a correlation matrix which allows to model the properties
of structural steel appropriately for stochastic analyses.
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5.1.1 Effect of extreme loads on structural members

Loading acting on a component causes both stress and strain within the material. Until
the yield strength is reached, structural components only deform elastically. This means
that the original shape of the structural component is reached after relaxing of the load.
If the yield strength is exceeded, plastic deformation of structural components occurs.
This plastic deformation of the steel component is still noticeable after relaxing of the
load.

Additionally, buckling of steel structures may occur due to compression loads. Buck-
ling describes sudden deformation due to compression load. Especially thin-walled and
slender structural steel members are prone to buckling. The value of the critical buck-
ling load is usually less than the yield strength of steel. This value depends strongly
on the slenderness and potential imperfections of the geometry. Further information on
buckling is given in e.g. Gottschalk (2017).

5.1.2 Structural design verification against extreme loads

For the design of steel structures, the yield strength is one limiting load-bearing ca-
pacity. Usually, plastic deformation which occurs for higher stresses than the yield
strength is not allowed. Besides the proof against yield strength, the structural design
against buckling is of special importance. Especially wind turbines may be prone to
buckling, since the respective support structures usually are slender steel tubes which
are loaded by axial compression loads to the self weight of its different components.

Semi-probabilistic safety concepts

The ultimate limit state design against failure due to extreme loads of offshore wind
turbines is regulated by various standards. Inter alia DNV-ST-0126 (2021) is applied
for European and international offshore-wind projects. DNV-ST-0126 (2021) makes
reference to other standards and guidelines, such as DIN EN 1993-1-6 (2017) for shell
buckling. The design against ultimate limit state for offshore wind turbines for German
projects is based on DIN 18088-3 (2019) which refers to different parts of the Eurocode,
most relevantly to DIN EN 1993-1-1 (2010) and DIN EN 1993-1-6 (2017). Here, the
different methods as well as different characteristic and design values for the design
against failure due to extreme loads are stated.

As one of the most important parameters, the characteristic value of the yield strength
is defined as the 5%-quantile, meaning that 95% of all tests shall exceed this limit. As
explained above, scattering of the yield strength may occur during the manufacturing
process of steel with a predefined nominal steel grade. The nominal yield strength of
structural steel matches approximately the characteristic yield strength, as described by
Melcher et al. (2004) and Sadowski et al. (2015). No difference is made by DIN EN 1993-
1-1 (2010) between characteristic and nominal value.

Different steel grades with supplementary properties, such as minimum toughness, test
temperature, or delivery conditions, are applicable for the structural design. The selec-
tion of the steel grade depends on the aimed field of application and the design require-
ments. The nominal yield strength and potentially supplementary properties are part
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of the notation of the steel grades, with the notations being defined in DIN EN 10025-1
(2005) and its accompanying standards. Structural steel with nominal yield strengths
of 235MPa, 275MPa, 355MPa, 420MPa, 460MPa, and 690MPa are applicable
according to DIN EN 1993-1-1 (2010). The nominal yield strength is to be reduced for
steel plates with increased wall thickness, as it is regulated in the governing standard
DIN EN 1993-1-1 (2010).

For both the proof against failure due to exceeding of the yield strength as well the
proof against failure due to buckling, the acting design stresses caused by external
loads shall not exceed the design load-bearing capacity of the structural component,
referring to Section 4.1. Partial safety factors as defined in the relevant standards
are applied on the characteristic values of loads and of resistance to calculate the
design values. For the proof against failure due to exceeding of the yield strength, the
acting design stress is compared against the design yield strength. Different methods
exist for the proof against failure due to buckling. The most-common approach is the
stress-based proof against buckling. Here, the ideal buckling stress is reduced which
a structural member can withstand. Important parameters for the determination of
the reduction factors are the slenderness ratio of the structure as well as imperfections
due to the manufacturing process, considering different levels of manufacturing quality.
Formulae and values for the relevant parameters are provided in the relevant standards,
i.e. DIN EN 1993-1-1 (2010). Besides this approach, several methods exist which are
based on finite-element analysis of the structural component (DIN EN 1993-1-6, 2017).
Different levels of accuracy and complexity can be applied to model the required shell
theory, material law, and the shell geometry. Shell theory and material law may be
linear or non-linear, and the shell geometry can be modelled as either perfect or with
imperfections included. Gottschalk (2017) provides details on these different methods
for the design of steel structures against buckling.

The nominal value of Young’s modulus is the mean value of the distribution function,
as stated by JCSS (2001) and in the relevant standards and guidelines.

Probabilistic safety concepts

For the probabilistic design against extreme loads, both the distribution functions of the
load-bearing capacity as well as of the extreme loads must be known. The probabilistic
description of the extreme loads may be based on extrapolation of measurements or
on load simulations. The probabilistic description of the extreme loads on the basis of
frequency-domain analysis is given in the following sections.

Different statistical models exist to describe the scattering of yield strength of the
structural components. As mentioned above, the yield strength follows a log-normal
distribution which is stated by various consortia and researchers, i.a. JCSS (2001),
Melcher et al. (2004), Sørensen and Toft (2010), and Sadowski et al. (2015). However,
different values for the parameters describing the log-normal distribution function are
proposed by these researchers. This is also observed by JCSS (2001). It is to be noted
that the mentioned researchers analysed different data sets of steel specimens which
were produced in different decades of the 20th century and in different regions of the
world. These facts may be a reason for the differences described.
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For the buckling analysis of shells and plates, the geometric imperfections of the struc-
tural components or their characteristic values are to be described stochastically. It
is a common approach to model the structural components as a random field. This
can be done by inverse Fourier transformation if applicable. Exemplarily, Böhm and
Schaumann (2022) describe the shell geometries of suction buckets for offshore wind
turbines as random field. Buckling may be most likely initiated at locations of the
shell geometry which are either most loaded or which have the greatest deviation from
the theoretically-perfect shell geometry. However, no detailed analysis of extreme devi-
ations from the theoretically-perfect shell geometry exists which describes the extreme
deformations by means of the extreme value theory. The correlation between loads,
geometry, and imperfect shell geometry is to be considered within the probabilistic
analysis especially for indifferently-loaded structures and complex geometries.

5.2 Determination of extreme values in frequency domain

Extreme loads can be determined both in time domain as well as in frequency domain.
For the analysis in time domain, usually only one extreme value can be extracted per
time series. Distribution functions of extreme values can be estimated on the basis
of several extreme values which stem from different random realisations of otherwise
constant conditions such that the extreme values can be considered as independent and
identically distributed. Methods to estimate the distribution functions of extreme loads
are described in Section 2.2.2. The deviation of extreme values in frequency domain is
described in detail in the following.

5.2.1 Extreme values within Gaussian signals

The distribution functions of local minima and maxima can be derived in frequency
domain by means of the spectral moments of the underlying signal. Considering that
the analysed signal is a zero-mean Gaussian process, Rice (1945) stated a general theory
regarding local minima and maxima within random noise. Based on this theory, the
application for irregular sea states is shown by Cartwright and Longuet-Higgins (1956).
The authors introduced the spectral width parameter ε, referring to Eq. (2.15), to
describe the distribution function of the elevation of wave crests. The authors also
provided a method to estimate the mean value of the greatest water-surface elevation
observed during a specific period.

The deviation of the distribution function of the local maxima is explained by i.a. Rice
(1945) and Cartwright and Longuet-Higgins (1956). The probability density function
of the local maxima x is given as follows,

pc (x∗) = ε√
2π
·exp

(
− x2

∗
2 · ε2

)
+
√

1− ε2
2 ·x∗ ·exp

(
−x

2
∗

2

)
·

1 + erf

√1− ε2
2 · ε2 · x∗

 ,

(5.1)
with x∗ = x/

√
m0 and the spectral width parameter ε. erf ((•)) denotes the error func-

tion, which is defined as erf ((•)) = 2√
π
·
∫ (•)

0 exp
(
−t2

)
· dt. The distribution function for

the peak values x∗ solely depends on the spectral width parameter ε. On the basis of the
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distribution functions of peak values, referring to Eq. (5.1), the distribution functions
of the extreme values within a certain duration are obtained,

Pmax (x∗) = P c (x∗)Nc ,
pmax (x∗) = Nc · pc (x∗) · P c (x∗)Nc−1 ,

(5.2)

with Nc denoting the number of peaks within a certain duration T . The number of
peaks is equal to T/Tc. For increasing number of peaks, the distribution function tends
to the Gumbel distribution function, referring to Eq. (2.28). Cartwright and Longuet-
Higgins (1956) state an equation to determine the expected mean value of extreme
values occurring during a certain duration,

E [x∗,max ] ≈
√

ln ((1− ε2) ·N2
c ) + γ/

√
ln ((1− ε2) ·N2

c )

=
√

2 · lnNz + γ/
√

2 · lnNz ,
(5.3)

where γ is the Euler-Mascheroni constant, γ = 0.5772 . . .. Nz denotes the number of
zero-up-crossings during a certain period.

5.2.2 Comparison between results obtained from time simulations
and from power spectral densities

The distribution function of extreme values on the basis of power spectral densities is
theoretically sound such that no differences are to be expected between the distribution
functions of extreme values derived from power spectral densities and from respective
random time series. Due to the transformation of the power spectral density into time
domain, numerical errors are made which have an impact on the distribution function
of extreme values. The inverse Fourier transformation of power spectral densities is dis-
cussed in further detail in Chapter 7. Reference is made to Section 7.1 for the definitions
of different discretisation concepts of power spectral densities, including explanation of
equidistant discretisation and equienergetic discretisation. The impact of discretisation
on the spectral properties and on the respective distribution functions of extreme values
is already discussed here for a Gaussian signal.

The derivation of distribution functions of local minima and maxima in frequency
domain is shown for local minima and maxima occurring during irregular waves. The
signal of the water-surface elevation is Gaussian. Exemplarily, a JONSWAP spectrum
according to Eq. (3.17) withHs = 2m, Tp = 5 s, and γ = 3.3 is analysed. The simulated
time series of the resulting water-surface elevation consists of 1,000 wavelets. Both the
equidistant as well as equienergetic discretisation are applied. Two specific kinds of
integration limits are investigated. The limits are chosen such that 0.5% as well as
0.0005% of the area are cut off at both tails of the power spectral density, respectively.
The random time series of the water-surface elevation are generated with an executable
program written by the author in the numeric computing environment MATLAB.

The probability density functions of the peak values according to Eq. (5.1) are shown in
Fig. 5.2 (left). Additionally, Q-Q plots, with the extreme values as quantiles according
to Eq. (5.2) plotted against simulated extreme values, are given in Fig. 5.2 (right). Five-
hundred extreme values extracted from random time series are analysed. The analysis
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is carried out for different utilised areas of 99% and 99.999% of the power spectral
density. A duration of 600 s is considered. The 95% confidence intervals are calculated
on the basis of the Kolmogorov-Smirnov test. Only the findings for the equienergetic
discretisation with 1,000 wavelets are shown here.

Figure 5.2: Probability density functions of peak values (left) and Q-Q plots of extreme
peaks (right) obtained by different integration limits of the power spectral
density (PSD) for a duration of 600 s

Due to the different values of the spectral width parameter ε for different utilised areas
of the power spectral density, referring to Tbl. 5.1, the distribution functions for the
peak values according to Eq. (5.1) also differ. The mode of the probability density
function is greater and shifted to greater peak values for smaller values of the spectral
width parameter. Smaller peak values are more probable to occur for greater values of
the spectral width parameter.

As can be observed in Fig. 5.2 (right), the simulated extreme values are close to and
parallel to the bisection line for both the utilised areas of the power spectral density
considered. The values between 3.0 and 3.5 lie slightly outside the limit of the 95%
confidence interval. The simulated extreme values are slightly underestimated in com-
parison to the theoretical extreme values according to Eq. (5.2). Nevertheless, a good
agreement between the simulated and theoretical extreme values can be noticed.

Table 5.1 lists the statistical properties of the extreme values of a power spectral density,
of its discrete power spectral density, and of the respective time series. The expected
mean of extreme values according to Eq. (5.3) is calculated for the power spectral
density as well as for the discrete power spectral density. The mean and standard
deviation for the power spectral density as well as for the discrete power spectral density
are determined by means of the distribution function according to Eq. (5.2). The mean
and standard deviation of the time series are calculated on the basis of 500 independent
and identically distributed extreme values, each extracted from random time series. The
given values are obtained for different discretisation types and different utilised areas
of 99% and 99.999% of the power spectral density with 1,000 wavelets. A duration of
the time series of 600 s is considered for the analysis.

The expected mean values of the extreme values according to Eq. (5.3) which are
calculated either on the basis of the power spectral density or on the basis of the discrete
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Table 5.1: Statistical properties of the extreme values of a power spectral density, of its
discrete power spectral density, and of the respective time series by obtained
for different discretisation types and different integration limits of the power
spectral density for a duration of 600 s

99.999% of PSD 99% of PSD
PSD D-PSD TSa PSD D-PSD TSa

ε 0.8456 0.8439 0.8439 0.6309 0.6309 0.6333
0.7786 0.7818 0.6308 0.6315

Tc [s] 2.0777b 2.0789b 2.0794 3.1263b 3.1263b 3.1226
2.4522 b 2.4368 3.1268 b 3.1210

E [x∗,max]c 3.3561 3.3574 3.3458 3.3458
3.3549 3.3458

Mean 3.3322d 3.3335d 3.3022 3.3211d 3.3211d 3.3126
3.3304 d 3.2645 3.3211 d 3.2625

St. dev. 0.3678d 0.3677d 0.3467 0.3691d 0.3691d 0.3852
0.3682 d 0.3629 0.3691 d 0.3612

PSD: power spectral density, D-PSD: discrete power spectral density,
TS: time series
Non-italic: equidistant discretisation, italic: equienergetic discretisation
a Extracted from random time series
b Peak-to-peak period according to Eq. (2.12)
c Expected mean value of extreme values according to Eq. (5.3)
d Calculated by means of distribution functions according to Eq. (5.2)

power spectral densities are nearly equal for each utilised area of the power spectral
density. The expected values of the extreme values according to Eq. (5.3) are slightly
greater in comparison to the mean values determined by means of the distribution
functions according to Eq. (5.2), with a relative difference of approximately 0.7%.

The mean values calculated on the basis of the extreme values of random time series
are smaller than the mean values calculated by means of the distribution function. The
mean value for the time series obtained by the equidistant discretisation is less than
1% smaller in comparison to the respective mean values determined by Eq. (5.2). The
mean value for the time series obtained by the equienergetic discretisation is about
2% smaller. The standard deviations are almost constant for each discretisation type
considered in Tbl. 5.1.

In general, comparison of both utilised areas considered shows that the mean values
for a relative utilised area of the power spectral density of 99% is slightly less than the
value for a relative utilised area of the power spectral density of 99.999%.

5.2.3 Extreme values within non-Gaussian signals

The distribution function of extreme loads in frequency domain, referring to Eq. (5.1),
is only valid for random Gaussian signals. In order to apply these formulae also for
a non-Gaussian signal, it must be transformed to a Gaussian signal first. Then, the
respective spectral moments required can be extracted either from the power spectral
density, from the amplitude spectrum, or from the transformed time series itself. Fi-
nally, as the retrieved distribution function is a function of the transformed variable,
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the transformation must be reversed for the distribution function of extreme values.
The calculation of the mean extreme value according to Eq. (5.3) is generally not valid
for non-Gaussian signals due to the back-and-forth transformation of the variables.

Winterstein (1985) states a method to transform the non-Gaussian signal to a Gaussian.
This transformation is based on the mean value, standard deviation, skewness, and
kurtosis of the signal. A non-Gaussian signal XNG can be transformed to a Gaussian
signal XG with mean of zero and standard deviation of unity by applying the following
formulae, with Eq. (5.4) being valid for leptokurtic signals and Eq. (5.5) being valid for
platykurtic signals,

XG =
(√

ξ2 (XNG) + c+ ξ (XNG)
) 1

3
−
(√

ξ2 (XNG) + c− ξ (XNG)
) 1

3
− a ,

ξ (XNG) = 1.5 · b ·
(
a+ XNG − µXNG

κ · σXNG

)
− a3 ,

a = h3
3 · h4

, b = 1
3 · h4
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(
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1+2·h2

3+6·h2
4
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(5.4)

XG = XNG,0 − h3 ·
(
X2
NG,0 − 1

)
− h4 ·

(
X3
NG,0 − 3 ·XNG,0

)
,

XNG,0 = XNG − µXNG
σXNG

, h3 = γ3
6 , h4 = γ4 − 3

24 ,
(5.5)

with the mean value µXNG , standard deviation σXNG , skewness γ3, and kurtosis γ4 of
the non-Gaussian signal. It has to be checked whether the transformation is applicable.
For certain values of the skewness and the kurtosis, the transformation according to
Eq. (5.4) and Eq. (5.5) is not a monotonic function. Non-monotonic transformations
cannot be handled such that other transformation functions must be applied (Benas-
ciutti and Tovo, 2005a).

5.3 Extreme values within combined signals

As described in Section 4.2, the time series of loads acting on an offshore wind turbine
may be a superposition of constant, periodic, transient, random, and random-transient
functions.

5.3.1 Extreme loads depending on one load type

In case that the signal consists of only one load type, the respective extreme loads and
their distribution function are determined as follows.

For a constant load type, the extreme value is equal to the constant value itself. The
extreme value is constant as well for a periodic load, which has a constant amplitude.
For a transient load, either the structural response is either an oscillation with constant
amplitude or a decaying oscillation. The oscillation is constant in case that no damping
exists, or it is decaying due to damping. Just as transient loads, random transient loads
either have constant amplitudes or are a declining oscillation, and the extreme value
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of the oscillation can be determined analytically or numerically. Randomness of load
amplitudes as well as potential random superposition are to be considered. The extreme
value of the oscillation can be determined analytically or numerically. The distribution
function of extreme values of a random Gaussian process is calculated as described in
Section 5.2.1. For random non-Gaussian, the approach as described in Section 5.2.3 can
be applied in order to determine the distribution function of extreme loads.

5.3.2 Extreme loads within combination of different signals

Usually, several load types occur simultaneously. Considering that the respective sig-
nals are independent of each other, combination rules can be applied to determine
the extreme value which is to be expected within the combined signal. The greatest
possible value is observed when extremes within the different signals occur simultan-
eously. However, this event is highly unlikely, and a consideration of this event leads to
a conservative but non-economic design of offshore wind turbines.

Several combination rules exist. An overview on the most common approaches is provided
by Schmidt (2017). Of these different approaches, Turkstra’s rule (Turkstra and Mad-
sen, 1980) is shortly explained in the following. Inter alia Turkstra’s rule is applied for
the probabilistic description of the extreme loads which occur due to wind-induced and
wave-induced loads within a 50-years storm acting on an offshore wind turbine (Seidel
and Kelma, 2012).

Turkstra’s rule is based on the assumption that the extreme value of one for the super-
posed signals occurs simultaneously with the mean value of the other signals. The mean
values and extreme values have to be determined for each signal. Then, the greatest
combined value fmax according to Turkstra’s rule is calculated as follows,

fmax = max
j

max (fj) +
∑
i 6=j

µfi

 , (5.6)

where µfi is the mean value of the superposed signal fi.

Turkstra’s rule is mainly derived for the determination of design extreme values, but it is
also suited for the probabilistic load determination. Therefore, the mean value as well as
the distribution function of extreme values of each signal are to be known. For example,
Monte Carlo simulations can be carried out in order to determine the extreme value
of the combined signal and the respective distribution function of combined extreme
values.

5.4 Findings

In time domain, extreme loads are extracted from random time series to model an
appropriate distribution function of these loads. In frequency domain, the distribution
function of extreme loads can be determined on the basis of the spectral moments. This
method is theoretically proven and well established for Gaussian signals. An adequate
transformation of signals which are not Gaussian-distributed is to carried out in order
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to apply this method as well. The non-Gaussianity of time series and its impact on the
extreme values are shortly discussed in Section 8.1

It is observed that the extreme values extracted from time series slightly underestim-
ate those obtained from the respective power spectral densities. Despite the smaller
mean value of the extreme values, a very good agreement between the simulated and
theoretical extremes regarding the type of distribution function is confirmed.





6 Fatigue design in frequency domain

The scattering loads, which act on structures, may cause fatigue damage. In order
to evaluate the potential fatigue damage, both the resistance of the material and of
the structural component as well as the decisive fatigue-load distribution are to be
known. Models to describe the fatigue loads in both time domain as well as in frequency
domain exist. Especially the frequency-domain analysis of fatigue loads is presented in
the following. A new model is presented which has extended application boundaries in
comparison to previously existing models and which provides more accurate results.

6.1 Structural design against fatigue loads

According to ASTM E1823-13 (2013), fatigue of materials is the process of local per-
manent structural damage which is caused by fluctuating stress or strain at some point.
This process may lead to cracks or complete fracture after a sufficient number of load
cycles. Concerning the design against fatigue failure of a structure or component, the
time history of loading, geometry, material behaviour, and environmental conditions
are to be considered.

The resistance of materials or structural components against fatigue failure is usually
derived on the basis of laboratory tests with constant load amplitudes. Test specimens
are cyclically loaded until a previously defined level of failure occurs, such as a defined
crack size or fracture. Multiple tests of one specimen type with different loading amp-
litudes are required. Usually, the load amplitude is constant during each fatigue test.
On the basis of these laboratory tests, the resistance against fatigue failure is usually
characterised by SN curves which show the relationship of endurable numbers of fatigue
loads and load ranges. The endurable number of fatigue loads decreases with increasing
load ranges. For steel specimen, the relation of endurable number of fatigue loads N
and load range s is given as a power-law function,

N (s) = C · s−m . (6.1)

The slope of the SN curve m and the parameter C depend on properties of the material
and the specimen. SN curves as defined by Eq. (6.1) are linear when plotted with both
endurable number of fatigue loads and fatigue load being in logarithmic scale. The
parameters C and m are usually not constant for all load ranges, but they are constant
for certain intervals of load ranges and endurable numbers of fatigue loads, respectively.
These SN curves are continuous at the boundaries of the intervals. The SN curve as given
in Eq. (6.1) with constant parameters for all load ranges is referred to as “simplified
SN curve” in the following.

83
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The shape of the SN curve and its defining parameters depend on i.a. the load type
and environmental conditions. Gudehus and Zenner (1999) provide a detailed overview,
which is summarised in Fig. 6.1.

Figure 6.1: Influencing factors on SN curves of steel (adapted from Gudehus and Zenner
(1999))

Fatigue tests on the same specimens carried out under identical environmental con-
ditions and identical load conditions do not necessarily result in the same endurable
number of fatigue loads. Rather the endurable numbers of fatigue loads are subject to
scatter due to slight differences in geometry and microstructure of the specimen, which
exist due to manufacturing process. This is especially notable for steel specimens with
welding seams because the geometry of welding seams hardly can be controlled during
the welding process.

Exemplarily, a collection of fatigue-test data is given in Sonsino et al. (2005). Here,
the authors normalised the data of multiple fatigue tests by their corresponding detail
categories such that the mean detail category of all test series is unity. The data are
shown in Fig. 6.2 (left). The dashed line is the mean SN curve of all test data, and
the solid line is the characteristic SN curve which is applied for the structural design.
Here, the test data are adapted such that the detail category is 90MPa, with the detail
category being the characteristic load range at an endurable number of fatigue loads of
2 · 106 (DIN EN 1993-1-9, 2010). The derivation of the characteristic detail category is
shortly discussed in Section 6.1.4. The characteristic detail category is required for the
verification against fatigue failure when applying the semi-probabilistic safety concept.
The presented SN curve has a slope of m = 3 for endurable number of fatigue loadss
up to 5 · 106 and of m = 5 for endurable number of fatigue loadss greater than 5 · 106.

Additionally, the theoretical distribution function of the detail category, which is derived
from the test data, is shown in Fig. 6.2 (right). The detail category follows a log-normal
distribution, which is equivalent to a normal distribution in logarithmic scale.
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Figure 6.2: SN curve with detail category of 90MPa (left) and probability density
function of the detail category (right), based on the fatigue-test data col-
lected by Sonsino et al. (2005) (figure adapted from Kelma and Schaumann
(2015))

6.1.1 Effect of load cycles on structural members

Loading acting on a component causes both stress and strain within the material. The
relation between stress and strain usually is not linear, but strain is disproportional to
stress. It is assumed that the material behaviour consists of both elastic deformation
and plastic deformation. The elastic deformation is usually modelled as linear. Different
models exist to describe the plastic deformation, as described i.a. by Eichstädt (2019).

A load cycle is defined as a closed stress-strain hysteresis loop. A closed stress-strain
hysteresis loop, consisting of both elastic and plastic deformation, is shown in Fig. 6.3
(left). A closed stress-strain hysteresis loop means that the initial strain for an ini-
tial stress is reached again. The stress-strain hysteresis loop due to a load time series
of consecutive peaks with different values are shown in Fig. 6.3 (right). Stress-strain
hysteresis loops of time series are considered as fatigue loads.

Figure 6.3: Stress-strain relationship for a single load cycle (left) and for a random load
time series (right)

6.1.2 Methods for counting of fatigue loads

Counting methods are applied on time series for the derivation of stress-strain hysteresis
loops. Here, smaller stress-strain hysteresis loops are considered as interrupting greater
stress-strain hysteresis loops, referring to Fig. 6.3 (right). For specimens or structural
components subjected to random loading, counting methods are applied to obtain a set
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of representative fatigue loads. Different counting methods exist, with the most com-
mon being shortly described in the following. Detailed information on these counting
methods is given in e.g. Radaj and Vormwald (2007) and ASTM E1049-85 (2017).

Peak counting All local minima (valleys) and local maxima (peaks) are extracted from
a time series. Ranges are defined as the difference between a valley and a peak.
Different approaches exist to form a range on the basis of a peak and a valley
(ASTM E1049-85, 2017). Most commonly, the n-th greatest peak and the n-th
smallest valley are combined.

Range counting The differences between local minima and the consecutive local max-
ima form the ranges which define the distribution of fatigue loads.

Level-crossing counting The cases in which the positive-sloped portion of a time series
exceeds a load level are counted for previously set load levels. Load ranges are
extracted from this cumulative frequency distribution.

Rainflow counting This widely-used method is commonly used for determination of fa-
tigue loads. It captures the stress-strain hysteresis loops of a time series correctly.
Rainflow counting, which is extensively applied for the analyses in this thesis, is
explained in greater detail below.

Figure 6.4: Example of rainflow-counting algorithm (further explanation is given in
text)

For the rainflow-counting algorithm, only local extrema of a time series, i.e. peaks and
valleys, are considered. As shown in Fig. 6.4, the time series is rotated such that the time
axis points down, which may remind someone of pagoda roofs. Each local extremum
is considered as a source of water which runs down the pagoda roof. This thought
experiment is eponymous for the rainflow-counting algorithm. Rainflow counting is
carried out by the rules listed below. Examples for applications of these rules are given
in brackets with reference to Fig. 6.4.

(i) Rainflows are consecutively started for earliest to latest local extremum.

(ii) For a rainflow starting at a valley, it is interrupted if a following valley has a smaller
value than the value of the starting valley [rainflow starting at 5, interrupted by 7].
For a rainflow starting at a peak, it is interrupted if a following peak has a greater
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value than the value of the starting peak [rainflow starting at 2, interrupted by
4].

(iii) A rainflow is interrupted if it meets a previous rainflow [rainflow starting at 3,
interrupted by rainflow starting at 1].

(iv) If not interrupted previously, a rainflow ends at the end of the time series [rainflow
starting at 4].

Two rainflows form a closed stress-strain hysteresis loop if the following properties of
both rainflows are applicable. Both rainflows possess the same range and same mean
value, and both flow in opposite directions. The first rainflow of a closed stress-strain
hysteresis loop is always interrupted by rule (ii). The latter rainflow is always interrup-
ted by rule (iii). It starts at the range-defining extremum of the first rainflow and is
interrupted by the rainflow which flows over the starting extremum of the first rainflow.
Referring to Fig. 6.4, the rainflow flowing from 2 and interrupted by 4 and rainflow
flowing from 3 and interrupted by the rainflow which starts at 1 and flows over 2 form a
closed stress-strain hysteresis loop. Rainflows which do not form a pairing with another
rainflow are considered as open stress-strain hysteresis loops. They are usually con-
sidered in fatigue-damage calculation. An open stress-strain hysteresis loop is assigned
to half the probability of occurrence of a closed stress-strain hysteresis loop.

6.1.3 Calculation of fatigue damage

In order to evaluate the fatigue damage, the Palmgren-Miner linear damage hypothesis
is usually applied for nearly all fatigue evaluation methods. The damage which would
cause failure in a fatigue test with constant load amplitude after a specific endurable
number of fatigue loads is proportional to the number of load cycles acting on the test
specimen. The Palmgren-Miner linear damage hypothesis states that each load cycle
(index i) contributes to the fatigue-damage accumulation,

D =
∑
i

ni
Ni

, (6.2)

with the number of applied load cycles ni with the fatigue load si and the corresponding
endurable number of fatigue loads Ni. Fatigue damage occurs when the fatigue-damage
accumulation of all load cycles exceeds the permissible fatigue damage Dlim, D > Dlim.
The value of the permissible fatigue damage depends on the assumptions and require-
ments made for the verification against fatigue failure. Further comments on selection
of its value are given in Section 6.1.4. The load-sequence effect is not covered by the
Palmgren-Miner linear damage hypothesis. Hence, a load cycle with a specific load
range s at the beginning of the load time series contributes to the accumulated fatigue
damage with the same amount as a load cycle with the same load range at any other
point in time.

Usually, a fatigue load during a random time series has a different value than all other
fatigue loads. Hence, each fatigue load with a number ni of unity is considered in
Eq. (6.2). In order to minimise the numerical effort, histograms of fatigue loads are
often analysed. Here, fatigue loads are allocated to bins with previously defined ranges.
Representative endurable numbers of fatigue loads are assigned to all bins. If the distri-
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bution function of fatigue loads is known, the fatigue-damage accumulation according
to the Palmgren-Miner linear damage hypothesis can be calculated as follows,

D = n ·
∫

p (s)
N (s) · ds , (6.3)

with the total number of applied load cycles n and the probability density function of
load ranges p (s). The integral in Eq. (6.3) is numerically solved if it is not integrable.
For example, Eq. (6.2) is a numerical approximation of Eq. (6.3).

In dependence of the counting algorithm applied to determine fatigue loads, the ex-
pected values of the fatigue damage differ. Considering the counting methods stated in
Section 6.1.2, rainflow counting causes an equal or greater calculated fatigue damage
than range counting and an equal or smaller calculated fatigue damage than level-
crossing counting (Tovo, 2002),

DRC ≤ DRFC ≤ DLCC ≤ DPC , (6.4)

with the indexes RC for range counting, RFC for rainflow counting, LCC for level-
crossing counting, and PC for peak counting. The fatigue damage due to peak counting
is the upper limit of the other three counting methods.

Often, a damage-equivalent load is given instead of the distribution of fatigue loads.
Here, Palmgren-Miner linear damage hypothesis is assumed with the SN curve accord-
ing to Eq. (6.1) with a single slopem. A damage-equivalent load (DEL) is defined as the
fatigue load sDEL with an occurring frequency of nref which causes the same damage
as a set of fatigue loads si with corresponding occurring frequencies ni does,

sDEL =
m

√√√√∑i ni · smi
nref

. (6.5)

The value of nref can be chosen arbitrarily. For the structural design of offshore wind
turbines, it is typically a characteristic endurable number of fatigue loads of the SN
curve as given by the governing standard. The damage-equivalent load does not contain
any information regarding the distribution of fatigue loads. Similar to Eq. (6.2) and
Eq. (6.3), Eq. (6.5) can be expressed by means of an integral. Then, the term ∑

i
ni · smi

is substituted by n ·
∫
p (s) · sm · ds.

6.1.4 Structural design verification against fatigue failure

The structural design has to be carried out so that no fatigue failure may occur during
the considered lifetime. Therefore, the limit state function, which compares the load
effects and structural resistance, has to be evaluated, as described in Section 4.1. The
limit state function for fatigue is the difference between the permissible fatigue damage
and the fatigue-damage accumulation. As stated in Section 4.1, the limit state function
has to be fulfilled for design values for the semi-probabilistic safety concept. In case that
the probabilistic safety concept is applied, the probability of the limit state function
being less than zero must be less than a predefined probability of failure.
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Fatigue-design concepts

Different fatigue-design concepts exist. These are the nominal-stress concept, the structural-
stress concept, the notch-stress concept, the notch-strain concept, and fracture mechan-
ics. The level of detail and the required computational effort increase in the given order
of the short descriptions. Only a short overview on fatigue-design concepts is given.
General information on these concepts is given in e.g. Radaj et al. (2006) and Radaj
and Vormwald (2007). Deeper knowledge as well as profound background information
on the different fatigue-design concepts are provided by i.a. Eichstädt (2019), Collmann
(2021), and Schürmann (2021).

Nominal-stress approach Due to its relative simplicity in comparison to the approaches
described in the following, the nominal-stress approach is commonly applied for
the verification against fatigue failure of common structural details, such as lon-
gitudinal or circumferential weld seams. The verification against fatigue failure is
carried out with the nominal stresses and the respective SN curves. The nominal
load does not include any local stress peaks due to geometrical or material dis-
continuities. As described above, SN curves are derived from laboratory tests of
the aforementioned common structural details, which are usually defined in the
relevant standards and guidelines.

Structural-stress approach The structural-stress approach is applied for more complex
structural components which are not covered by the SN curves defined for the
nominal-stress approach. The structural-stress approach is commonly applied for
welded tubular joints, which are components of jacket substructures. Here, the
percentage stress increase at the structural discontinuity, usually referred to as
“stress concentration factor”, is calculated by means of extrapolation of stresses
which are either measured or numerically simulated at predefined locations close
to the structural discontinuity. The value of the stress concentration factor de-
pends on the geometry as well as on the load type. The geometry of the weld
seam is not considered directly. The fatigue assessment is carried out with the
structural stress at the component and SN curves defined for structural-stress
approach.

Notch-stress approach The geometry of the weld seam is considered to determine the
associated stress peaks at the notch. Therefore, a fictive notch radius is implemen-
ted to model the local stresses appropriately. The notch stress usually is calculated
numerically. The verification against fatigue failure is carried with the determined
notch stress and the specific SN curve for notch-stress approach.

Notch-strain approach The approaches previously described only consider the elastic
material behaviour. The notch-strain approach additionally takes the plastic de-
formations at the notch into account for the verification against fatigue failure.
Cyclic stress-strain behaviour of the material, as shown in Fig. 6.3, is derived
from fatigue tests of plain steel specimens without any notches. Strain Wöhler
curve with strain instead of stress are applied. The stress-strain relationship as
well as of the stress at the notch are applied for the calculation of specific fatigue-
damage parameters. The fatigue assessment is carried out on the basis of these
parameters.
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Fracture mechanics Within fracture mechanics, fatigue-crack growth is investigated. It
is assumed that the shape and depth of an already existing crack is known. The
growth of this crack due to cyclic loading is simulated until a predefined allowable
crack depth is exceeded.

The scheme for the verification against fatigue failure by applying SN curves is ex-
emplarily described in the following for a circumferential weld seam at a monopile
substructure, referring to Fig. 6.5 (bottom, left). It concludes the previous sections.
The scheme mainly describes the fatigue design by means of the nominal-stress ap-
proach. It can be adapted and be understood for the structural-stress approach, the
notch-stress approach and partly for the notch-strain approach as well. In order to ad-
apt the scheme for fracture mechanics, the SN curve (bottom, middle) is to be replaced
with a material law to describe the fatigue-crack propagation.

Figure 6.5: Scheme for the verification against fatigue damage by means of SN curves

The long-term statistics of environmental impacts are to be considered which are ex-
pected to act on the structure during its lifetime. Here, a histogram of two unspecified
parameters is shown exemplarily (top, left). For all possible environmental conditions to
be considered, time series of the load effects (top, center) are determined for each struc-
tural component, usually by means of load simulations. Fatigue loads are derived from
these time series, e.g. by counting algorithms such as the rainflow-counting method,
referring to Section 6.1.2. These load cycles can be understood as short-term statistics,
determined for each case of the long-term statistics. The pairings of means and ranges
as well as their frequency are usually stored in Markov matrices (top, right). For each
pairing of mean and range of the load effects, the endurable number of fatigue loads
which a component can resist until a defined failure mode is determined via the re-
spective SN curves (bottom, center). Finally, the fatigue damage is calculated (bottom,
right), e.g. via the Palmgren-Miner linear damage hypothesis, referring to Section 6.1.3.
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Semi-probabilistic safety concepts

The fatigue design of offshore wind turbines is regulated by various standards and
guidelines, which mostly rely on the regulations established in offshore oil- and gas
industry DIN EN ISO 19902 (2014). The standards and guidelines DNV-RP-C203
(2019) and API RP 2A-WSD (2014) are commonly applied for the certification of
European and international offshore-wind projects, while both are in accordance with
DIN EN ISO 19902 (2014). The fatigue design of offshore wind turbines according to
the German standard DIN 18088-3 (2019) refers to DIN EN 1993-1-9 (2010). These
standards state SN curves for the base material as well as for configurations of geomet-
ries and welding seams which are commonly applied in structural engineering. Small
differences exist for the SN curves for the same configuration stated within the men-
tioned standards and guidelines. Exemplarily, a detailed comparison for the SN curves
for tubular joints, as they are stated in various standards, is given in Schürmann (2021).

For the semi-probabilistic design approach, which is commonly applied for the design
of offshore wind turbines or structures in general, characteristic SN curves are usu-
ally stated in the respective standards and guidelines. As described above, they are
based on laboratory tests. According to DNV-RP-C203 (2019), the characteristic SN
curve is defined as the value associated to a probability of survival of 97.7% of all test
data. Considering a log-normal distribution of the detail category, the characteristic
value is equivalent to the mean SN curve minus two times the standard deviation in
logarithmic scale. Within DIN EN 1993-1-9 (2010), the SN curve is labelled with the
characteristic detail category. In case that fatigue-test results were applied to define
the SN curve, the characteristic detail category is the value at an endurable number
of fatigue loads of 2 · 106 with a probability of survival of 95% with a confidence level
of 75% (DIN EN 1993-1-9, 2010). The characteristic SN curve with a probability of
survival of 97.7% (DNV-RP-C203, 2019) is shown as solid line in Fig. 6.2 (left).

According to DIN EN 1993-1-9 (2010), either the nominal stress approach or the struc-
tural stress approach shall be applied for the fatigue assessment. The fatigue damage is
calculated by means of the Palmgren-Miner linear damage hypothesis. Material partial
safety factors are to be applied on the respective SN curves. The value of these partial
safety factor is to be selected in dependence of the assessment method (damage-tolerant
method or safe-life method) and of the consequence of failure (low consequence or high
consequence). The permissible fatigue damage is unity. Three levels of consequence
of failure are defined in the upcoming revision of DIN EN 1993-1-9 (2010), which is
already published as draft version (DIN EN 1993-1-9, 2023).

DNV-RP-C203 (2019) also recommends to carry out the fatigue design with either
the nominal stress approach or the structural stress approach. A guideline for fracture
mechanics is additionally provided. In comparison to DIN EN 1993-1-9 (2010), no
partial safety factors are applied on the SN curves. Instead, a design fatigue factor
according to DNV-OS-C101 (2019) is applied to the permissible fatigue damage. It
accounts for accessibility, possibility of inspections, and type of structure. The value
of the design fatigue factor is either 1, 2, or 3, where higher values indicate a more
critical or less accessible structural component. For the Palmgren-Miner linear damage
hypothesis, the permissible fatigue damage is adapted in dependence of the design



92 Chapter 6. Fatigue design in frequency domain

fatigue factor, here as the reciprocal of the design fatigue factor. DNV-RP-C203 (2019)
refers to the permissible fatigue damage as usage factor.

Probabilistic safety concepts

For a probabilistic fatigue design, distribution functions for material properties to model
the resistance against fatigue failure as well as for the occurrence frequencies of the
fatigue loads are required. The occurrence frequencies of fatigue loads on the basis of
frequency-domain analysis are subject of the following sections.

JCSS (2013) provides statistical models to describe the scattering of the SN curves,
for the verification concept of fracture mechanics, as well as for the permissible fa-
tigue damage. As for SN curves, JCSS (2013) proposes to describe the parameter C of
Eq. (6.1) with a log-normal distribution. The analysis of the fatigue-test data collected
by Sonsino et al. (2005) supports this assumption, as can be seen for the detail cat-
egory in Fig. 6.2 (right). The slopes of the SN curve are set as constant for steel (JCSS,
2013). The values of the parameters describing the log-normal distribution of the detail
category are to be determined on the based of fatigue tests. According to JCSS (2013),
the permissible fatigue damage is log-normal distributed with mean value of unity and
coefficient of variance of 0.3. A detailed analysis is provided by Al Shamaa (2015), who
analysed the applicability of the Palmgren-Miner linear damage hypothesis as well as
the statistical scattering of the permissible fatigue damage on the basis of broad data
sets of fatigue tests of welded connections.

6.2 Calculation of fatigue in frequency domain

Different approaches exist to determine the distribution function of fatigue loads and the
fatigue damage in frequency domain, assuming that the signals are Gaussian. The most-
commonly used are listed in the following. Additionally, a new distribution function of
fatigue loads developed by the author is introduced.

6.2.1 Distribution of fatigue loads in frequency domain

For a time series which is Gaussian and narrow-banded, the values of peaks can be
described with a Rayleigh distribution,

p (s) = z

2 · √m0
· exp

(
−z

2

2

)
, (6.6)

with z = s
2·√m0

. Here, the distribution function is given for load ranges s whose values
are twice the load peaks. The Rayleigh distribution of load ranges is only based on the
zeroth-order spectral moment. Hence, it is preferably applied for approximate fatigue-
load estimation. For time series which are Gaussian and cannot be considered as broad-
banded, the load peaks follow the distribution function of local maxima, referring to
Eq. (5.1).

Only the load peaks and the load ranges, which are twice the load peaks, are mod-
elled with the Rayleigh distribution function and the Rice distribution function. The
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distribution functions of load peaks usually overestimate the resulting fatigue damages
which are usually determined by means of counting algorithms, such as the rainflow-
counting algorithm. Different approaches were derived by various researchers in order to
describe the distribution function of fatigue loads by means of power spectral densities.
No theoretical motivation exists for these distribution functions of fatigue loads. They
are fitted to corresponding distribution functions of fatigue loads which are extracted
from numerous time-domain simulations.

Selected, most-commonly applied distribution functions of fatigue loads as well as a new
distribution function developed by the author are shortly described in the following.
All these distribution functions of fatigue loads depend on the spectral parameters α1
and α2, according to Eq. (2.14). With both α1 and α2 tending to unity, the underlying
power spectral densities become narrow-banded. Hence, these distribution functions
of fatigue loads tend to the narrow-band distribution function, referring to Eq. (6.6).
Details on the background and on their derivation are given in Section 6.3.

It can be shown that the spectral parameter α2 does not exceed α1 (Benasciutti and
Tovo, 2006). In order to provide a clearer presentation, the spectral parameter α2 is
shown as multiple of the spectral parameter α1 within the thesis. Hence, both α1 as
well as α2/α1 have a codomain of [0, 1].

Fatigue loads according to Dirlik (1985)

The distribution function of fatigue loads according to Dirlik (1985) is widely estab-
lished for engineering disciplines such as offshore- and automotive applications. The
distribution function of fatigue loads according to Dirlik (1985) consists of one expo-
nential distribution function and two Rayleigh distribution functions, here given as
probability density function,

p (s) = 1
2 · √m0

·
(
w1
t
· exp

(
−z
t

)
+ w2 · z

a2 · exp
(
− z2

2 · a2

)
+ w3 · z · exp

(
−z

2

2

))
,

w1 = 2 · α2 · (α1 − α2)
1 + α2

2
, w2 = 1− α2 − w1 + w2

1
1− a , w1 + w2 + w3 = 1 ,

t = 1.25 · w1 , a = α2 − α1 · α2 − w2
1

1− α2 − w1 + w2
1
,

(6.7)

with z = s
2·√m0

and load range s. Originally, the coefficients of the distribution function
of fatigue loads were described in dependence on the spectral parameter α2 and the
so-called “irregularity factor” α1 · α2 (Dirlik, 1985). The irregularity factor is the ratio
of peak-to-peak period to mean period. The coefficients are shown in Fig. 6.6, here in
dependence of the spectral parameters α1 and α2. As marked, the scale parameter a of
the first Rayleigh distribution function according to Eq. (6.7) is negative for values of
α1 close to unity. The scale factor of the exponential distribution function, which is a
multiple of the weighting of the exponential distribution function, is not shown.
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Figure 6.6: Weightings and parameters for the distribution function of fatigue loads
according to Eq. (6.7) (Dirlik, 1985) in dependence of α1 and α2

Fatigue loads according to Zhao and Baker (1992)

Zhao and Baker (1992) described the probability density function of fatigue loads as a
combination of a Rayleigh distribution function and a Weibull distribution function,

p (s) = 1
2 · √m0

·
(
w · a · b · zb−1 · exp

(
−a · zb

)
+ (1− w) · z · exp

(
−z

2

2

))
,

w = 1−α2

1−
√

2
π
·Γ(1+ 1

b )·a− 1
b
,

a = max (1.1, 9 · α2 − 7) , b = 8− 7 · α2 ,

(6.8)

with z = s
2·√m0

, load range s and the gamma function Γ ((•)). This distribution func-
tion is only valid for α2 > 0.130. Otherwise, the weighting w is greater unity for the
spectral parameter α2 ≤ 0.130. The distribution function can be used in almost every
case, since there are only very few applications with α2 ≤ 0.130 in practise. This calcu-
lation is applied in the following, even though Zhao and Baker (1992) also provided an
improved calculation of the scale factor a. Here, the scale factor is calculated iteratively
in dependence of the spectral parameters α0.75 and α2. This calculation is especially
developed for a slope of the SN curve of 3. However, unrealistic values for the weighting
w exist for certain values of α0.75 and α2 (Zhao and Baker, 1992).

Fatigue loads according to Tovo (2002) and Benasciutti and Tovo (2005b)

Referring to Section 6.1.3, the fatigue loads extracted with the rainflow counting cause
an expected fatigue damage which lies between the fatigue damage due to fatigue loads
extracted with range counting and with level-crossing counting. Tovo (2002) introduced
a distribution function of fatigue loads which consists of two Rayleigh distribution
functions, which are the respective distribution functions for fatigue loads extracted
with range counting and with level-crossing counting,

p (s) = 1
2 · √m0

·
(
w1 · δ (0) + w2 · z · exp

(
−z

2

2

)
+ w3 ·

z

α2
2
· exp

(
− z2

2 · α2
2

))
,

w2 = b · α2 , w3 = 1− b , w1 + w2 + w3 = 1 ,
(6.9)

with z = s
2·√m0

and load range s. δ ((•) ) is the Dirac function. The term w1 · δ (0)
is not given in previous publications which introduced this distribution function of
fatigue loads or referred to it. This term is added by the author such that the cumulative
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distribution function tends to unity for increasing fatigue loads, referring to Section 2.2.
Adding this term does not alter the results presented by Tovo (2002), Benasciutti and
Tovo (2005b), or fellow researchers, since fatigue loads of zero do not contribute to
the fatigue damage. The Rayleigh distribution functions have scale parameters of unity
and the spectral parameter α2, respectively. The term b is calculated to adjust the
fatigue loads, which lie between fatigue loads extracted with range counting only and
level-crossing counting only.

Based on multiple numerical simulations, Tovo (2002) suggested to calculate the term
b as follows,

b = α1 − α2
1− α1

. (6.10)

Benasciutti and Tovo (2005b) obtained an advanced analytical formula to determine
the value of the term b, which depends on the spectral parameters α1 and α2,

b = α1 − α2

(1− α2)2 · (1.112 · (1 + α1 · α2 − (α1 + α2)) · exp (2.11 · α2) + (α1 − α2)) . (6.11)

The weightings according Eq. (6.11) are shown in Fig. 6.7 dependant on the spectral
parameters α1 and α2.

Figure 6.7: Weightings for the distribution function of fatigue loads according to
Eq. (6.9) and Eq. (6.11) (Benasciutti and Tovo, 2005b) in dependence of α1
and α2

Newly-developed distribution function for fatigue loads in frequency
domain

The author of this thesis developed a new distribution function for fatigue loads in
frequency domain. The procedure to derive the newly-developed distribution function
of fatigue loads is explained in detail in Section 6.3. This distribution function consists
of two Rayleigh distribution functions,

p (s) = 1
2 · √m0

·
(
w1 · z · exp

(
−z

2

2

)
+ w2 ·

z

β2 · exp
(
− z2

2 · β2

))
,

w1 =


α1 · α2 ·

(
1− α2

α1

1− α1

)1−α1

, α1 <
α2
α1

α1 · α2 , otherwise
, w1 + w2 = 1 ,

β = α2 ·
1− α1
1− α2

,

(6.12)
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with z = s
2·√m0

and load range s. The scale parameter of the first term in Eq. (6.12)
has a value of unity. The scale parameter as well as the weightings of both terms
depend on the spectral parameters α1 and α2. The value of this scale parameter and
the corresponding values of weightings are shown in Fig. 6.8 in dependence of the
spectral parameters α1 and α2.

Figure 6.8: Coefficients for the newly-developed distribution function of fatigue loads
according to Eq. (6.12) in dependence of α1 and α2: (left and middle) weight-
ings of Rayleigh distribution functions, (right) scale parameter of the second
Rayleigh distribution function

6.2.2 Fatigue damage in frequency domain

Considering a simplified SN curve according to Eq. (6.1), which is linear in log-log
scale, Eq. (6.3) yields analytical expressions for the fatigue damage with continuous
distribution functions of fatigue loads. The mean fatigue damages per load cylce are
listed in Tbl. 6.1 for the distribution functions introduced in Section 6.2.1.

Table 6.1: Mean fatigue damage per load cycle of various distribution functions of fa-
tigue loads for linear SN curve according to Eq. (6.1)

Distribution function
of fatigue loads Mean fatigue damage per load cycle

Narrow band, Eq. (6.6) (
8
m0

)m
2 · C−1 · Γ

(
1 + m

2

)
Dirlik (1985), Eq. (6.7) (

4
m0

)m
2 ·C−1 ·

(
w1 · tm · Γ (1 +m) + (w2 · βm + w3) · 2

m
2 · Γ

(
1 + m

2

))
Zhao and Baker (1992),

Eq. (6.8)
(

4
m0

)m
2 · C−1 ·

(
w · a− m

b · Γ
(
1 + m

b

)
+ (1− w) · 2

m
2 · Γ

(
1 + m

2

))
Benasciutti and Tovo
(2005b), Eq. (6.9)

(
8
m0

)m
2 · C−1 ·

(
b · α2 + (1− b) · αm2

)
· Γ
(
1 + m

2

)
Kelma, Eq. (6.12) (

8
m0

)m
2 · C−1 · (w + (1− w) · βm) · Γ

(
1 + m

2

)
In addition to the fatigue damages derivated from the power spectral densities of loads,
formulae exist which calculate the fatigue damage of any wide-band power spectral
density as a portion of the fatigue damage caused by a narrow-band power spectral
density (index NB) as given by the first entry of Tbl. 6.1 (index NB),

D = ρ ·DNB . (6.13)
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Different proposals of the correction factor for the narrow-band assumption ρ exist.
Wirsching and Light (1980) introduced a correction factor which depends on the slope
of the SN curve m,

ρ = a (m) + (1− a (m)) ·
(

1−
√

1− α2
2

)b(m)
, (6.14)

with a (m) = 0.926−0.033 ·m and b (m) = 1.587 ·m−2.323. Wirsching and Light found
this expression for the correction factor by fitting it to the fatigue damages of several
simulated time series. They applied the Palmgren-Miner linear damage hypothesis and
rainflow counting for the fatigue analysis. Benasciutti (2005) proposed an empirical
correction factor of ρ = α2

0.75, which is independent of the slope of the SN curve. The
resulting fatigue damage approximates the actual fatigue damage quite well, but it
lacks any theoretical background (Benasciutti, 2005).

6.3 Derivation of distribution functions for fatigue loads

In general, the basic methodology applied by researchers to determine distribution
functions of fatigue loads and fatigue-damage models, which are described above in
Section 6.2, is very similar. This methodology is described by five steps, which are
listed below. The differences between the distribution functions of fatigue loads as
described in Section 6.2 arise from differences regarding initial assumptions, methods
applied within the steps of the methodology and evaluation of the error.

(1) Based on certain spectral properties of the underlying Gaussian signal, power spec-
tral densities of the signal are defined, which possess these certain spectral proper-
ties.

(2) These power spectral densities are transferred into time domain, usually via inverse
Fourier transformation.

(3) A fatigue-loads counting algorithm is applied on the time series.

(4) Either the fatigue damage caused by the extracted fatigue loads is calculated by
means of a specific fatigue-damage model, or the distribution of the simulated
fatigue loads is derived.

(5) A model which describes either the fatigue damage or the fatigue-load distribution
is fitted to the simulated fatigue damage or the simulated fatigue-load distribution
determined in step (4), respectively, such that the error made by the model is small.
This model solely depends on the spectral parameters which are used to describe
the power spectral densities in step (1).

The various power spectral densities which are used by the researchers introduced in
Section 6.2 are shown in Fig. 6.9, with the assignment given in the following. These
power spectral densities possess two clear distinctive peaks. Hence, they are usually
referred to as “bimodal”. The distribution functions of fatigue loads presented in Sec-
tion 6.2 depend on spectral parameters of the underlying power spectral densities, while
the type of the power spectral densities is not taken into account. No studies exist which
discuss the impact of different types on the distribution functions of fatigue loads.
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Figure 6.9: Types of power spectral densities used for derivation of distribution func-
tions of fatigue loads

Dirlik (1985) used 70 different pairings of the spectral parameter α1 and the irregularity
factor α1 · α2 for generation of power spectral densities, shown in Fig. 6.10. Fifty-six
power spectral densities consisting of two constant terms and 14 smooth power spec-
tral densities were analysed, with the shapes shown in Fig. 6.9(a) and (b). In order to
evaluate the impact of the irregularity factor, Dirlik investigated several sets of power
spectral densities with constant irregularity factors and random values for α1. Random
time series were generated via inverse Fourier transformation of the power spectral
densities. Equidistant discretisation was applied, and 1, 024 wavelets were determined
for each power spectral density. Each resulting time series consisted of approximately
108 peaks and 108 troughs. Twenty time series randomly generated for a certain power
spectral density were concatenated to one block, from which fatigue loads were extrac-
ted via rainflow counting. Probability density functions were determined on the basis
of the simulated fatigue loads. Ten blocks, each containing approximately 2, 160 peaks
and 2, 160 troughs, were analysed for each power spectral density. The weightings and
coefficients of Eq. (6.7) were numerically determined via the least-square estimation of
the error between the probability density function of the simulated fatigue loads and
the theoretical probability density function. Dirlik found analytical approximations for
the numerically determined weightings and coefficients.

Zhao and Baker (1992) analysed 16 different power spectral densities with three different
shapes, respectively, which are characterised by the spectral parameters α0.75 and α2.
The authors used two types of uniform spectra, as shown in Fig. 6.9(a) with only one
term, three Pierson-Moskowitz spectra, given by Eq. (3.16) and shown in Fig. 3.5,
as well as eleven types of response spectra which are typical for offshore structures
(Zhao and Baker, 1990), as shown in Fig. 6.9(c). Inverse Fourier transformation of
the power spectral densities was applied to obtain time series. Each power spectral
density was discretised such that 200 wavelets describe the signal in time domain.
The wave frequencies of these wavelets are chosen randomly to avoid periodic effects.
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These random values follow an uniform distribution limited by two boundary wave
frequencies. Each simulated time series included 11, 000 to 14, 000 load cycles. Fatigue
loads were extracted from the simulated time series via the rainflow-counting algorithm.
The fatigue damage for each time series was determined for a SN curve according to
Eq. (6.1) with a slope of unity. Least-square estimation of the error between simulated
fatigue damage and corresponding fatigue damage caused by the theoretical distribution
function was applied to determine the weight and the coefficient of the Weibull term
in Eq. (6.8).

Benasciutti and Tovo (2005b) used 286 different pairings of the spectral parameters
α1 and α2 to describe the investigated power spectral densities, shown in Fig. 6.10
(left). Values of 0.1, 0.3, 0.5 and 0.7 are chosen for α2, and the values for α1 are
scattering. The shapes of the power spectral densities consist of two terms which are
either constant, linear with either negative or positive slope, or parabolic with negative
or positive gradient, as shown in Fig. 6.9(a) and (d) to (g). The upper boundary of first
term is the lower boundary of the second term. Rainflow counting was applied to derive
the fatigue loads from the simulated time series. However, no information is provided
by Benasciutti and Tovo regarding the techniques which were used to derive time
series from the power spectral densities. The coefficients of the proposed distribution
function as given by Eq. (6.9) are fitted to the corresponding fatigue damage according
to Eq. (6.1) with a slope of m = 3. The error between simulated and theoretical fatigue
damage is minimised via least-square estimation.

The pairings of spectral parameters which are used by Dirlik (1985), Zhao and Baker
(1992) and Benasciutti and Tovo (2005b) are shown in Fig. 6.10. As one can see in
Fig. 6.10, only a limited range of all possible pairings for spectral parameters of power
spectral densities is covered by the studies of Dirlik (1985), Zhao and Baker (1992),
and Benasciutti and Tovo (2005b). This is especially true for Dirlik (1985) and Zhao
and Baker (1992), identified with black circles and grey squares, respectively. For the
study by the author and the derived distribution function of fatigue loads in frequency
domain, referring to Eq. (6.12), all possible pairings of spectral parameters α1 and
α2/α1, which cover the whole codomains of these spectral parameters, are applied such
that a universal distribution functions of fatigue loads is determined.

Again, the spectral parameter α2 is shown as multiple of the spectral parameter α1 or
of the spectral parameter α0.75 to provide a clearer presentation of the results within
the thesis. Both α1 as well as α2/α1 and α2/α0.75 have a codomain of [0, 1].

6.3.1 Development of a new distribution function of fatigue loads
based on power spectral densities

Based on the findings of the reanalysis of existing approaches, the new approach to
determine the distribution function of fatigue loads based on power spectral densities
is developed, referring to Eq. (6.12).

The time series analysed by the author are longer and contain more peaks and troughs
and thus more stress-strain hysteresis loops. The simulated distribution functions of
simulated fatigue loads are more accurate than those of previous studies. The ap-
plied method of inverse Fourier transformation is also described in detail. The newly-
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Figure 6.10: Pairings of α1 and α2/α1 (left) and pairings of α0.75 and α2/α0.75 (right)
used for the derivation of different theoretical distribution functions of
fatigue loads. Acronyms for analytical distribution functions: Dirlik (Dirlik,
1985), ZB (Zhao and Baker, 1992), TB (Tovo, 2002; Benasciutti and Tovo,
2005b), Kelma (Eq. (6.12))

developed distribution function of fatigue loads based on power spectral densities also
depends on the spectral parameters α1 and α2. Their values are selected such that all
possible values of the respective codomains are covered.

Power spectral densities applied for derivation of the newly-developed
distribution function of fatigue loads

The power spectral densities used to derive a new distribution function of fatigue loads
are classified by pairing of the spectral parameters α1 and α2/α1. Here, both parameters
have values of 1

40 ,
3
40 ,

5
40 , . . . ,

37
40 ,

39
40 . Hence, 400 different pairings of α1 and α2/α1 are

used. As can be seen in Fig. 6.10, these pairings cover the codomains of all possible
combinations of α1 and α2/α1 extensively. The power spectral densities are set as the
sum of two sinusoidal terms,

S (ω) =
2∑

n=1
Sn (ω)

Sn (ω) =


An
2 ·

(
1− cos

(
ω − ωn,0
ωn,1 − ωn,0

))
, ω ∈ [ωn,0, ωn,1]

0 , otherwise

, (6.15)

with coefficients An and boundary wave frequencies ωn,0 and ωn,1 for each term n. The
shape of these power spectral densities is plotted in Fig. 6.9(h). Five sets of coefficients
and boundary wave frequencies are analysed for each pairing of α1 and α2/α1. Since
the values of each set cannot be expressed on the basis of the target values of the pair-
ings, the values defining each power spectral density according to Eq. (6.15) are chosen
randomly. Only those sets which are the closest to a given pairing are used to derive a
new distribution function of fatigue loads. Due to the random selection of the values,
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the values of the parameters α1 and α2/α1 may not be equal to the target values. The
maximum permissible deviation from the target pairing of α1 and α2/α1 is set as 0.01.
The random selection of the values defining each is carried out until five different sets
of coefficients and boundary wave frequencies are determined for each pairing of α1
and α2/α1. The average deviation from the target pairing is 5.85 · 10−4. The greatest
deviations occur especially for small values of α1 and α2/α1, with a maximum deviation
of 4.93 · 10−3. The coefficients of each term are chosen such that the first-order spectral
moment is unity. The values for the coefficients and boundary wave frequencies applied
for this study are given in Appendix A4. Inverse Fourier transformation of the power
spectral densities is carried out to generate corresponding time series. Equienergetic dis-
cretisation is applied for each term of the power spectral density according to Eq. (6.15),
with 250 wavelets each. A study on discretisation techniques and the applicability of
the equienergetic discretisation is given in Chapter 7. The length of the time series are
chosen such that each time series contains approximately 1,000,000 local extrema. The
simulation of the random time series is carried out with an executable program writ-
ten by the author in the programming language C#. The rainflow-counting algorithm
and the further evaluation are carried out with the numeric computing environment
MATLAB.

Characteristics of time series

The time series, resulting from inverse Fourier transformation of the power spectral
densities, are described shortly in the following. They are shown in Fig. 6.11 for different
pairings of the spectral parameters α1 and α2/α1. They are chosen such that the domain
of the spectral parameters are covered fairly to provide an adequate overview of the
time series and their characteristics in dependence of the spectral parameters. The
time series are plotted over different durations. Here, the durations are multiples of the
peak-to-peak period of 20, 10,000 and 400,000. This allows short-term- and long-term
characterisations of the time series.

Referring to Section 2.1.2, the spectral moment α1 is the ratio of zero-up-crossing
period and mean period of the signal, and α2 is the ratio of peak-to-peak period and
zero-up-crossing period. These characteristics can be best observed in the time series
with α1 = 0.025. Here, the wavelets with very high periods, or equivalently with very
low wave frequencies, are dominant in the time series of very long duration, referring
to Fig. 6.11 (right). The amplitudes of the wavelets with high wave frequencies are
very small in comparison to those of the wavelets with low wave frequencies, as can be
seen in Fig. 6.11 (left) and (middle). The amplitudes of the wavelets with high wave
frequencies increase with increasing α2, which can be seen for all α1 shown in Fig. 6.11
(left). No clear distinction between the energy contents of wavelets with low and high
wave frequencies can be made for the time series with α1 = 0.975 and α2/α1 = 0.975. It
is observed for this time series in Fig. 6.11 (left) that the number of peaks is approxim-
ately the number of zero-up-crossings which follows from the definition of the spectral
parameter α2. This cannot be observed for the other time series presented due to the
selected domains of the graphs. For the time series with α1 = 0.025 and α2/α1 = 0.025,
the ratio of number of peaks and number of zero-up-crossings is 1,600.
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Figure 6.11: Examples of time series for different pairings of α1 and α2/α1 for durations
of multiples of the peak-to-peak period of (left) 20, (middle) 10,000, and
(right) 400,000

Distribution functions of fatigue loads

Fatigue loads are determined with the rainflow-counting algorithm. Hence, approxim-
ately 500,000 fatigue cycles are extracted. Both full cycles and half cycles are considered.

The occurring probability associated to each full cycle is equal, and each half cycle pos-
sesses half the occurring probability of a full cycle. An empirical cumulative distribution
function of fatigue loads is determined for each simulated time series. For this purpose,
the fatigue cycles are sorted by their magnitude in ascending order. The probability
of not exceeding a certain value is given by summing the occurring probabilities of all
fatigue cycles which are smaller than this value.
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The reverse cumulative distribution functions of fatigue loads are shown in Fig. 6.12 for
different pairings of the spectral parameters α1 and α2/α1. The distribution functions
for all five different realisations of each pairing of spectral parameters are plotted. The
exceedance probability is shown in logarithmic scale.

Figure 6.12: Simulated reverse cumulative distribution functions of fatigue loads for
various pairings of α1 and α2

In general, it can be noted that the distribution functions of fatigue loads seem to
consist of two distribution functions which are superposed and weighted. This can be
seen by means of the transition between both distribution functions. This transition
point is at a value of fatigue loads of ∼2 and at a probability of exceedance of ∼10−2

for the reverse cumulative distribution functions with α1 = 0.425 and α2/α1 = 0.825,
and at a value of fatigue loads of ∼0.25 and at a probability of exceedance of ∼0.2 for
the reverse cumulative distribution functions with α1 = 0.825 and α2/α1 = 0.225. This
transition point becomes less notable with increasing α1 and α2.

Especially the curves of the simulated reverse cumulative distribution functions with
an exceedance probability of less than 10−4 scatter for each set of pairings of spectral
parameters. This is due to the stochastic scattering of very high, rarely-occurring val-
ues. Even when the fatigue loads with an exceedance probability of less than 10−4 are
not considered, the distribution functions for one set of pairings of spectral parameters
are not congruent, but they possess small differences in their general shape. Exemplar-
ily, this can be seen in Fig. 6.12 for the reverse cumulative distribution functions with
α1 = 0.425 and α2/α1 = 0.825. These differences also show up in the analysis of the
fatigue damages which are calculated for each realisation of time series. The fatigue
damages are calculated according to Eq. (6.2) for a SN curve with a slope of 4. The
minimum and maximum value relative to the average fatigue damages as well as the
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coefficients of variance of the fatigue damages are shown in Fig. 6.13 for all analysed
pairings of the spectral parameters α1 and α2/α1. Even though the set of five differ-
ent realisations for each pairing of the spectral parameters is small, the scattering is
noticeable, and they allow the following qualitative conclusions.

Figure 6.13: Relative minima and relative maxima as well as coefficients of variance
(CoV) of the fatigue damage of the five time series simulated for each
pairing of α1 and α2, with the slope of the SN curve of m = 4

It is notable that the fatigue damage is not constant for each time series of each pair-
ing of the spectral parameters α1 and α2/α1. Otherwise, the relative minimum and
maximum values would be equal to unity, and the coefficients of variance would be
equal to zero. For α1 close to zero, the deviations results from the scattering of the
very high with a low exceedance probability of less than 10−4. For increasing α1, the
relative minimum and maximum values tend to unity, and the coefficients of variance
tend to zero. With increasing α2/α1, deviations of 5% from the mean fatigue damages
are deceeded for greater α1. As can be seen in Fig. 6.14 in comparison to Fig. 6.13,
almost identical relative minima and relative maxima as well as coefficients of variance
are determined when only the fatigue loads up to the 99.9%-quantiles are considered.
Only exceptions are the statistics for values of α1 close to zero where the very high
fatigue loads above the 99.9%-quantiles contribute significantly to the fatigue damage.

This means that only the very high, rarely occurring fatigue loads do not account
significantly to the statistics of the fatigue damage. Furthermore, it is concluded that
the spectral parameters α1 and α2 are not the only parameters which are required to
describe the distribution functions of fatigue loads clearly. Further analysis of the time
series and their respective spectral properties, such as spectral moments, may result in
a more detailed description of the distribution functions of fatigue loads. This analysis
is not carried out within this thesis.

Fitting of simulated distribution functions of fatigue loads to theoretical
distribution functions

The assumption is that the underlying distribution function of fatigue loads consists
of the sum of two weighted Rayleigh distributions. The sum of the weightings is equal
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Figure 6.14: Relative minima and relative maxima as well as coefficients of variance
(CoV) of the fatigue damage of the five time series simulated for each
pairing of α1 and α2, with the slope of the SN curve of m = 4, for the
fatigue loads up to the 99.9%-quantile

to unity, and the scale parameter of the first Rayleigh distribution is unity. The scale
parameter of the second Rayleigh distribution is considered as depending on the spectral
parameters α1 and α2. The approach is similar to this of Benasciutti and Tovo (2005b).
Similarly, they assumed a distribution function of a sum of two weighted Rayleigh
distributions, with the scale parameters set as unity and the spectral parameter α2,
respectively, referring to Eq. (6.9).

Least-square estimation is applied to determine the scale parameter of the second
Rayleigh distribution as well as the weightings. Therefore, the average difference between
simulated distribution function and assumed distribution function is to be minimised
by adapting the parameters to be determined. In order to emphasise the rarely oc-
curring, very high fatigue loads, the average error of the logarithm of the exceedance
probability function R is evaluated,

1
||X||

∫
X

(log10Rsim (x)− log10Rtheo (x))2 · dx , (6.16)

where the indices sim and theo refer to the simulated and to the analytical exceedance
probability function, respectively. The exceedance probability function is the reverse of
the non-exceedance probability function which is the cumulative distribution function.
This emphasising of the very high fatigue loads is made, since especially these fatigue
loads contribute significantly to the fatigue damage (Kelma and Schaumann, 2015).
A brief calculation example shows the emphasising by applying the logarithmic func-
tion. Consider a small fatigue load with a simulated exceedance probability of 0.990
and a theoretical exceedance probability of 0.995. The absolute difference is 0.005, and
the absolute difference of logarithmic values is |log10 0.995− log10 0.990| ≈ 0.02. For
a great fatigue load with a simulated exceedance probability of 0.010 and a theoret-
ical exceedance probability of 0.005, the absolute difference is 0.005, and the absolute
difference of logarithmic values is |log10 0.010− log10 0.005| ≈ 0.30. In comparison, the
absolute difference is equal for the small and high fatigue load, but the absolute differ-
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ence of logarithmic values of the high fatigue load is larger by a factor of approximately
15.

The trapezoidal rule is applied to solve Eq. (6.16) numerically. The average difference
between simulated distribution function and assumed distribution function according
to Eq. (6.16) is non-linear. It is linearised for a set of values for the weightings and
the scale parameter. Hence, a linear system of equations, which depends solely on the
weightings and the scale parameter, is given. The linear system of equations as well as
the constrain that the sum of weightings is unity is solved by means of the method of
Lagrange multipliers. The values the weightings and the scale parameter are updated
iteratively until the average difference is minimal.

Finally, analytical expressions for the weightings and the scale parameter are found on
the basis of the respective values which are determined for each pairing of α1 and α2/α1
by means of the least-square estimation as described above. The analytical expressions
solely depend on the spectral parameters α1 and α2, referring to Eq. (6.12).

6.3.2 Goodness-of-fit of theoretical distribution functions for fatigue
loads in frequency domain

In order to evaluate the goodness-of-fit of the different analytical distribution functions
for fatigue loads in frequency domain, both the distribution functions as well as the
fatigue damages are compared to the respective properties of simulated fatigue loads in
the following. All possible pairings of the spectral parameters α1 and α2 are considered.

Goodness-of-fit of theoretical reverse cumulative distribution functions for
fatigue loads in frequency domain

The exceedance probability functions for four various pairings of α1 and α2 are shown
in Fig. 6.15. The five empirical exceedance probability functions, simulated for each
pairing, are in grey colour. The same empirical exceedance probability functions as in
Fig. 6.12 are plotted here. Additionally, the reverse cumulative distribution functions
according to Dirlik (1985), Zhao and Baker (1992), Benasciutti and Tovo (2005b),
and as proposed by the author, referring to Eq. (6.12), are plotted. No distribution
function according to Zhao and Baker (1992) is given for the pairing of α1 = 0.025 and
α2/α1 = 0.175 because this pairing does not lie within the domain of the distribution
function.

In general, the distribution functions according to Dirlik (1985), Benasciutti and Tovo
(2005b), and as proposed by the author, referring to Eq. (6.12), match the simulated
distribution functions of fatigue loads well. Small differences exist between those three
distribution functions. As one can see, the distribution function as proposed by the au-
thor describes the simulated distribution functions at the transition point, as referred
to in the description of Fig. 6.12, very well in comparison to the other theoretical distri-
bution functions. This is especially notable for the reverse cumulative distribution func-
tions with α1 = 0.825 and α2/α1 = 0.225 and for the reverse cumulative distribution
functions with α1 = 0.925 and α2/α1 = 0.525. For the reverse cumulative distribution
functions with α1 = 0.925 and α2/α1 = 0.525, it can be seen that the reverse cumu-
lative distribution function according to Dirlik (1985) overestimates the simulated ex-
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Figure 6.15: Simulated and analytical reverse cumulative distribution functions of fa-
tigue loads for various pairings of α1 and α2. Acronyms for analytical
distribution functions: Dirlik (Dirlik, 1985), ZB (Zhao and Baker, 1992),
TB2 (Benasciutti and Tovo, 2005b), Kelma (Eq. (6.12))

ceedance probabilities for ranges of fatigue loads less than 2 and greater than 8. Hence,
the damage-equivalent load and fatigue damage are underestimated as it is shown in
the following. In comparison to the other distribution functions shown in Fig. 6.15,
the differences between the reverse cumulative distribution function according to Zhao
and Baker (1992) and the simulated reverse cumulative distribution functions are the
greatest, especially for reverse cumulative distribution functions with α1 = 0.425 and
α2/α1 = 0.825 and with α1 = 0.825 and α2/α1 = 0.225.

Besides the optical measure of the error due to the theoretical distribution functions
of fatigue loads in frequency domain, the deviation between theoretical and simulated
distribution functions is analysed in the following. Therefore, the deviation is calculated
according to Eq. (6.16), which was applied to derive the newly developed distribution
function of fatigue loads based on power spectral densities, referring to Eq. (6.12). The
errors for the narrow-band distribution function of fatigue loads, referring to Eq. (6.6),
as well as for the analytical distribution functions of fatigue loads according to Dirlik
(1985), Zhao and Baker (1992), Benasciutti and Tovo (2005b), and the new approach,
referring to Eq. (6.12), are shown in Fig. 6.16. In order to evaluate the impact of
the very high fatigue loads on the error according to Eq. (6.16), the deviation is also
determined for fatigue loads with a non-exceedance probability less than 0.01. The
results are presented in Fig. 6.17. Light colours denote a small values of the deviation
according to Eq. (6.16) and thus a small error, and dark colours represent a greater
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deviation between the analytical and simulated distribution functions of fatigue loads.
For the distribution functions according to Zhao and Baker (1992), the errors are only
shown for the spectral parameters for which the distribution functions are defined.

Figure 6.16: Error of different analytical reverse cumulative distribution functions ac-
cording to Eq. (6.16) in dependence of α1 and α2. Acronyms for analytical
distribution functions: narrow band (Eq. (6.6)), Dirlik (Dirlik, 1985), ZB
(Zhao and Baker, 1992), TB1 (Tovo, 2002), TB2 (Benasciutti and Tovo,
2005b), Kelma (Eq. (6.12))

The deviation between the narrow-band distribution function and the simulated distri-
bution functions of fatigue loads is significant for almost all pairings of α1 and α2/α1.
It reduces for increasing α1 and for increasing α2/α1 and tends to zero as α1 and α2/α1
tend to unity. The deviation for Zhao and Baker (1992) is less than 0.05 for α1 greater
than α2/α1 and α2/α1 greater 0.4. The error is significant outside of this area. The er-
rors in dependence of α1 and α2/α1 are similar for the distribution functions of fatigue
loads according to Dirlik (1985), Tovo (2002), Benasciutti and Tovo (2005b), and the
new approach, referring to Eq. (6.12). For most pairings of α1 and α2/α1, the error
is less than 0.05. Only for α2/α1 close to unity, the error is greater than 0.05. The
respective area is the smallest for the distribution functions of fatigue loads accord-
ing to Benasciutti and Tovo (2005b) and especially for the new approach according to
Eq. (6.12). The error is also greater than 0.05 for α1 less than α2/α1 and α1 less than
0.7 for the distribution functions of fatigue loads according to Tovo (2002).

In comparison to Fig. 6.16, similar findings are observed when the errors above the 99%-
quantiles are analysed. This is especially true for the narrow-band distribution function
and the distribution function of fatigue loads according to Zhao and Baker (1992). The
errors are still similar for the distribution functions of fatigue loads according to Dirlik
(1985), Tovo (2002), Benasciutti and Tovo (2005b), and the new approach developed
by the author, referring to Eq. (6.12). However, the area with the error greater than
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Figure 6.17: Error of different analytical reverse cumulative distribution functions ac-
cording to Eq. (6.16) with an exceedance probability greater than 0.01 in
dependence of α1 and α2. Acronyms for analytical distribution functions:
narrow band (Eq. (6.6)), Dirlik (Dirlik, 1985), ZB (Zhao and Baker, 1992),
TB1 (Tovo, 2002), TB2 (Benasciutti and Tovo, 2005b), Kelma (Eq. (6.12))

0.1 is enlarged for Dirlik (1985), Tovo (2002) and Benasciutti and Tovo (2005b). Here,
roughly the area with α1 less than α2/α1 and α1 greater than 1− α2/α1 has an error of
greater 0.05. As for the distribution functions of fatigue loads according to Eq. (6.12),
the error is similar to this when considering all fatigue loads, referring to Fig. 6.16.

In general, the new approach developed by the author, referring to Eq. (6.12), shows the
best agreement between the analytical and simulated distribution functions of fatigue
loads. Of the analysed theoretical distribution functions, the new approach also yields
the most accurate match between the theoretical and simulated reverse cumulative
distribution function of the very high, rarely occurring fatigue loads.

Goodness-of-fit of theoretical fatigue damages in frequency domain

As an additional measure to evaluate the goodness-of-fit of theoretical distribution
functions of fatigue loads in frequency domain, the fatigue damages are analysed. Only
the ratios of analytical and simulated fatigue damages are shown. The ratios of ana-
lytical and simulated damage-equivalent loads are the m-th root of the ratios of ana-
lytical and simulated fatigue damages. For slender steel tubes, as they are used for
the support structures of offshore wind turbines, the section moduli are approximately
proportional to the wall thickness. For example, the ratio of analytical and simulated
damage-equivalent loads is 0.974 for a ratio of analytical and simulated fatigue dam-
ages of 0.9 and a slope of the SN curve of m = 4. Hence, the required wall thickness is
underestimated by 2.6%.
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The ratio of analytical fatigue damage to simulated fatigue damage in dependence of
α1 and α2 are shown in Fig. 6.18 for the slope of the SN curve of m = 4. Here, the
narrow-band distribution function of fatigue loads, referring to Eq. (6.6), as well as
the analytical distribution functions of fatigue loads stated by Dirlik (1985), Zhao and
Baker (1992), Benasciutti and Tovo (2005b), and by the author, referring to Eq. (6.12),
are analysed. The black contour line denotes a perfect match between analytical fatigue
damage and simulated fatigue damage, light colours represent an underestimation by
the theoretical fatigue damage, and dark colours represent an overestimation by the
theoretical fatigue damage.

Figure 6.18: Ratio of analytical fatigue damage to simulated fatigue damage in depend-
ence of α1 and α2, with the slope of the SN curve of m = 4. Acronyms for
analytical distribution functions: narrow band (Eq. (6.6)), Dirlik (Dirlik,
1985), ZB (Zhao and Baker, 1992), TB1 (Tovo, 2002), TB2 (Benasciutti
and Tovo, 2005b), Kelma (Eq. (6.12))

The results for small values of α1 are not discussed in detail in the following. Following
the explanation given for Fig. 6.12 and Fig. 6.13, the scattering of the very high loads
contributes significantly to the fatigue damage here, and it results in scattering fatigue
damage as well. The fatigue damage for the narrow-band distribution function over-
estimates the simulated fatigue damage significantly. The ratio of analytical fatigue
damage to simulated fatigue damage decreases for increasing α1 and for increasing
α2/α1. The fatigue damage according to Dirlik (1985) slightly underestimate the sim-
ulated fatigue damage for most pairings of α1 and α2/α1. Only for values of α1 close
to unity, the fatigue damage is slightly greater than the simulated fatigue damage. The
fatigue damage according to Zhao and Baker (1992) deviates from the simulated fatigue
damage by ±10% for α1 close to α2/α1. In general, the ratio of analytical fatigue dam-
age to simulated fatigue damage decreases for increasing α1 and increases for increasing
α2/α1. The fatigue damage according to Tovo (2002) overestimated the simulated fa-
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tigue damage by at least 10% for α1 less than α2/α1 and α1 less than 0.9. For α1 greater
than α2/α1 and α2/α1 greater 0.5, the simulated fatigue damage is underestimated.
The fatigue damage according to Benasciutti and Tovo (2005b) yields a deviation from
the simulated fatigue damage of ±10% for almost all pairings of α1 and α2/α1. Only
exception is the area with α1 greater than 0.5 and less than 0.9 and α2/α1 greater
than 0.5 and less than 0.9 where the fatigue damage is underestimated by more than
10%. With a few exceptions, the absolute deviation of the fatigue damage according
to the new approach, referring to Eq. (6.12), from the simulated fatigue damage is less
than 10% for all pairings of α1 and α2/α1. For α1 greater than α2/α1, the simulated
fatigue damage is underestimated. The simulated fatigue damage is overestimated by
more than 10% only for α2/α1 close to unity.

In general, the fatigue damage according to Benasciutti and Tovo (2005b) and the
fatigue damage according to the new approach developed by the author, referring to
Eq. (6.12), show a good agreement between analytical fatigue damage and simulated
fatigue damage. The new model according to Eq. (6.12) yields more conservative fatigue
damage in comparison to this of Benasciutti and Tovo (2005b).

The ratio of analytical fatigue damage to simulated fatigue damage in dependence of α1
and α2 are shown in Fig. 6.19 for values of m = 3, m = 5, and m = 10 for the slope of
the SN curve. Here, the analytical distribution functions of fatigue loads stated by Dir-
lik (1985), by Benasciutti and Tovo (2005b), and by the author, referring to Eq. (6.12),
are analysed. Again, the black contour line denotes a perfect match between analytical
fatigue damage and simulated fatigue damage, light colours represent an underestim-
ation by the theoretical fatigue damage, and dark colours represent an overestimation
by the theoretical fatigue damage.

The number of pairings α1 and α2/α1 with the ratio of analytical fatigue damage to
simulated fatigue damage less than unity (light-grey) increases with increased slope
of the SN curve for all three analytical distribution functions of fatigue loads. This is
especially true for the distribution functions according to Dirlik (1985) and Benasciutti
and Tovo (2005b). Here, the ratio of analytical fatigue damage to simulated fatigue
damage may have values of less than 0.5 for a slope of the SN curve of m = 10. Even
though the distribution function of fatigue loads proposed by the author leads to ratios
which are not as small, the fatigue damage is overestimated for values of α2/α1 close
to unity. All three distribution functions may lead to non-conservative fatigue loads
in dependence of α1 and α2. The distribution function of fatigue loads proposed by
the author is more conservative in comparison to those stated by Dirlik (1985) and
Benasciutti and Tovo (2005b).

6.4 Fatigue loads of non-Gaussian signals

As explained in Section 4.2, the loads acting on offshore wind turbines may consist of
several different load types. Superposition of several of the load types generally result
in a non-Gaussian signal. The random load type may be non-Gaussian, too.

If the signal only consists of one load type, the respective fatigue loads are determined
without great effort. For a periodic load, the distribution function of fatigue loads is
equal to this of one period. Transient loading leads to an oscillation which can be
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Figure 6.19: Ratio of analytical fatigue damage to simulated fatigue damage in de-
pendence of α1 and α2, with various values for the slope of the SN curve.
Acronyms for analytical distribution functions: Dirlik (Dirlik, 1985), TB2
(Benasciutti and Tovo, 2005b), Kelma (Eq. (6.12))

modelled numerically or analytically. The fatigue analysis of random transient load is
more complicated due to randomness of the amplitudes of the transient oscillations
and the time lags. Due to the complexity of the counting algorithms to determine
fatigue loads, a superposition of the fatigue loads of different load types generally does
not result in the fatigue loads of the superposed load types. Hence, detailed analyses
is required to quantify the impact of the superposition of different load types on the
distribution function of fatigue loads.

The distribution functions of fatigue loads in frequency domain, which are introduced
in Section 6.2, are only valid for random Gaussian signals. Hence, the signal must
be transformed to a Gaussian signal first, as already introduced for non-Gaussian ex-
treme loads in Section 5.2.3. The required spectral moments can be extracted from the
transformed signal. The transformation to a Gaussian signal according to Winterstein
(1985), referring to Section 5.2.3, is applied by Benasciutti and Tovo (2005a) for the
fatigue loads derived from a non-Gaussian time series.
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6.5 Findings

Fatigue loads are obtained from time series by means of counting algorithms. Here, the
rainflow-counting algorithm is commonly applied.

Fatigue loads can also be extracted from power spectral densities. Different approaches
exist which are solely based on spectral moments. These existing approaches are fitted
to the simulation results determined in time domain which do not cover the possible
values of the decisive spectral moments to a full extent. Hence, a new approach to
determine distribution functions for fatigue loads in frequency domain is introduced by
the author. This approach is derived from simulated time series, which cover the domain
of the decisive spectral moments almost completely. During the development of this
new approach, emphasis is put on the very high, rarely occurring fatigue loads which
contribute strongly to the fatigue damage. In comparison to the previously existing
approaches to determine distribution functions for fatigue loads on the basis of spectral
moments, the new approach describes the distribution functions obtained from the time
series better. The respective damage-equivalent loads and fatigue damages also match
the respective values of the time series very well. It is also to be noted that the new
approach to determine distribution functions for fatigue loads in frequency domain has
an easier formulation. Therefore, it is easier to compute in comparison to the previously
known approaches.

Similar to the extreme values, referring to Chapter 5, non-Gaussianity of signals is to
be considered, which is also shown in Section 8.1.





7 Techniques for inverse Fourier
transformation

Frequency-domain analysis does not yield sufficiently accurate results in all cases. This
is especially true when non-linearities have a noticeable effect on the structural response.
In this case, time-domain simulations may be required. Power spectral densities, which
would be directly applied in frequency-domain analysis, are to be transferred into time
domain, usually by applying the inverse Fourier transformation.

With the exception that aliasing and periodicity of the randomly generated time series
are to be avoided, only a few recommendations on the inverse Fourier transformation
are stated in literature and respective standards. With respect to sea states, DNV-
RP-C205 (2019) states that a random sea state shall consist of at least 1,000 wavelets
superposed. This recommendation is based on the findings of Elgar et al. (1985) who
investigated the impact of discretisation on the run length of sea states. Additionally,
since the theoretical power spectral densities to describe sea states have an unlimited
domain, referring to Section 3.2.2, a frequency at which the power spectral density can
be cut is defined for practical reasons (DNV-RP-C205, 2019).

In the following, power spectral densities of sea states are transferred into time domain
by means of different approaches of discretisation. The impact on the statistics of
the water-surface elevation as well as of the loads acting on a monopile substructure
are investigated. Recommendations for the satisfying discretisation of power spectral
densities are stated based on these analyses. Especially the number of wavelets are
discussed in detail.

7.1 Techniques for inverse Fourier transformation

As shortly mentioned in Section 2.1.1, the inverse Fourier transformation is applied
to transfer random signals given by power spectral densities into the time domain.
This results in time series as given by Eq. (2.1) or Eq. (2.2). Power spectral densities
are split in several partial areas, limited by their boundary wave frequencies. Based
on these partial areas, the properties of the superposed wavelets are defined. Different
techniques to determine the values for amplitudes and for wave frequencies exist, which
are discussed in the following. Two methods to generate randomness of the resulting
time series are shown.

115
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7.1.1 Derivation of amplitudes

The wave frequency and the amplitude of the wavelets are given by the respective
properties of each partial area, denoted with the index n. The wave frequency is usually
chosen within the interval boundaries of the respective partial area.

The wavelet contains the energy En which is equal to the area of the partial area. The
deterministic value of the amplitude an is given on the basis of the wave energy En,

an =
√

2 · En =
√

2 ·
∫
In
S (ω) · dω , (7.1)

where In is the interval of the partial area. The integral within Eq. (7.1) is often
solved numerically. Böker (2010) proposes to approximate the integral by means of the
rectangle rule. Then, the amplitude is calculated as an =

√
2 · S (ωn) ·∆ωn, with ∆ωn

denoting the width of the interval of the respective partial area, and ωn the associated
wave frequency. The deterministic value of the amplitude can also be used in order to
generate the randomness of the time series, as explained in the following.

7.1.2 Randomness in time domain

Two common approaches exist to generate a random time series on the basis of the
inverse Fourier transformation, which are usually referred to as random-phase method
and random-amplitude method.

For the random-phase method, the phase angles ϕn of each wavelet within Eq. (2.1) are
considered to follow an uniform distribution with the interval [0, 2π]. The amplitudes
are taken as deterministic values (Böker, 2010; Schaumann et al., 2011).

Instead of taking the amplitudes as deterministic values, Tucker et al. (1984) propose
that the values of the amplitudes shall be selected randomly to generate a random time
series. In addition to the phase angles being uniformly-distributed, the amplitudes an
of each wavelet shall be taken as Rayleigh-distributed. The mode of the underlying
Rayleigh distribution is the deterministic amplitude an of the respective wavelet, re-
ferring to Section 7.1.1. Taking the amplitudes of each wavelet within Eq. (2.2) as
normal-distributed with the standard deviation equal to the respective deterministic
amplitude is equivalent to consider the Rayleigh-distributed amplitudes and uniformly-
distributed phase angles within Eq. (2.1) (Tucker et al., 1984).

Both Tucker et al. (1984) and Elgar et al. (1985) discuss the methods for generation of
a random Gaussian process with respect to the simulation of sea states. Both groups
of researchers analyse the impact of the methods on wave-group statistics within the
generated seas state. A wave group consists of consecutive waves within a sea state
whose wave heights exceed a certain value. The number of waves within a wave group
is the run length.

Tucker et al. (1984) state that the random-phase method does not simulate a random
Gaussian process and thus does not correctly simulate sea states. The random-phase
method also affects the wave-group statistics; the mean run length may be underes-
timated. As an extension of these findings by Tucker et al. (1984), Elgar et al. (1985)
describe that the wave-group statistics for both methods to generate a random time
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series are almost identical in case that at least 1,000 wavelets are superposed to gener-
ate a random sea state. Mittendorf (2006) and DNV-RP-C205 (2019) recommend the
random-amplitudes method for the discretisation of sea states.

7.1.3 Number of wavelets

A certain number of wavelets is required for the inverse Fourier transformation to gen-
erate a random signal in time domain. The more wavelets are superposed to generate
the random time series, the power spectral density and its properties are more accur-
ately represented in time domain. Especially the values of the signal follow a normal
distribution to a greater degree, referring to e.g. Rice (1944). The computational effort
increases with increasing number of wavelets. Hence, it is beneficial to keep the num-
ber of wavelets as small as possible without losing too much information of the power
spectral density.

As stated before, DNV-RP-C205 (2019) recommends that a random sea state shall
consist of at least 1,000 wavelets. This is based on a study on wave groups within
sea states (Elgar et al., 1985). The authors investigated two measured power spectral
densities of water-surface elevation, which are narrow- and broad-banded, respectively,
and which are representative of a broad range of ocean conditions. They described that
the wave-group statistics are almost identical for at least 1,000 wavelets, which are
superposed to generate a random sea state.

7.1.4 Derivation of wave frequencies

Different techniques exist to divide the given power spectral density into the aforemen-
tioned partial areas. Most commonly the equidistant discretisation and the equiener-
getic discretisation (Webster and Trudell, 1981) are applied. When using the equidistant
discretisation, the power spectral density is divided into such partial areas that the in-
terval boundaries of the partial areas are set regularly. Hence, each interval has the
same width. The wave frequencies are chosen within the respective intervals, usually as
a whole multiple of the constant width between neighbouring wave frequencies. When
applying the equienergetic discretisation, the power spectral density is divided into such
partial areas that each partial area contains the same value of the area. Hence, the re-
spective value of the amplitude is equal for all wavelets, and the difference between
neighbouring wave frequencies is generally not equal.

The techniques of the equidistant discretisation and of the equienergetic discretisation
are shown in Fig. 7.1. The respective partial areas of the discretised power spectral dens-
ity are given at the top, and the amplitudes and wave frequencies consequently selected
are given at the bottom. The power spectral density represents a JONSWAP spectrum
of a sea state according to Eq. (3.17), with a significant wave height of Hs = 2.0m, a
peak period of Tp = 5.0 s, and a peak-enhancement factor of γ = 3.3.

The area below the power spectral density considered for the discretisation is limited
such that the considered interval is finite. The integration limits at both tails of the
power spectral density are chosen such that the area cut off at each tail is a fraction
of the whole area, which is the zeroth-order spectral moment, referring to Eq. (2.7).
Hence, the considered area for discretisation is reduced by twice the area cut off at each
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Figure 7.1: Equidistant and equienergetic discretisation of a power spectral density and
the respective discrete amplitudes for the inverse Fourier transformation

tail. The area cut at each tail is equal to 5% of the zeroth-order spectral moment in
Fig. 7.1.

Besides the equidistant and the equienergetic discretisation, the so-called irrational
discretisation technique (Jiang, 1988) is proposed for the inverse Fourier transformation
of wave-energy spectra (Mittendorf, 2006; Böker, 2010; Schaumann et al., 2011). The
difference ∆ωn between consecutive wave frequencies ωn−1 and ωn is calculated by using
an irrational factor,

∆ωn =

√
n
n+1∑N

j=1

√
j
j+1

· (ωN − ω1) , n = 2 . . . N , (7.2)

where ω1 and ωN denote the minimum and maximum wave frequency, respectively.

Properties of the methods to determine wave frequencies

The wave frequencies are easily found by dividing the considered interval of the power
spectral density in equally sized intervals whilst applying the equienergetic discret-
isation. However, the determination of the respective amplitudes usually requires an
increased numerical effort. Contrarily, the constant amplitudes are easily calculated
whilst applying the equidistant discretisation, but the numerical determination of the
wave frequencies is generally more elaborate.
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A periodic behaviour of the autocorrelation function and thus of the respective time
series can be noticed when applying the equidistant discretisation, referring to Eq. (2.19),

C (τ) = 1
2 ·m2

0
· cos (ω1 · τ) ·

N∑
n=1

a2
n · cos ((n− 1) ·∆ω · τ)

− 1
2 ·m2

0
· sin (ω1 · τ) ·

N∑
n=1

a2
n · sin ((n− 1) ·∆ω · τ) ,

(7.3)

where ∆ω is the constant width between neighbouring wave frequencies. The deriva-
tion of Eq. (7.3) with ω1 = 0 s−1 is shown by e.g. Jiang (1988). The sinusoidal terms∑
a2
n · cos ((n− 1) ·∆ω · τ) and ∑

a2
n · sin ((n− 1) ·∆ω · τ) in Eq. (7.3) are periodic

with a period of τ = 2π/∆ω. If ω1 is a whole multiple of ∆ω, the autocorrelation func-
tion and thus the respective time series are also periodic with this period of τ = 2π/∆ω.
Even for ω1 not being a whole multiple of ∆ω, the autocorrelation function and the
time series show a certain periodic behaviour with a period of 2π/∆ω. When applying
the equidistant discretisation, it is recommended to use time series with a duration
equal to or less than the period 2π/∆ω. Thus, any periodic behaviour within the time
series is excluded. Otherwise, any periodic behaviour has an impact on the statistical
properties as shown in the following.

A periodic behaviour can also be observed when applying the irrational discretisation
of the power spectral density (Jiang, 1988) despite the irrational determination of the
wave frequencies. The term

√
n/ (n+ 1) in Eq. (7.2) approaches the limit of unity as

n increases. Hence, the difference between consecutive wave frequencies approaches a
constant value. This behaviour is shown in Jiang (1988, Fig. 3b) and is described as
“non-decaying”. Figure 7.2 shows the autocorrelation functions for a JONSWAP spec-
trum according to Eq. (3.17) with Hs = 2m, Tp = 5 s, and γ = 3.3, obtained with the
discretisation of the wave-energy spectrum as described in the beginning of Section 7.2.
The different aforementioned approaches of discretisation are applied. The autocor-
relation function of the power spectral density according to Eq. (2.18) is shown for
comparison (top, left). The time series are generated with 1,000 wavelets. The periodic
behaviour is notable with a periodicity of 1,746.2 s for the equidistant discretisation,
due to the constant difference of consecutive wave frequencies of ∆ω = 3.60 · 10−3 s−1.
A similar periodicity is observed for the irrational discretisation.

Figure 7.2: Autocorrelation function for different approaches of the inverse Fourier
transformation
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Impact of integration limits on spectral moments

The wave-energy spectra usually are defined for an unlimited domain of wave frequen-
cies. Therefore, limits are to be set for the discretisation of the wave-energy spectra for
practical reasons. The impact of the chosen limits on spectral properties of the signal
are shown in the following. The impact of these chosen limits on extreme loads and
fatigue loads of the respective signal are discussed in Section 5.2.1 and Section 7.2,
respectively.

The impact of the right limit of a JONSWAP spectrum according to Eq. (3.17) on
the zeroth-, second-, and fourth-order spectral moments as well as on the spectral
width parameter, referring to Eq. (2.15), is shown in Fig. 7.3. The course of the val-
ues are plotted against the chosen right boundary ω of the adjusted spectral moment
m′n =

∫ ω
0 S (ω′) · ω′n · dω′. The values of the spectral moments (left) are divided by the

respective adjusted spectral moments for a wave frequency of 10 · ωp. The limits which
are set to obtain a certain accuracy with respect to the target zeroth-order spectral
moment are additionally shown in Fig. 7.3 (right). All courses shown are true for any
value of the significant wave height and of the peak period but otherwise constant
parameters of the JONSWAP spectrum.

Figure 7.3: Spectral moments (left) and spectral width parameter (right) in dependence
of the right integration limit of Eq. (2.7)

Evaluation of Eq. (2.7) for the JONSWAP spectrum indicates that the zeroth- and
second-order spectral moments converge, and that the fourth-order spectral moment
approaches infinity. The values of the zeroth- and second-order spectral moments are
almost constant for wave frequencies greater than 10 · ωp. Contrarily, the value of the
fourth-order spectral moment grows without bound for increasing wave frequency. This
can also be noticed for the spectral width parameter. Its value is strictly increasing and
converges to unity for increasing wave frequency.

The accuracy of discrete power spectral densities and of the resulting time series in
comparison to the corresponding power spectral density is discussed in the following
concerning the spectral properties. Considering a JONSWAP spectrum according to
Eq. (3.17) with Hs = 2m, Tp = 5 s, and γ = 3.3, the simulated time series of the res-
ulting water-surface elevation consists of 1,000 wavelets. Both the equidistant as well
as equienergetic discretisation are applied. Two specific kinds of integration limits are
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investigated. The limits are chosen such that 0.5% as well as 0.0005% of the area are
cut off at both tails of the power spectral density, respectively.

The second- and fourth-order spectral moments of the water-surface elevation, normal-
ised by the zeroth-order spectral moments, according to Eq. (2.7) for the power spectral
density, according to Eq. (2.8) for the discretised power spectral density, as well as on
the basis of the time series are given in Tbl. 7.1. Additionally, the zero-up-crossing
period Tz, the peak-to-peak period Tc, as well as the spectral width parameter are
shown. The values of the spectral width parameter and the peak-to-peak period are
already given in Tbl. 5.1. They are repeated here for reasons of clarity. The periods
are calculated on the basis of the zeroth-, second-, and fourth-order spectral moments
for the power spectral density and the discretised power spectral density, referring to
Eq. (2.11) and Eq. (2.12), respectively. In order to determine these parameters from
time series, 500 random time series of the water-surface elevation, each with a duration
of 10,800 s, are analysed in order to determine the respective periods. Therefore, the
temporal differences between consecutive zero-up-crossings and the temporal differences
between consecutive maxima are extracted from each time series. The zero-up-crossing
period and the peak-to-peak period are the mean values of those temporal differences.

Table 7.1: Spectral moments, specific periods and spectral width parameters of a power
spectral density, of its discrete power spectral density, and of the respective
time series for different integration limits of Eq. (2.7) and for the equidistant
discretisation as well as equienergetic discretisation

99.999% of PSD 99% of PSD
PSD D-PSD TSa PSD D-PSD TSa

m2/m0 [s−2] 2.6066 2.6297 2.4315 2.4315
2.5851 2.4314

m4/m0 [s−4] 23.8382 24.0222 9.8213 9.8210
16.9716 9.8180

Tz [s] 3.8917b 3.8746b 3.8778 4.0294b 4.0294b 4.0347
3.9079 b 3.9076 4.0295 b 4.0250

Tc [s] 2.0777c 2.0789c 2.0782 3.1263c 3.1263c 3.1226
2.4522 c 2.4368 3.1268 c 3.1210

ε 0.8456
d 0.8439d 0.8443 0.6309

d 0.6309d 0.6333
0.7786 d 0.7818 0.6308 d 0.6315

PSD: power spectral density, D-PSD: discrete power spectral density,
TS: time series
Non-italic: equidistant discretisation, italic: equienergetic discretisation
a Extracted from random time series
b Zero-up-crossing period according to Eq. (2.11)
c Peak-to-peak period according to Eq. (2.12)
d Spectral width parameter ccording to Eq. (2.15)

As already observed in Fig. 7.3, the integration limits of the power spectral density have
an impact on the respective spectral moments calculated for the power spectral density.
Here, the second- and fourth-order spectral moments of the power spectral density for
a utilised area of 99% of the power spectral density underestimate the respective values
for a utilised area of 99.999% of the power spectral density by approximately 7% and
59%, respectively. Hence, the zero-up-crossing period and the peak-to-peak period also
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differ noticeably. The values for a utilised area of 99% of the power spectral density differ
from the respective values for a utilised area of 99.999% of the power spectral density
by factors of approximately 1.04 and 1.50, respectively. The values of the spectral width
parameter also differ in comparison.

For a relative utilised area of the power spectral density of 99%, only very small dif-
ferences for the values calculated for the power spectral density, for the discrete power
spectral density as well as for the time series are detected. The discretisation type al-
most has no impact on the respective values. Contrarily, greater deviations are observed
for a relative utilised area of the power spectral density of 99.999%. The values for the
equidistant discretisation nearly are equal to those for the power spectral density. The
spectral moments for the equienergetic discretisation underestimate the respective val-
ues for the power spectral density. This affects especially the peak-to-peak period. The
values exceed the respective values for the power spectral density and for the equidistant
discretisation by approximately 17%. Hence, a smaller number of peaks are observed
during a certain duration when applying the equienergetic discretisation. The spec-
tral width parameter, which depends on the peak-to-peak period, is reduced for the
equienergetic discretisation.

As shown in Fig. 7.3 and Tbl. 7.1, the selection of the integration limit as well as of
the discretisation type has an impact on the properties of the water-surface elevation.

7.2 Comparison of different approaches of inverse Fourier
transformation

As introduced above, different approaches with either equidistant or equienergetic dis-
cretisation and with either constant or Rayleigh-distributed amplitudes can be used
for the inverse Fourier transformation of power spectral densities. The impact of these
different approaches of the inverse Fourier transformation on the wave-induced loads
acting on a monopile substructure is investigated in the following. Since the values of
the spectral moments and of the spectral width parameter are of special importance
for the estimation of extreme loads and fatigue loads, referring to Section 5.2 and Sec-
tion 6.2, respectively, special attention is to be given to the selection of the integration
limits of discretised power spectral densities and of the different approaches of the in-
verse Fourier transformation, considering both the number of wavelets as well as the
discretisation type.

Exemplarily, the bending moment at the level of the seabed is investigated. The mono-
pile is located at a water depth of 25m, and the diameter of the monopile is 5m. The
wave-induced loads are calculated by Morison’s equation, referring to Eq. (3.19), with
the drag coefficient Cd = 0.7 and the inertia coefficient Cm = 2.0. A sea state given by
the JONSWAP spectrum according to Eq. (3.17) with Hs = 2m, Tp = 5 s, and γ = 3.3
is considered. The area cut at each end of the power spectral density has a value of
0.5% of the zeroth-order spectral moment. Hence, the area considered for the discret-
isation has a value of 99% of the zeroth-order spectral moment. For the discretisation
of the power spectral density, the equidistant as well as the equienergetic discretisation
as previously introduced are considered whilst the amplitudes are determined either as
constant or as Rayleigh-distributed. The water-surface elevation as well as the result-
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ing water kinematics are given by superposition of varying number of wavelets N , with
N = [50, 100, 200, 500, 1,000, 2,000, 5,000, 10,000], referring to Eq. (3.14). The period-
icity for the equidistant discretisation is dependent on the number of wavelets, with a
value of (1.7426 ·N) s.

The impact of the utilised area of the power spectral densities is also analysed. The
integration limits at both tails of the power spectral densities are set such that the area
cut off at each tail is 5 · 10−3, 5 · 10−4, 5 · 10−5, and 5 · 10−6 of the zeroth-order spectral
moment, which is the area below the power spectral density. This cut-off areas relate to
relative utilised areas of 99%, 99.9%, 99.99%, and 99.999% of the power spectral density.
Only time series composed of 1,000 wavelets are investigated. Here, the periodicities
for the equidistant discretisation, which is dependent on the integration limits, have
values of approximately 1,742.6 s, 874.7 s, 466.7 s, 255.7 s, respectively, for the relative
utilised areas aforementioned.

In order to account for the randomness of the time series in the following analysis, a
sufficient number of time series are generated for each combination of discretisation
type, amplitude determination, number of wavelets, and relative utilised areas. Unless
stated otherwise, the simulated time series have a duration of 600 s. In case of the
equidistant discretisation and that the periodicity is less than 600 s, the time series
have a duration of the respective periodicity. The time step is 0.05 s. The simulation
of the random water-surface elevation and the load simulation are carried out with
executable programs written by the author in the numeric computing environment
MATLAB. The statistical evaluation is also done with MATLAB.

Due to the importance for the design of offshore wind turbines, the impact of the inverse
Fourier transformation on the extreme loads and fatigue loads is investigated.

7.2.1 Impact on Gaussianity of time series

As stated by e.g. Rice (1944), time series obtained via inverse Fourier transformation
tend to be normal-distributed for increasing number of wavelets.

The Kullback-Leibler divergence, referring to Eq. 2.27, is applied to assess whether the
time series are normal-distributed. The Kullback-Leibler divergences for the different
discretisation types and numbers of wavelets are compared to each other to determine
which configuration provides the best fit with the normal distribution. The Kullback-
Leibler divergences of bending moments acting on a monopile at seabed are shown in
Fig. 7.4 for a duration of the signal of 10,800 s and in Fig. 7.5 for a duration of the signal
of 150 s. Different approaches of the inverse Fourier transformation are considered. The
values are presented in linear (left) and logarithmic scale (right) in Fig. 7.4.

For a duration of the signal of 10,800 s shown in Fig. 7.4, it is observed that the
Kullback-Leibler divergence is almost constant for the equienergetic discretisation for
the analysed numbers of wavelets. Hence, these signals are considered as Gaussian. For
the equidistant discretisation, the mean value of the Kullback-Leibler divergence as
well as the range of the 95% confidence interval also decrease for increasing number of
wavelets. The range of the 95% confidence interval is greater for the discretisation with
random amplitudes in comparison to the discretisation with constant amplitudes. At a
number of wavelets of 10,000, the value of the equienergetic discretisation is reached.
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Figure 7.4: Kullback-Leibler divergences of bending moments acting on a monopile at
seabed obtained by different approaches of the inverse Fourier transforma-
tion for a duration of 10,800 s
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Figure 7.5: Kullback-Leibler divergences of bending moments acting on a monopile at
seabed obtained by different approaches of the inverse Fourier transforma-
tion for a duration of 150 s

For a duration of the signal of 150 s, referring to Fig. 7.5, the Kullback-Leibler diver-
gences for all different types of discretisations are almost identical. This is observed
for both the mean values as well as for the 95% confidence intervals. Since the signals
obtained with the equienergetic discretisation are considered as Gaussian for a dura-
tion of the signal of 10,800 s, signals with a shorter duration shall also be Gaussian.
Hence, the signals obtained with the equidistant discretisation have this same property
because of the same values of the Kullback-Leibler divergence. The differences between
equienergetic discretisation and equienergetic discretisation for a duration of the sig-
nal of 10,800 s result from the periodicity of the signals obtained with the equidistant
discretisation. Here, repeating values are considered for the calculation of the Kullback-
Leibler divergence, referring to Eq. (2.27), which directly results in greater values. For
a duration of the signal of 150 s, the signals obtained with the equidistant discretisa-
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tion are not periodic such that similar values of the Kullback-Leibler divergence are
obtained for the equienergetic discretisation and the equienergetic discretisation.

7.2.2 Impact on wave grouping

As stated above, consecutive waves within a sea state whose wave heights exceed a
certain value are referred to as a wave group. The number of waves within a wave
group is the run length. Here, the value of the significant wave height is the reference
wave height. Elgar et al. (1985) investigated two measured power spectral densities of
water-surface elevation, which are narrow- and broad-banded, respectively, and which
are representative of a broad range of ocean conditions. The authors described that
the wave-group statistics are almost identical for at least 1,000 wavelets, which are
superposed to generate a random sea state. This finding of Elgar et al. (1985) is basis
for the discretisation recommendations stated in DNV-RP-C205 (2019).

A reanalysis of the narrow-band- and broad-band power spectral densities as stated by
Elgar et al. (1985) is carried out by the author, mostly to investigate the impact of
number of wavelets in combination with the different approaches of the inverse Fourier
transformation. The mean values of run length for both type of spectra are shown in
Fig. 7.6 for different number of wavelets and different approaches of the inverse Fourier
transformation. Both the mean values (left) as well as the mean values and the 95%
confidence intervals (right) are presented. Additionally, the distributions of run lengths
for both type of spectra are shown in Fig. 7.7 for different number of wavelets and
different approaches of the inverse Fourier transformation.

Figure 7.6: Mean run lengths for narrow-band power spectral density (PSD) (top) and
for broad-band power spectral density (bottom) obtained by different ap-
proaches of the inverse Fourier transformation for a duration of 10,800 s
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As can be observed, the mean run lengths are almost constant for the broad-band power
spectral density and for the different approaches of the inverse Fourier transformation.
The random scattering of the run lengths, here presented by the 95% confidence in-
tervals, is also almost constant for the equienergetic discretisation. Up to a number of
wavelets of approximately 2,000, the range of the 95% confidence intervals decreases
for the equienergetic discretisation significantly. The greater range of 95% confidence
intervals results from the periodicity of the signals due to the equidistant discretisation
and of the respective run lengths within the signals. Here, the ranges of 95% confidence
intervals are almost constant above a number of wavelets of 2,000. Similar results re-
garding the scattering of the mean run lengths are observed for the narrow-band power
spectral density. However, the mean run length is slightly greater for the equidistant
discretisation in comparison to the equienergetic discretisation even for very high num-
bers of wavelets. The mean run lengths for the equidistant discretisation also scatter
noticeably for numbers of wavelets less than 1,000, which may result from the period-
icity of the equidistant discretisation.

Figure 7.7: Distribution of run lengths (RL) for narrow-band power spectral density
(PSD) (top) and for broad-band power spectral density (bottom) obtained
by different approaches of the inverse Fourier transformation for a duration
of 10,800 s

The reason for the slightly greater mean run lengths for the equidistant discretisation
and for the narrow-band power spectral density can be seen in the occurrence prob-
abilities of the run lengths. For a run length of 2, the occurrence probability for the
equidistant discretisation is less in comparison the equienergetic discretisation, but it
is increased for run lengths of 3 and greater 4. Again, the occurrence probabilities
are scattering noticeably for the equidistant discretisation and numbers of wavelets
less than 2,000, which is due to the already mentioned periodicity of the time series.
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For the equienergetic discretisation, the occurrence probabilities are mostly constant.
Contrarily, the occurrence probabilities for the broad-band power spectral density are
mostly constant for the different approaches of the inverse Fourier transformation. The
only exception is the occurrence probabilities for the equienergetic discretisation with
constant amplitudes. For small numbers of wavelets, these occurrence probabilities for
different run lengths differ noticeably, but they reach the values of the other discretisa-
tion approaches with increasing number of wavelets.

7.2.3 Impact on statistical properties of maximum loads acting on a
monopile foundation

The extreme loads occurring during the lifetime are of importance for the design of
structures. Due to the random generation of time series, the extreme loads occurring
during a time series are random, too. According to the extreme value theory (Gumbel,
1958), the extreme loads can be described by the generalized extreme value distribution.
It is assumed that the extreme loads are independent and identically distributed. In
order to fit the generalized extreme value distribution to a data set of extreme loads, a
sufficiently high number of independent and identically distributed extreme values are
required.

The extreme values within each simulated time series of the wave-induced bending mo-
ments are extracted. For each discretisation type and number of wavelets considered,
500 time series with a duration of 600 s are analysed. In case of the equidistant discret-
isation and of the periodicity being less than 600 s, the time series have a duration of the
respective periodicity. The underlying distribution type according to the extreme value
theory and its respective parameters, referring to Eq. (2.28), are determined by means
of the maximum-likelihood estimation, referring to Section 2.2.2. The parameters of
the generalized extreme value distribution are adapted to a period of 600 s, applying
Eq. (2.29). The parameters and their 95% confidence intervals are plotted against the
number of wavelets in Fig. 7.8. The calculated values, marked with a dot, are linearly
connected to visualise the course of the values.

The parameters can be considered as constant in dependence of the number of wavelets,
with the scale parameter for the equidistant discretisation with constant amplitudes
being the exception. This scale parameter increases for numbers of wavelets less then
1,000. It is considered as constant for greater numbers of wavelets.

Without the exception mentioned above, it is observed that the type of discretisation
almost has no notable affect on the underlying generalized extreme value distribution
and its parameters. The 95% confidence intervals shown in Fig. 7.8 indicate that the
values of the parameters are scattering. In order to determine the parameters of the
underlying generalized extreme value distribution more accurately, further goodness-
of-fit tests are to be applied, or the data set of extreme values is to be extended. For
example, a Gumbel distribution of the extreme wave-induced bending moments may
also be assumed by evaluating the respective Q-Q plot, referring to Section 2.2.2.

The impact of the utilised area of the power spectral densities on the distribution
of the extreme wave-induced bending moments is analysed in the following. Again,
the extreme values within each simulated time series of the wave-induced bending
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Figure 7.8: Shape-, scale-, and location parameters for the generalized extreme value
distribution of maximum bending moments acting on a monopile at seabed
obtained by different approaches of the inverse Fourier transformation for
a duration of 600 s

moments are extracted. For each discretisation type and cut-off area considered, 500
time series with a duration of 600 s are analysed. The time series of the water-surface
elevation consist of 1,000 wavelets. The procedure to determine the parameters of the
underlying generalized extreme value distribution is the same as described above for the
analysis regarding the impact of disccretisation types and numbers of wavelets. Utilised
areas of 99%, 99.9%, 99.99%, and 99.999% of the power spectral density are analysed,
with the specifications as described above. The parameters and their 95% confidence
intervals are plotted against the relative utilised area of the power spectral density in
Fig. 7.9. The calculated values, marked with a dot, are linearly connected to visualise
the course of the values. Here, only the results for the inverse Fourier transformation
with constant amplitudes are shown. No additional findings are obtained for the inverse
Fourier transformation with random amplitudes.

In comparison, the scale parameter obtained by the equidistant discretisation with
constant amplitudes is underestimated for relative utilised areas of 99.999%. Here, the
duration of the time series is equal to the periodicity of 255.7 s. Similar to the observa-
tion described for the dependency of the number of wavelets, the duration of the time
series may be too short in order to accurately detect the parameters of the generalized
extreme value distribution on the basis of the data set. Otherwise, the parameters of
the underlying generalized extreme value distribution are almost constant with respect
to the utilised area of the power spectral density. Therefore, it can be assumed that
the value of the cut-off areas almost has no notable affect on the underlying general-
ized extreme value distribution and its parameters. As mentioned above, more accurate
determined parameters of the underlying generalized extreme value distribution are to
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Figure 7.9: Shape-, scale-, and location parameters for the generalized extreme value
distribution of maximum bending moments acting on a monopile at seabed
obtained by different integration limits of the power spectral density (PSD)
for a duration of 600 s

be obtained by applying further goodness-of-fit tests or by an increased data set of
extreme values.

7.2.4 Impact on statistical properties of fatigue loads

Especially for the fatigue design of dynamically-loaded structures, it is of importance to
determine the frequency distribution of fatigue loads during a certain period accurately.
Besides the distribution of the fatigue loads, the scattering of the number of fatigue
loads during a certain period as well as the distribution of the very high, rarely occurring
fatigue loads are investigated.

Impact on probabilistic distribution of fatigue loads

The fatigue bending moments acting on the monopile at the seabed are derived from
time series with a duration of 600 s by applying the rainflow-count algorithm. In case
of the equidistant discretisation and that the periodicity is less than 600 s, duration of
the time series is set as the respective periodicity. Both full cycles as well as half cycles
are considered. The occurrence probability of one half cycle is set as half the occurrence
probability of one full cycle.

The fatigue bending moments of each respective time series are analysed for each ap-
proach of the inverse Fourier transformation and number of wavelets. The empirical
cumulative distribution function of each data set is obtained by allocating the fatigue
bending moments sorted in ascending order to the respective non-exceeding probab-
ility. The non-exceeding probability of the n-th data point in the sorted data set is
modelled as Pn = (−0.5 · p1 +∑n

i=1 pi) /
∑N
i=1 pi, with the total number of data points

N and the probability p of the data points sorted in ascending order. Here, the mean
of all cumulative distribution functions derived from the respective time series is eval-
uated for each approach of the inverse Fourier transformation and number of wavelets.
The respective probability density functions are derived from the empirical cumulative
distribution functions by numerical differentiation. Multiplying the probability density
function with the number of occurrences during a certain period yields the frequency
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density. The frequency densities of the fatigue bending moments for a period of 600 s
are shown in Fig. 7.10 for 100, 1,000, and 10,000 wavelets. The frequency densities are
shown for fatigue loads up to 30 · 103 kNm.

Figure 7.10: Frequency densities of fatigue bending moments obtained by different ap-
proaches of the inverse Fourier transformation for numbers of wavelets
N

As can be seen, the frequency densities are almost independent of the number of
wavelets and of the discretisation type. It is noted that no fatigue loads greater than
28 · 103 kNm occur for the equidistant discretisation of the power spectral density with
100 wavelets. Further analysis of the very high, rarely occurring fatigue loads is given
in the following.

Besides the underlying distribution of the fatigue loads, the number of load cycles is
important for the calculation of the fatigue damage. The total numbers of cycles as well
as the number of cycles exceeding the fatigue loads of 10 · 103 kNm and 20 · 103 kNm

occurring within 600 s as well as the 95% confidence intervals are plotted against the
number of wavelets in Fig. 7.11 (from left to right). Both the mean of all time series as
well as 95% confidence intervals are shown.

The courses of the mean number of cycles are almost equal independent of the type of
discretisation and of the determination of amplitudes. The mean number of cycles is
approximately constant for more than or equal to 1,000 wavelets. For the equidistant
discretisation and less than 1,000 wavelets, the courses of the mean number of cycles
increase slightly. For the equienergetic discretisation, the number of cycles exceeding
the fatigue loads of 10 · 103 kNm and 20 · 103 kNm is nearly constant independent of
the number of wavelets. The 95% confidence intervals are almost constant for more than
and equal to 1,000 wavelets independent of the discretisation type and determination
of amplitudes. Considering the equidistant discretisation, the 95% confidence intervals
decrease for less than 500 wavelets. This is due to the fact that the periodicity of the
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Figure 7.11: Number of cycles of fatigue bending moments obtained by different ap-
proaches of the inverse Fourier transformation

equidistant discretisation is less than the duration of the time series of 600 s. It is no-
ticeable that the 95% confidence intervals also decrease for less than 100 wavelets when
applying the equienergetic discretisation with random amplitudes. The 95% confidence
interval is nearly constant for the equienergetic discretisation with constant amplitudes.
In general, applying Rayleigh-distributed amplitudes results in greater scattering of the
number of cycles than constant amplitudes for less than 1,000 wavelets of the inverse
Fourier transformation.

The impact of the utilised area of the power spectral densities on the distribution of
the wave-induced fatigue bending moments is analysed in the following. The fatigue
loads are determined for time series with a duration of 600 s as described above for
the analysis regarding the impact of discretisation types and numbers of wavelets.
All simulated time series of the water-surface elevation consist of 1,000 wavelets. The
frequency densities (left) and the cumulative distribution functions (right) of the fatigue
loads are shown in Fig. 7.12. Discretisations with utilised areas of 99% and 99.999%
of the power spectral density are analysed, with the specifications as described above.
Only the results for the inverse Fourier transformation with constant amplitudes are
shown, since no additional findings are obtained for the inverse Fourier transformation
with random amplitudes.

As already noticed in Fig. 7.10, the frequency densities as well as the cumulative distri-
bution functions for a relative utilised area of 99% (dashed line) are almost identical.
The frequency densities for a relative utilised area of 99.999% (solid line) have notice-
ably greater values for fatigue loads less than 3 · 103 kNm in comparison to a relative
utilised area of 99%. For greater fatigue loads the courses of the frequency densities are
nearly equal. The differences can also be seen at the respective cumulative distribution
functions. Additionally, the cumulative distribution functions in dependence of the dis-
cretisation types notably differ for a relative utilised area of 99.999%. Smaller fatigue
loads are more probable to occur for the equidistant discretisation.
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Figure 7.12: Frequency densities (left) and cumulative distribution functions (right) of
fatigue bending moments obtained by different integration limits of the
power spectral density (PSD) for a duration of 600 s

The total numbers of cycles as well as the number of cycles exceeding the fatigue loads
of 10 · 103 kNm and 20 · 103 kNm occurring within 600 s as well as the 95% confidence
intervals are shown in dependence of the utilised area of the power spectral density
in Fig. 7.13 (from left to right). Only the mean values as well as the 95% confidence
intervals of all time series for the inverse Fourier transformation with constant amp-
litudes are shown, since no additional findings are obtained for the inverse Fourier
transformation with Rayleigh-distributed amplitudes.

Figure 7.13: Number of cycles of fatigue bending moments obtained by different integ-
ration limits of the power spectral density (PSD) for a duration of 600 s

For both discretisation types considered, the numbers of all loads cycles increase with
increasing relative utilised area of the power spectral density. The number of all load
cycles for the equidistant discretisation is significantly greater compared to the equien-
ergetic discretisation, especially for a relative utilised area of 99.999%. Mean numbers
of cycles of approximately 365 for the equidistant discretisation and of approximately
270 for the equienergetic discretisation are observed. This can also be derived from
the findings of Fig. 7.12. The mean number of cycles is nearly constant for fatigue
loads greater 20 · 103 kNm independent of discretisation type and utilised area of the
power spectral density. For fatigue loads greater 10 · 103 kNm, the mean numbers of
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cycles during 600 s slightly increase with increasing relative utilised area of the power
spectral density. It can almost be considered as constant. Here, the number of cycles
increases from ∼ 70 for 99.9% to ∼ 74 for 99.999% of the power spectral density. As
can be seen, the 95% confidence intervals are almost constant for both discretisation
types. Increased 95% confidence intervals are noted for relative utilised areas of the
power spectral density of 99.99% and 99.999%. These values again can be explained
by the periodicities of the respective equidistant discretisation which are less than the
analysed duration of the time series of 600 s.

Impact on probabilistic distribution of the fatigue loads exceeding a
certain threshold

As stated in Kelma and Schaumann (2015), especially the very high but rarely occurring
fatigue loads contribute significantly to the fatigue damage. Hence, the probability
distribution of the fatigue loads exceeding a certain threshold is investigated in the
following. Again, the impact of the number of wavelets and approaches of the inverse
Fourier transformation as well as of different integration limits are analysed separately.

It is assumed that the fatigue bending moments exceeding a certain threshold follow
the generalised Pareto distribution (Eq. (2.31)), referring to Section 2.2.4. Therefore,
the fatigue bending moments of all respective time series with a duration of 600 s are
taken as data sets, which are analysed separately for different discretisation types and
numbers of wavelets. In case that the periodicity is less than 600 s, the duration of the
respective time series is equal to the periodicity. The fatigue loads of all time series
are considered due to the otherwise very small data set of very high fatigue loads. In
case that the fatigue loads of a single time series with a duration of 600 s are analysed,
the number of fatigue loads exceeding the very high thresholds are too small. This
can be seen in Figs. 7.11 and 7.13 for fatigue loads greater 20 · 103 kNm, here with a
mean number of ∼ 5 cycles. As described in Section 2.2.2, the parameters defining the
generalised Pareto distribution are numerically calculated by applying the maximum-
likelihood estimation. The p-value is applied to test the hypothesis whether the data
sets fit the generalised Pareto distribution with the calculated parameters.

The shape parameters (top) and the scale parameters (middle), which are numerically
calculated, as well as the respective 95% confidence intervals are plotted against the
threshold in Fig. 7.14 for 100, 1,000, and 10,000 wavelets. Additionally, the p-values are
plotted (bottom). The mean values of the 95%-, 99%-, and 99.9%-quantiles are shown
for both discretisation types. Only the values for the inverse Fourier transformation
with random amplitudes are shown, since no additional findings are obtained for the
inverse Fourier transformation with constant amplitudes.

As can be seen, the courses of the shape- and scale parameters are very similar inde-
pendent of the discretisation type and the number of wavelets, with the exception of
the equidistant discretisation with 100 wavelets. The mean of the shape parameter has
a value of approximately −0.15 for thresholds between 15 · 103 kNm and 28 · 103 kNm.
The inclinations of the linear mean courses of the scale parameter have approximately
the same value as the respective shape parameters. Both the facts that the shape para-
meter is constant as well as that the course of the scale parameter is equal to the shape
parameter are in very good accordance to the theoretical requirements for fitting data
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Figure 7.14: Parameters for the generalised Pareto distribution of the fatigue bending
moments and the respective p-values obtained by different approaches of
the inverse Fourier transformation for a duration of 600 s

to the generalised Pareto distribution, as explained in e.g. Embrechts et al. (1997). The
parameters for thresholds greater 28 · 103 kNm do not follow the previous courses and
have obviously greater 95% confidence intervals, which is due to the very limited data
set for great thresholds. The courses of the p-value exceed the typical significance level
of 0.05 for almost each threshold. This is especially noted for discretisations with 1,000
and 10,000 wavelets. Hence, the hypothesis that the fatigue bending moments exceed-
ing a certain threshold can be described by a generalised Pareto distribution with the
respective parameters is not to reject.

The parameters determined for the equidistant discretisation with 100 wavelets differ
noticeably from the other respective courses. The 95% confidence intervals are also
greater in comparison which may be due to the reduced duration of the times series with
the value of the periodicity. The mean shape parameter is not constant in dependence
of the threshold, and the inclination of the scale parameter is not equal to the respective
shape parameter. Both aspects contradict to the theory regarding the generalised Pareto
distribution (Embrechts et al., 1997). Hence, it is doubtful to assume a generalised
Pareto distribution for the fatigue bending moments exceeding a certain threshold
obtained by the equidistant discretisation with 100 wavelets, even though the course of
the p-value suggests not to reject this hypothesis.

As described above for the analysis regarding the impact of discretisation types and
numbers of wavelets, the parameters of the underlying generalised Pareto distribution
are determined numerically for different utilised areas of the power spectral density by
applying the maximum-likelihood estimation. The simulated time series of the water-
surface elevation consist of 1,000 wavelets. Again, the duration of the time series is the
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minimum of their periodicity and 600 s. The numerically determined shape parameter
(left) and the scale parameter (right) are plotted against the threshold in Fig. 7.15 for
relative utilised areas of 99% and 99.999%. Only the values for the discretisation of the
power spectral density with random amplitudes are shown, since no additional findings
are obtained for the inverse Fourier transformation with constant amplitudes.

Figure 7.15: Parameters for the generalised Pareto distribution of the fatigue bending
moments obtained by different integration limits of the power spectral
density (PSD) for a duration of 600 s

The courses of the shape- and scale parameters are very similar independent of the
discretisation type and number of wavelets for thresholds between 15 · 103 kNm and
approximately 28 · 103 kNm. The inclinations of the linear mean courses of the scale
parameters have approximately the same value as the respective shape parameters
which are nearly constant with an approximate value −0.15. This is in accordance
to the theoretical requirements for fitting data to the generalised Pareto distribution
(Embrechts et al., 1997). The parameters for thresholds greater 28 · 103 kNm do not
follow the previous courses, which is due to the very limited data set for great thresholds.
The courses of the p-value, which are not shown here, exceed the typical significance
level of 0.05 for each threshold.

7.3 Findings

Only limited information on how to carry out inverse Fourier transformation is provided
in standards and guidelines. DNV-RP-C205 (2019) recommends at least 1,000 wavelets
to be superposed.

Within the extensive study, different approaches for the discretisation of power spectral
densities are analysed. Inter alia different numbers of wavelets are considered. The
respective time series are investigated regarding different properties. Besides periodicity
and Gaussianity of the time series, the extreme loads and fatigue loads occurring within
the time series are evaluated. It can be concluded that the time series must not be
periodic. Considering the results presented in Chapter 5 and Chapter 6, the spectral
moments which are decisive for the estimation of the distribution functions for extreme
loads and fatigue loads shall be represented well by the simulated time series.

For structural-dynamic load simulations, both the input power spectral densities, such
as wave-energy spectra, as well as the power spectral densities of the expected response
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shall be represented appropriately by the discretised spectra. Otherwise, inaccurate
spectral moments may lead to erroneous results. This suggestion is in line with the
proposal by Kleineidam (2005) who states that the power spectral density is discretised
finer within the domain close to the Eigen frequencies of the structure in comparison
to the power spectral density outside of this domain.



8 Studies on analyses of load
simulations for offshore wind turbines

Within this chapter, two studies are carried out to evaluate certain aspects of the
load simulations. Different methods to determine spectral moments from time series,
as they are described in Section 2.1.2, are analysed, and their impact on extreme loads
and fatigue loads are evaluated. Additionally, the effect of currents within sea states
on fatigue loads is investigated. The impact of currents on the wave-induced loads and
their respective power spectral densities is shown in theory in Section 3.2.5.

The studies are carried out for an offshore wind turbine with a rated power capacity of
5MW .

8.1 Spectral properties from load simulations in time
domain

Within the following study, the methods to determine the spectral properties of signals
as well as their effect on the fatigue loads and on the extreme loads are investigated.
These results are compared to the respective values obtained from time series.

Load time series for an offshore wind turbine during production, which is to be simulated
for the design load case DLC 1.2, referring to IEC 61400-3-1 (2019) and DNV-ST-
0437 (2016), are analysed. Only one load scenario is considered, which has the same
characteristic parameters for the wind field and the sea state. Several time series of this
load scenario with different realisations of wind fields and of sea states are simulated
such that characteristic values within the time series, such as extreme values, can be
considered as independent and identically distributed. Hence, a statistical analysis can
be carried out.

8.1.1 Load simulations

The loads acting on an offshore wind turbine during production are simulated in time
domain. The offshore wind turbine consists of the NREL 5MW wind turbine (Jonkman
et al., 2009) and of the jacket substructure defined within the OC4 project (Vorpahl
et al., 2011). The foundation piles are modelled as rigid at mudline such that no soil-
structure interaction is considered. The water depth is 50m.

Different seeds of turbulent wind fields with mean wind velocity of 12m/s and a tur-
bulence intensity of 14% at hub height of the offshore wind turbine are applied. The
exponential wind shear factor is 0.14. The irregular sea state follows a JONSWAP spec-
trum according to Eq. (3.17) with Hs = 2.5m, Tp = 7.5 s, and γ = 3.3. This set-up is
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previously used for a study on probabilistic fatigue design carried out by Kelma and
Schaumann (2015).

Fully-coupled simulations of the offshore wind turbine with jacket substructure are
carried out. The wind-induced loads are computed by using the widely-used wind-
energy simulation program Flex5, which is coupled with the finite-element software
Poseidon (Böker, 2010). Fifty-two random time series with different wind seeds and
irregular sea states are simulated, each with a duration of 3,600 s.

The stresses at upper brace of the tubular K-joint (I) are analysed in the study, as it is
marked at the jacket substructure in Fig. 8.1 (left). The structural stress approach is
applied for calculation of the stresses acting at the K-joints of the jacket structure. The
stress due to the branched geometry of the tubular K-joints is given by multiplying the
occurring nominal stress with stress concentration factors. Stress concentration factors
for crown and saddle according to Efthymiou (1988) are calculated for each brace of the
considered K-joints. The positions of the stress concentration factors are visualised in
Fig. 8.1 (right). The stresses at the bottom crown are exemplarily investigated within
the study.

Figure 8.1: Jacket substructure with tubular K-joints analysed (left), tubular K-joint
(right)

8.1.2 Gaussianity of the signal

It is checked by means of Q-Q plots whether the analysed time series follow a Gaussian
distribution. The Q-Q plots of the time series are shown in Fig. 8.2. The original time
series (left) as well as the time series transferred to Gaussian signal as described in
Section 5.2.3 (right) are analysed. The time series are shown as zero-mean signal. The
respective 1%-, 5%-, 95%-, and 99%-quantiles are marked as well.

One can observe that the original signal shown in Fig. 8.2 (left) does not follow the
assumed Gaussian distribution. The skewness of the original signals is greater than
zero. After transferring the signal to a Gaussian signal as described in Section 5.2.3,
the Q-Q plot shows a very good agreement between simulated and theoretical signals
(right). The skewness and the kurtosis of the signal transferred to a Gaussian signal
have values of close to zero and 3, respectively, which are the theoretical values for a
Gaussian distribution. For both Q-Q plots, the quantiles lie close to each other. Below
the 1%-quantiles and above the 99%-quantiles, the curves for the different random time
series differ significantly. This is due to the very high and very low values which occur
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Figure 8.2: Q-Q plots of stresses at the analysed tubular K-joint, assuming a Gaussian
distribution: original data (left) as well as transferred to Gaussian signal
(right)

rarely and are subject to scatter. It is noticed that maximum values of each time series
are reduced for the signals transferred to Gaussian signals in comparison to the original
signals. The minimum values are almost the same for both signals. This is equivalent to
the positive value of the skewness, which indicates that the right tail of the probability
density function of the signal is stronger. The skewness of the original signal has an
average value of ∼ 0.16 and is greater zero for all time series. The kurtosis of the original
signal is greater than 3 for all 52 time series, with an average value of ∼ 3.06.

The results for the extreme values and the fatigue loads are separately presented for
signals transferred to Gaussian signals in Section 8.1.5 and Section 8.1.6, respectively.
In order to evaluate the impact of this transfer on the respective loads, the original
signals and the signals transferred to Gaussian signals are compared in Fig. 8.3 for
all time series. Both the extremes values (left) as well as the damage-equivalent load
(right) are shown. The damage-equivalent loads are calculated according to Eq. (6.5)
for a slope of the SN curve of m = 4 and with a reference number of load cycles equal
to number of load cycles within the analysed time series.

As already stated above, the extreme loads of the original signal are greater than
those of the Gaussian signal for the analysed tubular K-joint. The fatigue loads of the
original signal are also slightly greater than those of the Gaussian signal. It is generally
concluded that the transfer of original, non-Gaussian signals to Gaussian signals and
vice versa after the analysis in frequency domain are to be carried out in order to
determine the distribution functions of extreme loads and of fatigue loads on the basis
of power spectral densities accurately.
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Figure 8.3: Comparison of spectral parameters α1 and α2 as well as of the resulting
damage-equivalent load, obtained with different approaches, for the ana-
lysed tubular K-joint

8.1.3 Power spectral densities

The power spectral densities are determined via Fourier transformation as described in
Section 2.1.1. The power spectral densities for all time series transferred to Gaussian
signals are shown in logarithmic scale in Fig. 8.4. Additionally, the average of all power
spectral densitiess as well as the 5%- and 95%-quantiles are shown. The general charac-
teristics of the power spectral densities such as the general course of the power spectral
densities and the locations of peaks are comparable for all time series. It is observed
that the power spectral densities for all 52 time series differ locally. These differences
are also notable in the findings derived in the following.

Figure 8.4: Power spectral densities (PSD) of all time series transferred to Gaussian
signals for the analysed tubular K-joint
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8.1.4 Spectral properties

Special attention is given to the calculation of spectral moments due to their import-
ance for the determination of extreme loads and of fatigue loads. As described in Sec-
tion 2.1.1, different approaches are identified for the calculation of spectral moments.
They can either be determined on the basis of power spectral densities or amplitude
spectra, referring to Eq. (2.7) and Eq. (2.8), or on the basis of the derivatives of the sig-
nals. For the latter approach, spectral moments of even order are calculated by means
of Eq. (2.9), and spectral moments of odd order are determined via finding the absolute
maximum value of Eq. (2.21). The respective zero-up-crossing periods and the peak-to-
peak periods are calculated according to Eq. (2.11) and Eq. (2.12), respectively. Only
the signals transferred to a Gaussian signal are considered in the analysis, since the
respective distribution functions of extreme loads and of fatigue loads are based on
Gaussian signals, referring to Section 5.2.1 and Section 6.2.1.

The zeroth-, first-, second-, and fourth-order spectral moments for the different ap-
proaches are shown in Fig. 8.5. Additionally, the zero-up-crossing periods and the peak-
to-peak periods on the basis of the spectral moments are plotted against the respective
values which are extracted from the time series via calculating the average time between
consecutive zero-up-crossings and via calculating the average time between consecutive
local maxima, respectively.

Figure 8.5: Comparison of spectral moments mn of order n as well as of the zero-up-
crossing periods Tz and the peak-to-peak periods Tc, obtained by means of
different approaches, for the analysed tubular K-joint
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It is noticeable for all spectral moments that the values are subject of scattering. For
example, 90% of the zeroth-order spectral moments lie within the range of ∼ −5.9% to
∼ +5.8% relative to the average value. This corresponds to a range for the standard
deviations of ∼ −3.0% to ∼ +2.9% relative to the average value.

As for the zeroth-order spectral moment, the values determined from the power spec-
tral densities match the variances of the time series. The second-order spectral moment
determined from power spectral densities overestimate the second-order spectral mo-
ment calculated on the basis of the first derivative of the signal by ∼ 2%. The fourth-
order spectral moment determined from power spectral densities scatter extensively.
The values exceed the fourth-order spectral moment calculated on the basis of the
second derivative of the signal significantly. The scattering of the fourth-order spectral
moments determined from power spectral densities is due to the differences between
the single power spectral densities of the signals shown in Fig. 8.4. The power spec-
tral densities of very high wave frequencies contribute significantly to the fourth-order
spectral moments, referring to Eq. (2.7), where the wave frequency to the power of four
is evaluated. This effect is minor for spectral moments of lower order, but it is also
noticeable for the second-order spectral moments. Following this argumentation, it is
to be expected that first-order spectral moments determined from the power spectral
densities match the theoretical first-order spectral moment very well. In comparison,
the first-order spectral moments determined via finding the absolute maximum value of
Eq. (2.21) underestimate the first-order spectral moments determined from the power
spectral densities significantly by ∼ 35%. It is to be concluded that the approach to de-
termine spectral moments of odd order by means of Eq. (2.21) might cause misleading
and underestimated values.

Referring to Fig. 8.5 (bottom, middle and right), both the zero-up-crossing periods and
the peak-to-peak periods extracted from the time series are subject of scatter. They
differ from the respective average value by approximately ±5%. The zero-up-crossing
periods determined by means of spectral moments according to Eq. (2.11) match the
values from the time series very well. The zero-up-crossing periods on the basis of power
spectral densities (grey circles) slightly underestimate the values from the time series
due to the small overestimation of the second-order spectral moment. As for the peak-
to-peak periods, the values on the basis of power spectral densities (grey circles) scatter
significantly. The values constantly underestimate the values extracted from the time
series. This is also due to the scattering and overestimation of the fourth-order spectral
moments, which is used for the calculation of the peak-to-peak period, referring to
Eq. (2.12). The peak-to-peak periods determined on the basis of the derivatives of the
signals (grey dots) match the values from the time series very well.

It is concluded that the calculation of spectral moments of even order on the basis of
the derivatives of the signals leads to accurate results. The first-order spectral moments
are underestimated to an unknown degree in case that they are determined by means of
finding the absolute maximum value of Eq. (2.21). The determination of the first-order
spectral moments on the basis of power spectral densities yields more accurate values.
However, spectral moments of higher order determined on the basis of power spectral
densities are overestimated, and they are subject of increased scatter.
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8.1.5 Distribution functions of extreme loads

The distribution functions of extreme loads based on power spectral densities depend
on the first-order spectral moment and on the spectral width parameter, referring to
Section 5.2. The spectral moments determined by means of different approaches are
already presented in Fig. 8.5.

In Fig. 8.6 (left), the spectral width parameters which are calculated on the basis of
spectral moments are compared to the values derived from the peak-to-peak periods
and zero-up-crossing periods derived from the time series, referring to Section 2.1.2.
The spectral width parameters based on spectral moments are determined from power
spectral densities (circles) as well as from the derivatives of the time series (dots).
Based on the spectral width parameter, the distribution functions of extreme loads are
obtained. The mean values and standard deviations of the distribution functions of
extreme values derived for each time series are shown in Fig. 8.6 (right). Additionally,
the mean value and the standard deviation of the extreme values of all 52 time series
are marked (black dot). The extreme values are determined for the zero-mean signal
transferred to Gaussian signals for the analysed tubular K-joint. Only the results for
maximum values are shown here. The analysis of the minimum values can be carried
out with the same approach as for the maximum values.

Figure 8.6: Comparison of (left) spectral width parameters ε as well as of (right) the
resulting mean values and standard deviations of the distribution functions
of extreme values, obtained with different approaches, for the analysed tu-
bular K-joint

Very high values for the spectral width parameters are observed for all analysed time
series, here with an average value of 0.9613. Approximately 90% of the simulated values
lie within the range of 0.9579 to 0.9645. The spectral width parameters based on spectral
moments calculated from derivatives are almost constant. They are considerably linear
to the values obtained from the time series. The spectral width parameters based on
spectral moments calculated from power spectral densities are greater than the values
from the time series, and they scatter significantly. This results from the scattering of
the fourth-order spectral moment, as described in Section 8.1.4, on which the spectral
width parameter depends. The values lie in the range of 0.9640 to 0.9850.
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As can be seen in Fig. 8.6 (right), almost all mean values calculated on the basis of
the spectral moments are greater than the mean value of the time series. The standard
deviations are also greater than the respective value of the time series. In general, an
approximately linear relation between mean values and standard deviations is observed
for both approaches to determine the spectral moments. The ranges of the mean ex-
treme values are very similar for both approaches to determine the spectral moments.
The standard deviations of extreme values based on spectral moments calculated from
power spectral densities have a greater range in comparison to the standard deviations
of extreme values based on spectral moments calculated from derivatives. This is due
to the scattering of the spectral width parameter.

The distribution function of the extreme values are further analysed by means of Q-Q
plots. The Q-Q plots of the extreme values are shown in Fig. 8.7. The extremes derived
from the 52 time series are plotted against all respective quantiles obtained from the
distribution functions of extreme values which are determined on the basis of spectral
moments calculated from the derivatives of the time series. The respective mean as well
as the 10%- and 90%-quantiles of the distribution functions of extreme values are also
shown for reasons of clarity.

Figure 8.7: Q-Q plot for the distribution functions of extreme values determined on the
basis of spectral moments calculated from the derivatives for the analysed
tubular K-joint

In general, the Q-Q plots can be considered as linear which confirms that the derived
type of distribution function of extreme values is applicable. However, the parameters
of the distribution function are mostly overestimated, here shown for the mean value
and standard deviation. Almost all of the 52 Q-Q plots for the distribution functions
of extreme values determined on the basis of spectral moments calculated from the
derivatives lie below the bisection line. This is especially true for the mean curve of
the Q-Q plots. The slopes of the Q-Q plots are also smaller than unity, which is the
slope of the bisection line. Hence, scattering of the extremes determined on the basis
of spectral moments is greater, which is equivalent to increased standard deviations.
These findings confirm the conclusion from Fig. 8.6 (right) that the mean values and
the standard deviations of extreme values overestimate the respective values obtained
from simulated time series.
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It is already noted in Section 5.2.2 that extreme values in signals derived via inverse
Fourier transformation are less than the values obtained from the theoretical distribu-
tion function of extreme values. This is also concluded here from the findings shown
above.

8.1.6 Distribution functions of fatigue loads

As described in Section 6.2.1, the different models of distribution functions of fatigue
loads based on power spectral densities depend on several spectral moments or on spec-
tral parameters α1 and α2, referring to Eq. (2.14), respectively. The spectral moments
can be determined by means of different approaches, referring to Section 8.1.4. Due to
the described scattering of the values of the spectral moments, the spectral parameters
are also subject of scattering.

The spectral parameters α1 and α2 are compared to each other in Fig. 8.8 (left and
middle). The spectral parameters compared to each other are calculated on the basis
of the spectral moments determined from power spectral densities, on the basis of
the spectral moments calculated on the basis of derivatives, as well as on the basis
of spectral moments of even order calculated on the basis of derivatives and the first-
order spectral moment determined from power spectral densities. The latter is the
optimised approach as suggested in Section 8.1.4. The spectral parameter α2 can also
be calculated as ratio of peak-to-peak period to zero-up-crossing period. The resulting
damage-equivalent loads for a slope of the SN curve of m = 4 are shown in Fig. 8.8
(right). The damage-equivalent loads according to the newly-developed approach to
determine the distribution functions of fatigue loads based on power spectral densities,
referring to Eq. (6.12), are compared to the damage-equivalent loads extracted from
the time series. The damage-equivalent loads are calculated according to Eq. (6.5)
with a reference number of load cycles equal to the number of load cycles within the
analysed time series. Just as for the spectral parameters, the damage-equivalent loads
are determined on the basis of the spectral moments calculated from power spectral
densities, on the basis of the spectral moments calculated on the basis of derivatives,
as well as on the basis of spectral moments of even order calculated on the basis
of derivatives and the first-order spectral moment determined from power spectral
densities. Only the results of the signals transferred to a Gaussian signal are presented.

The spectral parameters α1 based on spectral moments calculated from power spectral
densities and those for the optimised approach agree very well. The spectral parameters
α1 based on spectral moments calculated from derivatives underestimate the respective
values based on spectral moments calculated from power spectral densities significantly.
This is due to the underestimation of the first-order spectral moment which is calcu-
lated by means of Eq. (2.9). This effect is already reported in Section 8.1.4. The spectral
parameters α2 on the basis of the peak-to-peak periods and the zero-up-crossing peri-
ods is almost constant for all time series. The respective spectral parameters based on
spectral moments from derivatives match those values from the time series very well.
The spectral parameters α2 for the optimised approach are not shown here, since they
match the values based on spectral moments from derivatives. The spectral parameters
α2 based on spectral moments obtained from power spectral densities scatter signific-
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Figure 8.8: Comparison of spectral parameters α1 and α2 as well as of the resulting
damage-equivalent load (DEL), obtained with different approaches, for the
analysed tubular K-joint

antly due to the scattering of the fourth-order spectral moments, which is explained in
Section 8.1.4.

The damage-equivalent loads of the simulated time series have an average value of
31.26MPa, and 90% of all damage-equivalent loads lie within the range of 30.37MPa

to 32.13MPa. The damage-equivalent loads determined on the basis of spectral mo-
ments calculated from power spectral densities are less than the respective values of the
simulated time series, and they scatter noticeably. This is due to the scattering of the
fourth-order spectral moment and of the spectral parameter α2. The damage-equivalent
loads determined on the basis of spectral moments calculated from derivatives under-
estimate the damage-equivalent loads of the simulated time series significantly, here by
∼ 25%. The reason for this deviation is the underestimation of the first-order spectral
moment and hence of the spectral parameter α1. Both damage-equivalent loads are ap-
proximately proportional to each other. The damage-equivalent loads for the optimised
approach match the damage-equivalent loads of the simulated time series very well.
They slightly overestimate the simulated damage-equivalent loads, here by ∼ 1%. Ac-
cording to Fig. 6.18, a very small underestimation of the damage-equivalent load of the
simulated time series is expected, but a greater damage-equivalent load according to
the newly-developed approach to determine the distribution functions of fatigue loads
based on power spectral densities is observed here. One reason may be small deviations
for the calculated spectral parameters. Additionally, it is observed that the simulated
maximum values and the very high peak values are less than the values which are the-
oretically expected, as already noted for the extreme values, referring to Section 8.1.5.
Hence, the ranges of the very high fatigue loads are also underestimated which causes
a reduction of the damage-equivalent loads of the simulated time series.

8.1.7 Conclusion

Referring to Section 2.1.2, spectral moments can be obtained from time series. However,
some difficulties exist for the calculation. Spectral moments of odd order calculated
on the basis of derivatives are underestimated, and spectral moments of high order
determined from power spectral densities are subject of scatter. In general, the resulting
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extreme loads and fatigue loads are slightly greater than the values of the time series.
Reasons for the overestimation may be due to the calculation of the spectral moments
and in particular due to the general overestimation of peak values by the models in
comparison to simulated peak values within time series.

Scattering of the fatigue loads, as it is described by Zwick and Muskulus (2015) for
time-domain simulations with a duration of 600 s, is also observed for the fatigue loads
based on spectral moments. The relation between the fatigue loads obtained from time
series and from spectral moments is almost linear. In general, increasing the lengths
of the time series results in less scattering values of the spectral moments and thus in
more constant characteristics of the extreme loads and fatigue loads.

8.2 Impact of currents on the simulation of wave-induced
loads

As noted in Section 4.2.3, the simulations of wave-induced loads are carried out without
considering any current for the fatigue design of offshore wind turbines (IEC 61400-3-1,
2019; DNV-ST-0437, 2016). However, currents have a significant impact on the drag
term of Morison’s equation, referring to Eq. (3.19), and on the power spectral densities
of the drag term of Morison’s equation, as it is described to Section 3.2.5. The power
spectral density of the drag term can be modelled as superposition of several power
spectral densities which depend on the original power spectral density of the water-
particle velocity. Due to currents, the coefficients of the superposed power spectral
densities vary such that the energy density at different wave frequencies are of different
magnitude. These energy densities may be amplified due to the structural-dynamic
behaviour of the structure.

Within the following study, wave-load simulations for an offshore wind turbine with
jacket substructure are carried out for different current velocities. The resulting time
series are analysed with respect to their contribution to fatigue damage.

8.2.1 Load simulations

The offshore wind turbine as modelled for the study on spectral properties in Section 8.1
is also applied for this study, consisting of the NREL 5 MW wind turbine (Jonkman
et al., 2009) and of the jacket substructure described by Vorpahl et al. (2011). The first
bending Eigen frequency of the modelled offshore wind turbine has a value of 0.3230Hz.
Both static and structural-dynamic simulations of the offshore wind turbine are carried
with the finite-element software Poseidon (Böker, 2010). Rayleigh damping with damp-
ing of 1% at frequencies of 0.30Hz and 0.20Hz is considered for the structural-dynamic
simulations.

Only the loadings caused by the sea state are simulated to emphasize the impact of the
currents. A JONSWAP spectrum according to Eq. (3.17) withHs = 1.75m, Tp = 6.19 s,
and γ = 3.3 is applied for modelling of the irregular sea state. The peak period is chosen
such that the peak frequency with a value of 0.1615Hz is half of the first bending Eigen
frequency. Since the second-order term of the drag term of Morison’s equation has a
local maximum close to twice of the peak period, referring to Fig. 3.8, it is expected
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that the amplification at the first bending Eigen frequency causes increased loads during
structural-dynamic load simulations in case of currents. The value of significant wave
height is selected from the Hs-Tp scatter table given in Appendix A1 as the mean of
the class which has the highest occurrence frequency for the class of the selected peak
period. Current velocities of zero and 1m/s are considered in the load simulation. The
hydrodynamic coefficients for Morison’s equation are set as Cd = 1.0 and Cm = 2.0. Six
different realisations of the sea states are simulated.

The stresses at lower brace of the tubular K-joint (II) are analysed in the study, as
marked in Fig. 8.1 (left). As already described for the previous study in Section 8.1,
the structural stress approach is applied for calculation of the stresses acting at the
K-joints of the jacket structure. Here, the stresses at the bottom crown are exemplarily
investigated within the study.

8.2.2 Impact of currents on power spectral densities of loads

Power spectral densities of the stresses at the considered tubular K-joint are derived via
Fourier transformation of the simulated time series. The power spectral densities for
the static load simulations are shown in Fig. 8.9. They are plotted for current velocities
with values of zero (grey lines) and of 1.0m/s (black lines) and for the total wave-
induced stresses (dashed lines) and for the drag term of Morison’s equation only (solid
lines). The first bending Eigen frequency is marked.

Figure 8.9: Power spectral densities of the wave-induced stresses at the analysed tubular
K-joint for different current velocities, obtained from static load simulations

It is generally noted that the energy of the power spectral density for the drag term
of Morison’s equation including current is significantly greater in comparison to the
power spectral density without current. Referring to Fig. 3.8, the different n-fold con-
volutions are identified in the power spectral densities for the drag term of Morison’s
equation. For a current velocity of zero, the power spectral density of the horizontal
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water-particle velocity with its peak close to the peak frequency and the 3-fold convo-
lution with its peak close to trice of the peak frequency can clearly be detected. As for
the power spectral density for the drag term of Morison’s equation including current
velocity of 1.0m/s, the power spectral density of the horizontal water-particle velocity
is still dominant. The 3-fold convolution is almost distinguished because its coefficient
according to Eq. (3.21) and Fig. 3.9 tends to zero for increasing current velocities. The
2-fold convolution with its peaks close to zero and close to half of the peak frequency is
clearly notable, since its coefficient increases for increasing current velocities. Its coef-
ficient is zero for a current velocity of zero. Hence, it is not observed within the power
spectral density for a current velocity of zero.

The impact of the current is also observed for the total wave-induced stresses. In com-
parison to the power spectral density with no current, the impact of the 2-fold convo-
lution of the power spectral densities for the drag term on the power spectral density
is noticed for frequencies in the range of zero to 0.1Hz and in the range of 0.28Hz
to 0.35Hz where the first bending Eigen frequency lies. Besides from these ranges
mentioned, the curves of the power spectral densities for current velocities of zero and
1.0m/s are almost identical.

The power spectral densities for the structural-dynamic load simulations are shown
in Fig. 8.9 as solid lines. Additionally, the power spectral densities for the structural-
dynamic load simulations (dashed lines) are shown. They are plotted for current velo-
cities with values of zero (grey line) and of 1.0m/s (black line). Again, the first bending
Eigen frequency is marked.

Since the power spectral density close to the first bending Eigen frequency is increased
due to the existence of current, a significant increase at the first bending Eigen frequency
is seen for the structural-dynamic load simulations.

Figure 8.10: Power spectral densities of the wave-induced stresses at the analysed tu-
bular K-joint for different current velocities, obtained from structural-
dynamic load simulations
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Almost no increase at the first bending Eigen frequency of the power spectral density
for the structural-dynamic load simulation is observed for no currents in comparison to
the static load simulation. As for the power spectral density for the structural-dynamic
load simulation, the power spectral density close to the first bending Eigen frequency
is significantly greater at the first bending Eigen frequency due to the dynamic ampli-
fication.

8.2.3 Impact of currents on fatigue loads

Due to the quadratic term of the water-particle velocity within the drag term of Mor-
ison’s equation, the range of fatigue loads is greater for increased current velocities.
Hence, greater damage-equivalent loads and greater fatigue damage occur. The effect
of currents on the fatigue loads is analysed shortly below for both static and structural-
dynamic load simulations.

The zeroth-order spectral moments as well as the damage-equivalent loads for the
analysed tubular K-joint are listed in Tbl. 8.1 for current velocities with values of zero
and of 1.0m/s. The results for both static and structural-dynamic load simulations are
shown.

Table 8.1: Impact of currents on the zeroth-order spectral moments and on the damage-
equivalent loads (DEL) for the analysed tubular K-joint for static and
structural-dynamic load simulations

Simulation parameters from time series
c [m/s] Cd Cm m0 [MP a2] DEL [MP a]

st
at
ic

0.0 0.0 2.0 0.0689 4.3840
0.0 1.0 2.0 0.0701 4.4361

1.0 1.0 2.0 0.0852 4.8790
+21.6%a +10.0%a

dy
na

m
ic 0.0 0.0 2.0 0.0699 4.4410

0.0 1.0 2.0 0.0711 4.4994

1.0 1.0 2.0 0.0868 4.9655
+22.0%a +10.4%a

a Relative to no current, Cd = 1.0, and Cm = 2.0

Besides the zeroth-order spectral moments as well as the damage-equivalent loads for
the total wave-induced loads, the respective values for only the inertia term of Mor-
ison’s equation are stated. Both values almost match the values for the total wave-
induced loads. The ratios are greater 98% for the zeroth-order spectral moments and
the damage-equivalent load as well as for the static and structural-dynamic simulation.
Hence, the inertia term of Morison’s equation is dominant for the total wave-induced
stresses. This is in line with the findings stated in Section 3.2.6.

Considering a current velocity of 1.0m/s for the analysed set-up instead of no cur-
rent, the zeroth-order spectral moments are increased by more than 20%. The damage-
equivalent loads are increased by more than 10%. This is found for both the static and
structural-dynamic simulations. This increase of the damage-equivalent load may con-
tribute significantly to the fatigue damage for the selected sea state without considered
the wind-induced loads simultaneously acting on the offshore wind turbine.
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The comparison of the static and structural-dynamic simulations shows only small
differences for the zeroth-order spectral moments as well as the damage-equivalent
loads. Even in case of simulations with high damping values, which may be modelled as
static process, the increase of the damage-equivalent load due to currents is significant
for the selected set-ups of the structural model and the sea state.

8.2.4 Conclusion

Currents have a significant impact on the wave-induced fatigue loads. An increase of the
damage-equivalent load of 10% is calculated for the analysed tubular K-joint for both
static and structural-dynamic load simulations. Approximately the same percentages
of increase are observed for other structural details of the analysed jacket substructure.

The analyses are carried out for offshore wind turbine with a rated power capacity of
5MW . For offshore wind turbines of the new generation with rated power capacities of
at least 15MW , the Eigen frequencies are lower such that greater peak frequencies of
the sea states, and their multiples match these Eigen frequencies. Considering theHs-Tp
scatter table, referring to Appendix A1, higher significant wave heights occur for these
peak periods. These sea states contain more energy, which is approximately proportional
to the squared significant wave height. Hence, they cause greater wave-induced loads.
This also leads to greater damage-equivalent loads when not considering the occurrence
probability of the respective sea states. However, the occurrence frequencies of these
more severe sea states are usually smaller which causes a reduction of the total damage-
equivalent load. In combination, no exclusive statement can be made regarding the
impact on the fatigue loads for offshore wind turbines with greater rated power capacity,
but this is to be analysed for each specific offshore wind turbine.





9 Summary and outlook

9.1 Summary

Offshore wind energy is one of the cornerstones in order to meet the goals to produce
climate-neutral energy. Therefore, the further installation of offshore wind turbines is
decisive in order to meet this aim.

The structural design of offshore wind turbines shall be safe with respect to standard
and guidelines as well as economic. It is usually carried out by means of the semi-
probabilistic safety concept. Here, partial factors are applied on characteristic values
of the resistance of the structural components and of the effects of actions in order
to consider scattering of these values. The level of safety is implicitly included in the
characteristic values and the partial factors. Contrarily, the probabilistic safety concept
considers the distribution functions of resistance and of the effects of actions. No par-
tial factors are applied. A great number of evaluations of these distribution functions
is required to calculate the probability of failure, which is the probability that the
scattering effects of actions exceed the scattering resistance of the structural compon-
ents. Probabilistic design methods are considered to provide a more economic design
in comparison to the semi-probabilistic safety concept.

Therefore, probabilistic models are required which describe the structural model and its
structural-dynamic variations, the long-term weather conditions, as well as the short-
term statistics of the loads which are to occur during short windows of constant envir-
onmental conditions. The load simulations are to be carried out for constant structural
properties and constant weather conditions. Load simulation can either be carried out
in time- or frequency domain. Different aspects of the structural-dynamic changes over
the lifetime of offshore wind turbines are described. Exemplarily, these are due to
marine growth, soil and scour development, corrosion, and deterioration of structural
components due to the harsh condition offshore. Long-term weather conditions, which
are based on measurements at the research platform FINO1, are also summarised. In
general, they form the basis for the weather conditions to be simulated. Here, the sea-
sonal dependence as well as the data availability are shortly analysed for the mean wind
velocity and the decisive sea-state parameters, namely significant wave height and peak
period.

Several thousands of load simulation in time domain are already required for the
structural design of offshore wind turbines when applying the semi-probabilistic safety
concept. Even more time-domain simulations are necessary for the probabilistic safety
concept in order to determine the probability of failure accurately. For example, es-
pecially the derivation of the distribution function of extreme loads is very time-
consuming. Since only one extreme value from a time series can be used, a sufficient
number of random time-domain simulations is essential to generate a data set of ex-
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treme values for the derivation of the respective distribution function. In comparison to
time-domain simulations, the computational effort to carry out simulations in frequency
domain is reduced significantly. Additionally, only one simulation in frequency domain
is required in order to determine the distribution function of extreme loads and the
fatigue loads. However, non-linearities within the equations of motions to be solved to
describe the structural-response of an offshore wind turbine cannot be described well by
the simulation in frequency domain. These non-linearities are due to temporarily chan-
ging structural properties of the structural model of the offshore wind turbine, which
is i.a. caused by the controller of the rotor-nacelle assembly. Hence, frequency-domain
simulations are only applied for the early design stages of an offshore-wind project for an
approximate load estimation. Besides these limitations, frequency-domain simulations
would be very beneficial for the structural design of offshore wind turbines, especially
by means of the probabilistic safety concept.

Advanced approaches are introduced within this thesis to determine the distribution
functions of extreme loads as well as of fatigue loads on the basis of frequency-domain
analysis. These distribution functions only depend on a few properties of the power
spectral densities of the structural response. Additionally, the potentially-existing non-
Gaussianity of the signal is considered. The respective distribution function of extreme
loads is based on theoretical background and is well established. Different empirical
approaches to determine the distribution function of fatigue loads in frequency domain
exist. The already existing approaches are defined for a limited range of possible values
of the relevant spectral properties. Hence, a new approach is developed within this
thesis which covers the domains of the relevant spectral properties. Since especially
the high, rarely occurring fatigue loads contribute significantly to the fatigue damage,
the new approach is developed with an emphasis on these high loads. In comparison
to the already existing approaches, the newly-developed approach yields better agree-
ment between the simulated and modelled distribution functions of fatigue loads. The
modelled fatigue damages also match the simulated values for SN curves with differ-
ent slopes very well. This approach is not only applicable for the estimation of fatigue
loads for offshore wind turbines, but it can also be applied for other fields of engineering
which are concerned with fatigue due to random loads.

Since load simulations in frequency domain are not always suitable, inverse Fourier
transformation of power spectral densities of the acting loads is applied to generate
random time series. Only limited information on the discretisation of power spectral
densities is provided within standards and guidelines which are considered as too con-
servative. An extensive analysis is carried out in order to evaluate the impact of different
types of discretisation on the generated time series. Again, special attention is paid to
the extreme loads and fatigue loads. It is concluded from the analysis that the discret-
isation must not generate a signal which is periodic within the considered duration. In
combination with the findings for the determination of the distribution functions for
extreme loads and fatigue loads, the spectral moments of the discretised signal shall
also match those of the expected power spectral densities of the structural response.

The accurate determination of spectral moments is decisive in order to obtain the dis-
tribution functions of extreme loads and of fatigue loads in frequency domain. Different
methods exist which allow to determine the spectral moments in frequency domain as
well as in time domain. Within a study, the extraction of spectral moments from time
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series is investigated for time series derived from a load simulation of an offshore wind
turbine. Especially the calculation of spectral moments of odd order on the basis of time
series is erroneous, and the determination of spectral moments becomes more inaccur-
ate for increasing order. Additionally, the non-Gaussianity of the signal is evaluated for
the extreme loads and fatigue loads in particular.

Morison’s equation is usually applied for the calculation of wave-induced loads acting
on bottom-fixed substructures of offshore wind turbines. The inertia term of wave-
induced loads is dominant. In general, the significance of the drag term increases for
more severe sea states and smaller pile diameters. Increased current velocities also
lead to a more significant drag term. A study carried within this thesis shows the
significant impact which currents have on the fatigue loads. This finding is especially
relevant, since no currents are to be modelled for the design load cases which are to
be considered for the fatigue design within the respective standards and guidelines.
Additionally, common presentations of the predominance of drag term and inertia term
of Morison’s equation in dependence of wave height and wave length of a periodic wave
as well as of pile diameter are extended for current velocities. For the first time, a
similar presentation is introduced for sea states in order to evaluate the impact on
fatigue loads. This presentation shows the dominance of drag term and inertia term of
Morison’s equation on the fatigue loads in dependence of significant wave height and
wave length representative for the sea state as well as of pile diameter. The impact of
currents is also shown.

9.2 Outlook

Different load types, denoted as constant, periodic, transient, random, and random-
transient, are introduced and described. They commonly occur during the lifetime of
offshore wind turbines. Hence, they are to be considered during the load simulations.
These load types are simulated simultaneously within load simulation in time domain.
Since load simulations in frequency domain are especially suited for the simulation of
random loads, the combination of different load types in frequency domain is to be
further analysed with respect to the load analysis of offshore wind turbines.

In comparison to time domain, load simulation in frequency domain are computation-
ally very efficient. They are especially suitable for the probabilistic design. On basis
of the resulting power spectral densities of the responses, the distribution functions of
the extreme loads and fatigue loads can easily be extracted on basis of the spectral
moments, as it is described within the thesis. Contrarily, time series of sufficiently long
duration or many time series of shorter duration must exist such that the distribution
functions of the extreme loads and fatigue loads can be determined with acceptable
accuracy. This is very time-consuming. However, load simulations in time domain are
still state-of-the-art for the design of offshore wind turbines. In comparison to frequency
domain, the load simulations in time domain are capable of modelling the time-variant
behaviour of the structural model and non-linearities. This random behaviour mostly
results from the controller of the offshore wind turbine. Until now, no model in fre-
quency domain is given which describes the behaviour of the controller appropriately.
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Load simulations in frequency domain which also cover non-linear behaviour and non-
Gaussian loads would improve the accuracy of the resulting loads.

The newly-developed distribution function for fatigue loads on the basis of power spec-
tral densitys only describes the distribution of the ranges of fatigue loads. The mean
values of each load cycle is not considered. Both the ranges and mean values of fatigue
loads are required for the structural design of certain structural components, such as
prestressed bolts of ring-flange connections. Hence, the distribution function for fatigue
loads on the basis of power spectral densitys can be extended in order to include the
mean values. This may be done on the basis of the time series already used to develop
the new approach. During the development of the new approach to describe the distri-
bution function of fatigue loads on the basis of power spectral densitys, it is noticed that
the different distribution functions for the same spectral parameters are not congruent,
but small differences exist. It is suggested that the distribution function of fatigue loads
may depend on other parameters than the spectral parameters used for the previously-
and the newly-developed approach. Further analyses of the time series are required to
identify these parameters for an even more accurate model of the fatigue loads.
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A1 Reference design basis:
environmental data

The research platform FINO1 was erected about 40 km north of the East Frisian island
Borkum in the North Sea. The local water depth at the considered site is about 28m.
Today, it is located close to several German offshore wind parks, including the first
German offshore wind park alpha ventus. Data are measured since autumn 2003.

Environmental data measured at the research platform FINO1 are used as reference
environmental conditions for the analysis carried out within this thesis. These environ-
mental conditions include parameters of wind conditions and of sea-state conditions.
Data series for the years 2003 to 2017 are evaluated. The environmental data measured
at the research platform FINO1 are kindly provided by the Bundesamt für Seeschifffahrt
und Hydrographie (BSH, Federal Maritime and Hydrographic Agency). The research
project FINO is funded by the German Federal Ministry for the Environment, Nature
Conservation and Nuclear Safety (BMU) and the Project Management Jülich (PtJ).

The levels of technical availability of the various measurement sensors and thus the
completeness of measurement data differ due to various reasons. An overview of the
data completeness of wind velocity at a height of 90m above mean sea level, significant
wave height, peak period as well as their joint availabilities for the years 2003 to 2017
are shown in Tbl. 3.1.

A1.1 Hs-Tp scatter diagram

Only the year with the greatest level of completeness is analysed to ensure an accur-
ate representation of seasonal effects which may be biased by additionally considering
years with smaller level of completeness. Hence, the year 2013 is analysed for the deriv-
ation of the scatter diagram of significant wave height and peak period. The combined
completeness rate is 97.3%, referring to Tbl. 3.1.

A1.2 v-Hs scatter diagram

Just as for the Hs-Tp scatter diagram, stated in Tbl. A1.1, only the year with the
greatest level of completeness is analysed to ensure an accurate representation of sea-
sonal effects. Hence, the year 2013 is analysed for the derivation of the scatter diagram
of significant wave height and wind velocity at a height of 90m above mean sea level.
The combined completeness rate is 88.4%, referring to Tbl. 3.1.
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A2 Removal of corrosion products from
small steel specimens

Due to the environmental conditions, corrosion of material may occur. For steel speci-
mens or steel structures, corrosion products such as iron oxid are produced within the
chemical corrosion process. Iron oxid or rust is usually attached to the steel surface. In
order to analyse the steel surface hidden by the rust, the iron oxid has to be removed.
Different methods exist which are described in the following for a small steel specimen.
Iron oxid does not contribute to the load-bearing capacity of the steel specimen.

A2.1 Methods for removal of corrosion products from
steel

Three methods to remove corrosion products from steel specimens are shortly listed in
the following. They are suitable for small-scale specimens such that the procedure can
be completed in laboratory. The required amount of time for removal depends on the
size of the specimen and on the severity of corrosion.

A2.1.1 Removal with paraffine

Oils, such as paraffine, penetrate between the steel surface and the adhesive corrosion
products due to their comparably small interfacial surface tension. Thus, the corrosion
products can be removed more easily with cloth and brushes. No hard tools shall be used
for cleaning, which might cause damage to the steel surface. The corroded specimen is
wetted with paraffine up to several days. The specimen is occasionally cleaned. Several
repetitions of the procedure might be necessary.

A2.1.2 Removal with acids

A faster method to remove corrosion products is the usage of acid instead of paraffine.
The rate of the removal depends on the acidity of the acid. For example, placing a
corroded specimen in 10% hydrochloride acid requires up to 30 minutes for removal.
Using customary 10% acetic acid instead, several hours up to a day may be necessary.
One shall consider that acid may not only remove the corrosion products, but it may
also attack the uncorroded steel surface, resulting in its alteration.
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A2.1.3 Removal with electrolytic bath

Another method to remove corrosion products from steel specimen is the electrolysis.
Here, the specimen as well as an anode are placed in water with dissolved sodium
hydrogen carbonate. A battery is connected to the steel specimen and the anode, with
the specimen being the cathode. The specimen and the anode shall not be directly
in contact. The battery assembly and the sodium hydrogen carbonate solution form a
closed circuit. Due to the current, the corrosion products are removed and accumulate
at the anode. The electrolysis takes several hours to a day for removal, depending on
the size of the specimen. The principle of the electrolytic bath is sketched in Fig. A2.1.

Figure A2.1: Scheme of electrolytic bath for removal of corrosion products

A2.2 Removal of corrosion products from a steel specimen

The adhesive corrosion products at a corroded steel specimen shall be removed. The
cuboid specimen has the dimensions of 50 mm × 25 mm × 10 mm. It was exposed
to the weather for an indefinite period in 30167 Hannover. Then it was stored in dry
conditions at room temperature. The steel grade is also unknown. The surface of the
corroded steel specimen is shown in Fig. A2.2.

Figure A2.2: Surface of the steel specimen before removal of the adhesive corrosion
products

The methods described above were applied to remove the corrosion products from the
steel specimen. The order, applied methods, and the respective periods of exposure are
listed in Tbl. A2.1

During the wetting with paraffine (stage 1), each side of the cuboid specimen was
wetted during the period of two weeks. The specimen was cleaned every two to three
days to remove detached corrosion products. Afterwards, the specimen was exposed
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Table A2.1: Overview of methods consecutively applied in order to remove corrosion
products from the steel specimen as well as the respective periods of ex-
posure

Stage Method for corrosion removal Duration of exposure
1 Paraffine Two weeks
2 10% acetic acid 19 hours
3 10% acetic acid Two weeks
4 Electrolytical bath Two days
5 Electrolytical bath 19 hours
6 Electrolytical bath 24 hours

to 10% acetic acid for 19 hours (stage 2) and two weeks (stage 3), respectively. For
stage 1 to 3, the steel specimen was placed in a closed glass container. Further removal
of the corrosion products was done via electrolysis (stage 4 to 6). Approximately 3 g of
sodium hydrogen carbonate was dissolved in 0.2 l water. The steel specimen and the
anode were connected to a 9-volt block battery. They were placed in the electrolytical
bath for two days, 19 hours, and 24 hours, respectively. The electrolysis was carried
out in an aerated room at room temperature.

The surface of the steel specimen before removal of corrosion products, after exposure
to paraffine and 10% acetic acid (stage 3), and after the subsequent electrolysis (stage 6)
are shown in Fig. A2.3. Only the surface investigated in the following are shown.

Figure A2.3: Surface of the steel specimen before and after applying different methods
for removal of adhesive corrosion products according to Tbl. A2.1

A2.2.1 Surface topology of the steel specimen

In order to evaluate the possible impact of the methods to remove corrosion products
on the steel specimen, the surface topology of the steel specimen was measured after
each stage listed in Tbl. A2.1. Here, the roughness-measurement device HOMMEL
TESTER 1000 by JENOPTIC is used. A needle is moved over the surface along a
defined section, whilst the vertical deflection of the needle is piecoelectrically recorded.
Here, the sampling rate along the measured sections is 0.6 1/µm. The measured sections,
each with a length of 16mm, are shown in Fig. A2.4. The distance from horizontal edges
to the measured section, here 8.3mm, is complied for each measurement. However, the
distance from vertical edges to the starting point of the measured section cannot be
assured. A possible deviation of a few tenth millimeters is expected.
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Figure A2.4: Sections measured at the surface of the steel specimen

Each section as shown in Fig. A2.4 is measured thrice after each applied method for
removal of corrosion products (stage 1 to 6) in order to detect potential errors. Here,
no significant differences or errors are found for the repeated measurements.

The measured surface topologies were processed such that they are almost congruent.
This is necessary, since the horizontal position of the starting point of the measured
section cannot be assured as explained above. Therefore, the cross-correlation of the
measured surface topology of stage 1 and each measured surface topology (stage 2 to
6) are evaluated for an offset between the measured surface topologies of up to 1.6mm.
The measured profiles are shifted by the value at which the cross-correlation factor
is maximal. Thus, it is assumed that the spatial positions of the measured sections
are approximately congruent. The measured surface topologies, shifted as described
above, are shown in Fig. A2.5 for both measurement sections and all stages as listed in
Tbl. A2.1.

Figure A2.5: Measured surface topologies at the surface of the steel specimen (section 1
and section 2)
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Almost no differences between the surface topologies are observed for the measured
section 1. For the measured section 2, no differences are observed for stage 1 and 2,
either. In comparison to stage 3 to 6, major differences are detected between 9mm
and 11mm as well as between 14mm and 15mm. Smaller differences are noticed at
approximately 4mm and 13mm. These differences stem from corrosion products which
are detached from the steel surface after stage 3. This can be noted by comparing the
steel surfaces in Fig. A2.5. Otherwise, the surface topologies of all stages are almost
congruent.

A2.2.2 Power spectral densities of the surface topology of the steel
specimen

Fourier transformation of the measured signals are carried out according to Section 2.1.1.
The resulting power spectral densities were adapted such that the integral of each power
spectral density with respect to the wave number equals the respective variance. Due
to the sampling rate of 0.6 1/µm, the power spectral densities of the surface topologies
are given for wave numbers smaller than the corresponding Nyquist wave number of
approximately 1.885 1/µm.

The resulting power spectral densities of the sections measured after each stage are
shown in Fig. A2.6.

Figure A2.6: Power spectral densities of the measured surface topologies at the surface
of the steel specimen (section 1 and section 2)

For the measured section 1, discrepancies are observed for stage 1 and 2 in comparison
to the stages 3 to 6. Otherwise, the curves do not have noticeable differences. Noticeably
greater values of the power spectral densities for stage 1 and 2 exist for wave numbers
of 1 1/mm up to 3 1/mm as well as for wave numbers of 4 1/mm up to 7 1/mm. These
wave numbers are approximately equivalent to the ranges of adhesive corrosion products
which were removed only after completion of stage 3. These adhesive corrosion products
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were located in the ranges of 9mm and 11mm as well as of 14mm and 15mm, referring
to Fig. A2.5.

No significant differences are noticed when comparing the power spectral densities after
each stage for the measured section 2.

In comparion, the power spectral densities after completion of stage 6 are almost con-
gruent for both measured sections.

A2.2.3 Impact of different measurement methods

For a comparison of different measurement devices, the surface of the specimen is
additionally measured and analysed with an optical 3D-measuring system after the last
stage of corrosion removal. Here, the 3D-profilometer VR-3200 by KEYENCE is used,
which measures the complete surface optically. The surface is measured with a sampling
rate of approximately 31.8 1/µm. The surface topologies for the measured sections as
shown in Fig. A2.5 are extracted from the three-dimensional data by interpolation. The
surface topologies (right) as well as the respective power spectral densities (right) are
shown in Fig. A2.7 for both measured sections.

Figure A2.7: Measured surface topologies (left) and the respective power spectral dens-
ities (right) at the surface of the steel specimen (section 1 and section 2)
for different measurement methods

The surface topologies measured by either roughness-measurement device or optical
system are almost congruent for both measured sections. Due to the greater sampling
rate of the optical system, the inverse Fourier transformation of the surface topologies
and the respective power spectral density only are valid for wave numbers smaller than
the corresponding Nyquist wave number of approximately 99.8 µm. Otherwise, a good
agreement of the power spectral densities with respect to the measurement method is
observed for both measured sections.
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A2.3 Conclusion

In order to evaluate the surface of a corroded steel specimen, the removal of adhesive
corrosion products is necessary. Different methods for corrosion removal exist. Tests
show that placing the corroded steel specimen in acid or in an electrolytical bath is an
effective method. The measurement of the surface after removal of corrosion products
with a roughness-measurement device indicates that these methods only remove the
corrosion products, but they do not impair the steel surface. The measuring methods
provide similar results.





A3 Fourier series of relevant functions

Relevant Fourier series are presented here. Fourier transformation of the signals are
carried out according to Section 2.1.1.

A3.1 Fourier coefficients of a pulse wave

The pulse wave denotes a periodic signal which alternates between two values (here 1
and −1) periodically,

fΘ (t) =

1 , t ∈
[(
z − 1

2

)
· T + Θ/2,

(
z + 1

2

)
· T −Θ/2

]
−1 , t ∈

((
z + 1

2

)
· T −Θ/2,

(
z + 1

2

)
· T + Θ/2

) , z ∈ Z , (A3.1)

with period T . The parameter Θ ∈ [0, T ] is the length for which the function fΘ (t) has
a value −1 during one period. For Θ = T

2 , the lengths are equal. This form of Eq. (A3.1)
is usually denoted as square wave. The coefficients of the double-sided Fourier series
are obtained by the Fourier transformation of fΘ (t),

a0 = 1− 2 · Θ
T

an = 2
n · π

· (−1)n+1 · sin
(1

2 · ω ·Θ
)

bn = 0

, (A3.2)

with wave frequency ω = 2π
T . The pulse function with Θ = 1

3 · T and the respective
Fourier coefficients are shown in Fig. A3.1.

Figure A3.1: Pulse wave with Θ = T
3 (left) and the respective Fourier coefficients (right)
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A3.2 Fourier coefficients of non-linear drag term of
Morison’s equation for regular Airy waves

The function fu|u| (t) stated in Eq. (A3.3) is a term of the drag term of Morison’s
equation according to Eq. (3.19) for regular Airy waves,

fu|u| (t) = (a+ b · cos (ω · t)) · |a+ b · cos (ω · t)|
= (a+ b · cos (ω · t))2 · fΘ (t)

, (A3.3)

with wave frequency ω = 2π
T , wave period T , and the pulse wave fΘ (t) according to

Eq. (A3.1). The value of Θ is set such that the change of sign for both functions fu|u| (t)
and fΘ (t) occurs simultaneously. Hence, Θ = T − T

π · arccos
(
−a
b

)
for |a| < |b|. For

|a| ≥ |b|, no change of sign occurs. Hence, fΘ (t) = −1 with Θ = T for |a| ≥ |b| ∧ a < 0,
and fΘ (t) = 1 with Θ = 0 for |a| ≥ |b| ∧ a > 0. The coefficients of the Fourier series are
obtained either by Fourier transformation of fu|u| (t) or by convolution of the Fourier
coefficients of (a+ b · cos (t))2 and of fΘ (t),

a0 =
(
a2 + b2

2

)
·
(
1− 2 · Θ

T

)
+ a · b · 4

π
· sin

(
π · Θ

T

)
− b2

2π · sin
(
2π · Θ

T

)

a1 = 2
π
·
(
a2 + b2

2

)
· sin

(
π · Θ

T

)
+ a · b ·

1− 2 · Θ
T −

sin
(
2π · Θ

T

)
π

+

b2

2 ·

sin
(
π · Θ

T

)
π

+
sin
(
3π · Θ

T

)
3π


a2 =−

(
a2 + b2

2

)
·

sin
(
2π · Θ

T

)
π

− 2 · a · b ·

sin
(
π · Θ

T

)
π

+
sin
(
3π · Θ

T

)
3π

+

b2

4 ·

1− 2 · Θ
T −

sin
(
4π · Θ

T

)
2π


an =2 · (−1)n+1

π
·

(a2 + b2

2

)
·

sin
(
n · π · Θ

T

)
n

−

a · b ·

sin
(
(n− 1) · π · Θ

T

)
n− 1 +

sin
(
(n+ 1) · π · Θ

T

)
n+ 1

+

b2

4 ·

sin
(
(n− 2) · π · Θ

T

)
n− 2 +

sin
(
(n+ 2) · π · Θ

T

)
n+ 2

 , n ≥ 3

a−n =an
bn =0

,

(A3.4)
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for |a| < |b|, and

a0 = sign a ·
(
a2 + b2

2

)
, a1 = a · b , a2 = b2

4

an = 0 , n ≥ 3
a−n = an

bn = 0

, (A3.5)

for |a| ≥ |b|, with the sign function sign. For a = 0, the Fourier coefficients read as
follows,

an =

4·(−1)
n+1

2
π · b2

n·(n2−4) , n ≥ 2 ·m+ 1 , m ∈ N

0 , otherwise

a−n =an
bn =0

. (A3.6)

The non-linear term of Morison’s equation for regular Airy waves according to Eq. (A3.3)
with a = 1

2 and b = 1 and the respective Fourier coefficients are shown in Fig. A3.2.

Figure A3.2: Periodic function according to Eq. (A3.3) with a = 1
2 and b = 1 (left) and

the respective Fourier coefficients (right)





A4 Power spectral densities applied for
analysis of distribution functions of
fatigue loads

The values of the coefficients and wave frequencies of the power spectral densities
according to Eq. (6.15) and Fig. 6.9(h) which are used for the analysis of distribution
functions of fatigue loads in Section 6.3 are listed in Tbl. A4.1. The values are set such
that the first-order spectral moment of all power spectral densities is unity. The upper
wave frequency ω2,1 is equal to unity.

Table A4.1: Coefficients of the power spectral densities according to Eq. (6.15) and
Fig. 6.9(h) applied for analysis of distribution functions of fatigue loads

α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.025 0.025 1.728E+05 5.570E-06 1.714E-05 1.739E-06 0.4781
9.874E+04 5.576E-07 2.081E-05 3.286E-06 0.8439
1.048E+05 8.702E-06 2.779E-05 3.283E-06 0.6029
7.062E+04 3.269E-06 3.159E-05 2.721E-06 0.4961
1.209E+05 4.388E-06 2.093E-05 6.593E-06 0.9089

0.075 5.266E+04 1.804E-05 5.601E-05 5.208E-05 0.8760
1.661E+05 3.456E-05 4.660E-05 2.880E-05 0.7287
3.739E+04 2.057E-05 7.406E-05 1.529E-04 0.9493
2.595E+04 6.871E-06 8.393E-05 7.902E-05 0.9046
2.928E+04 3.436E-06 7.174E-05 1.400E-05 0.2627

0.125 3.914E+04 3.512E-05 8.622E-05 6.152E-05 0.6574
1.593E+04 1.163E-05 1.372E-04 4.909E-04 0.9557
3.587E+04 3.132E-05 8.708E-05 6.429E-05 0.6909
4.621E+04 3.824E-05 8.152E-05 4.437E-05 0.4665
6.663E+04 4.604E-05 7.606E-05 1.265E-04 0.8545

0.175 2.038E+04 1.057E-05 1.087E-04 5.712E-05 0.1513
1.452E+05 5.676E-05 7.054E-05 6.055E-05 0.1611
3.548E+04 5.405E-05 1.104E-04 6.162E-04 0.9414
2.500E+04 4.847E-05 1.285E-04 3.194E-04 0.8756
2.294E+04 4.753E-05 1.347E-04 2.053E-04 0.7881

0.225 3.130E+04 6.472E-05 1.286E-04 2.617E-04 0.7547
1.856E+04 2.976E-05 1.375E-04 1.464E-04 0.5692
1.158E+04 2.492E-05 1.976E-04 1.454E-03 0.9547
1.529E+04 2.034E-05 1.511E-04 1.249E-04 0.4131
2.467E+04 6.438E-05 1.454E-04 3.455E-04 0.8045
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.025 0.275 1.526E+04 5.731E-05 1.884E-04 1.218E-03 0.9203
1.498E+04 2.730E-05 1.608E-04 2.042E-04 0.5347
1.074E+04 7.918E-06 1.940E-04 2.739E-04 0.6583
2.701E+04 8.525E-05 1.593E-04 6.698E-04 0.8501
9.493E+03 2.653E-05 2.372E-04 0.1730 0.9994

0.325 1.660E+04 2.915E-05 1.496E-04 1.997E-04 0.2399
2.258E+04 9.267E-05 1.812E-04 3.456E-03 0.9612
1.546E+04 5.722E-05 1.866E-04 4.433E-04 0.6822
7.984E+03 6.949E-06 2.574E-04 2.376E-02 0.9947
6.631E+04 7.774E-05 1.079E-04 2.097E-04 0.2698

0.375 1.328E+06 1.386E-04 1.401E-04 1.969E-03 0.9111
3.281E+04 8.136E-05 1.423E-04 3.652E-04 0.4879
8.028E+04 8.120E-05 1.061E-04 2.626E-04 0.2397
1.045E+04 1.273E-05 2.041E-04 3.153E-04 0.3466
1.022E+05 7.739E-05 9.695E-05 2.440E-04 0.1399

0.425 4.246E+04 1.140E-04 1.611E-04 1.154E-03 0.8042
2.577E+04 8.869E-05 1.663E-04 6.828E-04 0.6633
8.770E+03 2.538E-05 2.534E-04 1.086E-03 0.7872
1.187E+04 5.708E-05 2.256E-04 1.541E-03 0.8531
1.305E+04 2.773E-05 1.809E-04 3.892E-04 0.4035

0.475 2.260E+04 8.719E-05 1.757E-04 9.753E-04 0.7120
1.849E+04 9.255E-05 2.007E-04 2.197E-03 0.8710
9.587E+03 2.096E-05 2.295E-04 6.356E-04 0.5111
7.969E+03 2.100E-05 2.719E-04 1.864E-02 0.9857
5.200E+04 1.132E-04 1.516E-04 8.818E-04 0.6715

0.525 7.654E+03 1.649E-05 2.777E-04 2.703E-03 0.8713
1.085E+04 2.502E-05 2.094E-04 7.079E-04 0.4839
1.042E+04 5.193E-05 2.439E-04 8.478E-03 0.9607
1.758E+04 5.993E-05 1.737E-04 7.013E-04 0.4789
6.508E+04 1.266E-04 1.573E-04 1.686E-03 0.7917

0.575 1.033E+04 4.567E-05 2.392E-04 3.152E-03 0.8691
1.322E+04 5.723E-05 2.085E-04 1.437E-03 0.7018
2.008E+04 9.723E-05 1.968E-04 2.680E-02 0.9851
1.019E+04 4.560E-05 2.418E-04 3.042E-03 0.8621
1.415E+04 5.964E-05 2.010E-04 1.595E-03 0.7433

0.625 1.182E+04 1.950E-07 1.694E-04 7.146E-04 0.1945
1.056E+04 4.578E-06 1.939E-04 8.500E-04 0.3811
1.034E+04 3.016E-05 2.235E-04 1.860E-03 0.7356
1.744E+04 6.576E-05 1.804E-04 1.760E-03 0.7273
7.808E+03 2.591E-05 2.820E-04 7.689E-02 0.9933
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.025 0.675 1.237E+04 8.810E-07 1.625E-04 8.802E-04 0.2172
9.241E+03 2.351E-05 2.399E-04 1.228E-02 0.9544
6.321E+04 7.080E-05 1.024E-04 9.215E-04 0.2797
2.956E+04 9.658E-05 1.642E-04 5.433E-03 0.8949
1.382E+04 4.106E-05 1.857E-04 1.692E-03 0.6564

0.725 1.338E+04 4.125E-05 1.907E-04 3.947E-03 0.8298
2.431E+04 5.832E-05 1.406E-04 1.853E-03 0.6456
1.731E+04 4.407E-05 1.595E-04 1.742E-03 0.5977
1.616E+04 6.570E-06 1.303E-04 9.881E-04 0.2037
1.266E+04 2.705E-05 1.849E-04 3.122E-03 0.7996

0.775 2.191E+04 4.747E-05 1.387E-04 2.569E-03 0.6979
2.676E+04 1.617E-05 9.088E-05 1.088E-03 0.1935
1.216E+04 3.616E-06 1.680E-04 2.116E-03 0.6485
2.442E+04 2.344E-05 1.053E-04 1.244E-03 0.2760
1.633E+04 1.958E-05 1.420E-04 1.655E-03 0.5132

0.825 2.183E+04 2.787E-05 1.195E-04 2.707E-03 0.6811
1.408E+04 1.445E-05 1.564E-04 4.842E-03 0.8143
1.323E+04 7.541E-06 1.587E-04 8.062E-03 0.8978
2.790E+04 4.353E-05 1.152E-04 3.417E-03 0.7448
1.120E+04 8.083E-06 1.866E-04 0.2190 0.9958

0.875 3.105E+04 1.081E-05 7.520E-05 1.910E-03 0.4122
1.878E+04 6.480E-06 1.129E-04 8.198E-03 0.8922
2.086E+04 3.874E-06 9.970E-05 2.973E-03 0.7000
1.818E+04 1.190E-05 1.219E-04 4.875E-03 0.7797
2.225E+04 2.614E-05 1.160E-04 1.690E-02 0.9386

0.925 3.901E+04 4.127E-06 5.537E-05 2.730E-03 0.6055
2.941E+04 1.003E-05 7.799E-05 1.635E-02 0.9321
4.958E+04 1.562E-05 5.593E-05 3.769E-03 0.7096
2.318E+04 1.663E-06 8.790E-05 1.471E-02 0.9200
3.842E+04 1.797E-05 7.000E-05 8.218E-03 0.8525

0.975 1.292E+05 2.109E-07 1.568E-05 3.140E-03 0.6755
1.645E+05 3.418E-06 1.557E-05 3.299E-03 0.6548
3.538E+05 1.205E-05 1.769E-05 2.127E-02 0.9357
1.401E+05 4.719E-06 1.899E-05 1.481E-02 0.9404
7.163E+04 2.746E-07 2.818E-05 0.2567 0.9948

0.075 0.025 1.803E+04 7.969E-05 1.906E-04 4.414E-03 0.9984
1.499E+05 1.226E-04 1.359E-04 9.352E-05 0.9286
8.921E+03 2.263E-05 2.468E-04 3.122E-04 0.9774
1.082E+04 4.215E-05 2.271E-04 1.160E-04 0.9372
1.350E+04 3.035E-05 1.785E-04 1.375E-05 0.4828
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.075 0.075 5.231E+03 8.832E-05 4.707E-04 1.062E-04 0.3406
3.189E+03 5.929E-05 6.864E-04 7.703E-04 0.9190
3.665E+03 3.384E-05 5.795E-04 1.388E-04 0.5257
1.716E+04 2.256E-04 3.422E-04 1.096E-04 0.3599
3.343E+03 1.810E-05 6.164E-04 1.618E-04 0.6034

0.125 3.555E+03 2.594E-04 8.220E-04 7.019E-04 0.7492
7.547E+03 4.724E-04 7.374E-04 5.305E-03 0.9671
3.523E+03 2.047E-04 7.724E-04 4.091E-04 0.5579
4.729E+03 1.885E-04 6.114E-04 2.541E-04 0.1265
1.103E+04 4.235E-04 6.048E-04 5.155E-04 0.6555

0.175 2.126E+03 1.518E-04 1.092E-03 6.985E-04 0.4797
3.486E+03 4.352E-04 1.009E-03 1.443E-03 0.7592
1.534E+03 3.639E-07 1.304E-03 8.452E-04 0.5827
1.436E+03 2.711E-06 1.395E-03 1.194E-03 0.7104
2.249E+03 3.158E-04 1.205E-03 2.941E-03 0.8844

0.225 1.929E+03 2.714E-04 1.308E-03 1.397E-03 0.5807
8.986E+03 8.535E-04 1.076E-03 1.956E-02 0.9711
7.793E+03 8.225E-04 1.079E-03 9.753E-03 0.9421
2.211E+04 7.378E-04 8.282E-04 1.344E-03 0.5608
4.949E+03 7.522E-04 1.156E-03 1.049E-02 0.9461

0.275 3.312E+03 4.456E-04 1.049E-03 1.310E-03 0.1661
8.226E+03 6.942E-04 9.373E-04 1.520E-03 0.3903
3.418E+03 4.227E-04 1.008E-03 1.234E-03 0.1213
3.066E+03 5.102E-04 1.162E-03 1.621E-03 0.4387
4.656E+03 5.939E-04 1.023E-03 1.489E-03 0.3739

0.325 3.745E+03 4.747E-04 1.008E-03 1.652E-03 0.1770
2.726E+04 7.867E-04 8.601E-04 1.823E-03 0.2231
4.729E+03 9.599E-04 1.383E-03 1.066E-02 0.8886
2.278E+03 6.450E-04 1.522E-03 4.548E-03 0.7356
2.832E+03 6.868E-04 1.393E-03 3.654E-03 0.6708

0.375 8.938E+02 3.814E-05 2.274E-03 1.140E-02 0.8703
2.041E+03 6.251E-04 1.604E-03 4.877E-03 0.6694
1.396E+04 7.779E-04 9.210E-04 2.356E-03 0.1812
2.164E+04 7.905E-04 8.829E-04 2.323E-03 0.1611
2.952E+03 8.106E-04 1.487E-03 5.717E-03 0.7186

0.425 5.703E+04 1.329E-03 1.364E-03 1.481E-02 0.8559
2.037E+03 4.548E-04 1.436E-03 3.338E-03 0.3133
1.936E+03 4.959E-04 1.528E-03 3.835E-03 0.4291
2.702E+03 5.098E-04 1.249E-03 3.041E-03 0.1714
1.703E+03 7.772E-04 1.950E-03 0.4022 0.9950
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.075 0.475 1.958E+03 7.342E-04 1.755E-03 3.456E-02 0.9338
9.942E+03 8.640E-04 1.065E-03 4.226E-03 0.3239
1.853E+04 9.629E-04 1.071E-03 4.648E-03 0.4030
1.758E+03 7.897E-04 1.926E-03 3.680E-02 0.9312
4.756E+03 1.033E-03 1.453E-03 1.058E-02 0.7579

0.525 2.504E+03 6.231E-04 1.420E-03 5.761E-03 0.4041
2.617E+03 6.099E-04 1.373E-03 6.265E-03 0.5234
1.937E+03 7.071E-04 1.738E-03 1.302E-02 0.7591
1.523E+04 8.232E-04 9.543E-04 4.720E-03 0.2198
1.568E+04 8.115E-04 9.389E-04 4.650E-03 0.1869

0.575 1.107E+03 9.430E-06 1.813E-03 6.521E-03 0.4542
2.219E+03 4.934E-04 1.393E-03 6.346E-03 0.3414
2.300E+04 1.124E-03 1.211E-03 1.243E-02 0.6979
1.479E+03 2.361E-04 1.586E-03 6.040E-03 0.2923
1.353E+03 4.468E-04 1.922E-03 1.275E-02 0.7021

0.625 1.728E+03 4.907E-04 1.645E-03 1.179E-02 0.6183
3.898E+03 5.170E-04 1.029E-03 6.541E-03 0.1634
9.296E+03 6.214E-04 8.360E-04 6.345E-03 0.1029
2.260E+03 3.570E-04 1.240E-03 6.678E-03 0.2054
1.100E+04 1.052E-03 1.233E-03 1.586E-02 0.7180

0.675 1.583E+03 2.675E-04 1.528E-03 1.034E-02 0.4879
4.742E+03 7.931E-04 1.214E-03 1.352E-02 0.6144
2.081E+03 7.091E-04 1.668E-03 6.076E-02 0.9155
1.030E+04 8.790E-04 1.073E-03 1.264E-02 0.5787
9.250E+03 7.371E-04 9.527E-04 9.151E-03 0.3838

0.725 1.963E+03 4.661E-04 1.482E-03 2.082E-02 0.7051
4.121E+03 2.676E-04 7.512E-04 7.705E-03 0.1270
7.716E+04 8.259E-04 8.517E-04 1.285E-02 0.5153
1.114E+03 1.017E-04 1.891E-03 2.617E-02 0.7721
1.059E+03 8.367E-05 1.967E-03 3.292E-02 0.8193

0.775 2.092E+03 8.976E-05 1.042E-03 1.074E-02 0.3310
5.981E+03 7.395E-04 1.073E-03 4.292E-02 0.8420
4.635E+03 3.899E-04 8.197E-04 1.143E-02 0.3337
4.428E+03 7.560E-04 1.206E-03 1.812 0.9963
3.061E+04 9.337E-04 9.989E-04 0.1881 0.9641

0.825 6.788E+03 5.504E-04 8.439E-04 2.898E-02 0.7325
2.275E+03 2.993E-04 1.175E-03 4.263E-02 0.8198
2.914E+03 3.500E-04 1.034E-03 2.790E-02 0.7221
3.074E+03 5.103E-05 6.987E-04 1.162E-02 0.2059
2.032E+03 2.994E-04 1.280E-03 0.1120 0.9315
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.075 0.875 2.515E+03 1.925E-04 9.843E-04 9.421E-02 0.9086
2.119E+03 6.433E-05 1.004E-03 3.652E-02 0.7624
2.608E+03 7.820E-05 8.417E-04 2.182E-02 0.5904
3.310E+03 3.091E-04 9.108E-04 0.4049 0.9788
2.346E+03 1.836E-04 1.032E-03 0.2435 0.9645

0.925 1.337E+04 3.195E-04 4.683E-04 12.384 0.9992
2.857E+03 4.268E-05 7.393E-04 0.8255 0.9883
5.296E+03 1.482E-04 5.240E-04 4.211E-02 0.7683
3.653E+03 7.096E-05 6.158E-04 4.714E-02 0.7944
5.500E+03 9.747E-05 4.593E-04 2.566E-02 0.6133

0.975 1.140E+04 4.509E-05 2.196E-04 0.1549 0.9308
1.439E+04 5.473E-05 1.930E-04 7.635E-02 0.8588
2.795E+04 9.175E-05 1.629E-04 9.815E-02 0.8902
2.117E+04 8.887E-05 1.828E-04 13.440 0.9992
1.097E+04 4.538E-05 2.267E-04 0.3992 0.9730

0.125 0.025 2.638E+04 3.345E-04 4.103E-04 1.431E-03 0.9870
1.034E+04 2.731E-04 4.665E-04 3.346E-04 0.9428
3.833E+03 2.612E-05 5.479E-04 3.723E-05 0.4527
1.117E+05 3.269E-04 3.448E-04 7.733E-05 0.7471
3.524E+03 6.952E-05 6.371E-04 1.377E-04 0.8624

0.075 4.532E+03 4.718E-04 9.130E-04 2.460E-04 0.1431
2.809E+03 4.549E-04 1.167E-03 3.601E-04 0.5162
5.202E+03 5.166E-04 9.010E-04 2.506E-04 0.1328
3.798E+03 8.055E-04 1.332E-03 1.244E-02 0.9863
2.563E+03 4.443E-04 1.225E-03 3.563E-04 0.4894

0.125 7.476E+02 3.640E-04 3.038E-03 1.540E-02 0.9689
1.561E+03 7.915E-04 2.072E-03 1.265E-03 0.6131
2.259E+03 7.993E-04 1.684E-03 8.495E-04 0.3185
6.303E+03 9.999E-04 1.317E-03 7.314E-04 0.2227
7.924E+03 1.455E-03 1.708E-03 3.435E-03 0.8612

0.175 1.723E+03 1.585E-03 2.745E-03 1.106E-02 0.9139
8.496E+02 6.529E-04 3.006E-03 2.928E-03 0.6978
1.446E+03 1.274E-03 2.657E-03 3.518E-03 0.7312
1.004E+03 1.222E-03 3.213E-03 3.671E-02 0.9747
9.070E+02 5.748E-04 2.779E-03 1.759E-03 0.4284

0.225 9.902E+02 1.495E-03 3.513E-03 6.354E-03 0.7430
6.477E+03 2.399E-03 2.707E-03 4.104E-02 0.9635
4.587E+02 3.439E-04 4.701E-03 4.147E-02 0.9651
5.319E+03 2.677E-03 3.053E-03 0.2753 0.9941
5.785E+02 4.085E-05 3.494E-03 2.344E-03 9.981E-02
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.125 0.275 6.968E+02 4.030E-04 3.269E-03 3.220E-03 1.601E-02
1.168E+03 1.194E-03 2.905E-03 3.624E-03 0.3115
3.693E+03 1.695E-03 2.236E-03 3.346E-03 0.2418
6.540E+02 1.225E-03 4.279E-03 6.782E-03 0.6188
7.500E+02 1.711E-03 4.375E-03 2.322E-02 0.8944

0.325 3.939E+02 4.228E-04 5.492E-03 1.087E-02 0.6937
4.748E+02 1.915E-04 4.396E-03 5.045E-03 0.2412
3.230E+03 2.991E-03 3.609E-03 2.873E-02 0.8856
3.029E+02 1.212E-05 6.604E-03 3.408 0.9991
1.007E+03 1.582E-03 3.565E-03 6.844E-03 0.5227

0.375 5.734E+03 3.302E-03 3.650E-03 6.085E-02 0.9292
9.710E+02 1.842E-03 3.897E-03 9.537E-03 0.5057
3.643E+02 2.446E-04 5.724E-03 1.447E-02 0.7159
3.473E+02 1.013E-03 6.758E-03 0.4695 0.9901
8.788E+02 2.787E-03 5.057E-03 0.3709 0.9875

0.425 3.441E+02 3.561E-04 6.151E-03 1.710E-02 0.6662
1.538E+03 2.563E-03 3.860E-03 1.744E-02 0.6735
5.327E+02 1.777E-03 5.521E-03 0.1559 0.9652
8.820E+02 1.950E-03 4.211E-03 1.262E-02 0.5228
8.612E+02 1.285E-03 3.600E-03 8.239E-03 0.2157

0.475 1.626E+03 2.462E-03 3.687E-03 1.552E-02 0.5131
1.782E+04 3.849E-03 3.961E-03 7.535 0.9991
3.589E+02 1.164E-03 6.715E-03 8.254E-02 0.9116
4.438E+02 9.944E-04 5.484E-03 1.652E-02 0.5291
7.168E+03 2.803E-03 3.081E-03 1.437E-02 0.4739

0.525 3.818E+03 3.593E-03 4.114E-03 0.1234 0.9293
3.442E+02 1.150E-03 6.935E-03 1.759 0.9950
4.097E+02 8.801E-04 5.739E-03 2.369E-02 0.6102
8.418E+02 1.183E-03 3.546E-03 1.245E-02 0.1150
9.516E+02 1.913E-03 4.006E-03 2.025E-02 0.5848

0.575 3.362E+02 7.765E-04 6.693E-03 8.822E-02 0.8800
3.274E+02 1.889E-04 6.264E-03 2.894E-02 0.6297
2.978E+02 8.557E-05 6.769E-03 6.394E-02 0.8445
3.750E+02 3.080E-05 5.334E-03 1.789E-02 0.3770
4.747E+02 1.302E-03 5.494E-03 7.100E-02 0.8620

0.625 9.925E+02 1.154E-03 3.155E-03 1.785E-02 0.1855
3.986E+02 8.210E-04 5.807E-03 5.621E-02 0.7770
5.583E+02 1.249E-03 4.809E-03 3.284E-02 0.6228
4.161E+02 5.950E-04 5.370E-03 3.176E-02 0.5936
7.258E+02 1.501E-03 4.239E-03 2.668E-02 0.5203
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.125 0.675 4.423E+02 4.440E-04 4.933E-03 3.327E-02 0.5574
3.224E+02 3.490E-04 6.508E-03 0.2615 0.9446
5.324E+02 1.297E-03 5.027E-03 0.1211 0.8860
5.656E+02 6.038E-04 4.113E-03 2.584E-02 0.4096
8.982E+02 1.427E-03 3.637E-03 2.944E-02 0.5071

0.725 1.248E+03 7.694E-04 2.356E-03 2.385E-02 0.1127
4.314E+02 6.180E-04 5.215E-03 8.656E-02 0.8043
7.293E+02 1.285E-03 4.005E-03 5.172E-02 0.6794
3.912E+02 1.664E-04 5.233E-03 4.836E-02 0.6324
1.339E+03 1.893E-03 3.374E-03 4.823E-02 0.6527

0.775 4.235E+02 5.256E-04 5.203E-03 29.768 0.9994
7.417E+02 1.026E-03 3.698E-03 8.903E-02 0.7941
6.285E+02 5.021E-04 3.651E-03 3.998E-02 0.4784
5.157E+03 2.309E-03 2.693E-03 7.288E-02 0.7298
6.605E+02 4.742E-04 3.469E-03 3.725E-02 0.4106

0.825 4.619E+02 1.159E-04 4.399E-03 0.9951 0.9784
4.443E+02 7.385E-05 4.526E-03 0.4867 0.9548
1.210E+03 1.128E-03 2.763E-03 9.611E-02 0.7797
2.226E+03 1.676E-03 2.564E-03 0.1795 0.8796
4.905E+02 3.662E-04 4.398E-03 0.5300 0.9580

0.875 2.786E+03 8.041E-04 1.513E-03 5.155E-02 0.5010
8.352E+02 2.493E-04 2.613E-03 7.040E-02 0.6338
2.231E+03 7.226E-04 1.608E-03 5.439E-02 0.5414
1.372E+04 8.265E-04 9.703E-04 4.106E-02 0.3490
8.788E+02 5.293E-04 2.778E-03 0.2639 0.9091

0.925 2.705E+04 1.039E-03 1.112E-03 44.757 0.9994
2.046E+03 1.155E-04 1.079E-03 5.342E-02 0.4516
1.438E+04 7.980E-04 9.352E-04 9.967E-02 0.7229
1.149E+03 1.818E-04 1.897E-03 0.1533 0.8137
1.898E+03 1.245E-04 1.164E-03 5.699E-02 0.5039

0.975 2.568E+03 9.217E-06 7.765E-04 2.568 0.9884
5.962E+03 1.051E-04 4.356E-04 0.1082 0.7217
4.465E+03 7.139E-05 5.126E-04 0.1238 0.7576
5.222E+03 1.852E-05 3.957E-04 8.465E-02 0.6400
8.834E+03 1.358E-04 3.588E-04 9.769E-02 0.6901

0.175 0.025 2.301E+03 1.218E-04 9.909E-04 8.528E-05 0.6081
4.728E+03 4.444E-04 8.674E-04 1.575E-04 0.7677
1.818E+04 4.761E-04 5.861E-04 6.146E-05 0.3384
3.206E+03 3.955E-04 1.019E-03 5.021E-04 0.9288
2.246E+03 5.466E-05 9.453E-04 5.461E-05 0.2073
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.175 0.075 6.570E+03 1.810E-03 2.114E-03 1.688E-03 0.7953
1.504E+03 7.326E-04 2.062E-03 5.109E-04 9.314E-02
3.984E+03 1.113E-03 1.615E-03 4.722E-04 0.2641
1.249E+03 1.163E-03 2.764E-03 2.701E-03 0.8740
9.239E+02 9.178E-04 3.082E-03 3.085E-03 0.8935

0.125 7.158E+02 1.362E-03 4.155E-03 2.657E-03 0.6548
1.013E+03 1.476E-03 3.450E-03 1.694E-03 0.4025
4.817E+03 2.732E-03 3.147E-03 4.066E-03 0.7730
4.415E+02 8.152E-05 4.609E-03 1.482E-03 0.2382
2.559E+03 3.009E-03 3.790E-03 7.882E-02 0.9882

0.175 1.250E+03 3.330E-03 4.929E-03 1.110E-02 0.8336
3.218E+02 3.117E-04 6.521E-03 3.934E-03 0.5101
3.316E+02 1.156E-03 7.181E-03 3.720E-02 0.9544
2.798E+02 9.325E-06 7.151E-03 5.373E-03 0.6829
3.147E+02 4.565E-04 6.805E-03 5.506E-03 0.6687

0.225 3.682E+02 2.276E-03 7.699E-03 2.307E-02 0.8699
3.071E+02 1.364E-03 7.866E-03 9.554E-03 0.6726
9.331E+02 3.707E-03 5.847E-03 1.495E-02 0.8041
4.868E+02 2.601E-03 6.703E-03 1.324E-02 0.7811
2.503E+03 3.001E-03 3.798E-03 4.353E-03 2.603E-02

0.275 3.047E+02 1.786E-03 8.334E-03 1.197E-02 0.6152
1.619E+03 4.104E-03 5.336E-03 9.834E-03 0.5241
2.653E+02 5.703E-04 8.091E-03 7.672E-03 0.3780
3.577E+02 1.058E-03 6.634E-03 6.390E-03 0.1501
6.401E+02 4.128E-03 7.245E-03 2.355E-02 0.8054

0.325 2.687E+02 1.183E-03 8.601E-03 1.118E-02 0.3795
1.649E+02 5.690E-04 1.266E-02 0.1307 0.9517
4.551E+02 3.851E-03 8.231E-03 2.653E-02 0.7586
9.071E+02 4.112E-03 6.310E-03 1.380E-02 0.5297
3.619E+02 3.235E-03 8.743E-03 2.446E-02 0.7343

0.375 4.381E+02 4.865E-03 9.410E-03 1.918 0.9957
2.540E+02 3.190E-03 1.103E-02 0.1901 0.9559
2.002E+02 1.296E-03 1.124E-02 3.194E-02 0.7348
3.116E+02 3.831E-03 1.022E-02 0.1438 0.9420
5.760E+02 3.720E-03 7.177E-03 1.674E-02 0.4569

0.425 1.311E+03 6.710E-03 8.228E-03 0.4661 0.9767
1.710E+02 9.307E-04 1.256E-02 5.480E-02 0.8044
4.378E+02 5.304E-03 9.847E-03 0.8906 0.9877
1.459E+02 5.173E-04 1.415E-02 0.1234 0.9117
1.299E+03 5.771E-03 7.302E-03 4.399E-02 0.7566



208
Appendix A4. Power spectral densities applied for analysis of distribution functions

of fatigue loads

α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.175 0.475 1.674E+02 6.985E-04 1.257E-02 4.767E-02 0.7116
2.370E+02 3.289E-03 1.167E-02 0.2673 0.9495
2.917E+02 2.548E-03 9.356E-03 2.965E-02 0.5172
2.125E+02 3.036E-03 1.239E-02 0.6668 0.9796
4.622E+02 4.922E-03 9.219E-03 7.897E-02 0.8267

0.525 4.651E+03 7.503E-03 7.929E-03 2.255 0.9926
2.570E+02 3.723E-03 1.144E-02 0.2270 0.9256
1.657E+02 4.013E-04 1.237E-02 4.625E-02 0.6279
2.432E+02 1.348E-03 9.496E-03 2.935E-02 0.3775
2.405E+02 2.521E-03 1.077E-02 5.391E-02 0.6807

0.575 1.896E+02 1.304E-03 1.174E-02 7.131E-02 0.7180
3.122E+02 3.362E-03 9.701E-03 6.847E-02 0.7001
1.888E+02 8.424E-04 1.132E-02 4.815E-02 0.5632
6.610E+03 6.527E-03 6.827E-03 8.074E-02 0.7475
6.653E+02 3.283E-03 6.254E-03 3.059E-02 0.2414

0.625 2.766E+02 1.241E-03 8.374E-03 3.925E-02 0.3069
3.194E+02 4.290E-03 1.048E-02 3.310 0.9928
2.134E+02 9.747E-04 1.023E-02 5.152E-02 0.5075
2.946E+02 3.429E-03 1.014E-02 0.1977 0.8814
1.865E+02 2.021E-03 1.262E-02 0.6519 0.9630

0.675 1.772E+02 3.819E-04 1.151E-02 0.1064 0.7364
6.733E+02 2.375E-03 5.294E-03 4.137E-02 0.1592
1.872E+02 7.566E-04 1.129E-02 0.1178 0.7657
4.229E+02 2.528E-03 7.184E-03 5.153E-02 0.4040
3.659E+02 3.783E-03 9.175E-03 0.4114 0.9342

0.725 6.055E+02 2.838E-03 6.083E-03 6.298E-02 0.4503
2.482E+02 1.670E-03 9.600E-03 0.1700 0.8120
6.020E+02 4.078E-03 7.348E-03 0.2017 0.8423
1.242E+03 3.421E-03 5.002E-03 5.835E-02 0.3947
3.475E+02 1.164E-03 6.818E-03 5.397E-02 0.3469

0.775 2.074E+02 4.360E-04 9.901E-03 0.3336 0.8901
4.377E+02 1.123E-03 5.599E-03 6.172E-02 0.3293
3.211E+02 1.835E-03 7.949E-03 0.1892 0.8052
2.222E+02 1.054E-03 9.893E-03 7.204 0.9949
4.142E+02 2.807E-03 7.545E-03 0.2511 0.8502

0.825 6.009E+02 2.301E-03 5.559E-03 0.1695 0.7500
9.863E+02 3.370E-03 5.356E-03 0.9883 0.9585
3.794E+02 1.047E-03 6.209E-03 0.1232 0.6624
3.734E+02 1.171E-04 5.353E-03 7.207E-02 0.3745
1.991E+03 1.621E-03 2.601E-03 6.240E-02 0.2202
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.175 0.875 8.770E+02 5.435E-04 2.763E-03 7.823E-02 0.3175
1.522E+03 2.621E-04 1.537E-03 7.021E-02 0.1333
6.788E+02 1.473E-03 4.351E-03 0.2014 0.7689
4.716E+02 1.069E-03 5.208E-03 0.2260 0.7893
5.547E+02 1.682E-03 5.200E-03 1.927 0.9749

0.925 1.672E+03 1.099E-03 2.263E-03 0.1541 0.6487
5.972E+02 4.742E-04 3.735E-03 2.798 0.9812
4.323E+03 1.326E-03 1.776E-03 0.1451 0.6206
1.548E+03 4.429E-04 1.697E-03 0.1028 0.4265
6.773E+02 8.750E-04 3.749E-03 5.609 0.9905

0.975 1.462E+03 1.188E-04 1.447E-03 2.865 0.9797
1.524E+04 4.478E-04 5.753E-04 0.2649 0.7821
3.637E+03 5.324E-04 1.067E-03 0.5238 0.8913
8.640E+03 4.573E-04 6.819E-04 0.2337 0.7482
1.240E+04 2.847E-05 1.848E-04 0.1222 0.4956

0.225 0.025 7.612E+03 9.208E-04 1.184E-03 1.927E-04 0.6801
3.640E+03 9.136E-04 1.463E-03 2.964E-04 0.7663
4.628E+03 7.154E-04 1.148E-03 1.193E-04 0.4947
3.064E+03 6.571E-04 1.310E-03 1.474E-04 0.5972
6.021E+03 6.172E-04 9.493E-04 8.209E-05 9.988E-02

0.075 4.548E+02 3.701E-04 4.767E-03 9.294E-04 0.3324
1.868E+03 2.400E-03 3.470E-03 2.064E-03 0.7658
5.802E+02 1.745E-03 5.191E-03 8.640E-02 0.9941
9.025E+02 2.522E-03 4.738E-03 0.1196 0.9953
6.204E+02 1.934E-03 5.157E-03 1.468E-02 0.9626

0.125 2.137E+02 7.335E-04 1.009E-02 8.283E-02 0.9825
3.194E+02 1.941E-03 8.198E-03 9.754E-03 0.8489
2.565E+02 1.496E-03 9.287E-03 0.2197 0.9936
4.354E+02 2.817E-03 7.407E-03 1.318E-02 0.8903
3.955E+02 1.263E-03 6.315E-03 2.341E-03 0.2934

0.175 2.228E+03 6.139E-03 7.035E-03 1.512E-02 0.8088
2.144E+02 2.499E-03 1.182E-02 6.380E-02 0.9542
2.897E+02 3.360E-03 1.025E-02 2.503E-02 0.8849
1.560E+02 5.580E-04 1.336E-02 2.954E-02 0.9013
2.416E+02 9.614E-04 9.227E-03 4.748E-03 0.3037

0.225 4.682E+02 4.064E-03 8.325E-03 7.989E-03 0.3306
8.115E+02 6.052E-03 8.511E-03 1.383E-02 0.6469
2.762E+04 5.997E-03 6.069E-03 7.649E-03 0.2782
2.182E+02 3.391E-03 1.253E-02 2.530E-02 0.8092
3.185E+02 2.502E-03 8.760E-03 7.078E-03 7.166E-02
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.225 0.275 3.749E+02 4.654E-03 9.967E-03 1.272E-02 0.3675
1.236E+02 8.247E-04 1.694E-02 2.786E-02 0.7374
1.967E+02 4.280E-03 1.441E-02 4.797E-02 0.8499
3.059E+02 3.396E-03 9.904E-03 1.085E-02 0.1588
1.655E+02 8.604E-04 1.289E-02 1.122E-02 0.2487

0.325 1.040E+02 1.294E-03 2.043E-02 0.1764 0.9426
3.821E+02 4.987E-03 1.019E-02 1.605E-02 0.2684
2.074E+02 3.960E-03 1.355E-02 2.246E-02 0.5197
1.859E+02 3.813E-03 1.451E-02 2.643E-02 0.5982
1.575E+02 1.313E-03 1.394E-02 1.617E-02 0.2576

0.375 84.290 3.028E-04 2.387E-02 39.736 0.9997
1.154E+02 7.915E-04 1.800E-02 3.060E-02 0.5339
1.010E+02 9.857E-04 2.064E-02 6.355E-02 0.7848
2.831E+02 6.642E-03 1.366E-02 4.193E-02 0.6694
1.045E+02 1.467E-03 2.048E-02 7.192E-02 0.8103

0.425 1.103E+02 3.525E-03 2.149E-02 1.228 0.9857
3.164E+02 7.138E-03 1.340E-02 4.656E-02 0.6083
1.028E+02 2.736E-03 2.202E-02 0.4665 0.9624
92.405 1.836E-03 2.329E-02 0.7413 0.9761

1.572E+02 2.443E-03 1.504E-02 2.960E-02 0.3382
0.475 2.095E+02 4.431E-03 1.386E-02 3.886E-02 0.3670

95.878 1.862E-03 2.249E-02 0.2092 0.8946
1.023E+02 1.366E-03 2.070E-02 7.392E-02 0.6971
1.843E+02 5.853E-03 1.658E-02 8.044E-02 0.7182
1.194E+02 2.009E-03 1.857E-02 5.485E-02 0.5865

0.525 1.207E+02 4.490E-03 2.083E-02 0.6483 0.9582
1.249E+02 3.334E-03 1.913E-02 0.1003 0.7245
1.471E+02 6.164E-04 1.396E-02 3.887E-02 2.965E-02
2.612E+02 9.081E-03 1.663E-02 1.059 0.9741
76.323 8.586E-05 2.593E-02 3.417 0.9920

0.575 90.227 8.411E-04 2.265E-02 0.2158 0.8486
1.156E+02 3.986E-03 2.100E-02 0.5880 0.9440
4.124E+02 4.490E-03 9.227E-03 4.690E-02 1.336E-02
85.116 1.171E-03 2.428E-02 1.805 0.9818

1.446E+02 6.050E-03 1.965E-02 13.948 0.9976
0.625 1.264E+02 4.298E-03 1.981E-02 0.9181 0.9575

1.637E+02 3.238E-03 1.520E-02 8.192E-02 0.4954
2.062E+02 5.643E-03 1.515E-02 0.1298 0.6949
1.186E+02 1.487E-03 1.800E-02 9.545E-02 0.5748
3.137E+02 3.746E-03 9.961E-03 5.665E-02 0.1150
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.225 0.675 1.482E+02 4.773E-03 1.796E-02 1.845 0.9754
5.968E+02 9.359E-03 1.263E-02 0.5044 0.9094
1.883E+02 6.360E-03 1.674E-02 31.318 0.9985
1.246E+03 5.020E-03 6.576E-03 6.597E-02 4.948E-02
1.804E+03 9.138E-03 1.022E-02 0.1491 0.6903

0.725 2.214E+02 4.920E-03 1.371E-02 0.2350 0.7736
3.577E+02 7.610E-03 1.305E-02 1.676 0.9686
1.853E+02 3.622E-03 1.412E-02 0.1776 0.6968
2.013E+02 5.583E-03 1.525E-02 2.233 0.9762
2.937E+02 7.007E-03 1.364E-02 1.893 0.9721

0.775 7.713E+02 6.866E-03 9.379E-03 0.2677 0.7722
1.801E+02 2.146E-03 1.291E-02 0.1823 0.6623
3.234E+02 4.767E-03 1.076E-02 0.2102 0.7087
2.031E+02 3.791E-03 1.334E-02 0.4107 0.8515
1.544E+02 2.163E-03 1.472E-02 0.3800 0.8403

0.825 4.701E+02 3.840E-03 7.944E-03 0.1779 0.6015
2.130E+02 2.349E-03 1.141E-02 0.3445 0.7985
2.167E+02 3.045E-03 1.196E-02 2.225 0.9690
2.366E+02 3.308E-03 1.147E-02 1.265 0.9456
7.287E+02 1.922E-03 4.551E-03 0.1017 0.1714

0.875 2.504E+02 1.283E-03 8.958E-03 0.3879 0.7987
2.205E+02 5.817E-04 9.294E-03 0.3082 0.7438
2.125E+02 8.820E-04 9.926E-03 0.4989 0.8424
4.737E+02 2.643E-03 6.701E-03 0.2400 0.6754
2.880E+02 2.303E-03 8.976E-03 0.8325 0.9062

0.925 3.285E+03 2.958E-03 3.541E-03 0.4268 0.7977
4.588E+02 3.495E-04 4.512E-03 0.2006 0.5513
3.568E+02 9.174E-04 6.278E-03 5.779 0.9849
5.614E+02 1.385E-03 4.793E-03 0.3814 0.7735
1.376E+03 2.539E-04 1.634E-03 0.1385 0.2763

0.975 4.129E+03 2.829E-04 7.435E-04 0.2348 0.5818
2.023E+03 7.765E-04 1.718E-03 0.6963 0.8639
1.390E+03 5.248E-04 1.897E-03 1.622 0.9427
1.098E+03 3.291E-04 2.059E-03 3.624 0.9724
9.750E+02 4.237E-04 2.379E-03 1.435 0.9350

0.275 0.025 3.624E+03 7.999E-04 1.352E-03 1.007E-04 0.1384
2.101E+03 7.646E-04 1.716E-03 1.290E-04 0.2494
1.482E+03 8.678E-04 2.218E-03 3.053E-04 0.7359
1.031E+03 4.811E-04 2.422E-03 2.060E-04 0.5889
1.322E+03 7.839E-04 2.297E-03 3.005E-04 0.7303
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.275 0.075 1.441E+03 3.018E-03 4.405E-03 1.325E-03 0.4186
3.601E+02 8.866E-04 6.438E-03 1.266E-03 0.3239
7.387E+02 3.050E-03 5.757E-03 2.586E-03 0.7183
2.442E+02 6.208E-04 8.807E-03 3.913E-03 0.8096
6.803E+02 2.607E-03 5.546E-03 1.979E-03 0.6429

0.125 1.982E+02 2.945E-03 1.303E-02 0.2561 0.9921
1.552E+02 1.674E-03 1.454E-02 5.186E-02 0.9587
2.370E+02 3.663E-03 1.209E-02 4.678E-02 0.9568
2.528E+02 1.155E-03 9.055E-03 2.997E-03 3.142E-02
3.810E+02 3.411E-03 8.654E-03 3.935E-03 0.4557

0.175 1.505E+02 1.850E-03 1.511E-02 8.981E-03 0.5161
3.431E+02 4.626E-03 1.044E-02 6.687E-03 0.2688
2.508E+02 5.678E-03 1.364E-02 1.771E-02 0.7596
1.618E+02 9.214E-04 1.325E-02 6.132E-03 0.1211
2.935E+02 4.465E-03 1.126E-02 7.390E-03 0.4006

0.225 2.075E+02 7.186E-03 1.679E-02 3.763E-02 0.8151
1.566E+03 9.319E-03 1.059E-02 1.375E-02 0.4628
1.170E+02 1.325E-03 1.836E-02 1.327E-02 0.4448
2.194E+02 5.590E-03 1.467E-02 1.440E-02 0.4849
1.025E+02 3.195E-03 2.264E-02 0.1364 0.9492

0.275 6.962E+02 9.646E-03 1.250E-02 1.891E-02 0.3888
94.875 1.950E-03 2.292E-02 2.802E-02 0.6174

3.761E+02 8.681E-03 1.397E-02 1.990E-02 0.4268
1.395E+02 7.823E-03 2.209E-02 0.5943 0.9825
8.684E+02 1.181E-02 1.410E-02 3.366E-02 0.6785

0.325 2.169E+02 1.111E-02 2.026E-02 0.1053 0.8588
1.703E+02 1.078E-02 2.244E-02 0.6705 0.9780
1.022E+02 1.292E-03 2.069E-02 2.223E-02 0.1823
2.128E+02 1.050E-02 1.983E-02 7.664E-02 0.8063
71.181 2.703E-03 3.059E-02 0.9659 0.9848

0.375 58.465 5.937E-04 3.446E-02 0.3001 0.9341
1.001E+02 8.156E-03 2.793E-02 15.983 0.9988
74.753 4.146E-03 3.063E-02 0.2279 0.9128

1.947E+02 9.629E-03 1.980E-02 5.266E-02 0.6119
58.882 4.126E-05 3.367E-02 0.1299 0.8468

0.425 82.974 6.712E-03 3.051E-02 0.5890 0.9563
1.230E+02 9.676E-03 2.572E-02 0.1852 0.8599
1.728E+02 7.005E-03 1.841E-02 4.068E-02 0.2507
1.073E+02 3.699E-03 2.207E-02 4.138E-02 0.2801
2.757E+02 1.392E-02 2.108E-02 0.1547 0.8322
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.275 0.475 83.163 3.733E-03 2.738E-02 7.861E-02 0.5706
89.198 6.804E-03 2.886E-02 0.1896 0.8283
84.633 7.956E-03 3.120E-02 19.698 0.9983

1.052E+02 9.491E-03 2.819E-02 0.4250 0.9229
2.243E+02 7.293E-03 1.601E-02 4.721E-02 7.938E-02

0.525 7.197E+02 1.247E-02 1.519E-02 7.114E-02 0.3751
84.081 4.526E-03 2.783E-02 0.1131 0.6380
72.866 3.177E-04 2.716E-02 6.956E-02 0.3642

1.351E+02 1.021E-02 2.471E-02 0.1805 0.7754
91.260 8.949E-03 3.042E-02 6.609 0.9939

0.575 5.421E+02 1.187E-02 1.546E-02 8.769E-02 0.3918
67.067 3.758E-03 3.285E-02 0.4196 0.8841
53.424 4.579E-04 3.699E-02 0.7229 0.9332

1.359E+02 1.168E-02 2.604E-02 1.007 0.9519
6.249E+02 1.653E-02 1.965E-02 0.3565 0.8630

0.625 75.349 1.030E-03 2.676E-02 0.1180 0.4802
1.331E+02 7.431E-03 2.201E-02 0.1409 0.5742
54.409 7.161E-04 3.642E-02 5.982 0.9904

1.027E+02 2.990E-03 2.183E-02 9.611E-02 0.3181
55.164 8.004E-04 3.601E-02 1.633 0.9646

0.675 93.183 5.682E-03 2.642E-02 0.3866 0.8241
59.658 1.083E-04 3.249E-02 0.4468 0.8480

1.309E+02 9.908E-03 2.467E-02 2.229 0.9696
5.428E+02 1.491E-02 1.847E-02 0.7214 0.9064
1.771E+02 8.217E-03 1.911E-02 0.1606 0.5588

0.725 66.737 2.206E-04 2.901E-02 0.4499 0.8252
97.265 5.381E-03 2.514E-02 0.8331 0.9057
65.364 1.009E-03 3.041E-02 1.675 0.9533

3.677E+02 1.351E-02 1.873E-02 1.094E+02 0.9993
3.513E+02 9.188E-03 1.465E-02 0.1723 0.5213

0.775 5.668E+02 5.169E-03 8.497E-03 0.1339 0.1518
4.610E+02 1.193E-02 1.607E-02 11.846 0.9924
1.024E+02 4.783E-03 2.344E-02 9.531 0.9905
3.501E+02 5.307E-03 1.072E-02 0.1440 0.2761
1.065E+02 4.907E-03 2.283E-02 1.927 0.9530

0.825 1.373E+02 4.475E-03 1.829E-02 1.838 0.9442
3.030E+02 7.411E-03 1.367E-02 0.5610 0.8168
1.525E+02 3.156E-03 1.558E-02 0.2897 0.6373
1.392E+02 4.339E-03 1.797E-02 0.9946 0.8967
1.173E+02 3.502E-03 1.967E-02 3.813 0.9730
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.275 0.875 4.013E+03 7.403E-03 7.872E-03 0.4766 0.7547
1.910E+02 1.783E-04 9.986E-03 0.2101 0.3962
4.023E+02 4.568E-03 9.243E-03 0.3235 0.6320
2.265E+02 1.826E-03 1.011E-02 0.2486 0.5081
1.467E+02 2.172E-03 1.503E-02 2.058 0.9442

0.925 3.207E+02 2.477E-03 8.309E-03 1.635 0.9206
2.015E+02 6.421E-04 9.925E-03 0.9576 0.8647
6.506E+03 4.977E-03 5.265E-03 0.7621 0.8303
5.043E+02 2.056E-03 5.758E-03 0.3358 0.6036
4.485E+02 3.143E-03 7.314E-03 1.147 0.8870

0.975 6.828E+03 1.844E-04 4.549E-04 0.3065 0.5012
8.391E+02 4.090E-04 2.619E-03 0.5523 0.7361
2.921E+03 1.841E-03 2.476E-03 14.132 0.9898
1.153E+03 1.250E-03 2.862E-03 2.299 0.9385
5.607E+02 5.106E-04 3.818E-03 7.613 0.9809

0.325 0.025 4.783E+02 2.907E-04 4.472E-03 5.637E-04 0.7769
5.777E+02 5.701E-04 4.032E-03 9.174E-04 0.8831
6.201E+02 6.498E-04 3.875E-03 1.621E-03 0.9422
1.081E+03 1.052E-03 2.902E-03 2.260E-04 0.3905
1.742E+03 8.831E-04 2.031E-03 1.211E-04 0.2621

0.075 8.118E+02 4.874E-03 7.337E-03 3.500E-03 0.7147
3.240E+03 4.899E-03 5.516E-03 1.750E-03 0.3706
4.612E+02 5.002E-03 9.336E-03 0.1515 0.9933
2.411E+02 2.317E-03 1.061E-02 7.181E-03 0.8719
2.354E+02 2.101E-03 1.059E-02 4.115E-03 0.7484

0.125 96.095 3.832E-05 2.082E-02 1.969E-02 0.8631
1.010E+02 6.048E-04 2.038E-02 2.108E-02 0.8713
2.064E+02 2.776E-03 1.245E-02 4.183E-03 0.1801
96.878 9.719E-04 2.159E-02 0.5610 0.9952

3.573E+02 6.957E-03 1.255E-02 1.017E-02 0.7229
0.175 1.328E+02 2.384E-03 1.739E-02 8.106E-03 0.1486

1.180E+02 6.324E-03 2.322E-02 0.1509 0.9636
1.202E+02 6.293E-03 2.288E-02 9.000E-02 0.9391
1.397E+02 4.883E-03 1.916E-02 1.284E-02 0.5516
1.363E+02 5.222E-03 1.985E-02 1.560E-02 0.6342

0.225 1.064E+02 4.021E-03 2.271E-02 1.642E-02 0.3761
74.572 4.304E-03 3.100E-02 0.1107 0.9170

5.458E+02 1.429E-02 1.793E-02 3.755E-02 0.7508
81.077 4.855E-03 2.941E-02 6.375E-02 0.8549

2.084E+02 9.903E-03 1.945E-02 2.192E-02 0.5534
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.325 0.275 65.549 2.015E-03 3.231E-02 3.494E-02 0.5862
65.896 5.479E-03 3.562E-02 0.2016 0.9304
60.903 1.435E-03 3.404E-02 4.049E-02 0.6482

1.256E+02 9.258E-03 2.507E-02 3.504E-02 0.5821
86.368 9.051E-03 3.204E-02 0.1956 0.9279

0.325 46.805 2.297E-03 4.461E-02 1.617 0.9878
2.462E+02 1.450E-02 2.254E-02 4.486E-02 0.5290
89.088 6.198E-03 2.840E-02 3.665E-02 0.4099
84.827 1.190E-02 3.524E-02 4.913 0.9959
76.225 5.025E-03 3.099E-02 4.097E-02 0.4837

0.375 75.008 6.279E-03 3.256E-02 5.523E-02 0.4808
1.927E+02 1.842E-02 2.866E-02 0.1706 0.8407
1.182E+02 9.485E-03 2.615E-02 4.530E-02 0.3227
75.470 1.149E-02 3.764E-02 0.3454 0.9218
47.605 1.036E-03 4.248E-02 8.715E-02 0.6871

0.425 67.930 1.041E-02 3.933E-02 0.2305 0.8468
37.929 2.556E-04 5.207E-02 0.5926 0.9411
67.095 2.341E-03 3.149E-02 5.194E-02 0.1434
61.262 1.076E-02 4.283E-02 6.640 0.9947

2.940E+03 2.594E-02 2.661E-02 0.7532 0.9531
0.475 88.914 1.268E-02 3.466E-02 0.1529 0.7040

1.235E+02 1.190E-02 2.769E-02 7.980E-02 0.3814
1.665E+02 2.088E-02 3.263E-02 0.6157 0.9273
51.348 6.615E-03 4.470E-02 0.2992 0.8508
66.769 4.143E-03 3.332E-02 7.209E-02 0.2835

0.525 49.844 8.334E-03 4.736E-02 7.080 0.9922
69.263 6.444E-03 3.446E-02 0.1052 0.4346
46.097 6.021E-03 4.821E-02 0.8806 0.9375

2.238E+02 1.702E-02 2.569E-02 0.1193 0.5127
44.645 6.073E-03 4.964E-02 4.620 0.9881

0.575 1.171E+02 1.440E-02 3.090E-02 0.1875 0.6340
1.839E+02 1.477E-02 2.525E-02 0.1278 0.4353
53.915 9.109E-03 4.497E-02 1.864 0.9643

1.454E+02 1.878E-02 3.207E-02 0.4205 0.8405
1.216E+02 9.486E-03 2.526E-02 0.1033 0.2167

0.625 1.595E+03 1.885E-02 2.005E-02 0.1579 0.4578
2.029E+03 2.083E-02 2.178E-02 0.2063 0.6011
66.766 1.934E-03 3.043E-02 0.1214 0.1973
62.518 5.819E-03 3.649E-02 0.1975 0.5828

2.071E+02 1.292E-02 2.214E-02 0.1320 0.3124
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.325 0.675 1.069E+02 3.582E-03 2.104E-02 0.1355 1.500E-02
9.347E+02 1.785E-02 1.988E-02 0.2031 0.5133
77.167 7.952E-03 3.262E-02 0.2529 0.6177

2.845E+03 1.971E-02 2.038E-02 0.2451 0.6051
49.897 1.852E-03 4.001E-02 0.2834 0.6620

0.725 90.971 1.020E-02 3.098E-02 0.5348 0.7947
1.271E+02 1.281E-02 2.768E-02 0.4707 0.7661
9.377E+02 1.836E-02 2.037E-02 0.3664 0.6975
99.206 9.973E-04 1.960E-02 0.1572 1.615E-02
59.129 4.052E-03 3.601E-02 0.4322 0.7448

0.775 1.822E+02 1.483E-02 2.512E-02 5.122 0.9755
1.075E+02 4.470E-03 2.179E-02 0.2237 0.3817
2.031E+02 1.539E-02 2.462E-02 5.061 0.9752
1.406E+02 8.929E-03 2.223E-02 0.3057 0.5732
54.763 2.072E-03 3.631E-02 1.210 0.8967

0.825 83.454 8.192E-04 2.298E-02 0.3032 0.5021
1.834E+02 1.134E-02 2.147E-02 3.165 0.9549
1.285E+02 7.338E-03 2.177E-02 0.5827 0.7522
64.035 3.458E-04 2.933E-02 0.6504 0.7787

1.146E+02 6.788E-03 2.298E-02 0.6651 0.7843
0.875 1.538E+02 6.059E-03 1.802E-02 1.461 0.8894

86.763 5.602E-04 2.174E-02 0.7085 0.7713
1.889E+02 6.326E-03 1.605E-02 0.7319 0.7774
2.854E+02 6.089E-03 1.251E-02 0.3943 0.5763
1.967E+02 5.582E-03 1.491E-02 0.4859 0.6601

0.925 2.633E+02 4.032E-03 1.094E-02 1.260 0.8558
1.580E+02 7.512E-04 1.225E-02 0.6257 0.7063
1.355E+02 1.421E-03 1.485E-02 12.443 0.9855
2.544E+02 4.456E-03 1.161E-02 8.646 0.9792
1.909E+02 2.313E-03 1.184E-02 0.8822 0.7948

0.975 1.730E+03 5.889E-04 1.624E-03 0.5085 0.5888
9.543E+02 2.961E-04 2.177E-03 0.5108 0.5976
3.530E+02 4.840E-04 5.580E-03 71.981 0.9972
3.196E+02 1.794E-04 5.808E-03 5.453 0.9631
6.024E+02 6.477E-04 3.632E-03 0.9658 0.7905

0.375 0.025 1.154E+03 1.892E-03 3.625E-03 4.565E-04 0.7144
4.861E+03 2.404E-03 2.815E-03 4.098E-04 0.7142
2.031E+03 2.406E-03 3.391E-03 4.411E-04 0.6494
6.991E+02 5.262E-04 3.387E-03 1.626E-04 0.4267
1.998E+03 2.278E-03 3.279E-03 7.562E-04 0.8524
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.375 0.075 1.801E+02 2.149E-03 1.325E-02 3.442E-03 0.6485
1.464E+02 2.267E-03 1.592E-02 2.918E-02 0.9588
4.025E+02 3.783E-03 8.748E-03 1.840E-03 0.1819
2.293E+02 1.834E-03 1.055E-02 1.805E-03 0.1600
3.828E+02 5.165E-03 1.039E-02 3.730E-03 0.6783

0.125 1.102E+02 4.032E-03 2.215E-02 1.443E-02 0.7629
86.697 1.448E-03 2.448E-02 1.368E-02 0.7557

1.530E+02 7.845E-03 2.089E-02 4.991E-02 0.9313
1.426E+02 6.905E-03 2.091E-02 3.037E-02 0.8882
3.323E+02 6.928E-03 1.293E-02 5.190E-03 0.1602

0.175 70.447 4.297E-03 3.259E-02 4.669E-02 0.8538
70.608 2.921E-03 3.115E-02 2.274E-02 0.6954

2.694E+02 8.682E-03 1.607E-02 9.912E-03 1.628E-03
61.527 7.414E-04 3.314E-02 2.177E-02 0.6830

1.063E+02 1.008E-02 2.883E-02 0.1997 0.9658
0.225 49.203 3.046E-03 4.346E-02 0.1223 0.9059

56.574 6.717E-03 4.186E-02 1.266 0.9908
1.107E+02 1.329E-02 3.125E-02 6.379E-02 0.8152
1.643E+02 1.620E-02 2.830E-02 6.295E-02 0.8118
45.612 1.524E-03 4.512E-02 0.1229 0.9061

0.275 1.646E+02 1.143E-02 2.343E-02 2.596E-02 9.041E-03
1.981E+02 1.344E-02 2.342E-02 2.666E-02 0.1493
41.266 1.503E-04 4.819E-02 5.787E-02 0.6921
60.817 9.484E-03 4.208E-02 9.529E-02 0.8126

2.026E+02 1.927E-02 2.904E-02 5.910E-02 0.6913
0.325 1.027E+02 1.058E-02 2.973E-02 3.763E-02 0.1173

94.480 1.577E-02 3.666E-02 7.190E-02 0.6352
46.739 9.070E-03 5.132E-02 0.2717 0.9066
35.825 1.354E-03 5.647E-02 0.1398 0.8192
49.381 4.988E-03 4.495E-02 5.769E-02 0.5400

0.375 41.355 3.546E-03 5.104E-02 8.166E-02 0.5628
1.417E+02 1.429E-02 2.807E-02 5.080E-02 7.617E-02
97.639 1.701E-02 3.712E-02 8.030E-02 0.5472
52.774 8.516E-03 4.573E-02 8.018E-02 0.5495
90.656 2.315E-02 4.483E-02 2.454 0.9859

0.425 64.228 1.305E-02 4.344E-02 0.1011 0.5283
43.837 3.290E-03 4.776E-02 7.720E-02 0.3442
49.122 3.138E-03 4.268E-02 6.713E-02 0.1407
57.284 1.909E-02 5.321E-02 25.190 0.9982
62.510 1.577E-02 4.703E-02 0.1677 0.7264
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of fatigue loads

α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.375 0.475 45.234 5.028E-03 4.782E-02 9.978E-02 0.3559
32.741 5.645E-03 6.498E-02 0.4864 0.8820
50.394 1.597E-02 5.451E-02 0.4881 0.8819
35.094 6.577E-03 6.193E-02 0.3312 0.8263
66.475 8.832E-03 3.780E-02 8.600E-02 0.1388

0.525 1.210E+02 1.564E-02 3.143E-02 0.1083 0.1698
59.719 2.109E-02 5.338E-02 2.208 0.9675
51.690 1.100E-02 4.825E-02 0.1650 0.5470
53.489 5.414E-03 4.110E-02 0.1068 0.1479
57.291 9.007E-03 4.248E-02 0.1186 0.3052

0.575 80.598 2.522E-02 4.894E-02 3.282 0.9733
83.067 2.130E-02 4.431E-02 0.3479 0.7460
33.279 4.276E-03 6.173E-02 0.3471 0.7463

1.014E+02 1.850E-02 3.729E-02 0.1767 0.4703
47.037 4.871E-03 4.527E-02 0.1433 0.3022

0.625 94.091 2.588E-02 4.602E-02 4.533 0.9769
61.268 5.001E-03 3.535E-02 0.1531 8.334E-02
36.139 9.608E-03 6.206E-02 2.707 0.9614

2.301E+02 2.921E-02 3.745E-02 0.6174 0.8294
92.896 2.294E-02 4.333E-02 0.5792 0.8179

0.675 1.305E+02 2.614E-02 4.051E-02 1.981 0.9375
1.075E+03 3.322E-02 3.496E-02 9.205 0.9866
2.026E+02 1.218E-02 2.116E-02 0.1794 1.786E-03
38.007 6.716E-03 5.608E-02 0.7061 0.8247
47.691 5.290E-03 4.444E-02 0.2421 0.4504

0.725 5.450E+02 2.840E-02 3.181E-02 1.591 0.9093
1.064E+02 1.713E-02 3.454E-02 0.4214 0.6501
1.077E+02 1.935E-02 3.657E-02 0.6585 0.7796
43.291 6.688E-03 4.954E-02 0.6716 0.7842
31.987 2.269E-03 6.031E-02 7.024 0.9796

0.775 46.689 6.926E-03 4.620E-02 1.791 0.9072
95.711 1.821E-02 3.737E-02 49.893 0.9967
45.242 4.196E-03 4.471E-02 0.7088 0.7640
49.203 4.817E-03 4.203E-02 0.5578 0.6973
69.766 1.286E-02 3.915E-02 1.310 0.8731

0.825 54.517 2.575E-04 3.329E-02 0.4199 0.5259
1.932E+02 1.387E-02 2.322E-02 0.5440 0.6421
67.012 6.460E-03 3.344E-02 0.7283 0.7363
46.503 2.425E-03 4.136E-02 1.751 0.8918
49.607 4.136E-03 4.064E-02 2.833 0.9333
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.375 0.875 4.299E+02 5.345E-03 9.412E-03 0.3379 0.2550
2.781E+02 1.206E-02 1.848E-02 0.8987 0.7589
1.232E+02 1.035E-02 2.485E-02 22.148 0.9903
1.638E+02 9.600E-03 2.049E-02 0.8480 0.7448
71.144 4.764E-03 2.986E-02 5.730 0.9626

0.925 1.337E+02 1.135E-03 1.424E-02 0.5967 0.5836
1.932E+02 6.135E-03 1.524E-02 2.648 0.9091
1.496E+02 3.331E-03 1.507E-02 0.8892 0.7257
1.030E+02 1.122E-03 1.818E-02 1.059 0.7705
3.985E+02 4.210E-03 8.589E-03 0.4942 0.4835

0.975 2.167E+02 6.411E-05 8.061E-03 21.940 0.9878
4.371E+02 1.158E-03 5.118E-03 1.123 0.7607
3.447E+02 9.665E-04 5.994E-03 1.827 0.8539
6.060E+02 1.971E-03 4.826E-03 1.820 0.8518
2.629E+02 6.654E-04 7.247E-03 30.546 0.9912

0.425 0.025 3.954E+02 2.518E-04 5.310E-03 2.332E-04 0.2994
7.390E+02 2.300E-03 5.006E-03 1.222E-03 0.8837
3.382E+02 3.979E-04 6.312E-03 5.182E-04 0.7334
6.237E+02 1.095E-03 4.302E-03 2.266E-04 0.3487
4.936E+02 2.288E-03 6.339E-03 3.655E-03 0.9491

0.075 1.957E+02 5.415E-03 1.563E-02 6.843E-03 0.7917
1.589E+02 5.320E-03 1.790E-02 0.4544 0.9969
1.638E+02 5.107E-03 1.731E-02 1.547E-02 0.9069
3.274E+02 6.661E-03 1.277E-02 4.021E-03 0.6413
4.818E+02 7.113E-03 1.126E-02 3.069E-03 0.4930

0.125 62.094 1.099E-03 3.324E-02 2.382E-02 0.8347
2.244E+02 1.377E-02 2.267E-02 6.161E-02 0.9336
1.324E+02 4.269E-03 1.933E-02 5.759E-03 1.366E-02
2.484E+02 1.459E-02 2.263E-02 0.2351 0.9827
2.236E+02 1.208E-02 2.100E-02 1.662E-02 0.7519

0.175 56.125 1.405E-03 3.689E-02 1.580E-02 0.4591
4.656E+02 1.625E-02 2.052E-02 1.451E-02 0.3593
47.776 5.411E-04 4.223E-02 2.522E-02 0.6775

1.079E+02 1.511E-02 3.356E-02 9.350E-02 0.9109
1.929E+02 1.485E-02 2.517E-02 1.887E-02 0.5401

0.225 77.090 8.976E-03 3.471E-02 2.282E-02 0.2949
1.748E+02 2.293E-02 3.429E-02 8.074E-02 0.8242
41.752 6.772E-03 5.434E-02 0.3520 0.9609
52.269 2.804E-03 4.077E-02 2.239E-02 0.2958

1.035E+02 1.087E-02 3.002E-02 2.090E-02 0.1476
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of fatigue loads

α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.425 0.275 1.200E+02 2.585E-02 4.234E-02 0.1672 0.8699
69.048 1.659E-02 4.524E-02 6.907E-02 0.6813
62.220 1.182E-02 4.359E-02 4.352E-02 0.4719

1.704E+02 2.845E-02 4.006E-02 0.1768 0.8769
3.675E+02 2.127E-02 2.664E-02 3.276E-02 0.1651

0.325 1.399E+02 2.950E-02 4.357E-02 0.1443 0.7819
32.958 9.227E-03 6.898E-02 0.3498 0.9121
51.837 2.036E-02 5.834E-02 0.4065 0.9237
27.564 4.299E-03 7.575E-02 0.6674 0.9542
25.930 2.748E-03 7.871E-02 7.209 0.9958

0.375 45.016 2.207E-02 6.555E-02 1.361 0.9688
30.747 1.106E-02 7.473E-02 0.5682 0.9258
45.024 1.643E-02 5.989E-02 0.1457 0.7048

5.400E+02 2.919E-02 3.281E-02 7.121E-02 0.3141
26.302 4.455E-03 7.890E-02 0.3205 0.8691

0.425 63.664 1.502E-02 4.532E-02 8.441E-02 0.1612
36.850 5.045E-03 5.750E-02 8.640E-02 0.2258
21.972 2.902E-04 8.881E-02 0.4637 0.8813
31.576 8.169E-03 6.970E-02 0.1530 0.6268

1.094E+02 2.993E-02 4.769E-02 0.1559 0.6294
0.475 24.357 2.923E-03 8.208E-02 0.2562 0.7196

57.599 2.092E-02 5.432E-02 0.1539 0.5061
25.840 7.710E-05 7.456E-02 0.1460 0.4846
21.704 2.336E-03 9.122E-02 0.7122 0.9006

1.257E+02 3.557E-02 5.090E-02 0.3053 0.7619
0.525 8.813E+02 4.316E-02 4.533E-02 0.4024 0.7745

65.079 2.540E-02 5.470E-02 0.2294 0.5949
40.559 1.669E-02 6.371E-02 0.2300 0.5972
32.080 1.655E-02 7.610E-02 0.6193 0.8552
46.869 2.760E-02 6.836E-02 1.256 0.9286

0.575 75.391 3.558E-02 6.065E-02 1.967 0.9441
40.052 2.103E-02 6.820E-02 0.5450 0.7973
43.834 8.264E-03 5.064E-02 0.1628 0.1250
43.541 2.040E-02 6.377E-02 0.3634 0.6930

4.075E+02 3.152E-02 3.612E-02 0.1874 0.3346
0.625 39.684 2.254E-02 6.961E-02 1.495 0.9116

33.746 4.782E-05 5.407E-02 0.1935 8.611E-02
33.162 9.952E-03 6.613E-02 0.3187 0.5698
38.314 1.246E-02 6.102E-02 0.2874 0.5152
85.608 3.059E-02 5.238E-02 0.4811 0.7209
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.425 0.675 31.515 7.642E-04 5.854E-02 0.2581 0.3053
25.119 2.609E-03 7.592E-02 0.5452 0.7092

1.496E+03 2.515E-02 2.636E-02 0.2349 0.1516
51.616 2.764E-02 6.336E-02 31.973 0.9951
25.934 6.553E-03 7.763E-02 0.9672 0.8381

0.725 52.048 1.524E-02 5.000E-02 0.4434 0.5698
56.791 4.037E-03 3.468E-02 0.2664 2.521E-02
34.012 1.484E-02 6.827E-02 7.997 0.9771

1.928E+02 2.438E-02 3.371E-02 0.3431 0.4159
60.149 8.725E-03 3.821E-02 0.2795 0.1893

0.775 66.506 1.335E-02 4.004E-02 0.4414 0.4892
92.838 8.340E-03 2.694E-02 0.3140 0.1305
87.385 1.416E-02 3.436E-02 0.3813 0.3857
50.729 1.313E-02 4.830E-02 0.6624 0.6738
43.391 6.223E-03 4.712E-02 0.4386 0.4856

0.825 41.388 9.180E-03 5.165E-02 5.533 0.9562
1.536E+02 2.435E-02 3.579E-02 3.849 0.9369
6.781E+02 9.068E-03 1.153E-02 0.3523 5.976E-02
49.522 9.991E-04 3.591E-02 0.4182 0.3520

3.911E+02 2.576E-02 3.025E-02 1.345 0.8189
0.875 1.200E+02 2.146E-03 1.608E-02 0.4247 0.2263

47.466 9.520E-04 3.719E-02 0.8384 0.6660
46.298 3.332E-03 4.058E-02 1.863 0.8521
75.199 2.147E-03 2.472E-02 0.4965 0.3910
45.668 4.599E-03 4.237E-02 9.516 0.9711

0.925 1.352E+02 8.440E-03 2.095E-02 5.107 0.9396
5.221E+02 3.700E-03 6.867E-03 0.5244 0.3393
92.823 8.701E-04 1.896E-02 0.7297 0.5603
89.079 2.635E-03 2.157E-02 1.055 0.7028

4.890E+02 1.335E-02 1.681E-02 2.866E+02 0.9989
0.975 2.544E+02 2.086E-03 8.600E-03 29.376 0.9883

1.312E+03 1.095E-03 2.346E-03 0.7982 0.5511
2.977E+02 2.107E-03 7.672E-03 2.650 0.8705
2.215E+02 1.733E-03 9.217E-03 97.879 0.9965
2.107E+02 1.170E-03 9.031E-03 9.117 0.9623

0.475 0.025 2.756E+02 9.204E-04 8.176E-03 5.247E-03 0.9716
2.569E+02 1.151E-03 8.936E-03 5.318E-03 0.9649
2.652E+02 8.800E-04 8.422E-03 8.744E-04 0.7798
3.264E+02 3.217E-04 6.449E-03 2.678E-04 0.1035
4.627E+02 1.161E-03 5.483E-03 2.552E-04 0.1601
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.475 0.075 1.200E+02 1.937E-03 1.859E-02 2.662E-03 0.3539
1.026E+02 4.110E-03 2.358E-02 4.309E-02 0.9644
1.174E+02 5.077E-03 2.210E-02 1.542E-02 0.8972
74.516 9.302E-05 2.691E-02 1.378E-02 0.8876

1.393E+02 6.923E-03 2.127E-02 0.1011 0.9846
0.125 2.166E+02 1.532E-02 2.453E-02 1.603E-02 0.7057

1.221E+02 8.785E-03 2.512E-02 8.241E-03 0.3841
50.204 3.355E-04 4.008E-02 1.781E-02 0.7501

1.136E+02 5.793E-03 2.334E-02 6.574E-03 1.775E-02
2.559E+02 1.103E-02 1.882E-02 6.799E-03 6.464E-02

0.175 69.852 1.540E-02 4.390E-02 8.574E-02 0.8902
60.501 9.463E-03 4.236E-02 2.583E-02 0.6299
73.083 1.444E-02 4.168E-02 4.478E-02 0.7901
74.766 8.625E-03 3.523E-02 1.520E-02 0.2880
49.515 6.294E-03 4.650E-02 2.856E-02 0.6727

0.225 28.400 2.118E-03 7.199E-02 0.1892 0.9178
50.493 9.956E-03 4.923E-02 3.245E-02 0.4763
36.964 7.767E-04 5.441E-02 2.645E-02 0.3379
44.395 1.129E-02 5.598E-02 5.856E-02 0.7237
30.908 5.594E-03 6.979E-02 0.2894 0.9456

0.275 40.552 1.027E-02 5.894E-02 4.996E-02 0.4706
28.813 8.715E-03 7.728E-02 0.2257 0.8912
32.807 7.485E-03 6.768E-02 6.851E-02 0.6321
61.231 2.720E-02 5.946E-02 0.2642 0.9048
29.593 1.588E-04 6.685E-02 4.465E-02 0.4096

0.325 22.109 4.862E-03 9.372E-02 0.4480 0.9211
27.039 7.117E-03 7.974E-02 0.1121 0.6766
40.921 7.591E-03 5.519E-02 5.247E-02 2.446E-03

1.289E+02 3.439E-02 4.962E-02 9.749E-02 0.6124
23.665 8.328E-03 9.134E-02 0.6284 0.9434

0.375 8.570E+02 3.878E-02 4.105E-02 8.756E-02 0.3514
28.260 1.703E-02 8.604E-02 0.2975 0.8326
34.140 7.289E-03 6.397E-02 7.343E-02 0.1161
53.196 3.227E-02 6.891E-02 0.2476 0.7954
21.780 6.767E-03 9.633E-02 0.2927 0.8316

0.425 28.859 1.013E-02 7.691E-02 0.1199 0.3940
18.742 1.674E-04 0.1034 0.2286 0.7120
67.380 4.402E-02 7.271E-02 1.367 0.9511
69.467 4.505E-02 7.288E-02 2.274 0.9706
67.787 2.748E-02 5.585E-02 0.1120 0.3155
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.475 0.475 59.975 3.426E-02 6.612E-02 0.2169 0.5879
31.667 7.579E-03 6.692E-02 0.1255 3.718E-02
64.920 3.128E-02 6.064E-02 0.1645 0.4297
24.378 9.403E-03 8.777E-02 0.1870 0.5208
22.390 1.631E-02 0.1018 0.7558 0.8873

0.525 19.947 1.292E-02 0.1078 0.9287 0.8845
26.277 2.736E-02 9.937E-02 6.845 0.9843
21.843 1.760E-02 0.1042 1.113 0.9034
17.987 5.077E-03 0.1103 0.5261 0.7961
20.545 8.845E-03 0.1009 0.3697 0.7063

0.575 16.052 3.894E-04 0.1168 0.7372 0.8209
20.438 1.456E-04 9.088E-02 0.2378 0.3876
37.237 1.287E-02 6.177E-02 0.1973 9.062E-02
70.071 2.583E-02 5.195E-02 0.2023 0.1590
84.410 4.102E-02 6.308E-02 0.3663 0.6239

0.625 30.827 1.324E-02 7.224E-02 0.2797 0.3524
43.646 1.630E-02 5.740E-02 0.2433 0.1515
19.747 4.221E-03 9.714E-02 0.4255 0.6117
22.768 5.509E-03 8.574E-02 0.3126 0.4457
55.418 1.763E-02 4.957E-02 0.2376 3.248E-02

0.675 54.475 3.999E-02 7.316E-02 2.138 0.9098
1.408E+03 3.916E-02 4.042E-02 0.3350 0.3526
47.917 3.838E-02 7.610E-02 2.796 0.9310
60.304 2.893E-02 5.869E-02 0.3977 0.4832
33.551 1.622E-02 6.966E-02 0.3776 0.4510

0.725 75.061 4.195E-02 6.558E-02 6.676 0.9661
3.623E+02 5.189E-02 5.678E-02 18.226 0.9876
27.736 1.119E-02 7.485E-02 0.5601 0.5815
26.335 2.100E-02 8.838E-02 39.752 0.9943
35.604 2.725E-02 7.707E-02 2.381 0.9050

0.775 24.222 1.048E-02 8.221E-02 2.700 0.9028
28.266 1.500E-02 7.645E-02 2.187 0.8798
25.759 8.714E-03 7.607E-02 1.058 0.7496
55.555 1.198E-02 4.235E-02 0.4139 0.2440
27.946 5.444E-03 6.715E-02 0.5856 0.5296

0.825 59.822 8.925E-03 3.658E-02 0.4985 0.3062
23.294 3.496E-03 7.644E-02 6.738 0.9554
41.079 9.678E-04 4.098E-02 0.4764 0.2516
65.662 2.558E-02 5.144E-02 2.961 0.8981
67.368 2.586E-02 5.106E-02 2.907 0.8961
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.475 0.875 87.616 2.155E-02 4.047E-02 37.415 0.9909
50.442 3.797E-03 3.618E-02 0.6868 0.4666

3.334E+03 2.994E-02 3.044E-02 5.813 0.9411
41.847 1.076E-02 5.038E-02 8.680 0.9606

2.445E+02 1.192E-02 1.851E-02 0.5684 0.3133
0.925 1.096E+02 2.652E-03 1.711E-02 0.7350 0.4341

1.267E+02 1.033E-02 2.305E-02 1.525 0.7453
2.734E+02 1.461E-02 2.052E-02 1.940 0.8008
92.661 2.587E-03 1.975E-02 0.7939 0.4840

1.249E+03 1.727E-02 1.856E-02 2.215 0.8250
0.975 2.050E+02 2.906E-03 1.056E-02 8.386 0.9488

2.276E+02 3.668E-03 1.057E-02 44.830 0.9905
3.599E+02 3.943E-03 8.306E-03 2.814 0.8473
4.916E+02 4.541E-03 7.731E-03 2.733 0.8421
4.607E+02 4.855E-03 8.266E-03 4.789 0.9105

0.525 0.025 4.862E+02 1.821E-03 5.933E-03 2.682E-04 0.2097
4.412E+02 2.502E-03 7.035E-03 4.688E-04 0.5793
2.535E+02 1.416E-03 9.306E-03 4.038E-03 0.9603
3.988E+02 2.291E-03 7.306E-03 6.549E-04 0.7505
2.530E+02 1.806E-03 9.709E-03 1.669E-03 0.8803

0.075 1.078E+02 4.217E-03 2.275E-02 3.949E-03 0.5600
1.083E+02 7.094E-03 2.555E-02 2.608E-02 0.9356
6.647E+02 1.504E-02 1.805E-02 3.670E-02 0.9531
95.865 4.670E-03 2.552E-02 7.653E-03 0.7813

1.814E+02 1.039E-02 2.140E-02 1.415E-02 0.8792
0.125 63.948 1.871E-03 3.304E-02 6.880E-03 3.479E-02

66.372 7.495E-03 3.755E-02 1.284E-02 0.6074
2.984E+02 2.437E-02 3.106E-02 1.630 0.9969
71.099 1.073E-02 3.879E-02 2.385E-02 0.7921
50.009 4.597E-03 4.449E-02 2.171E-02 0.7758

0.175 67.484 2.036E-02 4.985E-02 7.424E-02 0.8609
1.038E+02 2.280E-02 4.196E-02 3.534E-02 0.7022
33.772 4.748E-03 6.368E-02 5.564E-02 0.8224
60.969 1.964E-02 5.228E-02 0.1156 0.9111
31.342 5.208E-03 6.871E-02 0.4680 0.9790

0.225 52.745 1.371E-02 5.124E-02 2.833E-02 0.2660
54.184 2.009E-02 5.666E-02 4.669E-02 0.6062

1.625E+02 3.173E-02 4.392E-02 4.426E-02 0.5762
28.548 1.141E-02 8.086E-02 0.5686 0.9695
36.594 1.923E-02 7.341E-02 0.6844 0.9742
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.525 0.275 70.490 2.638E-02 5.431E-02 5.025E-02 0.3799
32.421 7.238E-03 6.792E-02 4.259E-02 0.2333
27.310 6.796E-04 7.270E-02 4.047E-02 0.1815
33.365 1.620E-02 7.530E-02 7.652E-02 0.6305
25.861 1.587E-02 9.215E-02 0.5835 0.9531

0.325 59.532 2.768E-02 6.048E-02 6.835E-02 0.3089
1.278E+02 5.456E-02 6.989E-02 1.952 0.9788
43.962 3.522E-02 7.978E-02 0.2350 0.8246

4.975E+02 4.352E-02 4.745E-02 7.344E-02 0.3725
32.636 1.125E-02 7.096E-02 6.073E-02 0.1557

0.375 1.453E+02 4.202E-02 5.534E-02 9.720E-02 0.3239
27.609 2.956E-02 9.995E-02 0.4298 0.8679
28.195 3.463E-02 0.1036 20.805 0.9973
19.233 1.898E-03 0.1028 0.1094 0.4611
56.338 3.961E-02 7.406E-02 0.1551 0.6193

0.425 39.277 3.659E-02 8.550E-02 0.2093 0.6233
29.058 2.299E-02 8.901E-02 0.1515 0.4603
27.719 1.368E-02 8.236E-02 0.1149 0.1615
22.345 1.464E-02 0.1006 0.1630 0.5112
26.916 3.050E-02 0.1020 0.3413 0.7754

0.475 1.151E+03 6.278E-02 6.443E-02 0.2686 0.6150
51.924 4.990E-02 8.647E-02 0.3915 0.7416
48.282 5.594E-02 9.529E-02 1.709 0.9416
28.114 4.151E-02 0.1091 1.421 0.9300
34.681 2.555E-02 7.983E-02 0.1606 0.2691

0.525 24.334 3.255E-02 0.1095 0.5432 0.7660
19.379 2.525E-02 0.1220 0.7373 0.8292
79.744 5.526E-02 7.871E-02 0.3857 0.6630
23.407 2.812E-02 0.1081 0.4110 0.6884
26.383 1.345E-02 8.271E-02 0.1870 7.632E-02

0.575 63.540 4.863E-02 7.751E-02 0.3684 0.5518
15.564 9.194E-03 0.1276 0.4923 0.6792
28.036 3.493E-02 0.1006 0.4915 0.6741
30.372 2.235E-02 8.196E-02 0.2482 0.2362
65.453 6.619E-02 9.434E-02 87.358 0.9982

0.625 33.235 3.684E-02 9.106E-02 0.5089 0.6109
19.282 1.504E-02 0.1084 0.4378 0.5435
90.663 3.698E-02 5.628E-02 0.2907 0.1394
76.496 6.655E-02 9.018E-02 12.009 0.9840
27.529 4.323E-02 0.1089 2.446 0.9216
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.525 0.675 72.521 4.876E-02 7.305E-02 0.6148 0.6126
22.141 1.101E-02 8.949E-02 0.3876 0.3231
67.047 3.274E-02 5.834E-02 0.3587 0.2094
28.297 2.130E-02 8.293E-02 0.4108 0.3767
27.962 1.628E-02 7.795E-02 0.3653 0.2454

0.725 22.540 1.068E-02 8.615E-02 0.4987 0.4004
46.963 2.447E-02 6.014E-02 0.4347 0.2534
57.237 4.235E-02 7.240E-02 0.7869 0.6446
12.940 3.114E-03 0.1368 9.701 0.9722
64.896 4.337E-02 6.986E-02 0.7491 0.6250

0.775 67.880 2.505E-02 4.906E-02 0.5200 0.2883
15.759 4.231E-03 0.1110 1.877 0.8308
27.059 1.215E-02 7.328E-02 0.5992 0.4226
43.741 4.278E-02 8.125E-02 20.945 0.9848
44.175 4.091E-02 7.899E-02 3.979 0.9201

0.825 19.192 1.456E-03 8.628E-02 1.177 0.6839
25.744 2.077E-02 8.425E-02 37.770 0.9903
18.725 5.154E-03 9.239E-02 2.392 0.8468

1.592E+02 3.523E-02 4.541E-02 0.9212 0.5876
30.297 1.938E-02 7.320E-02 1.617 0.7717

0.875 22.437 5.111E-03 7.569E-02 31.210 0.9867
56.492 8.320E-03 3.549E-02 0.7289 0.3623
29.280 7.961E-03 6.188E-02 1.694 0.7513
30.266 1.434E-02 6.667E-02 8.186E+02 0.9995
57.688 1.468E-02 4.176E-02 0.9355 0.5322

0.925 1.277E+02 1.966E-02 3.164E-02 17.992 0.9739
82.803 1.183E-02 3.023E-02 1.676 0.7154
35.670 3.489E-03 4.637E-02 6.012 0.9218

1.393E+02 1.883E-02 2.981E-02 4.018 0.8830
32.541 1.380E-03 4.840E-02 5.199 0.9096

0.975 3.821E+02 4.727E-03 8.573E-03 2.033 0.7392
1.649E+02 4.283E-03 1.323E-02 5.558 0.9056
1.906E+02 4.380E-03 1.212E-02 3.466 0.8485
1.172E+02 1.663E-03 1.425E-02 3.311 0.8414
1.817E+02 3.231E-03 1.133E-02 2.252 0.7654

0.575 0.025 5.072E+02 4.556E-03 8.499E-03 3.078E-03 0.9382
3.117E+02 2.394E-03 8.811E-03 5.457E-04 0.6534
1.732E+02 8.128E-04 1.236E-02 5.361E-03 0.9664
1.785E+02 1.124E-04 1.132E-02 6.046E-04 0.7092
7.258E+02 3.606E-03 6.361E-03 3.432E-04 0.3793
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.575 0.075 2.827E+02 1.145E-02 1.852E-02 3.511E-03 0.4491
1.258E+03 1.821E-02 1.980E-02 2.336E-02 0.9229
4.532E+02 1.050E-02 1.491E-02 2.589E-03 5.590E-02
95.705 7.565E-03 2.844E-02 1.032E-02 0.8313
78.855 6.784E-03 3.213E-02 0.3089 0.9945

0.125 55.299 1.368E-02 4.976E-02 0.1794 0.9715
43.783 1.980E-03 4.754E-02 1.028E-02 0.5045
84.899 1.283E-02 3.633E-02 1.033E-02 0.4641
36.211 1.848E-03 5.695E-02 3.162E-02 0.8486
39.559 5.304E-03 5.574E-02 5.523E-02 0.9111

0.175 1.443E+02 3.417E-02 4.795E-02 7.182E-02 0.8469
27.303 4.772E-03 7.765E-02 8.387E-02 0.8792
44.639 1.848E-02 6.304E-02 6.679E-02 0.8398

1.267E+02 3.467E-02 5.037E-02 0.1296 0.9155
87.762 2.224E-02 4.489E-02 2.136E-02 0.4529

0.225 68.790 4.089E-02 6.969E-02 1.421 0.9865
26.527 1.641E-02 9.111E-02 0.3159 0.9419
39.495 2.956E-02 7.973E-02 0.5556 0.9660
30.674 3.249E-03 6.766E-02 2.620E-02 7.854E-02

1.493E+02 3.505E-02 4.830E-02 3.660E-02 0.4288
0.275 2.622E+02 5.426E-02 6.177E-02 0.1201 0.7437

27.429 1.855E-02 9.037E-02 8.094E-02 0.6284
32.953 3.252E-02 9.231E-02 0.2687 0.8888
17.769 7.548E-03 0.1185 0.3423 0.9173
48.410 3.014E-02 7.079E-02 6.121E-02 0.4760

0.325 36.294 2.298E-02 7.654E-02 6.710E-02 0.1682
14.026 5.246E-04 0.1402 0.3133 0.8679
23.945 2.473E-02 0.1064 0.1614 0.7264
38.429 4.997E-02 0.1009 32.403 0.9986
14.710 2.203E-03 0.1353 0.2385 0.8254

0.375 28.683 3.348E-02 0.1010 0.1522 0.5754
48.585 6.363E-02 0.1035 58.159 0.9989

2.817E+02 6.074E-02 6.760E-02 0.1316 0.4868
17.660 1.071E-02 0.1204 0.1340 0.5268
25.432 1.509E-02 9.039E-02 9.135E-02 7.069E-02

0.425 1.365E+02 6.086E-02 7.484E-02 0.1688 0.4518
30.340 3.266E-02 9.541E-02 0.1453 0.3383
16.326 1.937E-02 0.1367 0.2886 0.7094
18.202 1.508E-02 0.1200 0.1591 0.4356

1.349E+02 4.873E-02 6.265E-02 0.1279 4.968E-02
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.575 0.475 13.524 2.190E-02 0.1617 1.229 0.9113
21.360 1.714E-02 0.1040 0.1666 0.1268
29.217 3.700E-02 0.1012 0.2017 0.3852
15.006 2.525E-02 0.1512 0.6642 0.8348
80.848 8.327E-02 0.1066 8.429 0.9867

0.525 52.561 7.176E-02 0.1071 0.7393 0.8043
26.352 4.537E-02 0.1157 0.3781 0.6090
28.529 4.544E-02 0.1103 0.3317 0.5471
23.030 5.586E-02 0.1365 2.523 0.9434
17.138 1.090E-02 0.1173 0.2179 0.1914

0.575 21.818 1.843E-02 9.841E-02 0.2683 4.979E-02
3.019E+02 6.250E-02 6.840E-02 0.2902 0.2485
56.838 4.498E-02 7.592E-02 0.2738 0.1177
38.251 3.524E-02 8.078E-02 0.2707 4.649E-02
16.818 8.786E-03 0.1136 0.2688 0.1202

0.625 12.678 2.686E-02 0.1673 4.141 0.9471
27.414 4.628E-02 0.1108 0.5419 0.5733
49.572 7.569E-02 0.1115 2.059 0.8919
36.843 5.284E-02 0.1008 0.5069 0.5390
13.460 1.946E-02 0.1515 0.7600 0.7072

0.675 3.785E+02 5.488E-02 5.927E-02 0.4183 0.1933
38.411 4.576E-02 9.015E-02 0.5102 0.4223
42.189 4.167E-02 8.158E-02 0.4433 0.2873
32.045 3.916E-02 9.216E-02 0.4796 0.3712
68.547 5.923E-02 8.423E-02 0.5760 0.5025

0.725 18.111 1.845E-02 0.1098 0.6282 0.4499
55.991 2.930E-02 5.681E-02 0.4774 3.680E-02
28.883 1.653E-02 6.988E-02 0.4762 3.643E-02

1.271E+02 8.135E-02 9.456E-02 15.158 0.9788
39.797 3.263E-02 7.310E-02 0.5061 0.2305

0.775 92.360 6.802E-02 8.560E-02 5.388 0.9301
1.285E+02 5.885E-02 7.141E-02 1.111 0.6526
26.258 2.196E-02 8.212E-02 0.6676 0.3704
24.448 3.914E-02 0.1055 2.035 0.8141
18.731 3.322E-02 0.1199 4.344 0.9135

0.825 1.694E+02 4.875E-02 5.790E-02 1.200 0.6259
13.527 5.558E-03 0.1212 3.247 0.8659
40.570 3.088E-02 6.890E-02 1.001 0.5429
15.126 1.323E-02 0.1167 5.051 0.9140
20.210 2.749E-02 0.1049 9.810 0.9557



Appendix A4. Power spectral densities applied for analysis of distribution functions
of fatigue loads 229

α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.575 0.875 1.875E+02 4.336E-02 5.136E-02 3.039 0.8354
68.618 2.595E-02 4.748E-02 1.133 0.5382
59.771 1.953E-02 4.394E-02 0.9480 0.4292
19.996 1.463E-02 8.978E-02 1.982E+02 0.9975
40.985 8.440E-03 4.334E-02 0.8330 0.3164

0.925 26.685 5.252E-03 5.911E-02 6.623 0.9150
26.712 5.899E-03 5.971E-02 11.415 0.9507
28.631 3.734E-03 5.376E-02 2.410 0.7644
28.428 5.441E-03 5.595E-02 3.677 0.8466

2.051E+02 2.706E-02 3.406E-02 3.677 0.8463
0.975 62.968 4.846E-05 2.182E-02 5.137 0.8775

87.504 4.069E-03 1.974E-02 2.307E+02 0.9973
97.917 5.024E-03 1.904E-02 9.013E+02 0.9993

2.427E+02 9.160E-03 1.481E-02 59.472 0.9894
58.928 2.344E-04 2.351E-02 1.050E+02 0.9940

0.625 0.025 1.912E+02 2.141E-04 1.067E-02 2.967E-04 0.4252
1.459E+02 5.252E-04 1.423E-02 3.515E-03 0.9508
1.506E+02 9.277E-04 1.421E-02 4.866E-03 0.9629
1.853E+02 1.017E-03 1.181E-02 7.881E-04 0.8031
2.522E+02 2.804E-03 1.074E-02 8.003E-04 0.7667

0.075 58.574 4.488E-03 3.861E-02 3.342E-02 0.9514
1.654E+02 9.095E-03 2.117E-02 2.650E-03 0.1865
66.748 3.935E-03 3.387E-02 5.556E-03 0.7059

3.088E+02 1.222E-02 1.869E-02 2.756E-03 0.2312
61.077 4.976E-03 3.770E-02 2.862E-02 0.9437

0.125 60.335 8.582E-03 4.163E-02 7.730E-03 0.2295
84.204 1.783E-02 4.151E-02 1.253E-02 0.5700

1.211E+03 2.525E-02 2.690E-02 8.641E-03 0.2873
82.573 2.480E-02 4.896E-02 1.918 0.9973
34.321 1.807E-03 5.994E-02 1.540E-02 0.6965

0.175 5.406E+02 3.384E-02 3.751E-02 1.788E-02 0.2720
21.444 3.309E-03 9.612E-02 0.8249 0.9882
35.736 1.472E-02 7.039E-02 3.132E-02 0.6592
54.967 1.779E-02 5.396E-02 1.763E-02 0.2992
28.760 9.302E-03 7.849E-02 3.809E-02 0.7309

0.225 20.285 1.467E-02 0.1124 2.050 0.9912
29.953 1.137E-02 7.742E-02 2.931E-02 0.2666
52.998 2.934E-02 6.668E-02 3.624E-02 0.4201
30.410 1.779E-02 8.291E-02 4.118E-02 0.5259

1.080E+04 5.485E-02 5.503E-02 6.276E-02 0.6814
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.625 0.275 27.676 3.816E-02 0.1093 0.3545 0.9142
15.454 5.837E-03 0.1334 0.1561 0.8191
23.797 3.009E-02 0.1129 0.2076 0.8549
25.790 2.696E-02 0.1033 9.419E-02 0.6749
81.460 6.357E-02 8.774E-02 0.7502 0.9584

0.325 16.292 1.673E-02 0.1368 0.1591 0.7220
34.367 5.603E-02 0.1129 0.4605 0.8996
40.137 5.000E-02 9.865E-02 0.1364 0.6525
51.655 4.357E-02 8.124E-02 7.723E-02 0.3027

3.084E+02 7.686E-02 8.320E-02 0.2276 0.7932
0.375 21.558 3.952E-02 0.1292 0.2079 0.6824

49.637 7.899E-02 0.1179 3.844 0.9828
54.078 7.367E-02 0.1094 0.4113 0.8380
26.392 4.496E-02 0.1182 0.1766 0.6182
28.282 4.005E-02 0.1083 0.1255 0.4332

0.425 58.129 7.815E-02 0.1110 0.3483 0.7348
12.773 2.360E-02 0.1734 0.4597 0.8107
37.665 6.645E-02 0.1171 0.2875 0.6772

1.227E+04 9.413E-02 9.429E-02 0.3429 0.7298
46.976 5.511E-02 9.542E-02 0.1515 0.2973

0.475 17.429 1.977E-02 0.1252 0.1787 8.791E-02
34.763 8.599E-02 0.1400 2.797 0.9567
82.489 8.679E-02 0.1095 0.3950 0.6856
17.059 3.240E-02 0.1421 0.2365 0.4591
24.881 4.698E-02 0.1220 0.2231 0.4043

0.525 10.305 3.032E-02 0.2096 6.755 0.9775
19.743 5.481E-02 0.1480 0.4777 0.6656
14.781 1.511E-02 0.1364 0.2338 0.1158
47.583 6.877E-02 0.1071 0.2959 0.4101
30.358 7.362E-02 0.1342 0.5570 0.7129

0.575 65.230 6.938E-02 9.639E-02 0.3332 0.2854
28.371 8.218E-02 0.1456 1.326 0.8487
25.837 5.172E-02 0.1203 0.3485 0.3447
41.214 7.524E-02 0.1187 0.4721 0.5540
31.169 8.883E-02 0.1466 2.296 0.9128

0.625 38.228 6.282E-02 0.1077 0.4413 0.3554
20.724 2.965E-02 0.1083 0.3784 2.340E-02
15.278 6.351E-02 0.1782 6.313 0.9607
49.775 9.719E-02 0.1323 1.904 0.8683
25.795 4.171E-02 0.1064 0.3840 0.1373
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.625 0.675 10.913 9.594E-03 0.1624 0.5638 0.4106
31.645 8.657E-02 0.1401 3.100 0.9011
52.061 5.252E-02 8.295E-02 0.4683 0.1127
30.432 8.731E-02 0.1430 4.538 0.9326
19.924 7.625E-02 0.1613 30.455 0.9900

0.725 20.129 2.557E-02 0.1014 0.5673 0.1645
34.584 4.867E-02 9.399E-02 0.6149 0.2967
13.875 6.980E-03 0.1159 0.5571 0.1221

1.341E+02 9.270E-02 0.1048 1.600 0.7668
3.325E+02 6.121E-02 6.581E-02 0.5715 0.1730

0.775 18.921 9.880E-03 8.366E-02 0.6534 7.546E-02
14.659 2.838E-02 0.1341 1.168 0.6151
11.087 5.793E-03 0.1446 0.9220 0.4994

2.549E+02 5.887E-02 6.472E-02 0.7317 0.3043
10.661 1.220E-02 0.1583 1.364 0.6755

0.825 1.498E+02 6.123E-02 7.104E-02 1.284 0.5874
2.360E+02 8.129E-02 8.761E-02 14.204 0.9641
18.135 8.491E-03 8.565E-02 0.8252 0.2721
13.271 3.057E-03 0.1120 0.9649 0.4252
85.454 5.838E-02 7.561E-02 1.331 0.6031

0.875 29.625 3.686E-02 8.451E-02 3.434 0.8287
1.518E+02 5.371E-02 6.300E-02 2.612 0.7738
17.286 1.630E-02 9.772E-02 2.211 0.7319
41.585 3.326E-02 6.675E-02 1.481 0.5899
15.331 2.047E-02 0.1128 30.314 0.9807

0.925 48.219 2.125E-02 4.875E-02 2.333 0.7111
35.537 2.435E-02 6.197E-02 64.814 0.9898
38.767 9.927E-03 4.349E-02 1.465 0.5228

1.704E+02 9.523E-03 1.680E-02 1.099 0.3090
55.057 1.770E-02 4.151E-02 1.640 0.5799

0.975 1.519E+02 8.224E-03 1.646E-02 3.442 0.7827
1.799E+02 1.062E-02 1.760E-02 6.393 0.8837
76.094 1.379E-03 1.771E-02 2.338 0.6762
79.847 4.134E-04 1.592E-02 2.071 0.6323
44.135 1.181E-03 2.968E-02 32.469 0.9771

0.675 0.025 1.975E+02 1.491E-03 1.162E-02 3.619E-04 0.5422
5.050E+02 6.116E-03 1.008E-02 9.531E-03 0.9828
3.743E+02 4.981E-03 1.032E-02 8.933E-04 0.8020
1.478E+02 1.090E-03 1.463E-02 2.350E-03 0.9366
5.481E+03 5.355E-03 5.719E-03 2.653E-04 4.551E-02
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of fatigue loads

α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.675 0.075 88.762 5.188E-03 2.770E-02 2.291E-03 0.1634
93.408 4.845E-03 2.623E-02 2.195E-03 5.339E-03
61.604 7.044E-04 3.314E-02 2.248E-03 0.3041
72.980 1.069E-02 3.807E-02 5.536E-02 0.9714

1.416E+02 1.292E-02 2.703E-02 3.899E-03 0.5600
0.125 1.773E+02 3.185E-02 4.310E-02 2.543E-02 0.8020

54.430 1.058E-02 4.722E-02 7.636E-03 0.3064
28.765 5.264E-03 7.464E-02 0.7301 0.9942

1.513E+02 2.119E-02 3.436E-02 7.520E-03 0.1711
99.505 2.938E-02 4.943E-02 4.959E-02 0.8996

0.175 37.560 2.527E-02 7.824E-02 5.225E-02 0.8055
51.994 2.118E-02 5.942E-02 1.672E-02 0.2916

2.778E+02 5.097E-02 5.813E-02 9.544E-02 0.8883
73.986 2.820E-02 5.508E-02 1.814E-02 0.3544

2.099E+02 3.302E-02 4.248E-02 1.576E-02 0.1107
0.225 28.681 2.436E-02 9.345E-02 4.488E-02 0.5884

17.625 3.687E-03 0.1162 4.810E-02 0.6608
17.658 1.581E-02 0.1281 48.544 0.9997
29.610 2.191E-02 8.881E-02 3.565E-02 0.4644
40.988 2.878E-02 7.708E-02 3.213E-02 0.3628

0.275 16.504 2.203E-02 0.1415 0.2138 0.8694
23.321 2.605E-02 0.1105 6.190E-02 0.5083
43.252 5.814E-02 0.1037 0.1758 0.8271
16.517 1.403E-02 0.1334 8.512E-02 0.6727
50.071 5.962E-02 9.895E-02 0.1445 0.7887

0.325 12.146 1.053E-03 0.1624 9.844E-02 0.5847
17.538 4.315E-02 0.1547 0.6874 0.9359

1.364E+02 7.767E-02 9.198E-02 0.1277 0.6253
38.501 7.225E-02 0.1230 0.4647 0.9011
28.821 3.765E-02 0.1052 7.370E-02 0.2823

0.375 11.726 3.007E-03 0.1681 0.1105 0.4226
29.857 5.062E-02 0.1151 0.1140 0.3423
30.158 5.281E-02 0.1167 0.1200 0.3890
14.084 5.727E-03 0.1418 9.011E-02 7.837E-02
37.677 5.247E-02 0.1034 0.1040 0.2066

0.425 9.638 2.621E-02 0.2249 2.805 0.9695
18.143 3.465E-02 0.1389 0.1438 0.2385
35.015 5.314E-02 0.1064 0.1411 3.846E-02
87.973 7.373E-02 9.511E-02 0.1458 0.1806
20.940 6.726E-02 0.1584 0.3836 0.7592
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.675 0.475 1.797E+02 0.1293 0.1397 2.937 0.9571
20.000 4.222E-02 0.1339 0.1901 0.1198
33.714 6.219E-02 0.1166 0.1953 0.1596
25.770 6.845E-02 0.1408 0.2564 0.4758

3.309E+02 0.1338 0.1395 11.247 0.9888
0.525 14.468 4.008E-02 0.1655 0.2815 0.3390

31.506 0.1098 0.1680 1.946 0.9146
1.198E+02 0.1092 0.1245 0.4215 0.5871
20.359 8.089E-02 0.1709 0.6093 0.7254
36.247 8.512E-02 0.1354 0.3432 0.4783

0.575 13.113 3.282E-02 0.1654 0.3371 0.2238
29.022 6.046E-02 0.1185 0.3323 4.679E-02
60.324 0.1129 0.1424 0.7227 0.6963
29.491 7.443E-02 0.1338 0.3713 0.3274
9.846 2.946E-02 0.2106 0.4960 0.5627

0.625 13.370 4.156E-02 0.1679 0.4656 0.3313
47.492 6.947E-02 0.1029 0.4233 2.571E-02
9.504 4.449E-02 0.2267 1.196 0.7757
20.935 5.368E-02 0.1318 0.4243 0.1421
47.203 7.672E-02 0.1116 0.4309 0.1741

0.675 98.954 0.1041 0.1206 0.7371 0.5067
28.096 6.446E-02 0.1205 0.5427 0.2155
21.300 8.568E-02 0.1633 1.064 0.6742
11.636 4.297E-02 0.1841 0.7269 0.5083
53.792 9.110E-02 0.1213 0.6477 0.4183

0.725 11.583 5.551E-02 0.1922 1.651 0.7477
30.587 0.1005 0.1523 2.066 0.7979
20.267 5.413E-02 0.1289 0.7023 0.3085
25.744 8.752E-02 0.1487 1.324 0.6797
7.087 2.663E-02 0.2515 6.921 0.9413

0.775 9.719 3.025E-02 0.1840 1.502 0.6635
13.720 3.560E-02 0.1415 0.9362 0.4154
18.754 3.525E-02 0.1089 0.7859 0.2118
14.380 1.437E-02 0.1041 0.7518 5.643E-02
12.703 6.224E-02 0.1806 4.386 0.8869

0.825 23.842 6.637E-02 0.1254 2.424 0.7556
11.308 1.390E-02 0.1342 1.116 0.4268
23.370 6.807E-02 0.1284 2.864 0.7940
25.818 6.953E-02 0.1241 2.585 0.7711
67.615 8.822E-02 0.1091 3.015 0.8043
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.675 0.875 78.840 6.993E-02 8.666E-02 4.122 0.8347
22.831 3.733E-02 9.420E-02 1.792 0.6085
16.407 1.367E-02 9.019E-02 1.265 0.4116
57.274 6.658E-02 8.959E-02 3.997 0.8295
30.531 2.953E-03 3.870E-02 1.007 9.792E-02

0.925 31.457 1.520E-02 5.282E-02 1.672 0.5116
18.337 1.332E-02 7.974E-02 2.911 0.7314
19.759 5.917E-03 6.614E-02 1.759 0.5394
90.370 4.840E-02 6.199E-02 26.979 0.9714
29.647 1.962E-02 6.015E-02 2.015 0.6038

0.975 42.744 5.819E-03 3.235E-02 9.664 0.9104
1.318E+02 1.362E-02 2.221E-02 6.013 0.8556
32.879 1.532E-04 3.454E-02 4.936 0.8238

3.581E+02 1.799E-02 2.116E-02 17.511 0.9506
66.175 1.026E-02 2.739E-02 8.618 0.8994

0.725 0.025 7.475E+02 7.515E-03 1.019E-02 1.267E-03 0.8676
1.805E+02 3.760E-03 1.484E-02 3.033E-02 0.9949
4.427E+02 4.749E-03 9.267E-03 3.332E-04 0.5492
8.653E+02 4.665E-03 6.976E-03 2.056E-04 0.2018
5.744E+02 6.367E-03 9.848E-03 1.344E-03 0.8988

0.075 2.065E+02 2.072E-02 3.039E-02 1.220E-02 0.8790
67.774 3.871E-03 3.336E-02 2.064E-03 0.3110
88.878 1.016E-02 3.264E-02 3.252E-03 0.5571
92.231 8.459E-03 3.013E-02 2.343E-03 0.3560
63.157 2.694E-03 3.434E-02 2.008E-03 0.3338

0.125 27.770 7.390E-03 7.928E-02 1.460 0.9975
56.227 2.034E-02 5.584E-02 1.350E-02 0.6821

1.932E+02 3.100E-02 4.133E-02 1.051E-02 0.5589
51.868 8.949E-03 4.740E-02 5.720E-03 2.587E-02
50.958 2.332E-02 6.248E-02 4.773E-02 0.9110

0.175 17.998 1.635E-03 0.1124 6.938E-02 0.8952
24.368 1.159E-02 9.333E-02 2.656E-02 0.6906
34.728 2.991E-02 8.725E-02 6.712E-02 0.8665

2.133E+02 3.615E-02 4.546E-02 1.402E-02 5.059E-02
47.917 3.964E-02 8.119E-02 0.1107 0.9165

0.225 89.529 5.965E-02 8.180E-02 6.335E-02 0.7259
35.633 4.431E-02 9.997E-02 7.435E-02 0.7748
26.790 2.790E-02 0.1019 3.959E-02 0.5841
31.405 2.815E-02 9.127E-02 2.980E-02 0.4071
38.392 3.995E-02 9.159E-02 4.245E-02 0.5959
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.725 0.275 75.818 5.156E-02 7.744E-02 4.219E-02 9.655E-02
44.727 7.623E-02 0.1203 2.500 0.9889
91.032 8.326E-02 0.1049 0.2829 0.9009
14.269 2.029E-02 0.1588 0.1588 0.8473

1.500E+02 8.790E-02 0.1010 0.3037 0.9075
0.325 25.629 7.660E-02 0.1530 2.673 0.9843

39.449 7.265E-02 0.1222 0.1285 0.6606
44.353 7.733E-02 0.1214 0.1439 0.6981
21.909 4.340E-02 0.1327 8.256E-02 0.4681
82.847 6.719E-02 9.068E-02 6.801E-02 0.2159

0.375 11.445 3.931E-02 0.2091 0.5332 0.8929
13.342 2.771E-02 0.1730 0.1163 0.4768
27.213 6.323E-02 0.1342 0.1184 0.4280
26.902 5.849E-02 0.1302 0.1061 0.3321
61.835 7.093E-02 0.1019 9.707E-02 0.1183

0.425 9.881 3.687E-05 0.1926 0.1148 0.1485
33.977 6.917E-02 0.1246 0.1382 0.1459
8.014 1.252E-02 0.2526 0.4011 0.8109
13.022 6.032E-02 0.2074 0.4622 0.8164
9.225 4.153E-02 0.2496 5.051 0.9840

0.475 17.186 6.595E-02 0.1747 0.2335 0.4356
14.717 6.490E-02 0.1923 0.2869 0.5657
8.975 1.816E-02 0.2279 0.2252 0.4777
14.827 4.448E-02 0.1691 0.1863 0.1814
9.247 2.982E-02 0.2336 0.2963 0.6103

0.525 31.538 0.1009 0.1586 0.3348 0.4587
2.538E+02 0.1211 0.1282 0.3067 0.3824
32.895 8.509E-02 0.1392 0.2636 0.1631

2.074E+02 0.1463 0.1552 0.6635 0.7454
6.586 2.993E-02 0.3109 4.696 0.9681

0.575 38.931 0.1376 0.1832 0.9935 0.7764
1.343E+02 0.1073 0.1199 0.3497 0.1260
14.585 9.842E-02 0.2205 0.9141 0.7599
10.476 3.189E-02 0.1939 0.3309 8.542E-02
9.573 3.717E-02 0.2209 0.3715 0.3511

0.625 63.810 0.1101 0.1360 0.4782 0.2673
16.805 6.810E-02 0.1646 0.4514 0.1604
7.739 5.556E-02 0.2783 1.301 0.7876
7.222 4.004E-03 0.2298 0.4216 0.1239
36.227 9.088E-02 0.1351 0.4525 0.1165
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.725 0.675 63.578 9.083E-02 0.1134 0.5765 2.148E-02
1.056E+02 9.900E-02 0.1129 0.5748 8.025E-02

8.610 4.640E-02 0.2344 0.7490 0.4905
9.739 4.791E-02 0.2114 0.6423 0.3658
43.993 9.635E-02 0.1310 0.5842 0.1855

0.725 17.363 7.875E-02 0.1642 0.8186 0.3695
32.494 0.1014 0.1473 0.8548 0.4056
23.175 8.674E-02 0.1503 0.7964 0.3382
15.351 0.1043 0.2048 1.801 0.7458
15.356 5.211E-02 0.1397 0.7075 7.352E-02

0.775 29.715 8.045E-02 0.1259 0.9516 0.3167
17.148 4.115E-02 0.1096 0.8557 3.439E-02
39.841 0.1214 0.1575 2.005 0.7189
23.087 5.957E-02 0.1143 0.8683 0.1509
32.130 0.1228 0.1676 2.623 0.7872

0.825 18.864 4.437E-02 0.1075 1.070 0.2440
6.408 1.845E-02 0.2266 2.330 0.7142
13.894 1.371E-02 8.789E-02 1.004 3.460E-02
8.295 2.453E-02 0.1805 1.389 0.4920
27.759 6.596E-02 0.1109 1.180 0.3629

0.875 8.257E+02 0.1045 0.1060 7.119 0.8910
11.137 3.136E-02 0.1388 1.983 0.5948
8.881 3.517E-03 0.1325 1.433 0.4039
20.986 3.488E-02 8.836E-02 1.357 0.3534
16.166 7.015E-02 0.1460 11.479 0.9325

0.925 35.352 4.448E-02 7.556E-02 3.200 0.7183
26.743 1.886E-02 5.768E-02 1.723 0.4419
17.753 4.141E-02 0.1041 36.103 0.9754
9.783 2.600E-03 0.1146 2.872 0.6851
19.273 3.388E-02 9.112E-02 3.734 0.7598

0.975 22.185 4.023E-03 4.920E-02 86.867 0.9885
46.572 1.275E-02 3.419E-02 6.490 0.8457

1.032E+02 1.855E-02 2.823E-02 6.664 0.8497
26.788 6.627E-03 4.399E-02 12.749 0.9216
19.949 1.158E-03 5.140E-02 39.059 0.9745

0.775 0.025 1.807E+02 3.191E-03 1.426E-02 9.474E-04 0.8861
2.156E+02 4.953E-03 1.423E-02 9.314E-02 0.9987
1.711E+02 1.034E-03 1.272E-02 1.882E-04 0.4289
2.368E+02 2.221E-03 1.067E-02 1.687E-04 0.3141
2.466E+02 3.945E-03 1.206E-02 5.431E-04 0.8143
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.775 0.075 56.990 3.353E-03 3.843E-02 1.939E-03 0.5093
76.216 7.276E-03 3.350E-02 1.856E-03 0.3861
71.780 9.529E-03 3.738E-02 3.257E-03 0.6726
61.173 6.842E-03 3.952E-02 3.021E-03 0.6618
77.667 1.148E-02 3.722E-02 4.069E-03 0.7321

0.125 36.947 7.265E-03 6.131E-02 5.458E-03 0.4325
34.885 5.909E-03 6.316E-02 5.518E-03 0.4611

1.285E+02 2.383E-02 3.935E-02 5.315E-03 0.1100
1.863E+02 2.981E-02 4.053E-02 6.454E-03 0.3731
25.739 2.225E-03 7.983E-02 1.659E-02 0.8474

0.175 42.403 3.241E-02 7.940E-02 2.126E-02 0.6440
84.196 3.287E-02 5.650E-02 1.151E-02 0.1245
30.477 1.012E-02 7.548E-02 9.362E-03 0.1215
24.006 1.024E-02 9.329E-02 1.482E-02 0.5728
89.196 5.179E-02 7.413E-02 5.397E-02 0.8555

0.225 43.629 5.827E-02 0.1038 9.386E-02 0.8509
66.686 4.439E-02 7.412E-02 2.171E-02 0.1920
33.306 4.132E-02 0.1010 3.553E-02 0.6081
24.554 2.409E-02 0.1050 2.410E-02 0.4438
70.464 5.896E-02 8.714E-02 4.080E-02 0.6442

0.275 27.432 7.000E-02 0.1421 1.233 0.9816
16.414 3.499E-02 0.1556 0.1073 0.8085
53.278 5.575E-02 9.276E-02 3.727E-02 0.2419
99.364 7.710E-02 9.698E-02 5.869E-02 0.5814
22.535 3.161E-02 0.1193 3.568E-02 0.3197

0.325 1.340E+02 0.1101 0.1247 0.2228 0.8343
44.228 8.606E-02 0.1304 0.1156 0.6784
14.332 9.935E-03 0.1465 4.297E-02 1.116E-02
11.461 2.259E-02 0.1945 0.1187 0.7497
24.785 4.522E-02 0.1241 5.329E-02 0.1631

0.375 11.123 1.302E-02 0.1883 7.112E-02 0.2968
39.066 8.075E-02 0.1303 9.387E-02 0.3334
7.632 1.249E-02 0.2692 4.008 0.9898
10.911 3.780E-02 0.2168 0.1915 0.7546
17.495 6.146E-02 0.1727 0.1230 0.5652

0.425 8.040 3.330E-02 0.2739 0.5467 0.8807
31.959 9.808E-02 0.1580 0.1644 0.4877
21.423 9.199E-02 0.1816 0.2111 0.6233

1.012E+02 0.1473 0.1663 0.6801 0.8837
27.903 8.438E-02 0.1528 0.1345 0.3281
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.775 0.475 32.384 0.1428 0.2011 0.8299 0.8660
17.580 0.1104 0.2180 0.4933 0.7774
11.002 5.945E-02 0.2315 0.2383 0.5488
20.018 8.885E-02 0.1827 0.2040 0.4026

1.047E+02 0.1143 0.1320 0.1795 0.1804
0.525 6.954 5.938E-02 0.3273 2.026 0.9324

19.273 8.187E-02 0.1741 0.2422 7.803E-02
34.231 0.1003 0.1518 0.2473 3.902E-02
8.456 5.144E-02 0.2708 0.3442 0.5788
41.013 0.1089 0.1524 0.2474 0.1351

0.575 6.453 7.539E-03 0.2820 0.2888 0.2077
20.235 0.1099 0.1969 0.3768 0.3615

1.030E+02 0.1290 0.1455 0.3416 0.1299
12.914 0.1320 0.2709 1.766 0.8836
6.669 4.067E-02 0.3116 0.4989 0.6131

0.625 56.527 0.1207 0.1482 0.4612 2.987E-02
8.268 0.1082 0.3173 2.746 0.9015
8.770 0.1146 0.3116 2.873 0.9053
5.513 5.129E-02 0.3676 1.732 0.8522
9.803 6.439E-02 0.2328 0.4481 0.2216

0.675 7.345 9.061E-02 0.3138 1.549 0.7674
7.985 6.311E-02 0.2622 0.6570 0.3753
43.821 0.1248 0.1589 0.6059 0.1693
7.442 5.619E-02 0.2702 0.6539 0.3768

1.194E+02 0.1453 0.1582 0.6368 0.2858
0.725 9.994 8.792E-02 0.2356 0.9223 0.4320

9.880 6.349E-02 0.1987 0.7609 0.1277
11.790 8.132E-02 0.1996 0.7836 0.2278
6.855 3.724E-02 0.2385 0.7560 0.1790
16.348 8.833E-02 0.1690 0.7671 0.1124

0.775 66.967 0.1047 0.1223 0.9594 0.1418
19.345 7.771E-02 0.1359 0.9524 8.193E-02
73.290 9.260E-02 0.1072 0.9563 2.457E-02
5.806 4.229E-02 0.2788 1.295 0.5160
17.323 9.114E-02 0.1637 0.9974 0.2547

0.825 38.191 7.406E-02 0.1007 1.155 0.1497
22.543 4.689E-02 8.562E-02 1.141 1.232E-02
19.907 5.632E-02 0.1054 1.144 0.1062
12.577 5.651E-02 0.1427 1.191 0.2307
30.526 6.716E-02 9.972E-02 1.148 0.1240
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.775 0.875 2.086E+02 0.1429 0.1483 36.995 0.9765
13.021 2.842E-02 9.966E-02 1.395 0.2314
23.594 7.195E-02 0.1162 1.704 0.4397
31.661 9.523E-03 3.189E-02 1.312 1.528E-02
31.941 5.549E-02 8.544E-02 1.435 0.2728

0.925 1.085E+02 7.582E-02 8.480E-02 3.646 0.7188
16.319 4.072E-02 9.917E-02 2.613 0.5996
39.254 5.369E-02 7.772E-02 2.405 0.5607
5.429 1.623E-03 0.1843 7.794 0.8706
9.497 3.670E-02 0.1406 5.729 0.8231

0.975 22.100 9.866E-03 4.840E-02 5.436 0.7888
76.237 2.788E-02 3.914E-02 11.613 0.9017
34.831 1.739E-02 4.186E-02 5.738 0.8000
19.899 9.280E-03 5.222E-02 6.437 0.8220
18.469 9.591E-03 5.602E-02 9.201 0.8758

0.825 0.025 1.978E+02 2.984E-03 1.310E-02 3.094E-04 0.7712
1.751E+02 3.035E-03 1.445E-02 3.051E-03 0.9783
1.652E+02 2.605E-03 1.471E-02 1.045E-03 0.9358
2.547E+02 3.356E-03 1.121E-02 1.588E-04 0.4431
1.838E+02 3.229E-03 1.411E-02 4.663E-03 0.9859

0.075 84.765 1.231E-02 3.590E-02 2.424E-03 0.6739
66.776 7.224E-03 3.716E-02 1.652E-03 0.5725
86.830 1.734E-02 4.036E-02 2.433 0.9997
59.417 5.309E-03 3.896E-02 1.666E-03 0.6215
69.352 1.371E-02 4.254E-02 4.856E-02 0.9843

0.125 24.135 6.298E-04 8.344E-02 4.479E-02 0.9681
31.964 1.402E-03 6.392E-02 2.892E-03 0.4471
74.254 3.542E-02 6.232E-02 1.911 0.9987
37.734 1.361E-02 6.655E-02 7.107E-03 0.7055
50.956 2.856E-02 6.776E-02 0.2002 0.9878

0.175 26.489 1.147E-02 8.681E-02 7.940E-03 0.4493
29.992 2.265E-02 8.917E-02 1.351E-02 0.6425
45.433 2.805E-02 7.194E-02 9.146E-03 0.3671
62.634 4.483E-02 7.667E-02 2.122E-02 0.7354
79.787 5.538E-02 8.038E-02 9.806E-02 0.9422

0.225 22.250 1.840E-02 0.1079 1.421E-02 0.3820
44.872 6.219E-02 0.1065 7.244E-02 0.8593
39.277 3.377E-02 8.437E-02 1.441E-02 0.1109
30.416 4.362E-02 0.1091 3.131E-02 0.6896
36.634 4.416E-02 9.848E-02 2.249E-02 0.5447



240
Appendix A4. Power spectral densities applied for analysis of distribution functions
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.825 0.275 13.250 2.866E-02 0.1786 0.2385 0.9455
22.054 3.762E-02 0.1276 2.896E-02 0.4351

1.709E+02 8.508E-02 9.667E-02 4.262E-02 0.5694
41.795 5.705E-02 0.1044 2.901E-02 0.3335
54.326 5.462E-02 9.098E-02 2.585E-02 4.726E-02

0.325 13.610 3.521E-02 0.1805 6.175E-02 0.6420
67.644 0.1053 0.1345 0.1167 0.7625
19.259 3.867E-02 0.1410 3.691E-02 0.2071
35.565 6.892E-02 0.1243 4.587E-02 0.3290
26.871 5.259E-02 0.1258 3.944E-02 0.1426

0.375 11.683 6.862E-02 0.2368 1.903 0.9813
24.362 6.442E-02 0.1444 6.111E-02 0.1393
51.282 8.231E-02 0.1201 6.464E-02 6.745E-03
69.484 9.109E-02 0.1191 6.506E-02 0.1308
36.064 8.629E-02 0.1404 7.098E-02 0.3341

0.425 53.945 0.1126 0.1484 0.1075 0.3389
8.626 1.203E-02 0.2388 7.259E-02 0.3920
10.979 5.806E-02 0.2354 0.1447 0.6351
34.789 0.1011 0.1566 0.1039 0.3121
17.956 8.267E-02 0.1906 0.1151 0.4575

0.475 22.183 0.1247 0.2108 0.2359 0.6210
51.147 0.1215 0.1584 0.1459 0.2230
54.510 0.1323 0.1672 0.1638 0.3820
28.961 0.1566 0.2226 0.6291 0.8603
11.530 7.245E-02 0.2386 0.1654 0.4913

0.525 48.878 0.1269 0.1638 0.2074 4.184E-02
31.890 0.1171 0.1737 0.2051 4.818E-02
9.465 0.1191 0.3182 2.179 0.9470

8.449E+02 0.1844 0.1866 0.3412 0.6141
13.619 8.792E-02 0.2239 0.1978 0.2488

0.575 14.931 0.1140 0.2339 0.3018 0.3052
1.454E+03 0.2222 0.2234 0.9186 0.8048

9.817 7.656E-02 0.2587 0.2715 0.2190
87.850 0.1563 0.1764 0.2984 0.2023
20.612 0.1626 0.2509 0.5329 0.6602

0.625 8.689 0.1133 0.3153 0.6026 0.5937
6.466 4.289E-02 0.3042 0.3555 0.1269
14.579 0.1116 0.2223 0.4108 5.853E-02
3.801 1.328E-02 0.4929 1.961 0.9096
39.865 0.1450 0.1848 0.4227 2.475E-02
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.825 0.675 28.881 0.1834 0.2397 0.7480 0.5018
54.643 0.2108 0.2409 0.9489 0.6241
18.554 0.1316 0.2106 0.5786 7.503E-02
15.417 0.9779 1.000 1.368E+02 0.2658
4.373 1.853E-02 0.4052 0.5575 0.4457

0.725 29.591 0.1692 0.2181 0.8499 0.3480
0.7790 0.1243 1.000 14.148 0.1233
5.538 0.1246 0.4059 3.754 0.8821
28.053 0.2286 0.2833 2.924 0.8410
6.765 9.188E-02 0.3110 0.8439 0.3861

0.775 5.559 0.1292 0.3815 4.638 0.8712
10.887 0.1663 0.2929 2.074 0.7002
86.872 0.1407 0.1529 1.022 8.296E-02
44.500 0.2088 0.2396 1.899 0.6679
6.333 0.1004 0.3136 1.334 0.5130

0.825 8.398 7.629E-02 0.1927 1.293 0.2095
61.476 9.168E-02 0.1038 1.274 1.353E-02
6.609 4.943E-02 0.1786 1.263 9.215E-02
31.408 9.137E-02 0.1165 1.268 4.640E-02
11.204 0.1680 0.2765 4.408 0.8221

0.875 23.647 1.917E-02 4.164E-02 1.485 1.103E-02
8.333 1.386E-02 8.854E-02 1.490 7.514E-02
15.600 0.1577 0.2244 10.754 0.9107
9.177 3.187E-03 6.211E-02 1.484 1.698E-02
5.527 3.372E-02 0.1932 1.680 0.3342

0.925 8.440E+02 7.791E-02 7.883E-02 2.326 0.4742
19.040 6.078E-02 0.1020 2.392 0.4920
8.408 4.200E-02 0.1378 2.613 0.5428
18.694 6.682E-02 0.1097 2.581 0.5357
36.157 5.444E-02 7.489E-02 2.097 0.3990

0.975 9.855 1.405E-02 8.608E-02 46.340 0.9722
39.148 3.554E-02 5.354E-02 8.580 0.8490

5.623E+02 3.087E-02 3.208E-02 4.061 0.6757
11.504 1.117E-02 7.204E-02 6.358 0.7956
9.887 1.472E-02 8.653E-02 1.020E+02 0.9873

0.875 0.025 2.434E+03 6.433E-03 7.254E-03 9.834E-05 0.4005
2.285E+02 3.643E-03 1.240E-02 3.928E-04 0.9017
2.007E+02 1.031E-03 1.100E-02 5.678E-05 0.5008
2.706E+02 2.872E-03 1.026E-02 7.854E-05 0.4531
2.072E+02 1.033E-04 9.755E-03 2.976E-05 0.2438
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.875 0.075 85.356 4.904E-03 2.833E-02 4.818E-04 0.1093
59.696 1.440E-04 3.364E-02 3.789E-04 0.5015
77.875 9.618E-03 3.529E-02 1.250E-03 0.6768

1.773E+02 2.163E-02 3.291E-02 7.496E-03 0.9312
62.777 7.264E-03 3.912E-02 1.922E-03 0.8252

0.125 30.269 3.876E-03 6.993E-02 5.833E-03 0.8819
31.032 2.044E-03 6.647E-02 2.917E-03 0.7878

1.300E+02 2.411E-02 3.948E-02 2.303E-03 0.1501
71.721 2.662E-02 5.449E-02 5.129E-03 0.7109
35.202 9.388E-03 6.618E-02 4.396E-03 0.7898

0.175 47.102 4.556E-02 8.795E-02 0.2720 0.9883
26.121 1.633E-02 9.281E-02 9.465E-03 0.7706
23.072 1.366E-02 0.1003 1.948E-02 0.8996
63.885 3.249E-02 6.374E-02 5.366E-03 0.3259
19.674 9.955E-04 0.1026 2.432E-02 0.9518

0.225 46.630 3.563E-02 7.835E-02 8.432E-03 6.590E-02
1.951E+02 7.582E-02 8.604E-02 3.134E-02 0.7960
39.099 5.201E-02 0.1030 2.356E-02 0.7509
29.669 2.061E-02 8.782E-02 6.644E-03 7.877E-02

8.510E+02 6.313E-02 6.548E-02 1.080E-02 0.3203
0.275 48.808 5.566E-02 9.638E-02 1.584E-02 0.2163

13.029 1.693E-02 0.1700 9.003E-02 0.9408
40.979 4.889E-02 9.737E-02 1.482E-02 0.1247
16.420 4.388E-03 0.1259 6.973E-03 0.3249
17.660 3.695E-02 0.1498 3.541E-02 0.7851

0.325 14.624 1.541E-02 0.1515 1.430E-02 0.2950
55.747 8.272E-02 0.1183 3.081E-02 0.4102
10.226 1.456E-02 0.2094 0.1773 0.9573
19.072 2.964E-02 0.1336 1.762E-02 4.879E-02
11.780 2.093E-02 0.1900 3.941E-02 0.7764

0.375 12.115 1.370E-03 0.1654 1.341E-02 2.731E-02
47.206 8.780E-02 0.1295 3.974E-02 0.1924

3.308E+02 0.1243 0.1303 5.969E-02 0.5465
24.557 6.706E-02 0.1473 3.651E-02 0.2009
28.788 0.1169 0.1855 0.2586 0.9051

0.425 10.706 2.583E-02 0.2103 3.558E-02 0.2834
54.290 0.1319 0.1680 9.405E-02 0.5793
19.169 7.219E-02 0.1742 5.319E-02 0.1747
10.166 6.606E-03 0.2013 2.365E-02 0.1131
13.061 4.370E-02 0.1941 4.294E-02 0.1830
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.875 0.475 22.741 0.1571 0.2427 0.4790 0.8868
14.689 7.201E-02 0.2036 7.560E-02 0.1073
83.005 0.1972 0.2206 1.587 0.9648
10.821 4.021E-02 0.2197 6.002E-02 3.098E-02
6.266 2.002E-03 0.3181 0.1030 0.8137

0.525 17.585 0.1019 0.2086 0.1264 2.109E-02
38.833 0.1433 0.1921 0.1375 0.2429
6.878 2.888E-02 0.3129 9.365E-02 0.5024
10.977 8.444E-02 0.2595 0.1236 0.3661
12.250 8.172E-02 0.2372 0.1137 0.1567

0.575 57.148 0.1660 0.1980 0.2025 0.1542
8.371 9.758E-02 0.3242 0.2324 0.5563
7.038 0.1234 0.3937 2.462 0.9603
6.401 3.726E-02 0.3372 0.1310 0.3873
24.061 0.2132 0.2914 0.9314 0.8737

0.625 8.665 0.1869 0.3990 7.854 0.9794
6.006 0.1273 0.4365 1.750 0.9184
5.109 6.320E-03 0.3772 0.1349 0.2173
12.349 0.1279 0.2701 0.2829 0.1380
6.378 9.800E-02 0.3892 0.3911 0.6352

0.675 4.482 2.884E-02 0.4327 0.2875 0.3381
13.547 0.1868 0.3139 0.5507 0.4958
12.197 0.1623 0.3010 0.4600 0.3297
8.532 0.1400 0.3421 0.4724 0.4158
11.372 0.1665 0.3172 0.4954 0.4225

0.725 7.063 0.1305 0.3474 0.6480 0.2775
7.789 0.1956 0.4048 1.413 0.7378
45.845 0.1996 0.2280 0.7071 1.433E-02
3.765 8.098E-02 0.5328 1.198 0.7504
13.322 0.2279 0.3490 1.162 0.6666

0.775 83.672 0.2268 0.2421 1.014 0.2893
3.286 4.859E-02 0.3884 0.9209 4.057E-02
25.599 0.2575 0.3130 1.546 0.6257
14.302 0.1785 0.2617 0.9869 0.1787
18.549 0.2104 0.2823 1.063 0.3722

0.825 24.639 0.2267 0.2735 1.748 0.5157
9.379 0.1303 0.2086 1.356 6.636E-02
9.192 0.1722 0.2921 1.512 0.4059
7.935 0.1204 0.2012 1.373 1.075E-02
4.274 0.1083 0.3739 1.504 0.4251
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.875 0.875 4.676 6.687E-02 0.2087 1.714 0.2198
5.832 3.902E-02 0.1105 1.664 4.895E-02
3.390 2.389E-03 0.1025 1.667 3.740E-03
15.547 0.1398 0.1893 1.830 0.3276
7.171 4.585E-02 0.1041 1.665 4.985E-02

0.925 29.317 9.349E-02 0.1140 2.394 0.4162
20.727 5.293E-02 7.744E-02 2.112 0.2936
7.948 5.108E-02 0.1215 2.232 0.3546
4.666 1.972E-02 0.1346 2.167 0.3243
2.507 3.843E-02 0.3382 7.965 0.8433

0.975 42.125 1.600E-02 2.733E-02 3.286 0.5366
6.482 2.890E-02 0.1135 13.633 0.8935
22.974 6.393E-02 8.790E-02 99.798 0.9855
7.921 1.465E-02 8.013E-02 4.503 0.6710
5.625 1.980E-03 9.433E-02 4.548 0.6745

0.925 0.025 8.407E+02 4.826E-03 7.205E-03 4.083E-05 0.4238
2.380E+02 2.626E-03 1.103E-02 0.1398 0.9999
2.596E+02 9.579E-05 7.801E-03 1.370E-05 0.8801
2.670E+03 6.318E-03 7.067E-03 5.547E-05 0.5278
2.789E+02 1.615E-06 7.172E-03 1.622E-05 0.9350

0.075 1.627E+02 1.536E-02 2.765E-02 8.495E-04 0.7667
92.055 6.930E-03 2.866E-02 3.494E-04 0.6735

1.134E+02 1.248E-02 3.012E-02 9.966E-04 0.8315
1.096E+02 4.220E-03 2.246E-02 1.332E-04 0.1716
1.336E+02 1.288E-02 2.785E-02 6.369E-04 0.7185

0.125 48.036 1.337E-02 5.500E-02 3.755E-03 0.9104
1.104E+02 2.339E-02 4.151E-02 1.331E-03 0.5373
2.752E+02 3.550E-02 4.277E-02 4.462E-03 0.8511
63.350 1.714E-02 4.870E-02 1.501E-03 0.6940
66.205 1.613E-03 3.182E-02 1.243E-04 0.1020

0.175 43.863 5.235E-03 5.082E-02 4.816E-04 0.1348
43.878 2.115E-02 6.671E-02 2.275E-03 0.5991
38.545 5.165E-03 5.704E-02 5.673E-04 0.4539
56.472 3.486E-02 7.025E-02 6.347E-03 0.8118
30.925 6.135E-03 7.080E-02 2.752E-03 0.9003

0.225 30.543 2.736E-02 9.279E-02 5.137E-03 0.7013
27.755 1.966E-02 9.168E-02 3.667E-03 0.6809
22.517 1.539E-02 0.1042 5.253E-02 0.9845
67.977 3.498E-02 6.435E-02 3.346E-03 3.191E-02
23.496 6.382E-03 9.149E-02 4.802E-03 0.9135
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.925 0.275 47.162 6.876E-02 0.1111 2.418E-02 0.8363
19.948 1.079E-02 0.1110 3.767E-03 0.7580
25.323 8.821E-03 8.776E-02 1.478E-03 0.2553
36.370 4.937E-02 0.1043 8.657E-03 0.5841
90.314 7.045E-02 9.254E-02 1.122E-02 0.6125

0.325 36.986 6.692E-02 0.1208 1.387E-02 0.5532
21.990 5.323E-02 0.1440 1.954E-02 0.7597
19.016 9.447E-03 0.1146 2.425E-03 0.4649
23.840 5.907E-02 0.1428 2.207E-02 0.7700
26.917 5.512E-02 0.1292 1.275E-02 0.5806

0.375 16.474 1.063E-02 0.1319 3.204E-03 0.3864
3.634E+02 0.1070 0.1125 2.036E-02 0.4485
2.452E+02 9.749E-02 0.1056 1.692E-02 0.2678
34.377 7.905E-02 0.1369 1.861E-02 0.4689
31.312 5.998E-02 0.1235 1.292E-02 0.1041

0.425 17.030 6.972E-02 0.1865 2.741E-02 0.5992
13.690 1.088E-02 0.1568 4.443E-03 0.4381
16.808 3.867E-03 0.1228 1.897E-03 7.924E-02
13.961 8.000E-02 0.2225 0.1721 0.9403
18.472 6.459E-04 0.1089 1.055E-03 6.468E-02

0.475 11.717 9.631E-02 0.2657 1.706 0.9911
32.515 0.1207 0.1815 4.497E-02 0.4951
65.824 0.1194 0.1494 3.582E-02 0.1845

1.155E+02 0.1457 0.1628 4.935E-02 0.5141
10.270 6.543E-03 0.2011 1.057E-02 0.8251

0.525 10.522 1.073E-03 0.1910 4.133E-03 0.6321
10.824 2.078E-02 0.2047 1.103E-02 0.1815
13.009 0.1091 0.2609 8.509E-02 0.7028
19.322 0.1101 0.2119 5.087E-02 0.3523

1.381E+02 0.2177 0.2319 1.840 0.9821
0.575 6.381 4.462E-02 0.3561 1.515 0.9917

11.273 0.1589 0.3328 0.9539 0.9583
8.249 2.354E-02 0.2648 1.863E-02 0.4657
32.941 0.2196 0.2789 0.6207 0.9231
29.957 0.1376 0.2017 7.990E-02 4.525E-03

0.625 66.910 0.2563 0.2851 0.4056 0.8166
8.636 0.1178 0.3434 0.1358 0.6180
15.756 0.1891 0.3116 0.2224 0.6875
11.613 0.1809 0.3476 0.3449 0.8141
18.597 0.1520 0.2545 0.1164 0.1977
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.925 0.675 17.385 0.1891 0.2962 0.2008 0.3124
21.565 0.2447 0.3321 0.3758 0.6930
6.832 0.1685 0.4490 0.8686 0.9038
16.579 0.1731 0.2834 0.1945 0.1180
56.400 0.2395 0.2727 0.2334 0.4320

0.725 4.967 8.692E-02 0.4714 0.1973 0.5412
3.816 3.525E-02 0.5514 0.7998 0.9623

1.422E+02 0.2606 0.2728 0.3519 0.2139
27.868 0.2728 0.3373 0.4552 0.5528
8.619 0.1949 0.4067 0.3838 0.5470

0.775 5.585 0.2009 0.5103 0.8060 0.6627
10.108 0.3148 0.4824 2.681 0.8859
0.5330 0.4051 1.000 5.866 0.1725

2.026E+02 0.3743 0.3826 1.487 0.7820
4.034 6.393E-02 0.5191 0.2381 0.3105

0.825 23.973 0.2756 0.3211 1.124 0.1924
4.832 0.1893 0.4619 1.033 0.3389
43.980 0.3340 0.3651 1.317 0.5189
2.533 8.688E-02 0.5386 0.8875 3.599E-02
12.190 0.2517 0.3303 1.149 9.363E-02

0.875 6.805 0.2527 0.3929 2.116 0.5057
8.679 0.1712 0.1938 1.827 1.277E-02
2.326 0.1223 0.5796 2.028 0.5385
1.150 7.795E-02 0.3238 1.799 4.557E-02
7.395 0.1703 0.1999 1.822 2.294E-02

0.925 5.143 1.824E-02 5.899E-02 2.197 0.1851
11.763 1.155E-02 2.755E-02 2.181 0.1692
4.963 8.605E-02 0.1532 2.321 0.2821
1.679 1.858E-02 0.2088 2.296 0.2682
3.145 0.1019 0.2415 2.507 0.3773

0.975 4.815 1.866E-02 8.316E-02 3.865 0.5629
3.378 2.814E-02 0.1290 4.687 0.6460
3.537 1.783E-02 0.1096 4.168 0.5980
2.017 4.021E-03 0.1797 5.329 0.6912
2.529 5.297E-02 0.2058 20.344 0.9207

0.975 0.025 1.979E+03 3.190E-03 4.200E-03 4.591E-06 0.4080
3.462E+03 3.490E-03 4.068E-03 4.711E-06 0.2569
8.875E+02 3.766E-03 6.019E-03 2.697E-05 0.9180
4.097E+03 4.089E-03 4.578E-03 1.055E-05 0.7448
7.091E+02 3.360E-03 6.181E-03 1.960E-05 0.8773
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.975 0.075 2.363E+02 9.325E-03 1.779E-02 3.051E-04 0.9490
2.336E+02 3.393E-03 1.195E-02 5.405E-05 0.9721
2.356E+02 6.020E-03 1.451E-02 2.709E-05 0.6344
2.731E+02 3.497E-03 1.082E-02 6.815E-06 0.3526
2.851E+02 6.725E-03 1.374E-02 2.775E-05 0.3880

0.125 2.372E+02 1.482E-02 2.325E-02 1.161E-04 0.4198
2.243E+02 2.084E-02 2.976E-02 9.448E-04 0.9255
1.498E+02 5.392E-03 1.874E-02 3.590E-05 0.8921
2.268E+02 1.706E-02 2.588E-02 1.843E-04 0.6275
1.619E+02 6.926E-03 1.928E-02 2.634E-05 0.3883

0.175 89.189 1.898E-02 4.140E-02 9.708E-04 0.9264
1.715E+02 2.369E-02 3.535E-02 3.280E-04 0.5587
1.018E+02 1.002E-02 2.966E-02 6.790E-05 0.6533
3.615E+02 3.153E-02 3.706E-02 7.070E-04 0.7617
6.598E+02 3.222E-02 3.526E-02 6.108E-04 0.7123

0.225 3.281E+02 4.729E-02 5.339E-02 1.533E-02 0.9806
86.480 2.409E-02 4.722E-02 4.156E-04 0.5985

1.497E+02 3.534E-02 4.869E-02 8.444E-04 0.6808
3.687E+02 3.168E-02 3.710E-02 4.429E-04 0.1989
76.485 1.596E-02 4.211E-02 1.809E-04 0.5931

0.275 3.319E+02 6.065E-02 6.667E-02 0.5773 0.9992
60.194 3.845E-02 7.167E-02 1.170E-02 0.9762
53.591 2.005E-02 5.737E-02 9.132E-04 0.9171
59.673 2.194E-02 5.545E-02 3.862E-04 0.6616
95.743 2.803E-02 4.891E-02 4.834E-04 0.1333

0.325 80.237 4.903E-02 7.395E-02 1.730E-03 0.6508
45.576 4.290E-02 8.678E-02 3.570E-02 0.9898
50.594 2.460E-02 6.413E-02 4.482E-04 0.6031

2.683E+02 5.316E-02 6.062E-02 1.308E-03 0.3856
44.630 2.448E-02 6.929E-02 9.902E-04 0.8758

0.375 44.740 4.703E-02 9.172E-02 2.252E-03 0.7452
51.467 2.528E-02 6.413E-02 4.183E-04 0.1768

1.187E+02 7.822E-02 9.506E-02 1.009E-02 0.8976
88.170 7.837E-02 0.1010 4.853E-02 0.9793
96.565 8.030E-02 0.1010 3.338 0.9997

0.425 36.055 4.177E-02 9.722E-02 1.490E-03 0.6399
45.456 3.517E-02 7.915E-02 8.751E-04 0.1374
46.897 2.331E-02 6.595E-02 3.678E-04 4.040E-03
36.243 3.982E-02 9.499E-02 1.303E-03 0.6230
46.491 2.123E-02 6.424E-02 2.712E-04 0.1210
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.975 0.475 36.725 3.543E-02 8.987E-02 8.667E-04 0.2300
46.140 8.379E-02 0.1271 7.134E-03 0.7546
42.000 4.315E-02 9.073E-02 1.444E-03 1.166E-02
42.541 9.671E-02 0.1437 0.5964 0.9970
47.133 1.712E-02 5.955E-02 1.403E-04 5.555E-02

0.525 25.845 3.972E-02 0.1171 1.526E-03 0.7395
29.542 3.176E-02 9.945E-02 6.507E-04 0.5456
26.957 3.142E-02 0.1056 1.437E-03 0.8831
30.076 3.609E-02 0.1026 8.603E-04 0.4039
31.051 2.438E-02 8.879E-02 5.622E-04 0.8535

0.575 35.591 7.286E-02 0.1289 4.299E-03 8.151E-02
1.402E+02 0.1089 0.1231 7.010E-03 0.1883
24.480 8.698E-02 0.1686 8.938E-03 0.7410
28.386 2.647E-02 9.692E-02 4.769E-04 0.7851
26.287 3.041E-02 0.1065 6.752E-04 0.7503

0.625 36.597 0.1132 0.1677 9.840E-03 0.4104
24.700 8.184E-02 0.1627 5.542E-03 0.3585
25.360 7.135E-02 0.1501 4.367E-03 0.1668
21.095 4.752E-02 0.1423 1.705E-03 0.5581
25.193 3.916E-02 0.1185 1.006E-03 0.1865

0.675 32.861 2.097E-02 8.183E-02 1.257E-04 0.2115
25.805 0.1254 0.2026 1.400E-02 0.4715
30.101 2.290E-02 8.934E-02 1.504E-04 0.4423
17.719 4.417E-02 0.1570 2.407E-02 0.9885
31.049 2.118E-02 8.559E-02 1.295E-04 0.7078

0.725 16.036 8.502E-02 0.2095 6.747E-03 0.3497
5.366E+02 0.1813 0.1850 2.539E-02 0.1012
17.830 0.1188 0.2305 1.413E-02 0.3995
14.872 5.394E-02 0.1884 7.347E-03 0.9340
21.836 3.320E-02 0.1248 4.373E-04 0.4615

0.775 26.662 2.502E-02 0.1000 1.600E-04 8.419E-02
14.273 0.1146 0.2539 1.518E-02 0.2157
23.295 2.769E-02 0.1135 2.181E-04 0.7573
10.639 0.1457 0.3329 5.765E-02 0.8631
13.760 8.342E-02 0.2284 6.583E-03 0.2568

0.825 8.415 0.1593 0.3956 6.131E-02 0.8099
24.451 2.530E-02 0.1071 1.033E-04 0.7430
54.042 0.3119 0.3480 0.1413 0.6438
59.039 1.001E-02 4.388E-02 2.485E-06 0.4302

4.178E-02 0.1534 1.000 12.140 0.1613
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α1 α2/α1
Term 1 Term 2

A1 ω1,0 ω1,1 A2 ω2,0

0.975 0.875 17.600 3.619E-02 0.1498 2.911E-04 1.943E-02
5.562 0.2133 0.5686 1.153 0.9796
9.119 9.229E-02 0.3106 9.253E-03 3.939E-02
12.248 5.490E-02 0.2181 1.047E-03 0.3695
5.999 0.1680 0.4992 0.1038 0.8756

0.925 5.153 0.3899 0.5849 1.147 0.1328
3.923 0.1951 0.6956 0.1005 0.6415
33.035 1.784E-02 7.838E-02 2.689E-06 0.5513
4.189 0.1688 0.6429 4.776E-02 0.7034
37.126 1.587E-02 6.974E-02 8.831E-06 0.9649

0.975 1.682 8.906E-02 0.1508 3.924 0.5168
6.823 0.1068 0.1217 3.899 0.5130
1.263 0.1205 0.2234 4.223 0.5572
1.068 2.153E-02 9.694E-02 3.697 0.4808
0.5512 1.881E-02 0.1973 3.862 0.5077
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