
Efficient and Explainable

Neural Ranking

Von der Fakultät für Elektrotechnik und Informatik
der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des akademischen Grades

Doktor rerum naturalium

(abgekürzt: Dr. rer. nat.)

genehmigte Dissertation

von Herrn

M. Sc. Lutz Jurek Leonhardt

geboren am 13. September 1993
in Hannover, Deutschland

2023

Efficient and Explainable Neural Ranking

Dissertation

Lutz Jurek Leonhardt

Referent: Prof. Dr. techn. Wolfgang Nejdl
Leibniz Universität Hannover

Korreferent: Prof. Dr. Avishek Anand
Technische Universiteit Delft

Korreferent: Prof. Dr. Michael Rohs
Leibniz Universität Hannover

Vorsitz: Prof. Dr. Ziawasch Abedjan
Leibniz Universität Hannover

Tag der Promotion: 13. Dezember 2023

Abstract

The recent availability of increasingly powerful hardware has caused a shift from traditional
information retrieval (IR) approaches based on term matching, which remained the state
of the art for several decades, to large pre-trained neural language models. These neural
rankers achieve substantial improvements in performance, as their complexity and extensive
pre-training give them the ability of understanding natural language in a way. As a result,
neural rankers go beyond term matching by performing relevance estimation based on the
semantics of queries and documents.

However, these improvements in performance don’t come without sacrifice. In this thesis,
we focus on two fundamental challenges of neural rankingmodels, specifically, ones based on
large language models: On the one hand, due to their complexity, the models are inefficient;
they require considerable amounts of computational power, which often comes in the form
of specialized hardware, such as GPUs or TPUs. Consequently, the carbon footprint is an
increasingly important aspect of systems using neural IR. This effect is amplified when low
latency is required, as in, for example, web search. On the other hand, neural models are
known for being inherently unexplainable; in other words, it is often not comprehensible for
humans why a neural model produced a specific output. In general, explainability is deemed
important in order to identify undesired behavior, such as bias.

We tackle the efficiency challenge of neural rankers by proposing Fast-Forward indexes,
which are simple vector forward indexes that heavily utilize pre-computation techniques.
Our approach substantially reduces the computational load during query processing, en-
abling efficient ranking solely on CPUs without requiring hardware acceleration. Further-
more, we introduce BERT-DMN to show that the training efficiency of neural rankers can be
improved by training only parts of the model.

In order to improve the explainability of neural ranking, we propose the Select-And-
Rank paradigm to make ranking models explainable by design: First, a query-dependent sub-
set of the input document is extracted to serve as an explanation; second, the ranking model
makes its decision based only on the extracted subset, rather than the complete document.
We show that our models exhibit performance similar to models that are not explainable by
design and conduct a user study to determine the faithfulness of the explanations.

Finally, we introduce BoilerNet, a web content extraction technique that allows the re-
moval of boilerplate fromweb pages, leaving only the main content in plain text. Our method
requires no feature engineering and can be used to aid in the process of creating new docu-
ment corpora from the web.

Keywords: Information retrieval, neural ranking, efficiency, explainability

i

ii

Zusammenfassung

Die Verfügbarkeit zunehmend leistungsstärkerer Hardware hat eine Verlagerung im Bereich
des Information Retrieval (IR) von traditionellen, auf dem Abgleich von Termen basierenden
Ansätzen, die mehrere Jahrzehnte lang dem Stand der Technik entsprachen, hin zu großen
vortrainierten neuronalen Sprachmodellen ausgelöst. Diese neuronalen Rankingmodelle er-
zielen deutlich bessere Ergebnisse, da sie durch ihre hohe Komplexität und umfangreiche
Trainingsdaten die Fähigkeit erlangen, Sprache in gewissem Maße zu verstehen. Dies er-
laubt neuronalen Rankingmodellen, die Relevanz von Dokumenten nicht nur mittels Term-
abgleich, sondern auch auf Basis ihrer Semantik abzuschätzen.

Die oben angesprochenen Leistungssteigerungen haben jedoch ihren Preis. Diese Disser-
tation legt ihren Fokus auf zwei grundlegende Probleme neuronaler Rankingmodelle: Einer-
seits weisen sie, aufgrund ihrer Komplexität, eine Ineffizienz auf, die sich in ihren außerge-
wöhnlich hohen Anforderungen an Rechenleistung niederschlägt; dies hat oft zur Folge, dass
spezialisierte Hardware, wie GPUs oder TPUs, benötigt wird. Der ökologische Fußabdruck
spielt daher bei Systemen, die neuronale Modelle einsetzen, eine immer größere Rolle. Dieser
Effekt wird zusätzlich verstärkt, wenn kurze Antwortzeiten wichtig sind, wie etwa bei ei-
ner Suchmaschine im Web. Andererseits sind neuronale Modelle dafür bekannt, unerklärbar
zu sein; es ist für Menschen oft nicht nachvollziehbar, warum ein solches Modell bestimm-
te Entscheidungen trifft. Erklärbarkeit wird jedoch als wichtige Eigenschaft angesehen, um
unerwünschtes Verhalten, wie etwa Vorurteile, zu erkennen.

Wir gehen das Problem der eingeschränkten Effizienz von neuronalen Rankingmodellen
mithilfe von Fast-Forward Indexen, die eine simple Struktur für Speicherung und Zugriff
vorberechneter Vektoren darstellen, an. Unser Ansatz reduziert die für eine Anfrage benötig-
te Rechenleistungwesentlich und ermöglicht es dadurch, Ranking effizient ausschließlich auf
CPUs durchzuführen. Weiterhin stellen wir BERT-DMN vor und zeigen, dass die Trainings-
effizienz neuronaler Rankingmodelle verbessert werden kann, wenn nur Teile des Modells
trainiert werden.

Um die Erklärbarkeit neuronaler Rankingmodelle zu verbessern, stellen wir mit Select-
And-Rank ein Paradigma vor, das Rankingmodelle von sich aus erklärbar macht: Im ersten
Schritt wird ein Teil des Dokumentes, abhängig von der Anfrage, extrahiert, um als Erklärung
zu dienen; im zweiten Schritt schätzt das Rankingmodell die Relevanz des Dokuments nur
auf Basis der Erklärung, anstelle des gesamten Dokumentes. Wir zeigen, dass die Leistung
unserer Modelle vergleichbar ist mit der von Modellen, die nicht von sich aus erklärbar sind,
und führen eine Studie durch, um den Nutzen der Erklärungen zu verdeutlichen.

Zuletzt stellen wir BoilerNet, einen Ansatz zur Extraktion vonWebinhalten, vor, der sämt-
liche Strukturen von Webseiten entfernt und nur den Inhalt als Klartext ausgibt. Dies kann
zum Erstellen und Indexieren von Korpora, die auf Webseiten basieren, eingesetzt werden.

Schlagworte: Information Retrieval, neuronale Rankingmodelle, Effizienz, Erklärbarkeit

iii

iv

Acknowledgements

I was very fortunate to be able complete my PhD as part of a group of talented researchers
at L3S. I want to thank Prof. Wolfgang Nejdl for giving me this opportunity, allowing me to
choose my area of research freely, and offering excellent advice throughout the course of my
studies. I am also grateful for the opportunities to travel, attend conferences, and meet new
people, which were plenty.

I would also like to thank Prof. Avishek Anand, who has been mymentor and daily advisor
from day one and provided incredible guidance ever since. His continued support in the form
of feedback, discussions, and new ideas has influenced me greatly and made the journey so
much easier and more enjoyable. Furthermore, I thank Prof. Michael Rohs for agreeing to be
my examiner for this thesis without hesitation, and Prof. Ziawasch Abedjan for chairing the
committee.

Over the years, I have worked and collaborated with great colleagues and students at L3S,
many of which have becomemy friends. The list of names is too long tomention them all, but
you know who you are. A sincere thank you, in no particular order, to my co-authors Megha
Khosla, Koustav Rudra, Abhijit Anand, Fabian Beringer, Henrik Müller, and Marcel Jahnke,
and to Florian Supplie, whose master’s thesis work helped us with one of our publications
that made it into this thesis.

Finally, my special thanks go to my family, friends, and my girlfriend, Lijun, for always be-
ing there for me and offering amazing help and support whenever I needed it. This wouldn’t
have been possible without you.

v

vi

Foreword

This dissertation is cumulative. Chapters 3 to 6 each correspond to a publication, respectively.
The content of these chapters is taken, for the most part, verbatim from the papers, save for
some changes, such as the correction of minor mistakes or adjustments in order to unify the
notation. Additionally, some plots and figures have been remade, and some preliminaries
have been moved to Chapter 2 .

In Chapter 3 , we propose our main contribution, Fast-Forward indexes. The chapter is
based on a full paper, which is published in the ACM Web Conference, and an extension to
appear as an article in the ACM TOIS journal. Furthermore, we participated in the TREC
2021 Deep Learning track:

• Jurek Leonhardt, Koustav Rudra, Megha Khosla, Abhijit Anand, and Avishek Anand.
“Efficient Neural Ranking using Forward Indexes”. In: Proceedings of the ACM Web

Conference 2022. WWW ’22. Virtual Event, Lyon, France: Association for Computing
Machinery, 2022, pp. 266–276. isbn: 9781450390965. doi: 10.1145/3485447.3511955 .
url: https://doi.org/10.1145/3485447.3511955 [111]

• Jurek Leonhardt, Henrik Müller, Koustav Rudra, Megha Khosla, Abhijit Anand, and
Avishek Anand. “Efficient Neural Ranking using Forward Indexes and Lightweight
Encoders”. In: ACM Trans. Inf. Syst. (Nov. 2023). Just Accepted. issn: 1046-8188. doi:
 10.1145/3631939 . url: https://doi.org/10.1145/3631939 [112]

• Jurek Leonhardt, Koustav Rudra, and Avishek Anand. L3S at the TREC 2021 Deep Learn-

ing Track. 2021 [110]

Our work in Chapter 4 , BERT-DMN, is published in the LWDA workshop:

• Jurek Leonhardt, Fabian Beringer, and Avishek Anand. “Exploiting Sentence-Level
Representations for Passage Ranking”. In: Proceedings of the LWDA 2021 Workshops:

FGWM, KDML, FGWI-BIA, and FGIR, Online, September 1-3, 2021. Ed. by Thomas Seidl,
Michael Fromm, and Sandra Obermeier. Vol. 2993. CEUR Workshop Proceedings.
CEUR-WS.org, 2021, pp. 287–302. url: https://ceur-ws.org/Vol-2993/paper-

27.pdf [107]

vii

https://doi.org/10.1145/3485447.3511955
https://doi.org/10.1145/3485447.3511955
https://doi.org/10.1145/3631939
https://doi.org/10.1145/3631939
https://ceur-ws.org/Vol-2993/paper-27.pdf
https://ceur-ws.org/Vol-2993/paper-27.pdf

In Chapter 5 , we propose the Select-And-Rank paradigm for explainable-by-design neu-
ral ranking, which is published as an article in the ACM TOIS journal:

• Jurek Leonhardt, Koustav Rudra, and Avishek Anand. “Extractive Explanations for
Interpretable Text Ranking”. In: ACM Trans. Inf. Syst. 41.4 (Mar. 2023). issn: 1046-
8188. doi: 10.1145/3576924 . url: https://doi.org/10.1145/3576924 [109]

In Chapter 6 , we present BoilerNet, a web content extraction method, which is published
as a demonstration paper in the ACMWeb Conference:

• Jurek Leonhardt, Avishek Anand, and Megha Khosla. “Boilerplate Removal using a
Neural Sequence Labeling Model”. In: Companion Proceedings of the Web Confer-

ence 2020. WWW ’20. Taipei, Taiwan: Association for Computing Machinery, 2020,
pp. 226–229. isbn: 9781450370240. doi: 10.1145/3366424.3383547 . url: https:

//doi.org/10.1145/3366424.3383547 [105]

Some of the evaluation in this paper was conducted by Supplie [189] as part of his master’s
thesis, including the preparation of datasets, the setup and execution of baseline methods,
and the manual annotation of web pages.

Although not part of this thesis, the following preprint proposes a training approach for
more efficient neural retrieval models:

• Jurek Leonhardt, Marcel Jahnke, and Avishek Anand. Distribution-Aligned Fine-Tuning
for Efficient Neural Retrieval. 2022. arXiv: 2211.04942 [cs.IR] [108]

The first two authors have contributed equally to this paper.
The complete list of published papers and articles that I was involved in during my PhD

can be found in Appendix A .

viii

https://doi.org/10.1145/3576924
https://doi.org/10.1145/3576924
https://doi.org/10.1145/3366424.3383547
https://doi.org/10.1145/3366424.3383547
https://doi.org/10.1145/3366424.3383547
https://arxiv.org/abs/2211.04942

Contents

 1 Introduction 1

 1.1 Ad-hoc Document Retrieval . 2
 1.2 Neural Ranking Models . 3

 1.2.1 The Efficiency Challenge . 3
 1.2.2 The Explainability Challenge . 4

 1.3 Outline and Contributions . 6
 1.3.1 Efficiency in Neural IR . 7
 1.3.2 Explainability in Neural IR . 7
 1.3.3 The Big Picture . 8

 2 Background 9

 2.1 Text Ranking . 9
 2.1.1 Lexical Matching . 10
 2.1.2 Semantic Matching . 11
 2.1.3 Retrieval Approaches . 14
 2.1.4 Metrics . 16

 2.2 Large Language Models . 18
 2.2.1 Input Representations . 18
 2.2.2 Encoder Layers . 19

 3 Forward Indexes for Efficient Neural Ranking 21

 3.1 Related Work . 23
 3.1.1 Cross-Attention Models . 25
 3.1.2 Dual-Encoders . 25
 3.1.3 Hybrid Models . 26
 3.1.4 Inference Efficiency . 27

 3.2 Fast-Forward Indexes . 27
 3.2.1 Index Compression via Sequential Coalescing 29
 3.2.2 Accelerating Interpolation by Stopping Early 30

ix

Contents

 3.3 Efficient Encoders . 34
 3.3.1 Lightweight Query Encoders . 34
 3.3.2 Selective Document Encoders . 36

 3.4 Experimental Setup . 38
 3.4.1 Baselines . 38
 3.4.2 Datasets . 39
 3.4.3 Evaluation Details . 39
 3.4.4 Training Details . 41

 3.5 Results . 42
 3.5.1 Dual-Encoders for Interpolation-based Re-ranking 42
 3.5.2 Early Stopping for more Efficient Re-ranking 46
 3.5.3 Query Encoder Complexity . 48
 3.5.4 Trade-off Between Index Size and Ranking Performance 50
 3.5.5 Efficient Indexing by Removing Irrelevant Document Tokens 52

 3.6 Discussion . 53
 3.6.1 Efficient Encoders for Dense Retrieval 54
 3.6.2 Out-of-Domain Performance . 55
 3.6.3 Threats to Validity . 56

 3.7 Conclusion . 57

 4 Sentence-Level Representations for Passage Ranking 59

 4.1 Related Work . 60
 4.2 BERT-DMN . 61

 4.2.1 Dynamic Memory Networks . 62
 4.2.2 Combining BERT and DMN . 63

 4.3 Experimental Setup . 64
 4.3.1 Datasets . 64
 4.3.2 Baselines . 66
 4.3.3 Training Efficiency . 67
 4.3.4 Training Details . 67

 4.4 Results . 68
 4.4.1 Passage Re-Ranking Performance . 68
 4.4.2 The Effect of Fine-Tuning . 69
 4.4.3 Training Efficiency . 70

 4.5 Conclusion . 71

x

Contents

 5 Extractive Explanations for Interpretable Text Ranking 73

 5.1 Related Work . 76
 5.1.1 Ranking Models for Text . 76
 5.1.2 Interpretability of Ranking Models 77

 5.2 Select-And-Rank . 78
 5.2.1 Problem Statement . 79
 5.2.2 Pipeline Approach . 80
 5.2.3 End-to-End Approach . 81
 5.2.4 Ranker . 86

 5.3 Experimental Setup . 86
 5.3.1 Datasets . 86
 5.3.2 Baselines and Competitors . 88
 5.3.3 Training Details . 88

 5.4 Results . 89
 5.4.1 Variation of Selectors . 89
 5.4.2 Performance of Select-And-Rank 92
 5.4.3 Comprehensiveness of Select-And-Rank 94
 5.4.4 Faithfulness and Utility of Select-And-Rank 95
 5.4.5 The Effect of Token Limitation . 97
 5.4.6 Explaining BERT-CLS . 98
 5.4.7 The Effect of First-stage Retrieval . 99
 5.4.8 Anecdotal Examples . 100

 5.5 User Study Details . 103
 5.5.1 Interface . 103
 5.5.2 Collection and Usage of Data . 105

 5.6 Applications of Select-And-Rank . 106
 5.6.1 Discovering Biased or Buggy Ranking Decisions 106
 5.6.2 Improving Search Engines . 107

 5.7 Conclusion . 108

 6 Web Content Extraction for Corpus Creation 109

 6.1 Related Work . 111
 6.2 BoilerNet . 112

 6.2.1 Input Representation . 112
 6.2.2 Sequence Labeling . 112
 6.2.3 Issues in Boilerplate Removal Models 113

xi

Contents

 6.3 Experiments . 114
 6.3.1 Dataset Preparation . 114
 6.3.2 Results and Discussion . 115

 6.4 Demonstration . 116
 6.4.1 Implementation Details . 117

 6.5 Conclusion . 117

 7 Conclusion and Future Work 119

 7.1 Contributions . 119
 7.1.1 Software . 121

 7.2 Future Work . 122
 7.3 Outlook . 123

 A Curriculum Vitae 125

 Bibliography 129

 List of Figures 161

 List of Tables 163

 List of Algorithms 165

xii

1
Introduction

The evolution and adoption of theWorldWideWeb over the past decades have enabled access
to close to arbitrary amounts of knowledge to a significant part of the population, making
the process of information acquisition as easy as it has ever been. Therefore, the usage of
web search engines, such as Google or Bing, and personal assistants, such as Apple’s Siri or
Amazon’s Alexa, has become second nature and a part of everyday life for many people. In
the year 2012, the total number of queries issued by users to the Google search engine was
approximately 38 000 per second.

1
 Despite the lack of official statistics in subsequent years,

recent estimations suggest that this trend is still increasing steadily.

2

As a consequence, the task of information retrieval (IR) has become ubiquitous: Aside
from web search as its most obvious use case, IR powers the backbones of a multitude of
downstream tasks that require specific information from a large corpus of unstructured data
at some point within their pipeline; notable examples are question answering, as used, for
example, by personal assistants, or recommender systems, which are prevalent in e-commerce
and streaming services. Naturally, many of the services that employ IR are backed by large
companies, and for many of these companies, their IR system directly influences the quality
of the services they offer, creating financial interests in its improvement. As such, research in
the field of IR is being driven by industry and academia alike, whichmakes for rapid advances
and frequent innovations.

1
 http://archive.google.com/zeitgeist/2012/ (accessed on April 4th, 2023)

2
 https://live-counter.com/google-searches/ (accessed on April 4th, 2023)

1

http://archive.google.com/zeitgeist/2012/
https://live-counter.com/google-searches/

Chapter 1 Introduction

Query: What is the top speed of a Jaguar F-Type?

Document 1

The Jaguar F-Type is a series of vehicles manufactured by Jaguar Land Rover
[...] The car reaches a top speed of 322 km/h [...]

Document 2

The jaguar is a species of cats [...] Jaguars can reach a top speed of up to 80
km/h [...]

Figure 1.1: An example that demonstrates the limitations of lexical retrievers. The query
term “Jaguar” is ambiguous in the sense that both cars and animals have a top speed. The
words that match in both documents are highlighted. As a consequence, a lexical retriever
would likely assign high relevance scores to both documents. However, from the query it is
clear that only the first document is relevant. Neural semantic models are able to perform
better due to their natural language understanding capabilities.

1.1 Ad-hoc Document Retrieval

At the heart of services that exploit textual resources from large unordered corpora lies the
ad-hoc document retrieval task. A ranking model returns a list of documents (or passages),
which are ordered by their respective relevance to an input query. Machine learning-based
learning to rank [129] models may subsequently be used to take additional features, such as
user interactions, into account.

Traditional retrieval algorithms, such as BM25 [169 , 168] or the query likelihood
model [102], perform lexical matching (or term matching) to estimate the relevance of a doc-
ument in a corpus with respect to a query and require no training data. These approaches
are typically called sparse retrievers, as they represent documents using high-dimensional
sparse vectors, where the elements usually correspond to some vocabulary obtained from
the document corpus.

Although sparse retrieval has prevailed as the state of the art for a long time, it has in-
herent limitations that render it less and less adequate; since matching is performed solely
based on the query and document terms, sparse models are highly susceptible to the likes
of spelling errors or synonyms. We refer to this as the vocabulary mismatch problem. More-
over, they do not possess any semantic capabilities, which would allow them to perform
reasoning (albeit limited) within documents. This limitation can be alleviated only to an ex-
tent by using pseudo relevance feedback techniques like RM3 [1]. An example of the short-
comings of lexical matching is illustrated in Fig. 1.1 . For this reason, alternative approaches
have emerged, where a sparse retriever is used to perform high-recall candidate selection (re-
trieval stage), followed by a re-ranking stage using a computationally more expensive seman-

2

1.2 Neural Ranking Models

tic model. These approaches are referred to as telescoping [144] or retrieve-and-re-rank [179 ,
 64]. The semantic re-ranking models are usually implemented using neural networks and
are hence called neural rankers.

1.2 Neural Ranking Models

Recently, the advent of large pre-trained neural language models (LLMs) based on the Trans-
former architecture [197] ushered in a new era, when BERT [40] achieved state-of-the-art
performance on a variety of language tasks, including re-ranking [155], where it signifi-
cantly outperformed previous semantic rankers. This is largely due to two important as-
pects of LLMs: First, their self-attention layers allow for vastly improved natural language

understanding, resulting in the capability of determining the intent of ambiguous queries or
even resolving synonyms. Second, the size of the models (in terms of parameters), along
with the large amounts of pre-training data, allows them to scale almost arbitrarily [152].
Consequently, neural rankers based on LLMs can overcome the limitations of lexical models
(cf. Fig. 1.1).

Shortly thereafter, the first dense retrievalmethods emerged [89], which allow for the usage
of neural semantic LLMs directly for retrieval instead of re-ranking. Nowadays, commercial
search engines employ LLMs to rank documents. For example, Google has been using BERT
for query processing since 2019.

3
 Nonetheless, sparse retrievers remain relevant, mainly for

their simplicity and efficiency, both in terms of query latency and resource consumption, and
are often used in retrieve-and-re-rank or hybrid retrieval settings.

Neural models, specifically large languagemodels, have achieved appreciable performance
improvements in IR-related tasks, most notably, passage or document ranking. However,
they aren’t “silver bullets”; in fact, neural rankers exhibit two inherent drawbacks: First,
LLMs are notoriously inefficient and require powerful hardware. Second, decisions made by
complex neural models are difficult to understand and explain. In this thesis, we focus on
these challenges; our goal is to make neural IR more efficient and explainable.

1.2.1 The Efficiency Challenge

When it comes to web search, query latency, that is, the time it takes between the user issuing
a query and the search engine displaying the results, is essential. In fact, according to Google,

3
 https://blog.google/products/search/search-language-understanding-bert/ (accessed on April
4th, 2023)

3

https://blog.google/products/search/search-language-understanding-bert/

Chapter 1 Introduction

0.32

0.34

0.36 monoBERT [157]
(2019)

DPR [89]
(2020)

TILDEv2 [236]
TILDE [237] expansion
(2021)

TILDEv2 [236]
docT5qery [156] expansion

(2021)

uniCOIL [119]
TILDE [237] expansion

(2021)
uniCOIL [119]

docT5qery [156] expansion
(2021)

0 20 40 60 80 100 120 140

0.19 BM25 [169]
(1995)

Emissions [kgCO2e]

Pe
rfo

rm
an
ce

[R
R@

10
]

Figure 1.2: The carbon emissions caused by retrieval and ranking models [175]. The newer,
more effective approaches exhibit substantial growth in terms of emissions.

a delay of 400 milliseconds causes a drop of 0.44% in search volume.

4
 The same holds true

for downstream tasks, where the retrieval step is only one part of a pipeline of operations.
The LLMs used in neural IR are very large and computationally expensive. Consequently,

in order to keep the latency at an acceptable level, hardware acceleration and approximative
techniques, such as product quantization, are used [86]. Although hardware acceleration
using specialized devices, such as GPUs or TPUs, improves the latency substantially, it has
negative implications on the cost (in the sense of both initial outlay and power draw) and,
more importantly, the environmental footprint (cf. Fig. 1.2). Despite the importance of ef-
ficiency, most of the (recent) work on neural IR seems to focus on effectiveness. Notable
exceptions are SPLADE [49 , 99], TILDE [237 , 236], and the ReNeuIR workshop [18].

1.2.2 The Explainability Challenge

Neural models, especially LLMs, are essentially black boxes, i.e., inherently obscure and un-
interpretable [171].

5
 In the context of neural ranking, this means that it is usually hard to

4
 https://www.thinkwithgoogle.com/future-of-marketing/digital-transformation/
the-google-gospel-of-speed-urs-hoelzle/ (accessed on April 4th, 2023)

5In this thesis, we use the terms “explainability” and “interpretability” interchangeably; in the literature, one
of them often refers to human-understandable justifications of model outputs (i.e., why a prediction was

4

https://www.thinkwithgoogle.com/future-of-marketing/digital-transformation/the-google-gospel-of-speed-urs-hoelzle/
https://www.thinkwithgoogle.com/future-of-marketing/digital-transformation/the-google-gospel-of-speed-urs-hoelzle/

1.2 Neural Ranking Models

q

d

...
0
1
1
0
...

...
lake
life

meaning

member
...

...
1
3
2
11
...

...
lake
life

meaning

member
...

BM25

tf

tf

(a) Sparse retrieval

q

d

0.432
0.223
0.738

...
0.079

0.754
0.022
0.379

...
0.561

Similarity

ζ

η

(b) Dense retrieval

Figure 1.3: Sparse and dense retrieval side-by-side for the query “What is the meaning of
life?”. Sparse retrievers (Fig. 1.3a) allow for interpretability by design using term frequencies
(denoted by tf). Dense retrievers (Fig. 1.3b) utilize internal low-dimensional representations
computed by neural encoders (denoted by ζ and η), which are not easily interpretable.

tell why a model assigned a high (or low) relevance to a specific document given a query. In
other words, the ranking decisions cannot easily be explained. This is in contrast to other
non-neural models, such as BM25, which are interpretable by design, in that they explicitly
assign weights to specific terms in the documents to be ranked (cf. Fig. 1.3).

However, interpretability is deemed an important property of machine learning models.

6

On the one hand, it helps during the development stage to discover potential bugs, for ex-
ample, within the implementation, training data, or evaluation. An example for this is label
leakage, where amodel input encodes the relevance of the document to the query in some un-
intended way, even though this information should obviously not be available to the ranker.
Those cases are often called right for the wrong reasons. On the other hand, explanations are
used to uncover biased ranking decisions the model might have learned from flawed training
data. Consider an example, where a model has been trained using data that was annotated
by humans who introduced bias, for example, by sharing common beliefs, or, even worse,
racism or sexism. As a result, a search engine might rank documents based on the race or

made), whereas the other focuses on understanding the model itself (i.e., how a prediction was made), but
we found that these definitions are not always consistent [58 , 126].

6For example, the proposed EU AI law (“The AI Act”), available at https://artificialintelligenceact.
eu/the-act/ (accessed on April 4th, 2023), stipulates transparency and interpretability as a requirement
for high-risk AI systems.

5

https://artificialintelligenceact.eu/the-act/
https://artificialintelligenceact.eu/the-act/

Chapter 1 Introduction

Explainability

Effectiveness

Efficiency

E

E

E

Select-And-Rank
(Chapter 5)

Fast-Forward indexes
(Chapter 3)

BERT-DMN
(Chapter 4)

Figure 1.4: An overview of contributions in this thesis. The three properties of ranking
models, effectiveness, efficiency, and explainability, conflict each other in the sense that opti-
mizing a model for one of them is usually rather straight-forward, as long as the others are
sacrificed; combining two or even all three of them in a single approach, however, is much
more difficult. This figure illustrates the goal of the contributions in this thesis with respect
to these properties. Note that BoilerNet (Chapter 6) is omitted here, as it is not a ranking
model.

gender of their authors. If the specific reasons behind a ranking decision are known, such
cases can be detected and mitigated.

1.3 Outline and Contributions

There is an inherent trade-off between effectiveness, efficiency, and explainability of neural
ranking models. Figure 1.4 visualizes this trade-off and illustrates the focus of each corre-
sponding contribution. In this section, we give an outline of the thesis and highlight the
contributions.

6

1.3 Outline and Contributions

1.3.1 Efficiency in Neural IR

The first part of this thesis focuses on the efficiency challenge of neural information re-
trieval.

Chapter 3 introduces our main contribution, Fast-Forward indexes. We show that dual-
encoder models, which are commonly used for dense retrieval, are perfectly suitable for use
as re-rankers; we find that, in the retrieve-and-re-rank setting, these models achieve per-
formance similar to cross-attention rankers, despite their lack of query-document attention,
when the relevance scores of the sparse first-stage retriever are combined with the scores of
the re-ranking model using simple linear interpolation. At the same time, the dual-encoder
architecture allows the pre-computation of document representations, which would other-
wise be the most expensive component of the re-ranking pipeline, and leaves only the query
representation to be computed online. We show that our approach, run on CPUs only, is
faster than cross-attention re-rankers run with GPU acceleration, and still achieves compa-
rable performance. Furthermore, we propose several techniques and extensions to improve
the efficiency of Fast-Forward indexes even more: In Section 3.3 , we propose more efficient
and lightweight encoder models. In Section 3.2.2 , we propose an early stopping technique,
which dynamically limits the number of documents to be re-ranked for a query based on
estimated limits of the scores. Finally, in Section 3.2.1 , we propose sequential coalescing, an
index compression technique for dual-encoder-based indexes.

Furthermore, in Chapter 4 , we propose BERT-DMN, an extension of BERT that takes
sentence-level representations into account. The light version of this model, BERT-DMNlite,
trains only a smaller network instead of fine-tuning BERT itself; this approach improves the
training efficiency by caching the representations to avoid expensive forward passes, as we
show in Section 4.4.3 .

1.3.2 Explainability in Neural IR

The second part of this thesis corresponds to the explainability challenge of neural infor-
mation retrieval.

In Chapter 5 , we propose Select-And-Rank, a paradigm for neural re-rankingmodels that
are interpretable by design. Specifically, Select-And-Rankmodels have two components: A
selector selects an extractive, query-dependent explanation as a subset of sentences from the
input document. Afterwards, a ranker computes the relevance score based on the query and
only the selected sentences. We conduct a study in Section 5.4.3 to show that the explanations
output by our models are useful to human users. Furthermore, we show that how model
successfully uncovers a case of label leakage in Section 5.6.1 .

7

Chapter 1 Introduction

1.3.3 The Big Picture

The final part of the thesis deals with the IR process as a whole, introducing methods that
are not used directly in the ranking process, but rather serve as utilities in the IR pipeline.

In Chapter 6 , we propose BoilerNet, a web content extraction method based on a simple
deep recurrent neural network architecture. We show that the model requires very little
training data to be effective in removing boilerplate, i.e., any HTML tags in the DOM tree
that do not correspond to actual content, from web pages. In the context of IR, BoilerNet
can be used to index websites in order do create document corpora.

Finally, we conclude the thesis in Chapter 7 , giving a summary of contributions in terms of
both research conducted and software released. In Section 7.2 , we present possible limitations
of the work conducted in this thesis and discuss promising directions for future work, and
in Section 7.3 , we outline a vision on how this work could be used to advance the field of
neural IR.

8

2
Background

This chapter introduces core concepts that are essential to the work in this thesis. Section 2.1

describes text ranking techniques, ranging from classical term-matching to modern neural
approaches. Section 2.2 deals with the fundamentals of large language models.

2.1 Text Ranking

The process of text ranking entails creating an ordered list of text documents (for example,
single sentences, passages, or complete web pages), such that the order of the list reflects
the relevance of each item with respect to an input query (i.e., a short sentence or some
keywords). The collection of documents that are to be ranked is commonly referred to as
corpus, the size of which varies greatly depending on the task, domain, and other factors.

More formally, we express queries and documents as sequences of terms (or tokens), i.e.,

q =
(
tq1, . . . , t

q
|q|

)
and d =

(
td1, . . . , t

d
|d|
)
. (2.1)

Let the corpus D be a set of documents di. A ranking

R =
(
dR1 , . . . , d

R
|R|
)
, where dRi ∈ D, (2.2)

defines an order over the documents in the corpus with respect to the query q, such that

ϕ
(
q, dRi

)
≥ ϕ

(
q, dRj

)
⇔ i < j (2.3)

9

Chapter 2 Background

for all distinct pairs of integers 1 ≤ i, j ≤ |R|.

1
 The function ϕ (q, d) is used to estimate

the relevance of a document d given a query q. Note that Eq. (2.3) describes the point-

wise approach, where a ranking model estimates the relevance independently for each doc-
ument; pairwise and listwise approaches also exist, predominantly in the learning-to-rank

setting [129], but they are omitted here.
The estimation of the relevance of a document to a query (i.e., the function ϕ (q, d) in

Eq. (2.3)) is often referred to as matching. This section introduces various matching ap-
proaches, loosely following their chronological order: Section 2.1.1 focuses on lexical ap-
proaches, which employ term matching in order to estimate relevance. Section 2.1.2 focuses
on semantic models and representation learning. Finally, Section 2.1.3 shows how different
matching approaches are combined in practice to be used in text retrieval systems.

2.1.1 Lexical Matching

Retrieval methods based on term matching (or lexical matching) date back as far as the
1980s [120]. Arguably themost popular one, OkapiBM25, was originally proposed by Robert-
son et al. [169], but has since been slightly refined by omitting unused parameters [120 , 168].
It computes the relevance of a query-document pair (q, d) as

ϕBM25(q, d) =
∑
t∈q∩d

log
N − df(t) + 0.5

df(t) + 0.5
· tf(t, d) · (k1 + 1)

tf(t, d) + k1 ·
(
1− b+ b · ld

L

) , (2.4)

making use of document frequencies df(t), i.e., the number of documents the term t appears
in, and term frequencies tf(t, d), i.e., the number of occurrences of t in d. Furthermore, N is
the total number of documents, ld is the length of d, L is the average document length, and
b and k1 are parameters. Due to its exploitation of term frequencies (tf) along with inverse
document frequencies (idf—computed in the first factor within the sum in Eq. (2.4)), BM25
belongs to the family of tf-idf -based rankers.

The implementation of term frequency and document frequency look-ups for a given term
is commonly realized using inverted indexes [141], a structure that maps each term in the
vocabulary to a list of documents it appears in along with the corresponding number of
occurrences. Inverted indexes allow for very efficient implementations of BM25 or tf-idf
methods in general, the most popular one being Apache Lucene.

2
 However, the order in

which words appear in the documents is lost as they are indexed.

1Note that, usually, only a very small fraction of all documents in the corpus is relevant for a given query,
and, thus, the number of documents in a ranking is chosen to be relatively small, i.e., |R| ≪ |D|.

2
 https://lucene.apache.org/

10

https://lucene.apache.org/

2.1 Text Ranking

Another important limitation is the fact that BM25 performs so-called exact matching; this
becomes apparent in Eq. (2.4), as the sum is computed only over the intersection of query
and document terms (q ∩ d). Thus, any document term that does not appear in the query
(and vice versa) is not taken into account. As a result, the use of synonyms, paraphrasing,
or even simple spelling mistakes directly negatively affect the performance of exact match-
ing algorithms. This limitation is referred to as the vocabulary mismatch problem. To some
extent, it can be mitigated; for example, pre-processing often involves stemming operations,
i.e., removing suffixes and thus only keeping the root of each term. Other approaches employ
query expansion techniques, such as the widely used RM3 [1], which expands the query us-
ing pseudo-relevance feedback. Nonetheless, despite those efforts, the vocabulary mismatch
remains an issue of tf-idf-basedmethods,

3
 prompting the need formodels capable of semantic

matching and natural language understanding.

2.1.2 Semantic Matching

Contrarily to lexical term matching-based models (cf. Section 2.1.1), the estimation of se-
mantic relevance scores enables rankers to capture the meaning of queries and documents
through natural language understanding (NLU). Semantic matching thus goes beyond term
matching and the limitation of vocabulary mismatch.
Although the learning-to-rank era already saw frequent use of neural models for ranking,

an early example being RankNet [19], these approaches were mainly characterized by their
usage of a large number of hand-crafted features [120].

4
 As time progressed, subsequent ap-

proaches began to move away from feature engineering and towards operating directly on
query and document tokens instead, setting them apart from learning-to-rank models. Com-
mon approaches include learning representations of queries and documents, often making use
of pre-trained word embeddings likeWord2Vec [146] or GloVe [162], or performing query-
document interactions and subsequent pooling operations [120]. We refer this class of models
as semantic matching-based, with popular examples being DSSM [77] and DESM [148], K-
NRM [220] and Conv-KNRM [37], PACRR [79] and Co-PACRR [78], and DUET [147].
Shortly thereafter, the Transformer architecture [197] was introduced, which exploits self-

attention layers in order to compute contextual token representations. Nogueira and Cho
[155] showed that BERT [40], a large pre-trained language model based on the Transformer,
achieved considerable performance improvements on theMS MARCO passage ranking task

3or any method based on term matching for that matter, another popular example being the query likelihood
model [102]

4As learning-to-rank is not relevant for this thesis, we do not introduce it in detail here.

11

Chapter 2 Background

LLM

q d

Classifier

ϕCE(q, d)

(a) Cross-encoder

LLM LLM

Similarity

q d

ϕDE(q, d)

(b) Dual-encoders

Figure 2.1: Two common model architectures for LLM-based semantic rankers. Cross-
encoders operate on a concatenation of the query and document, while dual-encoders com-
pute independent representations.

compared to existing approaches. Since then, most state-of-the-art neural ranking models
have been based on BERT or similar LLMs; they exhibit a multitude of semantic capabilities,
such as semantic clustering or entity matching [3], making themmuch more robust to queries
containing paraphrasing. Recently, Zhuang and Zuccon [235] showed that Transformer-
based rankers can also be made more robust to queries with spelling errors.

In the remainder of this section, we focus on these LLM-based neural ranking models; we
introduce the cross-encoder and dual-encoder architectures and show how they are trained.

Cross-Encoder Models

Nogueira and Cho [155] used a large pre-trained languagemodel, more specifically, BERT, for
passage ranking. The term cross-encoder refers, on the one hand, to the model architecture
and, on the other hand, the way the model inputs and outputs are handled. Figure 2.1a shows
an illustration of the cross-encoder architecture; its main characteristic is that the query and
document are concatenated before being fed through the LLM. In the case of BERT models,
the input for a query-document pair (q, d) is commonly constructed as

BERT(q, d) ≡ BERT
(
[CLS], q1, . . . , q|q|, [SEP], d1, . . . , d|d|, [SEP]

)
. (2.5)

As BERT usesWordPiece tokenization [215], qi and di are subwords, and [CLS] and [SEP]

are special tokens. Even though Transformer-based models output a vector for each input
token, the most common approach is to only use the output vector corresponding to the

12

2.1 Text Ranking

classification token [CLS] and discard the rest. The relevance thus computes as

ϕCE(q, d) = W · BERT[CLS](q, d) + b, (2.6)

whereW ∈ R1×dBERT and b ∈ R1 are the trainable parameters of a linear layer that outputs a
scalar value.

Cross-encoder models are typically trained using pointwise or pairwise objectives. The
pointwise loss function used by Nogueira and Cho [155],

Lpointwise (q, d, y) = −y log ϕ(q, d)− (1− y) log (1− ϕ(q, d)) , (2.7)

minimizes the binary cross-entropy, where y ∈ {0, 1} is a ground-truth relevance label. In
contrast, for pairwise training, a hinge loss can be used [39], i.e.,

Lpairwise

(
q, d+, d−

)
= max

{
0,m− ϕ

(
q, d+

)
+ ϕ

(
q, d−

)}
, (2.8)

where m is a margin and d+ is more relevant to q than d−.

Dual-Encoder Models

The dual-encoder (also referred to as two-tower) architecture [89] (cf. Fig. 2.1b) employs two
models to compute dense vector representations of queries and documents, respectively.
Specifically, a query encoder ζ and a document encoder η map queries and documents to
representations in a common a-dimensional vector space. The relevance score ϕDE(q, d) of
a query-document pair is then computed as the similarity of their vector representations. A
common choice for the similarity function is the dot product, such that

ϕDE(q, d) = ζ(q) · η(d), (2.9)

where ζ(q), η(d) ∈ Ra. The maxP approach [36] splits long documents into passages, and
the score of a document is then computed as the maximum of its passage scores, i.e.,

ϕ(q, d) = max
pi∈d

ϕ(q, pi). (2.10)

Dual-encoders encode the query and document independently, i.e., no query-document

13

Chapter 2 Background

attention exists. Typically, they are trained using a contrastive loss function [89],

Lcontrastive

(
q, d+, D−) = − log

(
exp (ϕ(q, d+)/τ)∑

d∈D−∪{d+} exp (ϕ(q, d)/τ)

)
, (2.11)

where a training instance consists of a query q, a positive (relevant) document d+, and a
set D− of negative (irrelevant) documents. The temperature τ is a hyperparameter. Since it
is usually infeasible to include all negative documents for a query in D−, there are various
negative sampling approaches, such as in-batch strategies [89], asynchronous indexes [221],
or negative caches [127]. Zhan et al. [230] showed that the negative sampling technique has
a considerable impact on the ranking performance of the model.

2.1.3 Retrieval Approaches

The previous section focused onmatching, i.e., the estimation of query-document relevance.
This section introduces several retrieval paradigms that employmatching techniques in order
to generate a ranking of documents from a large corpus based on their relevance to a query.

Sparse Retrieval

Lexical matching methods based on tf-idf and inverted indexes, for example, BM25 (cf. Sec-
tion 2.1.1), can directly be used to perform document retrieval efficiently on large corpora.
The term sparse retrieval is often used to denote such retrievers and set them apart from other
approaches [131], such as dense retrieval (cf. Section 2.1.3); it originates from the vector space
model [174], where a document (or a query) is represented by a vector. Each of the vector’s
elements corresponds to a specific term in the vocabulary and holds a weight based on its
frequency in the document. Consequently, the dimension of the vectors is equal to the size
of the vocabulary, and most of each vector’s elements are zero, making them sparse. The
relevance of a document w.r.t. a query can then be computed as the similarity of the two
vector representations.

In sparse retrieval, we denote the top-kS documents retrieved from the inverted index for
a query q by Kq

S . The sparse score of a query-document pair (q, d) is denoted by ϕS(q, d).

Retrieve-and-Re-Rank

Sparse retrievers are popular for their efficiency, allowing for the scoring of all documents
in the corpus in acceptable time. However, due to their lack of semantic capabilities, they
are limited (see Fig. 1.1). The idea of the retrieve-and-re-rank approach [179] is to perform

14

2.1 Text Ranking

retrieval in two stages: In the first stage, a term frequency-based (sparse) retrieval method
(such as BM25 [169]) retrieves a set of documents from a large corpus. In the second stage,
another model re-ranks the retrieved documents again. As the re-ranking model only needs
to score a small amount of query-document pairs (e.g., kS = 1000), the use of computa-
tionally expensive semantic models becomes feasible. The re-ranking step is deemed very
important for tasks that require high performance for small retrieval depths, such as question
answering.

As before, we denote the documents retrieved by a sparse retriever for a query q in the
first stage by Kq

S . For each retrieved document d ∈ Kq
S , the corresponding re-ranking score

ϕD(q, d) is computed.

5
 This score is then used to re-rank the retrieved set to obtain the final

ranking. It has been shown that the scores of the sparse retriever ϕS can be beneficial for
re-ranking as well [4 , 10]. To that end, an interpolation-based approach can be employed,
where the final score of a query-document pair is computed as

ϕ(q, d) = α · ϕS(q, d) + (1− α) · ϕD(q, d). (2.12)

Setting α = 0 recovers standard re-ranking. The linear interpolation in Eq. (2.12) is referred
to as convex combination in the literature [17].

Dense Retrieval

Dual-encoder models (cf. Section 2.1.2) are commonly utilized to perform dense retrieval [89].
Compared to sparse retrieval (cf. Section 2.1.3), queries and documents are represented by
low-dimensional

6
 dense vectors (i.e., vectors that do not contain zeros). A dense index con-

tains pre-computed vector representations η(d) for all documents d in the corpus D. To re-
trieve a set of documentsKq

D for a query q, a k-nearest neighbor (kNN) search is performed
to find the documents whose representations are most similar to the query:

Kq
D = k-argmax

1≤i≤|D|
(ζ(q) · η(di)) (2.13)

In order to make dense retrieval more efficient, approximate nearest neighbor (ANN) search
is commonly employed [86 , 139]. ANN search can be further accelerated using special hard-
ware, such as GPUs [86].

5We choose this notation because re-rankers usually compute and utilize (internal) dense representations.
6Karpukhin et al. [89] use 768-dimensional representation vectors in the original DPR approach.

15

Chapter 2 Background

Hybrid Retrieval

An approach similar to interpolation-based re-ranking (cf. Section 2.1.3) is hybrid re-

trieval [55 , 123]. The key difference is that the re-ranking scores ϕD(q, d) are not computed
for all query-document pairs. Instead, ϕD is a dense retrieval model (cf. Section 2.1.3), which
retrieves documents di and their scores ϕD(q, di) using nearest neighbor search given a query
q. A hybrid retriever combines the retrieved sets of a sparse and a dense retriever.

7

For a query q, two sets of documents,Kq
S andKq

D, are retrieved using the sparse and dense
retriever, respectively. SinceKq

S andKq
D usually do not contain exactly the same documents,

the combination of both sets is not trivial; possible strategies are

1. ranking all documents in Kq
S ∪ Kq

D, computing [17] or approximating [123] missing
scores,

2. ranking documents inKq
S ∩Kq

D only, discarding the rest, or

3. ranking documents in either Kq
S or Kq

D only, discarding the rest and approximating
missing scores.

An example for the last option is the following, where only documents fromKq
S are consid-

ered for the final ranking and the rest is discarded. In this case, the score may be computed
as

ϕH(q, d) = α · ϕS(q, d) + (1− α) ·

ϕD(q, d) d ∈ Kq
D

ϕS(q, d) d /∈ Kq
D

. (2.14)

The re-ranking step in hybrid retrieval is essentially a sorting operation over the interpo-
lated scores and takes negligible time in comparison to standard re-ranking.

2.1.4 Metrics

In this section, we introduce the ranking metrics we use in the following chapters. The
definitions and notations are mostly taken from Lin, Nogueira, and Yates [120].

Let a ranking R be as in Eq. (2.2). Precision measures how many of the documents in a
retrieved set are relevant for the query q and is computed as

P(R, q) =

∑|R|
i=1 rel

(
q, dRi

)
|R|

, (2.15)

where rel(q, d) ∈ {0, 1} denotes the binary relevance of the document d w.r.t. q.
7Of course, other combinations are possible, for example, two dense retrievers or two sparse retrievers.

16

2.1 Text Ranking

Similarly, recall is defined as the fraction of all relevant documents (from the complete
corpus D) that are in the retrieved set, i.e.,

R(R, q) =

∑|R|
i=1 rel

(
q, dRi

)∑
d∈D rel (q, d)

. (2.16)

In the retrieve-and-re-rank setting (cf. Section 2.1.3), high recall is deemed important for the
initial retrieval stage, as the re-ranking model is only applied to those documents rather than
to the complete corpus.

We denote metrics computed at a particular depth using the @ k notation, where k is re-
ferred to as the cut-off ; in this case, only the k highest ranked documents inR are considered
in the computation (as if |R| = k). The average precision takes the precision values at depths
where a relevant document appears in the ranking into account, i.e.,

AP(R, q) =

∑|R|
i=1 P@ i (R, q) · rel

(
q, dRi

)∑
d∈D rel (q, d)

. (2.17)

The discounted cumulative gain, unlike the previous metrics, takes graded relevance judg-
ments into account, i.e., rel(q, d) ∈ N0 can be any integer greater than or equal to zero. It is
computed as

DCG(R, q) =

|R|∑
i=1

2rel(q,d
R
i) − 1

log2(i+ 1)
(2.18)

Normalizing the DCG using an ideal ranking (i.e., the best ranking possible), denoted by
IDCG, yields

nDCG(R, q) =
DCG(R, q)

IDCG(R, q)
. (2.19)

The nDCG metric is often used to evaluate methods related to web search [120].

Finally, the reciprocal rank is computed as

RR(R, q) =
1

ranki
, (2.20)

where ranki corresponds to the highest rank (i.e., the smallest absolute number) of any rele-
vant document in R. Consequently, only the first relevant document in the ranking is taken
into account, and any subsequent relevant documents are insignificant. RR is a popular
choice for the evaluation of rankers used in question answering pipelines.

17

Chapter 2 Background

2.2 Large Language Models

Large pre-trained language models (LLMs) are at the core of many recent semantic ranking
models (cf. Section 2.1.2). This section gives an overview of the architecture of BERT [40] as
a representative of LLMs based on Transformers [197].
LLMs are often characterized by their self-attention components, a large number of param-

eters, and extensive pre-training, all of which enable superior natural language understand-
ing capabilities. While the original pre-training of BERT was limited to masked language
modeling and next sentence prediction, several other objectives have been proposed that are
specifically aimed at IR [133 , 52 , 53 , 100]. Even though the original Transformer implements
an encoder-decoder architecture, BERT is composed only of a sequence of encoders.

2.2.1 Input Representations

We express the input to the model as a sequence of tokens T =
(
t1, . . . , t|T |

)
. Each token

ti is a subword,

8
 allowing the model to deal with unknown words; the WordPiece algo-

rithm [215] is used for tokenization. For example, the sentence

How does WordPiece handle unknown words?

yields the tokens

how does word ##piece handle unknown words ?

using the tokenizer corresponding to uncased BERTbase models.
Prior to encoding, the tokens in T are fed through a trainable embedding layer, represent-

ing them as H-dimensional vectors. We denote the embedding operation by E : N 7→ RH .
In addition to the embedding, each token is assigned a positional encoding P : N 7→ RH . It
is computed as

P (ti)2j = sin
(
i/100002j/H

)
,

P (ti)2j+1 = cos
(
i/100002j/H

)
,

(2.21)

where j corresponds to the dimension of the resulting positional encoding vector [197].
Without the positional encodings, the order of the tokens in T would be lost. Thus, the
final input representation of a token ti is E(ti) + P (ti).

8or a special token (cf. Section 2.1.2)

18

2.2 Large Language Models

2.2.2 Encoder Layers

Each encoder layer in Transformer models [197] is composed of two sub-layers: multi-head
self-attention and a feed-forward layer. The sub-layers implement residual connections and
layer normalization: Let X be the input of sub-layer Lsub, then its output is computed as

LayerNorm(X + Lsub(X)). (2.22)

We briefly describe the two sub-layers below.

Self-Attention

Attention is computed based on three input matrices—the queries Q, keys K, and values V:

Attn(Q,K,V) = softmax

(
QKT

√
dk

)
V. (2.23)

Multi-head attention computes attention multiple times (usingA attention heads hi) and con-
catenates the results, as denoted by [·,·], i.e.,

MultiHead(Q,K,V) = [h1, . . . , hA]W
O,

where hi = Attn
(
QWQ

i ,KWK
i ,VWV

i

)
.

(2.24)

The matricesWQ
i ∈ RH×dk ,WK

i ∈ RH×dk ,WV
i ∈ RH×dv , andWO ∈ RAdv×H are trainable

parameters, H denotes the dimension of hidden representations in the model, and dk = H
A

is a scaling factor.
As Transformer encoders compute self-attention, the three inputs Q, K, and V originate

from the same place, i.e., they are projections of the output of the previous encoder layer.
The inputs to the first encoder layer are the original token representations.

Feed-Forward

The feed-forward component of encoders is a simple fully-connected layer. The output is
computed as

FFN(X) = ReLU (XW1 + b1)W2 + b2, (2.25)

where Wi and bi are trainable parameters.

19

Chapter 2 Background

20

3
Forward Indexes

for Efficient Neural Ranking

Neural rankers are typically based on large pre-trained language models, the most popular
example being BERT [40]. Due to their architectural inductive bias (like self-attention units)
and complexity, these models are able to capture the semantics of documents very well,
mitigating the limitations of lexical retrievers. However, their capabilities come at a price,
as the models commonly used often have upwards of hundreds of millions of parameters.
This makes training and even inference without specialized hardware infeasible, and it is
impossible to rank all documents in a large corpus in reasonable time. Furthermore, the
resources required to run these models produce a considerable amount of emissions, creating
a negative impact on the environment [175].
There are two predominant approaches to deal with the inefficiency of neural ranking

models. The first one, referred to as retrieve-and-re-rank (cf. Section 2.1.3), uses an efficient
lexical retriever to obtain a candidate set of documents for the given query. The idea is to
maximize the recall, i.e., capture most of the relevant documents, in the first stage. After-
wards, the second stage employs a complex neural ranker, which re-ranks the documents in
the candidate set, in order to promote the relevant documents to higher ranks. However, the
retrieve-and-re-rank approach typically employs cross-attention re-rankers, which are ex-
pensive to compute, even for a small set of candidate documents. This limits the first-stage
retrieval depth, as low latency is essential for many applications (e.g., search engines).

The second approach skips the lexical retrieval step entirely and uses neural models for
retrieval. The dual-encoder architecture employs a query encoder and a document encoder,
both of which are neural models which map their string inputs to dense representations in

21

Chapter 3 Forward Indexes for Efficient Neural Ranking

a common vector space. Retrieval is then performed as a k-nearest-neighbor (kNN) search
operation to find the documents whose representations are most similar to the query. This
is referred to as dense retrieval (cf. Section 2.1.3). Representing queries and documents inde-
pendently means that most of the computationally expensive processing happens during the
indexing stage, where document representations are pre-computed. However, dense retrieval
is still slower than lexical retrieval and benefits from GPU acceleration, because the query
needs to be encoded during the query-processing phase. Furthermore, we find that dense
retrievers generally have lower recall than term-matching-based models at higher retrieval
depths.

In this chapter, we argue that neither of the two approaches is ideal. Instead, our first key
idea is to explore the utility of dual-encoders in the re-ranking phase instead of the retrieval
phase. Using dual-encoders in the re-ranking phase allows for a drastic reduction in query
processing times and resource utilization (i.e., GPUs) due to pre-computed document repre-
sentations. Towards this, we first show that simple interpolation-based re-ranking, that com-
bines the benefits of lexical (computed using sparse retrieval) and semantic (computed using
dual-encoders) similarity, can result in competitive and, sometimes, better performance than
using cross-attention. We propose a novel index structure called Fast-Forward indexes,
which exploits the ability of dual-encoders to pre-compute document representations, in or-
der to substantially improve the runtime efficiency of re-ranking. We empirically establish
that dual-encoder models show great performance as re-rankers, even though they do not
use cross-attention.

Our second observation is that most current dual-encoder models use the same encoder for
both documents and queries. While this design decision makes training easier, it also means
that queries have to be encoded during runtime using a, potentially expensive, forward pass.
We argue that this is suboptimal; rather, queries, which are often short and concise, do not
require a complex encoder to compute their representations. We propose lightweight query
encoders, some of which do not contain any self-attention layers, and show that they still
perform well as re-rankers, while requiring only a fraction of the resources and time. In
this chapter, we propose two families of lightweight query encoders to drastically reduce
query-encoding costs without compromising ranking performance.

Lastly, we focus on the aspects of index footprint and index maintenance. Since dense
indexes store the pre-computed representations of documents in the corpus, they exhibit
much higher storage and memory requirements compared to sparse indexes [68]. At the
same time, maintaining the index, i.e., adding new documents, requires expensive forward
passes of the document encoder. We propose two means of reducing the memory footprint:
On the one hand, we propose sequential coalescing to compress an index by reducing the

22

3.1 Related Work

number of vectors that need to be stored; on the other hand, we experiment with choosing
a smaller number of dimensions, which reduces the size of each vector. Finally, we propose
efficient document encoders, which dynamically drop irrelevant tokens prior to indexing
using a very simple technique.

Our research questions are as follows:

RQ1.1 How suitable are dual-encoder models for interpolation-based re-ranking in terms
of performance and efficiency (Section 3.5.1)?

RQ1.2 Can the re-ranking efficiency be improved by limiting the number of Fast-
Forward look-ups (Section 3.5.2)?

RQ1.3 Towhat extent does query encoder complexity affect re-ranking performance (Sec-
tion 3.5.3)?

RQ1.4 What is the trade-off between Fast-Forward index size and ranking performance
(Section 3.5.4)?

RQ1.5 Can the indexing efficiency be improved by removing irrelevant document tokens
(Section 3.5.5)?

We conduct extensive experimentation on existing ranking benchmarks and find that
dual-encoder models are very suitable for interpolation-based re-ranking and exhibit highly
desirable performance and efficiency trade-offs. We show that, with further optimizations
(early stopping—cf. Section 3.2.2), re-ranking efficiency can be greatly improved by limiting
the number of Fast-Forward look-ups. Additionally, we report a good trade-off between
Fast-Forward index size and ranking performance by using our novel sequential coalesc-
ing algorithm (cf. Section 3.2.1). Our experiments show that we can indeed train extremely
lightweight query encoders without adversely affecting ranking performance. Specifically,
our most lightweight query encoders are orders of magnitude faster than BERTbase models
with little performance degradation. More importantly, we can migrate query processing
to CPUs instead of relying on GPUs, improving on the environmental impact. Finally, we
show that we can reduce index maintenance costs by around 50% by dynamically removing
irrelevant document tokens.

3.1 Related Work

Classical ranking approaches, such as BM25 [169] or the query likelihood model [102], rely
on the inverted index, which stores term-level statistics like term frequency, inverse docu-

23

Chapter 3 Forward Indexes for Efficient Neural Ranking

ment frequency, and positional information. We refer to this style of methods as sparse, since
they assume sparse document representations. The recent success of large pre-trained lan-
guage models (e.g., BERT) shows that semantic or contextualized information is essential for
many language tasks. In order to incorporate such information in the relevance measure-
ment, Dai and Callan [34 , 35] proposed DEEP-CT, which stores contextualized scores for
terms in the inverted index for text ranking. SPLADE [49] aims to enrich sparse document
representations using a trained contextual Transformer model and sparsity regularization
on the term weights. Similarly, DeepImpact [140] enriches the document collection with
expansion terms to learn improved term impacts. In this chapter, we employ efficient sparse
models for high-recall first-stage retrieval and perform re-ranking using semantic models in
a subsequent step.

The ability to accurately determine semantic similarity is essential in order to alleviate
the vocabulary mismatch problem [149 , 33 , 35 , 135 , 136]. Computing the semantic similar-
ity of a document given a query has been heavily researched in IR using smoothing meth-
ods [97], topic models [211], embeddings [148], personalized models [132], etc. In these clas-
sical approaches, ranking is performed by interpolating the semantic similarity scores with
the lexical matching scores from the first-stage retrieval. More recently, dense neural rank-
ing methods, which employ large pre-trained language models, have become increasingly
popular. Dense rankers do not explicitly model terms, but rather compute low-dimensional
dense vector representations through self-attention mechanisms in order to estimate rele-
vance; this allows them to perform semantic matching. However, the inherent complexity
of dense ranking models usually has a negative impact on latency and cost, especially with
large corpora. Therefore, besides performance, efficiency has been another major concern in
developing neural ranking models.

There are two common architectures of dense ranking models: Cross-attention models
take a concatenation of a query and a document as input. This allows them to perform
query-document attention in order to compute the corresponding relevance score. These
models are typically used as re-rankers. Dual-encoder models employ two language models to
independently encode queries and documents as fixed-size vector representations. Usually, a
similaritymetric between query and document vector determines their relevance. As a result,
dual-encoders are mostly used for dense retrieval, but also, less commonly, for re-ranking.

We divide the remainder of the related work section into subcategories for cross-attention
models, dual-encoder models, and hybrid models, which employ both lexical and semantic
rankers. Finally, we briefly cover inference efficiency for BERT-based models.

24

3.1 Related Work

3.1.1 Cross-Attention Models

The majority of cross-attention approaches have been dominated by large contextual mod-
els [36 , 134 , 4 , 67 , 69 , 113]. The input to these ranking models is a concatenation of the query
and document. This combined input results in higher query processing times, since each
document has to be processed in conjugation with the query string. Thereby, cross-attention
models usually re-rank a relatively small number of potentially relevant candidates retrieved
in the first stage by efficient sparse methods. The expensive re-ranking computation cost is
then proportional to the retrieval depth (e.g., 1000 documents).
Another key limitation of using cross-attention models for document ranking is the max-

imum acceptable number of input tokens for Transformer models, which exhibit quadratic
complexity w.r.t. input length. Some strategies address this limitation by document trun-
cation [134] or chunking documents into passages [36 , 172]. However, the performance of
chunking-based strategies depends on the chunking properties, i.e., passage length or overlap
among consecutive passages [173]. Recent proposals include a two-stage approach, where a
query-specific summary is generated by selecting relevant parts of the document, followed
by re-ranking strategies over the query and summarized document [115 , 70 , 109 , 117]. Due
to the efficiency concerns, we do not consider cross-attention methods in this chapter, but
focus on dual-encoders instead.

3.1.2 Dual-Encoders

Dual-encoders learn dense vector representations for queries and documents using contex-
tual models [89 , 90]. The dense vectors are then indexed in an offline phase [86], where
retrieval is akin to performing an approximate nearest neighbor (ANN) search given a vec-
torized query. This allows dual-encoders to be used for both retrieval and re-ranking. Con-
sequently, there has been a large number of follow-up works that boost the performance
of dual-encoder models by improving pre-training [23 , 52 , 53 , 100 , 205], optimization [55],
and negative sampling [165 , 221 , 230] techniques or employing distillation approaches [123 ,
 234 , 128]. Lindgren et al. [127] propose a negative cache that allows for efficient training
of dual-encoder models. LED [231] uses a SPLADE model to enrich a dense encoder with
lexical information. Lin, Li, and Lin [122] propose Aggretriever, a dual-encoder model
which aggregates and exploits all token representations (instead of only the classification
token). In this chapter, we use dual-encoders for computing semantic similarity between
queries and passages. Some approaches have also proposed architectural modifications to
the aggregations between the query and passage embeddings [26 , 84 , 69]. Nogueira and Lin
[156] propose a simple document expansion model. We use dual-encoder models to perform

25

Chapter 3 Forward Indexes for Efficient Neural Ranking

efficient semantic re-ranking in our approach.
Efficiency improvements of dual-encoder-based ranking and retrieval focus mostly on ei-

ther inference efficiency of the encoders or memory footprint of the indexes. TILDEv1 [237]
and TILDEv2 [236] efficiently re-rank documents using a deep query and document likeli-
hood model instead of a query encoder. The SpaDE model [28] employs a dual document

encoder that has a term weighting and term expansion component; it improves inference ef-
ficiency by using a vastly simplified query representation. Li et al. [116] employ dynamic

lexical routing in order to reduce the number of dot products in the late interaction step.
Cohen et al. [29] use auto-encoders to compress document representations into fewer di-
mensions in order to reduce the overall size. Dong, Goldstein, and Yang [43] propose an
approach to split documents into variable-length segments and dynamically merge them
based on similarity, such that each document has the same number of segments prior to in-
dexing. Hofstätter et al. [71] introduce ColBERTer, an extension of ColBERT [90], which
removes irrelevant word representations in order to reduce the number of stored vectors.
In a similar fashion, Lassance et al. [101] propose a learned token pruning approach, which
is also used to reduce the size of ColBERT indexes by dropping tokens that are deemed
irrelevant. Yang, Qiao, and Yang [224] propose a contextual quantization approach for pre-
computed document representations (such as the ones used by ColBERT) by compressing
document-specific representations of terms.

In most of the previous work, dual-encoders are used in a homogeneous or symmetric fash-
ion, meaning that both the query and document encoder have the same architecture or even
share weights (Siamese encoders). Jung, Choi, and Rhee [87] show that the characteristics of
queries and documents are different and employ light fine-tuning in order to adapt each en-
coder to its specific role. Kim et al. [92] use model distillation for asymmetric dual-encoders,
where the query encoder has fewer parameters than the document encoder. Lassance and
Clinchant [99] separate the query and document encoder of SPLADEmodels in order to im-
prove efficiency. In this chapter, we explore the use of light-weight query encoders for more
efficient re-ranking.

3.1.3 Hybrid Models

Hybrid models combine sparse and dense retrieval. The most common approach is a sim-
ple linear combination of both scores [123]. CLEAR [55] takes the relevance of the lexical
retriever into account in the loss function of the dense retriever. COIL [54] performs contex-
tualized exact matching using pre-computed document token representations. COILcr [45]
extends this approach by factorizing token representations and approximating them using

26

3.2 Fast-Forward Indexes

canonical representations in order to make retrieval more efficient.
Unlike classical methods, where score interpolation is the norm, semantic similarity from

neural contextual models (e.g., cross-attention or dual-encoders) is not consistently com-
bined with the matching score. Recently, Wang, Zhuang, and Zuccon [207] showed that
the interpolation of BERT-based models and lexical retrieval methods can boost the perfor-
mance. Furthermore, they analyzed the role of interpolation in BERT-based dense retrieval
strategies and found that dense retrieval alone is not enough, but interpolation with BM25
scores is necessary. Similarly, Askari et al. [10] found that even providing the BM25 score as
part of the input text improves the re-ranking performance of BERT models.

3.1.4 Inference Efficiency

Several methods have been proposed to improve the inference efficiency of large
Transformer-based models, which have quadratic time complexity w.r.t. the input length.
PoWER-BERT [59] progressively eliminates word vectors in the subsequent encoder lay-
ers in order to reduce the input size. DeeBERT [218] implements an early-exit mechanism,
which may stop the computation after any Transformer layer based on the entropy of its out-
put distribution. SkipBERT [203] uses a technique where intermediate Transformer layers
can be skipped dynamically using pre-computed look-up tables. We use a simple Selective-
BERT approach, which dynamically removes irrelevant document tokens in order to make
document encoding more efficient.

3.2 Fast-Forward Indexes

Hybrid retrieval, as described in Section 2.1.3 , has two distinct disadvantages. First, in order
to retrieve Kq

D, an (approximate) nearest neighbor search has to be performed, which is
time consuming. Second, some of the query-document scores are expected to be missed,
leading to an incomplete interpolation, where the score of one of the retrievers needs to be
approximated [123] for a number of query-document pairs.
In this section, we propose Fast-Forward indexes as an efficient way of computing dense

scores for known documents that alleviates the aforementioned issues. Specifically, Fast-
Forward indexes build upon dual-encoder dense retrieval models that compute the score of
a query-document pair as a dot product

ϕD(q, d) = ζ(q) · η(d), (3.1)

27

Chapter 3 Forward Indexes for Efficient Neural Ranking

Em
bed

din
g s
pa
ce

p̂012

p0
p1

p2

p3

p4 p̂56

p5
p6

ηFF(p1) Index look-up

Figure 3.1: Sequential coalescing combines the representations of similar consecutive pas-
sages as their average. Note that p3 and p5 are not combined, as they are not consecutive
passages.

Matching
score

Semantic
similarity

d8 0.34 + 0.48

d2 0.32 + 0.61

d1 0.08 + 0.61

...
...

early stopping for top-1

estimated maximum

≤ current top-k

d1 7→

0.09

...
0.91

d2 7→

0.58

...
0.37

0.44

...
0.19

0.71

...
0.60

...

d|D| 7→

0.12

...
0.89

0.33

...
0.10

Fast-Forward index

maxpi∈d2 (ζ(q) · η(pi))

Figure 3.2: Early stopping reduces the number of interpolation steps by computing an ap-
proximate upper bound for the dense scores. This example depicts the most extreme case,
where only the top-1 document is required.

28

3.2 Fast-Forward Indexes

where ζ and η are the query and document encoders, respectively. Examples of such models
areANCE [221] and TCT-ColBERT [123]. Since the query and document representations are
independent for dual-encoder models, we can pre-compute the document representations
η(d) for each document d in the corpus. These document representations are then stored in
an efficient hash map, allowing for look-ups in constant time. After the index is created, the
score of a query-document pair can be computed as

ϕFF
D(q, d) = ζ(q) · ηFF(d), (3.2)

where the superscript “FF” indicates the look-up of a pre-computed document representation
in the Fast-Forward index. At retrieval time, only ζ(q) needs to be computed once for each
query. As queries are usually short, this can be done on CPUs. The main benefit of this
method is that the number of documents to be re-ranked can bemuch higher thanwith cross-
attentionmodels; the scoring operation is a simple look-up and dot product computation. We
compute the final query-document score using interpolation of sparse retrieval and dense re-
ranking scores as in Eq. (2.12).
Note that the use of large Transformer-based query encoders still remains a bottleneck

in terms of latency (or, if it is run on GPUs, cost). In Section 3.3 , we focus on lightweight
encoder models.

3.2.1 Index Compression via Sequential Coalescing

A major disadvantage of dense indexes and dense retrieval in general is the size of the final
index. This is caused by two factors: First, in contrast to sparse indexes, the dense rep-
resentations cannot be stored as efficiently as sparse vectors. Second, the dense encoders
are typically Transformer-based, imposing a (soft) limit on their input lengths due to their
quadratic time complexity with respect to the inputs. Thus, long documents are split into
passages prior to indexing (maxP indexes).

As an increase in the index size has a negative effect on efficiency, both for nearest neigh-
bor search and Fast-Forward indexing as used by our approach, we exploit a sequential

coalescing approach as a way of dynamically combining the representations of consecutive
passages within a single document in maxP indexes. The idea is to reduce the number of pas-
sage representations in the index for a single document. This is achieved by exploiting the
topical locality that is inherent to documents [105]. For example, a single document might
contain information regarding multiple topics; due to the way human readers naturally in-
gest information, we expect documents to be authored such that a single topic appearsmostly

29

Chapter 3 Forward Indexes for Efficient Neural Ranking

Algorithm 1: Compression of dense maxP indexes by sequential coalescing
Input: list of passage vectors P (original order) of a document, distance threshold δ
Output: coalesced passage vectors P ′

1 P ′ ← empty list
2 A ← ∅
3 foreach v in P do

4 if first iteration then

// do nothing

5 else if cosine_distance(v,A) ≥ δ then

6 append A to P ′

7 A ← ∅
8 add v to A
9 A ← mean(A)

10 end

11 append A to P ′

12 return P ′

in consecutive passages, rather than spread throughout the whole document. Our approach
aims to combine consecutive passage representations that encode similar information. To
that end, we employ the cosine distance function and a threshold parameter δ that controls
the degree of coalescing. Within a single document, we iterate over its passage vectors in
their original order and maintain a set A, which contains the representations of the already
processed passages, and continuously compute A as the average of all vectors in A. For
each new passage vector v, we compute its cosine distance to A. If it exceeds the distance
threshold δ, the current passages in A are combined as their average representation A. Af-
terwards, the combined passages are removed from A and A is recomputed. This approach
is illustrated in Algorithm 1 . Fig. 3.1 shows an example index after coalescing. To the best
of our knowledge, there are no other forward index compression techniques proposed in the
literature so far.

3.2.2 Accelerating Interpolation by Stopping Early

As described in Section 2.1.3 , by interpolating the scores of sparse and dense retrieval models,
we perform implicit re-ranking, where the dense representations are pre-computed and can
be looked up in a Fast-Forward index at retrieval time. Furthermore, increasing the sparse
retrieval depth kS , such that kS > k, where k is the final number of documents, improves the
performance. A drawback of this is that an increase in the number of retrieved documents
also results in an increase in the number of index look-ups.

Common term pruning mechanisms for term-at-a-time retrieval, such asMaxScore [196]

30

3.2 Fast-Forward Indexes

Algorithm 2: Interpolation with early stopping
Input: query q, sparse retrieval depth kS , cut-off depth k, interpolation parameter α
Output: approximated top-k scores Q

1 Q← priority queue of size k
2 sD ← −∞
3 smin ← −∞
4 foreach d in sparse(q, kS) do
5 if Q is full then
6 smin ← remove smallest item from Q
7 sbest ← α · ϕS(q, d) + (1− α) · sD
8 if sbest ≤ smin then

// early stopping
9 put smin into Q

10 break

// approximate max. dense score
11 sD ← max(ϕD(q, d), sD)
12 s← α · ϕS(q, d) + (1− α) · ϕD(q, d)
13 put max(s, smin) into Q

14 end

15 return Q

or WAND [16], accelerate query processing for inverted-index-based retrievers; however,
these techniques are not compatible with neural ranking models based on contextual query
and document representations. Our use case ismore similar to top-k query evaluation, with al-
gorithms such as the threshold algorithm [44] or probabilistic approximations [192], but these
approaches usually require sorted access, which is not available for the dense re-ranking
scores in our case.

In this section, we propose an extension to Fast-Forward indexes that allows for early
stopping, i.e., avoiding a number of unnecessary look-ups, for cases where kS > k by approx-
imating the maximum possible dense score. The early stopping approach takes advantage
of the fact that documents are ordered by their sparse scores ϕS(q, d). Since the number of
retrieved documents, kS , is finite, there exists an upper limit sD for the corresponding dense
scores such that ϕD(q, d) ≤ sD∀d ∈ Kq

S . Since the retrieved documents Kq
S are ordered by

their sparse scores, we can simultaneously perform interpolation and re-ranking by iterating
over the ordered list of documents: Let di be the ith highest ranked document by the sparse
retriever. Recall that we compute the final score as

ϕ(q, di) = α · ϕS(q, di) + (1− α) · ϕD(q, di). (3.3)

If i > k, we can compute the upper bound for ϕ(q, di) by exploiting the aforementioned

31

Chapter 3 Forward Indexes for Efficient Neural Ranking

ordering:
sbest = α · ϕS(q, di−1) + (1− α) · sD. (3.4)

In turn, this allows us to stop the interpolation and re-ranking if sbest ≤ smin, where smin

denotes the score of the kth document in the current ranking (i.e., the currently lowest ranked
document). Intuitively, this means that we stop the computation once the highest possible

interpolated score ϕ(q, di) is too low to make a difference. The approach is illustrated in
Algorithm 2 and Fig. 3.2 . Since the dense scores ϕD are usually not normalized, the upper
limit sD is unknown in practice. We thus approximate it by using the highest observed dense
score at any given step.

Theoretical Analysis

We first show that the early stopping criteria, when using the true maximum of the dense
scores, is sufficient to obtain the top-k scores.

Theorem 3.2.1. Let sD, as used in Algorithm 2 , be the true maximum of the dense scores. Then

the returned scores are the actual top-k scores.

Proof. First, note that the sparse scores, ϕS(q, di), are already sorted in decreasing order
for a given query. By construction, the priority queue Q always contains the highest scores
corresponding to the list parsed so far. Let, after parsing k scores,Q be full. Now the possible
best score sbest is computed using the sparse score found next in the decreasing sequence and
the maximum of all dense scores, sD (cf. Line 7). If sbest is less than the minimum of the scores
in Q, then Q already contains the top-k scores. To see this, note that the first component of
sbest is the largest among all unseen sparse scores (as the list is sorted) and sD is themaximum
of the dense scores by our assumption.

Next, we show that a good approximation of the top-k scores can be achieved by using
the sample maximum. To prove our claim, we use the Dvoretzky-Kiefer-Wolfowitz (DKW)
inequality [143].

Lemma 3.2.2. LetX1, X2, ..., Xn be n real-valued independent and identically distributed ran-

dom variables with the cumulative distribution function F (·). Let Fn(·) denote the empirical

cumulative distributive function, i.e.,

Fn(x) =
1

n

n∑
i=1

1{Xi≤x}, x ∈ R. (3.5)

32

3.2 Fast-Forward Indexes

According to the DKW inequality, the following estimate holds:

Pr

(
sup
x∈R

(Fn(x)− F (x)) > ϵ

)
≤ e−2nϵ2∀ϵ ≥

√
1

2n
ln 2. (3.6)

In the following, we show that, if sD is chosen as the maximum of a large random sample
drawn from the set of dense scores, then the probability that any given dense score, chosen
independently and uniformly at random from the dense scores, is greater than sD is expo-
nentially small in the sample size.

Theorem 3.2.3. Let x1, x2, ..., xn be a real-valued independent and identically distributed ran-

dom sample drawn from the distribution of the dense scores with the cumulative distribution

function F (·). Let z = max (x1, x2, ..., xn). Then, for every ϵ > 1√
2n

ln 2, we obtain

Pr (F (z) < 1− ϵ) ≤ e−2nϵ2 . (3.7)

Proof. Let Fn(·) denote the empirical cumulative distribution function as above. Specifically,
Fn(x) is equal to the fraction of variables less than or equal to x. We then have Fn(z) = 1.
By Theorem 3.2.2 , we infer

Pr (Fn(z)− F (z) > ϵ) ≤ e−2nϵ2 . (3.8)

Substituting Fn(z) = 1, we obtain Eq. (3.7).

This implies that the probability of any random variableX , chosen randomly from the set
of dense scores, being less than or equal to sD is greater than or equal to 1 − ϵ with high
probability, i.e.,

Pr (PD (X ≤ sD) ≥ 1− ϵ) ≥ 1− e−2nϵ2 , (3.9)

where PD denotes the probability distribution of the dense scores. This means that, as our
sample size grows until it reaches k, the approximation improves. Note that, in our case,
the dense scores are sorted (by corresponding sparse score), and, thus, the i.i.d. assumption
cannot be ensured. However, we observed that the dense scores are positively correlatedwith
the sparse scores. We argue that, due to this correlation, we can approximate the maximum
score well.

33

Chapter 3 Forward Indexes for Efficient Neural Ranking

101 102

Queries

Passages

Number of tokens

Figure 3.3: The distribution of query and passage lengths in the MS MARCO corpus. The
statistics are computed based on the development set queries and the first 10 000 passages
from the corpus using a BERTbase tokenizer.

3.3 Efficient Encoders

BERTmodels are the de facto standard for both query and document encoders [89 , 123 , 221].
The encoders are often homogeneous, meaning that the architectures of bothmodels are iden-
tical, or even Siamese, i.e., the same encoderweights are used for both queries and documents.
Other approaches are semi-Siamesemodels [87], where light fine-tuning is used to adapt each
encoder to its input characteristics, or TILDEv1 [237] and TILDEv2 [236], which do not re-
quire dense query representations. However, the most common choice remains the use of
BERTbase for both encoders.

We argue that the homogeneous structure is not ideal for dual-encoder IR models w.r.t.
query processing efficiency, since the characteristics of queries and documents differ [87].
Those characteristics w.r.t. the average number of tokens in are illustrated in Fig. 3.3 . This
section focuses on model architectures for both query and document encoding that aim to
improve the overall efficiency of the ranking process.

3.3.1 LightweightQuery Encoders

Query encoders need to be run online during query processing, i.e., the representations can-
not be pre-computed. Consequently, query encoding latency is essential for many down-
stream applications, such as search engines. Our experiments reveal that even encoding a
large batch of 256 queries using a BERTbase model on CPU takes more than 3 seconds (cf.
Fig. 3.7a), resulting in roughly 12 milliseconds per query (smaller batch sizes or even single
queries lead to even slower encoding). Since queries are typically short and concise, we argue
that query encoders require lower complexity (e.g., in terms of the number of parameters)
than document encoders. Our proposed query encoders are considerably more lightweight
than standard BERTbase models and thus more efficient in terms of latency and resources.

34

3.3 Efficient Encoders

Embedding

t1
[CLS]

t2
what

t3
is

t4
the

t|q|
[SEP]

. . .

Transformer encoder layer

ζ̂(q)

L×

(a) Attention-based

Embedding

t1
[CLS]

t2
what

t3
is

t4
the

t|q|
[SEP]

. . .

Average

ζ̂(q)

(b) Embedding-based

Figure 3.4: The query encoder types used in this chapter. Note that the positional encoding
that is added to BERT input tokens has been omitted in this figure.

Attention-based

Attention-based query encoders (such as models based on BERT [40]) use Transformer en-
coder layers [197] to compute query representations. Each of these layers has two main
components—multi-head attention and a feed-forward sub-layer—both of which include
residual connections and layer normalization operations (see Section 2.2 for a more detailed
description).

Given a BERT-based encoder and a query q =
(
t1, . . . , t|q|

)
, where ti are WordPiece

tokens, the query representation is computed as

ζ̂Attn(q) = BERT-CLS
(
[CLS], t1, . . . , t|q|, [SEP]

)
, (3.10)

where BERT-CLS indicates that the output vector corresponding to the classification token,
denoted by [CLS], is used. Figure 3.4a shows attention-based query encoders.

The usual choice for query encoders, BERTbase, has L = 12 layers, H = 768 dimensions
for hidden representations and A = 12 attention heads. In this chapter, we investigate how
less complex query encoders impact the re-ranking performance. Specifically, we vary three
hyperparameters, namely the number of Transformer layers L, hidden dimensions H and
attention heads A. The pre-trained BERT models we use are provided by Turc et al. [195].

Embedding-based

Embedding-based query encoders can be seen as a special case of BERT-based query en-
coders (cf. Section 3.3.1). SettingL = 0, we obtain a model without any Transformer encoder

35

Chapter 3 Forward Indexes for Efficient Neural Ranking

layers; what’s left is only the token embedding layer E (cf. Section 2.2.1).
Due to the omission of self-attention (and, thus, contextualization) altogether, the usage

of the [CLS] token is not feasible for this approach. Instead, a query q =
(
t1, . . . , t|q|

)
is

represented simply as the average of its token embeddings, i.e.,

ζ̂Emb(q) =

∑
ti∈q E(ti)

|q|
. (3.11)

Embedding-based query encoders are illustrated in Fig. 3.4b .

3.3.2 Selective Document Encoders

Document encoders are not run during query processing time, since document representa-
tions are pre-computed and indexed. However, the computation of document representations
still requires a substantial amount of time and resources. This is particularly important for
applications like web search, where index maintenance plays an important role, usually due
to large amounts of new documents constantly needing to be added to the index. The effect is
further amplified by the maxP approach (cf. Eq. (2.10)), where long documents require more
than one encoding step. Since documents tend to be much longer and more complex than
queries, lightweight document encoders would likely negatively affect performance, and re-
cent research suggests that larger document encoders lead to better results [152]. However,
due to the nature of documents obtained from web pages, we expect a considerable num-
ber of document tokens to be irrelevant for the encoding step; examples for this are stop
words or redundant (repeated) information. Similar observations have been made in other
approaches [71]. Furthermore, recent research [166] has shown that certain aspects, such as
the position of tokens, are not essential for large language models to perform well. Our pro-
posed document encoders assign a relevance score to each input token and dynamically drop
low-scoring tokens before computing self-attention in order to make the document encoding
step more efficient.

We refer to this approach as Selective-BERT. It uses a scoring network Φ : N 7→ [0, 1]

to determine the relevance of each input token before feeding it into the encoding BERT
model Ψ. We denote the parameters of the scoring network by θΦ and the parameters of
the BERT model by θΨ. We use a lightweight, non-contextual scoring network with three
384-dimensional feed-forward layers and ReLU activations. The final layer outputs a scalar
that is fed into a sigmoid activation function to compute the final score. Selective-BERT
models are trained in two steps.

36

3.3 Efficient Encoders

Embedding

t1
[CLS]

t2
the

t3
meaning

t4
of

t|d|
[SEP]

. . .

Scoring networkp

t̂1
[CLS]

t̂2
meaning

t̂3
life

t̂4
[SEP]

Transformer encoder layer

η̂(d)

Input batch

Shortened batch

L×

Figure 3.5: The fine-tuning and inference phase of Selective-BERT document encoders.
In the given example, the documents in the input batch are dynamically shortened to four
tokens each, based on the corresponding relevance scores. Note that the positional encoding
that is added to BERT input tokens has been omitted in this figure.

Pre-Training

The first step pre-trains the scoring network. θΨ is initialized using the weights of a pre-
trained BERT model (e.g., BERTbase), and θΦ is initialized randomly. The complete model
is then trained for a single epoch using the same data as during the unsupervised BERT
pre-training step [40]. The scoring network Φ is taken into account by multiplying the em-
bedding of an input token ti by its corresponding score, i.e.,

xi = E(ti) · Φ(ti) + P (ti), (3.12)

where E(ti) is the token embedding and P (ti) is the positional encoding (cf. Section 2.2.1).
The resulting representation xi is then used to compute self-attention in the first encoder
layer.

In order to encourage the scoring network to output scores less than one, we introduce a
regularization term using the L1 norm over the scores, where n is the input sequence length:

ℓ1 =
n∑

i=0

Φ(ti). (3.13)

37

Chapter 3 Forward Indexes for Efficient Neural Ranking

The final objective is a combination of the original BERT pre-training loss L and the scoring
regularizer scaled by a hyperparameter λ:

min
θΨ,θΦ

[L(θΨ, θΦ) + λ · ℓ1(θΦ)] . (3.14)

Fine-Tuning and Inference

The second step, referred to as fine-tuning, only trains the BERT model Ψ, while the scor-
ing network Φ remains frozen for the remainder of the training process. Furthermore, the
weights of the BERT model obtained in the previous step, θΨ, are discarded and replaced by
the same pre-trained model as before. The training objective during this stage is identical to
that of other dual-encoder models (cf. Eq. (2.11)).
During fine-tuning and inference (i.e., document encoding), we only retain the tokens with

the highest scores; we set a ratio p ∈ [0; 1] of the original input length to retain. As a result,
the length of the input batch is shortened by 1− p. This is achieved by removing the lowest
scoring tokens from the input. Since individual documents within a batch are usually padded,
p always corresponds to the longest sequence in the batch. Consequently, padding tokens
are always removed first before the scores of the other tokens are taken into account. The
process is illustrated in Fig. 3.5 .

3.4 Experimental Setup

In this section, we outline the experimental setup, including baselines, datasets, and further
details about training and evaluation.

3.4.1 Baselines

We consider the following baselines:

1. Sparse retrievers rely on term-based matching between queries and documents. We
consider BM25, which uses term-based retrieval signals. DEEP-CT [34], SPLADE [49],
and SpaDE [28] use sparse representations, but contextualize terms in some fashion.

2. Dense retrievers retrieve documents that are semantically similar to the query in a
common embedding space. We consider TCT-ColBERT [123], ANCE [221], and the
more recent Aggretriever [122]. All three approaches are based on BERT encoders.

38

3.4 Experimental Setup

Large documents are split into passages before indexing (maxP). These dense retriev-
ers use exact (brute-force) nearest neighbor search as opposed to approximate near-
est neighbor (ANN) search. We evaluate these methods in both the retrieval and re-
ranking setting.

3. Hybrid retrievers interpolate sparse and dense retriever scores. We consider
CLEAR [55], a retrieval model that complements lexical models with semantic match-
ing. Additionally, we consider the hybrid strategy described in Eq. (2.14) as a baseline,
using the dense retrievers above.

4. Re-rankers operate on the documents retrieved by a sparse retriever (e.g., BM25).
Each query-document pair is input into the re-ranker, which outputs a corresponding
score. In this chapter, we use a BERT-CLS re-ranker, where the output correspond-
ing to the classification token is used as the score. Note that re-ranking is performed
using the full documents (i.e., documents are not split into passages). If an input ex-
ceeds 512 tokens, it is truncated. Furthermore, we consider TILDEv2 [236] with TILDE
expansion.

3.4.2 Datasets

We evaluate our models and baselines on a variety of diverse retrieval datasets:

1. The TREC Deep Learning track [31] provides test sets and relevance judgments for
retrieval and ranking evaluation on the MS MARCO corpora [151]. We use both the
passage and document ranking test sets from the years 2019 and 2020 for our experi-
ments. In addition, we use theMSMARCO development sets to determine the optimal
values for hyperparameters.

2. TheBEIR benchmark [191] is a collection of various IR datasets, which are commonly
evaluated in a zero-shot fashion, i.e., without using any of the data for training the
model. We evaluate our models on a subset of the BEIR datasets, including tasks such
as passage retrieval, question answering, and fact checking.

3.4.3 Evaluation Details

Our ranking experiments are performed on a single machine using an Intel Xeon Silver 4210
CPU and an NVIDIA Tesla V100 GPU. In our initial experiments (Tables 3.3 and 3.4), we
measured the per-query latency by performing each experiment four times and reporting

39

Chapter 3 Forward Indexes for Efficient Neural Ranking

MS MARCO (documents) MS MARCO (passages)

ANCE castorini/ance-msmarco-doc-maxp castorini/ance-msmarco-passage

msmarco-doc-ance-maxp-bf msmarco-passage-ance-bf

TCT-ColBERT castorini/tct_colbert-msmarco castorini/tct_colbert-msmarco

msmarco-doc-tct_colbert-bf msmarco-passage-tct_colbert-bf

Aggretriever -
castorini/aggretriever-cocondenser

msmarco-v1-passage.aggretriever-cocondenser

Table 3.1: The pre-trained dense encoders and corresponding indexes we used in our exper-
iments. In each cell, the first line corresponds to a pre-trained encoder (to be obtained from
the HuggingFace Hub), and the second line is a pre-built index provided by Pyserini.

the average latency, excluding the first measurement. In subsequent experiments (Table 3.5

and Figs. 3.7a and 3.10a), we adjusted our way of measuring; we perform multiple runs of
each experiment, where each run contains multiple latency measurements. We then report
the average over all measurements of the fastest run. In Tables 3.3 and 3.4 , latency is reported
as the sum of scoring,

1
 interpolation (cf. Eq. (2.12)), and sorting cost. Any pre-processing or

tokenization cost is ignored. Where applicable, dense models use a batch size of 256. The
first-stage (sparse) retrieval step is not included, as it is constant for all methods. The Fast-
Forward indexes are loaded into the main memory entirely before they are accessed. In Ta-
ble 3.5 , we report end-to-end latency, which includes retrieval, re-ranking, and tokenization
cost.

We use the Pyserini [121] toolkit, which provides a number of pre-trained encoders
(available on the HuggingFace Hub

2
) and corresponding indexes (see Table 3.1), for our re-

trieval experiments. Dense encoders (ANCE, TCT-ColBERT, and Aggretriever) output
768-dimensional representations. The sparse BM25 retriever is provided by Pyserini as well.
We use the pre-built indexes msmarco-passage (k1 = 0.82, b = 0.68) and msmarco-doc

(k1 = 4.46, b = 0.82). Furthermore, we use Pyserini to run SPLADE with the pro-
vided msmarco-passage-distill-splade-max index and the pre-trained DistilSPLADE-
max model.

We use the MS MARCO development set to determine the interpolation parameter α. We
set α = 0.2 for TCT-ColBERT, α = 0.5 for ANCE and α = 0.7 for BERT-CLS (Section 3.5.1).
ForAggretriever, we set α = 0.3 for BM25 re-ranking and α = 0.1 for SPLADE re-ranking.
For the dual-encoder models we trained ourselves (Sections 3.5.3 to 3.5.5), the value for α is

1This includes operations like encoding queries and documents, obtaining representations from a Fast-
Forward index, computing the scores as dot-products, and so on.

2
 https://huggingface.co/models

40

https://huggingface.co/models

3.4 Experimental Setup

determined based on nDCG@10 re-ranking results on the MS MARCO development set and
varies slightly for each model.

3.4.4 Training Details

Our dual-encoder models are trained using the contrastive loss in Eq. (2.11). For each training
instance, we sample 8 hard negative documents using BM25. Additionally, we use in-batch
negatives and a batch size of 4, resulting in |D−| = 32 negatives for each query. Each model
is trained on four NVIDIA A100 GPUs. We set the learning rate to 1× 10−5 and use gradient
accumulation of 32 batches (this results in an effective batch size of 4×4×32 = 512). During
training, we perform validation on theMSMARCO development set. Our models are trained
until the average precision stops improving for five consecutive iterations. We exclusively
train on theMSMARCO passage ranking corpus; the resulting models are then evaluated on
multiple datasets (i.e., for BEIR, we do zero-shot evaluation). Our Selective-BERTmodel (cf.
Section 3.3.2) uses λ = 10−6 during pre-training. We implemented our models and training
pipeline using PyTorch,

3
 PyTorch-Lightning,

4
 and Transformers.

5

Dual-Encoder Architecture

Our dual-encoder rankers consist of a query encoder ζ and a document encoder η (cf. Sec-
tion 2.1.2):

ζ(q) = ||Wζ ζ̂(q) + bζ ||2, (3.15)

η(d) = ||Wηη̂(d) + bη||2. (3.16)

Themodels ζ̂ and η̂map queries and documents to arbitrary vector representations; examples
for these models are pre-trained Transformers or the encoders described in Section 3.3 . We
include optional trainable linear layers (with corresponding weights Wζ ∈ Ra×dζ , Wη ∈
Ra×dη , bζ ∈ Ra, and bη ∈ Ra) for heterogeneous encoders, where the dimensions of the
representation vectors, dζ and dη, do notmatch. We furtherL2-normalize the representations
during training and indexing; we do not normalize the query representations during ranking,
as this would only scale the scores, but not change the final ranking.

3
 https://pytorch.org/

4
 https://pytorchlightning.ai/

5
 https://huggingface.co/

41

https://pytorch.org/
https://pytorchlightning.ai/
https://huggingface.co/

Chapter 3 Forward Indexes for Efficient Neural Ranking

3.5 Results

In this section, we perform experiments to show the effectiveness and efficiency of Fast-
Forward indexes.

3.5.1 Dual-Encoders for Interpolation-based Re-ranking

This section focuses on the effectiveness and efficiency of Fast-Forward indexes for re-
ranking. We use pre-trained dual-encoders that are homogeneous (i.e., both encoders are
identical models) for our experiments.

Interpolation-based Re-Ranking Performance of Dual-Encoder Models

In Table 3.2 , we report the performance of sparse, dense, and hybrid retrievers, re-rankers,
and interpolation.

First, we observe that dense retrieval strategies perform better than sparse ones in terms
of nDCG, but have poor recall except on TREC-DL-Psg’19. The contextual weights learned
by DEEP-CT are better than tf-idf-based retrieval (BM25), but fall short of dense semantic
retrieval strategies (TCT-ColBERT and ANCE) with differences upwards of 0.1 in nDCG.
However, the overlap among retrieved documents is rather low, reflecting that dense retrieval
cannot match query and document terms well.

Second, dual-encoder-based (TCT-ColBERT and ANCE) perform better than contextual
(BERT-CLS) re-rankers. In this setup, we first retrieve kS = 1000 documents using a sparse
retriever and re-rank them. This approach benefits from high recall in the first stage and
promotes the relevant documents to the top of the list through the dense semantic re-ranker.
However, re-ranking is typically time-consuming and requires GPU acceleration. The im-
provements of TCT-ColBERT and ANCE over BERT-CLS (e.g., 0.1 in nDCG) also suggest
that dual-encoder-based re-ranking strategies are better than cross-interaction-based meth-
ods. However, the difference could also be attributed to the fact that BERT-CLS does not
follow the maxP approach (cf. Eq. (2.10)).

Finally, interpolation-based re-ranking, which combines the benefits of sparse and dense
scores, significantly outperforms the BERT-CLS re-ranker and dense retrievers. Recall that
dense re-rankers operate solely based on the dense scores and discard the sparse BM25 scores
of the query-document pairs. The superiority of interpolation-based methods is also sup-
ported by evidence from recent studies [23 , 26 , 55 , 54].

42

3.5 Results

TR
EC

-D
L-
D
oc

’1
9

TR
EC

-D
L-
D
oc

’2
0

TR
EC

-D
L-
Ps
g’
19

A
P@

10
0
0

R@
10

00
nD

CG
@
10

A
P@

10
00

R@
10

00
nD

CG
@
10

A
P@

10
00

R@
10

00
nD

CG
@
10

S
p
a
r
s
e
R
e
t
r
i
e
v
a
l

BM
25

0.
33

1
0
.6
9
7

0
.5
19

[a
bc
]

0.
40

4
0
.8
09

0
.5
27

[a
bc
]

0
.3
01

0
.7
50

0
.5
06

[a
bc
]

D
EE

P-
CT

-
-

0
.5
44

-
-

-
0
.4
22

0
.7
56

0
.5
51

D
e
n
s
e
R
e
t
r
i
e
v
a
l

TC
T-
Co

lB
ER

T
0.
27

9
0
.5
7
6

0
.6
12

[a
]

0.
37

2
0
.7
28

0
.5
86

[a
b]

0
.3
91

0
.7
92

0
.6
70

A
N
CE

0.
25

4
0
.5
1
0

0
.6
33

[a
]

0
.4
01

0
.6
81

0
.6
33

0
.3
71

0
.7
55

0
.6
45

H
y
b
r
i
d
R
e
t
r
i
e
v
a
l

CL
EA

R
-

-
-

-
-

-
0
.5
11

0
.8
12

0
.6
99

R
e
-
R
a
n
k
i
n
g

TC
T-
Co

lB
ER

T
0.
37

0
0
.6
9
7

0
.6
85

0
.4
14

0
.8
09

0
.6
17

0
.4
23

0
.7
50

0
.6
94

A
N
CE

0.
3
3
6

0
.6
97

0
.6
54

0
.4
26

0
.8
09

0
.6
30

0
.3
89

0
.7
50

0
.6
79

BE
RT

-C
LS

0.
28

3
0
.6
9
7

0
.5
20

[a
bc
]

0
.3
29

0
.8
09

0
.5
22

[a
bc
]

0
.3
53

0
.7
50

0
.5
78

[a
b]

I
n
t
e
r
p
o
l
a
t
i
o
n

[a
]
TC

T-
Co

lB
ER

T
0.
40

6
0
.6
9
7

0
.6
96

0
.4
69

0
.8
09

0
.6
37

0
.4
38

0
.7
50

0
.7
08

[b
]
A
N
CE

0.
3
8
7

0
.6
97

0
.6
73

0
.4
90

0
.8
09

0
.6
55

0
.4
17

0
.7
50

0
.6
80

[c
]
BE

RT
-C
LS

0.
36

5
0
.6
9
7

0
.6
12

0
.4
60

0
.8
09

0
.6
26

0
.3
78

0
.7
50

0
.6
17

T
a
b
l
e
3
.
2
:
Ra

nk
in
gp

er
fo
rm

an
ce
.R

et
rie

ve
rs
us
ed

ep
th
sk

S
=

10
00

(sp
ar
se
)a
nd

k
D
=

10
00
0
(d
en
se
).
D
en
se

re
tri
ev
er
sr
et
rie

ve
pa
ss
ag
es

an
d
pe
rfo

rm
m
ax
P
ag
gr
eg
at
io
n
fo
rd

oc
um

en
ts
.S

co
re
sf
or

CL
EA

R
an
d
D
EE

P-
CT

ar
e
ta
ke
n
fro

m
th
e
co
rr
es
po

nd
in
g
pa
pe
rs

[5
5 ,

 54
].

Su
pe
rs
cr
ip
ts
in
di
ca
te

st
at
ist
ic
al
ly

sig
ni
fic
an
ti
m
pr
ov
em

en
ts
us
in
g
tw

o-
pa
ire

d
te
st
sw

ith
a
sig

.l
ev
el
of

95
%
[1
58

].

43

Chapter 3 Forward Indexes for Efficient Neural Ranking

TREC-D
L-D

oc’19
TREC-D

L-D
oc’20

Latency
k
S
=

1
0
0
0

k
S
=

5
0
0
0

k
S
=

1
0
0
0

k
S
=

5
0
0
0

ms

AP@1000

R@1000

nDCG@20

AP@1000

R@1000

nDCG@20

AP@1000

R@1000

nDCG@20

AP@1000

R@1000

nDCG@20

H
y
b
r
i
d
R
e
t
r
i
e
v
a
l

BM
25,TCT-ColBERT

0
+

5
8
2

0
.3
9
4

0
.6
9
7

0
.6
5
5

0
.3
8
5

0
.7
2
9

0
.6
4
5

0
.4
6
3

0
.8
0
9

0
.6
1
5

0
.4
6
9

0
.8
5
2

0
.6
2
1

BM
25,A

N
CE

0
+

5
8
2

0
.3
7
9

0
.6
9
7

0
.6
3
3

0
.3
7
3

0
.7
2
7

0
.6
2
8

0
.4
7
9

0
.8
0
9

0
.6
2
4

0
.4
8
8

0
.8
4
6

0
.6
3
2

R
e
-
R
a
n
k
i
n
g

TCT-ColBERT
1
1
8
9

+
2

0
.3
7
0

0
.6
9
7

0
.6
3
2

0
.3
3
4

0
.7
0
3

0
.6
0
9
[a]

0
.4
1
4

0
.8
0
9

0
.5
8
7
[a]

0
.4
0
5

0
.7
9
4

0
.5
8
5
[acd]

A
N
CE

1
1
8
9

+
2

0
.3
3
6

0
.6
9
7

0
.6
1
4

0
.3
0
4

0
.6
4
7

0
.6
0
7

0
.4
2
6

0
.8
0
9

0
.5
9
5
[c]

0
.4
2
2

0
.7
6
1

0
.6
0
4

BERT-CLS
1
8
5

+
2

0
.2
8
3

0
.6
9
7

0
.4
9
4
[abcde]

0
.1
5
9

0
.5
5
9

0
.2
8
9

0
.3
2
9

0
.8
0
9

0
.5
1
2
[abcde]

0
.2
2
1

0
.7
2
7

0
.3
7
5
[abcde]

I
n
t
e
r
p
o
l
a
t
i
o
n

[a]
TCT-ColBERT

1
1
8
9

+
1
4

0
.4
0
6

0
.6
9
7

0
.6
5
5

0
.4
1
1

0
.7
4
5

0
.6
5
3

0
.4
6
9

0
.8
0
9

0
.6
2
1

0
.4
7
8

0
.8
3
8

0
.6
2
6

[a]

↰Fast-Forw
ard

0
+

2
5
3

0
.4
0
6

0
.6
9
7

0
.6
5
5

0
.4
1
1

0
.7
4
5

0
.6
5
3

0
.4
6
9

0
.8
0
9

0
.6
2
1

0
.4
7
8

0
.8
3
8

0
.6
2
6

[b]

↰coalesced
0

+
1
0
9

0
.3
7
9

0
.6
9
7

0
.6
3
0

0
.3
7
9

0
.7
3
2

0
.6
2
5

0
.4
4
0

0
.8
0
9

0
.5
94

[a]
0
.4
4
7

0
.8
3
7

0
.6
0
7

[c]
A
N
CE

1
1
8
9

+
1
4

0
.3
8
7

0
.6
9
7

0
.6
3
8

0
.3
9
3

0
.7
3
2

0
.6
3
9

0
.4
9
0

0
.8
0
9

0
.6
3
0

0
.5
0
2

0
.8
2
8

0
.6
4
0

[c]

↰Fast-Forw
ard

0
+

2
5
3

0
.3
8
7

0
.6
9
7

0
.6
3
8

0
.3
9
3

0
.7
3
2

0
.6
3
9

0
.4
9
0

0
.8
0
9

0
.6
3
0

0
.5
0
2

0
.8
2
8

0
.6
4
0

[d]

↰coalesced
0

+
1
2
1

0
.3
7
2

0
.6
9
7

0
.6
2
5

0
.3
7
5

0
.7
2
3

0
.6
2
8

0
.4
7
1

0
.8
0
9

0
.6
2
2

0
.4
7
9

0
.8
2
3

0
.6
2
9

[e]
BERT-CLS

1
8
5

+
1
4

0
.3
6
5

0
.6
9
7

0
.5
8
5

0
.3
5
7

0
.7
0
8

0
.5
6
2

0
.4
6
0

0
.8
0
9

0
.6
0
2

0
.4
5
9

0
.8
3
9

0
.6
0
1

T
a
b
l
e
3
.
3
:D

ocum
entranking

perform
ance.Latency

isreported
perquery

for
k
S
=

5000
asthe

sum
of

GPU
and

CPU
tim

e.The
coalesced

Fast-Forw
ard

indexesare
com

pressed
to

approxim
ately

25%
oftheiroriginalsize.H

ybrid
retrieversuse

a
dense

retrieval
depth

of
k
D
=

1000.Superscriptsindicatestatistically
significantim

provem
entsusing

tw
o-paired

testsw
ith

a
sig.levelof

95%
[

 158
].

44

3.5 Results

Latency kS = 1000 kS = 5000

ms AP@1000 RR@10 AP@1000 RR@10

Hybrid Retrieval

BM25, TCT-ColBERT 0 + 307 0.434 0.894 0.454 0.902
BM25, ANCE 0 + 307 0.410 0.856 0.422 0.864

Re-Ranking

TCT-ColBERT 186 + 2 0.426 0.827 0.439 0.842
ANCE 186 + 2 0.389 0.836 0.392 0.857
BERT-CLS 185 + 2 0.353 0.715 0.275 0.576

Interpolation

TCT-ColBERT 186 + 14 0.438 0.894 0.460 0.902↰

Fast-Forward 0 + 114 0.438 0.894 0.460 0.902↰

early stopping 0 + 72 - 0.894 - 0.902

ANCE 186 + 14 0.417 0.856 0.435 0.864↰

Fast-Forward 0 + 114 0.417 0.856 0.435 0.864↰

early stopping 0 + 52 - 0.856 - 0.864

BERT-CLS 185 + 14 0.378 0.809 0.392 0.832

Table 3.4: Ranking performance on TREC-DL-Psg’19. Latency is reported per query for
kS = 5000 as the sum of GPU and CPU time. Hybrid retrievers use a dense retrieval depth
of kD = 1000.

Efficient Re-Ranking at Higher Retrieval Depths

Tables 3.3 and 3.4 show results of re-ranking, hybrid retrieval, and interpolation on document
and passage datasets, respectively. The metrics are computed for two sparse retrieval depths,
kS = 1000 and kS = 5000.
We observe that additionally taking the sparse component into account in the score com-

putation (as is done by the interpolation and hybrid methods) causes performance to improve
with retrieval depth. Specifically, some queries receive a considerable recall boost, capturing
more relevant documents with large retrieval depths. Interpolation based on Fast-Forward
indexes achieves substantially lower latency compared to other methods. Pre-computing the
document representations allows for fast look-ups during retrieval time. As only the query
needs to be encoded by the dense model, both retrieval and re-ranking can be performed
on the CPU while still offering considerable improvements in query processing time. Note
that, for BERT-CLS, the input length is limited, causing documents to be truncated, similarly
to the firstP approach. As a result, the latency is much lower, but in turn the performance
suffers. It is important to note here, that, in principle, Fast-Forward indexes can also be
used in combination with firstP models.

45

Chapter 3 Forward Indexes for Efficient Neural Ranking

The hybrid retrieval strategy, as described in Eq. (2.14), shows good performance. How-
ever, as the dense indexes require nearest neighbor search for retrieval, the query processing
latency is higher than for interpolation using Fast-Forward indexes.

Finally, dense re-rankers do not profit reliably from increased sparse retrieval depth; on the
contrary, the performance drops in some cases. This trend is more apparent for the document
retrieval datasets with higher values of kS . We hypothesize that dense rankers only focus on
semantic matching and are sensitive to topic drift, causing them to rank irrelevant documents
in the top-5000 higher.

Varying the First-Stage Retrieval Model

We perform additional passage ranking experiments in Table 3.5 , where we compare vari-
ous first-stage retrieval methods in combination with re-rankers. The idea is to show how
Fast-Forward indexes perform in combination with modern sparse retrievers and how they
compare with other re-rankers. Additionally, these experiments give an idea of the end-to-
end efficiency, as we report the latency as the sum of retrieval, re-ranking, and tokenization.
The Aggretriever model [122] we use in combination with Fast-Forward indexes is a
recent single-vector dual-encoder model based on coCondenser [53].
Both SpaDE and SPLADE, unsurprisingly, perform substantially better thanBM25, as these

models use contextualized learnt representations. This boost in performance comes with
a large increase in latency, in terms of both indexing and query processing. However, it
becomes evident that re-ranking BM25 results comes very close to these models in terms of
performance, and sometimes even surpasses them, even though the overall latency remains
lower. At the same time, Fast-Forward indexes manage to improve the performance of
SPLADE by re-ranking (although the improvements are not as big). Interestingly, TILDEv2
does not exhibit this behavior, but rather performsworsewhen a SPLADEfirst-stage retriever
is used. We assume that the reason for this is that the model was not optimized for this
scenario.

3.5.2 Early Stopping for more Efficient Re-ranking

We evaluate the utility of the early stopping approach described in Section 3.2.2 on the TREC-
DL-Psg’19 dataset. Figure 3.6 shows the average number of look-ups performed in the Fast-
Forward index during interpolation w.r.t. the cut-off depth k. We observe that, for k =

100, early stopping already leads to a reduction of almost 20% in the number of look-ups.
Decreasing k further leads to a significant reduction of look-ups, resulting in improved query
processing latency. As lower cut-off depths (i.e., k < 100) are typically used in downstream

46

3.5 Results

La
te
nc
y

M
SM

-P
sg
-D

ev
TR

EC
-D

L-
Ps
g’
19

TR
EC

-D
L-
Ps
g’
20

m
s

A
P@

10
00

RR
@
10

A
P@

10
00

RR
@
10

nD
CG

@
10

A
P@

10
00

RR
@
10

nD
CG

@
10

BM
25

1
4

0.
19

6
0
.1
87

0
.3
01

0
.7
02

0
.5
06

0
.2
88

0
.6
55

0
.4
88

↰ T
IL
D
Ev

2
10
4

0.
33

8
0
.3
42

0
.4
37

0
.8
36

0
.6
80

0
.4
59

0
.8
68

0
.6
79

↰ A
gg

re
tr

ie
ve

r

↰ F
as
t-
Fo

rw
ar

d
1
5
0

0.
37

3
0
.3
69

0
.4
65

0
.8
77

0
.7
00

0
.4
86

0
.8
25

0
.7
17

Sp
aD

E
(k

=
5)

-
-

0
.3
55

0
.4
37

-
0.
68

2
0
.4
53

-
0
.6
77

SP
LA

D
E

3
0
2

0.
37

5
0
.3
68

0
.4
85

0
.9
01

0
.7
28

0
.4
90

0
.8
30

0
.7
11

↰ T
IL
D
Ev

2
3
7
4

0.
33

7
0
.3
42

0
.4
12

0
.8
08

0
.6
54

0
.4
33

0
.8
58

0
.6
48

↰ A
gg

re
tr

ie
ve

r
↰ F

as
t-
Fo

rw
ar

d
4
2
0

0.
38

3
0
.3
78

0
.4
89

0
.8
99

0
.7
26

0
.5
00

0
.8
56

0
.7
16

T
a
b
l
e
3
.
5
:
Pa
ss
ag
e
ra
nk

in
g
pe
rfo

rm
an
ce

us
in
g
va
rio

us
fir
st
-s
ta
ge

re
tri
ev
al
m
od

el
sa

sw
el
la
sr

e-
ra
nk

er
s.
Ag

gr
et

ri
ev

er
m
od

el
sa

re
us
ed

fo
ri
nt
er
po

la
tio

n-
ba
se
d
re
-r
an
ki
ng

us
in
g
Fa

st
-F
or

w
ar

d
in
de
xe
s.
Re

-r
an
ki
ng

is
do

ne
w
ith

k
S
=

50
00

pa
ss
ag
es
.S

pa
D
E
re
su
lts

ar
e
ta
ke
n
fro

m
th
e
co
rr
es
po

nd
in
g
pa
pe
r[

 28
].

Fo
rS

PL
A
D
E,

w
e
us
e
th
e
D
is
ti
lS
PL

A
D
E-
ma

x
m
od

el
.L

at
en
cy

is
re
po

rte
d
pe
rq

ue
ry

on
CP

U
.F

or
re
tri
ev
al
m
od

el
s(
BM

25
an
d
SP

LA
D
E)
,l
at
en
cy

is
re
po

rte
d
at

re
tri
ev
al
de
pt
h
k
S
=

10
00
.F

or
re
-r
an
ki
ng

(T
IL
D
Ev

2
an
d

Fa
st
-F
or

w
ar

d)
,l
at
en
cy

is
re
po

rte
d
as

th
e
su
m

of
re
tri
ev
al
an
d
re
-r
an
ki
ng

,b
ot
h
at

de
pt
h
k
S
=

50
00
.

47

Chapter 3 Forward Indexes for Efficient Neural Ranking

102030405060708090100
1,000

2,000

3,000

4,000

5,000

Cut-off depth k

Sparse depth
Average number of index look-ups

Figure 3.6: The average number of Fast-Forward index look-ups per query for interpola-
tion with early stopping at varying cut-off depths k on TREC-DL-Psg’19 with kS = 5000
using ANCE.

tasks, such as question answering, the early stopping approach for low values of k turns out
to be particularly helpful.

Table 3.4 shows early stopping applied to the passage dataset to retrieve the top-10 pas-
sages and compute reciprocal rank. It is evident that, even though the algorithm approx-
imates the maximum dense score (cf. Section 3.2.2), the resulting performance is identical,
which means that the approximation was accurate in both cases and did not incur any per-
formance hit. Furthermore, the query processing time is decreased by up to a half compared
to standard interpolation. This means that presenting a small number top results (as is com-
mon in many downstream tasks) can yield substantial speed-ups. Note that early stopping
depends on the value of α, hence the latency varies between TCT-ColBERT and ANCE.

3.5.3 Query Encoder Complexity

In this section, we investigate the role of the query encoder in interpolation-based re-ranking
using Fast-Forward indexes.

The Role of Self-Attention

First, we train a large number of dual-encoder models (as described in Section 3.4.4) and
successively reduce the complexity of the query encoder. At the same time, we monitor
the effects on performance and latency. The query encoders we analyze correspond to the
attention-based query encoders and the embedding-based query encoders described in Sec-
tion 3.3.1 . Since the embedding-based encoders are, technically speaking, a special case of
the attention-based ones, we plot the results together in Fig. 3.7 . The document encoder we

48

3.5 Results

128 256 512 768

0
2
4
6
8
10
12

0.013

0.027 0.12 0.29 0.55

0.054 0.15 0.53 1.1

0.076 0.23 0.85 1.6

0.1 0.31 1.1 2.2

0.13 0.38 1.4 2.6

0.17 0.45 1.7 3.1

Hidden dimensions H

En
co
de
rl
ay
er
sL

(a) Query encoding latency in seconds

128 256 512 768

0
2
4
6
8
10
12

0.37

0.35 0.36 0.37 0.37

0.35 0.36 0.37 0.37

0.36 0.36 0.37 0.37

0.35 0.37 0.37 0.37

0.36 0.37 0.37 0.37

0.36 0.37 0.37 0.39

Hidden dimensions H
En

co
de
rl
ay
er
sL

(b) nDCG@10 onMSM-Psg-Dev

128 256 512 768

0
2
4
6
8
10
12

0.67

0.66 0.65 0.64 0.66

0.64 0.65 0.63 0.66

0.64 0.65 0.63 0.63

0.64 0.65 0.66 0.63

0.65 0.67 0.66 0.66

0.64 0.66 0.63 0.67

Hidden dimensions H

En
co
de
rl
ay
er
sL

(c) nDCG@10 on TREC-DL-Psg’19

128 256 512 768

0
2
4
6
8
10
12

0.62

0.62 0.66 0.65 0.64

0.63 0.65 0.64 0.65

0.63 0.64 0.63 0.66

0.63 0.66 0.65 0.65

0.63 0.64 0.64 0.67

0.62 0.65 0.65 0.7

Hidden dimensions H

En
co
de
rl
ay
er
sL

(d) nDCG@10 on TREC-DL-Psg’20

Figure 3.7: Query encoding latency and Fast-Forward ranking performance of dual-
encoders with various query encoder models. The sparse retrieval depth is kS = 5000. L
and H correspond to the number of Transformer layers and dimensions of the hidden rep-
resentations, respectively. L = 0 corresponds to embedding-based query encoders, which
are initialized with pre-trained token embeddings from BERTbase, and L > 0 corresponds
to attention-based query encoders, where the number of attention heads is A = H

64
. The

document encoder is a BERT model with 12 layers and 768-dimensional representations in
all cases. Query encoding latency is measured on CPU with a batch size of 256 queries from
MSM-Psg-Dev (tokenization cost is excluded, as it is identical for all models).

49

Chapter 3 Forward Indexes for Efficient Neural Ranking

use is a BERTbase model, which has L = 12 layers and H = 768 hidden dimensions; it is
the same across all experiments. For the query encoder, we start with BERTbase as well and
reduce both the number of layers and hidden dimensions. All pre-trained BERT models we
use for this experiment are provided by Turc et al. [195]. If the output dimensions of the
encoders do not match, we add a single linear layer to the query encoder (cf. Section 3.4.4).

Figure 3.7a illustrates the time each encoder requires to encode a batch of queries on a
CPU; as expected, a reduction in either the number of layers or hidden dimensions has a
positive impact on encoding latency, and themost lightweight attention-basedmodel (L = 2,
H = 128) is significantly faster than BERTbase (27milliseconds vs. 3.1 seconds). Furthermore,
the complete omission of self-attention in the embedding-based encoder (L = 0, H = 768)
results in even faster encoding (13 milliseconds).

Next, we analyze to what extent the drastic reduction of complexity affects the ranking
performance. Figures 3.7b to 3.7d show the corresponding Fast-Forward re-ranking perfor-
mance on passage development and test sets. It is evident that the absolute difference in per-
formance between the encoders is relatively low; this is especially true onMSM-Psg-Dev and
TREC-DL-Psg’19. In fact, the embedding-based query encoder does not always yield worse
performance than the attention-based encoders, specifically on TREC-DL-Psg’19. On TREC-
DL-Psg’20, the highest absolute difference of 0.05 is the largest among the three datasets.

These results suggest that query encoders do not need to be overly complex; rather, inmost
cases, either considerably smaller attention-based or even embedding-based models can be
used. The embedding-based encoders are particularly useful, since they are essentially a
look-up table and hence require no forward pass other than computing the average of all
token embeddings.

3.5.4 Trade-off Between Index Size and Ranking Performance

This research question investigates how index size influences ranking performance and la-
tency. In detail, we reduce index size in two different ways: First, we apply sequential coa-
lescing (cf. Section 3.2.1) in order to reduce the number of vector representations in the index.
Second, we train query and encoders to output lower-dimensional vector representations. Note
that these methods are not mutually exclusive, but rather complementary.

Sequential Coalescing

In order to evaluate this approach, we first take the pre-trained TCT-ColBERT dense index of
the MS MARCO corpus, apply sequential coalescing with varying values for δ and evaluate
each resulting compressed index using the TREC-DL-Doc’19 test set. The results are illus-

50

3.5 Results

0 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.10

20

40

60

80

100

Distance threshold δ

%

0 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.1 0.3

0.4

0.5

0.6

0.7

0.8

M
et
ric

va
lu
e

Size reduction [%] AP nDCG

Figure 3.8: Sequential coalescing applied to TREC-DL-Doc’19. The plot shows the index
size reduction in terms of the number of passages and the corresponding metric values for
Fast-Forward interpolation with TCT-ColBERT.

trated in Fig. 3.8 . It is evident that, by combining the passage representations, the number of
vectors in the index can be reduced by more than 80% in the most extreme case, where only
a single vector per document remains. At the same time, the performance is correlated with
the granularity of the representations. However, the drops are relatively small. For example,
for δ = 0.025, the index size is reduced by more than half, while the nDCG decreases by
roughly 0.015 (3%).

Additionally, Table 3.3 shows the detailed performance of coalesced Fast-Forward in-
dexes on the document datasets. We chose the indexes corresponding to δ = 0.035 (TCT-
ColBERT) and δ = 0.003 (ANCE), both of which are compressed to approximately 25% of
their original size. This is reflected in the query processing latency, which is reduced bymore
than half. The overall performance drops to some extent, as expected, however, these drops
are not statistically significant in all but one case. The trade-off between latency (index size)
and performance can be controlled by varying the threshold δ.

The Effect of Representation Size

In this experiment, we investigate the degree to which the dimension of the query and doc-
ument representations influences the final ranking performance of the models. The idea is
motivated by recent research [152], which suggests that the representation vectors are not
the bottleneck of dual-encoder models, but rather the document encoder complexity is. Since
the dimensionality of the representations directly influences the index size, it is desirable to
keep it as low as possible.

51

Chapter 3 Forward Indexes for Efficient Neural Ranking

128 256 512 768

0.6

0.65

Hidden dimensions H

nD
CG

@
1
0

L = 0 L = 12

(a) Performance on TREC-DL-Psg’19

128 256 512 768

0.5

0.6

0.7

Hidden dimensions H

nD
CG

@
10

L = 0 L = 12

(b) Performance on TREC-DL-Psg’20

Figure 3.9: Fast-Forward ranking results for kS = 5000 of embedding-based (L = 0) and
attention-based (L = 12) query encoders. The representation dimension H is always the
same for both encoders. The document encoders use L = 12 layers and A = H

64
attention

heads in all cases.

In order to analyze the effect, we train a number of dual-encoder models (cf. Eq. (2.11)),
where all hyperparameters, except the hidden dimension H and number of attention heads
A, are kept the same. We show results for embedding-based (L = 0) and attention-based
(L = 12) query encoders in Fig. 3.9 . There is a trade-off between the dimensionality of
representations and ranking performance, which is expected; this trade-off is exhibited by
both embedding-based and attention-based query encoders. Overall, the results show that
the performance reduction is rather small forH = 512 and evenH = 256 (compared toH =

768), considering that it goes hand in hand with a reduction in index size of approximately
33% and 67%, respectively.

3.5.5 Efficient Indexing by Removing Irrelevant Document Tokens

In this experiment, we focus on the Selective-BERT document encoders proposed in Sec-
tion 3.3.2 . In order to analyze the index efficiency and ranking performance, we train two
dual-encoders (cf. Section 3.4.4) with Selective-BERT document encoders, where L = 12

and H = 768. The query encoders have L = 0 (embedding-based) and L = 12 (attention-
based), respectively, and H = 768. During fine-tuning (cf. Section 3.3.2), we fix the hyper-
parameter p = 0.75, which controls the ratio of tokens to be removed from the documents;
afterwards, we create a number of indexes, where we vary p between 0.1 and 0.9, and com-
pute the corresponding indexing time (using GPUs) and ranking performance. The results
are plotted in Fig. 3.10 .

52

3.6 Discussion

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Ratio p

(a) Encoding latency [sec]

0.2 0.4 0.6 0.8
0.25

0.3

0.35

Ratio p

BERTbase
Selective-BERT

(b) nDCG@10, L = 0

0.2 0.4 0.6 0.8
0.25

0.3

0.35

Ratio p

(c) nDCG@10, L = 12

Figure 3.10: Evaluation of Fast-Forward indexes created using Selective-BERT models.
The document encoders are BERTbase models with L = 12 andH = 768. During fine-tuning,
we set the parameter p = 0.75 (percentage of tokens to keep). We then vary p ∈ [0, 1] during
the indexing stage, resulting in progressively higher indexing efficiency (Fig. 3.10a). The
corresponding Fast-Forward ranking performance onMSM-Psg-Dev is shown in Fig. 3.10b

for an embedding-based query encoder (L = 0) and in Fig. 3.10c for an attention-based query
encoder (L = 12). Document encoding latency is measured on GPU with a batch size of 256
passages from theMS MARCO corpus (tokenization cost is excluded, as it is identical for all
models).

The document encoding latency (Fig. 3.10a) increases nearly linearly with the ratio of
tokens to keep (p). Even though the BERT model has a quadratic complexity w.r.t. input
length, this is expected, as there is a certain amount of overhead introduced by the scoring
network and the reconstruction of the batches. More interestingly, the ranking performance
(Figs. 3.10b and 3.10c) is mostly unchanged for p ≥ 0.5 in both cases, however, neither
of the models manages to match the performance of their respective baselines (the same
configuration with a standard BERT model instead of Selective-BERT). We hypothesize
that the reason for this could be the choice of p = 0.75 during the fine-tuning step.

Overall, our results show that up to 50% of document tokens can be removed without
much of a performance reduction. Encoding half of the number of tokens results in approx-
imately halving the time required to encode documents. This has a large impact on efficient
indexmaintenance in the context of dynamically increasing document collections. For future
work, the Selective-BERT architecture can be further refined, for example, by introducing
improved (contextualized) scoring networks.

3.6 Discussion

In this section, we reflect upon our work and present possible limitations.

53

Chapter 3 Forward Indexes for Efficient Neural Ranking

TREC-DL-Psg’19 TREC-DL-Doc’19

AP@1000 R@1000 nDCG@10 AP@1000 R@1000 nDCG@10

Sparse Retrieval

BM25 0.301 0.750 0.506 0.331 0.697 0.519

Dense Retrieval

ANCE - - 0.648 - - 0.628
TCT-ColBERT - - 0.670 - - -

Our Models

L = 0, H = 768 0.198 0.486 0.424 0.100 0.263 0.342
L = 12, H = 768 0.318 0.691 0.545 0.201 0.457 0.504

Table 3.6: Retrieval results of dual-encoder models using lightweight query encoders and
some baselines. For TREC-DL-Doc’19, the dense retrieval depth is set to kD = 10000 and
maxP aggregation is applied (cf. Eq. (2.10)). Our model with L = 0 uses an embedding-
based query-encoder, and the one with L = 12 uses an attention-based query encoder. The
document encoder is a BERTbase model (L = 12, H = 768) in both cases.

3.6.1 Efficient Encoders for Dense Retrieval

Our research questions and experiments have focused exclusively on interpolation-based
re-ranking using dual-encoders and Fast-Forward indexes. However, the most common
application of dual-encoders in the field of IR is the use as dense retrieval models; a natural
question that occurs is, whether the encoders proposed in Section 3.3 can be used for more
efficient dense retrieval.

In Table 3.6 , we present passage and document retrieval results on theMSMARCO corpus.
Dense retrievers use a FAISS [86] vector index; no interpolation or re-ranking is performed.
It is immediately obvious that our models do not achieve competitive results; on the contrary,
the embedding-based encoder yields far worse performance than dense retrievers and even
BM25, and even the attention-based encoder fails to improve over sparse retrieval.

From these results, we infer that the models we trained are not suitable for dense retrieval.
However, we assume that themain reason for this is not the architecture of the query encoder,
but instead the following:

• We use a simple in-batch negative sampling strategy [89], which has been shown to
be less effective than more involved strategies [230 , 221 , 123 , 127].

• The hardware we use for training the models is limiting w.r.t. the batch size and thus
the number of negative samples, i.e., we cannot use a batch size greater than 4.

• We perform validation and early stopping based on re-ranking.

54

3.6 Discussion

Fast-Forward

BM25 L = 0, H = 768 L = 12, H = 768

MS MARCO 0.477 0.653 0.677
Fever 0.649 0.715 0.777
FiQA 0.254 0.282 0.313
Quora 0.808 0.761 0.804
HotpotQA 0.602 0.628 0.674
DBpedia-Entity 0.320 0.331 0.393
SciFact 0.691 0.676 0.698
NFCorpus 0.327 0.327 0.330

Table 3.7: Zero-shot ranking results on BEIR datasets (nDCG@10) using embedding-based
(L = 0) and attention-based (L = 12) query encoders. The document encoder is a BERT
model with 12 layers and 768-dimensional representations. The sparse retrieval depth is
kS = 5000.

Considering the points above, we expect that our dual-encoder models, including ones with
lightweight encoders, could also be used in retrieval settings, if the shortcomings of the
training setup are addressed, for example, by usingmore powerful hardware and state-of-the-
art training approaches. On the other hand, we argue that the fact that our models perform
well in the re-ranking setting (see Section 3.5) shows that it is both easier and more efficient
(in terms of time and resources) to train models to be used with Fast-Forward indexes
instead of for dense retrieval.

3.6.2 Out-of-Domain Performance

In the previous sections, we found that Fast-Forward indexes and lightweight query en-
coders show good performance in in-domain ranking tasks. This raises the question whether
the models generalize well to out-of-domain tasks.

In order to ascertain the out-of-domain capabilities of our models, we evaluate them on a
number of test sets from the BEIR benchmark. The evaluation happens in a zero-shot fashion,
meaning that we use the same models as before and do not re-train them on the respective
datasets. The results are shown in Table 3.7 . It is apparent that the attention-based query
encoder yields better results than the embedding-based one in all cases, but the difference
varies across datasets. Since both models were trained on MS MARCO, they perform well
on the BEIR version of that dataset, as expected; notable differences in performance are ob-
served on Fever and DBpedia-Entity, however, both models manage to improve the BM25
results. Finally, on Quora, SciFact, and NFCorpus, re-ranking does not lead to a perfor-
mance improvement, but rather fails to improve or even degrades the results. We assume

55

Chapter 3 Forward Indexes for Efficient Neural Ranking

that the corresponding tasks either require specific in-domain knowledge of the model or
would benefit greatly from query-document attention (cross-attention).

3.6.3 Threats to Validity

In this section, we outline and discuss certain aspects of the experimental evaluation in this
chapter which result in possible threats to the validity of the results.

Performance of BERT-CLS

In Tables 3.3 and 3.4 , we report the performance of dual-encoder ranking models, along with
a cross-attention model (BERT-CLS). We found that BERT-CLS performed notably worse,
especially when the sparse retrieval depth kS is increased. This result is unexpected, espe-
cially considering the fact that the cross-attention architecture allows for query-document
attention.

In addition to the architecture itself, the models differ in the way they are trained: ANCE
and TCT-ColBERT use complex distillation and negative sampling approaches, along with
contrastive loss functions (cf. Eq. (2.11)), while BERT-CLS is trained using simple pairwise
loss (cf. Eq. (2.8)). It is thus reasonable to assume that the negative sampling approach has
a positive impact on the performance. Specifically, the contrastive loss trains the models
to identify relevant documents among a very large number of irrelevant documents, while
the pairwise loss focuses on re-ranking mostly related documents, which could explain the
performance drop for higher retrieval depths.

Furthermore, it is important to note that, even if BERT-CLS performed similarly to the
dual-encoder models, the difference in efficiency would remain the same, leaving the claims
we make unaffected.

Latency Measurements

As Fast-Forward indexes aim at improving ranking efficiency, wemainly focus on the query
processing latency, which is reported in Tables 3.3 to 3.5 and Fig. 3.7 . As the experiments in
this chapter have been performed over a longer period of time, there have been slight changes
with respect to, for example, hardware or implementations. Consequently, the numbers in
latency might not be directly comparable across experiments. Thus, we made sure to make
each experiment self-contained, such that these comparisons are not necessary; rather, our
results highlight relative latency improvementswithin each experiment, where all measure-
ments are comparable. In general, one should also keep in mind that latency can be heavily

56

3.7 Conclusion

influenced by the way a method is implemented.

Hybrid Retrieval Baselines

In Tables 3.3 and 3.4 , we presented, along with the results of our own method, some hybrid
retrieval baselines. Table 3.1 shows the corresponding indexes that we used for the dense
retrievers. It is important to note that those are brute-force indexes, i.e., they perform exact
kNN retrieval. It is thus to be expected that the latency of hybrid retrieval can be further
reduced by employing approximate dense retrieval instead; this would likely go hand in
hand with a reduction in performance though.

3.7 Conclusion

In this chapter, we proposed Fast-Forward indexes, a simple yet effective and efficient look-
up-based interpolation method that combines lexical and semantic ranking. Fast-Forward
indexes are based on dense dual-encoder models, exploiting the fact that document represen-
tations can be pre-processed and stored, providing efficient access in constant time. Using
interpolation, we observed increased performance compared to hybrid retrieval. Further-
more, we achieved improvements of up to 75% in memory footprint and query processing
latency due to our optimization techniques, sequential coalescing and early stopping.

Moreover, we introduced efficient encoders for dual-encoder models: Embedding-based
and lightweight attention-based query encoders can be used to compute query representa-
tions significantly faster without compromising performance too much. Selective-BERT
document encoders dynamically remove irrelevant tokens from input documents prior to
indexing, reducing the document encoding latency by up to 50% and thus making index
maintenance much faster.

Our method solely requires CPU computations for ranking, completely eliminating the
need for expensive GPU-accelerated re-ranking.

57

Chapter 3 Forward Indexes for Efficient Neural Ranking

58

4
Sentence-Level Representations

for Passage Ranking

Fine-tuning of large pre-trained language models has been shown to be effective for natural
language processing tasks. BERT [40] offers pre-trained deep bidirectional representations,
which are conditioned on both left and right context. In combination with the aforemen-
tioned task-specific discriminative fine-tuning, it obtained new state-of-the-art results on
a broad spectrum of diverse tasks, including passage re-ranking for open domain question
answering [155].
There are two limitations of using fine-tuned BERT models for re-ranking passages in

QA. First, passages are of variable lengths, which affects the quality of BERT-based repre-
sentations. Specifically, in the fine-tuning regime of BERT for open domain QA and passage
re-ranking, a representation is learnt for the entire passage given a question. While this is de-
sirable for small passages or questions that have short and easy answers, it isn’t for instances
where the passage answers a question using multiple more complex statements. Second, the
passage re-ranking task is unlike other QA tasks, like factoid QA or reading comprehension,
in that the answers are not limited to a word, phrase, or sentence. Potential answers can
have varying granularity, and passages are judged by annotators based on the likelihood of
containing the relevant answer. Therefore, the applicability of “vanilla” BERT models to an-
swering queries that span multiple sentences or require reasoning across distant sentences
within the same passage is limited.

In this chapter, we deal with the above problems by extending the BERT model to explic-
itly model sentence representations. This is realized by distilling the sentence representations
from the output of BERT and aggregating the representations of the tokens that form a sen-

59

Chapter 4 Sentence-Level Representations for Passage Ranking

tence. Once we have obtained the sentence representations, we apply a Dynamic Memory

Network [95 , 219] to model sentence-wise relations for relevance estimation. We are inter-
ested in the following research questions:

RQ2.1 Can the re-ranking performance be improved by aggregating BERT outputs on
a sentence level and then reasoning over the resulting sentence representations
(Sections 4.4.1 and 4.4.2)?

RQ2.2 Can the training efficiency be improved by performing lightweight reasoning in-
stead of fine-tuning all parameters of BERT (Section 4.4.3)?

We perform experimentation on three diverse open-domain QA datasets and show that the
sentence-level representations improve the model’s re-ranking performance. We find that
explicit sentence modeling using a DMN enables us to reason about the answers that spread
across sentences. Additionally, we find that our approach, BERT-DMN, although being an
extension of BERT, can be used without expensive fine-tuning of the BERTmodel, resulting
in faster training.

4.1 Related Work

Recent practices in open-domain question answering (QA) can be traced to the Text Retrieval
Conferences (TRECs) in the late 1990s. Voorhees [200] defines the task of textual open-domain

question answering as answering a question using a small text snippet, which is usually an
excerpt from a document (e.g., a web page [96]) that is part of a large collection. In the last
decade, the focus on open-domain question answering has shifted to the re-ranking stage,
where answer identification from candidate documents is performed using learning strate-
gies based on richer and better language understanding models [190 , 194 , 208 , 209 , 125]. Our
approach also proposes models that improve the re-ranking part of the QA pipeline, though
it is different from approaches that perform end-to-end question answering, which requires
some type of term matching-based retrieval technique to restrict the input text under con-
sideration [25 , 210 , 94].
Multiple approaches have been proposed to improve re-ranking in open-domain QA. Tan

et al. [190] use LSTMs to encode questions and answers and then perform attention- and
CNN-based pooling in order to perform question-answer-matching; Tran and Niedereée
[194] follow a similar idea, but produce multiple vector representations for each question
and answer, which can then focus on different aspects. Lin et al. [125] aim at improving the

60

4.2 BERT-DMN

answer selection process by filtering out noisy, irrelevant paragraphs; afterwards, the an-
swer is selected from the remaining, relevant paragraphs. Some works have used evidence
aggregation to re-rank passages based on information from multiple other passages [208] or
reinforcement learning to jointly train a ranking model to rank the passages and a reading

model to extract the answer from a passage [209]. Xu et al. [223] use weak supervision to
train a BERT-based passage ranking model without any ground-truth labels.

The most recent improvement in the re-ranking stage of open-domain QA comes from
BERT models that have been shown to improve natural language understanding. Recent
works have used BERT-based ranking models, dealing with efficiency [61] and analyzing
the attention mechanism [229]. Peters, Ruder, and Smith [163] compare the performance of
BERT with and without fine-tuning on various NLP tasks. MacAvaney et al. [134] combine
traditional Ranking models with BERT token representations.

Neural architectures for document ranking can be roughly categorized into representation-
based models for learning semantic representations of the text [176 , 77 , 177], interaction-
based models for learning salient interaction patterns from the local interactions between
the query and document [220 , 60], or a combination of both [147]. Other works [159 , 153 ,
 154] try to capture hierarchical matching patterns based on n-gram matches from the local
interaction matrix of the query-document. More recent approaches [79 , 78 , 145] have tried
to exploit positional information and context of the query terms. Other approaches include
query modeling techniques [42 , 228] with a query expansion based language model (QLM)
that uses word embeddings.

4.2 BERT-DMN

The usual question answering process consists of multiple stages. Given a query, a simple
method (like BM25) is used to rank a number of passages with respect to the query. Next,
the top-n of these passages are re-ranked using a more expensive model (cf. Section 2.1.3).
Finally, the top-k (k < n) of the re-ranked passages are used to answer the query. This work
deals with the passage re-ranking step.

BERT-based models have achieved high performance in passage re-ranking tasks. We find,
however, that thesemodels are limited: First, most variants tend to rely solely on BERT’s ded-
icated classification output, operating under the assumption that its internal capabilities of
compressing all query and passage representations into a single output are optimal. Second,
BERT models are very large, which results in slow training.

In this chapter, we introduce a re-ranking approach that leverages the representations ob-

61

Chapter 4 Sentence-Level Representations for Passage Ranking

tained from BERT and aggregates them using a Dynamic Memory Network. We describe the
DMNmodel and outline how it can be combinedwith BERT, such that, in addition to the clas-
sification output, the query and passage representations are taken into account. Moreover,
we investigate how our model can reduce training time by introducing a lite version.

4.2.1 Dynamic Memory Networks

In this section, we briefly introduce Dynamic Memory Networks [95 , 219], which we use to
aggregate BERT outputs. A DMN takes as input a sequence of words w = (w1, . . . , wT),
which usually represent multiple sentences, such as a document or a passage, and a question
q = (q1, . . . , qN). It is composed of four modules:

The input module encodes the input words as a sequence of vector representations. The
input text is represented by pre-trained word embeddings and fed into a word-level many-
to-many GRU. The outputs hw

t = GRU(wt, h
w
t−1) are then used as inputs in other modules.

If the input consists of a single sentence, each of the GRU outputs is used; however, if the
input consists of multiple sentences, only those GRU outputs ht are used for which t cor-
responds to an end-of-sentence token (for example, periods or question marks), while the
rest is discarded. We denote the final sequence of vectors produced by the input module by
s = (s1, . . . , sM).
The question module is similar to the input module, as it is used to encode the query (or

question) as a fixed-size vector representation. The word embeddings are fed into a many-
to-one GRU, which outputs the query representation Q at the end, i.e., hq

t = GRU(qt, h
q
t−1)

and Q = hq
N .

The episodic memory module maintains a number of episodes. An episode ei produces
amemory mi by iterating a GRU over the fact representations from the input module, taking
the previous memory mi−1 into account. For this, the GRU’s update gate is replaced by a
special attention gate at each time step,

AttGRUi(xt, ht−1) = git ◦ h′
t + (1− git) ◦ ht−1, (4.1)

where h′
t is the candidate hidden state for the GRU’s internal update at time step t and ◦

denotes element-wise multiplication. The attention gate git is a function of the input xt and
the memory and question vectors, encoding their similarities (details can be found in [95]).
The initial memory is initialized as m0 = Q. The hidden state of an episode ei is then
computed as eit = AttGRUi(ct, et−1), where ct = [st,m

i−1] is a candidate fact and [·,·]
denotes concatenation. The new memory value is then simply set to the last hidden state

62

4.2 BERT-DMN

BERT

Answer module Episodic memory module

[CLS] q1 . . . qN [SEP] w1 w2 w3 . . . wT−2 wT−1 wT [SEP]

GRU
. . .

Average Average. . .

GRU

. . .

Query Sentence 1 Sentence n

Figure 4.1: The BERT-DMN model architecture. Note that the padding tokens are omitted
here.

of the episode, i.e., mi = eiM . Finally, the output of the episodic memory module is the last
output of a GRU that iterates over all memoriesmi.

The answer module generates the final output of the model and is therefore highly de-
pendent on the task. In our case, it is a simple feed-forward layer that predicts a score to
rank passages given the output of the episodic memory module.

4.2.2 Combining BERT and DMN

Dynamic Memory Networks have proven to be effective in QA tasks such as reading com-
prehension. In this chapter, we combine aDMNwith contextualized representations, specifi-
cally, the outputs of BERT, by modifying the input, question, and answer module. The result-
ing model, BERT-DMN, takes all outputs of BERT into account (including the classification
token). It processes the token-level outputs by creating query and sentence representations
and reasons over them. In the final step, everything is combined to produce the final query-
passage score, which is then used to rank the documents. Figure 4.1 shows the architecture
of our approach.

63

Chapter 4 Sentence-Level Representations for Passage Ranking

Input andQuestion Module

Let the query and passage again be denoted by q = (q1, . . . , qN) and w = (w1, . . . , wT). We
first construct the input for BERT as

[CLS], q1, . . . , qN , [SEP], w1, . . . , wT , [SEP]. (4.2)

Note that qi andwi are not necessarily words, as BERT uses subword tokenization. This input
format is identical to the usual way BERT is used, where the first input is a classification
token, followed by two text inputs, which are separated by separator tokens.

We split the BERT output o = (o1, . . . , oL) back into two chunks, where one corresponds
to the query and the other one to the passage. The outputs corresponding to the [SEP] tokens
are discarded. We then use the token representations output byBERT as a replacement for the
word embeddings in the DMN. In practice, instead of simply using the vector corresponding
to the end-of-sentence token to represent the whole sentence, we take the vectors of all
tokens in this sentence and average them.

Answer Module

Since the originalDMNmodel was used for reading comprehension tasks, the answermodule
consisted of a sequence generation network. For the re-ranking task, we are only interested
in predicting a score, therefore we modify the answer module: Let the final memory be
a vector m ∈ Rd×1 and the BERT output c ∈ Rb×1 correspond to the [CLS] token. We
concatenate these vectors along with the query representationQ and compute the final score
a using a feed-forward layer, i.e.,

a = σ(Wa[c,Q,m] + ba), (4.3)

where σ is the sigmoid function andWa ∈ R1×(b+2d).

4.3 Experimental Setup

In this section, we describe the datasets we use for our experiments and the baselines. We
further outline the training process.

4.3.1 Datasets

We conduct experiments on three diverse passage ranking datasets:

64

4.3 Experimental Setup

ANTIQUE InsuranceQA TREC-DL-Psg’19

No. of train queries 2406 12 889 808 731
No. of test queries 200 2000 200
Avg. query length 10.55 8.42 6.53

No. of passages 33 642 27 413 8 841 823
Avg. passage length 47.83 103.59 64.63

Avg. no. of passages per query 32.95 500 1000
Avg. no. of relevant passages 9.6 1.66 1.69

Table 4.1: Dataset statistics. InsuranceQA and TREC-DL-Psg’19 have dedicated develop-
ment sets; for ANTIQUE, we use a small fraction of the training set for validation. Query
and passage lengths are measured in words.

1. ANTIQUE [65] is a non-factoid question answering benchmark based on the ques-
tions and answers of Yahoo! Webscope L6. The questions were filtered to remove ones
that are too short or duplicate. A resulting sample of question-answer pairs was then
judged by crowd workers who assigned one of four relevance labels to each pair. All
questions have well-formed correct grammar. For the evaluation, we follow the au-
thors’ recommendation and treat the two higher labels as relevant and the lower two
labels as irrelevant.

2. InsuranceQA [46] is a dataset from the insurance domain released in 2015. For this
work, we use the second version, which comes with predefined training, development,
and test sets. The development and test sets include, for each question, the relevant
answers as well as a pool of n ∈ {100, 500, 1000, 1500} irrelevant candidate answers.
For our experiments, we choose n = 500. All queries and passages in this dataset
consist of grammatically well-formed sentences.

3. TREC-DL-Psg’19 is the passage ranking dataset from the TREC deep learning track.
It usesMSMARCO [151], a collection of largemachine reading comprehension datasets
released by Microsoft in 2016. This dataset was created using real, anonymized queries
from the Bing search engine. The authors automatically identified queries that repre-
sented questions and extracted passages from the top-10 search results. These pas-
sages then manually received relevance labels from human annotators. The result is a
very large dataset with over 8 000 000 passages and 1 000 000 queries. However, some
queries have no associated relevant passages. Because of the nature of this dataset,
queries and passages are not guaranteed to be grammatically or structurally correct or
even made of complete sentences.

65

Chapter 4 Sentence-Level Representations for Passage Ranking

Table 4.1 outlines some dataset statistics. The evaluation (except for the ANTIQUE test set)
follows the telescoping setting [144], where a first round of retrieval has already been per-
formed to select candidate passages that are relevant to the queries, followed by a re-ranking
step by our models.

4.3.2 Baselines

Since we are mainly interested in improving the effectiveness and training efficiency of
BERT-basedmodels, the most important baseline is a vanilla BERT ranker [155]. The ranking
is solely based on the output corresponding to the classification token, which is transformed
into a scalar score using a feed-forward classification layer. Additionally, we implement other
neural baselines:

1. QA-LSTM [190] is based on bidirectional LSTMs and attention. Both query and doc-
ument are encoded using a shared bidirectional many-to-many LSTM and a pooling
operation (maximum or average pooling) to the LSTM outputs. Attention scores are
computed using the hidden LSTM states of the document and the pooled query repre-
sentation. The resulting vectors are then compared using cosine similarity after apply-
ing dropout. We set the batch size to 32 and the number of LSTM hidden units to 256.
We feed 300-dimensional pre-trained GloVe [162] embeddings to the shared LSTM
and use a dropout rate of 0.5.

2. K-NRM [220] is a neural ranking model that works via kernel pooling. Starting from
pre-trained word embeddings, it builds a translation matrix, where each row contains
the cosine similarities of a query word to all document words. Each row is then fed
into K kernel functions, and the results are pooled by summation. Finally, a single
transformation with tanh activation is applied to output a score. The model is trained
with a pairwise ranking loss and uses RBF kernels. We use 300-dimensional pre-trained
GloVe embeddings to build the translation matrix. The hyperparameters are adopted
from [220]: We set K = 11 and use one kernel for exact matches, i.e., µ0 = 1 and
σ0 = 10−3. The remaining kernels are spaced evenly in [−1, 1] with µ1 = 0.9, µ2 =

0.7, . . . , µ10 = −0.9 and σ1 = · · · = σ10 = 0.1. We use the Adam optimizer with a
leaning rate of 0.001 and ϵ = 10−5 and a batch size of 16.

3. DMN [95 , 219] serves (in a slightly modified fashion) as the aggregation part of our
model, which transforms sentence-level BERT outputs into a relevance score. We also
train this model using pre-trained 300-dimensional word vectors in order to analyze if

66

4.3 Experimental Setup

and howmuchBERT representations improve the performance. For these experiments,
we use the same DMN hyperparameters as in our experiments with BERT-DMN to
make the results more comparable.

4.3.3 Training Efficiency

As previously mentioned, a drawback of BERT-based models is their training inefficiency, as
the time required for even a single training epoch can be substantial, albeit a one-time cost.
In order to mitigate this, we propose BERT-DMNlite. While the model architecture remains
identical, the BERT layer is excluded from backpropagation, such that its weights remain
frozen. This reduces the training time in two ways: The time required to complete the first
epoch will be slightly lower, as the majority of the weights are excluded from the backward
pass; the second and all subsequent epochs can be sped up significantly, as the BERT outputs
can be cached and re-used.

4.3.4 Training Details

Our models are implemented using PyTorch. We use a pre-trained, uncased BERTbase model
with 12 encoder layers, 12 attention heads, and 768-dimensional vector representations. The
training is done as follows: We feed all query-passage pairs through the BERT layer to obtain
the token representations. We then compute the average of all vectors for each sentence to
obtain the inputs for the GRU, which in turn produces representations that serve as the
inputs of the episodic memory module. Similarly, we use another GRU to encode the query
as a single vector. In the case of BERT-DMN, the fine-tuning of BERT and training of the
DMN happens jointly. For BERT-DMNlite, all weights corresponding to BERT are frozen, i.e.,
they remain unchanged during the optimization. BERT inputs are truncated if they exceed
512 tokens.

The models are trained using the AdamW optimizer [130] with the learning rate set to
3 × 10−5, following [155], and a pairwise max-margin loss as in Eq. (2.8) with a margin of
m = 0.2 and linear warm-up over the first 1000 steps (10 000 on TREC-DL-Psg’19). The
DMN hyperparameters are set to 4 episodes, 256-dimensional hidden representations, and
a dropout rate of 0.1. Dropout is applied at the DMN input, over the attention gates, and
before the output layer. We use a batch size of 32 throughout our experiments. Validation
is performed based on AP on the development set. We use the same fixed random seed and
thus identical training data for all experiments.

67

Chapter 4 Sentence-Level Representations for Passage Ranking

ANTIQUE InsuranceQA TREC-DL-Psg’19

AP RR AP RR AP RR

QA-LSTM 0.488 0.619 0.185 0.231 0.193 0.519
K-NRM 0.511 0.654 0.176 0.215 0.237 0.567
DMN 0.491 0.613 0.092 0.118 0.136 0.274

BERTlite 0.593 0.774 0.259 0.314 0.327 0.739
BERT-DMNlite 0.675 0.851 0.374 0.449 0.418 0.859

BERT 0.697 0.849 0.399 0.476 0.428 0.831
BERT-DMN 0.700 0.866 0.406 0.484 0.408 0.889

Table 4.2: Passage re-ranking performance. BERTlite and BERT-DMNlite are architecturally
identical to BERT and BERT-DMN, respectively, but only the classification layer is trained,
while all other weights remain frozen. The baselines use pre-trained GloVe embeddings.

4.4 Results

In this section, we present and discuss our results.

4.4.1 Passage Re-Ranking Performance

Table 4.2 outlines the passage re-ranking performance of our methods and the baselines
on three datasets. It is evident that the BERT-based methods vastly outperform the other
baselines on all datasets. BERTlite performs noticeably worse, but still shows improvements
over the non-contextual baselines. Finally, BERT-DMN improves the performance of BERT
in all but one case. These results yield the following insights:

1. As expected, the contextual token representations obtained from BERT trump non-
contextual word embeddings. Even without any fine-tuning, the BERT representations
perform well.

2. The contextual sentence representations do in fact hold valuable information. This
information is discarded by models which only use the output corresponding to the
classification token. End-to-end training further improves the performance.

As a result, the DMN profits vastly from BERT representations (BERT-DMNlite), and the per-
formance improves even more when the model is trained end-to-end (BERT-DMN).

68

4.4 Results

CLS-Query CLS-Passage Inner-passage

0

0.5

1

Co
sin

e
sim

ila
rit
y

BERTlite BERT BERT-DMN

Figure 4.2: The diffusion of information within BERT representations on TREC-DL-Psg’19,
illustrated by cosine similarities between classification token, query tokens, and passage to-
kens. Outliers omitted.

4.4.2 The Effect of Fine-Tuning

In order to analyze the effect of fine-tuning the parameters of BERT, we conduct additional
experiments using lite versions of BERT and BERT-DMN. The architectures and hyperpa-
rameters of these models are unchanged, however, the number of trainable parameters is
reduced roughly from 110× 106 to 3× 106 (BERT-DMNlite) or 1× 103 (BERTlite) by freezing
the BERT model itself. Table 4.2 shows slight performance drops of BERT-DMNlite in all but
one case. However, comparing it to the fine-tuned vanilla BERT model shows even smaller
differences, and, in some cases, the performance increases. Conversely, BERTlite exhibits a
much higher loss of performance over BERT. This indicates that most of the information
required for the task is already inherent to the pre-trained BERT model, and fine-tuning its
parameters is merely required to direct it towards the desired output (usually, the classifica-
tion token). In order to confirm this hypothesis, we adopt a method proposed by Goyal et
al. [59] to measure the diffusion of information within the contextual representations output
by BERT: Given a query-passage pair, we use a BERT model to obtain a representation (in
our case, a 768-dimensional vector) of each token, corresponding to either the query or the
passage. We then compute diffusion of information in three ways:

1. CLS-Query: Cosine similarity between the classification token and each query token.

2. CLS-Passage: Cosine similarity between the classification token and each passage to-
ken.

3. Inner-passage: Cosine similarity between each possible pair of two passage tokens.

69

Chapter 4 Sentence-Level Representations for Passage Ranking

ANTIQUE InsuranceQA

BERT 1.71 1.69
BERT-DMNlite 2.26→ 5.32 2.55→ 5.67

Table 4.3: The average number of training batches (size 16) per second (higher is better). For
BERT-DMNlite, we report one number for the first epoch and one number for all subsequent
epochs.

The results are illustrated in Fig. 4.2 for three BERT models, one without any fine-tuning
(BERTlite), one with standard fine-tuning using only the classification output (BERT), and
one fine-tuned as part of our approach (BERT-DMN). These measurements were performed
on roughly 10% of the TREC-DL-Psg’19 test set (20 000 query-passage pairs). We observe
that, without any fine-tuning, the outputs are rather dissimilar; with standard fine-tuning,
however, the similarity of all representations vastly increases, especially within the passages.
The same trend is exhibited by the model fine-tuned with BERT-DMN, but to a much lesser
extend. This shows that discarding all but one output during fine-tuning leads to very high
diffusion, in that all output vectors become very similar, and taking all outputs into account
during fine-tuning alleviates this issue, allowing for a slight performance gain. It further
suggests that BERT-DMNlite is able to combine the classification output and the sentence
representations, performing closely to a fine-tuned BERT model.

4.4.3 Training Efficiency

Since the performances of BERT-DMNlite and BERT are comparable (cf. Table 4.2),
BERT-DMNlite can be seen as an alternative to the usual fine-tuning of a BERT model. Since
the DMN layer has very few parameters compared to BERT (roughly 3× 106 vs. 100× 106),
the size of the model itself does not change a lot. However, BERT-DMNlite exhibits noticeable
improvements in training efficiency compared to fine-tuning BERT. In order to show this, we
measure the number of batches per seconds for both models in Table 4.3 . For BERT-DMNlite,
the first epoch is already slightly faster, as the majority of the weights are excluded from the
backward pass; the second and all subsequent epochs are sped up significantly, as the BERT
outputs can be cached re-used for the remainder of the training. The measurements were
performed on a single non-shared NVIDIA GTX 1080Ti GPU.

70

4.5 Conclusion

4.5 Conclusion

The exponential growth in the searchable web [76] has resulted in the proliferation of nu-
merous knowledge-intensive tasks [75 , 184], of which question answering tasks are promi-
nent [151 , 8]. In this chapter, we introduced BERT-DMN and BERT-DMNlite, extensions of
BERT, which utilize dynamic memory networks to perform passage re-ranking. We have
shown that our model improves the performance of BERT on three datasets. Moreover,
BERT-DMNlite performs well even without a fine-tuned BERT model, reducing the training
timewhile incurring only a small performance hit. Our findings demonstrate that fine-tuning
BERT-based models is not always necessary, as nearly the same result can be achieved using
sentence-level representations.

71

Chapter 4 Sentence-Level Representations for Passage Ranking

72

5
Extractive Explanations

for Interpretable Text Ranking

Information prioritization is an essential and important problem to reduce information over-
load in a large multitude of web-based tasks like question-answering [170], fact verifica-
tion [193], and conversational search [8]. Prioritizing information relies on retrieving a small
set of highly relevant knowledge units from a large source of world knowledge contained
in unstructured text collections with web and textual knowledge bases like Wikipedia that
contain documents and articles. The most common way to address information prioritiza-
tion is to cast it as a ranking problem, i.e., inducing a ranking over all documents in the
collection and inspecting only the top-ranked document(s) to satisfy the information need.
This is called the document ranking problem and is a central task in web search and infor-
mation retrieval. The objective of the document ranking task is to rank documents relevant
to a user-specified query. Consequently, tasks that require access to world knowledge rely
on effective document ranking techniques for superior performance. This makes document
ranking one of the primitive operations for a large number of knowledge-intensive tasks.
Recent advances in document ranking have been dominated by approaches based on tun-
ing large pre-trained contextual models like BERT [36 , 134 , 4 , 111], indicating that better
language understanding [3] leads to better document understanding. However, such models
are inherently non-interpretable, as they automatically extract latent and complex query-
document features from large training sets, leading to opaque decision-making that limits
understanding in case of failures or undesirable results. In this chapter, we propose inter-
pretable models for document ranking that have a wide utility in numerous ranking tasks,
ranging from web search and question answering over fact-checking to argument and entity

73

Chapter 5 Extractive Explanations for Interpretable Text Ranking

Result document

What makes Bikram yoga unique is its focus on practicing yoga in a room heated to 105
degrees Fahrenheit with 40 percent humidity. In Bikram yoga, be prepared to sweat profusely
and come armed with a towel and lots of water. To practice Bikram at home, you’ll need
a space heater and access to the pose sequence. On a general basis, you need to hold the
yoga poses for about 10-12 breaths. With practice, you can also go up to 30 breaths. We
chatted for a few moments, and found that we came to completely different conclusions. She
finds Bikram more difficult because of the intense heat (about 5-10 degrees hotter than a hot
vinyasa class) and lack of breaks in the standing series. That is why Bikram is easier for me.
It will help you hold the pose for around 3 minutes. It is best to count the time in breaths
(one breath cycle is one deep inhalation followed by complete exhalation).

Figure 5.1: Sentence selection for the query “how long to hold bow in yoga”, taken from a
document in theMS MARCO corpus marked as relevant by human annotators.

retrieval.

Although the interpretability of machine learning models has been popular, there are only
few approaches for document ranking, most of which focus on post-hoc interpretability of
rankers [182 , 180]. However, post-hoc approaches are limited in the sense that their explana-
tions might not accurately reflect the true underlying rationale of the model decisions [171].
Furthermore, the collection of ground-truth data for the evaluation of explanations is often
hindered by human bias [98]. Due to this, post-hoc methods are unreliable, and one cannot
be sure about the correctness of the explanations.

Unlike post-hoc approaches, we are specifically interested in rankingmodels that are inter-
pretable by design. We argue that an interpretable ranking model should help us understand
which sentences or passages in the document are used for the relevance estimation. In this
chapter, we present a document ranking paradigm, where each prediction can be unambigu-

ously attributed to a reason or rationale that is both accurate and human-understandable.
We define explanations as extractive pieces of text from the input document. An example
explanation is shown in Fig. 5.1 , where the highlighted sentences serve as an explanation
for the relevance of the document. For additional examples, we refer the reader to Tables 5.5

and 5.6 .

This chapter proposes a two-stage approach, which we refer to as Select-And-Rank, for
modeling long documents that addresses the above limitations. In the selection phase, we
extract relevant sentences given a query. In the ranking phase, we perform the relevance
estimation only on the extracted evidence. Our idea is based on the observation that not all
sentences in a document are relevant; instead, the document’s relevance signals are typically
sparse (refer to Fig. 5.2). The selection phase essentially acts as a noise removal mecha-

74

Ranker

Selector

s1 s2 s3 s4 s|d|. . .

✓ ✓ × × ✓

q

Figure 5.2: The Select-And-Rank paradigm. The document d is split into sentences si. The
selector assigns a score to each sentence with respect to the query q. The scores determine
which of the sentences are selected as the input for the ranker.

nism, resulting in a succinct, query-based document representation. As an added advantage,
our sentence selection allows for choosing a concise query-based document representation
as input into size limited models like BERT, in contrast to other heuristic truncation ap-
proaches [36].

Within our modular framework, we consider joint models that are trained end-to-end with
gradient descent. Specifically, we allow the user to regulate the sparsity by setting the num-
ber of sentences k to be selected. The selection is akin to sampling from a latent distribution
over sentences in a document. We use a parameterized model to output such a distribu-
tion and apply the Gumbel-max trick. Finally, we use relaxed subset sampling to enforce the
user-specified sparsity k, i.e., the number of sentences to be selected for the summary or
explanation. This allows us to approximate hard masking, i.e., the multiplication of the input
with a boolean mask in order to remove certain parts, by using soft masking (or continuous
masks), where a similar result is achieved, but the process remains fully differentiable and
thus trainable end-to-end.

We conduct extensive empirical evaluation over three document ranking datasets—TREC-
DL-Doc’19, Core17, and ClueWeb09. Our intention is not to achieve the best performance
in document ranking. Instead, we aim at presenting a ranking model that is interpretable
without compromising ranking performance. First, we find that query-specific sparse doc-
ument representation by sentence selection can improve the task performance over heuris-
tic sentence selection approaches [36]. Second, and more striking, our Select-And-Rank
models (with 20 selected sentences) perform on par with and sometimes outperform other
document modeling approaches that model the entire document. Furthermore, we show how
Select-And-Rank can be used to explain the decisions of BERT rankers that operate only
on small parts of the input document.

Additionally, we conduct experiments on twelve diverse datasets provided by the BEIR

75

Chapter 5 Extractive Explanations for Interpretable Text Ranking

benchmark [191], including tasks such as passage ranking, fact-checking, and argument re-
trieval. Our experiments show that Select-And-Rankmodels also perform well on corpora
consisting of shorter documents and providemore interpretable results compared to standard
approaches like BERT.
Finally, we highlight the utility of Select-And-Rank to human users through a study and

present real-world applications by showing how the extractive explanations can be used to
uncover model bias or bugs and illustrating their utility in search engines.

Our experiments aim at answering the following research questions:

RQ3.1 Howwell do Select-And-Rankmodels perform in document and passage ranking
tasks (Sections 5.4.1 and 5.4.2)?

RQ3.2 How comprehensive are explanations from Select-And-Rank models, i.e., how
important are the selected sentences for the model decision (Section 5.4.3)?

RQ3.3 How faithful are Select-And-Rank explanations, and what is their utility to hu-
man users (Section 5.4.4)?

RQ3.4 Does sentence selection lead to sparsification of the input documents, resulting in
more interpretable ranking decisions (Sections 5.4.5 and 5.4.6)?

RQ3.5 Can Select-And-Rank models be used to explain rankers that focus only on the
head of the documents due to limitations, such as BERT (Section 5.4.6)?

5.1 Related Work

We divide the related work into two major categories—text ranking models and interpretabil-
ity approaches in IR.

5.1.1 Ranking Models for Text

Classical approaches in information retrieval for ad-hoc document retrieval are probabilis-
tic query likelihood (QL) [102] and term frequency-based models such as BM25 [169] and
BM25P [150] models. More recently, neural models have entered the field of IR. Common
approaches include semantic representation learning [176 , 77 , 177], query-document cross-
interactions [220 , 60 , 159 , 153 , 154] or the exploitation of positional information [79 , 78 , 145].
Mitra, Diaz, and Craswell [147] employ a combination of the aforementioned approaches.

76

5.1 Related Work

Nowadays, contextual self-attention-based models, such as BERT [40], achieve state-of-the-
art performance in ranking tasks. MacAvaney et al. [134] replace static word embeddings in
existing document retrieval models with contextualized token embeddings output by BERT.
Since self-attention models have quadratic time complexity with respect to the input

length, work has been done to address this limitation by splitting the input documents
into either passages [36 , 216 , 172] or sentences [4] and subsequently labeling those. Doc-
Labeled [36] uses passage-level relevance scores from a fine-tuned BERT model to obtain
relevance scores. However, this approach assumes that all passages inherit their relevance
from the corresponding document, whichmight be problematic. BERT-3S [4] works similarly,
but on a per-sentence level using a cross-domain transfer model. This leads to substantially
slower inference.

Recently, researchers also focused on the efficiency aspect of document and passage re-
trieval, alongwith the performance aspect. Themajor bottleneck of existing languagemodel-
based rankingmodels is the processing time required during the inference phase. Some of the
works use dual-encoder based models to alleviate the need of document processing during
inference [90 , 123 , 70 , 5]. Zhuang and Zuccon [237] proposed a term-independent likeli-
hood model for passage ranking that relies on both query and document likelihood to rank
the documents. This approach pre-computes and stores the likelihood of terms and thus re-
moves the requirement of running deep language models during query processing. In recent
times, some studies have focused on the mitigation of positional bias in passage ranking [73]
and robustness against misspellings in document retrieval [178]. However, these studies
do not focus on the interpretability aspects of the ranking models. The selection model in
our Select-And-Rank approach is modular and can be used in combination with other text
rankers.

5.1.2 Interpretability of Ranking Models

Interpretability of ranking models focuses on building models that either can be analyzed

for interpretability in a post-hoc fashion or are interpretable by design. However, post-hoc
approaches suffer from the limitation that their explanations might not accurately reflect the
true rationale underlying the model decisions [171].

Different from classical feature selection, our aim is at selecting features from a document
given a query, that is, we want to dynamically select sentences from a document based on the
input query. Such instance-wise feature selection has been explored in the machine learning
literature [227], however, their applicability to modeling documents is limited.
In NLP, similar models have been studied for ensuring interpretability by design [104 ,

77

Chapter 5 Extractive Explanations for Interpretable Text Ranking

 103]. Li et al. [118] use sentence selection to mimic human reading behavior in order to
estimate the relevance of a document to a query. These works mainly differ in how they
perform end-to-end training. Training has been done using REINFORCE [104 , 118], actor-
critic methods [227], pipeline approaches [232], or reparameterization tricks [14]. Lehman et
al. [103] use a decoupled rationale generator and predictor. Zhong, Shao, andMcKeown [233]
use additional human annotations for task supervision. We do not have any explicit training
data to train the selector network and rather use the task supervision signal to update its
parameters. Finally, [115] pursues an idea similar to ours, however, the authors only use
non-trainable selectors and do not consider an end-to-end trainable model.

There exists lots of work on post-hoc analysis of trained neural models on different tasks.
Such kinds of analyses use different methods like probing tasks [202], attention weights [11 ,

 27 , 142 , 32 , 222 , 225], or state activation [66 , 88 , 114]. In previous works, researchers tried
to learn the attention weights of different tokens to judge their contribution toward a task
prediction and mark the tokens that got higher attention scores as rationales or explana-
tions. However, recent studies showed that attention weights are not explanations [83 , 212]
and models are able to maintain the same prediction accuracy even in the absence of those
tokens. Sometimes, tokens that get high attention scores do not correlate well with the hu-
man annotated rationales. As recent language models are contextual, it is very difficult to
disentangle the importance of token inputs. Finally, there has been recent work on devising
decoy datasets to measure the utility of explanation methods for NLP models [80]. Recent
approaches also tried to de-bias masked language models with automated bias prompts [62].
A major bottleneck of interpretability studies is the availability of annotated benchmark
datasets. In recent times, many interpretability evaluation benchmark datasets have been
introduced for neural NLP tasks [41 , 206]. In this chapter, our objective is to extend this
interpretability aspect toward the document ranking task.

For the ranking task, most of the work has focused on post-hoc interpretability of text
rankers [180 , 181 , 47 , 199] and learning-to-rank models [182 , 185]. In contrast, our Select-
And-Rank models are interpretable by design. The closest to our work is [70], where the
authors use cascading rankers after retrieval. However, cascading rankers differ from our
approach in the style of optimization and the type of interpretability they provide.

5.2 Select-And-Rank

In this section, we formally define the problem of document ranking (Section 5.2.1). We then
give a high-level overview of our Select-And-Rank framework that aims at generating an

78

5.2 Select-And-Rank

extractive sentence-level summary of the document prior to ranking (cf. Fig. 5.2). Finally, we
present our algorithmic contribution that aims at training the selector and ranker models
using gradient-based optimization in a joint manner (Section 5.2.3).

5.2.1 Problem Statement

The retrieve-and-re-rank pipeline (cf. Section 2.1.3) consists of two stages: First, given a
query, an inexpensive term-frequency based retriever retrieves a set of documents from the
complete, usually very large, collection. Afterward, a more involved, expensive model re-
ranks the result of the first-stage retrieval.

Our objective is to learn a parameterized model for document re-ranking. Specifically,
given a training set of triples

{
q(i), d(i), y(i)

}N
i=1

, where q(i) is a query, d(i) is a document, and
y(i) is a relevance label, our goal is to learn a model that predicts relevance scores ŷ ∈ R
for query-document pairs (q, d). We denote the set of documents retrieved in the first stage
for the query q by Dq. The resulting predictions are then used to obtain a ranking of all
documents d ∈ Dq. Finally, the rankings corresponding to all queries are evaluated using
appropriate ranking metrics (cf. Section 2.1.4).
We model each document as a sequence of sentences, i.e., d =

(
s1, s2, . . . , s|d|

)
. Our

Select-And-Rank approach assumes that only a subset of the constituent sentences actually
contribute toward the relevance estimation. Based on this assumption, the model consists of
two components: The selector Ψ defines a distribution p (s | q, d) over sentences in d given
the input query q, encoding the relevance of the sentence given the query. This distribution
is used to select an extractive, query-dependent summary d̂ ⊆ d. The rankerΦ is a relatively
involved relevance estimation model that generates a relevance label ŷ given the query and
an extractive document summary d̂, thus taking only parts of the document into account.

The selector Ψ is a parameterized model that takes the query and sentences as input and
outputs a score or weight wi for each sentence, representing its relevance to the query, i.e.,

(
w1, . . . , w|d|

)
= Ψ(q, d) . (5.1)

The logit weights wi are normalized using the softmax function, defining a distribution over
the sentences as

p (si | q, d) =
exp (wi)∑|d|
j=1 exp (wj)

. (5.2)

Using this distribution, a document summary d̂ ⊆ d is created as a subset of the document’s
sentences based on the selector’s scores, i.e., by dropping some of the lower scoring sen-

79

Chapter 5 Extractive Explanations for Interpretable Text Ranking

tences. The ranker takes as input the query and the document summary to compute the
query-document relevance ŷ = Φ

(
q, d̂
)
.

Since the selector and ranker are, in principle, independent models, it is possible to train
them in one of two ways:

1. Both models are trained separately; the selector is trained to extract a summary from
a document with respect to a query, while the ranker is trained on a ranking dataset.
The models are then applied consecutively to a query-document pair. We refer to this
family of approaches as pipeline approaches.

2. Themodels are trained jointly in an end-to-end fashion, where the gradients are propa-
gated directly from the final outputs back to the selector network. Since this approach
includes a non-differentiable selection operation (argmax), it requires approximated
differentiable subset sampling.

In this chapter, we analyze and compare the approaches above; furthermore, we implement
different selector models and compare them. Section 5.2.2 describes the pipeline approach,
and Section 5.2.3 describes the end-to-end approach.

5.2.2 Pipeline Approach

In this section, we apply the Select-And-Rank framework in the aforementioned pipeline
setting. Concretely, this means that the selector and ranker are trained independently of each
other. For sentence selection, we consider multiple approaches from simple term matching
to rather complex language models:

1. Term matching-based selectors: We use tf-idf scores between the query q and sen-
tences si to determine the best sentences.

2. Embedding-based selectors: We use semantic similarity scores between the query
q and sentences si to determine the best sentences. Both the query and sentence are
represented as average over the constituent word embeddings.

3. Neural non-contextual selectors: We build a neural network to define a distribution
over the sentences si.

4. Contextual selectors: We use BERT to define a distribution over the sentences si.

Term- and embedding-based selectors are non-parameterized. As the other selectors (neural
and contextualized models) are parameterized and need to be trained, we follow a transfer

80

5.2 Select-And-Rank

learning approach and use the MS MARCO passage re-ranking dataset [151] to train each
selector on a passage ranking task. Specifically, the models learn to predict a relevance score
given a query and a passage (or sentence). This task in itself is very similar to document
summarization, supported by the fact that the passages in this particular dataset were created
by splitting documents. We do not consider summarized documents in the training phase of
the ranker. During inference, the pipeline approachmay be described as follows: The selector
is applied to the query and document, outputting a score for each sentence in the document.
Along with the query, the k highest scoring sentences then form the input to the ranker,
maintaining their original order as in the source document. The ranker outputs the final
score ŷ that is used to rank the document.

5.2.3 End-to-End Approach

Existing approaches rely on sampling from a stochastic distribution using the REINFORCE
algorithm, resulting in a boolean mask over the sentences. An alternative way to achieve
end-to-end training instead is by allowing a continuous mask over the sentences. This is
akin to using a soft-attention mechanism that is arguably easier to train. However, this ap-
proach does not allow for a reduction of the input sequence length, which can be problematic,
especially with Transformer-based rankers. Additionally, during inference, one would still
need a selection of k sentences given a soft-selection model. This, in particular, is ineffective,
given that soft-selection models still rely on all sentences for more effective predictions. We,
therefore, propose an approach based on the Gumbel-max trick [137], which enables gradient
flow in models where discrete variables must be sampled.

Feature Attribution and Masking

In interpretability, explaining the model output in terms of the input features is called feature
attribution [9]. Feature attribution (or saliency) methods create explanations in terms of input
feature importance for individual predictions. In our case of text ranking, a feature refers to
a subset of the input, such as a sentence or a passage in the document. Feature attributions
can be soft or hard. Soft attributions are scalar values, representing importance, that are
assigned to each input feature. The output of an attribution method is typically a vector of
the same dimension as the input, with either scalar or boolean values, called a mask. A soft
mask is an output of soft attributions that can be viewed as a distribution of word-level or
sentence-level relevance over the document text. Hard masks are binary and thus have no
ambiguity or uncertainty in terms of the presence or absence of a word or sentence in an
explanation, which can be preferable for humans [81].

81

Chapter 5 Extractive Explanations for Interpretable Text Ranking

The Gumbel-Max Trick

The Gumbel-max trick [137] provides a simple and efficient way to parameterize a discrete
distribution and draw samples from it. LetX be a random variable. We wish to parameterize
a categorical distribution, such that P (X = i) ∝ wi, where wi is a weight associated to the
ith category. Using the Gumbel-max trick, we can simply draw a sample as

X = argmax
i

(logwi + gi) , (5.3)

where gi = − log (− log ui) is called a Gumbel random variable and ui ∼ Uniform (0, 1).
The resulting sample is parameterized by the weights w. In order to completely relax the
sampling process and allow for the propagation of gradients (i.e., end-to-end training), the
trick is commonly extended, replacing argmax with softmax (Gumbel-softmax trick) [138].
In detail, the Gumbel-softmax estimator gives an approximate one-hot sample y with

yi =
exp ((logwi + gi) /τ)∑k
j=1 exp ((logwj + gj) /τ)

for i = 1, . . . , k, (5.4)

where τ is a temperature. By using the Gumbel-softmax estimator, one can generate samples
y = (y1, . . . , yk) to approximate the categorical distribution. Furthermore, as the randomness
g is independent of w, which is usually defined by a set of parameters, the reparameteriza-
tion trick can be used to optimize the model’s parameters using standard backpropagation
algorithms.

Relaxed Subset Sampling

Since we are interested in sampling a subset, i.e., drawing a number of samples (in our case
sentences) without replacement, we employ a relaxed subset sampling algorithm proposed
in [217] that makes use of the aforementioned Gumbel-max trick. Let a set of items x1, . . . , xn

have associated weights wi and Gumbel variables gi as above. In order to sample a subset, a
Gumbel-max key

r̂i = logwi + gi (5.5)

is computed for each item. Since r̂i is a monotonic transformation of wi (fixing ui), a relaxed
subset sample of the items can be drawn by applying a relaxed top-k procedure directly on

82

5.2 Select-And-Rank

r̂. The procedure proposed in [164] defines

α1
i := r̂i, (5.6)

αj+1
i := αj

i + log
(
1− p

(
aji = 1

))
, (5.7)

where p
(
aji = 1

)
is the expectation of the distribution

p
(
aji = 1

)
=

exp
(
αj
i/τ
)∑n

m=1 exp
(
αj
m/τ

) , (5.8)

and τ is a temperature. Finally, a relaxed k-hot vector is computed as

v = (v1, . . . , vn) , (5.9)

vi =
k∑

j=1

p
(
aji = 1

)
. (5.10)

Training and Inference

In order to train both selector and ranker jointly, wemake use of the relaxed subset sampling,
as described above. We start by obtaining query and document representations, qemb and demb,
from a shared embedding E as

qemb = E (q) , (5.11)

demb = E (d) . (5.12)

The selector then operates on these representations and computes a weight wi for each sen-
tence si, i.e., (

w1, . . . , w|d|
)
= Ψ

(
qemb, demb) . (5.13)

We now draw a relaxed k-hot sample ŵ (cf. Section 5.2.3) from the set of sentences using the
weights w and a temperature τ as

(
ŵ1, . . . , ŵ|d|

)
= SubsetSample (w, k, τ) . (5.14)

Finally, the document summary d̂ is selected as the k highest scoring sentences according to
ŵ. The ranker only operates on the document summary d̂ and discards all other sentences.
This means that the ranker needs to assemble its new inputs during the training process.
The ordering of the sentences is maintained irrespectively of their scores. Since our goal

83

Chapter 5 Extractive Explanations for Interpretable Text Ranking

is to train both models jointly, we have to preserve the gradients of the selector (i.e., ŵ) by
combining them with the ranker inputs in a differentiable way. Let t1, . . . , tn denote the
embedded tokens corresponding to some sentence si ∈ d̂. We compute the actual input
tokens for the ranker as

t̂j = tj ⊙ ŵi. (5.15)

Note that tj is a vector and ŵi is a scalar. We use ⊙ to denote the multiplication of each
element in the vector with the scalar. This multiplication changes the input representations,
which is undesirable. We mitigate this by making use of the straight-through estimator [15].
The idea is to use t̂j only during the backward pass, i.e., when computing gradients. The
forward pass simply ignores ŵi and considers just tj .

During inference, we do not use relaxed subset sampling. Instead, we simply select the k
highest scoring sentences.

Selectors

In this section, we present the selector networks we use in the end-to-end approach. Fig-
ure 5.3 illustrates the two selectors.

The linear selector (Fig. 5.3a) simply represents a sequence as the average of its token
embeddings. Query and sentence representation are fed through a single feed-forward layer.
The score is computed as the dot product.

The attention-based LSTM selector (Fig. 5.3b) is inspired by the QA-LSTMmodel [190].
Query and document are passed through a shared, bidirectional many-to-many LSTM. On
the query side, we obtain the representation q̂ by max-pooling over all LSTM outputs. On the
document side, we split the LSTM outputs into sequences that correspond to the sentences.
Let hi

j denote the LSTM output corresponding to the jth token of the ith sentence. Prior to
max-pooling, we apply a simple token-level attention mechanism as

mi
j = W1h

i
j +W2q̂, (5.16)

ĥi
j = hi

j exp
(
W3 tanh

(
mi

j

))
, (5.17)

where W1, W2, and W3 are trainable parameters. We finally compute the sentence repre-
sentation ŝi by max-pooling over all ĥi

j . The score of each sentence is the cosine similarity
of its representation to the query representation.

84

5.2 Select-And-Rank

Sent. rep.Sent. rep.

Scores

Embedded
query

Embedded
document

Split

PoolPool

Feed-forward

Q. rep. Sent. rep.

Sim.

ScoresScores

(a) Linear selector

Sent. rep.

Scores

Embedded
query

Embedded
document

LSTM encoder

SplitPool

Att. & pool

Sent. rep.Sent. rep.

Q. rep.

Sim.

ScoresScores

(b) Attention-based LSTM selector

Figure 5.3: The selectors used in the end-to-end approach. The linear selector represents
sentences as the average of their embedded tokens and applies a linear layer. The LSTM
selector uses a simple attention mechanism.

85

Chapter 5 Extractive Explanations for Interpretable Text Ranking

TREC-DL-Doc’19 Core17 ClueWeb09

0

100

200

300

Words per sentence
Sentences per document

Figure 5.4: The distributions of document and sentence lengths of the TREC datasets. Out-
liers omitted.

5.2.4 Ranker

Throughout all of our experiments, we use a BERTbase model as the ranker. The model is
fine-tuned according to [155]: For a query q = (q1, . . . , qn) and a document summary d̂ =(
d̂1, . . . , d̂m

)
(produced by the selector), where qi and d̂i denote input tokens, the ranker

input is
[CLS], q1, . . . , qn, [SEP], d̂1, . . . , d̂m, [SEP]. (5.18)

We impose a limit of 512 input tokens, i.e., n+m+3 ≤ 512. Consequently, long documents
are truncated to fit within this limit. We take the output o of BERT, which corresponds to the
[CLS] input token, and discard the rest. It is fed through dropout and a single feed-forward
layer that outputs the final score

ŷ = σ (Wo+ b) . (5.19)

W and b denote the trainable parameters of the feed-forward layer, and σ is the sigmoid
function.

5.3 Experimental Setup

In this section, we describe our datasets, baselines, and evaluation procedure.

5.3.1 Datasets

First, we consider the following diverse TREC datasets with varying properties:

86

5.3 Experimental Setup

Climate-Fever
DBpedia-Entity

Fever
FiQA

HotpotQA
MS MARCO

NQ
Quora

SciDocs
SciFact

TREC-Covid
Webis-Touché-2020

0

20

40

60
Words per sentence
Sentences per document

Figure 5.5: The distribution of document and sentence lengths of the datasets from the BEIR
benchmark. Outliers omitted.

1. The TREC-DL-Doc’19 document ranking task uses the MS MARCO document cor-
pus. We use the test set from 2019 for our experiments. Our models use training and
validation data from theMSMARCO document ranking task. For each of the 43 queries
in the TREC-DL-Doc’19 test set, we re-rank the top-100 retrieved documents.

2. We consider theClueWeb09 dataset shared in [36]. The dataset contains 200 queries,
distributed uniformly in five folds, and the top-100 documents for each query are re-
trieved using QL [187].

3. The Core17 dataset contains 50 queries with sub-topics and descriptions. Queries
are accompanied by a collection of 1.8 × 106 documents. We retrieve the top-1000
documents for each query using QL.

Characteristics in terms of the document and sentence lengths of these datasets are illustrated
in Fig. 5.4 . We observed that the distribution of the number of tokens per sentence is almost
identical among all three datasets. In particular, approximately 50% of all sentences have less
than 25 tokens, and 90% of all sentences have less than 50 tokens. We use these findings to
choose k = 20 for our experiments, based on the rough estimation that in this way, all 512
available input tokens of the BERT ranker will be used in most cases, while in the remaining
cases, the number of inputs does not exceed the limit by a lot.

Second, we consider a wide variety of additional IR datasets provided by the BEIR bench-

mark [191]. These include classical ranking datasets, such asMSMARCO (passage ranking),
fact-checking tasks, such as Fever or SciFact, and others. In contrast to the experiments on
the TREC ranking datasets, we perform zero-shot evaluation, i.e., we train a single model

87

Chapter 5 Extractive Explanations for Interpretable Text Ranking

on the MS MARCO training set provided by BEIR and use it to evaluate on each test set. As
before, we set k = 20 for training. An important difference compared to the ranking datasets
above is the average length of the documents (or passages). Figure 5.5 shows plots of the dis-
tribution of the number of words per sentence and the number of sentences per document
for each of the datasets. Overall, the documents are shorter compared to the web retrieval
corpora. This means that the limitation of the input length of BERT-based models does not
always apply here. We conduct experiments to analyze how sentence selection within those
short passages influences both performance and interpretability.

5.3.2 Baselines and Competitors

Since prior studies [4 , 134] already established the effectiveness of contextual neural rankers
over non-contextual ones, we consider the following rankers based on contextual language
models as our baselines:

1. Doc-Labeled [36] splits the documents into passages of 150 words with an overlap
of 75 words between consecutive passages and considers 30 passages (the first, last
and 28 random passages). The relevance label of a query-document pair is then trans-
ferred to each of its query-passage pairs. This setup is used to train the models with
passage-level annotation, and, finally, passage-level scores are aggregated to come up
with document-level scores during inference.

2. BERT-3S [4] is a BERT-based transfer model trained on MS MARCO to compute the
scores of query-sentence pairs. The query-document level score and the top-3 query-
sentences scores are taken into account to compute the final relevance score of that
query-document pair.

3. BERT-CLS [155] uses a vanilla BERT model to rank the documents, which are trun-
cated to 512 tokens.

Additionally, the first-stage retrieval model, the query likelihood model [102], is also consid-
ered as a ranking baseline.

5.3.3 Training Details

We train and validate using consistent and common experimental design. The neural models
are trained using a pairwise max-margin loss; we consider triples (q, d+, d−) of a query and
two documents, where d+ is more relevant to q than d−, and compute the loss as in Eq. (2.8)

88

5.4 Results

Training triples are sampled in a balanced way such that each query is represented evenly in
the training set. We train the models using theAdamW optimizer [130] with linear warm-up
during the first 1000 batches (10 000 on TREC-DL-Doc’19). Validation is performed using
average precision (cf. Section 2.1.4) over the validation set to choose the best model. We use
a fixed random seed for all experiments.

Hyperparameters

In our experiments we use hyperparameters commonly found in earlier works; the ranker is
an uncased 768-dimensional BERTbase model with a maximum sequence length of 512. We
use a learning rate of 3 × 10−5, dropout of 0.1, and a batch size of 32. The selectors (cf.
Section 5.2.3) use 256-dimensional hidden representations throughout.

For performance reasons, we restrict the maximum number of query tokens to 50 and
the maximum number of document tokens to 5000. Similarly, no more than the first 500
sentences in a single document are considered by the selector. We set the loss margin to
m = 0.2 and the temperature to τ = 1.0. As described in Section 5.3.1 , we set k = 20 for
training and inference.

5.4 Results

In this section, we analyze the effectiveness and interpretability of our approaches. We first
conduct an extensive evaluation of the different selectors, including both pipeline and end-
to-end models. Next, we highlight the benefits of our proposed end-to-end modeling scheme
(S&R-LIN and S&R-ATT).

5.4.1 Variation of Selectors

In this section, we first briefly describe four different hard selection strategies used by the
pipeline models. Next, we compare the pipeline strategies and the two proposed end-to-end
variants (cf. Section 5.2.3) of our approach.

The hard selection approaches are described as follows:

1. PL-BERT: The similarity or relevance between a query and a sentence is computed
using the approach proposed by Akkalyoncu Yilmaz et al. [4]. The model is trained on
the MS MARCO passage re-ranking dataset according to Nogueira and Cho [155]. Fi-
nally, it is used to infer query-sentence level relevance scores for each query-document
pair.

89

Chapter 5 Extractive Explanations for Interpretable Text Ranking

TREC-DL-Doc’19 Core17 ClueWeb09

AP nDCG@20 RR AP nDCG@20 RR AP nDCG@20 RR

PL-RND 0.231 0.492[ab] 0.754 0.173 0.345[ab] 0.649 0.138 0.236[ab] 0.495
PL-BERT 0.237 0.501[ab] 0.822 0.200 0.399 0.759 0.169 0.294 0.529
PL-LSTM 0.257 0.558[a] 0.827 0.194 0.399 0.788 0.166 0.289 0.552
PL-BM25 0.264 0.568 0.893 0.196 0.412 0.727 0.171 0.297 0.555
PL-SEM 0.265 0.571 0.920 0.207 0.414 0.768 0.167 0.286 0.534

[a] S&R-LIN 0.269 0.597 0.946 0.203 0.411 0.710 0.174 0.303 0.535
[b] S&R-ATT 0.271 0.590 0.924 0.205 0.403 0.714 0.168 0.292 0.518

Table 5.1: Ranking performance with k = 20. PL-RND refers to the selection of k random
sentences. Significant improvements (nDCG@20) at a level of 95% are indicated by super-
scripts.

2. PL-LSTM: It is similar to PL-BERT, but uses an LSTM instead of BERT. We limit the
input to 1000 words for this configuration, similar to BERT’s limit of 512 tokens. The
model is trained on theMSMARCO passage re-ranking dataset, and the trained model
is used to infer the relevance score of query-sentence pairs.

3. PL-BM25: We use a simple BM25-based term matching function to obtain the score
between the query and the sentence.

1

4. PL-SEM: Semantic similarity between query and sentence is computed using 300-
dimensional GloVe [162] embeddings.

These models apply the selection strategy only during the inference phase, i.e., trained mod-
els are used to predict the relevance of pairs of queries and summarized documents. The
ranker itself is simply trained without any selection, i.e., documents are truncated to fit. We
refer to these strategies as pipeline (PL). They can be seen as an implementation of themethod
proposed in [115].

To analyze the effectiveness of the above-mentioned selection approaches, we also mea-
sure the performance of a simple strategy, PL-RND, where we randomly select k sentences
from the document. Table 5.1 shows the results for k = 20 and highlights the effectiveness
of the proposed approaches over the random selection on the TREC datasets. We also tried
other values, but k = 20 gives consistent performance for all three datasets. This may be
attributed to the token limitation of the ranker.

It is interesting to note that our lightweight selection strategies, such as PL-BM25 and PL-
SEM, perform better than heavy parameterized neural selection models, such as PL-BERT
1

 https://pypi.org/project/rank-bm25/

90

https://pypi.org/project/rank-bm25/

5.4 Results

TREC-DL-Doc’19 Core17 ClueWeb09

AP nDCG@20 RR AP nDCG@20 RR AP nDCG@20 RR

QL 0.237 0.487[ab] 0.785 0.203 0.395 0.686 0.165 0.277 0.487

Doc-Labeled 0.203 0.434[ab] 0.731 0.237 0.437 0.742 0.165 0.284 0.503
BERT-3S 0.245 0.519[ab] 0.799 0.204 0.406 0.694 0.178 0.306 0.544

BERT-CLS 0.260 0.581 0.874 0.196 0.419 0.749 0.178 0.313 0.572
PL-SEM 0.265 0.571 0.920 0.207 0.414 0.768 0.167 0.286 0.534

[a] S&R-LIN 0.269 0.597 0.946 0.203 0.411 0.710 0.174 0.303 0.535
[b] S&R-ATT 0.271 0.590 0.924 0.205 0.403 0.714 0.168 0.292 0.518

Table 5.2: Ranking performance. Select-And-Rank models use k = 20. For Doc-
Labeled, we report the best strategy (firstP, maxP, avgP for TREC-DL-Doc’19, Core17, and
ClueWeb09, respectively). Significant improvements (nDCG@20) at a level of 95% are indi-
cated by superscripts.

AP nDCG@10

MatchPyramid 0.232 0.567
Co-PACRR 0.231 0.550
Conv-KNRM 0.241 0.565
TKL-2k 0.264 0.634

S&R-LIN 0.269 0.646
S&R-ATT 0.271 0.639

Table 5.3: Neural baselines on TREC-DL-Doc’19. Select-And-Rank models use k = 20.
Results are taken from [72]. TKL-2k refers to TKL operating on 2000 tokens.

and PL-LSTM. PL-SEM shows the best or comparable performance for all three datasets. PL-
BM25, while slightly worse, also shows promising performance. The compact representation
of documents also helps in developing computationally efficient rankingmodels and reducing
noise.

Our end-to-end models, S&R-LIN and S&R-ATT, show improvements over the pipeline
models in most cases. Surprisingly, the linear, more lightweight selector often matches or
exceeds the performance of the attention-based one.

We also perform statistical pairwise t-tests [51] for nDCG@20 between pipeline ap-
proaches and S&R-LIN and S&R-ATT. We do not observe significant improvements for
Core17 and ClueWeb09. However, end-to-end models perform significantly better than
PL-BERT and PL-LSTM.

91

Chapter 5 Extractive Explanations for Interpretable Text Ranking

5.4.2 Performance of Select-And-Rank

In this section, we compare the performance of our proposed models to state-of-the-art mod-
els. We further compare our end-to-end approaches, S&R-LIN and S&R-ATT, to a simple
BERT baseline, denoted by BERT-CLS, which uses truncation of the document instead of sen-
tence selection. First, each model is trained (fine-tuned) and evaluated on TREC-DL-Doc’19,
as it offers an abundance of training data. For Core17 and ClueWeb09, we use the model
from the TREC-DL-Doc’19 experiment as initialization. This helps us to properly train the
selector, as, unlike the BERT ranker, it does not start from a pre-trained model.

The results are illustrated in Table 5.2 . Table 5.3 shows additional neural baselines [160 , 78 ,
 37 , 72] evaluated on TREC-DL-Doc’19. The pipeline model works quite well on the Core17
dataset, but falls short on TREC-DL-Doc’19 and ClueWeb09 compared to the end-to-end
models. In the pipeline model, the selection phase is independent of the ranking phase;
hence, the selection strategy does not receive any feedback from the ranking phase. It is
evident from Table 5.2 that the end-to-end approach improves the ranking process.

By selecting sentences from the complete document, our approaches perform similarly
to stand-alone rankers that operate only on the head of the documents, specifically BERT-
CLS. This indicates that most documents contain redundant information (likely in the form
of summaries) near the beginning that BERT-CLS is able to exploit. We confirm this in Sec-
tion 5.4.5 by showing that there is little overlap between the document head and the sentences
selected by S&R-LIN. Thus, in Section 5.4.6 , we use a Select-And-Rank model to explain
the predictions of BERT-CLS by specifically selecting sentences from just the head of the
documents.

Next, we evaluate our S&R-LIN model on various datasets provided by the BEIR bench-
mark and compare it to sparse retrieval methods (BM25) and a standard BERT-CLS model.
The models are trained on MS MARCO, i.e., only the results on that dataset are in-domain,
whereas the other datasets are evaluated in a zero-shot fashion. The contextual models are
used to re-rank the top-100 BM25 results, whichwe retrieved using Elasticsearch. The results
are illustrated in Fig. 5.6 . It is evident that S&R-LIN and BERT-CLS show similar ranking per-
formance on most datasets with only a few exceptions. It is interesting to note that, in some
cases, contextual re-ranking models fail to improve BM25 ranking. We assume the reason
for this to be a lack of domain knowledge due to the zero-shot setup.

As shown in Section 5.3.1 , the datasets contain mostly short documents (or passages). As
a consequence, selecting as many as k = 10 sentences might already select the complete
document in some cases. We thus perform additional experiments on some of the datasets,
decreasing k all the way to a single selected sentence. Figure 5.7 shows the results. This ex-

92

5.4 Results

Climate-Fever
DBpedia-Entity

Fever
FiQA

HotpotQA
MS MARCO

NQ
Quora

SciDocs
SciFact

TREC-Covid
Webis-Touché-2020

0

0.2

0.4

0.6

0.8

1

nD
CG

@
10

BM25 BERT-CLS S&R-LIN (k = 5) S&R-LIN (k = 10)

−0.1

0

0.1 Improvement (k = 5) Improvement (k = 10)

Figure 5.6: Ranking results (nDCG@10) on datasets from the BEIR benchmark using zero-
shot evaluation with models trained on the MS MARCO dataset. The lines show the dif-
ference between S&R-LIN and BERT-CLS performance. Positive improvement indicates that
S&R-LIN performs better, negative improvement indicates the opposite.

0 5 10 15

0.2

0.4

0.6

k

(a) Fever

0 5 10 15

0.2

0.4

0.6

k

(b) HotpotQA

0 5 10 15

0.1

0.2

0.3

k

(c) SciFact

Figure 5.7: Ranking results (nDCG@10) using S&R-LINwith decreasing number of selected
sentences (k).

93

Chapter 5 Extractive Explanations for Interpretable Text Ranking

0 2 4 6 8 10 12 14 16 18 20

0.3

0.4

0.5

0.6

Number of removed sentences N

nD
CG

@
20

Random sentences
Highest scoring sentences

Figure 5.8: Ranking results (nDCG@20) on TREC-DL-Doc’19 using S&R-LIN with k = 20,
where N sentences are removed (leaving k −N sentences). We compare removing random
sentences and the highest scoring sentences.

periment nicely illustrates the controllable trade-off between performance and interpretabil-
ity: On each of the datasets, the performance plateaus once a certain number of selected
sentences is reached, which depends on the document lengths of the dataset. On the other
hand, the performance drops when the number of selected sentences is decreased, which in
turn makes the ranking decision more interpretable.

5.4.3 Comprehensiveness of Select-And-Rank

Comprehensiveness [41] is a metric that evaluates the quality of rationales, i.e., parts of the
model input that aim at explaining the corresponding output. Specifically, a contrast example

x̃i = xi \ ri is constructed for each input xi, where the rationales ri are removed. Compre-
hensiveness is then computed as

Comp(xi) = m(xi)j −m(x̃i)j, (5.20)

wherem(·)j is the model output or prediction corresponding to the class j.
Intuitively, comprehensiveness measures the degree of influence the rationales have on

the final prediction by computing how much worse the model performs without them. In
our case, xi is a query-document pair. However, due to the length of the documents and
limitation of ranking models, the ranker does not see the complete document in the vast
majority of cases. Thus, computing the exact comprehensiveness is difficult. Instead, we use
a proxy to get an idea about the comprehensiveness of Select-And-Rank models: During
evaluation, we remove the N highest scoring (as assigned by the selector) sentences (out of
k selected sentences) from the input and observe the drop in performance. We then compare
the results to

94

5.4 Results

0 0.2 0.4 0.6

k = 5

k = 10

k = 15

full

Ratio

CTRL+F Accuracy

(a) The accuracy of relevance judgments and
usage of the web browser’s integrated search
function.

0 50 100 150 200

k = 5

k = 10

k = 15

full

Seconds

Time

(b) The time taken to complete a single
query-document relevance judgment. Out-
liers omitted.

Figure 5.9: The results of our user study to determine the faithfulness of Select-And-Rank
explanations. Participants were presented with a query-document pair, where the document
was either unaltered (full) or k ∈ {5, 10, 15} sentences were selected using a the selector of
a trained S&R-LIN model. The query-document pairs originate from TREC-DL-Doc’19. We
plot the average accuracy, the fraction of instances where participants used their browser
search, and the time taken to complete a single query-document relevance judgment.

1. the performance with all k sentences and

2. the performance when N random sentences are removed instead.

The results on TREC-DL-Doc’19 with k = 20 are illustrated in Fig. 5.8 . They show that
removing high-scoring sentences has a higher impact on overall performance than removing
random sentences. This suggests that higher scoring sentences have a higher impact on the
model predictions.

5.4.4 Faithfulness and Utility of Select-And-Rank

Generally speaking, the faithfulness of interpretations refers to the degree to which they
accurately represent the reasoning of the model [82]. In the case of Select-And-Rank,
this corresponds to the question how well the selected sentences represent the document they

originate from. This problem is closely tied to the actual utility and usefulness of Select-
And-Rank models for human users; the idea is that the users should be able to comprehend
a ranking decision solely based on the selected sentences, i.e., the explanation. In order to
assess how faithful the explanations are for human users, we have conducted a study which
is described in this section.

95

Chapter 5 Extractive Explanations for Interpretable Text Ranking

Study Setup

We randomly selected 30 queries from the TREC-DL-Doc’19 test set for our study. For each
of these queries, we randomly sampled one relevant and one irrelevant document from the
official query relevance judgments. We used the selector of a trained S&R-LIN model (from
Section 5.4.2) to select k ∈ {5, 10, 15} sentences for each document (with respect to the
corresponding query), resulting in four variations of each query-document pair. In total,
we ended up with 240 (q, d, k) instances (where k can be null, representing no sentence
selection). We employed 80 participants for the study, each of which judged 12 individual
(q, d, k) instances (i.e., 960 relevance judgments in total). Thus, each instance was judged
approximately four times.

2
 Instances were allocated to participants randomly, making sure

that no participant ever saw two instances with the same query and document.
The user interface presents the query at the top and the document just below. Within the

document, a line break is inserted after every sentence. At the bottom, the participant is
asked to indicate

1. whether or not the document is relevant to the query and

2. whether they used their browser’s integrated search function for this instance.

We further measure and record the time taken for each relevance judgment. After each in-
stance, an intermediate page prompts the participant to take a break before the next instance
if necessary, such that the recorded times are less noisy.

Our study is implemented using the oTree framework [24] and was conducted on the
Prolific platform.

3
 Additional details can be found in Section 5.5 .

Study Results

The results are illustrated in Fig. 5.9 . It is apparent that the longer the documents are (in
terms of the number of sentences), the more the average time taken to judge the relevance of
a single query-document pair increases. Additionally, participants resort to the usage of their
browser’s search function more often, but this is not enough to compensate for the increased
length and keep the time down. Moreover, the participants’ accuracy remains roughly stable
across all settings, peaking at k = 15. We assume that the drop in accuracy for the full
documents could be caused by participants relying too much on term matching provided by
their browsers rather than reading the complete documents.
2Due to some participants never finishing the study, this number can vary in rare cases; however, each instance
has been judged at least three times.

3
 https://www.prolific.co/

96

https://www.prolific.co/

5.4 Results

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Missed tokens [ratio]

Q
ue
ry
-d
oc
um

en
tp

ai
rs

[r
at
io
] PL-SEM

S&R-LIN

Figure 5.10: CDF of tokens on TREC-DL-Doc’19 that would have been missed without sen-
tence selection.

Overall, our study highlights the utility of Select-And-Rank models to humans: The
sentences extracted by our approach serve as faithful explanations to users, as is apparent
from the accuracy. At the same time, it enables them to judge documents more quickly using
only a small subset of sentences.

5.4.5 The Effect of Token Limitation

In this section, we analyze the token limitation that is inherent to the BERT ranker and
further the role the selection strategy has in mitigating that limitation. In other words, we
answer the following question: Howmany input tokens of the selected sentences would not have

been seen by BERT without selection due to length restrictions? In general, existing research
assumes that most of the information relevant to the query is present in the first part of the
document [155]. The BERT-CLS baseline also works based on that assumption. However,
recent strategies [67] show that some information also exists beyond this token limit. In [36],
the authors try to handle this by selecting the first, last, and 28 random passages in theirDoc-
Labeled approach, but this heuristic does not alwayswork. To that end, we choose the top-20
sentences based on PL-SEM and S&R-LIN and measure what fraction of these tokens exceeds
the usable BERT input, i.e., is lost when we only consider the head of a document. Figure 5.10

shows the cumulative distribution of the ratio of missed tokens for TREC-DL-Doc’19. The
distribution pattern is similar for both methods: Less than 10% of the query-document pairs
do not miss any of the selected tokens. Given the performance of the models shown in
Section 5.4.2 , this suggests that relevant information is repeated within the documents, such
that multiple selections exist which result in similar performance.

97

Chapter 5 Extractive Explanations for Interpretable Text Ranking

0 10 20
0.3

0.4

0.5

0.6

k

(a) TREC-DL-Doc’19

0 10 20
0.25

0.3

0.35

0.4

k

BERT-CLS
S&R-LIN

(b) Core17

0 10 20

0.2

0.25

0.3

k

(c) ClueWeb09

Figure 5.11: The performance of S&R-LIN (nDCG@20) applied only to the first 20 sentences
of each document, which approximates selecting sentences from the input of BERT-CLS.

0 5 10 15 20
0.2

0.4

0.6

Number of sentences k

S&R-LIN

(a) Select-And-Rank

0 100 200 300 400 500
0.2

0.4

0.6

Number of tokens T

BERT-CLS

(b) Truncation to T input tokens

Figure 5.12: Ranking performance (nDCG@20) on TREC-DL-Doc’19, where the length of
the input to the ranker is limited in two ways. On the left, Select-And-Rank is used to
select k sentences from the head of the document (i.e., from the first 20 sentences). On the
right, inputs are simply truncated, i.e., the ranker only sees T tokens in total, which includes
the query and the first part of the document. For BERT-CLS, T = 512 is the default setting
and is consistent with the results in Table 5.2 and Fig. 5.11 .

5.4.6 Explaining BERT-CLS

In Section 5.4.5 , we showed that S&R-LIN and the standard BERT-CLSmodel operate on dif-
ferent parts of the input documents, yet they achieve comparable performance (cf. Table 5.2).
In this section, we explore whether Select-And-Rankmodels can be used to further sparsify
the head of a document and thus explain the predictions of BERT-CLS.
To that end, we conduct a set of experiments where we limit the available sentences for

the selector to choose from to the first 20 of each documents based on our length estimation
(cf. Section 5.3.1). We then vary k to compare the performance with respect to sparsity. The
results are illustrated in Fig. 5.11 in terms of nDCG@20. We observe that the performance
plateaus for roughly k ≥ 10 (slightly later for TREC-DL-Doc’19) and approximately matches
BERT-CLS. For lower values of k, the performance drops.

In addition, we compare the above result to a simpler strategy, where, instead of using

98

5.4 Results

QL QL+RM3

AP nDCG@20 AP nDCG@20

QL(+RM3) 0.237 0.487[ab] 0.272 0.513[ab]

Doc-Labeled 0.203 0.434[ab] 0.219 0.426[ab]

BERT-3S 0.245 0.519[ab] 0.281 0.539

BERT-CLS 0.260 0.581 0.279 0.559
PL-SEM 0.265 0.571 0.268 0.537

[a] S&R-LIN 0.269 0.597 0.286 0.568
[b] S&R-ATT 0.271 0.590 0.284 0.563

Table 5.4: Performance over two first stage retrieval models, QL and QL+RM3, at depth 100
on the TREC-DL-Doc’19 test set using k = 20. Significant improvements (nDCG@20) at a
level of 95% are indicated by superscripts.

Select-And-Rank to select sentences, we limit the length of the ranker input by simply
truncating it to a constant number of tokens. This is identical to the BERT-CLS approach, but
instead of 512 tokens, we use smaller numbers. Figure 5.12 shows the comparison of the two
methods (S&R-LIN with k sentences and BERT-CLS truncated to T tokens). On the far right
side of each of the plots, i.e., k = 20 and T = 512, there is no selection or truncation, thus,
bothmodels have roughly the same performance. However, decreasing k or T , respectively, it
becomes evident that, by selecting relevant sentences using Select-And-Rank, substantially
higher performance can be reached with similar numbers of input tokens. For example,
comparing k = 10 and T = 256, both of which drop (roughly) half of the tokens, Select-
And-Rank achieves an nDCG value of 0.569, while BERT-CLS only reaches 0.363. This
suggests that Select-And-Rank is able to select representative summaries of the documents
that are sufficient for the ranker to output similar performance. Truncation, on the other
hand, does not have the same effect, which ultimately reflects in the performance.

Overall, these experiments show that sentence selection may be used even in combination
with models that only operate on the head of documents to achieve interpretability while
maintaining performance.

5.4.7 The Effect of First-stage Retrieval

From Section 5.4.2 and Section 5.4.6 it is evident that the performance of S&R-LIN is on
par with the baselines, while maintaining the interpretability aspect of the approach. How-
ever, the re-ranking performance of the models is computed over the top-100 documents per
query, retrieved using aQLmodel. One obvious question is, whether this performance is lost

99

Chapter 5 Extractive Explanations for Interpretable Text Ranking

with a better first stage retrieval system. To answer this question, we re-retrieve the top-100
documents with QL and RM3 and apply the models to that set. Table 5.4 shows the results
on TREC-DL-Doc’19. Note that the models are not re-trained, i.e., the models from previ-
ous experiments are used. There is no significant influence of RM3 on the performance of
baselines; rather, performance drops to some extent in terms of nDCG. We assume that the
reason for this is the fact that the models were not re-trained using the documents retrieved
by QL and RM3.

5.4.8 Anecdotal Examples

In Table 5.5 , we present an anecdotal example of the top sentence for each document, se-
lected by our Select-And-Rank approaches in both pipeline and end-to-end variants. The
documents marked as relevant are the ground-truth documents as assessed by TREC anno-
tators. We see that the selected sentences already provide an insight into the what evidence
is considered important by the overall ranking model. Specifically, the rank 5 prediction by
S&R-ATT happens because it mistakes bow pose in yoga with bows and arrows. It is clear
from the selected sentence of PL-SEM that it does not consider the duration aspect of the
query. A key aspect of Select-And-Rank is that the decision of the final ranker can be un-
ambiguously attributed to these extracted sentences, providing interpretability to the model
decision. Note that we cannot completely explain the decision making of the final ranker,
since it could select a further subset of the selected sentences.

Moreover, we present examples from the Fever dataset in Table 5.6 . It shows the two
relevant documents for a query (here: a fact), each split into sentences. These sentences are
then ranked by their scores w.r.t. the query as assigned by the selector model (S&R-LIN).
Finally, the 5 highest scoring sentences are selected as input for the ranker. This setting
is consistent with the experiments in Section 5.4.2 and Fig. 5.6 . The part corresponding to
the first document depicts the case where the sentence selection works well: The sentence
that contains the answer to the query is scored high and thus selected. The ranker receives
the selected sentences and is able to rank the document high (rank 3). On the contrary, in
the second relevant document, the selector misses the only relevant sentence and does not
include it in the selection. Thus, the ranker does not see the relevant part of the document
and consequently ranks it lower (rank 23). This example further illustrates how each ranking
decision can be attributed to a small fraction of the input document.

100

5.4 Results

R
a
n
k

D
o
c
u
m
e
n
t

M
o
s
t
r
e
l
e
v
a
n
t
s
e
n
t
e
n
c
e

S
&
R
-
A
T
T

1
D
97
04
61

+
H
ow

lo
ng

do
Ih

ol
d
yo

ga
po

se
s?

2
D
33
78
72
1+

H
ow

Lo
ng

to
H
ol
d
Bi
kr
am

Yo
ga

Po
se
s.

3
D
97
04
60

+
H
ow

Lo
ng

Yo
u
Sh

ou
ld

H
ol
d
A
Yo

ga
Po

st
ur
e?

4
D
12
11
05
0+

H
ow

Lo
ng

To
H
ol
d
Yo

ga
Po

se
To

Ga
in

A
ll
Th

e
Be

ne
fit
s?

5
D
33
76
72

−
O
ne

w
ay

to
bu

ild
st
re
ng

th
an
d
en
du

ra
nc
e
is
to

pu
ll
yo

ur
hu

nt
in
g
bo
w
[..
.]
be
fo
re

re
le
as
in
g
th
e
ar
ro
w
[..
.]

6
D
25
87
65
6−

Tr
ad
iti
on

al
Cl
os
in
g
of

a
Yo

ga
Pr
ac
tic

e
[..
.]
th
e
te
ac
he
rw

ill
sa
y
“n
am

as
te
”&

bo
w
to

st
ud

en
ts
.

7
D
11
25
61
2−

Co
ns
ul
ty

ou
rd

oc
to
rb

ef
or
e
be
gi
nn

in
g
th
es
e
ne
w
fle
xi
bi
lit
y
ex
er
ci
se
s[
...]

8
D
52
05
08

−
Yo

ga
sh
ou

ld
be

do
ne

w
ith

an
op

en
,g
en
tle

,a
nd

no
n-
cr
iti
ca
lm

in
d
[..
.]
w
or
ki
ng

on
on

e’
sl
im

its

P
L
-
S
E
M

1
D
33
78
72
3−

[..
.]
Bo

w
Po

se
is
an

in
te
rm

ed
ia
te

yo
ga

ba
ck
be
nd

th
at

de
ep
ly

op
en
st
he

ch
es
ta

nd
th
e
fro

nt
of

th
e
bo

dy
.

2
D
97
04
58

+
In

th
e
st
yl
e
of

ha
th
a
yo

ga
It
ea
ch

th
er
e
ar
e
lo
ng

er
ho

ld
si
n
th
e
po

se
s.

3
D
33
78
72
5−

[..
.]
A
fte

ra
br
ie
fb

re
ak
,y
ou

m
ov
e
in
to

th
e
la
st
ei
gh

ts
ta
nd

in
g
ex
er
ci
se
s[
...]

of
th
e
Bi
kr
am

yo
ga

se
qu

en
ce

4
D
97
04
61

+
H
ow

lo
ng

do
Ih

ol
d
yo

ga
po

se
s?

5
D
33
76
72

+
[..
.]
iso

la
te

th
e
m
us
cl
es

ne
ed
ed

to
pu

ll
th
e
bo
w
ba
ck

an
d
ho

ld
th
e
bo
w
up

[..
.]

6
D
22
85
73
3+

St
ra
ig
ht
en

yo
ur

le
gs
,s
o
th
at

yo
ur

bo
dy

m
ak
es

a
‘V
’s
ha
pe

an
d
ho

ld
th
is
po

sit
io
n
fo
r2

to
5
br
ea
th
s.

7
D
19
30
29
7−

IF
YO

U
A
RE

A
BE

GI
N
N
ER

,Y
O
U
O
UG

H
T
TO

BE
N
D
YO

UR
KN

EE
S
SL

IG
H
TL

Y
TO

AC
CO

M
PL

IS
H
TH

IS
.

8
D
52
05
08

−
Iy
en
ga
ry

og
a
ca
n
be

go
od

fo
rp

hy
sic

al
th
er
ap
y
[..
.]
ea
sie

rf
or

so
m
e
pe
op

le
to

ge
ti
nt
o
th
e
yo

ga
po

st
ur
es
.

Q
u
e
r
y
:“
ho
w
lo
ng

to
ho
ld

bo
w
in

yo
ga
”(
qu

er
y
ID

11
32
21
3)

T
a
b
l
e
5
.
5
:
Ex

am
pl
e
ra
nk

in
gs

fro
m

th
e
TR

EC
-D

L-
D
oc

’1
9
da
ta
se
tw

ith
th
e
m
os
tr
el
ev
an
ts

el
ec
te
d
se
nt
en
ce
s.

D
oc
um

en
tI
D
s
ha
ve

a
su
ffi
x
(+
/-)

in
di
ca
tin

g
th
e
re
le
va
nc
e
of

th
e
co
rr
es
po

nd
in
g
TR

EC
ju
dg

m
en
ts
.

101

Chapter 5 Extractive Explanations for Interpretable Text Ranking

R
a
n
k

S
e
n
t
e
n
c
e

D
o
c
u
m
e
n
t:
Commodore_(rank),

R
a
n
k:

3

selected

1
A
com

m
odore’sship

istypically
designated

by
the

flying
ofa

Broad
pennant,asopposed

to
an

adm
iral’sflag.

2
Com

m
odore

isa
navalrank

used
in

m
any

naviesthatissuperiorto
a
navy

captain,butbelow
a
rearadm

iral.
3

Itissom
etim

esabbreviated:as"Cdre"in
British

RoyalN
avy,"CD

RE"in
the

US
N
avy

[...]
4

Com
m
odore

(rank).
5

N
on-English-speaking

nationsoften
use

the
rank

offlotilla
adm

iralorcounteradm
iral[...]

6
Asan

offi
cialrank,a

com
m
odore

typically
com

m
andsa

flotilla
orsquadron

ofships[...]
7

Traditionally,"com
m
odore"isthe

title
forany

offi
cerassigned

to
com

m
and

m
ore

than
one

ship
[...]

8
Itisoften

regarded
asa

one-starrank
w
ith

a
N
ATO

code
ofO

F-6
[...]

D
o
c
u
m
e
n
t:
Rear_admiral,

R
a
n
k:

2
3

selected

1
In

the
Germ

an
N
avy

the
rank

isknow
n
asKonteradm

iral,superiorto
the

flotilla
adm

iral(Com
m
odore

in
othernavies).

2
In

the
RoyalN

etherlandsN
avy,thisrank

isknow
n
asschout-bij-nacht(lit.

3
[...]and

in
the

Canadian
Forces’French

rank
translations,the

rank
ofrearadm

iralisknow
n
ascontre-am

iral.
4

In
som

e
European

navies(e.g.
5

In
m
any

naviesitisreferred
to

asa
tw

o-starrank
(O
F-7).

...
...

1
3

Rearadm
iralisa

navalcom
m
issioned

officerrank
above

thatofa
com

m
odore

and
captain,and

below
[...]

1
4

Each
navalsquadron

w
ould

be
assigned

an
adm

iralasitshead,w
ho

w
ould

com
m
and

from
the

centre
vessel[...]

Q
u
e
r
y:“C

om
m
odore

is
ranked

above
a
rear

adm
iral.”(query

ID
204575)

T
a
b
l
e
5
.
6
:Exam

ple
selectionsofsentencesfrom

relevantdocum
entsw.r.t.a

query
from

the
Fever

datasetby
S&

R-LIN
.The

selector
selectsthehighestscoring

k
=

5sentencesfrom
each

docum
ent.Thefinalrank

ofadocum
entiscom

putedusingonly
thesesentences.

The
sentencesthatcontain

the
answ

erare
highlighted.

102

5.5 User Study Details

Figure 5.13: The instructions page. This page is only displayed once and includes a task
description along with some examples.

5.5 User Study Details

In this section, we present our user study (as described in Section 5.4.4) in more detail.

5.5.1 Interface

The main part of the study consists of three pages:

1. The instructions page (Fig. 5.13) familiarizes the participant with the task and provides
examples.

2. The task page (Fig. 5.14) presents a query-document pair to the participant and records

103

Chapter 5 Extractive Explanations for Interpretable Text Ranking

Figure 5.14: The task page. It shows a query-document pair and gathers the participant’s
response (whether the document is relevant to the query) along with whether or not they
used the browser search for this instance.

Figure 5.15: The break page. It is displayed between two consecutive task pages.

104

5.5 User Study Details

their response. In the background, we record how much time the participant has spent
on this page in order to measure the time it took to judge the query-document pair.

3. The break page (Fig. 5.15) is a simple intermediate page that is shown in between two
consecutive task pages. The reason for this is that we want participants to only take
breaks between two tasks, so that our time measurements are as accurate as possible.

The study is structured in rounds; a round consists of a task page and a subsequent break
page. In our experiment, each participant completed 12 rounds. Before the first round, the
instructions are shown.

5.5.2 Collection and Usage of Data

We collect three data points during each round:

1. The relevance judgment (boolean),

2. the usage of browser search (boolean), and

3. the time taken to come up with the relevance judgment (float).

The data is inserted into a database after each page. This allows users to take a break from
the study and continue where they left off later, even if they closed their browser in the
meantime.

Computation of Metrics

In the results (Section 5.4.4) we present the following metrics:

1. Accuracy: This is simply the number of correctly judged instances divided by the
total number of instances. Correctness is determined using the official TREC query
relevances R, which are converted to binary according to the official guidelines, i.e.,
irrelevant (R(q, d) = 0) or relevant (R(q, d) > 0).

2. Search function usage: Similarly to accuracy, we divide the number of instances
where participants have indicated the usage of their browser’s search function by the
total number of instances.

3. Time taken to complete a relevance judgment: The time is measured as the differ-
ence between two time stamps: The first one is recorded when the participant leaves
the break page, and the second one is when the user completes the task page.

105

Chapter 5 Extractive Explanations for Interpretable Text Ranking

What makes Bikram yoga unique is
its focus on practicing yoga in a room
heated to 105 degrees Fahrenheit with
40 percent humidity. In Bikram yoga,
be prepared to sweat profusely and come
armed with a towel and lots of water. To
practice Bikram at home, you’ll need a
space heater and access to the pose se-
quence. On a general basis, you need
to hold the yoga poses for about 10-12
breaths. With practice, you can also go
up to 30 breaths. We chatted for a few
moments, and found that we came to
completely different conclusions. [...]

(a) Unaltered relevant document

THIS IS A BUG. What makes Bikram
yoga unique is its focus on practicing yoga
in a room heated to 105 degrees Fahren-
heit with 40 percent humidity. In Bikram
yoga, be prepared to sweat profusely and
come armed with a towel and lots of wa-
ter. To practice Bikram at home, you’ll
need a space heater and access to the pose
sequence. On a general basis, you need
to hold the yoga poses for about 10-12
breaths. With practice, you can also go up
to 30 breaths. We chatted for a few mo-
ments, and found that we came to com-
pletely different conclusions. [...]

(b) Relevant document with label leakage

Figure 5.16: An example illustrating label leakage for the query how long to hold bow in
yoga. For each document that is relevant to the query (a), we prepend the sentence THIS IS A
BUG (b). As irrelevant documents are unaffected, this simulates label leakage for training and
test data. The highlighted sentences correspond to the part of the document that provides
the answer to the query.

5.6 Applications of Select-And-Rank

In this section, we highlight several real-world applications of Select-And-Rank models.

5.6.1 Discovering Biased or Buggy Ranking Decisions

Neural rankers, just like any other machine learning model, are susceptible to bias or bugs
in their ranking decisions [2]. Such models can achieve high performance, but the rationale
(or reasoning) behind the model decisions is often incorrect, i.e., the models are right for
the wrong reasons. In a similar fashion, a line of work employs adversarial attacks to craft
model inputs, which are often merely slightly modified examples from real datasets, that
yield highly unexpected model decisions or outputs [213 , 201].

In this section, we conduct an experiment to show how the Select-And-Rank paradigm
can be employed to uncover such biased or even buggy decisions of the ranking model.
Specifically, we enforce biased ranking decisions by augmenting the MS MARCO corpus to
include label leakage; this means that, for every query-document pair (q, d) in the training
and test set, where d is relevant to q, we replace d by d′, where d′ is simply a copy of the orig-
inal document with one additional sentence injected. This process is illustrated in Fig. 5.16 .
As a result, a ranking model trained on this data simply learns to rank documents that con-

106

5.6 Applications of Select-And-Rank

0 10 20 30 40

0

20

40

60

80

100

Query ID

N
um

be
ro

fd
oc
um

en
ts

Leakage sentence selected
Leakage sentence not selected

(a) Fraction of documents where the leak-
age sentence has been selected (assigned the
highest score by the selector) for each query

0 10 20 30 40 50

100

101

102

103

Rank of leakage sentence in selection

N
um

be
ro

fd
oc
um

en
ts

(b) Distribution of the ranks of the leakage
sentence as assigned by the selector over all
relevant documents in the test set

Figure 5.17: This example shows how label leakage can be discovered using Select-And-
Rankmodels. The plots illustrate the sentence selections on the TREC-DL-Doc’19 test set by
an S&R-LINmodel using a modified corpus to simulate label leakage (cf. Fig. 5.16). Evidently,
the extractive explanations (selected sentences) provided by our model reliably uncover the
label leakage by including the leakage sentences.

tain the injected sentence high (independently of the query). In fact, the model reaches an
AP of 0.39, nDCG@20 of 0.66, and RR of 1.00 on the TREC-DL-Doc’19 test set (cf. Table 5.2)
due to the label leakage. Figure 5.17 shows how the explanations provided by an S&R-LIN
model uncover the bias in the ranking decisions; specifically, it illustrates how the selector
assigns the highest importance to the sentence containing the label leakage (and hence in-
cludes it in the explanation) in all but very few cases. As a result, an examination of the
ranking explanations immediately uncovers this bug.

5.6.2 Improving Search Engines

In general, search engines do not give end-users much of an idea about the reasoning behind
marking a document as relevant or ranking one document higher than another. Instead,
users have to rely on the results of the search engines. In turn, most search engines use the
click information of users to judge the relevance of a document and iteratively update their
search and ranking algorithm [30]. This introduces bias in determining the importance of
web pages. Content creators may use clickbait [22 , 56] to attract users and increase the im-
portance of their content or web page, even though it does not contain the relevant content.
This is also a challenging task for search engine optimization.

107

Chapter 5 Extractive Explanations for Interpretable Text Ranking

Our Select-And-Rank-based document ranking architecture can be used to alleviate the
above-mentioned two problems to an extent:

1. The Select-And-Rank paradigm identifies the relevance of a document with respect
to a query and also extracts relevant snippets from the document. If the system high-
lights those snippets along with the document, users can make their click decisions
more accurately, helping them to skip clickbait contents.

2. It is very difficult to judge the relevance of a document just from the title. For this rea-
son, search engines display snippets of documents on the results page. These snippets
are often relatively short (i.e., one or two sentences or parts of sentences) and are sup-
posed to highlight why the user might be interested in the document. Usually, these
snippets are based on term-matchingwith the query, i.e., matching terms in the snippet
are printed bold. Select-And-Rank could be used as an alternative way of generating
these snippets (for small values of k) such that they also explain the reasoning behind
the ranking itself. The highlighting of matching terms could then be performed on the
selected sentences as well.

5.7 Conclusion

In this chapter, we proposed Select-And-Rank, a ranking framework that is interpretable
by design. Our selection and ranking models are trainable end-to-end by gradient-based op-
timization techniques, using a combination of the Gumbel-max trick and reparameterizable
subset sampling. In our experiments, we found that, by enforcing sparsity in document rep-
resentations by selecting a subset of sentences, we still perform on par with state-of-the-art
models, while being interpretable. We showed how Select-And-Rank can be used to explain
the decisions for a large number of ranking tasks from the BEIR benchmark in the zero-shot
setting. This proves its potential of wide-ranging utility in a large number of knowledge-
intensive tasks. We showed that there is no considerable performance difference in the case
of complex selectors, indicating that simple and fast selectors can be used instead. We also
found that there is a sweet spot in the choice of sparsity that varies depending on the dataset.
We performed a user study to highlight the utility of our extractive explanations to human
users. We believe that the applicability of a sparsity-inducing component can extend beyond
document ranking to other ranking [74 , 75 , 184], graph [50], and web tasks [8 , 183 , 170].

108

6
Web Content Extraction

for Corpus Creation

Web pages are rich sources of information but are also intertwined inextricably with ads,
banners, and other boilerplate from content management systems (CMS). Extracting the pri-
mary content from a web page is an important low level task with strong implications to
retrieval models [198] and other tasks.
In this chapter, we focus on the task of boilerplate removal or the isolation of the primary

informational content of a web page. The problem is well studied, with approaches ranging
from classical rule-based to modern supervised machine learning models. Most of the re-
cent approaches rely on building large sets of features based on commonly observed domain
knowledge or rules. Gupta et al. [63] and Wu, Liu, and Fan [214] rely on features of web
pages based on their document object model (DOM), i.e., their structure. BoilerPipe [93] and
Web2Text [198] rely on text-based features. Cai et al. [20] use vision-based page segmenta-
tion approaches. Most of these approaches exploit a crucial aspect that is common to most
web pages, i.e., there is an inherent locality of relevant content [48]. In other words, relevant
content tends to be rendered closely together in a web page.

There are two major drawbacks of the existing approaches. First, the locality of rendering

effect is inherently hard to model and requires a large number of features and heuristic post-
processing procedures, as exemplified in the previous approaches that use DOM trees, text,
or a combination of both. For example, the state-of-the-art approach, Web2Text, uses 128
features. Second, the availability of training data for the boilerplate removal task is limited,
and, in order to maintain their effectiveness on evolving web pages, these models have to
be re-trained. With human training labels being at a premium, this limited training data is a

109

Chapter 6 Web Content Extraction for Corpus Creation

Header

Title

Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet,
consetetur sadipscing elitr, sed diam nonumy eirmod tem-
por invidunt ut labore et dolore magna aliquyam erat,
sed diam voluptua. At vero eos et accusam et justo duo
dolores et ea rebum. Stet clita kasd gubergren, no sea
takimata sanctus est Lorem ipsum dolor sit amet.

Picture

Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet,
consetetur sadipscing elitr, sed diam nonumy eirmod tem-
por invidunt ut labore et dolore magna aliquyam erat,
sed diam voluptua. At vero eos et accusam et justo duo
dolores et ea rebum. Stet clita kasd gubergren, no sea
takimata sanctus est Lorem ipsum dolor sit amet.

A
d

1

2

3

4

5

6

Figure 6.1: A common example layout that is found, for example, in blogs. This web page
can be represented as a sequence, the elements of which are illustrated by the numbers cor-
responding to the page elements. The order of the sequence is determined by the order of
the elements within the DOM tree.

common issue that plagues the existing models.
We propose BoilerNet, an automatic feature learning approach that does not rely on ex-

pensive feature engineering on web pages. Unlike the locality of rendering, there is also a
locality of authoring in web pages. Specifically, relevant content tends to be authored in con-
tiguous segments, as illustrated in Fig. 6.1 . This observation greatly simplifies the modeling
task, as we are not bound to inferring the locality of content from the visual features or raw
text. Rather, we work on the rawHTML input andmodel the input web page as a sequence of
candidate segments (text blocks, i.e., leaf nodes in the DOM tree). Assuming that the content
is authored in a sequential fashion, we now pose the problem of detecting boilerplate as a
sequence learning task. This eradicates the utility of any computationally expensive feature
extraction and post-processing procedures. Our research question is the following:

RQ4 Can the content of web pages be extracted purely based on the sequence of its ele-
ments, without relying on hand-crafted features (Section 6.3.2)?

We perform extensive experimental evaluation with standard benchmarks as well as a new

110

6.1 Related Work

dataset created by us to show that our model is able to perform and generalize well even
with a low number of training instances. We observe that we obtain similar performance
and sometimes outperform the existing feature-based approaches. We provide an interactive
demonstration in the form of a browser extension.

6.1 Related Work

Existing boilerplate removal approaches are either handcrafted rules or tools targeted at
extracting content from web pages which were observed to possess certain structural and
textual properties, or machine learning approaches using hand-crafted (textual, structural,
visual, etc.) features to separate content from boilerplate.

For instance, Body Text Extraction (BTE) [48] uses the observation that the main content
contains longer paragraphs of uninterrupted text and marks the largest contiguous text area
with the least amount of HTML tags as content. Gupta et al. [63] apply various heuristic-
based filters to remove images, advertisements, etc. from the DOM tree representation of the
web page. CETD [188] exploits the design principles behind text and noise. Another line of
work consists of template detection algorithms [12 , 124 , 226 , 21] which utilize collections of
web pages, usually from the same site, to learn the common template structure.

Among the other machine learning based approaches, Pasternack and Roth [161] propose
a method utilizing maximum subsequence segmentation to extract the text of articles from
HTML documents using tags and trigram features. BoilerPipe [93] analyzes hand-crafted
text features, namely the number of words and link density, to distinguish main content from
other parts of information from news article web pages. Wang et al. [204] learn a template-
independent wrapper using a small number of labeled news pages from a single site and
features dedicated to news titles and bodies. Gibson, Wellner, and Lubar [57] and Spousta,
Marek, and Pecina [186] employ sequence labeling approaches, which consider a web docu-
ment as a sequence of some appropriately sized units or blocks, and the task is to categorize
each block as content or not content. Both of these works use conditional random fields (CRFs)
with various hand-crafted textual and structural features. Web2Text [198] employs two sep-
arate convolutional neural networks which operate on a very large number of hand-crafted
features for each text block, yielding unary and pairwise potentials (probabilities), for clas-
sifying each block and pair of adjacent blocks, respectively, followed by the maximization
of joint probabilities during inference. Wu, Liu, and Fan [214] formulate the actual content
identification problem as a DOM tree node selection problem and train a machine learning
model using features like fonts, links, position, and others.

111

Chapter 6 Web Content Extraction for Corpus Creation

6.2 BoilerNet

We model the problem of boilerplate removal or content extraction as a sequence labeling

problem where the web page is divided into text blocks, all of which are then individually
classified as either content or boilerplate. Each text block is represented as a vector which en-
codes both the text as well as all of its ancestral HTML tags. The order of the input sequence
is determined by the order of the corresponding text blocks within the original HTML file.
Our hypothesis is that the order of text blocks in a web page encodes important information
about their type, i.e., content or boilerplate, as the placement is determined by the authoring
style. For example, in blogs or news sites, we expect the content of an article page to be
bunched near the center and surrounded by ads and navigational elements.

6.2.1 Input Representation

In order to obtain the sequences to be used as inputs for our model, we divide every web
page into a sequence of text blocks. A text block can only appear as a leaf node in the DOM
tree and has no associated HTML tag. However, a piece of text that appears connected to the
human reader may be separated by HTML tags, e.g.,

<p>[A][B][C]</p>

contains the text blocks [A], [B], and [C], divided by a tag.
Each block is represented by a d-dimensional vector. The first k elements of the vector

are used to encode all parent nodes of the leaf up to the root. Each index is associated with
a specific HTML tag, and the numbers encode how many of the corresponding HTML tags
appear in the path from the root node to the leaf. In the same fashion, the remaining l items
encode the words that appear in the text block. In practice, we add another two dimensions
for out-of-vocabulary placeholders to the vector in order to handle unknown HTML tags and
unknown words and only consider the k most common HTML tags and the l most common
words.

6.2.2 Sequence Labeling

TheBoilerNet architecture is based on bidirectional LSTMs, which are able to learn complex
non-local dependencies in sequence models. The elements in the input sequence are pro-
jected to m-dimensional dense vectors using a fully-connected layer D ∈ Rd×m. The dense
representations are then fed into a number of consecutive bidirectional many-to-many LSTM

112

6.2 BoilerNet

Em
bedding

Classification

• ×

• ✓

• ✓

• ×

Figure 6.2: The BoilerNet architecture with one LSTM layer. The input is a web page repre-
sented as a sequence of text blocks. We represent each text block using a sparse vector which
encodes the HTML tags (white) and words (black). These input vectors are then transformed
into lower-dimensional dense vectors using an embedding layer. We classify each element
of the sequence.

layers. In each of these LSTM layers, given an input (x1, . . . , xn), the forward LSTM yields
the output (yf1 , . . . , yfn), while the backward LSTM receives the reversed input sequence and
yields the output (yb1, . . . , ybn). Both LSTMs use individual sets of parameters Wf and Wb.
The final ℓ-dimensional representation of a text block is obtained by concatenating the re-
spective forward and backward outputs. Finally, the concatenated outputs of the last LSTM
layer are squashed into 1-dimensional vectors using a fully connected layerV ∈ Rℓ×1 with a
sigmoid activation function to infer the final classification probabilities. We use binary cross
entropy to train the model. The architecture is shown in Fig. 6.2 .

6.2.3 Issues in Boilerplate Removal Models

One of the main issues in employing machine learning models to classify content and boil-
erplate is the scarcity of the labeled data. Annotating content in web pages is a tedious task
and requires a large investment of time, mainly because of the growing size of web pages and
non-standard use of HTML. We initially experimented with a weak supervision [38] strategy
to deal with this problem, which resulted in no significant improvements. We therefore con-
duct our experiments with a low number of training examples to show that our model is able
to generalize well despite limited training data.

113

Chapter 6 Web Content Extraction for Corpus Creation

6.3 Experiments

We evaluate BoilerNet against existing approaches using two datasets: CleanEval [13] and
GoogleTrends-2017. CleanEval (published in 2007) is a collection of arbitrary websites. In
order to evaluate the generalizability of our model to newer web pages, we manually created
GoogleTrends-2017 as described in Section 6.3.1 .

We compare our approach to other machine learning as well as rule- and heuristic-based
methods. Web2Text [198] relies on a large number of hand-crafted features and uses con-
volutional neural networks to classify page elements. The drawback of this approach is that
these features might not generalize well or in some cases even be invalid, for example, across
languages or longer time periods. BoilerPipe [93] is a rule-based system using textual fea-
tures which was trained solely on news articles. Finally, Readability.js is the open source
implementation of Mozilla’s reader view feature in the Firefox browser.

1

6.3.1 Dataset Preparation

Existing datasets for the evaluation of boilerplate removal and content extraction have weak-
nesses, rendering them suboptimal for evaluating modern approaches. First, the datasets are
old (CleanEval was published in 2007, L3S-GN1 in 2010); since then, the web has changed
in many ways, for example, in overall structure and technologies used, rendering existing
datasets outdated. Second, some datasets lack diversity, as they contain only web pages of a
single type. For example, L3S-GN1 is a news-only dataset.

For these reasons, we created a new dataset based on the Google trends of 2017. We ob-
tained the HTML files by retrieving the first 100 results for each trending Google query from
the year 2017.

2
 From the resulting pool of websites, we randomly sampled a set of 180 doc-

uments and annotated them.

3
 To eliminate the problems mentioned above, we made sure to

retrieve all our pages from current Google queries, as this ensures both variety and current-
ness of the data.

As already mentioned, some datasets provide the ground-truth (cleaned web page) as plain
text files where all HTML tags have been stripped. Since our model takes the HTML tags
into account during training, it is necessary to retrace each part of the cleaned web page
in the original HTML document. This is not a trivial task, as the ground-truth might not
be 100% accurate. The same problem occurs when it comes to the evaluation of other web
page cleaners. Often times the output of such cleaners is in plain text format, which makes
1

 https://github.com/mozilla/readability

2
 https://trends.google.com/trends/yis/2017/GLOBAL/

3This was done in collaboration with Supplie [189].

114

https://github.com/mozilla/readability
https://trends.google.com/trends/yis/2017/GLOBAL/

6.3 Experiments

Negative class Positive class

P R F1 P R F1
Web2Text 0.82 0.76 0.79 0.84 0.89 0.86
Web2Text (unary) 0.80 0.78 0.79 0.85 0.87 0.86
BoilerPipe 0.58 0.90 0.71 0.90 0.58 0.71
Readability.js 0.85 0.76 0.81 0.82 0.89 0.85

BoilerNet 0.82 0.83 0.82 0.87 0.86 0.87

Table 6.1: The results on the CleanEval dataset with 55 training, 5 validation, and 676 test
instances.

the computation of token-level measures impossible. To solve this problem, we employ the
alignment procedure from [198], which tries to find the original position of the text snippets
in the HTML file via sequence matching.

4
 This allows us to extract labels from datasets as

well as from the output of web page cleaners. Additionally, we implement the BoilerNet
model in a way that the default output is a valid HTML file, where the text blocks classified
as content are simply wrapped in an additional tag. This makes our model both easy
to use and evaluate.

6.3.2 Results and Discussion

We conduct experiments on the CleanEval and GoogleTrends-2017 datasets to compare
BoilerNet to the baselines.

5
 Due to the scarcity of ground-truth data mentioned earlier, we

intentionally use small numbers of training instances. This also has the advantage of giving
us a larger test set. We experimentedwith 5-fold cross-validation, however, this did not result
in any substantial changes. Our final model after validation contains two bidirectional LSTM
layers with 256 hidden units each. The sparse input vectors are projected to 256-dimensional
embedding vectors. After the second LSTM layer, we apply dropout with a probability of 0.5.
We train each model for 50 epochs with a batch size of 16 and weighted binary cross entropy
loss. We choose the best checkpoint based on the F1 score on the validation set.

The results on the CleanEval dataset are shown in Table 6.1 . We used the origi-
nal CleanEval split, i.e., 55 training instances, 5 validation instances, and 676 test in-
stances. Unlike all other approaches, BoilerNet is consistent in both classes, whereas
the recall of Web2Text drops in the negative class. The overall performance of Boiler-
Net and Web2Text is similar, which shows that our approach is able to learn the fea-

4The adaptation and implementation of this algorithm was done by Supplie [189].
5TheWeb2Text and Readability.js baselines were evaluated by Supplie [189].

115

Chapter 6 Web Content Extraction for Corpus Creation

Negative class Positive class

P R F1 P R F1
Web2Text 0.88 0.89 0.88 0.69 0.67 0.68
Web2Text (unary) 0.91 0.85 0.88 0.67 0.77 0.71
BoilerPipe 0.78 0.98 0.87 0.85 0.26 0.39
Readability.js 0.84 0.85 0.84 0.53 0.52 0.53

BoilerNet 0.95 0.86 0.90 0.70 0.88 0.78

Table 6.2: The results on the new GoogleTrends-2017 dataset with 50 training, 30 valida-
tion, and 100 test instances.

Figure 6.3: The user interface of the browser extension.

tures of Web2Text that were optimized for CleanEval. Table 6.2 shows the results on
the GoogleTrends-2017 dataset. Again, BoilerNet is more consistent than the other ap-
proaches, outperforming them especially in the positive class. This supports our claim that
hand-crafted features do not generalize well across longer periods of time. Moreover, while,
for other approaches, it would be hard to detect boilerplate text that contains well formed
sentences (e.g., copyright statements), in the case of raw input (like ours) we learn to predict
such cases with higher accuracy.

6.4 Demonstration

We demonstrate our system by providing an interactive browser extension that allows the
user to highlight the content on an arbitrary web page with a single click of a button. The
user interface is shown in Fig. 6.3 . After the user initiates the process, the extension pre-
processes the current web page, loads a pre-trained BoilerNet model and classifies each
text element. Those elements which are classified as content are then highlighted directly
within the active browser tab. Figure 6.4 shows an example web page, where the content has
been highlighted.

116

6.5 Conclusion

Figure 6.4:An example web page, where the content has been highlighted by the BoilerNet
browser extension.

6.4.1 Implementation Details

Our implementation of the BoilerNet model uses TensorFlow 2.0. The training (and eval-
uation) happens on a GPU. A trained model can then be loaded by our browser extension,
which uses TensorFlow.js, a JavaScript library compatible to TensorFlow.

6
 The extension is

self-contained, i.e., it handles all necessary pre-processing steps like the tokenization of text
paragraphs.

6.5 Conclusion

We presented BoilerNet, a novel, featureless approach for boilerplate removal from web
pages using sequence labeling. We have shown that BoilerNet can match the performance
of state-of-the-art systems and outperform them on more current datasets, achieving an in-
crease of 11% in recall and 7% in F1 (positive class) over its competitors. We have also shown
the benefits of modeling web pages as sequences of text blocks while preserving the order
from the DOM tree. Additionally, we have shown that our approach requires only little train-
ing data to achieve good results.

6
 https://www.tensorflow.org/js

117

https://www.tensorflow.org/js

Chapter 6 Web Content Extraction for Corpus Creation

118

7
Conclusion

and Future Work

Neural ranking is becoming ubiquitous, as more and more services that rely on it are in-
terwoven with many peoples’ everyday life through the likes of personal assistants, web
search engines, or recommender systems in e-commerce or streaming services. With dense
and hybrid retrieval strategies powered by large pre-trained language models taking over,
the quality of search results and any related tasks has improved significantly over the recent
years; these improvements, however, come at a cost.

We have identified two important challenges of neural ranking models: On the one hand,
their complexity and size have negative implications on their efficiency (cf. Section 1.2.1 —
the efficiency challenge); this affects both the query processing latency and, arguably more
importantly, their environmental footprint during training and inference. On the other hand,
the decisions of neural rankers are difficult to explain (cf. Section 1.2.2 —the explainability

challenge).
In this thesis, we focused mainly on improving the efficiency and explainability of neural

rankers in order to mitigate the aforementioned challenges. Below, we list the contributions
and give an outlook on promising future research directions.

7.1 Contributions

In Chapter 3 , we introduced Fast-Forward indexes, a framework that allows for simple
and efficient ranking using dual-encoder models. Our method exploits pre-computation of
document representations using dual-encoders in order to offload the most computationally

119

Chapter 7 Conclusion and Future Work

expensive operations to the offline (indexing) phase. The online ranking phase entails com-
puting the query representation and scoring each document; these operations happen on
CPUs and do not require GPU acceleration. Ranking the documents using a linear interpola-
tion of lexical and semantic scores maintains the effectiveness. Furthermore, we introduced
a number of complementary techniques to further improve the efficiency of Fast-Forward
indexes:

• Early stopping (cf. Section 3.2.2) avoids unnecessary computations by terminating the
ranking process early based on approximation of the maximum scores.

• Sequential coalescing (cf. Section 3.2.1) allows the compression of indexes that hold
multiple representations of each document.

• Lightweight query encoders (cf. Section 3.3.1) make query encoding substantially
faster, eliminating the bottleneck during online query processing, to the point where
no neural forward pass is necessary anymore.

• Selective-BERT document encoders (cf. Section 3.3.2) learn to dynamically ignore
irrelevant document tokens to improve indexing efficiency.

In Chapter 4 , we introduced BERT-DMN and showed that utilizing sentence-level repre-
sentations of large language models (here: BERT), instead of solely relying on the classifica-
tion token output, can be beneficial for ranking. We further showed that LLMs do not nec-
essarily have to be fine-tuned in order to be used for ranking; instead, an additional, much
smaller, model can be trained on the sentence-level representations output by BERT. This
has positive implications on training efficiency, as the LLM forward passes can be cached
and thus only need to be computed once.

In Chapter 5 , we introduced the Select-And-Rank paradigm for explainable-by-design
ranking models. Select-And-Rank models have two components; a selector extracts
a query-dependent explanation from the document, and a ranker computes the query-
document relevance score only using the extracted explanation. We proposed an end-to-end
approach to train the selector and ranker jointly. Our experiments showed that the ranking
performance using only the explanation is similar to the ranking performance using the full
document. Furthermore, we conducted experiments regarding

• the comprehensiveness of the extracted explanations (cf. Section 5.4.3), and

• the faithfulness of the extracted explanations according to a user study (cf. Sec-
tion 5.4.4).

120

7.1 Contributions

Finally, in Chapter 6 , we introduced BoilerNet, a boilerplate removal approach for web
content extraction. Our approach employs a supervised machine learning model and re-
quires no engineering of hand-crafted features. Through evaluation on multiple datasets, we
showed that BoilerNet is able to adapt to changing standards and web technologies. It can
be used to clean web pages, removing all elements other than the main content, for example,
to pre-process web corpora prior to the indexing step.

7.1.1 Software

The implementations of all models used in this thesis are open-source; the software contri-
butions are listed below.

Fast-Forward Indexes

We provide a Python library that implements Fast-Forward indexes. Specifically, the fol-
lowing features are supported:

• Fast CPU-based ranking

• Index compression via sequential coalescing

• Early stopping for improved efficiency

The library is available via the Python package index (PyPI).

1
 The source and API documen-

tation can be found on GitHub.

2

Ranking Utilities

The ranking-utils library provides utilities for training ranking models.

3
 It offers the fol-

lowing features:

• Integration with the PyTorch Lightning framework

4

• Dataset parsing and pre-processing

• Pointwise and pairwise training loss

• Validation using ranking metrics
1pip install fast-forward-indexes
2

 https://github.com/mrjleo/fast-forward-indexes

3
 https://github.com/mrjleo/ranking-utils

4
 https://www.pytorchlightning.ai/

121

https://github.com/mrjleo/fast-forward-indexes
https://github.com/mrjleo/ranking-utils
https://www.pytorchlightning.ai/

Chapter 7 Conclusion and Future Work

Ranking Models

The ranking-models repository contains implementations of our ranking models (specifi-
cally, BERT-DMN and Select-And-Rank) as well as some baselines.

5
 It supports training,

validation, testing, and re-ranking.

Dual-Encoders for IR

The dual-encoders repository provides functionality to train and evaluate dual-encoder
models for IR.

6
 It supports a contrastive loss function; trained encoders may be used either

for ANN retrieval or in combination with Fast-Forward indexes.

BoilerNet

The code for training and evaluation of BoilerNet is available on GitHub, along with the
browser extension and links to pre-processed datasets.

7

7.2 Future Work

Research in the field of neural ranking is advancing rapidly, and, with efficiency and explain-
ability being more important than ever, there are numerous promising ways to extend the
work in this thesis. In this section, we present several open research questions and ideas
building upon our methods.

Fast-Forward indexes perform interpolation-based re-ranking. As a consequence, the
recall, i.e., the fraction of all relevant documents that is captured, is determined by the first-
stage retrieval model. Since we used a term-matching-based retriever (namely, BM25) in our
experiments (cf. Section 3.5), our approach is, in principle, limited by the vocabulary mis-
match problem (cf. Section 2.1.1). It is possible to mitigate this problem (to an extent) by
increasing the first-stage retrieval depth and using pseudo relevance feedback and smooth-
ing methods; in fact, we showed that re-ranking up to kS = 5000 documents using Fast-
Forward indexes is still fast. However, a natural next step would be to go beyond term
matching in the first stage; one possibility would be to use a lightweight semantic retriever
to capture semantically relevant documents in the first stage and a larger, more complex
model for re-ranking in the second stage.

5
 https://github.com/mrjleo/ranking-models

6
 https://github.com/mrjleo/dual-encoders

7
 https://github.com/mrjleo/boilernet

122

https://github.com/mrjleo/ranking-models
https://github.com/mrjleo/dual-encoders
https://github.com/mrjleo/boilernet

7.3 Outlook

In Section 3.3.1 , we proposed lightweight query encoders for Fast-Forward indexes. We
showed that these encoders can be orders of magnitude faster when self-attention is com-
pletely omitted, as the encoding operation boils down to a look-up table in that case. How-
ever, in some cases, this causes the performance to drop. We hypothesize that non-contextual
subword representations are not sufficient for queries that are more complex than simple
keywords; this issue might be alleviated by custom tokenizers trained to “mimic” contex-
tualization by creating additional tokens that span multiple words instead of splitting them
into subwords.

The Select-And-Rank models proposed in Chapter 5 are limited with respect to effi-
ciency, as the explanations are query-dependent; in other words, since the input to the
ranker is not known in advance, representations cannot be pre-computed, as is done for
Fast-Forward indexes. A way around this limitation could be the use of more granular rep-
resentations; for example, an approach like Sentence-BERT [167] could be used to compute
sentence representations in advance and subsequently employ a dual-encoder architecture
for re-ranking.

Finally, a recent line of work [81 , 85] has found a potential problem of select-and-predict
models, such as Select-And-Rank: If such models are trained jointly (end-to-end), unin-
tended behavior may occur, where the predictor model learns to make its decision not based
on what was selected, but rather on some artifacts introduced by the selector. Due to the
fact that we used a lightweight selection model (S&R-LIN), we do not expect that our models
exhibit this issue. Furthermore, our pipeline models (cf. Section 5.2.2) achieve performance
similar to that of the end-to-end models. Nonetheless, this phenomenon should be further
analyzed.

7.3 Outlook

In Fig. 1.4 , we illustrated the trade-off between effectiveness, efficiency, and explainability
of ranking models. The methods proposed in this thesis each focused on improving either

efficiency (Fast-Forward indexes and BERT-DMN) or explainability (Select-And-Rank)
while maintaining effectiveness; in a sense, the current approaches are still constrained to a
maximum of two out of the three properties.

The next logical step is to go beyond this constraint and combine several aspects of the
ideas proposed in this thesis in order to achieve both efficiency and explainability with-
out sacrificing the effectiveness; more specifically, the Select-And-Rank paradigm should
be adapted to exploit the efficiency of Fast-Forward indexes through pre-computation

123

Chapter 7 Conclusion and Future Work

of representations rather than relying on the cross-attention architecture. Furthermore,
lightweight training approaches, such as the one used by BERT-DMNlite, should be employed
in the offline phase in order to reduce carbon emissions.

The goal should be an end-to-end retrieval system that, even though it might not be able
to entirely overcome the aforementioned trade-offs, provides both efficient and explainable
ranking decisions, possibly allowing the user to control the trade-off by specifying their
requirements with respect to the two aspects.

124

A
Curriculum Vitae

Personal Details

Full name Lutz Jurek Leonhardt
Date of birth September 13th, 1993
Place of birth Hannover, Germany

Education

2017–2023 PhD in computer science

Leibniz University Hannover

Hannover, Germany
Thesis: Efficient and Explainable Neural Ranking

2014–2017 M. Sc. in computer science

Leibniz University Hannover

Hannover, Germany
Thesis: Automatic Suggestion of Citation Markers in Wikipedia Articles

2011–2014 B. Sc. in computer science

Leibniz University Hannover

Hannover, Germany
Thesis: Automatic Detection of the Acetabulum in 3D-Pelvis Models

2011 Abitur (high school)

Kaiser Wilhelm- und Ratsgymnasium Hannover

Hannover, Germany

125

Appendix A Curriculum Vitae

Work Experience

since
July 2023

Researcher

Delft University of Technology

Delft, The Netherlands
Research, mainly in the area of information retrieval

Sep. 2017–
June 2023

PhD student, researcher

L3S Research Center, Leibniz University Hannover

Hannover, Germany
Research and teaching, mainly in the area of information retrieval

Jul. 2016–
Aug. 2017

Working student

Dassault Systèmes Deutschland GmbH

Hannover, Germany
Software developer, working on tools mainly used by the quality assurance
department for automated software testing

2012–2016,
winter terms
(Oct.–Jan.)

Student assistant

Human-Computer Interaction group, Leibniz University Hannover

Hannover, Germany
Teaching assistant for the lecture Programming I : Grading assignments,
teaching small groups of students, and supervising exams

Publications

Journal Articles

• Abhijit Anand, Jurek Leonhardt, Jaspreet Singh, Koustav Rudra, and Avishek Anand.
“Data Augmentation for Sample Efficient and Robust Document Ranking”. In: ACM
Trans. Inf. Syst. (Nov. 2023). Just Accepted. issn: 1046-8188. doi: 10.1145/3634911 .
url: https://doi.org/10.1145/3634911

• Jurek Leonhardt, Henrik Müller, Koustav Rudra, Megha Khosla, Abhijit Anand, and
Avishek Anand. “Efficient Neural Ranking using Forward Indexes and Lightweight
Encoders”. In: ACM Trans. Inf. Syst. (Nov. 2023). Just Accepted. issn: 1046-8188. doi:

 10.1145/3631939 . url: https://doi.org/10.1145/3631939

• Jurek Leonhardt, Koustav Rudra, and Avishek Anand. “Extractive Explanations for

126

https://doi.org/10.1145/3634911
https://doi.org/10.1145/3634911
https://doi.org/10.1145/3631939
https://doi.org/10.1145/3631939

Interpretable Text Ranking”. In: ACM Trans. Inf. Syst. 41.4 (Mar. 2023). issn: 1046-
8188. doi: 10.1145/3576924 . url: https://doi.org/10.1145/3576924

Full Conference Papers

• Abhijit Anand, Jurek Leonhardt, Koustav Rudra, andAvishekAnand. “Supervised Con-
trastive Learning Approach for Contextual Ranking”. In: Proceedings of the 2022 ACM
SIGIR International Conference on Theory of Information Retrieval. ICTIR ’22. Madrid,
Spain: Association for Computing Machinery, 2022, pp. 61–71. isbn: 9781450394123.
doi: 10.1145/3539813.3545139 . url: https://doi.org/10.1145/3539813.

3545139

• Jurek Leonhardt, Koustav Rudra, Megha Khosla, Abhijit Anand, and Avishek Anand.
“Efficient Neural Ranking using Forward Indexes”. In: Proceedings of the ACM Web

Conference 2022. WWW ’22. Virtual Event, Lyon, France: Association for Computing
Machinery, 2022, pp. 266–276. isbn: 9781450390965. doi: 10.1145/3485447.3511955 .
url: https://doi.org/10.1145/3485447.3511955

• Megha Khosla, Jurek Leonhardt, Wolfgang Nejdl, and Avishek Anand. “Node Repre-
sentation Learning for Directed Graphs”. In: Machine Learning and Knowledge Discov-

ery in Databases. Ed. by Ulf Brefeld, Elisa Fromont, Andreas Hotho, Arno Knobbe, Mar-
loes Maathuis, and Céline Robardet. Cham: Springer International Publishing, 2020,
pp. 395–411. isbn: 978-3-030-46150-8

Short and Demonstration Papers

• Jurek Leonhardt, Avishek Anand, and Megha Khosla. “Boilerplate Removal using a
Neural Sequence Labeling Model”. In: Companion Proceedings of the Web Confer-

ence 2020. WWW ’20. Taipei, Taiwan: Association for Computing Machinery, 2020,
pp. 226–229. isbn: 9781450370240. doi: 10.1145/3366424.3383547 . url: https:

//doi.org/10.1145/3366424.3383547

• Jurek Leonhardt, Avishek Anand, and Megha Khosla. “User Fairness in Recommender
Systems”. In: Companion Proceedings of the The Web Conference 2018. WWW ’18.
Lyon, France: International World Wide Web Conferences Steering Committee, 2018,
pp. 101–102. isbn: 9781450356404. doi: 10.1145/3184558.3186949 . url: https:

//doi.org/10.1145/3184558.3186949

127

https://doi.org/10.1145/3576924
https://doi.org/10.1145/3576924
https://doi.org/10.1145/3539813.3545139
https://doi.org/10.1145/3539813.3545139
https://doi.org/10.1145/3539813.3545139
https://doi.org/10.1145/3485447.3511955
https://doi.org/10.1145/3485447.3511955
https://doi.org/10.1145/3366424.3383547
https://doi.org/10.1145/3366424.3383547
https://doi.org/10.1145/3366424.3383547
https://doi.org/10.1145/3184558.3186949
https://doi.org/10.1145/3184558.3186949
https://doi.org/10.1145/3184558.3186949

Appendix A Curriculum Vitae

Workshop Papers

• Jurek Leonhardt, Fabian Beringer, and Avishek Anand. “Exploiting Sentence-Level
Representations for Passage Ranking”. In: Proceedings of the LWDA 2021 Workshops:

FGWM, KDML, FGWI-BIA, and FGIR, Online, September 1-3, 2021. Ed. by Thomas Seidl,
Michael Fromm, and Sandra Obermeier. Vol. 2993. CEUR Workshop Proceedings.
CEUR-WS.org, 2021, pp. 287–302. url: https://ceur-ws.org/Vol-2993/paper-

27.pdf

Preprints

• Jurek Leonhardt, Marcel Jahnke, and Avishek Anand. Distribution-Aligned Fine-Tuning
for Efficient Neural Retrieval. 2022. arXiv: 2211.04942 [cs.IR]

128

https://ceur-ws.org/Vol-2993/paper-27.pdf
https://ceur-ws.org/Vol-2993/paper-27.pdf
https://arxiv.org/abs/2211.04942

Bibliography

[1] Nasreen Abdul-Jaleel et al. “UMass at TREC 2004: Novelty and HARD”. In: Computer

Science Department Faculty Publication Series (2004), p. 189.

[2] Julius Adebayo et al. “Debugging Tests for Model Explanations”. In: Advances in Neu-
ral Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran Asso-
ciates, Inc., 2020, pp. 700–712. url: https://proceedings.neurips.cc/paper/

2020/file/075b051ec3d22dac7b33f788da631fd4-Paper.pdf .

[3] Betty van Aken et al. “How Does BERT Answer Questions? A Layer-Wise Analysis
of Transformer Representations”. In: Proceedings of the 28th ACM International Con-

ference on Information and Knowledge Management. CIKM ’19. Beijing, China: As-
sociation for Computing Machinery, 2019, pp. 1823–1832. isbn: 9781450369763. doi:

 10.1145/3357384.3358028 . url: https://doi.org/10.1145/3357384.3358028 .

[4] Zeynep Akkalyoncu Yilmaz et al. “Cross-Domain Modeling of Sentence-Level Evi-
dence for Document Retrieval”. In: Proceedings of the 2019 Conference on Empirical

Methods in Natural Language Processing and the 9th International Joint Conference on

Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association for
Computational Linguistics, Nov. 2019, pp. 3490–3496. doi: 10.18653/v1/D19-1352 .
url: https://aclanthology.org/D19-1352 .

[5] Sophia Althammer et al. “PARM: A ParagraphAggregation RetrievalModel for Dense
Document-to-Document Retrieval”. In: Advances in Information Retrieval. Ed. by
Matthias Hagen et al. Cham: Springer International Publishing, 2022, pp. 19–34. isbn:
978-3-030-99736-6.

[6] Abhijit Anand et al. “Data Augmentation for Sample Efficient and Robust Document
Ranking”. In: ACM Trans. Inf. Syst. (Nov. 2023). Just Accepted. issn: 1046-8188. doi:

 10.1145/3634911 . url: https://doi.org/10.1145/3634911 .

[7] Abhijit Anand et al. “Supervised Contrastive Learning Approach for Contextual
Ranking”. In: Proceedings of the 2022 ACM SIGIR International Conference on Theory of

Information Retrieval. ICTIR ’22. Madrid, Spain: Association for Computing Machin-

129

https://proceedings.neurips.cc/paper/2020/file/075b051ec3d22dac7b33f788da631fd4-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/075b051ec3d22dac7b33f788da631fd4-Paper.pdf
https://doi.org/10.1145/3357384.3358028
https://doi.org/10.1145/3357384.3358028
https://doi.org/10.18653/v1/D19-1352
https://aclanthology.org/D19-1352
https://doi.org/10.1145/3634911
https://doi.org/10.1145/3634911

Bibliography

ery, 2022, pp. 61–71. isbn: 9781450394123. doi: 10.1145/3539813.3545139 . url:
 https://doi.org/10.1145/3539813.3545139 .

[8] Avishek Anand et al. “Conversational search (dagstuhl seminar 19461)”. In: Dagstuhl
Reports. Vol. 9. 11. Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 2020.

[9] Marco Ancona et al. “Towards better understanding of gradient-based attribution
methods for Deep Neural Networks”. In: International Conference on Learning Repre-

sentations. 2018. url: https://openreview.net/forum?id=Sy21R9JAW .

[10] Arian Askari et al. “Injecting the BM25 Score as Text Improves BERT-Based Re-
rankers”. In: Advances in Information Retrieval. Ed. by Jaap Kamps et al. Cham:
Springer Nature Switzerland, 2023, pp. 66–83. isbn: 978-3-031-28244-7.

[11] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.Neural Machine Translation

by Jointly Learning to Align and Translate. 2014. doi: 10.48550/ARXIV.1409.0473 .
url: https://arxiv.org/abs/1409.0473 .

[12] Ziv Bar-Yossef and Sridhar Rajagopalan. “Template Detection via Data Mining and Its
Applications”. In: Proceedings of the 11th International Conference onWorldWideWeb.
WWW ’02. Honolulu, Hawaii, USA: Association for Computing Machinery, 2002,
pp. 580–591. isbn: 1581134495. doi: 10.1145/511446.511522 . url: https://doi.

org/10.1145/511446.511522 .

[13] Marco Baroni et al. “CleanEval: a Competition for Cleaning Web Pages.” In: LREC.
2008.

[14] Jasmijn Bastings, Wilker Aziz, and Ivan Titov. “Interpretable Neural Predictions with
Differentiable Binary Variables”. In: Proceedings of the 57th Annual Meeting of the

Association for Computational Linguistics. Florence, Italy: Association for Computa-
tional Linguistics, July 2019, pp. 2963–2977. doi: 10. 18653/v1 /P19- 1284 . url:

 https://aclanthology.org/P19-1284 .

[15] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or Propagating

Gradients Through Stochastic Neurons for Conditional Computation. 2013. doi: 10.

48550/ARXIV.1308.3432 . url: https://arxiv.org/abs/1308.3432 .

[16] Andrei Z. Broder et al. “Efficient Query Evaluation Using a Two-Level Retrieval
Process”. In: Proceedings of the Twelfth International Conference on Information and

Knowledge Management. CIKM ’03. New Orleans, LA, USA: Association for Comput-
ing Machinery, 2003, pp. 426–434. isbn: 1581137230. doi: 10.1145/956863.956944 .
url: https://doi.org/10.1145/956863.956944 .

130

https://doi.org/10.1145/3539813.3545139
https://doi.org/10.1145/3539813.3545139
https://openreview.net/forum?id=Sy21R9JAW
https://doi.org/10.48550/ARXIV.1409.0473
https://arxiv.org/abs/1409.0473
https://doi.org/10.1145/511446.511522
https://doi.org/10.1145/511446.511522
https://doi.org/10.1145/511446.511522
https://doi.org/10.18653/v1/P19-1284
https://aclanthology.org/P19-1284
https://doi.org/10.48550/ARXIV.1308.3432
https://doi.org/10.48550/ARXIV.1308.3432
https://arxiv.org/abs/1308.3432
https://doi.org/10.1145/956863.956944
https://doi.org/10.1145/956863.956944

Bibliography

[17] Sebastian Bruch, Siyu Gai, and Amir Ingber. “An Analysis of Fusion Functions for
Hybrid Retrieval”. In: ACM Trans. Inf. Syst. 42.1 (Aug. 2023). issn: 1046-8188. doi:

 10.1145/3596512 . url: https://doi.org/10.1145/3596512 .

[18] Sebastian Bruch, Claudio Lucchese, and Franco Maria Nardini. “Report on the 1st
Workshop on Reaching Efficiency in Neural Information Retrieval (ReNeuIR 2022)
at SIGIR 2022”. In: SIGIR Forum 56.2 (Jan. 2023). issn: 0163-5840. doi: 10 . 1145 /

3582900.3582916 . url: https://doi.org/10.1145/3582900.3582916 .

[19] Chris Burges et al. “Learning to Rank Using Gradient Descent”. In: Proceedings of
the 22nd International Conference on Machine Learning. ICML ’05. Bonn, Germany:
Association for Computing Machinery, 2005, pp. 89–96. isbn: 1595931805. doi: 10.

1145/1102351.1102363 . url: https://doi.org/10.1145/1102351.1102363 .

[20] Deng Cai et al. “Block-Based Web Search”. In: Proceedings of the 27th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval.
SIGIR ’04. Sheffield, United Kingdom: Association for Computing Machinery, 2004,
pp. 456–463. isbn: 1581138814. doi: 10.1145/1008992.1009070 . url: https://doi.

org/10.1145/1008992.1009070 .

[21] Deepayan Chakrabarti, Ravi Kumar, and Kunal Punera. “Page-Level Template De-
tection via Isotonic Smoothing”. In: Proceedings of the 16th International Conference

on World Wide Web. WWW ’07. Banff, Alberta, Canada: Association for Computing
Machinery, 2007, pp. 61–70. isbn: 9781595936547. doi: 10.1145/1242572.1242582 .
url: https://doi.org/10.1145/1242572.1242582 .

[22] Abhijnan Chakraborty et al. “Stop Clickbait: Detecting and Preventing Clickbaits in
Online News Media”. In: Proceedings of the 2016 IEEE/ACM International Conference

on Advances in Social Networks Analysis and Mining. ASONAM ’16. Davis, California:
IEEE Press, 2016, pp. 9–16. isbn: 9781509028467.

[23] Wei-Cheng Chang et al. “Pre-training Tasks for Embedding-based Large-scale Re-
trieval”. In: International Conference on Learning Representations. 2020. url: https:

//openreview.net/forum?id=rkg-mA4FDr .

[24] Daniel L. Chen, Martin Schonger, and Chris Wickens. “oTree—An open-source plat-
form for laboratory, online, and field experiments”. In: Journal of Behavioral and Ex-
perimental Finance 9 (2016), pp. 88–97. issn: 2214-6350. doi: https://doi.org/10.

1016/j.jbef.2015.12.001 . url: https://www.sciencedirect.com/science/

article/pii/S2214635016000101 .

131

https://doi.org/10.1145/3596512
https://doi.org/10.1145/3596512
https://doi.org/10.1145/3582900.3582916
https://doi.org/10.1145/3582900.3582916
https://doi.org/10.1145/3582900.3582916
https://doi.org/10.1145/1102351.1102363
https://doi.org/10.1145/1102351.1102363
https://doi.org/10.1145/1102351.1102363
https://doi.org/10.1145/1008992.1009070
https://doi.org/10.1145/1008992.1009070
https://doi.org/10.1145/1008992.1009070
https://doi.org/10.1145/1242572.1242582
https://doi.org/10.1145/1242572.1242582
https://openreview.net/forum?id=rkg-mA4FDr
https://openreview.net/forum?id=rkg-mA4FDr
https://doi.org/https://doi.org/10.1016/j.jbef.2015.12.001
https://doi.org/https://doi.org/10.1016/j.jbef.2015.12.001
https://www.sciencedirect.com/science/article/pii/S2214635016000101
https://www.sciencedirect.com/science/article/pii/S2214635016000101

Bibliography

[25] Danqi Chen et al. “Reading Wikipedia to Answer Open-Domain Questions”. In: Pro-
ceedings of the 55th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers). Vancouver, Canada: Association for Computational Linguis-
tics, July 2017, pp. 1870–1879. doi: 10 . 18653 / v1 / P17 - 1171 . url: https : / /

aclanthology.org/P17-1171 .

[26] Xiaoyang Chen et al. “Co-BERT: A Context-Aware BERT Retrieval Model Incorpo-
rating Local and Query-specific Context”. In: arXiv preprint arXiv:2104.08523 (2021).

[27] Jianpeng Cheng, Li Dong, and Mirella Lapata. “Long Short-Term Memory-Networks
for Machine Reading”. In: Proceedings of the 2016 Conference on Empirical Methods

in Natural Language Processing. Austin, Texas: Association for Computational Lin-
guistics, Nov. 2016, pp. 551–561. doi: 10.18653/v1/D16- 1053 . url: https://

aclanthology.org/D16-1053 .

[28] Eunseong Choi et al. “SpaDE: Improving Sparse Representations Using a Dual Docu-
ment Encoder for First-Stage Retrieval”. In: Proceedings of the 31st ACM International

Conference on Information & Knowledge Management. CIKM ’22. Atlanta, GA, USA:
Association for Computing Machinery, 2022, pp. 272–282. isbn: 9781450392365. doi:

 10.1145/3511808.3557456 . url: https://doi.org/10.1145/3511808.3557456 .

[29] Nachshon Cohen et al. “SDR: Efficient Neural Re-ranking using Succinct Document
Representation”. In: Proceedings of the 60th Annual Meeting of the Association for Com-

putational Linguistics (Volume 1: Long Papers). Dublin, Ireland: Association for Com-
putational Linguistics, May 2022, pp. 6624–6637. doi: 10.18653/v1/2022.acl-

long.457 . url: https://aclanthology.org/2022.acl-long.457 .

[30] Nick Craswell et al. “ORCAS: 20 Million Clicked Query-Document Pairs for Ana-
lyzing Search”. In: Proceedings of the 29th ACM International Conference on Informa-

tion & Knowledge Management. CIKM ’20. Virtual Event, Ireland: Association
for Computing Machinery, 2020, pp. 2983–2989. isbn: 9781450368599. doi: 10.1145/

3340531.3412779 . url: https://doi.org/10.1145/3340531.3412779 .

[31] Nick Craswell et al. “TREC Deep Learning Track: Reusable Test Collections in the
Large Data Regime”. In: Proceedings of the 44th International ACM SIGIR Conference on

Research and Development in Information Retrieval. SIGIR ’21. Virtual Event, Canada:
Association for Computing Machinery, 2021, pp. 2369–2375. isbn: 9781450380379.
doi: 10.1145/3404835.3463249 . url: https://doi.org/10.1145/3404835.

3463249 .

132

https://doi.org/10.18653/v1/P17-1171
https://aclanthology.org/P17-1171
https://aclanthology.org/P17-1171
https://doi.org/10.18653/v1/D16-1053
https://aclanthology.org/D16-1053
https://aclanthology.org/D16-1053
https://doi.org/10.1145/3511808.3557456
https://doi.org/10.1145/3511808.3557456
https://doi.org/10.18653/v1/2022.acl-long.457
https://doi.org/10.18653/v1/2022.acl-long.457
https://aclanthology.org/2022.acl-long.457
https://doi.org/10.1145/3340531.3412779
https://doi.org/10.1145/3340531.3412779
https://doi.org/10.1145/3340531.3412779
https://doi.org/10.1145/3404835.3463249
https://doi.org/10.1145/3404835.3463249
https://doi.org/10.1145/3404835.3463249

Bibliography

[32] Yiming Cui et al. “Attention-over-Attention Neural Networks for Reading Compre-
hension”. In: Proceedings of the 55th Annual Meeting of the Association for Computa-

tional Linguistics (Volume 1: Long Papers). Vancouver, Canada: Association for Com-
putational Linguistics, July 2017, pp. 593–602. doi: 10.18653/v1/P17-1055 . url:

 https://aclanthology.org/P17-1055 .

[33] Zhuyun Dai and Jamie Callan. “An Evaluation of Weakly-Supervised DeepCT in the
TREC 2019 Deep Learning Track”. In: TREC. 2019.

[34] Zhuyun Dai and Jamie Callan. “Context-Aware Document Term Weighting for Ad-
Hoc Search”. In: Proceedings of The Web Conference 2020. WWW ’20. Taipei, Taiwan:
Association for Computing Machinery, 2020, pp. 1897–1907. isbn: 9781450370233.
doi: 10.1145/3366423.3380258 . url: https://doi.org/10.1145/3366423.

3380258 .

[35] Zhuyun Dai and Jamie Callan. “Context-Aware Term Weighting For First Stage Pas-
sage Retrieval”. In: Proceedings of the 43rd International ACM SIGIR Conference on Re-

search and Development in Information Retrieval. SIGIR ’20. Virtual Event, China: As-
sociation for Computing Machinery, 2020, pp. 1533–1536. isbn: 9781450380164. doi:

 10.1145/3397271.3401204 . url: https://doi.org/10.1145/3397271.3401204 .

[36] Zhuyun Dai and Jamie Callan. “Deeper Text Understanding for IR with Contextual
Neural LanguageModeling”. In: Proceedings of the 42nd International ACM SIGIR Con-

ference on Research and Development in Information Retrieval. SIGIR’19. Paris, France:
Association for Computing Machinery, 2019, pp. 985–988. isbn: 9781450361729. doi:

 10.1145/3331184.3331303 . url: https://doi.org/10.1145/3331184.3331303 .

[37] Zhuyun Dai et al. “Convolutional Neural Networks for Soft-Matching N-Grams in
Ad-Hoc Search”. In: Proceedings of the Eleventh ACM International Conference on Web

Search and Data Mining. WSDM ’18. Marina Del Rey, CA, USA: Association for Com-
puting Machinery, 2018, pp. 126–134. isbn: 9781450355810. doi: 10.1145/3159652.

3159659 . url: https://doi.org/10.1145/3159652.3159659 .

[38] Mostafa Dehghani et al. “Fidelity-Weighted Learning”. In: International Conference
on Learning Representations. 2018. url: https : / / openreview . net / forum ? id =

B1X0mzZCW .

[39] Mostafa Dehghani et al. “Neural Ranking Models with Weak Supervision”. In: Pro-
ceedings of the 40th International ACM SIGIR Conference on Research and Development

in Information Retrieval. SIGIR ’17. Shinjuku, Tokyo, Japan: Association for Com-

133

https://doi.org/10.18653/v1/P17-1055
https://aclanthology.org/P17-1055
https://doi.org/10.1145/3366423.3380258
https://doi.org/10.1145/3366423.3380258
https://doi.org/10.1145/3366423.3380258
https://doi.org/10.1145/3397271.3401204
https://doi.org/10.1145/3397271.3401204
https://doi.org/10.1145/3331184.3331303
https://doi.org/10.1145/3331184.3331303
https://doi.org/10.1145/3159652.3159659
https://doi.org/10.1145/3159652.3159659
https://doi.org/10.1145/3159652.3159659
https://openreview.net/forum?id=B1X0mzZCW
https://openreview.net/forum?id=B1X0mzZCW

Bibliography

puting Machinery, 2017, pp. 65–74. isbn: 9781450350228. doi: 10.1145/3077136.

3080832 . url: https://doi.org/10.1145/3077136.3080832 .

[40] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding”. In: Proceedings of the 2019 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technolo-

gies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota: Association for Com-
putational Linguistics, June 2019, pp. 4171–4186. doi: 10.18653/v1/N19-1423 . url:

 https://aclanthology.org/N19-1423 .

[41] Jay DeYoung et al. “ERASER: A Benchmark to Evaluate Rationalized NLPModels”. In:
Proceedings of the 58th Annual Meeting of the Association for Computational Linguis-

tics. Online: Association for Computational Linguistics, July 2020, pp. 4443–4458. doi:
 10.18653/v1/2020.acl-main.408 . url: https://aclanthology.org/2020.acl-

main.408 .

[42] Fernando Diaz, Bhaskar Mitra, and Nick Craswell. “Query Expansion with Locally-
TrainedWord Embeddings”. In: Proceedings of the 54th Annual Meeting of the Associa-

tion for Computational Linguistics (Volume 1: Long Papers). Berlin, Germany: Associa-
tion for Computational Linguistics, Aug. 2016, pp. 367–377. doi: 10.18653/v1/P16-

1035 . url: https://aclanthology.org/P16-1035 .

[43] Sibo Dong, Justin Goldstein, and Grace Hui Yang. “SEINE: SEgment-based Indexing
for NEural information retrieval”. In: (2022).

[44] Ronald Fagin, Amnon Lotem, and Moni Naor. “Optimal Aggregation Algorithms for
Middleware”. In: Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Sym-

posium on Principles of Database Systems. PODS ’01. Santa Barbara, California, USA:
Association for Computing Machinery, 2001, pp. 102–113. isbn: 1581133618. doi: 10.

1145/375551.375567 . url: https://doi.org/10.1145/375551.375567 .

[45] Zhen Fan et al. “COILcr: Efficient Semantic Matching in Contextualized Exact Match
Retrieval”. In: Advances in Information Retrieval. Ed. by Jaap Kamps et al. Cham:
Springer Nature Switzerland, 2023, pp. 298–312. isbn: 978-3-031-28244-7.

[46] Minwei Feng et al. “Applying deep learning to answer selection: A study and an open
task”. In: 2015 IEEE Workshop on Automatic Speech Recognition and Understanding

(ASRU). 2015, pp. 813–820. doi: 10.1109/ASRU.2015.7404872 .

134

https://doi.org/10.1145/3077136.3080832
https://doi.org/10.1145/3077136.3080832
https://doi.org/10.1145/3077136.3080832
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://doi.org/10.18653/v1/2020.acl-main.408
https://aclanthology.org/2020.acl-main.408
https://aclanthology.org/2020.acl-main.408
https://doi.org/10.18653/v1/P16-1035
https://doi.org/10.18653/v1/P16-1035
https://aclanthology.org/P16-1035
https://doi.org/10.1145/375551.375567
https://doi.org/10.1145/375551.375567
https://doi.org/10.1145/375551.375567
https://doi.org/10.1109/ASRU.2015.7404872

Bibliography

[47] Zeon Trevor Fernando, Jaspreet Singh, and Avishek Anand. “A Study on the In-
terpretability of Neural Retrieval Models Using DeepSHAP”. In: Proceedings of the
42nd International ACM SIGIR Conference on Research and Development in Informa-

tion Retrieval. SIGIR’19. Paris, France: Association for Computing Machinery, 2019,
pp. 1005–1008. isbn: 9781450361729. doi: 10.1145/3331184.3331312 . url: https:

//doi.org/10.1145/3331184.3331312 .

[48] Aidan Finn, Nicholas Kushmerick, and Barry Smyth. “Fact or Fiction: Content Clas-
sification for Digital Libraries”. In: Proceedings of the Second DELOS Network of Excel-
lence Workshop on Personalisation and Recommender Systems in Digital Libraries, DE-

LOS 2001, Dublin, Ireland, June 18-20, 2001. Ed. by Alan F. Smeaton and Jamie Callan.
Vol. 01/W03. ERCIMWorkshop Proceedings. ERCIM, 2001. url: http://www.ercim.

org/publication/ws-proceedings/DelNoe02/AidanFinn.pdf .

[49] Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. “SPLADE: Sparse
Lexical and Expansion Model for First Stage Ranking”. In: Proceedings of the 44th

International ACM SIGIR Conference on Research and Development in Information Re-

trieval. SIGIR ’21. New York, NY, USA: Association for Computing Machinery, 2021,
pp. 2288–2292. isbn: 9781450380379. doi: 10.1145/3404835.3463098 . url: https:

//doi.org/10.1145/3404835.3463098 .

[50] Thorben Funke et al. “ZORRO: Valid, Sparse, and Stable Explanations in GraphNeural
Networks”. In: IEEE Transactions on Knowledge and Data Engineering (2022), pp. 1–12.
doi: 10.1109/TKDE.2022.3201170 .

[51] Luke Gallagher. Pairwise t-test on TREC Run Files. https://github.com/lgrz/

pairwise-ttest/ . 2019.

[52] Luyu Gao and Jamie Callan. “Condenser: a Pre-training Architecture for Dense Re-
trieval”. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-

guage Processing. Online and Punta Cana, Dominican Republic: Association for Com-
putational Linguistics, Nov. 2021, pp. 981–993. doi: 10.18653/v1/2021.emnlp-

main.75 . url: https://aclanthology.org/2021.emnlp-main.75 .

[53] Luyu Gao and Jamie Callan. “Unsupervised Corpus Aware Language Model Pre-
training for Dense Passage Retrieval”. In: Proceedings of the 60th Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers). Dublin, Ireland:
Association for Computational Linguistics, May 2022, pp. 2843–2853. doi: 10.18653/

v1/2022.acl-long.203 . url: https://aclanthology.org/2022.acl-long.203 .

135

https://doi.org/10.1145/3331184.3331312
https://doi.org/10.1145/3331184.3331312
https://doi.org/10.1145/3331184.3331312
http://www.ercim.org/publication/ws-proceedings/DelNoe02/AidanFinn.pdf
http://www.ercim.org/publication/ws-proceedings/DelNoe02/AidanFinn.pdf
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.1109/TKDE.2022.3201170
https://github.com/lgrz/pairwise-ttest/
https://github.com/lgrz/pairwise-ttest/
https://doi.org/10.18653/v1/2021.emnlp-main.75
https://doi.org/10.18653/v1/2021.emnlp-main.75
https://aclanthology.org/2021.emnlp-main.75
https://doi.org/10.18653/v1/2022.acl-long.203
https://doi.org/10.18653/v1/2022.acl-long.203
https://aclanthology.org/2022.acl-long.203

Bibliography

[54] Luyu Gao, Zhuyun Dai, and Jamie Callan. “COIL: Revisit Exact Lexical Match in In-
formation Retrieval with Contextualized Inverted List”. In: Proceedings of the 2021

Conference of the North American Chapter of the Association for Computational Lin-

guistics: Human Language Technologies. Online: Association for Computational Lin-
guistics, June 2021, pp. 3030–3042. doi: 10.18653/v1/2021.naacl-main.241 . url:

 https://aclanthology.org/2021.naacl-main.241 .

[55] Luyu Gao et al. “Complement Lexical Retrieval Model with Semantic Residual Em-
beddings”. In: Advances in Information Retrieval. Ed. by Djoerd Hiemstra et al. Cham:
Springer International Publishing, 2021, pp. 146–160. isbn: 978-3-030-72113-8.

[56] Ayçe Geçkil et al. “A Clickbait Detection Method on News Sites”. In: Proceedings of
the 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis

and Mining. ASONAM ’18. Barcelona, Spain: IEEE Press, 2020, pp. 932–937. isbn:
9781538660515.

[57] John Gibson, Ben Wellner, and Susan Lubar. “Adaptive Web-Page Content Identifi-
cation”. In: Proceedings of the 9th Annual ACM International Workshop on Web Infor-

mation and Data Management. WIDM ’07. Lisbon, Portugal: Association for Com-
puting Machinery, 2007, pp. 105–112. isbn: 9781595938299. doi: 10.1145/1316902.

1316920 . url: https://doi.org/10.1145/1316902.1316920 .

[58] Leilani H. Gilpin et al. “Explaining Explanations: An Overview of Interpretability of
Machine Learning”. In: 2018 IEEE 5th International Conference on Data Science and

Advanced Analytics (DSAA). 2018, pp. 80–89. doi: 10.1109/DSAA.2018.00018 .

[59] Saurabh Goyal et al. “PoWER-BERT: Accelerating BERT Inference via Progressive
Word-Vector Elimination”. In: Proceedings of the 37th International Conference on Ma-

chine Learning. ICML’20. JMLR.org, 2020.

[60] Jiafeng Guo et al. “A Deep Relevance Matching Model for Ad-Hoc Retrieval”. In: Pro-
ceedings of the 25th ACM International on Conference on Information and Knowledge

Management. CIKM ’16. Indianapolis, Indiana, USA: Association for Computing Ma-
chinery, 2016, pp. 55–64. isbn: 9781450340731. doi: 10.1145/2983323.2983769 . url:

 https://doi.org/10.1145/2983323.2983769 .

[61] Weiwei Guo et al. “DeText: A Deep Text Ranking Framework with BERT”. In: Pro-
ceedings of the 29th ACM International Conference on Information & Knowledge Man-

agement. CIKM ’20. Virtual Event, Ireland: Association for Computing Machinery,
2020, pp. 2509–2516. isbn: 9781450368599. doi: 10.1145/3340531.3412699 . url:

 https://doi.org/10.1145/3340531.3412699 .

136

https://doi.org/10.18653/v1/2021.naacl-main.241
https://aclanthology.org/2021.naacl-main.241
https://doi.org/10.1145/1316902.1316920
https://doi.org/10.1145/1316902.1316920
https://doi.org/10.1145/1316902.1316920
https://doi.org/10.1109/DSAA.2018.00018
https://doi.org/10.1145/2983323.2983769
https://doi.org/10.1145/2983323.2983769
https://doi.org/10.1145/3340531.3412699
https://doi.org/10.1145/3340531.3412699

Bibliography

[62] Yue Guo, Yi Yang, and Ahmed Abbasi. “Auto-Debias: Debiasing Masked Language
Models with Automated Biased Prompts”. In: Proceedings of the 60th Annual Meet-

ing of the Association for Computational Linguistics (Volume 1: Long Papers). Dublin,
Ireland: Association for Computational Linguistics, May 2022, pp. 1012–1023. doi:

 10.18653/v1/2022.acl-long.72 . url: https://aclanthology.org/2022.acl-

long.72 .

[63] Suhit Gupta et al. “DOM-Based Content Extraction of HTML Documents”. In: Pro-
ceedings of the 12th International Conference on World Wide Web. WWW ’03. Bu-
dapest, Hungary: Association for Computing Machinery, 2003, pp. 207–214. isbn:
1581136803. doi: 10.1145/775152.775182 . url: https://doi.org/10.1145/

775152.775182 .

[64] Vishal Gupta, Manoj Chinnakotla, and Manish Shrivastava. “Retrieve and Re-rank: A
Simple and Effective IR Approach to Simple Question Answering over Knowledge
Graphs”. In: Proceedings of the First Workshop on Fact Extraction and VERification

(FEVER). Brussels, Belgium: Association for Computational Linguistics, Nov. 2018,
pp. 22–27. doi: 10.18653/v1/W18-5504 . url: https://aclanthology.org/W18-

5504 .

[65] Helia Hashemi et al. “ANTIQUE: A Non-factoid Question Answering Benchmark”.
In: Advances in Information Retrieval. Ed. by Joemon M. Jose et al. Cham: Springer
International Publishing, 2020, pp. 166–173. isbn: 978-3-030-45442-5.

[66] Michiel Hermans and Benjamin Schrauwen. “Training andAnalysingDeep Recurrent
Neural Networks”. In: Advances in Neural Information Processing Systems. Ed. by C.J.
Burges et al. Vol. 26. Curran Associates, Inc., 2013. url: https://proceedings.

neurips.cc/paper/2013/file/1ff8a7b5dc7a7d1f0ed65aaa29c04b1e-Paper.

pdf .

[67] Sebastian Hofstätter, Markus Zlabinger, and Allan Hanbury. “Interpretable & Time-
Budget-Constrained Contextualization for Re-Ranking”. In: ECAI 2020 - 24th Euro-

pean Conference on Artificial Intelligence, 29 August-8 September 2020, Santiago de

Compostela, Spain, August 29 - September 8, 2020 - Including 10th Conference on Pres-

tigious Applications of Artificial Intelligence (PAIS 2020). Ed. by Giuseppe De Giacomo
et al. Vol. 325. Frontiers in Artificial Intelligence and Applications. IOS Press, 2020,
pp. 513–520. doi: 10 . 3233 / FAIA200133 . url: https : / / doi . org / 10 . 3233 /

FAIA200133 .

137

https://doi.org/10.18653/v1/2022.acl-long.72
https://aclanthology.org/2022.acl-long.72
https://aclanthology.org/2022.acl-long.72
https://doi.org/10.1145/775152.775182
https://doi.org/10.1145/775152.775182
https://doi.org/10.1145/775152.775182
https://doi.org/10.18653/v1/W18-5504
https://aclanthology.org/W18-5504
https://aclanthology.org/W18-5504
https://proceedings.neurips.cc/paper/2013/file/1ff8a7b5dc7a7d1f0ed65aaa29c04b1e-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/1ff8a7b5dc7a7d1f0ed65aaa29c04b1e-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/1ff8a7b5dc7a7d1f0ed65aaa29c04b1e-Paper.pdf
https://doi.org/10.3233/FAIA200133
https://doi.org/10.3233/FAIA200133
https://doi.org/10.3233/FAIA200133

Bibliography

[68] Sebastian Hofstätter et al. Are We There Yet? A Decision Framework for Replacing Term

Based Retrieval with Dense Retrieval Systems. 2022. doi: 10.48550/ARXIV.2206.

12993 . url: https://arxiv.org/abs/2206.12993 .

[69] Sebastian Hofstätter et al. “Efficiently Teaching an Effective Dense Retriever with
Balanced Topic Aware Sampling”. In: Proceedings of the 44th International ACM SIGIR

Conference on Research and Development in Information Retrieval. New York, NY, USA:
Association for Computing Machinery, 2021, pp. 113–122. isbn: 9781450380379. url:

 https://doi.org/10.1145/3404835.3462891 .

[70] Sebastian Hofstätter et al. “Intra-Document Cascading: Learning to Select Passages
for Neural Document Ranking”. In: Proceedings of the 44th International ACM SIGIR

Conference on Research and Development in Information Retrieval. SIGIR ’21. Virtual
Event, Canada: Association for Computing Machinery, 2021, pp. 1349–1358. isbn:
9781450380379. doi: 10.1145/3404835.3462889 . url: https://doi.org/10.1145/

3404835.3462889 .

[71] Sebastian Hofstätter et al. “Introducing Neural Bag ofWhole-Words with ColBERTer:
Contextualized Late Interactions Using Enhanced Reduction”. In: Proceedings of the
31st ACM International Conference on Information & Knowledge Management. CIKM
’22. Atlanta, GA, USA: Association for Computing Machinery, 2022, pp. 737–747.
isbn: 9781450392365. doi: 10.1145/3511808.3557367 . url: https://doi.org/

10.1145/3511808.3557367 .

[72] Sebastian Hofstätter et al. “Local Self-Attention over Long Text for Efficient Docu-
ment Retrieval”. In: Proceedings of the 43rd International ACM SIGIR Conference on Re-

search and Development in Information Retrieval. SIGIR ’20. Virtual Event, China: As-
sociation for Computing Machinery, 2020, pp. 2021–2024. isbn: 9781450380164. doi:

 10.1145/3397271.3401224 . url: https://doi.org/10.1145/3397271.3401224 .

[73] Sebastian Hofstätter et al. “Mitigating the Position Bias of Transformer Models in
Passage Re-Ranking”. In:Advances in Information Retrieval: 43rd European Conference

on IR Research, ECIR 2021, Virtual Event, March 28 – April 1, 2021, Proceedings, Part I.
Berlin, Heidelberg: Springer-Verlag, 2021, pp. 238–253. isbn: 978-3-030-72112-1. doi:

 10.1007/978-3-030-72113-8_16 . url: https://doi.org/10.1007/978-3-030-

72113-8_16 .

[74] Helge Holzmann and Avishek Anand. “Tempas: Temporal Archive Search Based on
Tags”. In: Proceedings of the 25th International Conference Companion on World Wide

Web. WWW ’16 Companion. Montréal, Québec, Canada: International World Wide

138

https://doi.org/10.48550/ARXIV.2206.12993
https://doi.org/10.48550/ARXIV.2206.12993
https://arxiv.org/abs/2206.12993
https://doi.org/10.1145/3404835.3462891
https://doi.org/10.1145/3404835.3462889
https://doi.org/10.1145/3404835.3462889
https://doi.org/10.1145/3404835.3462889
https://doi.org/10.1145/3511808.3557367
https://doi.org/10.1145/3511808.3557367
https://doi.org/10.1145/3511808.3557367
https://doi.org/10.1145/3397271.3401224
https://doi.org/10.1145/3397271.3401224
https://doi.org/10.1007/978-3-030-72113-8_16
https://doi.org/10.1007/978-3-030-72113-8_16
https://doi.org/10.1007/978-3-030-72113-8_16

Bibliography

Web Conferences Steering Committee, 2016, pp. 207–210. isbn: 9781450341448. doi:
 10.1145/2872518.2890555 . url: https://doi.org/10.1145/2872518.2890555 .

[75] Helge Holzmann, Wolfgang Nejdl, and Avishek Anand. “Exploring Web Archives
Through Temporal Anchor Texts”. In: Proceedings of the 2017 ACM on Web Science

Conference. WebSci ’17. Troy, New York, USA: Association for Computing Machin-
ery, 2017, pp. 289–298. isbn: 9781450348966. doi: 10.1145/3091478.3091500 . url:

 https://doi.org/10.1145/3091478.3091500 .

[76] Helge Holzmann, Wolfgang Nejdl, and Avishek Anand. “The Dawn of Today’s Pop-
ular Domains: A Study of the Archived German Web over 18 Years”. In: Proceed-
ings of the 16th ACM/IEEE-CS on Joint Conference on Digital Libraries. JCDL ’16.
Newark, New Jersey, USA: Association for Computing Machinery, 2016, pp. 73–82.
isbn: 9781450342292. doi: 10.1145/2910896.2910901 . url: https://doi.org/10.

1145/2910896.2910901 .

[77] Po-Sen Huang et al. “Learning Deep Structured Semantic Models for Web Search
Using Clickthrough Data”. In: Proceedings of the 22nd ACM International Conference

on Information & Knowledge Management. CIKM ’13. San Francisco, California, USA:
Association for Computing Machinery, 2013, pp. 2333–2338. isbn: 9781450322638.
doi: 10.1145/2505515.2505665 . url: https://doi.org/10.1145/2505515.

2505665 .

[78] Kai Hui et al. “Co-PACRR: A Context-Aware Neural IR Model for Ad-Hoc Retrieval”.
In: Proceedings of the Eleventh ACM International Conference on Web Search and Data

Mining. WSDM ’18. Marina Del Rey, CA, USA: Association for Computing Machin-
ery, 2018, pp. 279–287. isbn: 9781450355810. doi: 10.1145/3159652.3159689 . url:

 https://doi.org/10.1145/3159652.3159689 .

[79] Kai Hui et al. “PACRR: A Position-Aware Neural IR Model for Relevance Match-
ing”. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language

Processing. Copenhagen, Denmark: Association for Computational Linguistics, Sept.
2017, pp. 1049–1058. doi: 10.18653/v1/D17-1110 . url: https://aclanthology.

org/D17-1110 .

[80] Maximilian Idahl et al. “Towards Benchmarking the Utility of Explanations for Model
Debugging”. In: Proceedings of the First Workshop on Trustworthy Natural Language

Processing. Online: Association for Computational Linguistics, June 2021, pp. 68–73.
doi: 10.18653/v1/2021.trustnlp-1.8 . url: https://aclanthology.org/2021.

trustnlp-1.8 .

139

https://doi.org/10.1145/2872518.2890555
https://doi.org/10.1145/2872518.2890555
https://doi.org/10.1145/3091478.3091500
https://doi.org/10.1145/3091478.3091500
https://doi.org/10.1145/2910896.2910901
https://doi.org/10.1145/2910896.2910901
https://doi.org/10.1145/2910896.2910901
https://doi.org/10.1145/2505515.2505665
https://doi.org/10.1145/2505515.2505665
https://doi.org/10.1145/2505515.2505665
https://doi.org/10.1145/3159652.3159689
https://doi.org/10.1145/3159652.3159689
https://doi.org/10.18653/v1/D17-1110
https://aclanthology.org/D17-1110
https://aclanthology.org/D17-1110
https://doi.org/10.18653/v1/2021.trustnlp-1.8
https://aclanthology.org/2021.trustnlp-1.8
https://aclanthology.org/2021.trustnlp-1.8

Bibliography

[81] Alon Jacovi and Yoav Goldberg. “Aligning Faithful Interpretations with their Social
Attribution”. In: Transactions of the Association for Computational Linguistics 9 (Mar.
2021), pp. 294–310. issn: 2307-387X. doi: 10.1162/tacl_a_00367 . eprint: https://

direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00367/1923972/

tacl_a_00367.pdf . url: https://doi.org/10.1162/tacl%5C_a%5C_00367 .

[82] Alon Jacovi and Yoav Goldberg. “Towards Faithfully Interpretable NLP Systems: How
ShouldWeDefine and Evaluate Faithfulness?” In: Proceedings of the 58th AnnualMeet-

ing of the Association for Computational Linguistics. Online: Association for Computa-
tional Linguistics, July 2020, pp. 4198–4205. doi: 10.18653/v1/2020.acl-main.386 .
url: https://aclanthology.org/2020.acl-main.386 .

[83] Sarthak Jain and Byron C. Wallace. “Attention is not Explanation”. In: Proceedings of
the 2019 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Min-
neapolis, Minnesota: Association for Computational Linguistics, June 2019, pp. 3543–
3556. doi: 10.18653/v1/N19-1357 . url: https://aclanthology.org/N19-1357 .

[84] Kyoung-Rok Jang et al. “Ultra-High Dimensional Sparse Representations with Bina-
rization for Efficient Text Retrieval”. In: Proceedings of the 2021 Conference on Em-

pirical Methods in Natural Language Processing. Online and Punta Cana, Dominican
Republic: Association for Computational Linguistics, Nov. 2021, pp. 1016–1029. doi:

 10.18653/v1/2021.emnlp-main.78 . url: https://aclanthology.org/2021.

emnlp-main.78 .

[85] Neil Jethani et al. “Have We Learned to Explain?: How Interpretability Methods Can
Learn to Encode Predictions in their Interpretations.” In: Proceedings of The 24th Inter-
national Conference on Artificial Intelligence and Statistics. Ed. by Arindam Banerjee
and Kenji Fukumizu. Vol. 130. Proceedings of Machine Learning Research. PMLR,
13–15 Apr 2021, pp. 1459–1467. url: https://proceedings.mlr.press/v130/

jethani21a.html .

[86] Jeff Johnson, Matthijs Douze, and Hervé Jégou. “Billion-Scale Similarity Search with
GPUs”. In: IEEE Transactions on Big Data 7.3 (2021), pp. 535–547. doi: 10 . 1109 /

TBDATA.2019.2921572 .

[87] Euna Jung, Jaekeol Choi, andWonjong Rhee. “Semi-Siamese Bi-EncoderNeural Rank-
ing Model Using Lightweight Fine-Tuning”. In: Proceedings of the ACM Web Confer-

ence 2022. WWW ’22. Virtual Event, Lyon, France: Association for Computing Ma-

140

https://doi.org/10.1162/tacl_a_00367
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00367/1923972/tacl_a_00367.pdf
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00367/1923972/tacl_a_00367.pdf
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00367/1923972/tacl_a_00367.pdf
https://doi.org/10.1162/tacl%5C_a%5C_00367
https://doi.org/10.18653/v1/2020.acl-main.386
https://aclanthology.org/2020.acl-main.386
https://doi.org/10.18653/v1/N19-1357
https://aclanthology.org/N19-1357
https://doi.org/10.18653/v1/2021.emnlp-main.78
https://aclanthology.org/2021.emnlp-main.78
https://aclanthology.org/2021.emnlp-main.78
https://proceedings.mlr.press/v130/jethani21a.html
https://proceedings.mlr.press/v130/jethani21a.html
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.1109/TBDATA.2019.2921572

Bibliography

chinery, 2022, pp. 502–511. isbn: 9781450390965. doi: 10.1145/3485447.3511978 .
url: https://doi.org/10.1145/3485447.3511978 .

[88] Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing and Understanding Re-

current Networks. 2015. doi: 10.48550/ARXIV.1506.02078 . url: https://arxiv.

org/abs/1506.02078 .

[89] Vladimir Karpukhin et al. “Dense Passage Retrieval for Open-Domain Question An-
swering”. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Lan-

guage Processing (EMNLP). Online: Association for Computational Linguistics, Nov.
2020, pp. 6769–6781. doi: 10 . 18653 / v1 / 2020 . emnlp - main . 550 . url: https :

//aclanthology.org/2020.emnlp-main.550 .

[90] Omar Khattab and Matei Zaharia. “ColBERT: Efficient and Effective Passage Search
via Contextualized Late Interaction over BERT”. In: Proceedings of the 43rd Interna-

tional ACM SIGIR Conference on Research and Development in Information Retrieval.
New York, NY, USA: Association for Computing Machinery, 2020, pp. 39–48. isbn:
9781450380164. url: https://doi.org/10.1145/3397271.3401075 .

[91] Megha Khosla et al. “Node Representation Learning for Directed Graphs”. In: Ma-

chine Learning and Knowledge Discovery in Databases. Ed. by Ulf Brefeld et al. Cham:
Springer International Publishing, 2020, pp. 395–411. isbn: 978-3-030-46150-8.

[92] SeungyeonKim et al. EmbedDistill: A Geometric Knowledge Distillation for Information

Retrieval. 2023. doi: 10.48550/ARXIV.2301.12005 . url: https://arxiv.org/abs/

2301.12005 .

[93] Christian Kohlschütter, Peter Fankhauser, and Wolfgang Nejdl. “Boilerplate Detec-
tion Using Shallow Text Features”. In: Proceedings of the Third ACM International

Conference on Web Search and Data Mining. WSDM ’10. New York, New York, USA:
Association for Computing Machinery, 2010, pp. 441–450. isbn: 9781605588896. doi:

 10.1145/1718487.1718542 . url: https://doi.org/10.1145/1718487.1718542 .

[94] Bernhard Kratzwald and Stefan Feuerriegel. “Adaptive Document Retrieval for Deep
Question Answering”. In: Proceedings of the 2018 Conference on Empirical Methods

in Natural Language Processing. Brussels, Belgium: Association for Computational
Linguistics, Oct. 2018, pp. 576–581. doi: 10 . 18653 / v1 / D18 - 1055 . url: https :

//aclanthology.org/D18-1055 .

141

https://doi.org/10.1145/3485447.3511978
https://doi.org/10.1145/3485447.3511978
https://doi.org/10.48550/ARXIV.1506.02078
https://arxiv.org/abs/1506.02078
https://arxiv.org/abs/1506.02078
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://aclanthology.org/2020.emnlp-main.550
https://aclanthology.org/2020.emnlp-main.550
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.48550/ARXIV.2301.12005
https://arxiv.org/abs/2301.12005
https://arxiv.org/abs/2301.12005
https://doi.org/10.1145/1718487.1718542
https://doi.org/10.1145/1718487.1718542
https://doi.org/10.18653/v1/D18-1055
https://aclanthology.org/D18-1055
https://aclanthology.org/D18-1055

Bibliography

[95] Ankit Kumar et al. “Ask Me Anything: Dynamic Memory Networks for Natural Lan-
guage Processing”. In: Proceedings of The 33rd International Conference on Machine

Learning. Ed. by Maria Florina Balcan and Kilian Q. Weinberger. Vol. 48. Proceedings
of Machine Learning Research. New York, New York, USA: PMLR, 20–22 Jun 2016,
pp. 1378–1387. url: https://proceedings.mlr.press/v48/kumar16.html .

[96] Cody Kwok, Oren Etzioni, and Daniel S. Weld. “Scaling Question Answering to the
Web”. In: ACM Trans. Inf. Syst. 19.3 (July 2001), pp. 242–262. issn: 1046-8188. doi:

 10.1145/502115.502117 . url: https://doi.org/10.1145/502115.502117 .

[97] John Lafferty and Chengxiang Zhai. “Document Language Models, Query Models,
and Risk Minimization for Information Retrieval”. In: Proceedings of the 24th Annual

International ACM SIGIR Conference on Research and Development in Information Re-

trieval. SIGIR ’01. New York, NY, USA: Association for Computing Machinery, 2001,
pp. 111–119. isbn: 1581133316. doi: 10.1145/383952.383970 . url: https://doi.

org/10.1145/383952.383970 .

[98] Isaac Lage et al.An Evaluation of the Human-Interpretability of Explanation. 2019. doi:
 10.48550/ARXIV.1902.00006 . url: https://arxiv.org/abs/1902.00006 .

[99] Carlos Lassance and Stéphane Clinchant. “An Efficiency Study for SPLADE Models”.
In: Proceedings of the 45th International ACM SIGIR Conference on Research and Devel-

opment in Information Retrieval. SIGIR ’22. Madrid, Spain: Association for Comput-
ing Machinery, 2022, pp. 2220–2226. isbn: 9781450387323. doi: 10.1145/3477495.

3531833 . url: https://doi.org/10.1145/3477495.3531833 .

[100] Carlos Lassance, Hervé Dejean, and Stéphane Clinchant. “An Experimental Study on
Pretraining Transformers from Scratch for IR”. In: Advances in Information Retrieval.
Ed. by Jaap Kamps et al. Cham: Springer Nature Switzerland, 2023, pp. 504–520. isbn:
978-3-031-28244-7.

[101] Carlos Lassance et al. “Learned Token Pruning in Contextualized Late Interaction
over BERT (ColBERT)”. In: Proceedings of the 45th International ACM SIGIR Conference

on Research and Development in Information Retrieval. SIGIR ’22. Madrid, Spain: As-
sociation for Computing Machinery, 2022, pp. 2232–2236. isbn: 9781450387323. doi:

 10.1145/3477495.3531835 . url: https://doi.org/10.1145/3477495.3531835 .

[102] Victor Lavrenko and W. Bruce Croft. “Relevance Based Language Models”. In: Pro-
ceedings of the 24th Annual International ACM SIGIR Conference on Research andDevel-

opment in Information Retrieval. SIGIR ’01. New York, NY, USA: ACM, 2001, pp. 120–

142

https://proceedings.mlr.press/v48/kumar16.html
https://doi.org/10.1145/502115.502117
https://doi.org/10.1145/502115.502117
https://doi.org/10.1145/383952.383970
https://doi.org/10.1145/383952.383970
https://doi.org/10.1145/383952.383970
https://doi.org/10.48550/ARXIV.1902.00006
https://arxiv.org/abs/1902.00006
https://doi.org/10.1145/3477495.3531833
https://doi.org/10.1145/3477495.3531833
https://doi.org/10.1145/3477495.3531833
https://doi.org/10.1145/3477495.3531835
https://doi.org/10.1145/3477495.3531835

Bibliography

127. isbn: 1-58113-331-6. doi: 10.1145/383952.383972 . url: http://doi.acm.

org/10.1145/383952.383972 .

[103] Eric Lehman et al. “Inferring Which Medical Treatments Work from Reports of Clin-
ical Trials”. In: Proceedings of the 2019 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies, Volume

1 (Long and Short Papers). Minneapolis, Minnesota: Association for Computational
Linguistics, June 2019, pp. 3705–3717. doi: 10.18653/v1/N19-1371 . url: https:

//aclanthology.org/N19-1371 .

[104] Tao Lei, Regina Barzilay, and Tommi Jaakkola. “Rationalizing Neural Predictions”. In:
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Process-

ing. Austin, Texas: Association for Computational Linguistics, Nov. 2016, pp. 107–117.
doi: 10.18653/v1/D16-1011 . url: https://aclanthology.org/D16-1011 .

[105] Jurek Leonhardt, Avishek Anand, and Megha Khosla. “Boilerplate Removal using
a Neural Sequence Labeling Model”. In: Companion Proceedings of the Web Confer-

ence 2020. WWW ’20. Taipei, Taiwan: Association for Computing Machinery, 2020,
pp. 226–229. isbn: 9781450370240. doi: 10.1145/3366424.3383547 . url: https:

//doi.org/10.1145/3366424.3383547 .

[106] Jurek Leonhardt, Avishek Anand, andMegha Khosla. “User Fairness in Recommender
Systems”. In: Companion Proceedings of the The Web Conference 2018. WWW ’18.
Lyon, France: International World WideWeb Conferences Steering Committee, 2018,
pp. 101–102. isbn: 9781450356404. doi: 10.1145/3184558.3186949 . url: https:

//doi.org/10.1145/3184558.3186949 .

[107] Jurek Leonhardt, Fabian Beringer, and Avishek Anand. “Exploiting Sentence-Level
Representations for Passage Ranking”. In: Proceedings of the LWDA 2021 Workshops:

FGWM, KDML, FGWI-BIA, and FGIR, Online, September 1-3, 2021. Ed. by Thomas Seidl,
Michael Fromm, and Sandra Obermeier. Vol. 2993. CEUR Workshop Proceedings.
CEUR-WS.org, 2021, pp. 287–302. url: https://ceur-ws.org/Vol-2993/paper-

27.pdf .

[108] Jurek Leonhardt, Marcel Jahnke, and Avishek Anand. Distribution-Aligned Fine-

Tuning for Efficient Neural Retrieval. 2022. arXiv: 2211.04942 [cs.IR] .

[109] Jurek Leonhardt, Koustav Rudra, and Avishek Anand. “Extractive Explanations for
Interpretable Text Ranking”. In: ACM Trans. Inf. Syst. 41.4 (Mar. 2023). issn: 1046-
8188. doi: 10.1145/3576924 . url: https://doi.org/10.1145/3576924 .

143

https://doi.org/10.1145/383952.383972
http://doi.acm.org/10.1145/383952.383972
http://doi.acm.org/10.1145/383952.383972
https://doi.org/10.18653/v1/N19-1371
https://aclanthology.org/N19-1371
https://aclanthology.org/N19-1371
https://doi.org/10.18653/v1/D16-1011
https://aclanthology.org/D16-1011
https://doi.org/10.1145/3366424.3383547
https://doi.org/10.1145/3366424.3383547
https://doi.org/10.1145/3366424.3383547
https://doi.org/10.1145/3184558.3186949
https://doi.org/10.1145/3184558.3186949
https://doi.org/10.1145/3184558.3186949
https://ceur-ws.org/Vol-2993/paper-27.pdf
https://ceur-ws.org/Vol-2993/paper-27.pdf
https://arxiv.org/abs/2211.04942
https://doi.org/10.1145/3576924
https://doi.org/10.1145/3576924

Bibliography

[110] Jurek Leonhardt, Koustav Rudra, and Avishek Anand. L3S at the TREC 2021 Deep

Learning Track. 2021.

[111] Jurek Leonhardt et al. “Efficient Neural Ranking using Forward Indexes”. In: Proceed-
ings of the ACM Web Conference 2022. WWW ’22. Virtual Event, Lyon, France: As-
sociation for Computing Machinery, 2022, pp. 266–276. isbn: 9781450390965. doi:

 10.1145/3485447.3511955 . url: https://doi.org/10.1145/3485447.3511955 .

[112] Jurek Leonhardt et al. “Efficient Neural Ranking using Forward Indexes and
Lightweight Encoders”. In: ACM Trans. Inf. Syst. (Nov. 2023). Just Accepted. issn:
1046-8188. doi: 10.1145/3631939 . url: https://doi.org/10.1145/3631939 .

[113] Canjia Li et al. “PARADE: Passage Representation Aggregation For Document
Reranking”. In: ACM Trans. Inf. Syst. 42.2 (Sept. 2023). issn: 1046-8188. doi: 10.1145/

3600088 . url: https://doi.org/10.1145/3600088 .

[114] Jiwei Li, Will Monroe, and Dan Jurafsky. Understanding Neural Networks through Rep-
resentation Erasure. 2016. doi: 10.48550/ARXIV.1612.08220 . url: https://arxiv.

org/abs/1612.08220 .

[115] Minghan Li and Eric Gaussier. “KeyBLD: Selecting Key Blocks with Local Pre-
Ranking for Long Document Information Retrieval”. In: Proceedings of the 44th In-

ternational ACM SIGIR Conference on Research and Development in Information Re-

trieval. SIGIR ’21. Virtual Event, Canada: Association for ComputingMachinery, 2021,
pp. 2207–2211. isbn: 9781450380379. doi: 10.1145/3404835.3463083 . url: https:

//doi.org/10.1145/3404835.3463083 .

[116] Minghan Li et al.CITADEL: Conditional Token Interaction via Dynamic Lexical Routing

for Efficient and Effective Multi-Vector Retrieval. 2022. doi: 10.48550/ARXIV.2211.

10411 . url: https://arxiv.org/abs/2211.10411 .

[117] Minghan Li et al. “The Power of Selecting Key Blocks with Local Pre-Ranking for
Long Document Information Retrieval”. In: ACM Trans. Inf. Syst. 41.3 (Feb. 2023).
issn: 1046-8188. doi: 10.1145/3568394 . url: https://doi.org/10.1145/3568394 .

[118] Xiangsheng Li et al. “Teach Machine How to Read: Reading Behavior Inspired Rel-
evance Estimation”. In: Proceedings of the 42nd International ACM SIGIR Conference

on Research and Development in Information Retrieval. SIGIR’19. Paris, France: As-
sociation for Computing Machinery, 2019, pp. 795–804. isbn: 9781450361729. doi:

 10.1145/3331184.3331205 . url: https://doi.org/10.1145/3331184.3331205 .

144

https://doi.org/10.1145/3485447.3511955
https://doi.org/10.1145/3485447.3511955
https://doi.org/10.1145/3631939
https://doi.org/10.1145/3631939
https://doi.org/10.1145/3600088
https://doi.org/10.1145/3600088
https://doi.org/10.1145/3600088
https://doi.org/10.48550/ARXIV.1612.08220
https://arxiv.org/abs/1612.08220
https://arxiv.org/abs/1612.08220
https://doi.org/10.1145/3404835.3463083
https://doi.org/10.1145/3404835.3463083
https://doi.org/10.1145/3404835.3463083
https://doi.org/10.48550/ARXIV.2211.10411
https://doi.org/10.48550/ARXIV.2211.10411
https://arxiv.org/abs/2211.10411
https://doi.org/10.1145/3568394
https://doi.org/10.1145/3568394
https://doi.org/10.1145/3331184.3331205
https://doi.org/10.1145/3331184.3331205

Bibliography

[119] Jimmy Lin and Xueguang Ma. A Few Brief Notes on DeepImpact, COIL, and a Con-

ceptual Framework for Information Retrieval Techniques. 2021. arXiv: 2106 . 14807

[cs.IR] .

[120] Jimmy Lin, Rodrigo Frassetto Nogueira, and Andrew Yates. Pretrained Trans-

formers for Text Ranking: BERT and Beyond. Synthesis Lectures on Human Lan-
guage Technologies. Morgan & Claypool Publishers, 2021. doi: 10 . 2200 /

S01123ED1V01Y202108HLT053 . url: https : / / doi . org / 10 . 2200 /

S01123ED1V01Y202108HLT053 .

[121] Jimmy Lin et al. “Pyserini: A Python Toolkit for Reproducible Information Retrieval
Research with Sparse and Dense Representations”. In: Proceedings of the 44th Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval.
New York, NY, USA: Association for Computing Machinery, 2021, pp. 2356–2362.
isbn: 9781450380379. url: https://doi.org/10.1145/3404835.3463238 .

[122] Sheng-Chieh Lin, Minghan Li, and Jimmy Lin. “Aggretriever: A Simple Approach to
Aggregate Textual Representations for Robust Dense Passage Retrieval”. In: Trans-
actions of the Association for Computational Linguistics 11 (2023), pp. 436–452. doi:

 10.1162/tacl_a_00556 . url: https://aclanthology.org/2023.tacl-1.26 .

[123] Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. “In-Batch Negatives for Knowl-
edge Distillation with Tightly-Coupled Teachers for Dense Retrieval”. In: Proceedings
of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021). Online: As-
sociation for Computational Linguistics, Aug. 2021, pp. 163–173. doi: 10.18653/v1/

2021.repl4nlp-1.17 . url: https://aclanthology.org/2021.repl4nlp-1.17 .

[124] Shian-Hua Lin and Jan-Ming Ho. “Discovering Informative Content Blocks fromWeb
Documents”. In: Proceedings of the Eighth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. KDD ’02. Edmonton, Alberta, Canada: Associ-
ation for Computing Machinery, 2002, pp. 588–593. isbn: 158113567X. doi: 10.1145/

775047.775134 . url: https://doi.org/10.1145/775047.775134 .

[125] Yankai Lin et al. “Denoising Distantly Supervised Open-Domain Question Answer-
ing”. In: Proceedings of the 56th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers). Melbourne, Australia: Association for Compu-
tational Linguistics, July 2018, pp. 1736–1745. doi: 10.18653/v1/P18-1161 . url:

 https://aclanthology.org/P18-1161 .

145

https://arxiv.org/abs/2106.14807
https://arxiv.org/abs/2106.14807
https://doi.org/10.2200/S01123ED1V01Y202108HLT053
https://doi.org/10.2200/S01123ED1V01Y202108HLT053
https://doi.org/10.2200/S01123ED1V01Y202108HLT053
https://doi.org/10.2200/S01123ED1V01Y202108HLT053
https://doi.org/10.1145/3404835.3463238
https://doi.org/10.1162/tacl_a_00556
https://aclanthology.org/2023.tacl-1.26
https://doi.org/10.18653/v1/2021.repl4nlp-1.17
https://doi.org/10.18653/v1/2021.repl4nlp-1.17
https://aclanthology.org/2021.repl4nlp-1.17
https://doi.org/10.1145/775047.775134
https://doi.org/10.1145/775047.775134
https://doi.org/10.1145/775047.775134
https://doi.org/10.18653/v1/P18-1161
https://aclanthology.org/P18-1161

Bibliography

[126] Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. “Explainable
AI: A Review of Machine Learning Interpretability Methods”. In: Entropy 23.1 (2021).
issn: 1099-4300. doi: 10.3390/e23010018 . url: https://www.mdpi.com/1099-

4300/23/1/18 .

[127] Erik Lindgren et al. “Efficient Training of Retrieval Models using Negative Cache”. In:
Advances in Neural Information Processing Systems. Ed. by M. Ranzato et al. Vol. 34.
Curran Associates, Inc., 2021, pp. 4134–4146. url: https://proceedings.neurips.

cc/paper/2021/file/2175f8c5cd9604f6b1e576b252d4c86e-Paper.pdf .

[128] Chang Liu et al.Adam: Dense Retrieval Distillation with Adaptive Dark Examples. 2022.
doi: 10.48550/ARXIV.2212.10192 . url: https://arxiv.org/abs/2212.10192 .

[129] Tie-Yan Liu. “Learning to Rank for Information Retrieval”. In: Foundations and

Trends® in Information Retrieval 3.3 (2009), pp. 225–331. issn: 1554-0669. doi: 10.

1561/1500000016 . url: http://dx.doi.org/10.1561/1500000016 .

[130] Ilya Loshchilov and Frank Hutter. “Decoupled Weight Decay Regularization”. In: In-
ternational Conference on Learning Representations. 2019. url: https://openreview.

net/forum?id=Bkg6RiCqY7 .

[131] Yi Luan et al. “Sparse, Dense, and Attentional Representations for Text Retrieval”.
In: Transactions of the Association for Computational Linguistics 9 (2021), pp. 329–345.
doi: 10.1162/tacl_a_00369 . url: https://aclanthology.org/2021.tacl-1.20 .

[132] Julia Luxenburger, Shady Elbassuoni, and Gerhard Weikum. “Matching Task Profiles
and User Needs in Personalized Web Search”. In: Proceedings of the 17th ACM Con-

ference on Information and Knowledge Management. CIKM ’08. New York, NY, USA:
Association for Computing Machinery, 2008, pp. 689–698. isbn: 9781595939913. doi:

 10.1145/1458082.1458175 . url: https://doi.org/10.1145/1458082.1458175 .

[133] Xinyu Ma et al. “PROP: Pre-Training with Representative Words Prediction for Ad-
Hoc Retrieval”. In: Proceedings of the 14th ACM International Conference onWeb Search

and Data Mining. WSDM ’21. Virtual Event, Israel: Association for Computing Ma-
chinery, 2021, pp. 283–291. isbn: 9781450382977. doi: 10.1145/3437963.3441777 .
url: https://doi.org/10.1145/3437963.3441777 .

[134] Sean MacAvaney et al. “CEDR: Contextualized Embeddings for Document Ranking”.
In: Proceedings of the 42nd International ACM SIGIR Conference on Research and De-

velopment in Information Retrieval. SIGIR’19. New York, NY, USA: Association for
Computing Machinery, 2019, pp. 1101–1104. isbn: 9781450361729. doi: 10.1145/

3331184.3331317 . url: https://doi.org/10.1145/3331184.3331317 .

146

https://doi.org/10.3390/e23010018
https://www.mdpi.com/1099-4300/23/1/18
https://www.mdpi.com/1099-4300/23/1/18
https://proceedings.neurips.cc/paper/2021/file/2175f8c5cd9604f6b1e576b252d4c86e-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/2175f8c5cd9604f6b1e576b252d4c86e-Paper.pdf
https://doi.org/10.48550/ARXIV.2212.10192
https://arxiv.org/abs/2212.10192
https://doi.org/10.1561/1500000016
https://doi.org/10.1561/1500000016
http://dx.doi.org/10.1561/1500000016
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.1162/tacl_a_00369
https://aclanthology.org/2021.tacl-1.20
https://doi.org/10.1145/1458082.1458175
https://doi.org/10.1145/1458082.1458175
https://doi.org/10.1145/3437963.3441777
https://doi.org/10.1145/3437963.3441777
https://doi.org/10.1145/3331184.3331317
https://doi.org/10.1145/3331184.3331317
https://doi.org/10.1145/3331184.3331317

Bibliography

[135] Sean MacAvaney et al. “Expansion via Prediction of Importance with Contextualiza-
tion”. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and

Development in Information Retrieval. New York, NY, USA: Association for Comput-
ing Machinery, 2020, pp. 1573–1576. isbn: 9781450380164. url: https://doi.org/

10.1145/3397271.3401262 .

[136] Joel Mackenzie et al. “Efficiency Implications of Term Weighting for Passage Re-
trieval”. In: Proceedings of the 43rd International ACM SIGIR Conference on Research

and Development in Information Retrieval. SIGIR ’20. Virtual Event, China: Associa-
tion for Computing Machinery, 2020, pp. 1821–1824. isbn: 9781450380164. doi: 10.

1145/3397271.3401263 . url: https://doi.org/10.1145/3397271.3401263 .

[137] Chris J Maddison, Daniel Tarlow, and Tom Minka. “A* Sampling”. In: Advances in
Neural Information Processing Systems. Ed. by Z. Ghahramani et al. Vol. 27. Curran
Associates, Inc., 2014. url: https://proceedings.neurips.cc/paper/2014/

file/309fee4e541e51de2e41f21bebb342aa-Paper.pdf .

[138] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. “The Concrete Distribution: A
Continuous Relaxation of Discrete Random Variables”. In: International Conference
on Learning Representations. 2017. url: https : / / openreview . net / forum ? id =

S1jE5L5gl .

[139] Yu A. Malkov and D. A. Yashunin. “Efficient and Robust Approximate Nearest Neigh-
bor Search Using Hierarchical Navigable Small World Graphs”. In: IEEE Transactions

on Pattern Analysis and Machine Intelligence 42.4 (2020), pp. 824–836. doi: 10.1109/

TPAMI.2018.2889473 .

[140] Antonio Mallia et al. “Learning Passage Impacts for Inverted Indexes”. In: Proceedings
of the 44th International ACM SIGIR Conference on Research and Development in Infor-

mation Retrieval. New York, NY, USA: Association for Computing Machinery, 2021,
pp. 1723–1727. isbn: 9781450380379. url: https://doi.org/10.1145/3404835.

3463030 .

[141] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. An Introduction
to Information Retrieval. Cambridge university press, 2009.

[142] Andre Martins and Ramon Astudillo. “From Softmax to Sparsemax: A Sparse Model
of Attention and Multi-Label Classification”. In: Proceedings of The 33rd International
Conference on Machine Learning. Ed. by Maria Florina Balcan and Kilian Q. Wein-
berger. Vol. 48. Proceedings of Machine Learning Research. New York, New York,

147

https://doi.org/10.1145/3397271.3401262
https://doi.org/10.1145/3397271.3401262
https://doi.org/10.1145/3397271.3401263
https://doi.org/10.1145/3397271.3401263
https://doi.org/10.1145/3397271.3401263
https://proceedings.neurips.cc/paper/2014/file/309fee4e541e51de2e41f21bebb342aa-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/309fee4e541e51de2e41f21bebb342aa-Paper.pdf
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=S1jE5L5gl
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1145/3404835.3463030
https://doi.org/10.1145/3404835.3463030

Bibliography

USA: PMLR, 20–22 Jun 2016, pp. 1614–1623. url: https : / / proceedings . mlr .

press/v48/martins16.html .

[143] Pascal Massart. “The Tight Constant in the Dvoretzky-Kiefer-Wolfowitz Inequality”.
In: The Annals of Probability 18.3 (1990), pp. 1269–1283. issn: 00911798. url: http:

//www.jstor.org/stable/2244426 .

[144] Irina Matveeva et al. “High Accuracy Retrieval with Multiple Nested Ranker”. In:
Proceedings of the 29th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval. SIGIR ’06. Seattle, Washington, USA: Associa-
tion for Computing Machinery, 2006, pp. 437–444. isbn: 1595933697. doi: 10.1145/

1148170.1148246 . url: https://doi.org/10.1145/1148170.1148246 .

[145] Ryan McDonald, George Brokos, and Ion Androutsopoulos. “Deep Relevance Rank-
ing Using Enhanced Document-Query Interactions”. In: Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing. Brussels, Belgium: As-
sociation for Computational Linguistics, Oct. 2018, pp. 1849–1860. doi: 10.18653/

v1/D18-1211 . url: https://aclanthology.org/D18-1211 .

[146] Tomas Mikolov et al. “Distributed Representations of Words and Phrases and
their Compositionality”. In: Advances in Neural Information Processing Systems.
Ed. by C.J. Burges et al. Vol. 26. Curran Associates, Inc., 2013. url: https :

/ / proceedings . neurips . cc / paper _ files / paper / 2013 / file /

9aa42b31882ec039965f3c4923ce901b-Paper.pdf .

[147] Bhaskar Mitra, Fernando Diaz, and Nick Craswell. “Learning to Match Using Local
and Distributed Representations of Text for Web Search”. In: Proceedings of the 26th
International Conference on World Wide Web. WWW ’17. Perth, Australia: Interna-
tional World Wide Web Conferences Steering Committee, 2017, pp. 1291–1299. isbn:
9781450349130. doi: 10.1145/3038912.3052579 . url: https://doi.org/10.1145/

3038912.3052579 .

[148] Bhaskar Mitra et al. A Dual Embedding Space Model for Document Ranking. 2016.
arXiv: 1602.01137 [cs.IR] .

[149] BhaskarMitra et al. “Incorporating query term independence assumption for efficient
retrieval and ranking using deep neural networks”. In: arXiv preprint arXiv:1907.03693
(2019).

[150] Cristina Ioana Muntean et al. “Weighting Passages Enhances Accuracy”. In: ACM
Trans. Inf. Syst. 39.2 (Dec. 2020). issn: 1046-8188. doi: 10.1145/3428687 . url: https:

//doi.org/10.1145/3428687 .

148

https://proceedings.mlr.press/v48/martins16.html
https://proceedings.mlr.press/v48/martins16.html
http://www.jstor.org/stable/2244426
http://www.jstor.org/stable/2244426
https://doi.org/10.1145/1148170.1148246
https://doi.org/10.1145/1148170.1148246
https://doi.org/10.1145/1148170.1148246
https://doi.org/10.18653/v1/D18-1211
https://doi.org/10.18653/v1/D18-1211
https://aclanthology.org/D18-1211
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://doi.org/10.1145/3038912.3052579
https://doi.org/10.1145/3038912.3052579
https://doi.org/10.1145/3038912.3052579
https://arxiv.org/abs/1602.01137
https://doi.org/10.1145/3428687
https://doi.org/10.1145/3428687
https://doi.org/10.1145/3428687

Bibliography

[151] Tri Nguyen et al. “MS MARCO: A Human Generated MAchine Reading COmprehen-
sion Dataset”. In: Proceedings of the Workshop on Cognitive Computation: Integrating

neural and symbolic approaches 2016 co-located with the 30th Annual Conference on

Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, December 9, 2016.
Ed. by Tarek Richard Besold et al. Vol. 1773. CEUR Workshop Proceedings. CEUR-
WS.org, 2016. url: http://ceur-ws.org/Vol-1773/CoCoNIPS%5C_2016%5C_

paper9.pdf .

[152] Jianmo Ni et al. “Large Dual Encoders Are Generalizable Retrievers”. In: Proceedings
of the 2022 Conference on Empirical Methods in Natural Language Processing. Ed. by
Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang. AbuDhabi, United Arab Emirates:
Association for Computational Linguistics, Dec. 2022, pp. 9844–9855. doi: 10.18653/

v1/2022.emnlp- main.669 . url: https://aclanthology.org/2022.emnlp-

main.669 .

[153] Yifan Nie, Yanling Li, and Jian-Yun Nie. “Empirical Study of Multi-Level Convolu-
tion Models for IR Based on Representations and Interactions”. In: Proceedings of the
2018 ACM SIGIR International Conference on Theory of Information Retrieval. ICTIR
’18. Tianjin, China: Association for Computing Machinery, 2018, pp. 59–66. isbn:
9781450356565. doi: 10.1145/3234944.3234954 . url: https://doi.org/10.

1145/3234944.3234954 .

[154] Yifan Nie, Alessandro Sordoni, and Jian-Yun Nie. “Multi-Level Abstraction Convo-
lutional Model with Weak Supervision for Information Retrieval”. In: The 41st Inter-
national ACM SIGIR Conference on Research & Development in Information Retrieval.
SIGIR ’18. Ann Arbor, MI, USA: Association for ComputingMachinery, 2018, pp. 985–
988. isbn: 9781450356572. doi: 10.1145/3209978.3210123 . url: https://doi.org/

10.1145/3209978.3210123 .

[155] Rodrigo Nogueira and Kyunghyun Cho. Passage Re-ranking with BERT. 2019. doi:
 10.48550/ARXIV.1901.04085 . url: https://arxiv.org/abs/1901.04085 .

[156] Rodrigo Nogueira and Jimmy and Lin. “From doc2query to docTTTTTquery”. In:
Online preprint 6 (2019).

[157] Rodrigo Nogueira et al.Multi-Stage Document Ranking with BERT. 2019. arXiv: 1910.

14424 [cs.IR] .

[158] Luke Gallagher. Pairwise t-test on TREC Run Files. https://github.com/lgrz/

pairwise-ttest/ . 2019.

149

http://ceur-ws.org/Vol-1773/CoCoNIPS%5C_2016%5C_paper9.pdf
http://ceur-ws.org/Vol-1773/CoCoNIPS%5C_2016%5C_paper9.pdf
https://doi.org/10.18653/v1/2022.emnlp-main.669
https://doi.org/10.18653/v1/2022.emnlp-main.669
https://aclanthology.org/2022.emnlp-main.669
https://aclanthology.org/2022.emnlp-main.669
https://doi.org/10.1145/3234944.3234954
https://doi.org/10.1145/3234944.3234954
https://doi.org/10.1145/3234944.3234954
https://doi.org/10.1145/3209978.3210123
https://doi.org/10.1145/3209978.3210123
https://doi.org/10.1145/3209978.3210123
https://doi.org/10.48550/ARXIV.1901.04085
https://arxiv.org/abs/1901.04085
https://arxiv.org/abs/1910.14424
https://arxiv.org/abs/1910.14424
https://github.com/lgrz/pairwise-ttest/
https://github.com/lgrz/pairwise-ttest/

Bibliography

[159] Liang Pang et al. “A Study of MatchPyramid Models on Ad-hoc Retrieval”. In: SIGIR
workshop on Neural Information Retrieval (NeuIR-16) arXiv:1606.04648 (2016). arXiv:

 1606.04648 . url: http://arxiv.org/abs/1606.04648 .

[160] Liang Pang et al. “Text Matching as Image Recognition”. In: Proceedings of the AAAI
Conference on Artificial Intelligence 30.1 (Mar. 2016). doi: 10.1609/aaai.v30i1.

10341 . url: https://ojs.aaai.org/index.php/AAAI/article/view/10341 .

[161] Jeff Pasternack and Dan Roth. “Extracting Article Text from the Web with Maximum
Subsequence Segmentation”. In: Proceedings of the 18th International Conference on

World Wide Web. WWW ’09. Madrid, Spain: Association for Computing Machin-
ery, 2009, pp. 971–980. isbn: 9781605584874. doi: 10.1145/1526709.1526840 . url:

 https://doi.org/10.1145/1526709.1526840 .

[162] Jeffrey Pennington, Richard Socher, and Christopher Manning. “GloVe: Global Vec-
tors for Word Representation”. In: Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association for Com-
putational Linguistics, Oct. 2014, pp. 1532–1543. doi: 10.3115/v1/D14-1162 . url:

 https://aclanthology.org/D14-1162 .

[163] Matthew E. Peters, Sebastian Ruder, and Noah A. Smith. “To Tune or Not to Tune?
Adapting Pretrained Representations to Diverse Tasks”. In: Proceedings of the 4th

Workshop on Representation Learning for NLP (RepL4NLP-2019). Florence, Italy: Asso-
ciation for Computational Linguistics, Aug. 2019, pp. 7–14. doi: 10.18653/v1/W19-

4302 . url: https://aclanthology.org/W19-4302 .

[164] Tobias Plötz and Stefan Roth. “Neural Nearest Neighbors Networks”. In: Advances in
Neural Information Processing Systems. Ed. by S. Bengio et al. Vol. 31. Curran Asso-
ciates, Inc., 2018. url: https://proceedings.neurips.cc/paper/2018/file/

f0e52b27a7a5d6a1a87373dffa53dbe5-Paper.pdf .

[165] Prafull Prakash, Julian Killingback, and Hamed Zamani. “Learning Robust Dense Re-
trieval Models from Incomplete Relevance Labels”. In: Proceedings of the 44th In-

ternational ACM SIGIR Conference on Research and Development in Information Re-

trieval. SIGIR ’21. Virtual Event, Canada: Association for ComputingMachinery, 2021,
pp. 1728–1732. isbn: 9781450380379. doi: 10.1145/3404835.3463106 . url: https:

//doi.org/10.1145/3404835.3463106 .

[166] David Rau and Jaap Kamps. “The Role of Complex NLP in Transformers for Text
Ranking”. In: Proceedings of the 2022 ACM SIGIR International Conference on Theory

of Information Retrieval. ICTIR ’22. Madrid, Spain: Association for Computing Ma-

150

https://arxiv.org/abs/1606.04648
http://arxiv.org/abs/1606.04648
https://doi.org/10.1609/aaai.v30i1.10341
https://doi.org/10.1609/aaai.v30i1.10341
https://ojs.aaai.org/index.php/AAAI/article/view/10341
https://doi.org/10.1145/1526709.1526840
https://doi.org/10.1145/1526709.1526840
https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/D14-1162
https://doi.org/10.18653/v1/W19-4302
https://doi.org/10.18653/v1/W19-4302
https://aclanthology.org/W19-4302
https://proceedings.neurips.cc/paper/2018/file/f0e52b27a7a5d6a1a87373dffa53dbe5-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/f0e52b27a7a5d6a1a87373dffa53dbe5-Paper.pdf
https://doi.org/10.1145/3404835.3463106
https://doi.org/10.1145/3404835.3463106
https://doi.org/10.1145/3404835.3463106

Bibliography

chinery, 2022, pp. 153–160. isbn: 9781450394123. doi: 10.1145/3539813.3545144 .
url: https://doi.org/10.1145/3539813.3545144 .

[167] Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence Embeddings using Siamese

BERT-Networks. 2019. arXiv: 1908.10084 [cs.CL] .

[168] Stephen Robertson and Hugo Zaragoza. “The Probabilistic Relevance Framework:
BM25 and Beyond”. In: Foundations and Trends® in Information Retrieval 3.4 (2009),
pp. 333–389. issn: 1554-0669. doi: 10.1561/1500000019 . url: http://dx.doi.org/

10.1561/1500000019 .

[169] Stephen E Robertson et al. “Okapi at TREC-3”. In: Nist Special Publication Sp 109
(1995), p. 109.

[170] Rishiraj Saha Roy and Avishek Anand. “Question Answering for the Curated Web:
Tasks and Methods in QA over Knowledge Bases and Text Collections”. In: Synthe-
sis Lectures onSynthesis Lectures on Information Concepts, Retrieval, and Services 13.4
(2021), pp. 1–194.

[171] Cynthia Rudin. “Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead”. In: Nature Machine Intelligence 1.5
(2019), pp. 206–215. doi: 10.1038/s42256-019-0048-x . url: https://doi.org/

10.1038/s42256-019-0048-x .

[172] Koustav Rudra and Avishek Anand. “Distant Supervision in BERT-Based Adhoc Doc-
ument Retrieval”. In: Proceedings of the 29th ACM International Conference on Infor-

mation & Knowledge Management. CIKM ’20. New York, NY, USA: Association for
Computing Machinery, 2020, pp. 2197–2200. isbn: 9781450368599. doi: 10.1145/

3340531.3412124 . url: https://doi.org/10.1145/3340531.3412124 .

[173] Koustav Rudra, Zeon Trevor Fernando, and Avishek Anand. An In-depth Analysis of

Passage-Level Label Transfer for Contextual Document Ranking. 2021. doi: 10.48550/

ARXIV.2103.16669 . url: https://arxiv.org/abs/2103.16669 .

[174] G. Salton, A. Wong, and C. S. Yang. “A Vector Space Model for Automatic Indexing”.
In: Commun. ACM 18.11 (Nov. 1975), pp. 613–620. issn: 0001-0782. doi: 10.1145/

361219.361220 . url: https://doi.org/10.1145/361219.361220 .

[175] Harrisen Scells, Shengyao Zhuang, and Guido Zuccon. “Reduce, Reuse, Recycle:
Green Information Retrieval Research”. In: Proceedings of the 45th International ACM

SIGIR Conference on Research and Development in Information Retrieval. SIGIR ’22.
Madrid, Spain: Association for Computing Machinery, 2022, pp. 2825–2837. isbn:

151

https://doi.org/10.1145/3539813.3545144
https://doi.org/10.1145/3539813.3545144
https://arxiv.org/abs/1908.10084
https://doi.org/10.1561/1500000019
http://dx.doi.org/10.1561/1500000019
http://dx.doi.org/10.1561/1500000019
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1145/3340531.3412124
https://doi.org/10.1145/3340531.3412124
https://doi.org/10.1145/3340531.3412124
https://doi.org/10.48550/ARXIV.2103.16669
https://doi.org/10.48550/ARXIV.2103.16669
https://arxiv.org/abs/2103.16669
https://doi.org/10.1145/361219.361220
https://doi.org/10.1145/361219.361220
https://doi.org/10.1145/361219.361220

Bibliography

9781450387323. doi: 10.1145/3477495.3531766 . url: https://doi.org/10.

1145/3477495.3531766 .

[176] Yelong Shen et al. “A Latent Semantic Model with Convolutional-Pooling Structure
for Information Retrieval”. In: Proceedings of the 23rd ACM International Conference on

Conference on Information and Knowledge Management. CIKM ’14. Shanghai, China:
Association for Computing Machinery, 2014, pp. 101–110. isbn: 9781450325981. doi:

 10.1145/2661829.2661935 . url: https://doi.org/10.1145/2661829.2661935 .

[177] Yelong Shen et al. “Learning Semantic Representations Using Convolutional Neu-
ral Networks for Web Search”. In: Proceedings of the 23rd International Conference

on World Wide Web. WWW ’14 Companion. Seoul, Korea: Association for Comput-
ing Machinery, 2014, pp. 373–374. isbn: 9781450327459. doi: 10.1145/2567948.

2577348 . url: https://doi.org/10.1145/2567948.2577348 .

[178] Georgios Sidiropoulos and Evangelos Kanoulas. “Analysing the Robustness of Dual
Encoders for Dense Retrieval Against Misspellings”. In: Proceedings of the 45th Inter-

national ACM SIGIR Conference on Research and Development in Information Retrieval.
SIGIR ’22. Madrid, Spain: Association for ComputingMachinery, 2022, pp. 2132–2136.
isbn: 9781450387323. doi: 10.1145/3477495.3531818 . url: https://doi.org/10.

1145/3477495.3531818 .

[179] R. F. Simmons. “Answering English Questions by Computer: A Survey”. In: Commun.

ACM 8.1 (Jan. 1965), pp. 53–70. issn: 0001-0782. doi: 10.1145/363707.363732 . url:
 https://doi.org/10.1145/363707.363732 .

[180] Jaspreet Singh and Avishek Anand. “EXS: Explainable Search Using Local Model Ag-
nostic Interpretability”. In: Proceedings of the Twelfth ACM International Conference

on Web Search and Data Mining. WSDM ’19. Melbourne VIC, Australia: Association
for Computing Machinery, 2019, pp. 770–773. isbn: 9781450359405. doi: 10.1145/

3289600.3290620 . url: https://doi.org/10.1145/3289600.3290620 .

[181] Jaspreet Singh and Avishek Anand. “Model Agnostic Interpretability of Rankers via
Intent Modelling”. In: Proceedings of the 2020 Conference on Fairness, Accountability,

and Transparency. FAT* ’20. Barcelona, Spain: Association for Computing Machin-
ery, 2020, pp. 618–628. isbn: 9781450369367. doi: 10.1145/3351095.3375234 . url:

 https://doi.org/10.1145/3351095.3375234 .

[182] Jaspreet Singh and Avishek Anand. Posthoc Interpretability of Learning to Rank Mod-

els using Secondary Training Data. 2018. doi: 10.48550/ARXIV.1806.11330 . url:
 https://arxiv.org/abs/1806.11330 .

152

https://doi.org/10.1145/3477495.3531766
https://doi.org/10.1145/3477495.3531766
https://doi.org/10.1145/3477495.3531766
https://doi.org/10.1145/2661829.2661935
https://doi.org/10.1145/2661829.2661935
https://doi.org/10.1145/2567948.2577348
https://doi.org/10.1145/2567948.2577348
https://doi.org/10.1145/2567948.2577348
https://doi.org/10.1145/3477495.3531818
https://doi.org/10.1145/3477495.3531818
https://doi.org/10.1145/3477495.3531818
https://doi.org/10.1145/363707.363732
https://doi.org/10.1145/363707.363732
https://doi.org/10.1145/3289600.3290620
https://doi.org/10.1145/3289600.3290620
https://doi.org/10.1145/3289600.3290620
https://doi.org/10.1145/3351095.3375234
https://doi.org/10.1145/3351095.3375234
https://doi.org/10.48550/ARXIV.1806.11330
https://arxiv.org/abs/1806.11330

Bibliography

[183] Jaspreet Singh, Johannes Hoffart, and Avishek Anand. “Discovering Entities with Just
a Little Help from You”. In: Proceedings of the 25th ACM International on Conference

on Information and Knowledge Management. CIKM ’16. Indianapolis, Indiana, USA:
Association for Computing Machinery, 2016, pp. 1331–1340. isbn: 9781450340731.
doi: 10.1145/2983323.2983798 . url: https://doi.org/10.1145/2983323.

2983798 .

[184] Jaspreet Singh, Wolfgang Nejdl, and Avishek Anand. “Expedition: A Time-Aware Ex-
ploratory Search System Designed for Scholars”. In: Proceedings of the 39th Interna-

tional ACM SIGIR Conference on Research and Development in Information Retrieval.
SIGIR ’16. Pisa, Italy: Association for Computing Machinery, 2016, pp. 1105–1108.
isbn: 9781450340694. doi: 10.1145/2911451.2911465 . url: https://doi.org/10.

1145/2911451.2911465 .

[185] Jaspreet Singh et al. “Extracting per Query Valid Explanations for Blackbox Learning-
to-Rank Models”. In: Proceedings of the 2021 ACM SIGIR International Conference

on Theory of Information Retrieval. ICTIR ’21. Virtual Event, Canada: Association
for Computing Machinery, 2021, pp. 203–210. isbn: 9781450386111. doi: 10.1145/

3471158.3472241 . url: https://doi.org/10.1145/3471158.3472241 .

[186] Miroslav Spousta, Michal Marek, and Pavel Pecina. “Victor: the web-page cleaning
tool”. In: 4th Web as Corpus Workshop (WAC4)-Can we beat Google. 2008, pp. 12–17.

[187] Trevor Strohman et al. “Indri: A language model-based search engine for complex
queries”. In: Proceedings of the International Conference on Intelligent Analysis. Vol. 2.
6. 2005, pp. 2–6.

[188] Fei Sun, Dandan Song, and Lejian Liao. “DOMBased Content Extraction via Text Den-
sity”. In: Proceedings of the 34th International ACM SIGIR Conference on Research and

Development in Information Retrieval. SIGIR ’11. Beijing, China: Association for Com-
puting Machinery, 2011, pp. 245–254. isbn: 9781450307574. doi: 10.1145/2009916.

2009952 . url: https://doi.org/10.1145/2009916.2009952 .

[189] Florian Supplie. “Boilerplate-Erkennung mit Hilfe von Deeplearning”. M. Sc. Thesis.
Leibniz Universität Hannover, 2018.

[190] Ming Tan et al. “Improved Representation Learning for Question Answer Matching”.
In: Proceedings of the 54th Annual Meeting of the Association for Computational Lin-

guistics (Volume 1: Long Papers). Berlin, Germany: Association for Computational
Linguistics, Aug. 2016, pp. 464–473. doi: 10.18653/v1/P16- 1044 . url: https:

//aclanthology.org/P16-1044 .

153

https://doi.org/10.1145/2983323.2983798
https://doi.org/10.1145/2983323.2983798
https://doi.org/10.1145/2983323.2983798
https://doi.org/10.1145/2911451.2911465
https://doi.org/10.1145/2911451.2911465
https://doi.org/10.1145/2911451.2911465
https://doi.org/10.1145/3471158.3472241
https://doi.org/10.1145/3471158.3472241
https://doi.org/10.1145/3471158.3472241
https://doi.org/10.1145/2009916.2009952
https://doi.org/10.1145/2009916.2009952
https://doi.org/10.1145/2009916.2009952
https://doi.org/10.18653/v1/P16-1044
https://aclanthology.org/P16-1044
https://aclanthology.org/P16-1044

Bibliography

[191] Nandan Thakur et al. “BEIR: A Heterogeneous Benchmark for Zero-shot Evaluation
of Information Retrieval Models”. In: Thirty-fifth Conference on Neural Information

Processing Systems Datasets and Benchmarks Track (Round 2). 2021. url: https://

openreview.net/forum?id=wCu6T5xFjeJ .

[192] Martin Theobald, GerhardWeikum, and Ralf Schenkel. “Top-k Query Evaluationwith
Probabilistic Guarantees”. In: Proceedings of the Thirtieth International Conference on

Very Large Data Bases - Volume 30. VLDB ’04. Toronto, Canada: VLDB Endowment,
2004, pp. 648–659. isbn: 0120884690.

[193] James Thorne et al. “FEVER: a Large-scale Dataset for Fact Extraction and VERifi-
cation”. In: Proceedings of the 2018 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, Volume 1

(Long Papers). New Orleans, Louisiana: Association for Computational Linguistics,
June 2018, pp. 809–819. doi: 10.18653/v1/N18-1074 . url: https://aclanthology.

org/N18-1074 .

[194] NamKhanh Tran andClaudia Niedereée. “MultihopAttentionNetworks for Question
Answer Matching”. In: The 41st International ACM SIGIR Conference on Research &

Development in Information Retrieval. SIGIR ’18. Ann Arbor, MI, USA: Association
for Computing Machinery, 2018, pp. 325–334. isbn: 9781450356572. doi: 10.1145/

3209978.3210009 . url: https://doi.org/10.1145/3209978.3210009 .

[195] Iulia Turc et al. “Well-Read Students Learn Better: The Impact of Student Initialization
on Knowledge Distillation”. In: CoRR abs/1908.08962 (2019). arXiv: 1908.08962 . url:

 http://arxiv.org/abs/1908.08962 .

[196] Howard Turtle and James Flood. “Query Evaluation: Strategies and Optimizations”.
In: Inf. Process. Manage. 31.6 (Nov. 1995), pp. 831–850. issn: 0306-4573. doi: 10.1016/

0306-4573(95)00020-H . url: https://doi.org/10.1016/0306-4573(95)00020-

H .

[197] Ashish Vaswani et al. “Attention is All You Need”. In: Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems. NIPS’17. Long Beach,
California, USA: Curran Associates Inc., 2017, pp. 6000–6010. isbn: 9781510860964.

[198] Thijs Vogels, Octavian-Eugen Ganea, and Carsten Eickhoff. “Web2Text: Deep Struc-
tured Boilerplate Removal”. In: Advances in Information Retrieval. Ed. by Gabriella
Pasi et al. Cham: Springer International Publishing, 2018, pp. 167–179. isbn: 978-3-
319-76941-7.

154

https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://doi.org/10.18653/v1/N18-1074
https://aclanthology.org/N18-1074
https://aclanthology.org/N18-1074
https://doi.org/10.1145/3209978.3210009
https://doi.org/10.1145/3209978.3210009
https://doi.org/10.1145/3209978.3210009
https://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
https://doi.org/10.1016/0306-4573(95)00020-H
https://doi.org/10.1016/0306-4573(95)00020-H
https://doi.org/10.1016/0306-4573(95)00020-H
https://doi.org/10.1016/0306-4573(95)00020-H

Bibliography

[199] Michael Völske et al. “Towards Axiomatic Explanations for Neural Ranking Models”.
In: Proceedings of the 2021 ACM SIGIR International Conference on Theory of Informa-

tion Retrieval. ICTIR ’21. Virtual Event, Canada: Association for Computing Machin-
ery, 2021, pp. 13–22. isbn: 9781450386111. doi: 10.1145/3471158.3472256 . url:

 https://doi.org/10.1145/3471158.3472256 .

[200] Ellen M Voorhees. “The TREC-8 question answering track report”. In: Trec. Vol. 99.
1999, pp. 77–82.

[201] Eric Wallace et al. “Concealed Data Poisoning Attacks on NLP Models”. In: Proceed-
ings of the 2021 Conference of the North American Chapter of the Association for Compu-

tational Linguistics: Human Language Technologies. Online: Association for Computa-
tional Linguistics, June 2021, pp. 139–150. doi: 10.18653/v1/2021.naacl-main.13 .
url: https://aclanthology.org/2021.naacl-main.13 .

[202] Jonas Wallat, Jaspreet Singh, and Avishek Anand. “BERTnesia: Investigating the cap-
ture and forgetting of knowledge in BERT”. In: Proceedings of the Third BlackboxNLP
Workshop on Analyzing and Interpreting Neural Networks for NLP. Online: Association
for Computational Linguistics, Nov. 2020, pp. 174–183. doi: 10.18653/v1/2020.

blackboxnlp-1.17 . url: https://aclanthology.org/2020.blackboxnlp-1.17 .

[203] Jue Wang et al. “SkipBERT: Efficient Inference with Shallow Layer Skipping”. In: Pro-
ceedings of the 60th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers). Dublin, Ireland: Association for Computational Linguistics,
May 2022, pp. 7287–7301. doi: 10.18653/v1/2022.acl-long.503 . url: https:

//aclanthology.org/2022.acl-long.503 .

[204] Junfeng Wang et al. “Can We Learn a Template-Independent Wrapper for News
Article Extraction from a Single Training Site?” In: Proceedings of the 15th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD
’09. Paris, France: Association for Computing Machinery, 2009, pp. 1345–1354. isbn:
9781605584959. doi: 10.1145/1557019.1557163 . url: https://doi.org/10.1145/

1557019.1557163 .

[205] Liang Wang et al. Text Embeddings by Weakly-Supervised Contrastive Pre-training.
2022. doi: 10.48550/ARXIV.2212.03533 . url: https://arxiv.org/abs/2212.

03533 .

[206] Lijie Wang et al. “A Fine-grained Interpretability Evaluation Benchmark for Neural
NLP”. In: (2022). doi: 10.48550/ARXIV.2205.11097 . url: https://arxiv.org/

abs/2205.11097 .

155

https://doi.org/10.1145/3471158.3472256
https://doi.org/10.1145/3471158.3472256
https://doi.org/10.18653/v1/2021.naacl-main.13
https://aclanthology.org/2021.naacl-main.13
https://doi.org/10.18653/v1/2020.blackboxnlp-1.17
https://doi.org/10.18653/v1/2020.blackboxnlp-1.17
https://aclanthology.org/2020.blackboxnlp-1.17
https://doi.org/10.18653/v1/2022.acl-long.503
https://aclanthology.org/2022.acl-long.503
https://aclanthology.org/2022.acl-long.503
https://doi.org/10.1145/1557019.1557163
https://doi.org/10.1145/1557019.1557163
https://doi.org/10.1145/1557019.1557163
https://doi.org/10.48550/ARXIV.2212.03533
https://arxiv.org/abs/2212.03533
https://arxiv.org/abs/2212.03533
https://doi.org/10.48550/ARXIV.2205.11097
https://arxiv.org/abs/2205.11097
https://arxiv.org/abs/2205.11097

Bibliography

[207] Shuai Wang, Shengyao Zhuang, and Guido Zuccon. “BERT-Based Dense Retrievers
Require Interpolation with BM25 for Effective Passage Retrieval”. In: Proceedings of
the 2021 ACM SIGIR International Conference on Theory of Information Retrieval. ICTIR
’21. Virtual Event, Canada: Association for Computing Machinery, 2021, pp. 317–324.
isbn: 9781450386111. doi: 10.1145/3471158.3472233 . url: https://doi.org/10.

1145/3471158.3472233 .

[208] Shuohang Wang et al. “Evidence Aggregation for Answer Re-Ranking in Open-
Domain Question Answering”. In: International Conference on Learning Representa-

tions. 2018. url: https://openreview.net/forum?id=rJl3yM-Ab .

[209] Shuohang Wang et al. “R3: Reinforced Ranker-Reader for Open-Domain Ques-
tion Answering”. In: Proceedings of the Thirty-Second AAAI Conference on Artifi-

cial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Confer-

ence and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence.
AAAI’18/IAAI’18/EAAI’18. New Orleans, Louisiana, USA: AAAI Press, 2018. isbn:
978-1-57735-800-8.

[210] Tong Wang, Xingdi Yuan, and Adam Trischler. A Joint Model for Question Answering

and Question Generation. 2017. arXiv: 1706.01450 [cs.CL] .

[211] Xing Wei and W. Bruce Croft. “LDA-Based Document Models for Ad-Hoc Retrieval”.
In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval. SIGIR ’06. New York, NY, USA: Association for
ComputingMachinery, 2006, pp. 178–185. isbn: 1595933697. doi: 10.1145/1148170.

1148204 . url: https://doi.org/10.1145/1148170.1148204 .

[212] Sarah Wiegreffe and Yuval Pinter. “Attention is not not Explanation”. In: Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the

9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).
Hong Kong, China: Association for Computational Linguistics, Nov. 2019, pp. 11–20.
doi: 10.18653/v1/D19-1002 . url: https://aclanthology.org/D19-1002 .

[213] Chen Wu et al. PRADA: Practical Black-Box Adversarial Attacks against Neural Rank-
ing Models. 2022. doi: 10.48550/ARXIV.2204.01321 . url: https://arxiv.org/

abs/2204.01321 .

[214] Shanchan Wu, Jerry Liu, and Jian Fan. “Automatic Web Content Extraction by Com-
bination of Learning and Grouping”. In: Proceedings of the 24th International Confer-

ence on World Wide Web. WWW ’15. Florence, Italy: International World Wide Web

156

https://doi.org/10.1145/3471158.3472233
https://doi.org/10.1145/3471158.3472233
https://doi.org/10.1145/3471158.3472233
https://openreview.net/forum?id=rJl3yM-Ab
https://arxiv.org/abs/1706.01450
https://doi.org/10.1145/1148170.1148204
https://doi.org/10.1145/1148170.1148204
https://doi.org/10.1145/1148170.1148204
https://doi.org/10.18653/v1/D19-1002
https://aclanthology.org/D19-1002
https://doi.org/10.48550/ARXIV.2204.01321
https://arxiv.org/abs/2204.01321
https://arxiv.org/abs/2204.01321

Bibliography

Conferences Steering Committee, 2015, pp. 1264–1274. isbn: 9781450334693. doi: 10.

1145/2736277.2741659 . url: https://doi.org/10.1145/2736277.2741659 .

[215] Yonghui Wu et al. Google’s Neural Machine Translation System: Bridging the Gap be-

tween Human and Machine Translation. 2016. arXiv: 1609.08144 [cs.CL] .

[216] Zhijing Wu et al. “Leveraging Passage-Level Cumulative Gain for Document Rank-
ing”. In: Proceedings of The Web Conference 2020. WWW ’20. Taipei, Taiwan: Asso-
ciation for Computing Machinery, 2020, pp. 2421–2431. isbn: 9781450370233. doi:

 10.1145/3366423.3380305 . url: https://doi.org/10.1145/3366423.3380305 .

[217] Sang Michael Xie and Stefano Ermon. “Reparameterizable Subset Sampling via Con-
tinuous Relaxations”. In: IJCAI. 2019, pp. 3919–3925. url: https://doi.org/10.

24963/ijcai.2019/544 .

[218] Ji Xin et al. “DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference”. In:
Proceedings of the 58th Annual Meeting of the Association for Computational Linguis-

tics. Online: Association for Computational Linguistics, July 2020, pp. 2246–2251. doi:
 10.18653/v1/2020.acl-main.204 . url: https://aclanthology.org/2020.acl-

main.204 .

[219] Caiming Xiong, Stephen Merity, and Richard Socher. “Dynamic Memory Networks
for Visual and Textual Question Answering”. In: Proceedings of The 33rd International
Conference on Machine Learning. Ed. by Maria Florina Balcan and Kilian Q. Wein-
berger. Vol. 48. Proceedings of Machine Learning Research. New York, New York,
USA: PMLR, 20–22 Jun 2016, pp. 2397–2406. url: https : / / proceedings . mlr .

press/v48/xiong16.html .

[220] Chenyan Xiong et al. “End-to-End Neural Ad-Hoc Ranking with Kernel Pooling”.
In: Proceedings of the 40th International ACM SIGIR Conference on Research and De-

velopment in Information Retrieval. SIGIR ’17. Shinjuku, Tokyo, Japan: Association
for Computing Machinery, 2017, pp. 55–64. isbn: 9781450350228. doi: 10 . 1145 /

3077136.3080809 . url: https://doi.org/10.1145/3077136.3080809 .

[221] Lee Xiong et al. “Approximate Nearest Neighbor Negative Contrastive Learning for
Dense Text Retrieval”. In: International Conference on Learning Representations. 2021.
url: https://openreview.net/forum?id=zeFrfgyZln .

[222] Huijuan Xu et al.AMulti-scale Multiple Instance Video Description Network. 2015. doi:
 10.48550/ARXIV.1505.05914 . url: https://arxiv.org/abs/1505.05914 .

[223] Peng Xu et al. Passage Ranking with Weak Supervision. 2019. url: https : / /

openreview.net/forum?id=S1ltj47xdE .

157

https://doi.org/10.1145/2736277.2741659
https://doi.org/10.1145/2736277.2741659
https://doi.org/10.1145/2736277.2741659
https://arxiv.org/abs/1609.08144
https://doi.org/10.1145/3366423.3380305
https://doi.org/10.1145/3366423.3380305
https://doi.org/10.24963/ijcai.2019/544
https://doi.org/10.24963/ijcai.2019/544
https://doi.org/10.18653/v1/2020.acl-main.204
https://aclanthology.org/2020.acl-main.204
https://aclanthology.org/2020.acl-main.204
https://proceedings.mlr.press/v48/xiong16.html
https://proceedings.mlr.press/v48/xiong16.html
https://doi.org/10.1145/3077136.3080809
https://doi.org/10.1145/3077136.3080809
https://doi.org/10.1145/3077136.3080809
https://openreview.net/forum?id=zeFrfgyZln
https://doi.org/10.48550/ARXIV.1505.05914
https://arxiv.org/abs/1505.05914
https://openreview.net/forum?id=S1ltj47xdE
https://openreview.net/forum?id=S1ltj47xdE

Bibliography

[224] Yingrui Yang, Yifan Qiao, and Tao Yang. “Compact Token Representations with Con-
textual Quantization for Efficient Document Re-ranking”. In: Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-

pers). Dublin, Ireland: Association for Computational Linguistics, May 2022, pp. 695–
707. doi: 10.18653/v1/2022.acl-long.51 . url: https://aclanthology.org/

2022.acl-long.51 .

[225] Zichao Yang et al. “Hierarchical Attention Networks for Document Classification”. In:
Proceedings of the 2016 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies. San Diego, California:
Association for Computational Linguistics, June 2016, pp. 1480–1489. doi: 10.18653/

v1/N16-1174 . url: https://aclanthology.org/N16-1174 .

[226] Lan Yi, Bing Liu, and Xiaoli Li. “Eliminating Noisy Information in Web Pages for
Data Mining”. In: Proceedings of the Ninth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. KDD ’03. Washington, D.C.: Association for
Computing Machinery, 2003, pp. 296–305. isbn: 1581137370. doi: 10.1145/956750.

956785 . url: https://doi.org/10.1145/956750.956785 .

[227] Jinsung Yoon, James Jordon, and Mihaela van der Schaar. “INVASE: Instance-wise
Variable Selection using Neural Networks”. In: International Conference on Learning

Representations. 2019. url: https://openreview.net/forum?id=BJg_roAcK7 .

[228] Hamed Zamani and W. Bruce Croft. “Embedding-Based Query Language Models”.
In: Proceedings of the 2016 ACM International Conference on the Theory of Information

Retrieval. ICTIR ’16. Newark, Delaware, USA: Association for Computing Machin-
ery, 2016, pp. 147–156. isbn: 9781450344975. doi: 10.1145/2970398.2970405 . url:

 https://doi.org/10.1145/2970398.2970405 .

[229] Jingtao Zhan et al. “An Analysis of BERT in Document Ranking”. In: Proceedings of
the 43rd International ACM SIGIR Conference on Research and Development in Informa-

tion Retrieval. SIGIR ’20. Virtual Event, China: Association for ComputingMachinery,
2020, pp. 1941–1944. isbn: 9781450380164. doi: 10.1145/3397271.3401325 . url:

 https://doi.org/10.1145/3397271.3401325 .

[230] Jingtao Zhan et al. “Optimizing Dense Retrieval Model Training with Hard Nega-
tives”. In: Proceedings of the 44th International ACM SIGIR Conference on Research and

Development in Information Retrieval. New York, NY, USA: Association for Comput-
ing Machinery, 2021, pp. 1503–1512. isbn: 9781450380379. url: https://doi.org/

10.1145/3404835.3462880 .

158

https://doi.org/10.18653/v1/2022.acl-long.51
https://aclanthology.org/2022.acl-long.51
https://aclanthology.org/2022.acl-long.51
https://doi.org/10.18653/v1/N16-1174
https://doi.org/10.18653/v1/N16-1174
https://aclanthology.org/N16-1174
https://doi.org/10.1145/956750.956785
https://doi.org/10.1145/956750.956785
https://doi.org/10.1145/956750.956785
https://openreview.net/forum?id=BJg_roAcK7
https://doi.org/10.1145/2970398.2970405
https://doi.org/10.1145/2970398.2970405
https://doi.org/10.1145/3397271.3401325
https://doi.org/10.1145/3397271.3401325
https://doi.org/10.1145/3404835.3462880
https://doi.org/10.1145/3404835.3462880

Bibliography

[231] Kai Zhang et al. “LED: Lexicon-Enlightened Dense Retriever for Large-Scale Re-
trieval”. In: Proceedings of the ACMWeb Conference 2023. WWW ’23. Austin, TX, USA:
Association for Computing Machinery, 2023, pp. 3203–3213. isbn: 9781450394161.
doi: 10.1145/3543507.3583294 . url: https://doi.org/10.1145/3543507.

3583294 .

[232] Zijian Zhang, Koustav Rudra, and Avishek Anand. “Explain and Predict, and Then
Predict Again”. In: Proceedings of the 14th ACM International Conference onWeb Search

and Data Mining. WSDM ’21. Virtual Event, Israel: Association for Computing Ma-
chinery, 2021, pp. 418–426. isbn: 9781450382977. doi: 10.1145/3437963.3441758 .
url: https://doi.org/10.1145/3437963.3441758 .

[233] Ruiqi Zhong, Steven Shao, and Kathleen McKeown. Fine-grained Sentiment Analysis

with Faithful Attention. 2019. doi: 10 . 48550 / ARXIV . 1908 . 06870 . url: https :

//arxiv.org/abs/1908.06870 .

[234] Yucheng Zhou et al. Fine-Grained Distillation for Long Document Retrieval. 2022. doi:
 10.48550/ARXIV.2212.10423 . url: https://arxiv.org/abs/2212.10423 .

[235] Shengyao Zhuang andGuido Zuccon. “CharacterBERT and Self-Teaching for Improv-
ing the Robustness of Dense Retrievers on Queries with Typos”. In: Proceedings of the
45th International ACM SIGIR Conference on Research and Development in Informa-

tion Retrieval. SIGIR ’22. Madrid, Spain: Association for Computing Machinery, 2022,
pp. 1444–1454. isbn: 9781450387323. doi: 10.1145/3477495.3531951 . url: https:

//doi.org/10.1145/3477495.3531951 .

[236] Shengyao Zhuang and Guido Zuccon. “Fast passage re-ranking with contextu-
alized exact term matching and efficient passage expansion”. In: arXiv preprint

arXiv:2108.08513 (2021).

[237] Shengyao Zhuang and Guido Zuccon. “TILDE: Term Independent Likelihood MoDEl
for Passage Re-Ranking”. In: Proceedings of the 44th International ACM SIGIR Con-

ference on Research and Development in Information Retrieval. SIGIR ’21. Virtual
Event, Canada: Association for Computing Machinery, 2021, pp. 1483–1492. isbn:
9781450380379. doi: 10.1145/3404835.3462922 . url: https://doi.org/10.1145/

3404835.3462922 .

159

https://doi.org/10.1145/3543507.3583294
https://doi.org/10.1145/3543507.3583294
https://doi.org/10.1145/3543507.3583294
https://doi.org/10.1145/3437963.3441758
https://doi.org/10.1145/3437963.3441758
https://doi.org/10.48550/ARXIV.1908.06870
https://arxiv.org/abs/1908.06870
https://arxiv.org/abs/1908.06870
https://doi.org/10.48550/ARXIV.2212.10423
https://arxiv.org/abs/2212.10423
https://doi.org/10.1145/3477495.3531951
https://doi.org/10.1145/3477495.3531951
https://doi.org/10.1145/3477495.3531951
https://doi.org/10.1145/3404835.3462922
https://doi.org/10.1145/3404835.3462922
https://doi.org/10.1145/3404835.3462922

Bibliography

160

List of Figures

 1.1 Limitations of lexical retrievers . 2
 1.2 Carbon emissions caused by ranking models 4
 1.3 Explainability of sparse and dense retrieval 5
 1.4 Thesis contributions . 6

 2.1 LLM-based semantic rankers . 12

 3.1 Sequential coalescing . 28
 3.2 Early stopping . 28
 3.3 Query and passage lengths in theMS MARCO corpus 34
 3.4 Query encoders . 35
 3.5 Selective-BERT document encoders . 37
 3.6 Number of look-ups using early stopping . 48
 3.7 Query encoding latency and Fast-Forward ranking performance 49
 3.8 Performance and index size using sequential coalescing 51
 3.9 Performance of query encoders . 52
 3.10 Performance and latency of Selective-BERT 53

 4.1 BERT-DMN model architecture . 63
 4.2 Diffusion of information within BERT representations 69

 5.1 Example sentence selection . 74
 5.2 Select-And-Rank paradigm . 75
 5.3 Selector architectures . 85
 5.4 Document and sentence lengths in TREC datasets 86
 5.5 Document and sentence lengths in BEIR datasets 87
 5.6 Ranking results on BEIR datasets . 93
 5.7 Performance with decreasing number of selected sentences 93
 5.8 Comprehensiveness of Select-And-Rank 94
 5.9 Faithfulness of Select-And-Rank . 95

161

List of Figures

 5.10 Effect of token limitation . 97
 5.11 Explaining BERT-CLS . 98
 5.12 Selection vs. truncation . 98
 5.13 Study instructions . 103
 5.14 Study task . 104
 5.15 Study break . 104
 5.16 Label leakage example . 106
 5.17 Discovery of label leakage using Select-And-Rank 107

 6.1 Web page layout example . 110
 6.2 BoilerNet architecture . 113
 6.3 Demo user interface . 116
 6.4 Demo example . 117

162

List of Tables

 3.1 Pre-trained encoders and indexes . 40
 3.2 Ranking performance . 43
 3.3 Document ranking performance at higher depths 44
 3.4 Passage ranking performance at higher depths 45
 3.5 Passage ranking performance of various retrievers and re-rankers 47
 3.6 Retrieval results using lightweight query encoders 54
 3.7 Zero-shot ranking results . 55

 4.1 Dataset statistics . 65
 4.2 Passage re-ranking performance . 68
 4.3 Training efficiency . 70

 5.1 Performance of selectors . 90
 5.2 Ranking performance . 91
 5.3 Performance of baselines . 91
 5.4 Effect of first-stage retrieval . 99
 5.5 Example from TREC-DL-Doc’19 . 101
 5.6 Example from Fever . 102

 6.1 Performance on CleanEval . 115
 6.2 Performance on GoogleTrends-2017 . 116

163

List of Tables

164

List of Algorithms

 1 Sequential coalescing . 30
 2 Early stopping . 31

165

	Introduction
	Ad-hoc Document Retrieval
	Neural Ranking Models
	The Efficiency Challenge
	The Explainability Challenge

	Outline and Contributions
	Efficiency in Neural IR
	Explainability in Neural IR
	The Big Picture

	Background
	Text Ranking
	Lexical Matching
	Semantic Matching
	Retrieval Approaches
	Metrics

	Large Language Models
	Input Representations
	Encoder Layers

	Forward Indexes for Efficient Neural Ranking
	Related Work
	Cross-Attention Models
	Dual-Encoders
	Hybrid Models
	Inference Efficiency

	Fast-Forward Indexes
	Index Compression via Sequential Coalescing
	Accelerating Interpolation by Stopping Early

	Efficient Encoders
	Lightweight Query Encoders
	Selective Document Encoders

	Experimental Setup
	Baselines
	Datasets
	Evaluation Details
	Training Details

	Results
	Dual-Encoders for Interpolation-based Re-ranking
	Early Stopping for more Efficient Re-ranking
	Query Encoder Complexity
	Trade-off Between Index Size and Ranking Performance
	Efficient Indexing by Removing Irrelevant Document Tokens

	Discussion
	Efficient Encoders for Dense Retrieval
	Out-of-Domain Performance
	Threats to Validity

	Conclusion

	Sentence-Level Representations for Passage Ranking
	Related Work
	BERT-DMN
	Dynamic Memory Networks
	Combining BERT and DMN

	Experimental Setup
	Datasets
	Baselines
	Training Efficiency
	Training Details

	Results
	Passage Re-Ranking Performance
	The Effect of Fine-Tuning
	Training Efficiency

	Conclusion

	Extractive Explanations for Interpretable Text Ranking
	Related Work
	Ranking Models for Text
	Interpretability of Ranking Models

	Select-And-Rank
	Problem Statement
	Pipeline Approach
	End-to-End Approach
	Ranker

	Experimental Setup
	Datasets
	Baselines and Competitors
	Training Details

	Results
	Variation of Selectors
	Performance of Select-And-Rank
	Comprehensiveness of Select-And-Rank
	Faithfulness and Utility of Select-And-Rank
	The Effect of Token Limitation
	Explaining BERT-CLS
	The Effect of First-stage Retrieval
	Anecdotal Examples

	User Study Details
	Interface
	Collection and Usage of Data

	Applications of Select-And-Rank
	Discovering Biased or Buggy Ranking Decisions
	Improving Search Engines

	Conclusion

	Web Content Extraction for Corpus Creation
	Related Work
	BoilerNet
	Input Representation
	Sequence Labeling
	Issues in Boilerplate Removal Models

	Experiments
	Dataset Preparation
	Results and Discussion

	Demonstration
	Implementation Details

	Conclusion

	Conclusion and Future Work
	Contributions
	Software

	Future Work
	Outlook

	Curriculum Vitae
	Bibliography
	List of Figures
	List of Tables
	List of Algorithms

